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Ultra-narrow channel silicon field effect transistors (FET) with suspended 

gates, integrated with on-chip micro-fluidic delivery system are demonstrated. These 

devices are designed to be used for serial sequencing of DNA, RNA and proteins, by 

detecting the local charge variations along these molecules as they are passed between 

the gate and the channel of the FETs in an aqueous solution.  

Devices are fabricated with down to 5 nm high tunnels passing between the 

gate and the channel of the FETs, integrated with larger scale micro-fluidic delivery 

system. The smallest fabricated active area width is less than 10 nm. A silicon nitride 

based shallow trench isolation (STI) scheme is developed in order to accommodate 

fabrication of the tunnels going through the FET, through removal of sacrificial silicon 

dioxide in HF. 

A device architecture with an independently controlled side-gate, surrounding 

the active area, is developed to suppress the edge related leakage currents and allow 

further scaling of the device width while achieving high sensitivity. The side-gated 

devices are fabricated as nFET prototypes using thermally grown silicon dioxide gate 

insulator and silicon nitride STI. The leakage currents are suppressed below 50 fA 

down to 70 nm gate length with the application of a negative side-gate bias. 

Side-gated sub-10 nm wide devices exhibit threshold voltage tunability in a 

range exceeding 2.5 V and with a maximum sensitivity of δVt/δVside > 2 V/V. Wider 

channel devices with gate lengths less than 70 nm retain Ion/Ioff ratios exceeding 109 



 

 

and achieve drive currents exceeding 1.5 mA/µm. Narrow channel devices with 150 

nm gate length show less than 5 mV/V drain induced barrier lowering. With these 

performance parameters, side-gated device geometry is a promising candidate for 

future generation low-power, and higher performance circuits. The possibility of using 

this device geometry as a side-trapping FLASH memory structure is also demonstrated. 

A capacitance measurement technique is developed to achieve aF resolution 

using an instrument with 0.1 fF resolution at 1 MHz utilizing the random fluctuations. 

These capacitance measurements, performed on the small scale devices, are used to 

extract effective device dimensions, carrier density and effective carrier mobilities. 
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1 Introduction 

The objective of this thesis has been the development of an ultra-narrow width 

silicon field effect transistor (FET) with a suspended gate, integrated with on-chip 

microfluidic delivery system. The device is designed to be used as an FET based 

sensor for sequencing of DNA, RNA and proteins, by detecting the local charge 

variations along the chains of these molecules as the samples are passed between the 

gate and the channel of the FET (Figure 1.1). 

The sequence information of these molecules are important for recognition of 

living organisms for identification of diseases for medical purposes, biochemical and 

pharmaceutical research, as well as human identification for judicial cases. Existing 

methods of bio-molecule sequencing require large-scale laboratories and trained 

technical staff and rely on statistical analysis. There is a growing demand for small-

scale, high-speed bio-molecule sequencing techniques [1][2]. 

The main device-related challenges for charge based biomolecule sequencing 

 

Figure 1.1  3D schematics of the device structure. The source-drain current is 
monitored as the sample is passed perpendicular to the channel of the transistor. 
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scheme are: 

• Fabrication of small scale transistor structures with sub 10 nm channel width and 

suspended gates in which the sample can be flown between the channel and the 

gate of the transistor. 

• Integration of suspended gate transistors with on-chip microfluidic delivery 

systems. 

• Design of an FET structure which is compatible with these processes and achieve 

high gain, which will result in a high level of sensitivity. 

Using standard CMOS compatible processes allow high sensitivity low noise 

circuitry to be integrated in close proximity to sensor devices on the same chip. 

Fabrication techniques using optical lithography, in addition to a CMOS compatible 

process flow, allow easy transition from prototype to large-scale manufacturing at 

low-cost in commercial fabrication facilities in the future. 

In this thesis two process flows developed to integrate microfludic tunnels with 

narrow channel silicon air-gap FETs are presented. Hydrofluoric acid (HF) is used to 

remove sacrificial silicon dioxide in order to fabricate the nano/micro-fluidic tunnels 

[3][4]. Silicon nitride based shallow trench isolation (STI) schemes are developed so 

that HF release process can be integrated with the fabrication of narrow channel 

transistors [5]. 

The two schemes developed to integrate microfluidic tunnels with the FETs are: 

monolithic integration, which is described along with the device fabrication in chapter 

2 [6], and back-end-of-line integration of microfluidic tunnels, described in chapter 3 

[7]. The processes developed for these integration schemes can be used for a number 

of different applications requiring microfluidic structures. 

In addition to a planar Si FET geometry using silicon nitride STI as described 

in chapter 2, a side-gated device is developed, allowing further scaling of the width of 
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the transistor. Side-gated devices exhibit excellent transistor characteristics, suitable 

for sensor applications. The side-gated device structure, with its slight variations, was 

observed to be a good candidate for future generation high-performance, low-power, 

low-noise logic and analog devices as demonstrated in chapter 4. The possibility of 

using this device geometry for trap-based FLASH [8][9] memory structures as a 

possible alternative for further scaling of FLASH memories is also demonstrated. 

Side-gated device geometry in combination with HF resistant STI scheme, is very 

suitable for a number of different applications which include fabrication of tunable 

resonant-gate structures for high frequency band-pass filter applications [10]-[14] and 

alternative memory structures (section 4.11) as well as monolithic integration of on-

chip resonant electro-mechanical devices with CMOS circuitry. 

1.1 Background on bio-molecules 

Life functions in living organisms are carried out by large organic molecules.  

DNA is the main information template in every living organism. Cells can replicate 

copies of the DNA template, and generate RNA templates that are in turn used to 

generate the proteins needed by the cell [16][17]. 

DNA and RNA molecules are chains composed of sub-units which are called 

nucleotides. There are four different kinds of these sub-units forming two 

complementary pairs, which can selectively bind to one-another (Figure 1.2) [17]. The 

diameter of double helix DNA structure is approximately 2 nm (Figure 1.3) [15]. The 

nucleotide spacing in a DNA molecule is 0.34 nm and the sugar-phosphate backbone 

of the DNA molecule carries a net negative charge in salt solution. Due to this net 

charge on its backbone, DNA molecules tend to stay unbundled in low concentration 

salt solutions. The charge distribution over the DNA molecule varies by a very small 

amount from one nucleotide to another. Although the charge variation along a single-
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strand DNA molecule is very small, it is possible to increase the charge contrast 

significantly by selectively attaching one kind of nucleotide in the matching locations 

of a single-strand DNA. This can be achieved by immersing a single-strand DNA in a 

solution which contains only one of the four possible nucleotides. 

Proteins, the molecular machinery in living cells, are long chains of amino 

acids. Amino acids can have different charge levels at different pH values, depending 

on their side-chains. There are twenty different, naturally occurring amino acids. 

Proteins are formed by the carboxylic acid site of one aminoacid binding to the amino 

site of another (Figure 1.4) [18]. 

 

 
Figure 1.2  Molecular structure of the four nucleotides found in DNA molecules. The 
unsatisfied bon on N binds to the sugar-phosphate backbone to form a strand. 
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0.34 nm0.34 nm

 
Figure 1.3  Schematics of double stranded DNA structure. The DNA strands are 
bonded together through hydrogen bonds between the complimentary pairs [15]. 

 
Figure 1.4  Three examples of naturally occurring amino acids. Amino or the acid 
group can get activated at certain pH values [18]. 
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1.2 Method of detection 

A small variation in the electric potential of the channel of a small FET results 

in a significant change in the drain to source current level. This property makes a 

narrow channel FET structure a very sensitive sensor for small charges in close 

proximity [19][20]. The biggest advantage of using an FET is the front-end, intrinsic 

and high-gain amplification that is achieved when the device is operated in the 

subthreshold regime [21]. Since the charge detection is performed with a high gain 

device, the signal to noise ratio is improved over detectors which rely on higher gain 

amplification in the electronic circuitry used to sense the signal. 

 In an FET structure, local charges between the channel and the gate of a 

transistor perturb the channel potential. This potential perturbation is manifested as a 

change in source-drain current (Ids) of a transistor. The magnitude of the perturbation 

 
Figure 1.5 Potential perturbation caused by a dipole over the channel of a 10 nm 
wide FET in the subthreshold regime. 
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increases as the distance from the perturbing charge to the channel is reduced. The 

perturbation is expected to result in a larger change in the current level for narrower 

channel FETs. However, in the sub-10 nm regime the transistor sensitivity also 

depends on the channel width due to significant effect of the interface related leakage 

currents and strong capacitive coupling of the channel to the surrounding. As the 

dielectric constant of the media is increased, the dipole shielding of the charge 

increases and reduces the perturbation on the channel potential. This makes it harder 

to detect charges surrounded by high-permittivity materials, like water.  

For a charge dipole of 1 e- x 1 nm, 10 nm away from the channel surface, 

within a layer of SiO2, the maximum perturbation on the channel is expected to be in 

the order of 3 mV if the FET is biased in the subthreshold regime of operation (Figure 

1.5). However, it is possible to fabricate the tunnels to be in the order of 6 nm in 

height and with approximately 2 nm oxide thickness on the active area surface as 

described in chapter 2. In such a configuration, the DNA molecules can be placed as 
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Figure 1.6  Typical drain current versus gate voltage characteristics of a field effect 
transistor. The optimum sensitivity is expected to be achieved slightly below onset of 
inversion (circled regime). 
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close as 2 nm to the channel surface. 

In order to use this technique, the sample has to be passed between the gate 

and the channel of a narrow channel FET, delivered through micro/nano-fluidic 

tunnels. Although it is possible to build structures and flow the sample over the 

channel without a gate electrode, having a gate electrode gives the flexibility of 

adjusting the bias condition for maximum sensitivity as well as testing the transistor 

response prior to attempting to sense charges. Figure 1.6 shows a typical Ids - gate 

voltage (Vg) (transfer) characteristics of an FET structure fabricated with 4 nm gate 

oxide with a subthreshold slope better than 70 mV/dec at room temperature. 

