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1. Executive Summary  

 

Brain cooling or induced hypothermia have been shown to be effective modes of neuro-

protection during hypoxic insult in newborn infants. It is believed that hypothermia helps 

prolong neuronal survival by reducing damage from excitotoxins, inflammation, free radicals, 

and necrosis. However, such treatment for hypoxia resulting from heart attack or stroke in adults 

has not shown consistent experimental efficacy. To investigate this discrepancy, we modeled the 

transient and steady-state heat transfer that occurs during brain cooling using an external cap in 

infants and adults using COMSOL. The infant model provided insights into the mechanism of 

induced hypothermia in treating hypoxia. In particular, it was established that only partial 

cooling of the gray matter is necessary for therapeutic effects. By comparison, the adult model 

showed over two times less penetration of neuro-protective cooling into the gray matter brain 

tissue. It was reasoned based on analysis of the two models that the larger volume and perfusion 

rate in the adult head were responsible for the non-uniform outcomes, making brain cooling an 

ineffective method of treating adults.  
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2. Introduction 

 

2a. Background 

 

Brain cooling has been shown to be successful in diminishing the extent of brain injury 

resulting from hypoxia.
(16)

 For victims of near-drowning, neurological recovery is possible if 

hypothermia is induced soon after the insult.
(19,20)

 Several studies point to the possibility of using 

surface or endovascular cooling in patients who have suffered a hypoxic insult.
(1,4,7,9,11,13) 

For 

example, in infants with hypoxic-ischemic encephalopathy (HIE), a condition in which 

insufficient amounts of oxygen are supplied to the brain causing neuron apoptosis, hypothermia 

of the brain via a cooling device (CoolCap ®) has been approved by the FDA and used 

successfully to mitigate neurological damage.
(14)

  

 

 HIE is a significant cause of death in newborn infants worldwide, with an incidence 

between 1.8 and 6 per 1000 term infants in developed countries, and a much higher incidence in 

developing countries.
(16)

 The condition can be brought on by a variety of causes, including 

complications during birth, blocked blood vessels, drowning, and drug overdose. HIE in 

neonates is a progressive process that begins with an initial hypoxic-ischemic event, also known 

as the primary phase of energy failure.  After resuscitation from this event, there is a latent stage 

where cerebral oxidative metabolism is restored.  However, a secondary phase of energy failure 

occurs 6 to 24 hours later, which causes further deterioration in the brain.  The window for 

treatment occurs between these primary and secondary energy failures, meaning a significant 

cooling of 3-4 
o
C needs to be obtained within six hours to offer protection. This temperature drop 

range has been confirmed in animal studies
(2,12)

  and clinical trials
(6)

  leading to the development 

of the CoolCap. Long term effects of HIE can include mental retardation, seizures, cerebral 

palsy, and death.  Hypothermia may prevent this by mitigating the delayed energy failure, 

reducing nitric oxide production, and blocking specific biochemical cascades that lead to brain 

cell apoptosis.    

 

These effects of HIE are similar to many disease states brought on by sudden acute 

hypoxia (Figure 1). For example, in a stroke, the lack of blood flow creates hypoxic conditions 

that can quickly induce apoptosis leading to permanent brain damage. Similarly, in a heart 

attack, failure of the heart to provide blood to the brain can lead to apoptosis.  Thus, it is 

plausible that if the adult brain was cooled soon after such an insult, cell cytotoxicity could be 

reduced as it is in infant HIE patients.  Some studies have already suggested that hypothermia in 

the brain is a potential treatment for adults suffering from stroke or cardiac arrest.
(1,4,9,11)

 

However, the CoolCap is currently only approved for use on newborns.   

