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ABSTRACT

Computed tomography (CT) scans provide radiologists a non-invasive method of

imaging internal structures of the body. Although CT scans have enabled the

earlier detection of suspicious nodules, these nodules are often small and di�cult

to accurately classify for radiologists. An automated system was developed to

classify a pulmonary nodule based on image features extracted from a single CT

scan. Several critical issues related to performance evaluation of such systems were

also examined.

The image features considered in the system were: statistics from the density

distribution, shape, curvature, and boundary features. The shape and density

features were computed through moment analysis of the segmented nodule. Lo-

cal curvature was computed from a triangle-tessellated surface of the nodule; the

statistics of the distribution of curvatures were used as features in the system. Fi-

nally, the boundary of the nodule was examined to quantify the transition region

between the nodule and lung parenchyma. This was accomplished by combining

the grayscale information and 3D model to measure the gradient on the surface

of the nodule. These methods resulted in a total of 43 features. For compari-

son, 2D features were computed for the density and shape features, resulting in

26 features. Four feature classi�cation schemes were evaluated: logistic regression,

k-nearest-neighbors, distance-weighted nearest-neighbors, and support vector ma-

chines (SVM). These features and classi�ers were validated on a large dataset of

259 nodules. The best performance, an area under the ROC curve (AUC) of 0.702,

was achieved using 3D features and the logistic regression classi�er.

A major consideration when evaluating a nodule classi�cation system is whether



the system presents an improvement over a baseline performance. Since the major-

ity of large nodules in many datasets are malignant, the impact of nodule size on

the performance of the classi�cation system was examined. This was accomplished

by comparing the performance of the system with feature sets that included size-

dependent features to feature sets that excluded those features.The performance of

size alone, estimated using a size-threshold classi�er, was an AUC of 0.653. For the

SVM classi�er, removing size-dependent features reduced the performance from an

AUC of 0.69 to 0.61. To approximate the performance that might be obtained on

a dataset without a size bias, a subset of cases was selected where the benign

and malignant nodules were of similar sizes. On this subset, size was not a very

powerful feature with an AUC of 0.507, and features that were not dependent on

size performed better than size-dependent features for SVM, with an AUC of 0.63

compared to 0.52. While other methods have been proposed for performing nodule

classi�cation, this is the �rst study to comprehensively look at the performance

impact from datasets with nodules that exhibit a bias in size.
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CHAPTER 1

INTRODUCTION

According to the American Cancer Society, lung cancer is the leading cause of

cancer deaths today and is expected to account for 159,390 deaths in 2009 [1]. Early

detection and treatment of lung cancer has been shown to improve survival rates [2].

In its earliest manifestation, lung cancer typically presents as a pulmonary nodule

which appears in an X-ray computed tomography (CT) image as an area of opacity

in the lung parenchyma. The introduction of high-resolution, multi-row detector

CT scanners which provide thin-slice images in a single breath-hold has allowed

radiologists to detect more small nodules than previously possible with either chest

radiographs or thick-slice CT. A majority of these small nodules are benign, but the

status of these nodules is often di�cult to ascertain, requiring additional physician

follow up. This follow up typically consists of an additional CT scan at a later

time to assess growth rate; a high growth rate is typically indicative of a malignant

nodule. However, growth rate assessment requires a second CT scan which delays

the true diagnosis and exposes the patient to a second, possibly unnecessary dose

of radiation. Instead, we explore an automated method to diagnose cancer from

a single low-dose CT scan used for screening by extracting and classifying various

image features from the CT scan to assess the malignancy of a pulmonary nodule.

In addition, we analyzed the e�ect of the underlying size-distribution of the nodules

in the dataset on the reported performance of the system.

1.1 Problem Statement

Patients with early stage lung cancer often present no symptoms; thus, early can-

cers are typically found in CT or X-ray scans. Once a suspicious lesion is detected,
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its malignancy may be determined by performing a biopsy or observing the le-

sion's growth rate. Both these techniques have undesirable characteristics; biopsy

requires insertion of a needle into the patient's lung to remove tissue from the lesion

which may cause complications such as a collapsed lung, and observing the growth

of the lesion requires taking at least one additional scan, prolonging diagnosis and

exposing the patient to additional radiation. As an alternative, the malignancy

status of suspicious lesions is determined by analyzing features that are able to be

assessed from a single CT scan, which we term pulmonary nodule characterization.

In pulmonary nodule characterization, various features are computed from the

nodule and used to evaluate the probability of the nodule being malignant. Our

method uses only features that can be computed from the nodule region on a

CT image are considered. Several past studies have attempted to classify nodules

using both features estimated by human observers and features computed by image

analysis methods. These studies are described in further detail in Section 1.4.

Pulmonary nodule characterization using image features poses several chal-

lenges. In addition to computing the features themselves, biases exist in the the

size distributions of malignant and benign nodules in the datasets used for sys-

tem development which poses issues in training and evaluating classi�ers that are

unique to the task of nodule characterization. This a priori size information has

been shown to be highly correlated with malignancy [3, 4], but in the evaluation

of an automated characterization system, the relevant performance metric is not

the absolute performance, but the improvement the system o�ers over the use of

the a priori size information.

A major component of characterization systems is the speci�c classi�er used. In

general, there are parametric classi�ers that assume the data �t a particular model,

such as linear regression, and non-parametric classi�ers that do not assume any a
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priori model, such as neural networks. Parametric classi�ers assume the data have

some underlying probability distribution and, given this distribution, there should

be an optimal decision surface to separate the data into di�erent classes. As a

result, for situations where the data �t these assumptions, parametric classi�ers

perform better than non-parametric classi�ers since the model is already known.

There are many situations where data do not have a known distribution. In these

cases, non-parametric classi�ers tend to work better than parametric classi�ers due

to the relaxation of assumptions of the probability distribution of the data. While

this makes them more �exible, they are less powerful if there is a parametric model

that �ts the data, due to the need to learn both the model and the parameters of

the model.

There have been many studies in the machine learning �eld comparing the

performance of di�erent classi�ers on the same dataset, but there have been few

published studies using di�erent classi�ers for pulmonary nodule characterization.

Given the wide variety of image feature types and the often vague di�erences

between benign and malignant nodules, a non-parametric classi�er is likely to

o�er better performance than a parametric classi�er.

In this study, a feature-based classi�cation algorithm for pulmonary nodules

in CT images was developed. The performance of this algorithm was evaluated

for di�erent types of classi�ers. Finally, issues were identi�ed with conventional

evaluation methods due to the size bias of most pulmonary nodule datasets, and as

a result, a new evaluation method that avoids size bias is proposed and evaluated.

1.2 Computed Tomography Imaging

Computed tomography (CT) scanners enable radiologists to view internal body

structures in three dimensions. CT scanners make use of an X-ray source and
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detector that are rotated around the body. Images are created by reconstructing

the X-ray projections. In the resulting CT images, the value of the voxel is related

to the density of the tissue; CT scanners are calibrated so that, on the Houns�eld

scale, a voxel value of 0 corresponds to water and -1000 to air [5]. Houns�eld units

are de�ned by the following expression:

Htissue =
µtissue − µwater

µwater
× 1000

where µ are the linear attenuation coe�cients to X-rays. These linear attenuation

coe�cients quantify the reduction in intensity of an energy beam as it passes

through a material.

The quality of a CT scan depends upon several scanner parameters; for the

automated analysis of images considered in this work, the most important param-

eters are radiation dose, slice thickness, and �eld of view. Higher radiation doses

allow for better quality images due to a higher signal to noise ratio, but this has

to be balanced against the desire to limit radiation to the patient. The slice thick-

ness speci�es the width of each section along the axial direction of the scanner,

which is determined by the speed of table movement, the width of each detector,

and the amount of overlap between detectors. Thinner slice thickness scans have

more detail than scans with thicker slice thickness, but the scan �les are larger in

size and have more noise than a thick slice scan using the same radiation dosage.

Finally, the �eld of view controls the in-plane size of each voxel. In a whole-lung

�eld of view, the entire lung is in view, resulting in an in-plane resolution of about

0.6 mm per voxel. If the radiologist knows the location of the nodule, a scan with

a targeted �eld of view can be acquired of just the region of interest. These scans

typically have an in-plane resolution of 0.18 mm. Although targeted scans have a

higher physical resolution, the location of the nodule needs to be known, and thus

are not useful for �nding new nodules.
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(a) (b)

Figure 1.1: Several slices from a CT scan of a solid pulmonary nodule on a) 1.25
mm thick scan and b) 5.0 mm thick scan. Note that for ease of viewing, the scales
are not the same between the two images.

1.3 Pulmonary Nodules on CT Images

In its earliest manifestation, lung cancer often presents as a pulmonary nodule;

however, not all pulmonary nodules are malignant � some may be caused by a

variety of benign conditions such as in�ammation of the airways. A pulmonary

nodule appears on a CT scan as a high intensity object within the lung parenchyma

which does not belong to any normal anatomical structures such as vessels or

airways, as shown in Figure 1.2.

Pulmonary nodules may be categorized according to their density and sur-

rounding attachments. Nodules with a high density, called �solid nodules�, have

an opaque appearance on CT scans, while nodules with a low density, �non-solid

nodules�, have a more ill-de�ned appearance. Nodules with both solid and non-

solid components are called �part-solid�. The term �subsolid� is often used to refer

to both non-solid and part-solid nodules. Examples of these nodules are shown in

Figure 1.3. In addition to exhibiting di�erent densities, nodules may either be iso-
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(a) (b)

Figure 1.2: Small solid pulmonary nodule on a) single slice of a CT scan and b)
several slices of a CT scan in a small region of interest

lated in the lung parenchyma or attached to other structures. Isolated nodules are

not attached to any other high-intensity structures and are the easiest nodules to

segment. Attached nodules may be attached to either blood vessels or airways, and

juxtapleural nodules are attached to the chest wall. Enlarged images of the central

slices of isolated, juxtapleural, and attached nodules are shown in Figure 1.4.

Only solid and part-solid pulmonary nodules of the three attachment types

(isolated, attached, and juxtapleural) were considered in the development of the

algorithm, since they comprise the majority of nodules detected during screen-

ing and a substantial portion of malignant nodules. A study by Henschke et

al. (2002) found that 88.0% (205/233) of the 233 nodules identi�ed during base-

line scans in their screening study were solid, while 12% (28/233) were non-solid

nodules [6]. A majority of the malignant nodules, 82.8% (24/29), were solid or

part-solid. Furthermore, they found that the malignancy types for the subsolid

nodules were di�erent than the solid nodules. The predominant malignancy types

for subsolid nodules were bronchioloalveolar carcinoma or adenocarcinoma with
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(a) (b) (c)

Figure 1.3: Examples of a) solid, b) part-solid, and c) non-solid nodules on a single
slice of a CT scan, with the nodule indicated by a white box.

(a) (b) (c)

Figure 1.4: Central slices of regions containing a) isolated, b) attached, and c)
juxtapleural nodules
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bronchioloalveolar features compared to other subtypes of adenocarcinoma found

in solid nodules. This may indicate that subsolid nodules require di�erent sets of

features than solid nodules.

1.4 Previous work

Many studies have been made to accurately characterize pulmonary nodules from

a single scan. These studies can be divided into two groups: studies that rely

on human observations of nodule features and studies using computer methods of

image analysis to extract features. Both groups of studies use similar techniques for

performing classi�cation. Typically, features are analyzed to determine which have

the most discriminating power and the relevant features are used in a classi�cation

algorithm. In this section, studies that use human observable features are �rst

described, followed by a review of previously published computer methods for

pulmonary nodule characterization.