The Subthreshold regime of an FET has the highest % gain, δIds / Ids.δVg, 

resulting in the highest sensitivity. The speed and the signal to noise ratio of a 

transient measurement improve by the amount of current being sensed. The optimum 

operation regime for sensing is therefore expected to be the higher end of subthreshold 

regime, slightly below onset of weak inversion, as illustrated in Figure 1.6. A 

subthreshold slope of 70 mV/dec corresponds to approximately 3% change in Ids for 1 

mV change in Vg in the subthreshold regime, which is a measurable change (Figure 

1.7). The potential perturbations due to the charges or dipoles over the channel surface 

result in a local potential change in the channel rather than an increase in the whole 

channel potential. If the effect of the point charges are approximated as uniform 

distributions for very small scale devices, the effect of the charges between the gate 

and the channel can be calculated in terms of amount gate bias required to counter the 

effect of the charges as discussed in chapter 2. More detailed calculations are needed 

to understand the effect of the local potential perturbations in narrow channel devices. 

Similar circumstances with carbon-nanotube devices are analyzed by Guo et. al. [22]. 
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The bias conditions for the transistor are needed to be optimized in order to 

achieve the maximum sensitivity and signal to noise ratio. However, the electrical 

potentials on the gate, source, drain and the substrate, also have an effect on the 

distribution of the ions in the solution, as well as the orientation of the DNA molecule 

going through the sensor. For low threshold voltage (Vt) devices, the gate is needed to 

be biased negatively in order to achieve the highest FET sensitivity. This repels the 

negatively charged DNA molecule from the gate surface pushing it towards the 

electron channel and result in reduced shielding due to the positive ions in the solution 

(Figure 1.8). For high Vt devices positive gate bias would be required to achieve the 

highest FET sensitivity. In this case the DNA molecule would be pulled away from the 

electron channel, being attracted to the gate surface, and the positive ions in the 

solution would be attracted to the channel surface (Figure 1.9). This configuration of 

the molecule reduces the perturbation done on the channel potential and it is more 

pronounced if the tunnel height is much larger than the double strand DNA diameter 

0
2
4
6
8

10
12

60 140 220 300
SS (mV/dec)

%
 c

ha
ng

e 
in

 I d
s

0
20
40
60
80
100
120

∆I
ds

 (n
A

)δVg = 3 mV

δVg = 1 mV

for 1 µA 
drive current

 
Figure 1.7  Sensitivity of the FET as a function of the subthreshold slope. Left axis 
shows the percentage change in drain to source current and right axis is showing the 
magnitude of the change for bias condition resulting in 1 µA of drive current. 
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of 2 nm. If the channel height is small, slightly larger than 2 nm, the perturbation from 

the DNA molecule is expected to be increased when the DNA molecule is attracted to 

the gate surface since the charge tags attached to the single strand DNA would be 

facing the channel surface. 

In the case of an FET structure with physical channel width of 10 nm, there 

will be approximately 30 nucleotides over the electron channel at one time if the DNA 

molecule is oriented orthogonal to the electron channel direction, aligned with the 

tunnel direction. The special resolution and the sensitivity of the sensor will be limited 

by the number of nucleotides over the channel at one time. However, if the signal to 

noise ratio of the device is good enough, it is possible to detect the tagged nucleotides 

entering the sensing area by taking a derivative of the time-domain signal. 

The spatial resolution of the sensor can be increased further, down to 

approximately 2 nm, by electrostatically confining the electrons by either to the central 

part of the channel or to the two corners. Confinement of the channel to the central 

part of the channel can be achieved by forming a parabolic potential profile along the 

width of the electron channel (Figure 1.10) through employment of additional gates on 

the two sides of the channel (Figure 1.11). It is possible to achieve this confinement 

with positive or negative top-gate bias. The width of the electron confinement 

increases with the electron density due the electrostatic contribution of the electron 

charge to the potential profile. 
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Figure 1.8  Cross-section schematics of an FET sensor with 10 nm wide electrical 
channel and 6 nm high nanofluidic tunnel passing under the gate. Orientation of DNA 
molecule and ion distribution is shown for the case of a negative gate potential. 
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Figure 1.9  Cross-section schematics of an FET sensor with 10 nm wide electrical 
channel and 6 nm high nanofluidic tunnel passing under the gate. Orientation of DNA 
molecule and ion distribution is shown for the case of a positive gate potential. 
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Confinement of the electrons to the two edges of the device can be achieved by 

making use of the fixed charges on the active-isolation interface at the edges (Figure 

1.12). In this case, one of the two channels forming on the edges can be eliminated by 

changing the dopant density on one of the edges through angled implantation, hence 

changing the threshold voltage of one of the edges with respect to the other. However, 

in this case, the device has to be operated with a positive top-gate bias and the body 

doping level should be adjusted appropriately so that the electrical current is confined 

only the top corners of the silicon active area, without resulting in leakage currents 

along the side-walls of the silicon active area.  
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Figure 1.10  Electron confinement to the central region in a 8 nm wide channel with 
a parabolic potential profile simulated by using classical electrostatics. It is possible 
to confine electrons into a 2 nm wide nanowire for low electron concentrations. 
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Figure 1.11  Cross-section schematics of the sensor structure with electrons confined 
to the central portion of the channel with the aid of additional side-gates. The 
confinement can be achieved by either applying a negative or positive bias on the top-
gate depending on the side-gate bias conditions and the body doping level. 
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Figure 1.12  Cross-section schematics of the sensor structure with electrons confined 
to the two edges of the active area with the aid of interface fixed charges and 
additional side-gates. Current confinement to the top surface at the edges can only be 
achieved by application of positive top-gate bias. 
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Although it is possible to get better channel confinement on the two edges, this 

case is more prone to current fluctuations due to trapping and de-trapping events 

taking place in the traps at the active-isolation interface [23]. These trapping and de-

trapping events will result in sudden and significant changes in the threshold voltage 

of the nano-wire formed between the source and the drain. This would result in 

stepwise changes in the current level similar to the expected current changes due to the 

potential perturbations caused by the DNA molecules passing over the channel. 

The transportation of DNA molecules in nano-fluidic tunnels are usually 

achieved by application of a DC bias to the solution [24][25]. The electrostatic force 

applied on the negatively charged DNA molecule results in the motion where the 

viscosity of the fluid is so significant that no flow is expected to be achieved through a 

pressure gradient. 

1.3 Integration of micro/nano-fluidic structures with an air-gap FET 

An air-gap transistor can be formed by selectively removing the material 

deposited as gate insulator (Chapter 2). If this can be achieved, micro/nano-fluidic 

tunnels can be attached to the system for on-chip sample delivery. Our first approach 

was to use Si3N4 as sacrificial gate insulator and a polysilicon gate and remove Si3N4 

using hot phosphoric acid. This process required back-end of the line integration of 

fluidic sample delivery system. We have successfully developed a process flow for 

low temperature back end of the line integration of micro-fluidic tunnels which are 

electrically isolated from the FET structure (Chapter 3). However, removal of ~10 nm 

thick sacrificial Si3N4 underneath the gate over a lateral extension of 3-4 µm proved to 

be unsuitable due to low etch rate, unreliability of the wet etch process and 

incompatibility with doped polysilicon gate structures. On the other hand, SiO2 can be 

chemically etched in HF solution very reliably, with an etch rate higher than 1µm/min 
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even in very constricted areas [3]. This wet etch process has very good selectivity to 

both Si and Si3N4. Integration of an extended wet etch step in HF solution into the 

process flow entails usage of an alternative dielectric material to SiO2 for device 

isolation. Si3N4 is a CMOS compatible isolation material compatible with HF wet etch 

process which can be taken up to higher temperatures required by the consecutive 

process steps. I have chosen Si3N4 as shallow trench isolation (STI) material and 

succeeded in fabricating ultra-narrow width FETs with polysilicon gates suspended 10 

nm above the transistor channel, integrated with microfluidic delivery system (Chapter 

2) [5][6]. 

1.4 MOSFET prototypes using silicon nitride STI process 

The success of standard Si CMOS is partly due to the low fixed charge density 

and mechanical properties of Si-SiO2 system. Switching to another dielectric material 

for device isolation introduces additional mechanical and electrical problems that need 

to be addressed. Mechanical stress, electrical leakage, high interface defect density at 

Si-Si3N4 interface and high concentration of fixed charges in as-deposited Si3N4 films 

are the challenges to be addressed in order to use a Si3N4 based STI process for 

fabrication of Si FETs. 

µ-fluidic tunnels FETdrain

gate source
Figure 1.13  Air-gap FET monolithically integrated with microfluidic sample 
delivery tunnels using silicon nitride isolation process. 
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1.4.1 Structural problems 

The thermal expansion coefficient of Si3N4 is significantly higher than that of 

Si. Since the deposition is performed at around 800 C, Si3N4 cannot be deposited 

thicker than approximately 200 nm due to high level of stress that forms as the 

substrates are cooled down to room temperature. However, thicker films of low stress 

(silicon rich) silicon nitride can be deposited on Si with an acceptable level of stress. 

In order to fabricate the FETs, after the definition and etch of the active areas, low 

stress silicon nitride films are deposited as STI material up to 1.2 µm thick and the 

wafers are planarized using chemical mechanical polishing (CMP). 