 

 

2b. Design Goals 

 

This project has two major goals: to validate the use of the CoolCap for treating infants 

and to investigate whether a similar device could offer neuro-protective cooling to adults who 

have suffered a stroke or cardiac arrest. 
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Figure 1: The pathological progression of generalized neural ischemia.
22

 HIE, stroke, and heart 

attack can all lead to neural damage through two phases.  First, excitotoxicity causes necrosis 

within minutes.  This is followed by a second phase of apoptosis taking place 6-72 hours after 

hypoxic insult.  Brain cooling in infants with HIE protects against this second phase. 

 

 

Analytical and numerical methods are used to model the temperature of the brain over 

time during application of a selective head cooling apparatus containing water maintained at  

10 °C. We will compare the temperature behavior in an infant and an adult undergoing the same 

treatment, and by comparison of the two determine if sufficient cooling has occurred in the adult 

to slow the destructive neurological processes that result in neural hypoxia. Similar results in 

infant and adult models would signal that a comparable cooling treatment is plausible for adults. 

These results could be helpful to those who are designing methods of therapeutic hypothermia 

for stroke and cardiac arrest patients, as well as to physicians who are considering the use of 

therapeutic hypothermia in the care of such patients.  

 

Several animal studies have shown that the most effective temperature range for neuro-

protection is between 32 and 35
o
C

 (2,12)
. Clinical trials conducted on infants confirmed these 

results.
(6)

 Based on these studies, and considering the fact that the CoolCap System 
(14)

 approved 

by the FDA for treating infants with HIE specifies a temperature decrease to 34-35
o
C, we seek a 

temperature drop of approximately 3
o
C in the brain tissue of infants (from an assumed body 

temperature of 37
o
C) for validating the use of a cooling cap as an effective treatment of HIE. 

Similarly, we look for a comparable temperature drop in adult models, to make initial claims of 

the validity of such a treatment for stroke and cardiac arrest patients.
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3. Simplified Analytical Solution for Infant 
 

3a. Methods and Results 

 

 An introductory study was conducted to assess the approximate temperature response 

within the brain from a cooling cap. To obtain an analytical solution of the steady-state 

temperature profile of a cooled brain, an infant head was modeled as a hemisphere with constant 

temperature boundaries (Figure 2).  Considering only conduction, this geometry can be 

simplified into a one-dimensional problem along the radially symmetric line from r = 0 to r = R, 

where the radius is assumed to be 6 cm.  Assuming steady-state with no convection or heat 

generation, equation 1 can be solved for the temperature profile of the brain. The result is 

presented in equation 2 using the boundary conditions that the temperature at r = 0 is 37
o
C and 

the temperature at r = R is 10
o
C.  The resulting hyperbolic curve is plotted in Figure 3.  Details 

that led to the arrival of this solution are shown in Appendix B. 
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Figure 2: The geometry for a simplified analytical solution. At the center of the circle, the 

temperature is the body temperature of 37
o
C. At the surface, a cooling device is modeled by a 

constant temperature of 10°C.  

 

 

 

3b. Discussion 

 

The solution to equation 1 results in a hyperbolic temperature profile from the head 

surface to the center of the brain (Figure 3).  However, a number of assumptions were made that 

make this profile unrealistic.  The heat transfer equation was simplified to only include 

T = 10°C at r = R 
 

T = 37oC at r = 0 
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conduction, whereas convection and perfusion would also play a role in a real brain.  The 

temperature at the core (r = 0) was assumed to stay constant at 37 °C, while the temperature at 

the surface (r = R) was constant at 10 °C, which again is an unrealistic assumption.  Since the 

geometry was assumed to be a homogenous hemisphere with constant heat transfer properties, it 

fails to account for different regions of the head and the brain. Further implementation in 

COMSOL is therefore necessary for all of these assumptions to be addressed.  

 

 

 
 

Figure 3: A simplified analytical solution for an infant’s head during surface cooling, assuming 

only conduction. The cooling device is applied at a radius of 6 cm. Significant cooling penetrates 

almost to the core of the brain.   