1.4.1 Characterization by Human Observable Features

Many attempts have been made to establish criteria, based on image features, for

accurately evaluating the malignancy status of pulmonary nodules by correlating

radiologic features with malignancy. One of the most basic image features that can

be measured from a CT scan are the density of voxels within the nodule region.

An early study by Siegelman et al. (1980) [7] found that using a representative

CT number (Houns�eld unit value) from the mean of 32 contiguous voxels on

the single slice with the highest CT number was a good indication of malignancy.

In their study, of the 45 solid pulmonary nodules under 2 cm with CT numbers

below 146 HU, 37 (82.2%) nodules were malignant. The study also found that the
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distribution of densities was di�erent between benign and malignant nodules, with

benign nodules having either an even distribution of density or concentrated in the

center, while in malignant nodules, voxels with the highest attenuation were along

the edges of the nodules. While this study used a limited number of nodules (91)

and used thick slice scans (10 - 12 mm), the results suggest that density features

are useful for di�erentiating benign and malignant nodules.

Another early study by Gurney (1993) [8] examined previously published liter-

ature to determine what radiologic and clinical features were useful for distinguish-

ing malignant nodules. He performed Bayesian analysis to derive likelihood ratio

for features from previously published literature and found that several radiologic

features were found to have a high likelihood of malignancy: size, edge character-

istics, contour, calci�cation, growth rate, location, and cavitation. Gurney et al.

(1993) [9] applied the likelihood ratios to a later study using six radiologists on

66 pulmonary nodules. Four radiologists estimated the probability of malignancy,

while two radiologists evaluated the nodules according to the radiologic and clini-

cal features used in the earlier study [8]. The readers using Bayesian analysis with

the previously computed likelihood ratios performed better than radiologists alone,

with the readers using Bayesian analysis misclassifying fewer malignant nodules as

benign (6.5) than the expert readers (16.5). While these studies used manually de-

termined features and clinical history, they show that it was possible to use nodule

features and statistical analysis to improve diagnostic performance.

Later studies examined the performance of morphological features often used by

radiologists. A study by Seemann et al. (1999) [10] examined several radiologist-

determined features in their dataset of 23 benign and 81 malignant solid pulmonary

nodules imaged on high-resolution CT scans of 1 mm slice thickness. Most of the

features were categorical, for example, radiologists were asked to determine if the
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appearance of the edge of a nodule was either smooth or indistinct. The fol-

lowing features were signi�cantly di�erent between benign and malignant nodules

(p < 0.01): presence of ground-glass attenuation adjacent to the nodule, presence

of spicules, length of spicules, bronchus sign, vessel sign, pleural retraction, and

circumscribed thickening of the visceral pleura. Based on these features, a sensi-

tivity of 91.4% and a speci�city of 56.5% was obtained. While the performance

was relatively high, the dataset was small, and all the features were determined

by radiologist review. Takashima et al. (2003) [11] also used several radiologist-

determined features to classify 25 malignant and 40 benign nodules. The best

performance at 100% speci�city was achieved with only two features � polygonal

shape and a three-dimensional ratio of greater than 1.78. The highest sensitivities

of 63% and 60% for both reviewers was achieved using a combined criterion of a

predominately solid nodule and peripheral subpleural nodule or polygonal shape

or the three dimensional ratio. Polygonal shape was also found to be a signi�cant

feature in a study by Li et al (2004) [12], along with a smooth or somewhat smooth

margin. Their study had a large number of nodules, with 222 suspicious nodules

detected during screening on thin-section CT scans. Polygonal shape was found in

only 7% of malignant nodules compared to 35% of benign nodules, and a smooth

or somewhat smooth margin was found in 0% of malignant versus 63% of benign

nodules.

Although all the works described so far use features manually determined by

radiologists, they suggest features that may be useful to extract using automated

methods. Several examples of automated methods are described in the following

section.
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Table 1.1: Summary of features used in previous work

Author Year 2D/3D Size Density Shape Texture Margin Other

Kawata [13] 2001 3D N Y Y N N Y

Aoyama [14] 2003 2D Y Y Y N Y Y

Shah [15] 2005 2D Y Y Y Y N Y

Shah [16] 2005 3D Y Y Y N N N

Suzuki [17] 2005 2D Y Y N N N N

Way [18] 2006 3D Y Y Y Y N N

This thesis - Both Y Y Y N Y N

1.4.2 Characterization by Algorithmic Image Features

Most methods for automated nodule characterization follow a similar feature char-

acterization scheme. Various features are extracted from a large, documented

database of nodules in CT images. These features are often analogs to the human

observable features described in the previous section. Feature selection is usually

performed to reduce the number of features to prevent over�tting. A classi�er

is trained on the database of nodules, usually using a leave-one-out methodology

to make maximal use of the typically very small number of cases in the database.

Individual methods di�er in the details of feature extraction, feature selection, and

classi�er. This section will overview general categories of features used by many

automated characterization systems then discuss in further detail several selected

systems of interest.

There are a variety of features used by automated classi�cation systems. These

features can be roughly divided into �ve categories: density, shape, size, texture,

and margin or edge features. Further, these features may be computed in two-

dimensions on a single image slice through the center of the nodule or in three-

dimensions across all the images on which the nodules appear. A summary of the

features in six selected works discussed in this section is presented in Table 1.1.

Density features are computed from the attenuation values from the CT scan
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in the region inside the nodule. Typically, several statistics are computed from

these values, including mean, minimum and maximum, median, mode, variance,

skewness, and kurtosis. Shape features, sometimes called morphological features,

are descriptors obtained from the boundary of the segmented nodule. This includes

compactness, sphericity, extent ratios, and curvature features.

Size features include volume, diameter, and surface area. It is interesting to

note that some features from the other categories are size-dependent, for example

curvature. Curvature is de�ned as the rate of change of the surface normal with

respect to the surface length and is described in more detail in Section 2.2.2; for the

two-dimensional case of a circle, the curvature is the reciprocal of a circle, and thus

becomes smaller with increasing size. While in this work, curvature is normalized

so that a sphere has a curvature of 1, it is di�cult to remove the size dependence

of other features such as the volume to surface area ratio. Furthermore, the size

of a nodule and the resolution of the CT scan a�ect the computation of features

due to factors such as the partial voxel e�ect.

The non-uniformity of tissue density can be measured using texture features,

with the idea that malignant tissue tends to have a more irregular density distribu-

tion than benign tissue. Margin features measure the abruptness of the transition

from the nodule to the lung parenchyma; these features may be computed from

the gradient of the image.

A summary of the features used in several methods reviewed in this section is

given in Table 1.1. Particularly noteworthy are the features most commonly used

by the systems described in the literature � all the systems use density features,

and most use size and shape features, all of which have been shown to be good

predictors of malignancy. Few methods use texture, and only one other system

uses margin features. The performance of these methods are summarized in Table
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Table 1.2: Summary of reported performance for published characterization sys-
tems

Lead Author Year # benign # malignant AUC

Kawata 2001 95 33 0.87
Aoyama 2003 413 76 0.85
Shah 2005 16 19 0.92
Shah 2005 33 48 0.92
Suzuki 2005 413 76 0.88
Way 2006 52 44 0.83

This thesis - 92 167 0.69

1.2, and the results obtained in this thesis are included in the table for comparison;

the method and results will be fully described in Chapter 2. For each method, the

number of benign and malignant nodules used to evaluate the methods is given

along with the area under the ROC curve (AUC). Additional information about

the AUC is provided in Section 2.5.2.

The best performing method on a large dataset was the method proposed by

Suzuki et al. (2005) [17]. Their method utilizes pixel values in a local region of

interest in a CT image in conjunction with a massively trained arti�cial neural

network (MTANN) to distinguish between malignant and benign nodules. For

training, their targets were 2D Gaussian functions for malignant nodules and 0

for a benign nodule. Since their system relies solely on pixel values in a region of

interest, no segmentation is required, which is an advantage for complex nodules.

The researchers reported a sensitivity of 100% with a speci�city of 48%, with an

area under the ROC curve (AUC) of 0.88 on their dataset of 413 benign and

76 malignant nodules which contained both solid and subsolid nodules. Of these

nodules, 10 malignant and 60 benign nodules were used for training, with the rest

of the nodules available for evaluating the system. An earlier study by Aoyama et al

(2003) [14] also used neural networks on the same dataset, but utilized 41 features

extracted from regions of interest containing a nodule. The features included shape,
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gradient, density, and histogram features. The e�ective diameter of the nodule was

included among the features; the authors reported an AUC of 0.85 using multiple

slices.

Aside from neural networks, other popular classi�ers include logistic regression

and linear discriminant analysis (LDA) [19]. Kawata et al. (2001) [13] compute

curvature to measure the surface irregularity of nodules and histogram features.

They used a linear discriminant function and achieved an AUC of 0.87 for their

automated method on a separate test set. Another study by Way et al. (2006) [18]

also used a linear discriminate analysis classi�er. In their study, 3D active contours

were used to segment a dataset of 44 malignant and 52 benign nodules. Morpho-

logical, gray-level, and texture features were extracted from the segmented nodule,

and their system achieved an AUC of 0.83. Unlike other studies, Way et al. suggest

that texture features might be useful for the classi�cation of lung nodules. A pair

of studies by Shah et al. (2005) [15, 16] also used linear discriminant analysis. In

the �rst study [15], several two-dimensional features, including size-based features,

were extracted from a region of interest for each nodule. Several classi�ers were

tested, including a LDA classi�er, a logistic regression classi�er, a decision tree,

and a quadratic discriminant analysis classi�er. Using LDA, they achieved their

best performance with an AUC of 0.92. In the second study [16], the authors

used 3D features and evaluated their method on a di�erent, larger dataset. The

features included density, size, shape, and enhancement features. As this dataset

used scans with contrast, enhancement features comparing pre- and post-contrast

scans could be extracted. The authors again achieved an area under the ROC

curve of 0.92, but in this study with a logistic regression classi�er.

Several computer aided diagnosis (CAD) methods have been evaluated by mea-

suring their impact on a�ecting a radiologist's decision rather than from by their
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performance alone. Several studies have used computer aided diagnosis (CAD)

algorithms to improve the classi�cation performance of radiologists. These studies

report better performance when the radiologist is aided by the CAD scheme than

either than CAD system or the radiologist alone [20, 21, 22]. Li et al (2004) [20]

found statistically signi�cant improvement for radiologists with the use of their

CAD scheme (from an AUC of 0.785 to 0.853), and Awai et al [22] also observed

improvement in the AUC achieved by the radiologists alone (0.843) compared to

the radiologists assisted by the CAD scheme (0.924).

1.5 Outline

The primary goal of this work is the development of an automated system for the

characterization of solid pulmonary nodules and an analysis of the e�ect of the

underlying size-distribution of nodules in the dataset on the reported performance

of the system. The nodule characterization system is fully described in Chapter 2,

including discussion on the features used in the system and the classi�ers. Chapter

3 contains an analysis of the e�ect of the size-distribution of the nodules in the

dataset, comparing the results of the system using feature sets including and ex-

cluding size-dependent features on the full dataset and a subset of the cases selected

to eliminate any size-distribution bias. A concluding discussion and suggestions

for future work are explored in Chapter 4.
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CHAPTER 2

THE NODULE CHARACTERIZATION SYSTEM

Most systems for performing image feature classi�cation may be divided into

three primary stages, as shown in Figure 2.1. Since features are extracted from

segmented nodule images, the �rst stage segments the nodule from surrounding

structures on the CT scan. In the second stage, features are extracted from the

segmented image and normalized if necessary. The third and �nal stage classi�es

the nodule as malignant or benign. These stages are described in further detail in

the sections below.