1.4.2 Electrical problems 

Initial FET prototypes using low stress silicon nitride as STI material and 

LPCVD deposited gate oxide showed significant level of source-to-drain and drain-to-

substrate leakage (Figure 1.14). Two of the main problems leading to the leakage 

currents were identified as the high concentration of defects and fixed charge density 
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Figure 1.14  Drain current versus gate voltage characteristics of a field effect 
transistor build using low stress silicon nitride as STI material, with 10 nm deposited 
oxide. 
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in the Si-STI interface and electrical leakage in low stress silicon nitride (Figure 1.15). 

The relative contribution of these leakage currents on the periphery of the device 

significantly increase for ultra narrow channel devices. This results in significant 

degradation of the sensitivity of the FET to any potential changes. 

Electrical leakage through low stress nitride can be suppressed by using a thin 

buffer layer of stochiometric Si3N4 at the Si-STI interface, capped with a thicker layer 

of low stress nitride. 

Electrical leakage from the reverse biased drain to substrate diode is due to 

high level of defect assisted recombination current at the Si-Si3N4 interface [26][27]. 

The defect assisted recombination process, is most efficient when the Si-Si3N4 

interfaces are depleted. The leakage is significantly suppressed if the Si-Si3N4 

interface is in accumulation or inversion [26][27]. Since inverting the Si-Si3N4 

interface would result in formation of a conduction path between the source and drain 

of the FET, the drain to substrate leakage can only be suppressed by putting the 

interfaces into accumulation. 

SiN

Si
Fixed 
Charges

SiN

Si
Fixed 
Charges

 

Figure 1.15  3D schematics of an FET using silicon nitride as field isolation. There is 
a high density of fixed charges and defects at the interfaces.
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High level of drain to source leakage (off currents) at the Si-STI interfaces of 

nFETs result from lowered threshold voltage at the interfaces due to positive fixed 

charges at the interfaces (Figure 1.15). This is a concern even for devices built using 

SiO2 as isolation material, impeding the device performance [28], though to a lesser 

extent compared to the Si3N4 case. Increase of the body potential restores the potential 

barrier between the source and drain at the interfaces, increasing the threshold voltage 

and suppressing the drain to source leakage. This increase in the bulk potential, 

compared to source potential, can be achieved by either increasing the dopant 

concentration at the Si-STI interface or by employing additional gates surrounding the 

active area of the devices, supplied with a negative bias [29]. Both of these approaches 

would result in suppression of the drain to substrate leakage currents due to the 

reduction in the depletion depth of the junctions. In the case of a negatively biased 

additional gate surrounding the active area, accumulation of the interfaces can be 

achieved easily by tuning the side-gate bias, resulting in even lower level of leakage 

currents [26][27]. 

The process flow for increasing the body dopant concentration at the interfaces 

is discussed in chapter 2, resulting in suppression of leakage currents below 10-10 A in 

a narrow channel device with 1 µm gate length. 

1.5 Side-gated FET  

The approach of integration of additional gates in order to suppress the leakage 

currents resulted in the device design discussed in chapter 4. In this device design, an 

independently controlled polysilicon side-gate surrounds the active area. Side-gated 

devices with thermally grown top-gate oxide are fabricated as prototype FETs in order 

to understand the device behavior before integration with micro/nanofluidics. The 

processing of the side-gated devices is compatible with the processes developed for 
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forming a nano-fluidic tunnel under the gate and integration of micro-fluidic delivery 

system. 

Using this approach, the leakage currents were suppressed below 10-14 A and 

remarkable device characteristics were observed. Two different device structures were 

obtained by slightly varying the process steps. 

1.5.1 High performance FETs 

Side-gated devices have distinctly different characteristics depending on the 

channel width and if the side-gates are recessed compared to the active area as 

opposed to being at the same level (Figure 1.17). The recessed side-gate devices’ 

threshold voltage does not depend on the side-gate bias. The electrical device 

characteristics of recessed side-gate devices and planar devices were both observed to 

be comparable or superior to those of modern high performance CMOS devices. 

Measured device characteristics are remarkable down to sub-70 nm in gate length and 

sub-100 nm in channel width, retaining Ion/Ioff ratios exceeding 109, subthreshold 

Si

top-gate

side-
gate

side-
gate

Si

top-gate

side-
gate

side-
gate

 

Figure 1.16  3D schematics of side-gated FET  utilizing silicon nitride field isolation. 
The two side-gates are connected together and the top gate is operated independently. 
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slopes better than 80 mV/dec, and drive currents up to 1.5 mA/µm (section 4.4.6). 

Devices with 0.3 µm gate length show subthreshold slopes down to 65 mV/dec. and 

Ion/Ioff ratios exceeding 5x1010 (section 4.4.4). Devices with effective width in the 

order of 40 nm exhibit drain induced barrier lowering (DIBL) as low as 2 mV/V with 

150 nm gate length (section 4.4.5). These device characteristics, described in detail in 

chapter 4, make this device architecture suitable for high performance, low-power 

logic, analog circuit and memory applications.  

1.5.2 Ultra-narrow width planar FETs 

Side-gated devices with planar top surface geometry show significant threshold 

voltage response to the side-gate potentials. The threshold voltage response increases 

as the width of the transistor is scaled down. For sub-10 nm channel width, threshold 

voltage is tunable in a range exceeding 2.5 V with an average sensitivity of 1.55 V/V 

to the side-gate bias (section 4.4.7). This level of threshold voltage tunability is 

significantly higher than the values reported for threshold voltage tunable devices in 

the literature so far [30]-[33]. 

1.6 aF resolution C-V characterization of nanoscale FETs 

A high resolution C-V characterization technique was needed in order to 

understand the behavior of very small-scale devices and to extract important device 

parameters such as inversion layer charge density, effective device dimensions and 

top-gate

side-gate Si

top-gate

side-gate Si side-gateside-gate

top-gate

side-gate Si

top-gate

side-gate Si side-gateside-gate
 

Figure 1.17  Cross section schematics of devices with recessed side-gates (left) and 
planar top-gate geometry. 
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carrier mobility. After evaluation of possible approaches reported in the literature on 

fF resolution C-V measurement techniques and experiments conducted in the lab, I 

have developed a technique to measure inversion layer capacitances of these small 

scale devices with aF resolution, utilizing the ambient noise [34], using a commercial 

HP 4275A RLC meter (Chapter 5). This technique of utilizing ambient noise is also 

demonstrated to be useful for measuring current levels below 10 fA using a HP 4145B 

parameter analyzer with 50 fA current resolution (section 5.4). 
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2 Monolithic Integration of Micro/nano-fluidic tunnels with 
FET based chemical sensors.  

2.1 Introduction 

Main challenges in the fabrication of the ultra narrow-width FET based 

chemical sensors are in implementing a process flow to fabricate FET structures with 

tunnels passing between the gates and the channels of the transistors, integrating these 

transistors with on-chip microfluidic delivery systems, and developing the FET design 

to achieve high sensitivity, compatible with the process flow. 

Fabrication processes for on-chip micro-electromechanical structures have 

been developed extensively in the past decades. Similarly many of the issues in 

fabricating very small scale FETs have been addressed by the semiconductor industry 

which also resulted in a large number of tools and significant expertise in building 

silicon based semiconductor devices. However, integration of microfluidics with 

electronics has a number of process integration challenges. 

On-chip micro fluidic systems and suspended structures are usually built by 

depositing a sacrificial layer which is capped with another layer. HF removal of 

sacrificial SiO2 in order to release polysilicon or silicon nitride structures is a reliable 

CMOS compatible process [3][4].  However, the requirement of HF release process 

makes it very hard to integrate these MEMS elements with electronics and CMOS 

circuitry utilizing SiO2 electrical isolation in close proximity. One possible approach 

to overcome this problem is to use HF resistant isolation material for shallow trench 

isolation of the electronic devices. 

In this chapter, a process flow for making narrow channel Si FET structures 

using silicon nitride STI with the option of monolithically integrated micro-fluidic 



 

 

23

delivery system is described. An alternative scheme for integration of micro-fluidic 

tunnels after the fabrication of the FET structures is discussed in the following chapter.  

2.2 Fabrication process 

The fabrication processes used to build these structures utilize standard CMOS 

processes and i-line optical stepper. The details of the process flow are described 

below, and the process parameters for each step are presented in the appendix (section 

7.1). 

2.2.1 Alignment marks 

The first lithography step is making the alignment marks and the device labels. 

In order to etch down the alignment marks and the active area patterns in the following 

step, 300 nm of thermal oxide is grown in H20 / N2 ambient at atmospheric pressure. 

After vapor priming of the surface in HMDS oven, 0.6 µm of SPR 620-7i is spun on 

the wafers, and baked at 90 C for 75 seconds on a hot plate. Wafers are exposed with 

GCA AS200 Autostep i-line stepper with an exposure time of 0.36 sec. Wafers are 

baked at 115 C for 90 seconds on a hot plate and chemically developed in AZ 300 

MIF for 90 seconds. After a 15 s oxygen plasma descum, the alignment mark patterns 

are etched into the oxide layer using CHF3/O2 reactive ion etch (RIE). After removing 

 

Figure 2.1  Cross section view after the alignment mark RIE. 
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the photoresist using O2 RIE, a 30 - 45 s of CHF3/O2 RIE is performed to clear the thin 

oxide film formed on the surface during the O2 RIE step. Immediately after this step, 

the alignment marks are etched down approximately 1 µm into silicon using Cl2/BCl3 

RIE (Figure 2.1). 

2.2.2 Active area definition 

The active areas of the devices are defined by etching into the Si substrates. 

Shallow trench isolation (STI) is used as the isolation scheme for the devices. The 

patterning of the oxide hard mask and etching of the Si substrate are identical to the 

patterning of the alignment mark level, this time using the ‘active layer’ mask for 

photolithography. The mask oxide remaining on the wafer from the previous step is 

used as hard mask to etch Si. 