 

 

  

4. COMSOL Implementation: Infant Model 
 

4a. Model Development 

 

 Due to the shortcomings of the analytical solution, a COMSOL model was built to verify 

the significant brain temperature drop during surface cooling on an infant head.  An 

axisymmetric layered hemisphere was used to model the brain and head where the cooling takes 

place (Figure 4).  The head layers included the scalp, bone, gray matter brain tissue, and white 

matter brain tissue.  Differentiation into these layers reflected the varying material properties and 

perfusion constants throughout the head, providing a more physically realistic solution compared 

to the analytical model.
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Within each layer, the 2D-axisymmetric heat transfer equation was solved under transient 

conditions (equation 3).  This equation assumed no convection, and instead included a perfusion 

term from the Pennes bioheat equation to account for blood flow, along with a heat generation 

term, Q, to account for metabolic heat generation. Perfusion and metabolic heat generation were 

included in all four layers. 

 

               
  

  
  

 

  
 

  
(  

  

  
)   

         

   
     (3) 

 

Equation (3) was solved using the following boundary conditions: insulation along the 

horizontal axis, symmetry along the vertical axis, and constant temperature of 10°C along the 

head surface.  A constant temperature was used because the CoolCap circulates temperature-

controlled water through the cap to cool the brain.  The initial condition assumed was that the 

entire head starts at 37°C.  The model parameters used for material properties, perfusion, and 

metabolic heat generation used in each layer are shown in Appendix A. 

 

 A triangular mesh was generated by specifying the maximum element size in all four 

domains.  Mesh convergence was tested to ensure a mesh-independent solution by measuring the 

temperature in the scalp at the point (0.034, 0.0444) after 5 seconds.  Convergence was achieved 

when the maximum element size was specified as 0.0005, which created a 43937 element mesh 

(Figure 5). 

 

Figure 4: The infant head and brain was modeled 

as concentric layers of an axisymmetric 

hemisphere.  The layers included the scalp, bone, 

gray matter, and white matter.  Axial symmetry 

was specified about the vertical axis.  Axes 

markings are in meters. 
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Figure 5: Mesh convergence was tested by measuring the temperature in the scalp at the point 

(0.034, 0.0444) after 5 seconds to ensure a mesh-independent solution.  Convergence was 

achieved using a maximum triangular element size of 0.0005 in all domains. 

 

 

 

 

4b. Results 

 

A temperature profile of the infant head after five minutes of application of the cooling 

device is shown in Figure 6. Qualitatively, it can be seen that the innermost region of the brain-

the white matter- has not cooled. Cooling penetrates partly into the gray matter only. A steady 

temperature was reached in all layers of the infant model after approximately five minutes of 

application of the cooling cap (Figure 7). The infant model showed rapid cooling in the outer 

layers of the head and more gradual cooling in the gray matter brain tissue. The scalp 

temperature approached the temperature of the CoolCap due to its small thickness and proximity 

to the cap. The bone equilibrated to approximately 20
o
C and buffered much of the heat transfer 

due to the blood perfusion and low heat capacity of the layer. 
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Figure 6: Temperature profile of the infant brain model after five minutes. The profile did not 

change after five minutes as the temperature in all the regions reached steady state.  

 

 

 

 

 
 

Figure 7: After 5 minutes of application, the head layers of the infant model are approaching 

steady state.  Cooling penetrates only into the gray matter. The white matter remains at the initial 

temperature. 
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To quantify the cooling occurring in the gray matter, the extent of cooling therapy is 

illustrated in Figure 8, showing the steady state profile of the infant head after six hours of 

application. As it has been shown extensively in literature (2,6,12,14)
  that at least a 3

o
C temperature 

drop is desirable and necessary for hypothermia to take place and yield therapeutic results, we set 

a 3
o
C threshold to analyze how much cooling has occurred. Cooling of over 3

o
C below body 

temperature penetrates approximately 10 mm into the surface of the head.  Given that these first 

four millimeters are scalp and bone, this correlates to significant cooling penetrating 6 mm into 

the gray matter layer, which is about halfway.  We calculate that this is approximately 51% by 

volume of the gray matter cooled below the desired 3
o
C. 