2.1 Pulmonary Nodule Segmentation

The �rst stage of the classi�cation system is segmentation of the nodule. Segment-

ing the nodule separates voxels belonging to the nodule from voxels belonging to

surrounding structures and lung parenchyma. Segmentation is performed using an

algorithm previously developed by Reeves et al. (2006) [23]; a �owchart of the algo-

rithm is presented in Figure 2.2. To summarize, an approximate size and location

for the nodule in the CT image is computed based on an initial user-speci�ed seed

point using a Gaussian-weighted spherical template-matching method. From this

size and location, a region of interest (ROI) is selected around the nodule, as shown

Pulmonary 
Nodule 
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Feature 
Extraction

Classification
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Figure 2.1: Overview of the nodule characterization system.
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Figure 2.2: Flowchart of the pulmonary nodule segmentation algorithm

in Figure 2.3a. The ROI is re-sampled into isotropic space by trilinear interpola-

tion and a threshold is applied to obtain a binary image. Morphological �ltering

using an algorithm by Kostis et al. (2003) [24] is performed to remove any attached

vessels, followed by juxtapleural detection and, if necessary, segmentation using an

iterative algorithm that separates the nodule from the pleural surface. The result

of this algorithm is a binary segmented image of the nodule as shown in Figure

2.3b. A gray-scale image for density analysis is obtained by using the binary image

as a mask on the selected region of interest; an example is shown in Figure 2.3c. A

three-dimensional light-shaded visualization is shown in Figure 2.3d. These images

are used in the feature extraction stage described in the following section.

2.2 Image Features

There have been several studies regarding what features best di�erentiate malig-

nant from benign nodules based on radiologists' observations. In an early paper

by Siegelman et al. (1986) [25], the criteria for benign pulmonary nodules included

a representative CT number of at least 164 HU and smooth margins. Zwirewich

et al. (1991) [26] found that size (mean diameter), coarse spiculation, and lob-

ulation were good indicators of malignancy. The authors also found that homo-

geneous attenuation within the nodule occurred with signi�cantly more frequency
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(a) (b) (c)

(d)

Figure 2.3: Segmentation of nodule, starting with a) region of interest and resulting
in b) a binary segmented image and c) grayscale segmented image. d) A 3D
light shaded visualization of the axial, sagittal, and coronal views left to right
respectively.
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among benign lesions compared to malignant lesions. More recent studies using

higher resolution CT scans found similar features that were signi�cantly di�erent

between malignant and benign nodules, such as the presence of spicules, the pres-

ence of ground-grass attenuation, polygonal shape, three-dimensional size ratios,

and irregular margins [27, 11, 12, 28]. Although the features noted here are not a

comprehensive list of features studied in the literature, they serve to suggest some

of the features that should be included in an automated nodule classi�cation sys-

tem. From the segmented binary and grayscale images, 2D and 3D morphological,

shape, and CT density features were computed using moment analysis, curvature

estimation, and analysis of CT gray-level data.

2.2.1 Moment analysis

Moments have been used to perform shape analysis in computer vision and med-

ical imaging algorithms. In this paper, 2D and 3D geometric and densitometric

moments were computed according to the method described by Reeves et al [29].

Several descriptors of the general nodule shape can be easily derived from the mo-

ments, including compactness, sphericity, and aspect ratios. These measures were

described by Kostis (2001) [30]. The conventional de�nition of a three-dimensional

moment of order (p+q+r) of a function f(x,y,z) is

mpqr =

∞∫
−∞

∞∫
−∞

∞∫
−∞

xpyqzr f(x, y, z) dx dy dz

where f(x, y, z) is a continuous function of three dimensions. In a sampled 3D

image, the moment de�nition becomes

mpqr =
M−1∑
x=0

N−1∑
y=0

L−1∑
z=0

xpyqzr v(x, y, z)
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where v(x, y, z) is a discrete function of size (M× N× L). The function v(x, y, z)

can be of two types: binary or grayscale. If v(x, y, z) is binary, it takes on a value

of either 0 or 1, which would be useful for applications where only the shape is

of importance. These are referred to in this paper as geometric moments. If the

intensity distribution is of interest as well, v(x, y, z) is continuous with a range of

values corresponding to the pixel intensities in the image; this corresponds to den-

sitometric moments. Note that density values are only considered for those pixels

that are determined to be within the nodule from the segmentation performed in

Section 2.1.

A complete moment set of order n, where n = p+q+r, is de�ned to be the set of

all moments with order n and lower. A conventional set of moments are sensitive

to scale, translation, and rotation of the image. For the purpose of performing

shape analysis, the set of moments should be invariant to these transformations.

To accomplish this, several normalizing operations described by Reeves et al [29]

are applied to the set of moments, resulting in a set of standard moments which

are normalized with respect to scale, translation, and rotation.

As with two-dimensional moments, various orders of moments have physical

meaning. For example, the zeroth-order moment,

m000 =
M−1∑
x=0

N−1∑
y=0

L−1∑
z=0

v(x, y, z)

gives the number of voxels comprising the object, from which we can compute the

volume,

Volume = m000 · Vvoxel

where v(x, y, z) is binary so that it has the value 1 within the nodule and 0 outside

the nodule and the voxel size is computed from the resolution of the scan, Vvoxel =

xres · yres · zres A similar expression can be written for the area in the 2D case:

Area = m00 · Apixel
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where m00 is the 2D moment without z, and Apixel = xres · yres. The mass of the

nodule is simply m000 computed with v(x, y, z) equal to the density of the pixel.

Higher-order moments give the center of mass, principal axes, and moments of

inertia. From these metrics, other ad hoc features such as aspect ratios can be

computed as well as compactness and sphericity.

A simple descriptor of the shape of a nodule are its aspect ratios. These are

ratios of the dimensions of the segmented nodule volume, as computed by the el-

lipsoid of inertia. The ellipsoid of inertia is determined in the process of computing

the standard moments. In order to create the set of standard moments, the ori-

entation of the object must be determined. This is accomplished by solving the

following eigenproblem:

Ax = λx

where

A =


m200 m110 m101

m110 m020 m011

m101 m011 m002

 (2.1)

The eigenvectors (Vx, Vy, Vz) from the solution of this problem form an or-

thonormal basis which will point in the directions of each of the principal axes

of the object. The standard orientation is de�ned such that the major principal

axis (Vx) is aligned with the x-axis, the intermediate principal axis (Vy) is aligned

with the y-axis, and the minor principal axis (Vz) is aligned with the z-axis. If the

eigenvalues of the system given in Equation 2.1 are sorted such that

λ0 ≥ λ1 ≥ λ2

then the lengths of the principal axes are

length = |Vx| = 2
√
λ0 · 3

√
3V

4π
√
(λ0λ1λ2
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width = |Vy| = 2
√
λ1 · 3

√
3V

4π
√
(λ0λ1λ2

height = |Vz| = 2
√
λ2 · 3

√
3V

4π
√

(λ0λ1λ2

From these lengths, the aspect ratios can be computed:

Alh =
length

height

Alw =
length

width

Awh =
width

height

Another shape measure of interest is the compactness of a nodule, de�ned as

the ratio of the size of a shape to its surface area. In the three-dimensional case,

compactness is expressed as:

Compactness3D =
6
√
π · V
S3/2

where V is the volume of the segmented nodule and S is the surface area. In

the two-dimensional case, compactness is expressed as a ratio of the area to the

perimeter:

Compactness2D =
4π · Area
Perimeter2

In both cases, constants are introduced so that the compactness of a sphere and

circle are equal to 1. Similar measures to compactness are sphericity and circularity

for three- and two-dimensions respectively. While both compactness and sphericity

compare the volume of the object to its surface area, sphericity also considers the

major to minor aspect ratio, which results in a lower sphericity for shapes that

signi�cantly di�er from a spherical shape.

Sphericity =
Compactness3D

Alh

Circularity =
Compactness2D

Alw
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Density statistics are computed using the central statistical moments. These

moments are summations of powers of the voxel density values normalized to the

mean value, µ.

µp =
N−1∑
0

(v(x, y, z)− µ)p

where N is the number of voxels. Thus, the number of voxels is equal to the

zeroth-order moment

µ0 = N

and the mean voxel density is equivalent to the �rst-order moment divided by the

�rst-order moment

Dµ =
1

N

N−1∑
0

v(x, y, z)

and the variance is the second-order moment divided by the zeroth-order moment.

Dσ2 =
µ2

µ0

=
1

N

N−1∑
0

(v(x, y, z)− µ)2

The standard deviation is de�ned to be the square root of the variance.

Dσ =
√
Dσ2

Two higher order measures quantify the shape of the distribution, skewness

and kurtosis. Skewness measures the shift of the distribution above or below the

mean,

Dskewness =
µ3

D3
σ

=

∑N−1
0 (v(x, y, z)− µ)3

D3
σ

and kurtosis measures the �peakiness� of the distribution. A narrower distribution

has a higher kurtosis value.

Dkurtosis =
µ4

D4
σ

− 3 =

∑N−1
0 (v(x, y, z)− µ)4

D4
σ

− 3

Note that expression is normalized by subtracting three such that the kurtosis of

a normal distribution is 0.

23



There were several secondary density metrics de�ned to quantify the regularity

of the nodule density distribution compared to a uniformly dense sphere. The

eccentricity, ε, of the density distribution measures the displacement between the

geometric and densitometric centers of mass (CoM), and is de�ned as

ε = dist(CoMgeom.,CoMdens.)

where dist indicates the Euclidean distance. To make the metric size-invariant,

the eccentricity may be normalized by an estimate of the nodule radius.

ε̂ =
dist(CoMgeom.,CoMdens.)

3
√
V

Another measure of regularity is the density skew, φd, which measures the angle

between the geometric and densitometric ellipsoids of inertia (EOI) according to

the expression

φd = θgeom. − θdens.

where θgeom. and θdens. are the orientation of the geometric and densitometric EOI

respectively. This metric may not be stable as the nodule becomes more spherical,

since the orientations are less stable. To attempt to address this, we want shapes

that are more spherical, and therefore with more uncertainty in measurement, to

have a smaller density skew. This is accomplished by normalizing by the sphericity.

φ̂d =
θgeom. − θdens.
Sphericity

2.2.2 Surface curvature estimation

The margin of a malignant nodule may contain irregularities such as spiculation or

lobulation. Such irregularities tend to result in an uneven surface, whereas benign

nodules typically have smooth surfaces. The irregularity of the surface can be

described through an analysis of the surface curvature.
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Surface curvature is de�ned as the rate of change of the surface normal, φ, with

respect to the surface length. In the two-dimensional case for a curve, this can be

de�ned as the derivative of the normal vector with respect to the arc length.

κ =
dφ

ds

A straight line has a curvature value of 0, while a circle has a curvature of 1
R
where

R is the radius of the circle.

For measuring the curvature of pulmonary nodules in three-dimensions, we use

a discrete piecewise linear model for the nodule surface described in previous work

by Kostis (2001) [30]. Thus, the curvature can be estimated as the change in

the surface normal between a particular vertex and all of the adjacent vertices.

In contrast, a previous method of surface curvature estimation by Kawata et al.

(1999) [31] used the values of the gray-level voxels directly; however, estimating the

curvature from the gray-level voxels introduces errors due to the fact that voxels

are rectangular approximations of the nodule surface.

To address this problem, curvature is estimated on a smoothed tessellated

polygonal surface model of the nodule, as described by Kostis (2001) [30]. Simi-

lar algorithms, such as one proposed by Rusinkiewicz (2004) [32], have been used

to computed curvature for colon polyp detection [33]. A diagram illustrating the

curvature estimation using the piecewise linear model is shown in Figure 2.4. In

Figure 2.4a, the curve is indicated by a gray dashed line and a piecewise linear

model of the curve shown by a solid black line. As described above, curvature is

related to the change in the surface normal, so surface normal vectors are drawn

at two points on the curve and piecewise model in Figure 2.4b and c. To show

the change in the surface normal vectors, they are drawn with the same origin in

Figure 2.4d and e. Note that the angular di�erence between the surface normal

vectors is very similar between the actual curve and the piecewise linear model of
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a) b) c)

d) e)

Figure 2.4: Illustration of surface curvature estimation for a 2D curve. In a), the
curve (gray dashed line) is represented by a piecewise linear model (solid black
line). The surface normals are labeled for b) the curve and c) the piecewise linear
estimate. The normals are placed next to each other to indicate the angular
di�erence in d) and e), and note that the di�erences are nearly the same.

the curve.