The active layer is aligned to the alignment mark layer using global alignment 

by finding the marks under the microscope and using local alignment for which the 

stepper locates the local alignment marks through an automated scheme using 

interferometric means. Local alignment achieves better than 100 nm alignment 

between the two layers. 

Active

Gate

Mask

 

Figure 2.2  Schematics of mask layout showing the active, gate and mask layers. 



 

 

25

 

 

Figure 2.3  Cross section view along the width (left) and length of the device (right) 
after resist spin, lithography, mask oxide etch in RIE and active area RIE. 
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The exposure step is repeated with a higher dose using an additional mask 

called ‘mask layer’ which has rectangular areas covering the active areas of the 

devices (Figure 2.2). This results in over exposure of the areas away from the devices 

ensuring a clean surface left behind between the devices. 

The alignment marks are protected in the ‘active’ and ‘mask’ level masks. This 

leaves the oxide around the alignment marks intact during the oxide etch step as 

illustrated in Figure 2.3. After the removal of the photoresist layer the alignment 

marks are again uncovered and they are etched down further, during the active area Si 

etch. The trenches are etched down 1 µm, leaving the alignment marks approximately 

2 µm deep. Repeated trials showed that there is not any noticeable advantage in the 

alignment process if the alignment marks are deeper than 1.4 µm. The depth of the 

alignment marks will be reduced by approximately 0.3 µm after the chemical 

mechanical polishing (CMP) step performed in a later step, leaving the alignment 

marks approximately 1.7 µm deep. 

 

Figure 2.4  SEM micrograph of the active area, imaged at 45° tilt. The ripple visible 
on the sidewalls are significantly reduced as the device is sized down through 
oxidation during the process sequence for dopant enhancement and width sizing. 
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The RIE process using oxide etch mask and Cl2/BCl3 chemistry results in fairly 

vertical sidewalls with some tapering at the bottom part of the device (Figure 2.4). 

This tapering helps the structural integrity of the active areas during the subsequent 

oxidation and wet etch processes to make the ultra-narrow channel devices but results 

in increased device width if the wafers are over-polished in the subsequent CMP step. 

2.2.3 Substrate dopant enhancement 

After the active area definition the wafers are oxidized in H2O / N2 ambient at 

800 C and oxide is removed in diluted HF solution in order to clean the sidewalls of 

the etched structures. A thin oxide is then grown on the surface and the wafers are 

implanted with boron at 100 keV with 5 x 1013 cm-2 dose, expected to result in a peak 

concentration of 3x1017 cm-3 at 0.5 µm below the surface. A 350 nm layer of p+ doped 

polysilicon is deposited on the wafers at 600 C (Figure 2.5). Wafers are then oxidized, 

Si Si Si

SiSi Si

a b c 

d e f 

SiO2 n++ poly 

n++ SiO2

Figure 2.5  Cross sectional schematics showing the processes to enhance the body 
doping and sizing down the device width. Active area RIE (a), thermal oxide growth 
(b), doped polysilicon deposition (c), oxidation of doped polysilicon and active Si (d), 
dopant diffusion (e) and removal of oxide resulting in doped interfaces with reduced 
channel width (f). 
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depleting the deposited polysilicon and consuming approximately 0.1 µm of the single 

crystal Si. This oxidation process results in a highly boron doped oxide layer 

conformally covering the Si active structures, which are now approximately 0.2 µm 

narrower. The dopants are driven into the Si surface by annealing at 900 C. The oxide 

film is then removed in diluted HF. 

2.2.4 Shallow trench isolation 

Silicon nitride is used as dielectric material for device isolation. Low pressure 

chemical vapor deposited (LPCVD) stochiometric silicon nitride films, deposited at 

850 C are measured to be good electrical insulators. However, it is not possible to 

deposit stochiometric Si3N4 thicker than approximately 200 nm due to thermal 

expansion coefficient mismatch with Si. Si-rich SiN can be deposited up to more than 

1 µm in thickness, without serious stress problems. Si-rich SiN, however, is not a very 

 

Figure 2.6  Cross sectional schematics after silicon nitride deposition (top) and 
planarization (bottom) 
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good electrical insulator, resulting in significant leakage currents. In order to 

overcome the mechanical stress and electrical leakage problems, a 20 nm layer of 

stochiometric nitride is deposited for electrical isolation and a 1 µm layer of low stress 

nitride is deposited as the filling material (Figure 2.6). The deposited films are 

annealed at 1000 C. 

One level of photolithography, using a contact aligner, is performed to expose 

the areas between the dies. A contact mask covering the die areas is used for this step. 

Silicon nitride between the dies is etched stopping on the Si surface, using CHF3/O2 

RIE. This step, isolating the nitride in the die areas, removes the continuous lines of 

thrust formed by large area film on the front surface of the wafer between the dies. If 

the nitride film between the dies is not removed from the front surface of the wafer, 
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Figure 2.7  AFM image of an ultra-narrow channel transistor (right) and two cross 
sections (left). The silicon surfaces are recessed below the nitride field by 
approximately 60 nm. The measurable width in the narrow region is limited by the 
AFM tip (~10 nm) [35]. 
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wafers have significant bow towards the front surface after the removal of the nitride 

film from the back-side of the wafers. Removal of films from the back-side is 

necessary to make electrical contact to the substrate. High levels of wafer bow would 

result in difficulties in the remaining processing steps. 

After the RIE step, wafers are planarized using CMP, with a hard pad and 

oxide slurry (Figure 2.6). The etch rate of SiN is slower compared to that of both SiO2 

and Si. The CMP process is stopped as the Si surfaces of the active areas are exposed 

(Figure 2.7). Over-polishing results in increased device width due to tapering. It also 

results in a topographical change over the surface where large openings of Si surfaces 

continue to etch down but the Si areas close to the edges remain at a higher level 

(Figure 2.8). 
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Figure 2.8  AFM image of an over-polished active area. The edges of the Si active 
form rims around the recessed planar areas. The surface is imaged after recessing the 
field nitride through 21 min. of HF etch. Si3N4 areas are recessed more than the 
silicon rich silicon nitride field [35]. 
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After the CMP process the wafer surfaces are cleaned using either a sponge 

with IPA and DI water or using the automated Hamatech wafer cleaning tool. Wafers 

then go through an RCA clean with short diluted HF dip and a thin cleaning oxide is 

grown on the surfaces. The thin cleaning oxide is then removed from the surfaces after 

the RCA clean preceding the gate stack deposition. 

2.2.5 Gate stack deposition and definition 

SiO2 is used as sacrificial material to form the tunnels passing under the gate of 

the transistor. I have realized that if the sacrificial SiO2 is prematurely removed from 

underneath the gates on the edges in the consecutive steps, there is electrical leakage 

from the gates of the structures to the active areas. In order to prevent this and increase 

the process reliability a 10-20 nm layer of LPCVD Si3N4 is deposited over the 

 

Figure 2.9  SEM image of the FET structure after gate stack definition and etch 
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sacrificial SiO2 in the gate stack. During the sacrificial oxide removal some of the 

Si3N4 is also removed. The remaining Si3N4 serves as an electrical insulation layer 

underneath the gate of the transistor cutting down the electrical leakage and 

electrolysis of the water during the sensor operation. A 350 nm thick n+ doped 

polysilicon is deposited at 600 C as the gate material and a 150 nm PECVD oxide 

layer is deposited over the gate stack to be used as hard mask for the gate etch. 

Photolithography is carried out as described for the active layer, this time using 

the ‘gate’ and ‘mask’ level masks. The areas between the dies are exposed using 

contact lithography using the same contact mask as described earlier. Wafers are 

chemically developed. The SiO2 etch and Si etch processes are carried out as 

described in section 2.2.1. 

The rows of dies are separated by 3 mm wide empty strips. These plain areas 

are wide enough for interferometric and ellipsometric measurements of film 

thicknesses at different locations on the wafer. Interferometric and ellipsometric 

measurements on these locations are performed for etch and deposition thickness 

monitoring. 

The mask oxide layer and the polysilicon layer are etched using RIE as 

described in section 2.2.1. The etch time in Cl2/BCl3 RIE system for polysilicon etch is 

kept long enough to etch down the underlying nitride layer and stopping on the oxide 

film. 

2.2.6 Self-aligned source/drain implantation  

A thin layer of oxide is grown on the sidewalls of the defined gate structure 

consuming the etch damaged areas on the edges and forming a thin spacer for self-

aligned implantation. The oxidation time and temperature is set for 7-8 nm oxidation 
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of 100 plane of single crystal silicon. The oxide forming on the sidewalls of the highly 

doped poly silicon gate structure is expected to be 3-4 nm thicker. 

Wafers are implanted with arsenic at 1 to 5 x1014 cm-2 at 20 keV with 90° 

rotation and 8° tilt. This is the only source/drain implantation used in the fabrication 

process in order to minimize the process complexity. Activation of the dopants is 

achieved through annealing during the subsequent nitride deposition steps. 

2.2.7 Silicon nitride sidewall deposition 

Silicon nitride sidewalls are used to seal the sides of the tunnels which will be 

formed under the gates of the structures, and hold up the ceiling of the tunnels formed 

by the polysilicon gate structure. 

The oxide on the exposed surfaces is removed in diluted HF. The wafers are 

kept in HF solution slightly longer in order to etch approximately 20 nm more to 

ensure that there is no oxide left on the surfaces and to slightly undercut the gate-stack 

on the edges. LPCVD Si3N4 and Si rich SiN films are deposited over the structure at 

800 – 850 C. 

2.2.8 Removal of sacrificial oxide 

In the case of back-end-integration of tunnels for sample delivery into the 

FETs, trenches are etched down from the two ends of the gate structure using CHF3/O2 

RIE in order to bring the sample in and take it out. As these trenches are etched into 

the substrate, overlapping with the two ends of the gate structure, the SiN sidewalls 

are also etched away, exposing the sacrificial oxide in the gate stack (Figure 3.3). 