 

 

 

 
 

Figure 8: Steady-state temperature profile of the infant brain, viewed after six hours of cool cap 

application.  Cooling penetrates approximately halfway into the gray matter. No penetration in 

the white matter is observed. 

 

 

 

4c. Discussion 

 

 Results from the infant model show that steady state was reached quickly (< 5 min) and 

that therapeutic cooling penetrated about halfway into the gray matter layer (5-6 mm).  However, 

the white matter did not show any significant cooling, even after six hours of application.  The 

combination of heat fluxes contributing to steady state are due to the surface cooling, metabolic 

heat generation, and perfusion.  At steady state, the heat flux out of the head and into the cool 
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cap matches the heat flux produced in the head from metabolism and perfusion.  The large 

perfusion in the gray matter thus prevents cooling from penetrating further into the brain.  

Comparing our results to literature studies 
(12,14)

 we find that literature results suggest that surface 

cooling is therapeutic for infants with HIE. As we only observe partial cooling of the brain below 

the commonly set threshold of 3
o
C, we conclude that partial hypothermia of the brain is 

sufficient to prevent damage mechanisms from taking place, or alternatively, that these 

mechanisms occur only in the gray matter and thus the observed cooling of the gray matter is 

sufficient for therapeutic effects. These conclusions may be vital in understanding how HIE 

inhibits normal function and in what ways hypothermia aids therapy. Furthermore, the validation 

of the FDA approved CoolCap device motivates the following investigation of brain cooling 

using a similar device in adults who have suffered hypoxic neural insult. 

 

4d. Comparison with Analytical Solution 

 

The COMSOL model of the infant brain had large discrepancies in relation to the 

simplified solution. Unlike the computer model, the simplified solution lacked the crucial 

perfusion term, which, according to the COMSOL model, is largely responsible for the stability 

of brain temperature over extended periods of time. Instead it showed a sharp decrease in 

temperature everywhere, but the inner core of the brain. This inaccuracy exemplifies the tissues’ 

variation from a slab model. Therefore a more intricate computer simulation is required to 

achieve results similar to those found in experiments, not seen in simplified analytical models.  

 

 

5. COMSOL Implementation: Adult Model 

  

5a. Model Development 

 

The adult model shown in Figure 9 is similar in design to that of an infant, both being 

modeled as quarter spheres around an axisymmetric y-axis. The most notable difference is the 

larger volume and thickness of the brain, due to a more developed body. Additionally, the adult 

model is characterized by larger perfusion rates in all the layers, as a result of a larger head with 

a more extended network of capillaries. These vessels are capable of transporting a greater 

volume of blood to and from the head.  
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5b. Results 

 

The adult model showed less cooling overall than the infant model due to a larger head 

volume and a higher perfusion rate in all layers. The temperature profile is shown in Figure 10. 

Significant cooling was achieved in the scalp and bone layers, but only the outermost couple of 

millimeters of the gray matter were cooled. 

 

 

 
 

Figure 10: Temperature profile of the adult brain model after six hours.  The white marks 

indicate points used in the sensitivity analysis of each layer. 

Figure 9: Schematic of the adult model in COMSOL.  

Blood perfusion and metabolic heat production are 

incorporated within each layer.  The boundary conditions 

were symmetry along the vertical axis, insulation along 

the horizontal axis, and a constant temperature at 10°C 

along the surface. 
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Like the infant model, the adult model shows that steady state was reached relatively 

quickly due to the fact that the blood temperature remains constant over time and the volumetric 

flux of blood in the gray matter is large (Figure 11). However, unlike the infant model, the adult 

model shows less cooling of the gray matter. Also, compared to the infant model, the bone layer 

in the adult head cools more gradually. This is again due to the higher blood perfusion rates in all 

the layers, as the blood in the larger capillary network delivers heat from the body core to the 

brain, slowing down the cooling process. 