Marching cubes was used to generate a polygonal representation of the surface

of the segmented nodule [34]. Since marching cubes was only used on binary seg-

mented images, the algorithm could be simpli�ed slightly by removing gradient

computations; additional modi�cations prevented the generation of discontinuities

in the tessellation and ensured a consistent ordering of the vertices of each trian-

gle [30].

Due to the way marching cubes tessellates the surface of the segmented region,

all triangles are located at angles that are multiples of 45◦. To improve the surface

representation, the polygonal tessellation was smoothed by replacing the location

of a vertex by a weighted sum of neighboring vertices and itself.

The result of applying the marching cubes algorithm to a pulmonary nodule is

shown in Figure 2.5, with the nodule surface estimated using voxels from the seg-
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(a) (b)

Figure 2.5: Nodule surface represented using a) voxels and b) smoothed, tessellated
polygonal surface. Curvature estimated from the tessellated polygonal surface is
closer to the actual curvature of the nodule surface than the voxel representation
of the surface.

mented image in Figure 2.5a and the surface estimated using a smoothed polygonal

surface in Figure 2.5b. By using the smoothed polygonal surface model, we reduce

the quantization error, ensuring a more accurate curvature estimate compared to

a method based on just the voxels of the segmented image.

A problem that arises when considering regions of the nodule where attached

structures, such as vessels, have been removed is that, in these regions, the curva-

ture of the nodule surface is an artifact of the removal algorithm and should not

be included in the curvature of the nodule. These regions are ignored by using the

binary image of the removed structures as a mask on the polygonal model.

Once we have a 3D polygonal representation of the surface, the next step is

to estimate the surface normals in order to compute the curvature. From the

surface normals at each triangle, the average surface normal of each vertex can be

computed. Finally, the curvature is computed as the average di�erence between

the surface normals at each vertex. These steps are described in further detail

below.

An example patch of a polygonal surface is illustrated in Figure 2.6. For each

vertex in the polygonal representation, the triangles of which it is a member are
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Figure 2.6: An example patch of a 3D polygonal tessellated surface with the surface
normal vectors shown for each triangle and the surface normal at the vertex

determined through connectivity analysis. The surface normal for each triangle

can be computed as the normalized cross product of two sides, according to the

diagram in Figure 2.7:

Ni =

−−→
ViVc ×

−−→
ViVd∣∣∣−−→ViVc ×−−→ViVd∣∣∣

Once the surface normal is computed for each triangle, the surface normal

at each vertex can be computed. This is accomplished by averaging the surface

normals of the triangles of which the vertex is a member:

φi =

∑m
j=0Ni

|T |

where |T | is the number of triangles of which Vi is a member.

With the surface normals computed for each vertex, the curvature is computed

by taking the angular di�erence between a vertex and an adjacent vertex. In this

example, the angular di�erence between the surface normal vectors φi and φa is:

θi = cos−1
(
φi · φa
|φi| |φa|

)
For each vertex, there are several adjacent vertices; to generate a single curvature

estimate, the average curvature is computed for the vertex. In the example depicted
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Figure 2.7: Diagram of surface normal calculation for a triangle
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Figure 2.8: Curvature estimation from vertex surface normals

in Figure 2.8, the average curvature for vertex Vi would be computed as:

CVi =

∑
m∈{a,b,c,d,e} cos

−1
(
φi•φm
|φi||φm|

)
n

where n is the number of adjacent vertices. Finally, each triangle in the polygonal

representation is assigned a curvature value based on the average of the curvatures

of the vertices which comprise the triangle. Basic statistics of the distribution of

curvatures over the entire nodule surface were used as features.

An experiment was performed to quantify the error in curvature estimation.

Synthetic images of spheres of diameters from 1.5 mm to 25 mm were generated

and the curvatures measured using the algorithm described in this section. The

curvature of a sphere is de�ned to be the inverse of its radius; thus, the error

between the true curvature and estimated curvature can be computed. A plot

of the ideal curvature compared to the measured curvature is shown in Figure
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Figure 2.9: Plot of a) curvature estimation compared to ideal curvature value and
b) curvature estimation error

2.9a and the error between the ideal and measured curvatures is show in the plot

in Figure 2.9b. Note that the method has some slight estimation error, and the

estimation error tends to decrease for larger spheres.

2.2.3 Margin analysis

The margin of a nodule is de�ned as the region along the boundary of the nodule

and lung parenchyma. Nodule margins may be sharply demarcated or ill-de�ned,

with an example of each in Figure 2.10a and 2.10b; previous work has suggested

that some margin types are more correlated with malignancy than others [35].

To measure the nodule margin, the gradient was measured at the boundary

between the nodule and lung parenchyma. A method developed by Monga and

Deriche was used to compute the gradient [36]. In two-dimensions, the gradient

is measured by determining the gradient in the x- and y-directions, which can

then be used to compute the gradient in any direction. The gradient operator can

be divided into a smoothing function, l(z), and a derivative function d(z). The

optimal derivative function exhibits good localization, robust detection of edges,
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Figure 2.10: Examples of nodules with a) sharp margin and b) ill-de�ned margin
with c) the gradients sampled along a horizontal ray through the center of each
nodule on the central slice. Note that the nodule with a sharp margin in a) has a
much higher maximum gradient in the gradient plot in c).
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and has a single response to an edge, and was determined to be:

d(z) = −cze−α|z|

The smoothing function l(z) is chosen to be the integral of the derivative function

in order to provide for an e�cient recursive implementation

l(z) = s(α |z|+ 1)e−α|z|

There are two convolution masks, one for the x- and y-directions, with the

derivative function computed parallel to each direction and the smoothing function

applied in the orthogonal direction:

X(i, j) = d(i)l(j)

= −cie−α|i|s(α |j|+ 1)e−α|j|

= −ci(sα |j|+ s)e−α(|i|+|j|)

Y (i, j) = l(i)d(j)

= −cj(sα |i|+ s)e−α(|i|+|j|)

The constants c and s are �xed by the normalization requirements on d(z) and

l(z). Let d(n) be samples from d(z) and D(Z) its z-transform:

D(Z) =
∑

d(n)z−n

for n = −∞, . . . ,∞. Then the normalization requirement:

{
∑

f(n) for n = 0, . . . ,∞} = −{
∑

f(n) for n = −∞, . . . , 0}

leads to

c =
(1− e−α)2

e−α
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Figure 2.11: Plot of functions used for gradient estimation

and the requirement that

{
∑

l(n) for n = −∞, . . . ,∞} = 1

results in

s =
(1− e−α)2 · α2

1 + 2 · α · e−α − e−2·α

The gradient functions d(z) and l(z) are shown in Figure 2.11 for α = 1.0 with the

constants c and s computed as described.

This can be extended to the 3D case with three convolution masks:

X(i, j, k) = d(i)l(j)l(k)

= −cie−α|i|s(α |j|+ 1)e−α|j|s(α |k|+ 1)e−α|k|

= −ci(sα |j|+ s)(sα |k|+ s)e−α(|i|+|j|+|k|)

Y (i, j, k) = l(i)d(j)l(k)

= −cj(sα |i|+ s)(sα |k|+ s)e−α(|i|+|j|+|k|)
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Z(i, j, k) = l(i)l(j)d(k)

= −ck(sα |i|+ s)(sα |j|+ s)e−α(|i|+|j|+|k|)

To convolve an image I(i, j, k) with the mask X(i, j, k), a derivative �lter is applied

in the x-direction followed by a smoothing �lter in the y- and z-direction. The

algorithm has a parameter, α, that controls the amount of smoothing applied

to the image, which in turn controls the tradeo� between localization and noise

suppression. Lower values of α cause more smoothing, decreasing localization, but

suppressing more noise.

In the plot shown in Figure 2.10c, 2D gradients are sampled along a horizontal

ray through the center of the nodule on the central slice. The nodule with a sharp

margin has a higher gradient than the nodule with an ill-de�ned margin.

Although the boundary may be obtained from the segmented image, small

errors in the exact location of the boundary, while having little e�ect on volume

measurement, may alter the gradient by a large amount, as evidenced by the

plot of the gradient distribution. To address this, the gradient is sampled in the

local vicinity of the estimated boundary, in the direction of the surface normal,

to determine the location with the maximum gradient. The surface normal was

determined for each triangle comprising the 3D polygonal surface representation,

as described in Section 2.2.2. At each triangle, ten gradient samples are taken

along the surface normal vector through the center of the triangle. The maximum

gradient is recorded for each triangle, and statistics regarding the distribution

of these maximum gradients are used as features for the nodule characterization

system. This is illustrated for the two-dimensional case in Figure 2.12.

The method to compute the two-dimensional gradient feature is similar to the

above method, with the exception of the use of surface normals. Instead, vectors
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are cast radially outward from the center of the nodule on the central slice at 10◦

intervals, which provides for 36 gradient samples. Again, samples are taken along

the vector and the maximum gradient recorded.

2.2.4 Feature summary

A total of 43 3D features and 26 2D features were computed for this characteriza-

tion system; the 2D features are listed in Table 2.1 and the 3D features in Table

2.2. The table lists the feature, whether the feature is dependent on size, and

the type of feature. Features computed from the CT histogram are indicated by

an �H�, from moments or binary image analysis techniques by a �M�, curvature

features are indicated by a �C�, and �nally features computed from the gradient

on the margin of the nodule are indicated by a �G� in the table.

2.3 Feature Classi�cation

The goal of classi�cation is to determine the best class (malignant or benign) to

assign to a given feature vector corresponding to a nodule. There have been many

classi�ers developed in the �eld of statistics and machine learning; in this work,

several classi�ers were compared: logistic regression, support vector machines,

and nearest-neighbors. These methods were selected to represent several di�erent

techniques that are often used for classi�cation problems in medical image analy-

sis. Logistic regression represents a parametric classi�cation method that is often

used for decision making in the medical �eld. Support vector machine is also a

parametric method that has been shown to be very e�ective for high dimensional

classi�cation problems. Nearest-neighbors is a non-parametric method that does

not assume a priori a model for separating the data and o�ers very fast training
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Table 2.1: List of 2D features. Type indicates whether the feature was computed
using the CT density histogram (H), moments or binary image analysis (M), cur-
vature estimation (C), or gradient analysis (G)

Feature Size dependent? Type

Area Y M
Mass Y M
Dµ N H
Dσ N H
Dσ2 N H

Dskewness N H
Dkurtosis N H
EOILg Y M
EOIWg Y M
EOILd

Y M
EOIWd

Y M
Alw N M
Alwd

N M
ε Y M
ε̂ N M

circularity N M
compactness2D N M

diameter Y M
∇min Y G
∇max Y G
∇range Y G
∇µ Y G
∇σ N G
∇σ2 N G
∇skewness N G
∇kurtosis N G
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Table 2.2: List of 3D features. Type indicates whether the feature was computed
using the CT density histogram (H), moments or binary image analysis (M), cur-
vature estimation (C), or gradient analysis (G)

Feature Size dependent? Type

Volume Y M
Surface Area Y M

VSR Y M
Mass Y M
Dµ N H
Dσ N H
Dσ2 N H

Dskewness N H
Dkurtosis N H

compactness3D N M
sphericity N M
EOILg Y M
EOIWg Y M
EOIHg Y M
EOILd

Y M
EOIWd

Y M
EOIHd

Y M
Alwg N M
Awhg N M
Alhg N M
Alwd

N M
Awhd N M
Alhd N M
ε Y M
ε̂ N M
φd N M

φ̂d N M
κmin Y C
κmax Y C
κrange Y C
κµ Y C
κσ N C
κσ2 N C

κskewness N C
κkurtosis N C
∇min Y G
∇max Y G
∇range Y G
∇µ Y G
∇σ N G
∇σ2 N G
∇skewness N G
∇kurtosis N G
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performance. Each of these methods is further described in the following sections.