The wafers are kept in 49% HF solution for 7 minutes in order to remove the 

sacrificial oxide. This process is initially tested using a thicker layer of sacrificial 

oxide and gate structures made of SiN. In this case, since the gap between the gate and 
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the wafer surface is thicker and Si3N4 is transparent, it is possible to see the color 

change as water penetrates underneath the gate (Figure 2.10). 

2.2.9 Monolithic integration of the delivery tunnels 

It is possible to integrate the sample delivery tunnels using monolithic 

integration or back-end-of-line integration techniques. The back-end-of-line 

integration of the tunnels is explained in chapter 3. Monolithic integration of the 

tunnels, which is explained in this section, was found to be a more reliable process.  

Monolithic integration of the tunnels is carried out by depositing sacrificial 

oxide and patterning tunnel structures prior to nitride side-wall deposition, explained 

in section 2.2.7. 

2.2.9.1 Sacrificial oxide definition 

Two different tunnel structures are defined: one for fluid delivery which is 3 

µm wide and a second tunnel structure for irrigation purposes which is < 1 µm wide. 

The final fluid delivery tunnel height is approximately 0.5 µm and the final height of 

the irrigation tunnels is approximately 0.3 µm (Figure 2.11). 

30 nm high tunnel 30 nm high tunnel

filled with H2O empty

 

Figure 2.10  Optical microscope images of shallow test tunnels made out of silicon 
nitride with (left) and without (right) water.  Shallow tunnel height is approximately 
30 nm and are attached to larger delivery tunnels. 
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A 300 nm thick SiO2 film is deposited at 400 C in a PECVD system to be used 

as the sacrificial material for the tunnel structures. Photolithography is carried out as 

described in section 2.2.1 using a mask layer which defines the wider fluid delivery 

tunnels. This time, the wafers are exposed to NH3 ambient after the exposure for 

image reversal. NH3 diffuses into the photoresist neutralizing the acid produced in the 

photoresist by the UV exposure, making those areas insoluble during chemical 

development. After NH3 image reversal, wafers are flood exposed and developed 

leaving resist on the areas which were exposed initially. At the end of this sequence 

there is no resist left between the dies and the oxide etch can be monitored through 

interferometric measurements. 

 

Figure 2.11  SEM image of a patterned sacrificial oxide leading to an FET structure. 
The oxide layer for delivery tunnels is higher than the shallow tunnels which will be 
used for irrigation.  
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After chemically developing the resist and oxygen plasma descum, oxide is 

etched in 6:1 buffered oxide etch (BOE). The etch is monitored by interferometric 

measurements after short-time etches. The etch process is timed to leave 50 nm of the 

oxide on the wafers. The resist is removed using acetone and IPA and the surfaces are 

re-primed using vapor phase HMDS. 

Photolithography for the second layer of tunnels is carried out in the same 

manner as for the first tunnels. The oxide structures are again etched in 6:1 BOE, this 

time slightly over etching to make sure that there is no oxide left on the sidewalls of 

the gate structures (Figure 2.11). After this step, silicon nitride films are deposited as 

described in section 2.2.7. 

2.2.9.2 Irrigation holes and vias for metal contacts 

A photolithography step is carried out using a mask made for irrigation holes. 

These irrigation holes, 1 µm x 1 µm in size, are opened on the irrigation tunnels using 

CHF3/O2 RIE process. 

After the removal of photoresist in O2 plasma, photolithography and etch steps 

are repeated for the ‘via’ level in order to open the contact areas of the source/drain 

and the gate of the FET. The etching of the vias is stopped when the SiN film is 

thinned down to 20-50 nm. The remaining nitride will be removed in 49% HF solution 

during the sacrificial oxide removal step, ensuring a proper etch stop on the Si surface. 

Stopping RIE process before reaching the Si surface prevents the etching of the 

silicon surface which would lead to etching through the shallow source/drain diodes 

formed on bulk silicon. The RIE process should be stopped at a point ensuring that 

none of the devices on the whole of the wafer will be over etched, despite the center to 

edge variations in the deposition and RIE processes. The nitride thicknesses at 

different spots on the wafer should be measured by interrupting the RIE process in 
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order to accurately determine when to finish the RIE process. Etch times should be 

adjusted so that minimum etch time is at least 45 s – 1 min. in order to minimize the 

errors due to changes in the etch rates in the chamber during the first several seconds 

of the RIE process. 

2.2.9.3 Removal of sacrificial oxide 

The sacrificial oxide is removed from the tunnels and underneath the gate 

structure using 49% HF solution in approximately 7-10 minutes (Figure 2.12). The 

sacrificial oxide underneath the gate of the FET and the tunnels form a continuum, 

 

Figure 2.12  Optical images depicting the sequence of sacrificial oxide removal from 
the sample delivery tunnels 
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assuring the continuity of the tunnels after the etch process. The thin nitride layer left 

over the vias is also removed by HF in the mean time, exposing the silicon surfaces of 

the source/drain and the gate contact areas. This wet etch process rounds the corners of 

the vias which helps ensure the continuity of the metal lines deposited using metal 

evaporation and lift-off process. 

2.2.10 Gate oxide regrowth 

After the removal of the sacrificial oxide, a 2 - 4 nm layer of oxide is thermally 

grown in O2/N2 ambience. This oxide layer is intended to be a low defect density 

oxide covering the active areas of the device in order to improve the device 

performance, and reduce the current leakage into the liquid sample and avoid possible 

problems which might be caused by electrolysis of water inside the devices. 

2.2.11 Metallization 

The metal contacts to the FETs are defined by using a bi-layer resist lift-off 

process. A 1 µm thick light-insensitive resist layer is spun on the wafers and baked at 

160 C. A second layer of photoresist is spun to be 1.2 µm in thickness. 

Photolithography steps are repeated as in the previous steps. This time, the wafers are 

developed for an additional 30 s to remove the underlying light-insensitive resist layer 

(Figure 2.13). This process results in resist overhang all around the structures, 

ensuring successful lift-off of metals evaporated as thick as 0.8 µm. 

Wafers are descumed in oxygen plasma and the oxide that forms on the contact 

metal
photoresist
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substrate

metal
photoresist

resist
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Figure 2.13  Schematics of metal lift-off process using a bi-layer resist process 
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areas is removed in 30:1 BOE, immediately before loading into the evaporation 

chamber. A 250 nm layer of Ti and 600 nm of Al is evaporated. Metal lift-off is 

performed in resist removing solvent over several hours (Figure 2.14). 

The Ti layer deposited underneath the Al metal acts as a diffusion barrier, 

preventing pure Al alloying with Si during the subsequent anneal steps and spiking 

into the Si surface. With the use of Ti layer, it is possible to anneal the samples in 

forming gas at temperatures above 400 C without any problems due to Al spiking. 

Al spiking can be observed up to 2 µm into silicon surface if pure Al is used to 

contact the Si surface. This problem can also be solved by using 2% Si mixed into Al 

which can be deposited in a sputtering system. This process adds significant amount of 

complexity to the process flow and may require integration of electrostatic discharge 

 

Figure 2.14  SEM image of the FET structure integrated with micro-fluidic delivery 
tunnels after metallization. 
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(ESD) structures into the design in order to prevent shorting of the devices due to 

charge build up during the metal deposition and etch steps. Due to these problems, this 

alternative process is avoided. 

2.2.12 Substrate contact 

After the completion of the processing of the structures, the films on the back 

side of the wafer are removed using RIE while the front surface is protected by 

photoresist. The back side of the wafer is then polished using CMP. A polished 

surface on the back side of the wafer allows interferometric measurements on the back 

surface in order to ensure that there are no films left on the back side prior to back-side 

metallization. The polishing step can be performed earlier in the process, in which 

case, the deposited films have to be removed before the backside metallization step. 

After the films on the back-side of the wafers are removed, a stack of Ti & Al 

metal films are evaporated on the back surface. 

As a final step the wafers are annealed at 400 C in 5% H2 in Ar for 15 min. in 

order to reduce the contact resistance and minimize the contribution of interface 

defects in device performance. 

2.3 Testing 

2.3.1 Structural testing 

 The structure is tested by placing a droplet of DI water on the irrigation 

system which is driven into the tunnels by capillary forces. The parts of the larger 

tunnels filled with water have a different color compared to the empty sections (Figure 

2.15). 
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filled with DI H2O empty

 

Figure 2.15  Optical image of a device structure with microfluidic delivery system. 
The DI water is applied onto the tunnels a few mm left of the device. 
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Figure 2.16  Optical snap-shots of a device structure with microfluidic delivery 
system after application of a droplet of DI water on the tunnel system a few mm away 
from the device on the right side.  
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Although it is not possible to see any color change in the shallow tunnels due 

to the penetration of water, the continuity of the tunnels is confirmed by observing the 

water going into the device and come out from the other side (Figure 2.16). The 

opening under the gate of the transistor is approximately 6 nm high. Figure 2.16 is 

constructed by extracting frames of a movie recorded as a drop of DI water is applied 

to the tunnel system from the right side of the device. The parts of the tunnels filled 

with water look darker than the empty sections. 

2.3.2 Electrical testing 

The I-V characteristics of the narrow channel devices are tested using an HP 

4145B parameter analyzer. The transistors’ transfer characteristics change as a drop of 

water is supplied to the irrigation system and the water enters between the channel and 

the gate of the transistor (Figure 2.17). The changes are expected to be due to the 
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Figure 2.17  Transfer characteristics with Air and DI water in linear scale. 
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changes in the capacitance of the gate dielectric and the changes in the interface 

charge density. The dielectric constant of water is 80 at small DC field. 