 

 

 

 

 
 

 

Figure 11: Plot of adult brain temperature in each subdomain of model after five minutes.  

Steady state temperatures are approached quickly. 

 

 

 

We performed an analysis similar to the infant model, of temperature by radius of the 

head, to quantify the difference between the adult and infant models. We assumed that the same 

3°C threshold as was used for the infant was appropriate for the adult model. As shown in Figure 

12, cooling below 34°C was largely limited to the bone and scalp regions of the adult head. We 

calculated that approximately 17% by volume of the gray matter cooled below the desired 

threshold in the adult model. Assuming that the mechanism of hypoxia is comparable in infants 

and adults, we conclude that the 17% cooling of the gray matter is not sufficient to be 

therapeutic, compared to the 51% gray matter cooling in infants. Therefore, the model is 

inconclusive about the potential benefits of using hypothermia to treat hypoxia in adults.  
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Figure 12: Steady-state temperature profile of the adult brain, viewed after six hours of 

application.  Cooling is limited to the scalp and bone regions of the brain, with little cooling 

penetrating into the gray matter. As for the infant, no cooling is observed in the white matter. 

 

 

 

5c. Discussion  

 

i. Accuracy Check: Comparison of Model Results with Literature 

 

To confirm that our model represents the actual heat transfer processes occurring in the 

brain during selective head cooling, previously published models found in literature are used as a 

comparison.  The models of brain cooling by Diao and Niemark were used in the accuracy 

check
(5, 21)

.  While each model uses slightly different methods and parameters, results should be 

comparable if our model is accurate. We note that literature models were scaled accordingly to 

be comparable by radius to our model. 

 

Figure 13 shows the temperature profile of the adult brain obtained through the three 

different models for brain cooling. A similar decline in temperature is observed in all the models.  

Although the models do not yield identical temperature profiles, the general trend in temperature 

is very similar between our model and those created by Niemark and Diao.  The variations can 

be attributed to different models taking measurements at different time periods.  For example, 

while our model and the model by Niemark measured brain temperature after six hours, the Diao 
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model measured temperature at steady state.  In addition, there were different assumptions used 

in defining the geometry and different parameter values used which would contribute to the 

variability seen in the temperature profile. 

 

 

 

 
 

Figure 13: Comparison of selective brain cooling model with those found in literature. 

 

  

ii. Sensitivity analysis 

Considering that parameters found in literature are dependent on the source and methods 

of determination, there is often variability in reported parameter values.  A sensitivity analysis 

was completed to see the effect of this variability on the results of the adult model.  Deviations 

were applied for some parameters to see the responsiveness of the model to these changes.  The 

parameters under consideration were metabolic heat, thermal conductivity, density, and blood 

perfusion rate.  These parameters were changed within the gray matter layer of the adult model, 

as the cooling of this layer is most important for therapy.  For each parameter, the steady state 

temperature, taken after 6 hours, within each layer was modeled.  The points used to represent 

each layer were 0.035 and 0.035 for white matter, 0.055 and 0.055 for gray matter, 0.058 and 

0.065 for the bone layer, and 0.059 and 0.069 for the scalp (Figure 9).  Figure 14 shows that 

varying these parameters by 5-10% in the gray matter had a negligible effect on the steady state 

temperature of the adult model. The results of our sensitivity analysis show that temperature 

change is relatively insensitive to changes in the physical parameters of the head.   
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Figure 14: Sensitivity analysis varied metabolic heat, conductivity, density, and perfusion rate 

within the gray matter layer and measured the resulting change in each layer of the model.  The 

plots show temperature differences in each layer of the adult brain by varying each parameter 

independently.  A 10% change in either direction of any of these four parameters did not change 

the steady state temperature of each layer.  