2.3.1 Logistic regression

Logistic regression is a classi�cation method often used in the social sciences and

medicine. Binomial logistic regression is used when the dependent variable is

binary, as is the case here for classifying nodules into benign and malignant classes.

The dependent variable is transformed into a logit variable; the logit function is

the log of the odds of the dependent variable:

logit(pi) = ln

(
pi

1− pi

)
where each nodule i has probability pi of malignancy. The logistic regression

equation is:

logit(pi) = β0 + β1x1,i + · · ·+ βkxk,i

where xk,i is the value of feature k for item i and β0 . . . βk are the unknown pa-

rameters to be found. Maximum likelihood estimation is used to solve for the

coe�cients β0 . . . βk. Logistic regression was implemented using the generalized

linear models function in the statistics toolbox in MATLAB (The Mathworks Inc.,

Natick, MA).

2.3.2 Support vector machines

Support vector machines (SVM) were originally proposed by Vapnik et al [37] as a

method to solve two-group classi�cation problems. They are designed to provide

the best performance possible for cases where the two groups are non-separable, as

is often the case in real data. Conceptually, an SVM maps an input vector into a
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high-dimensional space and tries to �nd the optimal hyperplane that will separate

the two groups. We wish to classify a set of labeled training data

(y1,x1), · · · , (yl,xl) yi ∈ {−1, 1} (2.2)

using a hyperplane that separates the positive from negative examples (separating

hyperplane). The points x which lie on the hyperplane satisfy w·x+ b = 0, where

the vector w represents the normal vector perpendicular to the plane and b is an

o�set used to shift the plane. Let d+ and d− represent the shortest distance from

the separating hyperplane to the closest positive and negative example respectively.

The margin of the hyperplane is then d+ + d−. In the linearly separable case,

the SVM algorithm searches for the hyperplane with the largest margin. In other

words, given that the training data are linearly separable, they satisfy the following

constraints:

w · xi + b ≥ 1 if yi = 1 (2.3)

w · xi + b ≤ 1 if yi = −1 (2.4)

The above equations can be rewritten as a single expression:

yi(w · xi + b) ≥ 1, i = 1, . . . , l (2.5)

The training examples for which the equality in Eq. 2.3 holds lie on the hy-

perplane H1 : xi · w + b = 1, with normal w and perpendicular distance to the

origin |1− b| / ‖w‖, with similar expressions for the training examples for which

the equality in Eq. 2.4 holds. Thus, d+ = d− = 1/ ‖w‖, and the margin is then

2/ ‖w‖. These are illustrated in Figure 2.13. To �nd the optimal hyperplane, we

minimize ‖w‖2 subject to the constraint of Eq. 2.5. Those training examples for

which the equality in Eq. 2.5 holds and whose removal would change the solution

are called support vectors.
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Figure 2.13: Example of a linearly separable SVM, with negative examples indi-
cated by �lled black circles and positive examples by open circles.

While this works for the case of linearly separable data, for data that is not

linearly separable, there is no such optimal hyperplane. In the case of non-linearly

separable data, the optimal hyperplane is one which minimizes classi�cation error.

We de�ne a new variable to represent the error in classi�cation, ξi ≥ 0, i = 1, . . . , l,

and now the goal is the minimize the total error:

Φ(ξ) =
l

C
∑
i=1

ξσi

for σ > 0, subject to the constraints

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l

We de�ne a parameter, C that controls the penalty for an error, and now we seek

to solve the following optimization problem

1

2
|w|2 + C

l∑
i=0

ξi
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Using these expressions, the optimal hyperplane that minimizes errors can be com-

puted. Solving these expressions requires some additional detail not described here,

but can be found in papers by Vapnik [37] and Burges [38].

There are often cases where the decision function is not a linear function of the

data. For these situations, a variation of the conditions above can be used that

transforms the data into a non-linear space

yi(w · φ(xi) + b) ≥ 1− ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l

where φ(xi) is a mapping function. A kernel function, K(xi,xj) = φ(xi)·φ(xi), can

be de�ned, and this function is responsible for transforming the data. Examples

of commonly used kernels are:

• Linear:K(xi,xj) = xTi xj

• Polynomial: K(xi,xj) = (γxTi xj + r)d, γ > 0

• Radial Basis Function: K(xi,xj) = exp
(
γ ‖xi − xj‖2

)
, γ > 0

For this work, polynomial kernels were evaluated. Note that a polynomial kernel

of order 1 (d = 1) is similar to a linear kernel. The SVM classi�er was imple-

mented using SVMlight1, a software package by Joachims et al [39]. The γ and

r parameters, which are the scaling coe�cient and o�set respectively, were �xed

at 1 to reduce the size of the parameter space, and the polynomial order (d) was

varied from 1 to 4.

1Available from http://svmlight.joachims.org/
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2.3.3 Nearest-neighbors classi�er

The nearest-neighbors classi�er is a non-parametric classi�er that, in its basic form,

assigns an test example the class of the closest example in the training dataset,

the �nearest neighbor�. The nearest neighbor is de�ned according to the Euclidean

distance in feature space. While using a single example to make a classi�cation

decision is e�ective in datasets with good separation of the classes, in datasets with

noisy data, basing the decision on a larger number of examples may be more robust.

In a k-nearest-neighbors classi�er, the majority class of k nearest examples are used

to make the classi�cation decision for an example. The number of examples, k, is

determined during training.

The nearest-neighbors algorithm does not take into account the distance to

the closest examples when making a decision. However, in many cases, it may

be bene�cial to give closer examples more weight in the classi�cation decision

than examples that are further away. A variation of nearest-neighbors that takes

the distance of examples into account is the distance weighted nearest-neighbors

(dwNN) classi�er. This method was described by Paredes and Vidal in 2006 [40],

and in their work, distances between training vectors T = {x1, . . . ,xn} and an

arbitrary vector y are computed as a weighted Euclidean distance

d(x,y) =
m∑
j=1

wij(yj − xj)2

where there are m features, and i = index(x),x ∈ T . Paredes and Vidal described

a method for optimizing the weights that attempts to maximize the margin, sim-

ilar to the optimization goal of SVM. However, we utilized a simpler method of

obtaining weights by computing the information gain ratio for each feature. The

information gain ratio is described in further detail in Section 2.4.2. The inverse

exponential distances from each vector in T to the arbitrary vector y are used as
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weights on the class

cy =
1

n

n∑
i=1

1

eσ·d(xi,y)
cxi

where c indicates the class and σ is a parameter that essentially controls the size

of the neighborhood � a large value will cause a lower weight to be assigned to the

example. This parameter is optimized during training.

2.4 Feature Selection

Once the features for the nodules have been obtained, a subset of relevant features

may need to be selected, depending on the classi�er. Feature selection reduces

the dimensionality of the feature space, which speeds up training. In addition,

many classi�ers require signi�cantly more training examples than features. For

example, an analysis of the nearest-neighbor algorithm by Langley and Iba (1993)

[41] found that, for a single relevant feature, about 15 training examples were

required before the accuracy began to asymptote. They also found that as the

number of irrelevant features increased, the required number of training examples

to reach the asymptote of performance increased exponentially. In the same vein,

Blumer et al. (1993) [42] found in a theoretical analysis that by reducing the size

of the hypothesis space (reducing the number of features), there was a reduction

in the number of training examples required to obtain good generalizability .

Separate feature selection steps were performed for logistic regression and nearest-

neighbors since neither algorithm handles irrelevant features well. Nearest-neighbors

does not utilize any feature ranking method, and although logistic regression does

learn feature weights, it requires a large number of training examples for the full

dataset. A simulation study by Peduzzi et al. (1996) [43] suggested that at least

10 positive and 10 negative training examples were required per feature to obtain

unbiased regression coe�cients for logistic regression analysis. For our feature sets
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of 23 2D and 37 3D features, that means at least 460 training examples would be

required for the 2D feature set, and 740 examples for the 3D feature set. Given

the size of the dataset used in this study (167 malignant and 92 benign nodules,

described in detail in Section 2.5.1), nine features were to be selected for logistic

regression. The features were selected by a simple ranking of features by dis-

criminative performance for the logistic regression and nearest-neighbor classi�ers,

and information gain ratio was used in the distance weighted nearest neighbors

classi�er.

2.4.1 Discriminative performance based on ROC area

In the �rst feature selection scheme, features are ranked according to their dis-

criminative performance based on the hypothesis that features which are better

able to discriminate between benign and malignant nodules should be more useful.

To assess discriminative performance, the area under the ROC curve (AUC) was

computed for each feature on the entire dataset. The results for the top ten 2D

features and top twenty 3D features are given respectively in Table 2.3 and 2.4. For

the logistic regression classi�er, ten features with an AUC greater than 0.60 were

selected. Selecting features by their discriminative performance is easy to perform

but has several limitations. Since only the performance of single features were

computed, interactions between features were not considered. Also, the number of

features as well as the AUC threshold to use for feature selection were established

empirically.

2.4.2 Information gain ratio

Information gain, more formally called Kullback�Leibler divergence, is a measure

of the reduction in entropy of a system gained by the use of a feature. The equation
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Table 2.3: Discriminative performance for each 2D feature (only top 10 shown)

Feature Area under ROC Curve

Area 0.674
Mass 0.663
∇skewness 0.652
∇σ2 0.619

compactness2D 0.617
∇range 0.616
EOIwd

0.609
∇max 0.604
Alwd

0.603
Alwg 0.600

Table 2.4: Discriminative performance for each 3D feature (only top 20 shown)

Feature Area under ROC Curve

κσ 0.709
κσ2 0.709
∇µ 0.689
Alhd 0.685
∇range 0.682
Alhg 0.682
EOIHd

0.679
EOIHg 0.678
∇range 0.673
κmax 0.670
κmin 0.669
EOIWd

0.664
EOIWg 0.663
Volume 0.647
κµ 0.646
Alwd

0.646
Surface Area 0.646
∇skewness 0.643
Alwg 0.641
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Table 2.5: Illustrative example for information gain calculation, listing the objects
and associated feature and class values

Color (A) Size (B) Class

red big +1
green big +1
red big +1
green big +1
green big +1
green small -1
red small -1
green small -1
red small -1
green small -1

for the entropy of a random variable X is:

H(X) = −
n∑
i=1

P (X = xi) log2 P (X = xi)

where X can take on any of n values x1, . . . , xn, and P (X = xi) = |xi|
|X| . A high

entropy indicates that X is from a uniform distribution, while a low entropy indi-

cates a varied distribution. Given that we are trying to predict an output Y from

input variable X, a related measure is the speci�c conditional entropy:

H(Y |X) =
n∑
i=1

P (X = xi)H(Y |X = xi)

where H(Y |X = xi) is the entropy of Y for only those examples in which X has

the value xi. Thus, H(Y |X) gives the average speci�c conditional entropy of Y .