As the water enters the tunnels, the threshold voltage reduces by 0.46 V (from 

1.19 V to 0.73 V) and transconductance improves by approximately 20 %, from 6.45 

µA/V to 7.69 µA/V (Figure 2.17). The subthreshold slope improves from 

approximately 127 mV/dec. to 81 mV/dec (Figure 2.18). 

If the transistor is assumed to be behaving as a wide and long channel device, 

it is possible to estimate the oxide thickness grown on the bottom surface of the doped 

polysilicon gate and the single crystal silicon channel surface using subthreshold slope 

for the two different cases. The oxidation rate of the doped polysilicon is expected to 

be approximately twice the single crystal silicon. 
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Figure 2.18  Transfer characteristics of a narrow channel FET with air  gap and with 
DI water filled into the tunnel between the gate and the channel. DI water is applied 
on the delivery tunnel system and the capillary forces drive DI water into the FET 
resulting in significant change in the device characteristics. 
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The subthreshold slope for a long channel FET is approximately given by [21]: 
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At room temperature kT/q = 26 mV, hence the constant term is approximately 

60 mV/dec. Cdm is the depletion layer capacitance and Cox is the capacitance of the 

gate dielectric [21]. The expressions for the two cases then become: 
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The oxidation process is expected to consume silicon by approximately 40% of 

the oxide thickness resulting in a thickness reduction in the air-gap by 60 % of the 

total grown oxide. The air-gap thickness is expected to be 11 nm prior to oxidation 

process, hence: 0.6 tox + tair = 11 nm. By taking the ratio of the subthreshold slope 

expressions and plugging into the thickness relation, the air-gap height and the total 

oxide thicknesses are calculated to be; tair = 5.4 nm and tox = 9.3 nm. The oxide is 

expected to be grown approximately 3.1 nm on the channel surface and 6.2 nm on the 

bottom surface of the polysilicon gate [36]. This is within the thin oxide thickness 

range expected from the oxide growth process. 

The depletion depth in the channel region is calculated to be 82 nm using these 

values, which corresponds to a channel doping density of 1.65 x 1017 cm-3. However 

the threshold voltage shift is expected to be approximately 1.3 V for this substrate 

dopant density, from the theoretical calculation, while the experimental value is 

approximately 0.4 V. The change in the transconductance is 23.6 %. This change is 

expected to be by a factor of 3, assuming that the carrier mobilities do not degrade for 

the case with water. 
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Some of this discrepancy may be attributed to the large contact resistances of 

the device. Large source and drain contact resistances result in a drop in actual Vds 

across the intrinsic device and large source resistance results in negative feedback, 

degrading the observed transconductance. The contact resistances of this ultra-narrow 

channel device may be larger than 50 kΩ. A second possible reason may be 

permittivity of water in a tunnel of 5 nm in height being different than that of bulk 

case. This may be possible due to water dipole – SiO2 surface interactions in this 

length scale. This interaction may be restricting the response of the water molecules to 

electric field resulting in an effectively lower permittivity. Another possible reason is 

the dielectric constant in the tunnels being higher than air due to possible moisture 

build up on the surfaces prior to the application of DI water into the tunnels. 

2.4 Sensitivity 

The expected sensitivity for the tested transistor structure can be estimated 

using the extracted device parameters. In this particular case the highest FET 

sensitivity can be achieved for approximately Vg = 0.25 V, corresponding to 81mV/ 

dec. For this bias condition, if a DNA sample were to be applied to the system, the 

molecule would be attracted to the gate surface due to the net negative charge on the 

backbone of the single strand DNA molecule. The tags attached to the single strand 

DNA would be facing the channel surface, hence the fixed negative charges on the tag 

nucleotides would be approximately 2 nm offset from the ceiling of the tunnel (Figure 

2.19) 
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If the current limiting section of the transistor is assumed to be 10 nm long, 

and the perturbation from a single charge is assumed to be a uniform charge 

distribution over 10 nm x 10 nm area, the problem can be simplified to 1D in order to 

calculate the range of expected sensitivity. By making this assumption, the effect of 

the fixed charge can be calculated from the Gauss’s Law as the electric potential 

needed to counter the affect of the charge [21] (Figure 2.20): 

ox

xQ
gV εδ −=  

Using this relation, it is possible to calculate the threshold voltage change due 

to dipoles passing between the gate and the channel where Q = 1e-/ 100 nm2 for each 
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Figure 2.19  Schematics of the device structure and DNA molecule drawn to scale 
for the estimated device dimensions. 



 

 

47

charge. If the perturbation due to a single nucleotide is a dipole of 1e- charge attached 

to the DNA molecule and a single + ionic charge shielding the nucleotide, the 

threshold voltage shift will be the sum of the contributions due the two charges 

forming the dipole. The dielectric between the gate and the dipole consists of 

approximately 2 nm of H2O with εH20 = 80 and 6.2 nm of SiO2 with εSiO2 = 3.9 for the 

negative charge on the tag. The perturbation for the negative charge on the tag is δVg1 

= 0.29 V, and the perturbation due to the positive charge forming the dipole in the 

solution is plotted as a function of the location of the single positive ionic charge in 

the vicinity of the nucleotide within the tunnel (Figure 2.21). If the shielding ionic 

charge is 0.5 nm away from the negative charge the net change in the threshold 

voltage is approximately 1.3 mV. The current level in the higher end of the 

subthreshold regime is approximately 100 nA as seen in Figure 2.18.  

The expected percentage change in the current level for 100 nA drive current 

can be estimated from Figure 1.7. The expected change in the current level is in the 

order of 5 nA if the positive ion is 0.5 nm away from the ceiling of the tunnel and the 
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Figure 2.20  Schematics of charge distribution in an FET gate stack. Q is the 
additional fixed charge density due to the molecules in the solution. 



 

 

48

DNA molecule is at the ceiling as illustrated in Figure 2.19. Due to the high dielectric 

constant of water, the electrical sensitivity of the device to the DNA molecule would 

not be noticeably different if the device was operated with a negative gate bias and the 

DNA molecule is pushed against the electron channel for the given device dimensions, 

keeping the assumption of uniform charge distribution over 10 nm x 10 nm area in 

mind. This configuration, however, would improve the spatial resolution of the sensor. 

2.5 Conclusion 

Fabrication processes for sub-10 nm width air-gap field effect transistors 

monolithically integrated with microfluidic delivery system are developed. The 

devices show good transistor characteristics with and without application of DI water 

into the system. 

The channel width can be fabricated to be less than 10 nm by sizing down the 

Si channel through oxidation. The effective channel width can be further reduced 
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Figure 2.21  Expected change in the threshold voltage as a function of distance of the 
shielding ionic charge in the solution.-1e- ionic charge is taken to be screening +1e- 
charge on the tag. 
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using side-gates to achieve electron confinement down to less than 5 nm. The tunnel 

passing between the gate and the channel of the transistor can be reliably fabricated 

down to 5 nm and smaller in height. The electrical biases applied to the transistor 

terminals will determine the orientation of the DNA molecule and ionic charges as 

well as the operation regime and the sensitivity of the transistor. 

Interface related leakage currents significantly affect the sensitivity of ultra-

narrow channel FETs, and are expected to contribute to the noise in the system due to 

trapping and de-trapping events at the interfaces. Therefore, electrical isolation of the 

FET structure is a key component in achieving high sensitivity nanowire sensors. 

Side-gated device architecture effectively reduces the interface related leakage 

currents, increasing the device sensitivity. However, the ultra-narrow channel devices, 

less than 10 nm in width, are still prone to significant current fluctuations due to 

extreme sensitivity to single electron events in the surrounding of the device. 

It is possible to achieve channel confinement down to 2 nm using a side-gate 

device architecture with good electrical characteristics as discussed in chapter 4. In 

this case, there can be 6 nucleotides over the electron channel at a given time. This 

approach of fabricating single charge sensor for DNA sequencing can achieve single 

nucleotide resolution if signal processing techniques are utilized to deconvolute the 

time-domain signal obtained from the sensor. 

Another possible alternative is implementing the device geometry described in 

this chapter using a pFET device. In the case of a pFET device, the positive fixed 

charges at the Si-Si3N4 interfaces would rather enhance the device performance. The 

drain to substrate leakage currents are expected to be very low, since the low-doped 

body of the n-type body would be in accumulation of electrons [26][27]. Drain to 

source peripheral leakage currents are expected to be very low since the interfaces 

would have increased threshold voltage [28]. The effective device width would be 
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significantly smaller than the physical dimension for sub-10 nm channel width due to 

increased potential height for holes on the two edges of the channel due to high 

density of positive fixed charges.
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3 Back-end-of-line Integration of Micrometer Scale Silicon 
Dioxide Tunnels for On-chip Fluidic Sample Delivery to 
Nanometer-scale Chemical Sensors 

3.1 Overview 

Use of these very small scale sensors, as described in chapter 2, requires a 

system to deliver the sample from an outside source into the sensor on a chip. In order 

to interface an external pluming system with the on-chip sensors, on-chip microfluidic 

tunnels are needed to bring the sample from one end of the chip into the nano-fluidic 

sensors and to take the sample out (Figure 3.1). For FET based sensors the delivery 

tunnels have to be electrically isolated from the devices. The microfluidic tunnels must 

be large enough to allow the necessary throughput. These tunnels can either be 

monolithically integrated with the sensor, where the sensors and the tunnels are 

fabricated together as described in chapter 2, or the tunnels can be fabricated after the 

fabrication process of the sensors in a back-end-of-the-line-integration fashion. In both 

approaches there are specific materials, process and temperature constraints for 

successful integration of the microfluidic tunnels with the sensors. 

 
in out 

6 µm
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<10nm 
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Figure 3.1.  Fluid delivery into nano-fluidic chemical sensors from off chip reservoir. 
Sensors < 10 nm in width can be fabricated with a suspended gate. 
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Back-end-of-line integration of microfluidic tunnels gives more flexibility in 

the size of the tunnels and simplifies the processing of the sensors. There are a few 

different possible approaches for integrating microfluidic tunnels after the formation 

of the sensors [36]. 