 

As the next step, we hypothesized that lowering the cap temperature in the adult model 

may elicit cooling deeper into the brain, thus potentially making the cool cap a plausible 

treatment for adults. To investigate this hypothesis, a change in the temperature of the cap was 

modeled. The adult model was considered with the cap temperature when implemented as a 

constant temperature boundary condition and varying from 0-14°C.  Over this range, the steady 

state temperature in the scalp and bone changed, but the white and gray matter temperature 

change was very small (Figure 15).  Comparing the sensitivity analysis for all the factors 

considered, the most responsive was cap temperature, as there was a maximum change of 

0.407°C in the gray matter when the cap temperatures were varied from 0 to 14°C.  Still, this 

change does not have a substantial effect on the brain temperature and can be considered to be 

relatively insignificant.   
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Figure 15: Variation of cap temperature in the adult model changed the steady state temperature 

of the bone and scalp layers, but not the gray or white matter layers, where lower temperature is 

preferred.  Thus cooling the cap further would not offer greater efficacy for adult patients. 

 

 

 

iv. Design Goals 

 

We see that the CoolCap is unlikely to work for an adult within the relatively broad range 

of tested parameters, assuming that hypoxia in infants and adults require the same amount of 

cooling in the gray matter. No parameter variation increases cooling deeper into the brain (above 

the initially observed 17% by volume) for the adult model. Even with decreased blood perfusion 

or a colder cap temperature, cooling fails to significantly penetrate into the gray matter.  This 

implies that the parameter dictating whether surface cooling will be effective is likely the size of 

the head.  In the infant model, therapeutic cooling was possible with a 10°C cap.  However, in 

the adult model, similar cooling was not possible over a range of parameter conditions.  In the 

context of design, these results suggest that surface cannot be confirmed as a viable brain cooling 

method after infanthood due to the increase in head size. 

 

 

6. Conclusions 

 

 This study was based on a parallel drawn between neonate victims of HIE in danger of 

severe brain damage and at-risk patients of stroke and heart attack. In both cases, the danger of 

brain damage is high and an immediate and timely solution is necessary to prevent severe 

disability or death of patients. The strategy employed here was to develop a model of existing 

proposed therapies of HIE in infants, validate it, and use it as a basis for a similar model of 

adults. The first goal of this study was to validate the cooling cap system through a model of the 

cap as a constant heat sink applied to an infant’s head. In addition to giving insight into the 

mechanism of hypothermia to prevent brain damage, the infant model would be a validated 
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comparison against the adult model. Based on these initial results, we hoped to test whether a 

similar approach can be applied to adults, as has been suggested by multiple studies. 
(1,4,7,9,11,13)

  

 

 In the infant model, we observed that the temperature dropped by 3°C halfway into the 

gray matter of the brain (51% by volume). According to multiple animal studies and clinical 

trials this is the suggested temperature drop to ensure that brain damage is prevented or at least 

greatly reduced. 
(2,6,12,14)

 Our study therefore serves as a mathematical validation to numerous 

experimental studies done in this field. What is unique about our work is that our findings 

suggest that cooling of the entire brain is not necessary to prevent brain damage. Experiments 

have proven that hypothermia is effective for treating HIE. As a model for this process, our work 

gives insight into the mechanism of how this is achieved, on a macro scale. These findings may 

shed light upon the chemistry of HIE and its effect on the brain. We note, however, that the 

white and gray regions are not as well defined in a real human brain, so some caution must be 

taken in interpreting these results. Nevertheless, though the exact numerical values and 

geometries may vary from patient to patient, this study clearly suggests that it is not necessary to 

cool the whole brain to prevent brain damage, thus implying that the damage may be occurring 

mostly in the outer gray matter of the brain. These results may be of use to researchers studying 

the effect and cause of HIE in neonates. 