Finally, the information gain is

IG(Y |X) = H(Y )−H(Y |X)

Information gain ranges from for a feature where no information is added to

1 where the feature perfectly separates the classes. The information gain compu-

tation is best illustrated with an example. Suppose we are trying to classify ten

objects into two classes using features color (A) and size (B), and to simplify this
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example, both color and size are binary features. The feature and class values of

the ten objects are included in Table 2.5. We compute H(Y ) using the expression

above:

H(Y ) = −
(
|y−1|
|Y |

log2
|y−1|
|Y |

+
|y+1|
|Y |

log2
|y+1|
|Y |

)
H(Y ) = −

(
5

10
log2

5

10
+

5

10
log2

5

10

)
= 1.00

Next, we compute H(Y |A = red) and H(Y |A = green) in order to compute

H(Y |A):

H(Y |A = red) = −
(
|y−1|A = red|
|Y |A = red|

log2
|y−1|A = red|
|Y |A = red|

+

|y+1|A = red|
|Y |A = red|

log2
|y+1|A = red|
|Y |A = red|

)

H(Y |A = red) = −
(
2

4
log2

2

4
+

2

4
log2

2

4

)
= 1.00

H(Y |A = green) = −
(
3

6
log2

3

6
+

3

6
log2

3

6

)
= 1.00

H(Y |A) = P (A = red)H(Y |A = red) + P(A = green)H(Y|A = green)

H(Y |A) = 4

10
∗ 1.00 + 6

10
∗ 1.00 = 1.00

Thus the information gain is

IG(Y |A) = H(Y )−H(Y |A) = 1.00− 1.00 = 0.00

which indicates that the color feature provides no reduction in entropy, that is,

using the color feature does not separate the objects into their classes. We perform

the same computation for the size feature

H(Y |B = small) = −
(
5

5
log2

5

5
+

0

5
log2

0

5

)
= 0.00
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Table 2.6: Information gain ratio of the top 10 features (all features, all data)

Feature Gain ratio

∇range 0.255
EOIHg 0.240
EOIHd

0.240
κmin 0.232
κrange 0.215
∇σ2 0.205
∇skewness 0.205
∇σ 0.205
Awhd 0.205
Dσ 0.193

H(Y |B = big) = −
(
0

5
log2

0

5
+

5

5
log2

5

5

)
= 0.00

H(Y |B) =
5

10
∗ 0.00 + 5

10
∗ 0.00 = 0.00

and the information gain for the size feature is

IG(Y |B) = H(Y )−H(Y |B) = 1.00− 0.00 = 1.00

which indicates that the size feature does well in separating the objects into their

respective classes. Table 2.6 lists top 10 features ranked by information gain.

2.5 Nodule Characterization Experiment

Two feature sets were evaluated to test the hypothesis that 3D features would be

more e�ective for classi�cation � a set of two-dimensional features and a separate

set of three-dimensional features. This hypothesis was based on the fact that 3D

features make use of additional data compared to 2D features. The nodule charac-

terization system was trained and tested using a nested leave-one-out methodology.

The dataset, performance metric, training and testing experiments are described

in further detail in the following sections.
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2.5.1 Nodule dataset

Cases were selected from the Weill Cornell Medical Center database that had at

least one solid or part-solid nodule on at least one thin-slice CT scan. Part-solid

nodules were only included if they were comprised primarily of a solid component.

The status of malignant nodules was determined by either biopsy or resection, while

the status of benign nodules was established through a negative biopsy result or

by two years of no clinical change by a board certi�ed radiologist. Nodules were

included if they met the following criteria:

• Size greater than 3.0 mm and less than 30 mm, as measured by an automated

algorithm

• CT scans with slices of 2.5 mm or less

Nodules were excluded if they met the following criteria:

• Metastatic cancers

• Benign calci�cations

A total of 259 nodules (167 malignant and 92 benign) with CT scans of 1.0 mm,

1.25 mm, or 2.5 mm slice thickness ful�lled these criteria and were included in

the dataset. Approximately 13.9% (36/259) of the nodules were on 1.0 mm scans,

73.8% (191/259) on 1.25 mm scans, and 12.4% (32/259) on 2.5 mm scans. Scans

were obtained using either GE Medical Systems HiSpeed CT/i, Genesis HiSpeed,

Genesis Zeus, LightSpeed Pro 16, LightSpeed QX/i, or LightSpeed Ultra CT scan-

ners.

The three-dimensional automated segmentations for all 259 nodules were ver-

i�ed by visual inspection. The volume of each nodule was computed from each

segmentation, and the nodule size was represented as the equivalent diameter of a

sphere with the equivalent volume as the nodule. The 259 nodules in the dataset
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Figure 2.14: Size distribution of nodules in the dataset where size was determined
through automated 3D segmentation.

ranged in size from 3.3 mm to 29.1 mm (median 11.3 mm), distributed as shown

in Figure 2.14. The 167 malignant nodules ranged in size from 3.7 mm to 29.1

mm (median 12.2 mm) while the 92 benign nodules ranged in size from 3.3 mm to

27.1 mm (median 9.5 mm). A two-sided t-test showed a signi�cant di�erence in

the mean size between the malignant and benign nodules (p < 0.01).

2.5.2 Performance of the nodule characterization system

Evaluating classi�cation systems necessitates the selection of an appropriate per-

formance metric. For the task of pulmonary nodule classi�cation, there are �ve rel-

evant metrics that will be discussed: accuracy, sensitivity, speci�city, ROC curves,

and area under the ROC curve. Accuracy is a ratio of the number of examples

correctly classi�ed to the total number of examples and is sometimes expressed as
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a percentage:

Accuracy =
number of cases correctly classi�ed

total number of cases
• 100%

The best accuracy, obtained when all cases are classi�ed correctly, is 100% and

the worst accuracy is 0%. This metric is simple to calculate and summarizes

the system's performance in a single number, but fails to distinguish between the

di�erent classes. To illustrate the last point, consider a set of 10 cases, 8 malignant

and 2 benign. If all the cases were classi�ed as malignant, the system would achieve

80% accuracy despite misclassifying all the benign cases. To address this problem,

accuracy can be computed for each class separately. Accuracy for malignant cases

is de�ned as sensitivity:

Sensitivity =
number of malignant cases correctly classi�ed

total number of malignant cases

and accuracy for the benign cases is de�ned as speci�city:

Speci�city =
number of benign cases correctly classi�ed

total number of benign cases

Sensitivity and speci�city are bounded between 0 and 1, with the best perfor-

mance indicated by 1.

Given the same example as before, a dataset with 8 malignant and 2 benign

cases, with all cases classi�ed as malignant, would result in:

sensitivity =
8

8
= 1.0

speci�city =
0

2
= 0.0

While sensitivity and speci�city are able to capture the performance of the

system for each class, we now have two numbers to interpret, which makes com-

paring di�erent methods more complicated, since one system could have a higher

speci�city but lower sensitivity than the other or vice versa.
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Many classi�ers generate a real-valued output instead of a binary classi�cation.

For these classi�ers, it is possible to pick di�erent thresholds on the output to

get di�erent performance results. Both accuracy and sensitivity/speci�city fail

to demonstrate the possible trade-o�s in performance possible by varying this

threshold. Receiver-operating characteristic (ROC) curves are used to graphically

demonstrate these trade-o�s.

An ROC curve plots sensitivity on the y-axis and 1-speci�city on the x-axis.

The best performance of 1.0 sensitivity and 1.0 speci�city is indicated by the upper

left corner of the plot and random chance is the diagonal line connecting (0,0) and

(1,1) on the plot. The sensitivity and speci�city are plotted for each threshold on

the classi�cation output. ROC curves can be used to compare di�erent classi�-

cation systems by assessing whether one is better at all levels of sensitivity and

speci�city, or the levels of importance. However, this relies on visual observation,

and again, if the curves intersect it becomes more di�cult to determine if one

method is better.

A common metric derived from the ROC curve is the area under the ROC

curve (AUC). The AUC provides a single number to represent the performance of

a classi�cation method. We computed the AUC by computing the sum of the areas

of rectangles under the curve using perf2, a program developed for the 2004 ACM

Knowledge Discovery and Data Mining competition. Given n operating points,

and a set of true positive fractions (sensitivity) Tk for each operating point 1...n,

and a set of false positive fractions (1-speci�city) Fk, the AUC is estimated as:

AUC =
n∑
k=1

Tk + Tk−1
2

∗ (Fk − Fk−1)

where T0 = 0 and F0 = 0.

2Available from http://www.sigkdd.org/kddcup/index.php?section=2004&method=soft

53



Table 2.7: Example of training and testing sets using leave-one-out

Training Set Testing Set

A B C D E
A B C E D
A B D E C
A C D E B
B C D E A

2.5.3 Classi�er Training and Evaluation Methodology

A leave-one-out (LOO) methodology was used to evaluate each classi�er. In LOO,

the system is trained on all examples except for one, and the one example is used to

evaluate the system. This is repeated until all examples have been used for testing.

This has the advantage of giving the system the largest number of examples from

which to derive a model for the data, while preventing the system from over�tting

the data. An example showing the training and testing sets for a case with �ve

examples, labeled A - E, is shown in Table 2.7. In the case of the dataset used in

this study, there are 259 examples, which will result in 259 iterations of training

and testing the system.

While it is possible to optimize parameters for the system using the full train-

ing set (258 examples) within each leave-one-out iteration, without the use of a

validation set, the system may over�t to the training data. Over�tting to the

training data results in very high performance on the training set, but much lower

performance on the testing data. To address this, for those classi�ers that had

parameters to adjust, the training data was further divided into a training set and

an optimization set.

The goal of separating the training data from the data used to evaluate param-

eters is to reduce the possibility of choosing parameters that result in over�tting.

To maximize the use of the training data, we again use either leave-one-out within
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the training data, or for those classi�ers where leave-one-out was computationally

expensive, �ve-fold cross-validation was applied to the training set. In �ve-fold

cross-validation, the dataset is divided into �ve sets; in each iteration, four sets

are used for training while one set is used for validation. As with leave-one-out,

the process is repeated until all sets have been used for validation.

For each iteration of leave-one-out for the test set, the testing example was

classi�ed using the classi�er with the best set of parameters obtained in train-

ing. The AUC was computed across all the test examples. The performance was

measured for two- and three-dimensional features separately. The areas under the

ROC curves [44] were used to evaluate the performance of the algorithms, and the

ROC curves were plotted for visual comparison.

The issue of class imbalanced datasets

In this dataset, the number of malignant and benign nodules is not equal, which re-

sulted in a dataset with a class imbalance. Studies in the area of machine learning

have suggested that this class imbalance may negatively a�ect the training of many

classi�ers [45], such as neural networks [46], decision trees [47], nearest-neighbors

[48], and SVM [49]. To understand why this may be a problem, consider the case

of an extreme class imbalance where there are 99 negative examples and a single

positive example. In this case, the best performance would be achieved by classi-

fying everything as a member of the negative class; however, this does not allow

for any learning by the classi�cation method. There have been several techniques

proposed in the literature for addressing this problem, which can be divided into

two general classes: undersampling and oversampling. In undersampling, examples

from the class with the larger number are removed from the training set, while in

oversampling, examples from the class with the smaller number of examples are

duplicated. Of these two methods, oversampling tends to give better performance
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[50, 51]. We perform oversampling by randomly duplicating benign nodule exam-

ples to equalize the number of cases in the training dataset. This was done for the

SVM and nearest-neighbors classi�ers.

Logistic Regression Training

Logistic regression does not have any parameters that require optimization. Thus,

after the full dataset was divided using leave-one-out, the classi�er simply used all

of the examples in the training sets.

SVM Training

The polynomial SVM used in this study had two parameters to optimize � the

order of the polynomial and the tradeo� between training error and margin. The

polynomial order was varied from 1 to 4, while the tradeo� value was varied log-

arithmically from 0.0001 to 100.0 in order to capture the value with the greatest

performance. Since running the SVM is computationally expensive, once leave-

one-out was applied to the whole dataset, �ve-fold cross-validation was used on

the training data to optimize the parameters.