One of the most common approaches is to use wafer bonding (Figure 3.2 a). In 

this approach, a planar wafer is bonded on top of the patterned surface after the 

formation of micrometer size trenches by RIE, sealing the top surface and forming the 

microfluidic tunnels. This method is very useful if optical detection schemes are used 

for sensing. However, it is not practical if electrical sensing schemes are used, due to 

the necessity of making electrical contact to the sensor electrodes and difficulty in 

etching through the bonded top wafer. 

Another alternative for forming microfluidic tunnels is by deposition of a thin 

film over the wafer after the formation of trenches (Figure 3.2 b-c). During the 

deposition process, the active areas of the FET structures and the two ends of the 

tunnels leading into the sensing area are exposed to the ambient gases and a film of 

deposited material will form in these areas. Although this method allows easy access 

to the contact areas of the electrodes, the deposition of the thin film over the active 

area of the transistor would significantly degrade the sensing capabilities and the films 

deposited at the ends of the nanometer-scale tunnels can seal off the sensors. 

(a) (b) (c)(a) (b) (c)

 

Figure 3.2.  (a) Wafer bonding and (b-c) deposition over trenches. 
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Deposition of a blanket layer over patterned sacrificial structures is yet another 

alternative approach for making the tunnels. In this process the sacrificial layer can be 

etched from small holes opened on the top surface of the tunnels. The deposition and 

etch processes used for the fabrication of the tunnels should leave the existing 

structures intact. This requires careful selection of the sacrificial material, capping 

material and wet chemistry. The deposition temperature of the sacrificial and the 

capping layers need to be low enough to minimize dopant diffusion and in some cases 

allowing the metal structures’ survival during the process. The capping layer needs to 

be a good insulator in order to prevent any electrical leakage and it is desired to be 

strong enough to withstand subsequent cleaning and annealing steps. 

In this chapter a low temperature method for back-end-of-line integration of 

microfluidic tunnels with nanometer-scale FET based chemical sensors is described. 

Photoresist is used as sacrificial material and SiO2 is used as capping material. 

3.2 Fabrication process 

 FET based chemical sensor structures are fabricated with polysilicon gates 

suspended approximately 10 nm over the active area as described in chapter 2 (Figure 

3.3). The gate structure forms the ceiling of a shallow tunnel passing through the 

device where the two sides of the tunnels are covered with deposited Si3N4. The 

sample is delivered from an off chip source to the sensors through ports attached to the 

chip and on-chip delivery tunnels. The sample delivery ports are attached to the chip at 

approximately 1 cm separation.  

This process allows fabrication of 1.3 µm high and 40 - 100 µm wide delivery 

tunnels. In this design support pillars are used at every 10 µm. Tunnel ceilings are 

designed to have arch-shaped geometry in order to achieve good mechanical strength 

and less viscous drag. 
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Figure 3.3.  Scanning electron micrograph (SEM) of a FET based chemical sensor 
after trench formation 
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Figure 3.4.  Tunnel fabrication process using sacrificial resist: (a) Etch trenches using 
RIE, (b) spin resist, (c) pattern resist, (d) smooth resist profile, (e) deposit cap oxide, 
(f) open irrigation holes & dissolve resist. 
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In order to fabricate these tunnels, trenches of approximately 0.3 µm are etched 

into the substrate overlapping with the two ends of the sensor devices (Figure 3.4a). 

This step also opens the ends of the shallow tunnels for the removal of sacrificial 

material underneath the gate of the FET structure (Figure 3.3). After the removal of 

the sacrificial material underneath the gate of the FET, a 1.2 µm resist layer is spun on 

the wafer. The wafers are exposed with UV light through the same mask as used to 

define the trenches with a higher dose in order to form wider resist patterns than the 

existing trenches to accommodate slight misalignment between the layers (Figure 3.4 

b). An NH3 image reversal process is performed. The wafer is then flood exposed to 

UV light and developed, resulting in photoresist filling inside the trenches. The resist 

filling slightly extends out of the trenches on the sides and forms abrupt edges (Figure 

3.4 c). The resist fill is then smoothed by heated oxygen plasma and baking in a 

convection oven at 135 C for 1 hour (Figure 3.4 d) resulting in a resist profile forming 

a smooth arc on the top surface (Figure 3.5). The structures are then capped with SiO2 

and the sacrificial resist is dissolved from irrigation holes etched down from the top 

surface. The SiO2 deposition temperature has to be kept below the baking temperature 

of the resist in order to avoid out-gassing of the resist during deposition. The 

maximum process temperature must be kept under 140 C for easy removal of the 

sacrificial resist using acetone. 
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Figure 3.5.  Sacrificial resist profile after heated oxygen plasma treatment and oven 
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 Silicon dioxide cap layer can be deposited over the structures using e-gun 

evaporation, RF sputtering or plasma enhanced chemical vapor deposition (PECVD) 

at temperatures under 140 C (Figure 3.6). E-gun evaporation is a room temperature 

process, however, it is a line of sight deposition and small steps with steep slope result 

in cracks in the deposited films. Furthermore, the deposited films are not robust 

enough to survive subsequent processing steps.  

PECVD SiO2 films deposited at 110 C are mechanically robust and conformal. 

However the intersection of the delivery tunnels with the shallow tunnels of the 

sensors get clogged if PECVD SiO2 is directly deposited onto the resist structures. 

This may be due to conformation change in the resist-filling and/or gases leaking into 

the openings between the resist fill and the shallow tunnels at the intersection during 

deposition. Since the shallow tunnel heights are in the order of 10 nm, a small amount 

of material deposition at the intersection is enough to clog the system.  

RF sputtering of SiO2 is also a very low temperature process (< 100 C). The 

sputter deposited films are more conformal than evaporated films, and do not clog the 

system unlike the PECVD SiO2 films. However the lower parts of the sputtered SiO2 

structures tend to be very weak if the top surfaces have relatively steep angles as seen 

µ-fluidic tunnels

sensor

µ-fluidic tunnels

sensor

 

Figure 3.6.  Optical image of the sensor and the microfluidic tunnels for sample 
delivery after oxide sputter deposition. 
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in Figure 3.7. These films are not robust enough to survive the resist removal process 

and tend to break at the weak points as highlighted in the figure. 

A combination of an initial RF sputter deposition followed by PECVD process 

proved to be a viable approach (Figure 3.8).  An initial RF sputter deposited 0.25 µm 

SiO2 shell minimizes the movement of the resist-fill and prevents the clogging of the 

tunnel junctions during the PECVD deposition of an additional 1 µm SiO2 layer at 110 

C. The deposited PECVD oxide forms a robust film covering the top of the 

microfluidic tunnels. The sacrificial resist is dissolved with acetone through the 

irrigation holes opened on the top surface of the tunnels. The tunnels are then washed 

with isopropanol (IPA) and deionized water. At this stage preliminary tests using 

deionized water can be performed. For a fully functional system the irrigation holes 

need to be sealed. This can be carried out by deposition of SiO2 or spinning of 

polyimide on the wafer. The size of the irrigation holes and the tunnel height at the 

locations of the holes should be minimized to reduce the deposition of the final 

 

Figure 3.7  RF sputter deposited oxide tunnel structures. The sputtered oxide is 
significantly thinner at the bottom portion of the side-walls. 
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capping material into the inner walls of the tunnels. This can be achieved by opening 

the irrigation holes on the edges of the tunnels where the tunnel height is significantly 

smaller. If polyimide is going to be used for sealing of the irrigation holes, the input 

and output areas on the tunnel system should be opened prior to curing of polyimide. 

The solvents trapped in the tunnels can dissolve the polyimide film and polyimide can 

fill into the tunnels if the input and output areas are not opened. Using a vacuum oven 

would be useful, ensuring process reliability, for the curing process. 

3.3 Conclusion 

A low temperature (< 135 C), CMOS compatible back-end-of-the-line process 

of making micrometer scale silicon dioxide tunnels for fluidic sample delivery to 

CMOS based chemical sensors is developed. A combination of RF sputtered SiO2 and 

PECVD SiO2 films are used to reliably cap the sacrificial photoresist patterns ensuring 

the continuity of the tunnels into the sensors. It is possible to fabricate multiple levels 

of microfluidic networks with tunnels crossing one over another by repeating the 

 

 
Figure 3.8.  SEM image of resist filled tunnels after oxide RF sputter deposition (left) 
and sidewalls of the oxide structure after PECVD oxide deposition and resist removal 
(right). 
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process steps. This process requires a good temperature control to ensure that the 

samples are not heated over 140 C in order to allow the removal of sacrificial 

photoresist. Due to temperature control problems experienced in the PECVD system 

used for the process, a monolithic integration scheme of the tunnels with the sensors 

was found to be more suitable. Monolithic integration scheme, described in the 

previous chapter, does not allow as much flexibility in making the delivery tunnels as 

large as back-end-of-line integrated tunnels as described in this chapter; however 

monolithic integration reduces the process complexity and improves the process 

reliability as it was described earlier.
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4 Side-gated MOSFET 

Side-gated device structure was developed in order to suppress the interface 

related leakage currents for the devices fabricated using silicon nitride as HF resistant 

CMOS compatible isolation material. In addition to suppression of peripheral leakage 

currents, short channel effects can be significantly suppressed for sub-70 nm gate 

length and threshold voltage tuning can be achieved for narrow channel devices using 

this approach, in a bulk CMOS geometry [5][29][41][36]. The fabrication process, 

using bulk planar silicon processing, is significantly simpler compared to other 

double-gate structures developed for high performance VLSI circuits and adaptive 

threshold voltage control [30]-[33], [42]-[49]. This geometry also allows increased 

process flexibility for integration of high-K and low-K insulating materials and HF-

released active and passive mechanical structures [3][4], [10]-[14]. 
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Figure 4.1  3D schematics of side-gated FET  utilizing silicon nitride field isolation. 
The two side-gates are connected together and the top gate is operated independently. 
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Side-gated device architecture, effectively reducing leakage currents, is well 

suited for VLSI circuits where power dissipation is a key concern [38][39][40], 

especially for ultra-low power circuits in many mobile applications that do not 

demand the highest speeds. 