 

 With these assumptions, we proceed to attempt a similar solution for an adult head 

geometry, as a model for stroke and cardiac arrest patients in danger of severe neural 

degradation. The size of the head is increased accordingly.  Additionally, blood perfusion rates in 

the layers of the adult head are increased between 4 and 7 times as compared to rates in infants, 

depending on the head region. The results show, however, that the drop in temperature is not as 

significant in the gray matter in the steady state. Compared to 51% cooled gray matter by volume 

in the infant, only 17% of the gray matter is cooled in the adult. This leads us to conclude that in 

fact a cooling cap would be ineffective for treating stroke and cardiac arrest patients. Even if the 

partial cooling in the adult has positive effects, this study is inconclusive to recommend such 

treatment without further research. To understand this result, we tested the sensitivity of our 

model to various material properties, hypothesizing that our solution was potentially invalid if a 

particular material value had a great effect on the solution and was wrongly chosen. Our 

sensitivity analysis, varying the effect of varying metabolic heat, conductivity, density, and 

perfusion rate, showed that none of the properties had a large enough effect on the solution to 

invalidate our conclusions. We were particularly interested in seeing the result of varying blood 

perfusion rate, as this was the most significant change between infant and adult models. We did 

not find that up to 10% variation in either direction had an effect on the temperature of the brain.  

 

Finally, we wanted to test whether by varying the cap temperature we could induce 

cooling deeper into the brain. This was a viable hypothesis as a lower cap temperature could 

increase heat flux out of the inner regions of the brain. We found that this was not the case, as the 

temperature dropped significantly only in the bone and scalp regions of the head. Based on this 

analysis, we conclude that the larger size of the adult head prevents therapeutic cooling from 

penetrating deeper into the gray matter. Therefore, contrary to studies claiming that cooling 

therapy could be effective in treating stroke and cardiac arrest patients, we would not 

recommend such therapy based on our results. We propose as further research the possibility of 

combining a drug therapy
(15)

 with the head cooling therapy, or a cooling catheter, as surface 
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cooling alone has shown to be effective only when the size of the head and the blood perfusion 

rates are low as in infants. 

 

6a. Economic Impact and Future Research 

 

 The high number of people who require HIE treatment creates a large potential market 

for pharmaceutical companies. Therefore our results have crucial implications on the industry. 

The ineffectiveness of cooling therapy treatment in adults helps companies avoid expensive, 

large-scale studies which are not supported by theory, visible through our model. While a 

positive result would have been optimal, the negative result inhibits companies from losing 

money and potentially saves people’s health from inadequate treatment. 

  

 While CoolCap brain cooling is not an effective method of treating stroke and cardiac 

arrest in adults, the concept of lowering brain temperature to prevent brain damage still holds 

true. Therefore an alternate method of lowering brain temperature should still be an effective 

treatment for adult patients. Possibilities of such include inserting cooling pads surgically or 

decreasing the entire body temperature to lower the heat gain due to perfusion. These theoretical 

concepts provide a bright future for patients, but require additional extensive research.  
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7. Appendix A: Mathematical Statement of Problem 

 

7a. Governing Equations 

 

 To model the temperature profile of the head and brain over time during surface cooling, 

the heat transfer equation for a 2D-axisymmetric model was solved.  Included were transient, 

conduction, perfusion, and heat generation terms.  Convection was not modeled as blood flow 

was incorporated in the perfusion term.  The initial condition used was that the entire head 

started at 37
o
C. 

 

    
  

  
  

 

  
 

  
(  

  

  
)   

         

   
     (4) 

 

In equation 4, ρ is the density of each layer, Cp is the heat capacity of each layer, k is the 

conductivity of each layer, and Q is the metabolic heat generation in each layer (constant).  

Within the perfusion term, ρ is the blood density, c is the blood heat capacity,   is the perfusion 

rate, Ta is the arterial blood temperature (constant 37 
o
C), and Vol is the volume of each layer.  

The independent variables are time (t) and radius (r), and the dependent variable is temperature 

(T). 