Nearest-Neighbors and dwNN Training

The k-nearest-neighbors algorithm (kNN) has a single parameter, k, that controls

the number of neighbors to consider when making a classi�cation decision. This

parameter was varied from 1 to 15, using only odd numbers to avoid tie situations

that could occur with an even number of neighbors. The output of the kNN

classi�er is a binary output, in contrast to all the other classi�ers evaluated in this

thesis, and as a result, an AUC could not be computed because there is no threshold

to vary on the classi�er output. Instead, accuracy was used as the performance

metric.
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Table 2.8: Performance of characterization systems using 2D and 3D features. Sen-
sitivity (Sens.) and speci�city (spec.) are chosen at points with similar speci�city.

2D Features 3D Features
Classi�er AUC AUC

Logistic Regression 0.713 0.702
dwNN 0.641 0.700
SVM 0.624 0.686

The distance weighted nearest neighbor classi�er (dwNN) had a single param-

eter, σ, that a�ected the size of the neighborhood to consider. This parameter was

varied from 0.1 to 16.

Since leave-one-out is easy to perform for both kNN and dwNN, once leave-one-

out was applied to the whole dataset, leave-one-out was also used on each training

set to optimize the parameters described above.

2.6 Results: Evaluation of performance with two- and three-

dimensional features

Two sets of features were used in this experiment � 2D features and 3D features.

The results for each classi�er are given in Table 2.8.

For logistic regression, given the set of 3D features, eight features were selected

using the feature ranking criterion:

• volume of the nodule

• the height of the ellipsoid of inertia (EOI)

• the minimum, range, and standard deviation of the local curvature distribu-

tion

• the minimum and mean gradient along the margin of the nodule.

For the set of 2D features, eight features were selected:
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• area

• mass

• length and width of the ellipsoid of inertia (EOI) of the nodule computed

from geometric moments

• kurtosis of the density distribution

• length to width ratio of the EOI computed from the geometric moments

• length and width of the ellipsoid of inertia computed from the densitometric

moments

The ROC curves for the logistic regression classi�er for both 2D and 3D features

are shown in Figure 2.15a.

The dwNN classi�er used all the features, but weighted each feature by its

information gain. The ROC curves for the dwNN classi�er using 2D and 3D

features are shown in Figure 2.15b and the curves for the SVM classi�er are shown

in Figure 2.15c.

2.7 Discussion

We conducted this study to assess the performance of the features developed for

nodule characterization, determine if there is a di�erence between using 2D and

3D features, and to compare the performance of di�erent classi�ers.

Many features were not useful according to the feature selection algorithms

performed. Ranking the features by discriminative performance indicated that

many features were only marginally better than random chance. On this dataset

of nodules, 3D features performed better than 2D features. However, looking at

the results of the feature-ranking selection method, the best individual features
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Figure 2.15: ROC curves for characterization systems using 2D and 3D features
on full dataset with a) logistic regression (LR), b) dwNN, and c) SVM.
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performed similarly between the 2D and 3D features, but more 3D features had

high discriminative performance compared to the 2D features.

Distance-weighted nearest neighbors (dwNN) and support vector machines

(SVM) performed the best on this dataset, for both 2D and 3D features. These

two classi�ers performed similarly on both the 2D and 3D sets of features. All

methods did achieve higher performance on the training set than any individual

feature alone.

The best performance achieved by this system was an AUC of 0.71, which is a

measureable improvement in AUC over random chance. However, an AUC of 0.71

is disappointing for use in a clincial scenario. Previous studies have obtained AUC

values in the range of 0.83 to 0.92 as shown in Table 1.2, though the datasets used

by these studies had many more large malignant nodules than small malignant

nodules, and vice versa for the benign nodules. This size bias was a major factor

in the performance these systems were able to achieve and provides an overly

optimistic evaluation of clinical usefulness; this issue is more closely examined in

the following chapter.
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CHAPTER 3

THE IMPACT OF NODULE SIZE DISTRIBUTION ON THE

PERFORMANCE OF THE NODULE CHARACTERIZATION

SYSTEM

The primary performance measure used in evaluating nodule characterization

systems is the area under the ROC curve (AUC); in the ideal case with an area of

1.0, the system is able to completely distinguish between all benign and malignant

nodules in the evaluation dataset. The performance is typically compared to a

baseline performance of random chance, which would yield an AUC of 0.50. Thus,

while the system presented in Chapter 2 has performance better than random

chance, it does not appear to be as e�ective as previously published systems.

Studies have shown that the size of a lesion is a good predictor of malig-

nancy [4, 3, 52]. However, the use of size as a feature in characterization systems

is complicated by several factors:

1. Nodules in most datasets have a very large range; for example, a 3 mm to

30 mm range in lesion diameter corresponds to a volume range of 1000 to 1.

2. In addition to size features, such as volume, many of the other features are

dependent on the size of the nodule, such as average curvature.

3. Due to 1 above, the size is related to the accuracy and detail that other

feature measurements can be made on a nodule. As an example, given a

typical voxel size for a CT scan of 0.7 x 0.7 x 1.25 mm, a 3 mm nodule has

a volume equivalent to about 23 voxels; given partial volume e�ects, noise,

etc., this is inadequate to provide meaningful values for some of the complex

shape-based features.

4. For a dataset with a biased size distribution of malignant and benign nodules,

the size (or a size derived feature) is often the most useful feature.
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5. In all published datasets used for training and evaluating nodules for which

the size distribution is given, there is a di�erence in the size of benign and

malignant nodules in which small benign and large malignant nodules pre-

dominate. This skewness in the distribution of the dataset re�ects the natu-

ral history of lesions found in lung scans; however, the actual distribution is

very sensitive to the population subset from which the data was acquired; e.g.

screening scans would be expected to have a di�erent distribution compared

to clinical scans.

Therefore, in any pulmonary nodule dataset, there is an intrinsic classi�cation

performance that can be achieved by use of a size feature alone that is dataset-

speci�c. In general, we are interested in a system performance evaluation that is

not highly dependent on a population feature of a particular dataset. With this

in mind, many ROC results that have been published in the literature look very

promising but are actually largely characterizing the size skewness in the training

dataset. All of the studies mentioned thus far, with the exception of the study

by Awai et al [22], either have di�erent size distributions of malignant and benign

nodules or no information regarding the size distribution.

This chapter investigates the e�ect of the di�erence in size distribution of benign

and malignant nodules on the performance of the nodule characterization system.

The system is evaluated on both the full dataset of nodules and an enriched dataset

of nodules which were selected to maintain a similar size distribution of benign and

malignant nodules. Finally, a new baseline performance is proposed that takes into

account the size distribution.

62



3.1 Nodule Size Distribution Experiments

To evaluate the e�ect of the di�erence in nodule size distribution between benign

and malignant nodules, we examined three related issues:

1. Performance that results from the di�erence in the size distributions

2. Features that are dependent on size

3. Behavior of the system for datasets with di�erent size distributions

To address the �rst issue, we measure the performance of a simple size-threshold

classi�er to estimate the baseline performance from the size-distribution; this clas-

si�er is explained in detail in Section 3.1.1. In the case of a dataset where the be-

nign and malignant nodules have the same size distribution, using a size-threshold

classi�er should not perform much better than random chance, but as the size

distributions begin to di�er, the size-threshold classi�er will perform better.

The second issue can be addressed by comparing the performance from systems

that include or exclude features that are size-dependent; see Tables 2.1 and 2.2 for a

list of features and their dependency on size. The system was trained and evaluated

according to the same methodology as in Section 2.5.3.

Finally, the third issue can be evaluated by comparing the performance of

systems trained and tested on a subset of nodules selected to have the same size-

distribution for malignant and benign nodules; this dataset is described in Section

3.1.2. Due to the small size of the dataset, a leave-one-out evaluation methodology

was performed. In leave-one-out, all nodules in the dataset except for one are

used for training, and the one nodule is used for testing. Optimal parameters for

each classi�er were selected based on each training set. For the SVM classi�er,

the optimal parameters were determined on the entire training set, while for the
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k-nearest neighbors and distance-weighted nearest neighbors classi�ers, leave-one-

out was used on just the training set to determine the optimal parameters.

3.1.1 Size threshold classi�er

A size-threshold classi�er was included to establish the performance that can be

obtained from the di�erence in size distributions of benign and malignant nodules.

The rationale for the size-threshold classi�er was based on the empirical observation

that malignant nodules in most datasets tend to be larger than benign nodules;

therefore, size should o�er high discriminative performance. The probability of

malignancy given a nodule's size can be determined for the dataset based on the

size distribution. A threshold can then be set to classify nodules as either malignant

or benign. The size-threshold classi�er uses size as the sole discriminating feature �

nodules below the size threshold are benign while nodules above the size threshold

are classi�ed as malignant. For this classi�er, the size was represented by the

equivalent diameter given the volume of the nodule, though volume could have

also been used since the order of the nodules would remain the same.

3.1.2 Size-balanced subset of nodules

The size-balanced, enriched subset was created to help assess how eliminating the

discriminating power of size from the dataset would a�ect the performance of

classi�cation systems. Thirty benign and malignant nodules were selected from

the full dataset to have as similar size distributions as possible. In this dataset,

the nodules ranged in size from 7.04 mm to 12.91 mm (median 10.01 mm), with

similar ranges for both malignant (7.06 mm to 12.85 mm, median 9.96 mm) and

benign (7.04 mm to 12.91 mm, median 10.01 mm) nodules, with the distribution

shown in Figure 3.1.
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Figure 3.1: Size distribution of nodules in the subset selected to have similar size
distributions. Labels on the axis represent the range of nodule sizes included in
the bin.

3.2 Results

To examine the impact of the underlying size distribution of the dataset of pul-

monary nodules, we �rst measured the performance of a size-threshold classi�er

on the full dataset. Next, we measured the performance of systems where size-

dependent features were excluded and compared the performance to systems using

all available features on both the full dataset and the subset of nodules selected to

have similar size distributions.

3.2.1 Performance of size-threshold classi�er

The size-threshold classi�er used the diameter of each nodule estimated by the

automated 3D segmentation method, as described in Section 3.1.1. The size-

threshold classi�er achieved an area under the ROC curve (AUC) of 0.653. Note

that the AUC for the size-threshold classi�er is above the conventional baseline

AUC of 0.50, and the ROC curve, shown as a solid line in Figure 3.2, is above the

baseline performance indicated by the the diagonal dashed line.
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Figure 3.2: ROC curve of size-threshold classi�er on full dataset

Table 3.1: Summary of AUC performance on full dataset on feature sets including
and excluding size-dependent features

2D features 3D features
classi�er all no size all no size

logistic regression 0.713 0.647 0.702 0.743
distance-weighted nearest neighbor 0.641 0.620 0.700 0.704

SVM 0.624 0.581 0.686 0.614
size threshold 0.653

3.2.2 The impact of size dependent features

For this experiment, the characterization system was limited only to features con-

sidered to be size-independent in Table 2.1 and 2.2. The AUC for each system is

given in Table 3.1; for ease of comparison, the performances for the systems using

all features from Section 2.6 are also listed in the table. The performance for the

k-nearest-neighbors classi�er is given in Table 3.2. The ROC plots for the logistic

regression, distance-weighted nearest neighbors, and SVM classi�ers are presented

in Figures 3.3, 3.4, and 3.5 respectively.
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Table 3.2: Performance of k-nearest-neighbors classi�er on full dataset on feature
sets including and excluding size-dependent features

Size features No size features
Accuracy Sensitivity Speci�city Accuracy Sensitivity Speci�city

2D 0.567 0.695 0.337 0.622 0.832 0.239
3D 0.618 0.778 0.326 0.664 0.832 0.359
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Figure 3.3: ROC curves for logistic regression (LR) classi�er on full dataset with a)
2D features and b) 3D features, both including and excluding size. For reference,
the ROC curve for the size-threshold classi�er is shown as well.
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Figure 3.4: ROC curve for dwNN classi�er on full dataset with a) 2D features
and b) 3D features, both including and excluding size. For reference, the ROC
curve for the size-threshold classi�er is shown along with the conventional baseline
indicated by a diagonal line.
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Figure 3.5: ROC curve for SVM classi�er on full dataset with a) 2D features and b)
3D features, both including and excluding size. For reference, the ROC curve for
the size-threshold classi�er is shown along with the conventional baseline indicated
by a diagonal line.
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Figure 3.6: ROC curve for size-threshold classi�er on size-balanced subset

Table 3.3: Performance of classi�cation system (AUC) on the size-balanced subset

2D features 3D features
classi�er all no size all no size

logistic regression 0.508 0.566 0.579 0.583
distance-weighted nearest neighbor 0.618 0.608 0.503 0.561

SVM 0.638 0.681 0.523 0.634
size threshold 0.507

3.2.3 Size-balanced subset results

The size-threshold classi�er achieved an AUC of 0.507, near the conventional base-

line of 0.500. This is re�ected in the ROC curves shown in Figure 3.7 by the

dashed line. This suggests that size o�ers little bene�t over random chance on this

dataset, in contrast to the full dataset where size o�ered considerable improvement

over random chance.

The ROC curves are shown for the logistic regression classi�er in Figure 3.7.

Note that the feature selection step chose di�erent sets of features than in the pre-
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Table 3.4: k-nearest neighbor performance on size-balanced subset

Size features No size features
Accuracy Sensitivity Speci�city Accuracy Sensitivity Speci�city

2D 0.617 0.700 0.533 0.550 0.533 0.567
3D 0.550 0.533 0.567 0.550 0.533 0.567
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Figure 3.7: ROC curves for logistic regression classi�er on size-balanced subset
with a) 2D features and b) 3D features, both including and excluding size. The
ROC curve for the size threshold classi�er and the conventional baseline are shown
on the plots as well.

vious experiments; Tables 3.5 and 3.6 rank the features according to discriminative

performance on this dataset. In accordance with the results presented by Peduzzi

et al. (1996), only 3 features were selected for the logistic regression classi�er [43].

ROC curves for the dwNN and SVM classi�ers are shown in Figures 3.8 and

3.9 respectively. AUC values for all the classi�ers are presented in Table 3.3, with

separate performance results for k-NN in Table 3.4.

For the dwNN and logistic regression classi�ers, better performance was achieved

using 3D features with size-dependent features excluded than with all features. The
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Table 3.5: Discriminative performance on the size-balanced subset of nodules for
each 2D feature (only top 10 shown)

Feature Area under ROC

LWRG 0.703
LWRD 0.687
EOILG

0.629
Dµ 0.602

Dkurtosis 0.601
EOILD

0.598
Area 0.570
Mass 0.558

Dskewness 0.544
∇kurtosis 0.540

Table 3.6: Discriminative performance on the size-balanced subset of nodules for
each 3D feature (only top 10 shown)

Feature Area under ROC

∇µ 0.688
LHRD 0.661
LHRG 0.657
Dµ 0.650
κσ 0.647

LWRD 0.629
∇min 0.623
LWRG 0.622
EOILG

0.601
κmax 0.600
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Figure 3.8: ROC curves for distance-weighted nearest neighbors classi�er on size-
balanced subset with a) 2D and b) 3D features, both including and excluding size.

performance of the SVM classi�er was better with all 3D features. The results for

the 2D features were less de�nitive, with the logistic regression classi�er achieving

better performance on the 2D feature set without size compared to the 2D feature

set with all features, while the situation was reversed for the remaining classi�ers.

These results seem to suggest that size features o�er an advantage, even in the

absence of any size-bias; however, these results should be interpreted carefully due

to the limited size of the dataset.

3.3 Discussion

To assess the impact that biases in the size distribution of nodules may have on

performance, this study used two datasets with di�erent size distributions. The full

dataset of 259 nodules re�ects nodule sizes more typical of characterization studies.

Sixty nodules were selected from the full dataset so that the size distributions of the
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Figure 3.9: ROC curves for SVM classi�er on size-balanced subset with a) 2D and
b) 3D features, both including and excluding size.

malignant and benign nodules would be as similar as possible. On the full dataset,

the simple size-threshold classi�er achieved an AUC of 0.653, showing improvement

over the baseline AUC of 0.507. This suggests that the distribution of malignant

and benign nodules in our dataset are more similar than other datasets with a

higher sensitivity and speci�city from size. This reduced bias makes this a more

challenging dataset to characterize than most others reported in the literature.

In the second experiment, the e�ect of including features that were dependent

on size was evaluated. The best performance on the full dataset was an AUC

of 0.743 achieved by logistic regression with 3D features excluding size, which is

a large improvement over the baseline performance, but a smaller improvement

compared to the size threshold AUC. Additionally, in all feature sets on the full

dataset, removing size-dependent features reduces performance, with the exception

of logistic regression using 3D features. This suggests that size is responsible for a

portion of the reported performance of all classi�ers on the full dataset.
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For third experiment using the size-balanced dataset, the size threshold clas-

si�er achieved an AUC of 0.507, which is near baseline performance, as expected

from a dataset with an equal distribution of sizes of malignant and benign nodules.

Accordingly, performance of the logistic regression classi�er that included size fea-

tures was reduced compared to the full dataset. As one example, consider that

the characterization system, using the logistic regression classi�er with 2D features

that included size, exhibited a reduction in AUC from 0.713 on the full dataset to

0.508 on the size-balanced subset of nodules, despite similar levels of optimization

performed for both datasets. The logistic regression classi�er which used 3D fea-

tures, but excluded size-dependent features, had the best performance. However,

for the dwNN classi�er, there was no clear pattern; the 2D feature set had better

performance with size, while the 3D feature set had better performance without

size. This may be due to the fact that many of the 2D features were not very

discriminative, so that the additional features in the set of features including size

aided performance. The dwNN classi�er performed worse on the subset of nodules

than the full dataset, suggesting that size distribution a�ects the performance of

the dwNN classi�er as well.

The higher performance of size relative to the conventional baseline perfor-

mance is not unique to this dataset; the same occurrence can be observed in

other characterization studies that have published a size distribution plot for their

datasets. For several such studies, performance of a size-threshold classi�er was

estimated using the counts and sizes listed on each study's size distribution plot.

Note that since the plots generally had few size bins, performance of the size-

threshold classi�er may be better than reported here.

In the study by Suzuki et al. (2005) [17], the vast majority of nodules were small

(less than 7 mm) and benign. The database of nodules in their study included 413
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benign and 76 malignant nodules ranging in size from 3 mm to 31 mm. Using a

size-threshold classi�er set to approximately 7 mm, an estimated performance of a

sensitivity and speci�city (SS) of (0.80, 0.80) would be achieved. This performance

is very similar to that shown on the ROC curve for their trained computer method,

although numerically they reported a SS of (1.00, 0.48). In a dataset of 33 benign

and 48 malignant nodules used by Shah et al. (2005) [15], the nodule sizes are much

larger than the dataset by Suzuki et al. (2005)[17], suggesting that the nodules

were taken from a clinical population. On this database, the size-threshold classi�er

using a size of 15 mm would achieve an approximate SS of (0.64, 0.79) based on

the author's size distribution chart [15]. The authors achieved a SS of (0.90, 0.80)

using their automated method, as measured from their ROC curve. Another study

by Way et al. (2006) [18] on a database of 96 nodules reveals similar performance

results from size. A size-threshold classi�er on their database at a threshold of

20 mm was able achieve a sensitivity of 70% (31/44) with a speci�city of 80%

(42/52). In these studies, the size-threshold alone was able to achieve much of the

reported performance of the respective automated systems. A large database of

nodules alone is not su�cient to address the issue of unequal size distributions;

even the study by Suzuki et al, which had nearly 500 nodules, was a�ected by the

size-distribution because of the signi�cant di�erence in size between the malignant

and benign nodules.

The use of size information is not desirable because it fails to generalize well.

As an example, if the size criterion determined from the dataset of Shah et al is

used on the database of Suzuki et al, a SS of (0.38, 0.95) would be achieved, and in

the reverse case, using the size criterion determined from the dataset of Suzuki et al

of 10 mm (the closest interval to 7 mm), a SS of (0.21, 0.90) would be achieved. In

a clinical setting, the sizes of nodules do not have the same distribution of sizes as
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nodules in the datasets used to train and test automated characterization systems;

thus, reported performance that does not take into account the size distribution of

nodules in the dataset has a high likelihood of being over-optimistic. A more rel-

evant measure of the e�ectiveness of a system is the improvement in performance

over use of a simple size-threshold classi�er. By reporting the performance of the

size-threshold classi�er, the improvement in classi�cation performance for the nod-

ule characterization system can be computed by simply subtracting the AUC of the

system from the AUC of the size-threshold classi�er. For example, a system that

achieves an AUC of 0.80 on a dataset with a size-threshold classi�er performance

of 0.50 would have an improvement of 0.30, while if the size-threshold classi�er

performance was 0.65, the improvement would only be 0.15. Using this perfor-

mance metric will minimize some of the e�ect of the underlying size distribution

of the dataset.
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CHAPTER 4

CONCLUSION

A system for the classi�cation of benign and malignant solid pulmonary nod-

ules has been presented. The best performance was an area under the ROC curve

of 0.756, achieved using logistic regression and 3D features. Features were com-

puted from the density of the nodule, geometric and density moments, local surface

variations, and the gradient at the edge of the nodule. Although the performance

was better than both baseline and the performance of the size-threshold classi�er

which only used size as a feature, it is lower than previously published studies.

Further analysis of the results suggested that the size-distribution of the dataset

used for training and testing plays a large role in the reported performance of a

classi�cation system, and thus comparing results across di�erent datasets is di�-

cult. In this study, the malignant and benign nodule sizes were more similar than

in some previously published studies, which is one explanation for the reduced

performance.

4.1 Contributions

The primary contribution of this work is the observation that the datasets used

for training and testing nodule characterization systems has a large impact on the

performance that can be obtained from these systems. In datasets with a large

di�erence in size between the malignant and benign nodules, size is a very e�ective

discriminative feature. However, the size distribution in these datasets may not be

an accurate re�ection of the true size distribution of nodules; while it is true that

malignant nodules tend to be larger, there should be more small malignant nodules

as well, but we do not observe this in most datasets due to the fact that malignant

nodules tend to already be large by the time they are identi�ed. Additionally, the
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most useful application of a nodule characterization system is for those nodules

that are too small to be biopsied; these nodules tend to be of the size where the

malignant and benign nodules overlap, where size is not as useful a feature.

Given these limitations of the use of size, the best way to report the performance

of nodule characterization systems is using datasets where the size distribution

of malignant and benign nodules is as similar as possible. However, it is very

di�cult to build the large databases necessary for proper training and testing of

characterization systems while following that requirement. An alternative is to

publish not the absolute performance, but the relative increase that the system

provides over size; this is what has been done in this work.

4.2 Future Work

Additional work can be done on re�ning the more complex three-dimensional fea-

tures, such as local surface variation and the nodule margin measurement features.

An increase in the number of nodules in the database would enable the use of

separate training and testing sets for the size-balanced subset, which would elim-

inate any possibility of over�tting to the data and allow for additional parameter

optimization. This system could also be applied to characterizing nodules in other

areas of the body, such as the liver or breast.
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