 

The boundary conditions implemented are listed below: 

 --Thermally insulated along the horizontal axis (head/neck boundary) 

 --Axisymmetric about the vertical axis 

 --Constant temperature along the head surface 

 --Continuity between each layer 

 

 

7b. Model Parameters 

 

Layer Constant Infant Value Adult Value Units 
     

Scalp Density     1000     1000 kg/m
3
 

 Conductivity     0.34     0.34 W/m K 

 Heat Capacity     4000     4000 J/kg K 

 Perfusion Rate     1.316E-08     6.940E-08 m
3
/s 

 Volume     3.941E-05     2.082E-04 m
3
 

 
Metabolic Heat 

Generation 
    363.4     363.4 W/m

3
 

 Thickness     0.002     0.004 m 

Bone Density     1500     1500 kg/m
3
 

 Conductivity     1.16     1.16 W/m K 

 Heat Capacity     2300     2300 J/kg K 

 Perfusion Rate     1.650E-08     8.564E-08 m
3
/s 

 Volume     3.665E-05     1.903E-04 m
3
 

 Metabolic Heat     368.3     368.3 W/m
3 
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Generation 

 Thickness     0.002     0.004 m 

Gray 

Matter 

Density     1050     1050 kg/m
3
 

Conductivity     0.5     0.5 W/m K 

 Heat Capacity     3700     3700 J/kg K 

 Perfusion Rate     2.192E-06     9.188E-06 m
3
/s 

 Volume     1.566E-04     6.563E-03 m
3
 

 
Metabolic Heat 

Generation 
    16700     16700 W/m

3
 

 Thickness     0.011     0.018 m 

White 

Matter 

Density     1050     1050 kg/m
3
 

Conductivity     0.5     0.5 W/m K 

 Heat Capacity     3700     3700 J/kg K 

 Perfusion Rate     1.086E-06     4.410E-06 m
3
/s 

 Volume     3.103E-04     1.260E-03 m
3
 

 
Metabolic Heat 

Generation 
    4175     4175 W/m

3
 

 Thickness     0.042     0.067 m 

Blood Density     1050     1050 kg/m
3
 

 Heat Capacity     3800     3800 J/kg K 

 

Table 1: Material properties and input parameters for our model.
(3,5,8) 

 

7c. Solution Strategy 

 

We used the COMSOL Multiphysics transient heat conduction solver to arrive at a 

solution based on the parameters. The brain was assumed to be a hemisphere and was therefore 

modeled in a two dimensional axisymmetric plane, with symmetry along the y-axis. This 

allowed for fewer computations with similar results found in a three dimensional model. The 

bottom of the brain (x-axis) was assumed to have zero flux and the outer skin boundary was 

assumed to be in close contact with a constantly cold CoolCap, producing a 10°C boundary.  The 

steady state model was run for 6 hours (21,600 seconds) with a time step of 60 seconds. 
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8. Appendix B: Analytical solution strategy 

 

Given an axisymmetric hemisphere of radius 6 cm, equation (1) can be solved by assuming a 

hyperbolic profile using the boundary conditions T(r=0) = 37°C and T(r=R) = 10°C. 

 

 (
 

  
)  (

 

  
) [   

  

  
]        (5) 

 

Simplify using product rule for d/dr term: 

 

   

   
   

 

 
 

  

  
      (6) 

     

From here we assume the solution will have form dT/dr = A/r, where A is a constant, yielding 

equation (7).  

 

 
  

  
  

 

  
       (7) 

 

Solving equation (7):  

    
 

 
        (8)    

     

In equation (8) B is also a constant.  Now use boundary conditions that T(r=0) = 37 °C and 

T(r=R) = 10 °C.  Since A/0 = -inf, we estimate zero as 0.1, assuming 0.1 << R.  Then A and B 

can be solved for: 

 

 A = -0.24 

 B = 9.98 

 

Then we can plot T versus r with R = 6 cm using the equation T = -2.7458/r + 9.542 over the 

domain 0.1 < r < 6. This plot is shown in Figure 3. 
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