4.1 Power concerns in VLSI devices 

Static power dissipation, arising from gate leakage (Ig), drain-to-substrate 

leakage (Id-sub) and drain-to-source (Ids) off-current, are major contributors to total 

power dissipation in bulk Si devices [39]. Controlling power dissipation, while 

achieving required speed performance, is critical for transistors at the sub-50 nm 

length scale. Elimination of peripheral leakage mechanisms, suppression of short 

channel effects and ability to electrostatically tune the threshold voltage (Vt) [30][31] 

allow increased scaling and control of power dissipation. 

Gate leakage (Ig) is proportional to the gate area (W x L) of the device. Ig can 

therefore be reduced if the gate area can be scaled down while achieving the desired 

performance. Id-sub and Ids leakage currents in a MOSFET constitute of bulk and 

peripheral components. The bulk component of Id-sub and Ids leakage, and Ig are 

directly proportional to the channel width (W). These leakage components can be 

reduced by scaling the width of the devices. The peripheral components of Id-sub and Ids 

leakage, mainly due to defects and fixed charges on the active-STI interface, do not 

scale with W and become increasingly important as the device widths are scaled down. 

The active-STI interface defects lead to reduced Vt on the edges [28], giving rise to 

increased Ids off-currents, and enhances Id-sub leakage currents through defect assisted 

recombination mechanism in the depletion region of the reverse biased drain junction 

[27]. Decreasing ability to modify the threshold voltage on the periphery of narrow 

channel devices to suppress these leakage currents through implantation necessitates 
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alternative approaches. Ultra-thin body SOI and double-gated structures [42] reduce 

the total area of the periphery, thus reducing the associated leakage, but at a cost of 

increased source/drain resistance. Fully depleted SOI approaches totally eliminate Id-

sub leakage, but suffer floating body effects and an additional silicon–insulator 

interface with fixed charges at the bottom of the device.  

Suppression of short channel effects allows continuation of conventional gate 

length scaling. Dynamic Vt control allows optimization of power consumption 

commensurate with speed requirements. This can be achieved by changing the body 

potential by either directly biasing the body via body contact or capacitively 

controlling the body potential using a double-gate approach. Most of the reported 

double-gate structures have a back-gate placed on the opposite side of the main gate 

allowing device width to be an independent variable and utilizes significantly 

complicated processing techniques. As the device dimensions shrink, gate length and 

width of devices approach the depletion depth (in bulk) or the body thickness (in fully-

depleted SOI), side-gated device approach, another independently controlled multi-

gate structure, becomes viable where the gates controlling the threshold of the device 

are on the two sides of the active area. 

4.2 Device design 

In order to control all the Si-STI interfaces relevant to the devices, the side-

gate structure is designed to surround the active areas of the devices and lead to a 

contact area running inside the STI structure. The side-gate of the structure is designed 

to be composed of highly doped polysilicon, conformally deposited in an LPCVD 

system. The contact area for the side-gate is designed to be away from the device, in 

order not to interfere with the source, drain and gate contacts. An additional via is 

needed to make electrical contact with the side-gate electrode. The side-gates of the 



 

 

63

devices extend from the top surface to the bottom silicon surface and are part of the 

STI structure. Polysilicon side-gate can be routed from one device to another inside 

the STI, as side-gate local interconnects, leading to very minimal area penalty in high 

density circuits. 

The side-gated device structure resembles a finFET transistor [45][46] with the 

exception of an independently controlled top gate (Figure 4.2). 

While the employment of side-gates significantly suppresses the leakage 

currents in wide devices, the potential applied on the side-gate has more significant 

effect on the narrow channel devices. In the case of narrow channel devices, electrical 

 

Figure 4.2  Top (left) and cross sectional schematics of the side-gated FET. 
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Figure 4.3  Cross section schematics of devices with recessed side-gates (left) and 
planar top-gate geometry. 
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characteristics of the devices significantly depend on the device dimensions and the 

topography of the channel (Figure 4.3). 

The active areas of the devices can be made to be slightly higher than the 

surrounding structure, which leads to a device structure where the top part of the 

active area is wrapped over by the top gate. In this device structure, resembling a tri-

gate FET [50], the top-gate of the device has very good control over the channel 

potential. 

4.2.1 Side-gate control over body potential in planar geometry 

In the case of a device structure where the channel of the device is at the same 

level as the surrounding side-gate, the potential in the channel is significantly affected 

by the side-gate bias, especially for ultra-narrow devices. Application of a negative 

potential from the two sides of the channel in a narrow-channel nMOSFET restores 

the source to drain potential barrier and leads to enhanced current confinement to the 

top silicon-oxide interface. The top-gate potential achieves a stronger control over Ids, 
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Figure 4.4  Simulated potential barrier for a W x L = 50 nm x 40 nm device with 
side-gate for intrinsic channel and Nsub = 3x1018 cm-3 at the device center. tside = 15 
nm (Si3N4), Qinterface = 3x1010cm-2. 
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leading to significant improvements in Ion/Ioff in small-scale devices. 2D simulated 

potential profiles [51] for a W x L = 50 nm x 40 nm device show approximately 0.2 

eV recovery in potential barrier with the application of -3 V at the side gate for an 

intrinsic channel device. Similar improvement is observed in the highly doped drain 

case (Figure 4.4). 

In the case of a 30 nm x 30 nm device, where the short channel effects and the 

edge related leakage currents become more important, the improvement in the height 

of the potential barrier exceeds 0.5 eV with the application of -3 V at the side-gates for 

a highly doped body. The case for a low positive interface charge density, with Qint = 

3x1010 cm-2 is shown in Figure 4.5. The potential at the device edges is recovered and 

increased over the barrier height in the center of the device. The sag in the center 

potential, seen in the potential cross section along the width of the device, is due to the 

drain potential (Figure 4.6). The effect of the body and the top gate potentials are not 

0 10 20 300 20 40 60
-1.6

-1.2

-0.8

-0.4

0.0

0.4

  

 

y, nm

Source

 

P
ot

en
tia

l E
ne

rg
y,

 e
V

x, nm

Drain

 

Figure 4.5  Simulated potential profiles for a 30 nm x 30 nm side-gated device, tside = 
19 nm (Si3N4) along the channel (left) and across the channel (right) for Nsub = 3x1018 
cm-3 (solid), Nsub = 1x1014 cm-3 (dashes) and a conventional bulk device with Nsub = 
3x1018 cm-3 (dots). Interface charge density Qint = 3x1010 cm-2. 
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reflected in the 2D simulations. The potential profile across the width of the device is 

expected to be more uniform for a higher positive interface charge density since the 

potential barrier is significantly lowered at the edges due to the positive fixed charges 

at the interfaces. 

In the case of an extremely short and narrow device structure with 10 nm x 10 

nm device dimensions, it is not possible to form a potential barrier between the source 

and the drain through increased concentration of body doping . However, 2D 

simulation results show that a 8 nm x 10 nm intrinsic channel device with 5 nm Si3N4 

side-gate isolation can have a potential barrier exceeding 0.5 eV through application of 

–3 V on the side-gates (Figure 4.7). It is seen that strong coupling by the two side-

gates straddling the active area have significant control over the body potential and 

only very small amount of drain induced barrier lowering (DIBL) is observed. 

 

Figure 4.6  2D simulated electron concentration profile of a W x L = 8 nm x 10 nm, 
tside = 5nm (Si3N4), intrinsic channel device. The electrons are confined to 
approximately 5 nm in the central section of the channel. 
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In standard short-channel planar devices, the gate control the on the body 

potential is significantly reduced as a function of the distance from the channel. The 

potential of the bottom part of the Si body is significantly controlled by the source and 

drain potentials down to the level of the source/drain junctions which necessitates 

introduction of halo implants to suppress the short channel effects. In the case of the 

side-gated approach, the potential barrier seen in Figure 4.7 exists in the same way 

independent of the distance from top interface. The volume underneath the top-gate 

can be put into accumulation and hence, significantly reduce the depletion depths of 

the source-drain junctions. This, in a way, is equivalent to employment of halo 

implants in order to reduce the junction depletion depths to facilitate suppression of 

the short channel effects. This results in extreme confinement of the current to the very 

top Si-SiO2 interface, controlled by the top-gate. 

Simulation results show that control of the channel potential with an 

independently controlled side-gate makes it possible to use intrinsic channels for very 
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Figure 4.7  Simulated potential barrier for a W x L= 8 nm x 10 nm, tside =5 nm 
(Si3N4), intrinsic channel device with side-gate for two drain biases, Vside = -3 V. A 
potential barrier higher than 0.5 eV is observed. 
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small-scale bulk Si MOSFETs, and reduces or eliminates the need for halo (pocket) 

implants, which is practically impossible to achieve at 10 nm device scale. It may be 

possible to achieve the electrostatic construction of the potential barrier through fixed 

charges on the two sides of the channel or using highly polarized material in contact 

with the silicon surface on the two edges. It is also possible to inject charges into a 

thin polysilicon layer, acting as a floating gate, surrounding the active area through a 

tunneling process. This approach can lead to a similar potential barrier, avoiding the 

penalty of the additional parasitic capacitance. 

Lower doping levels in the channel result in higher low-field carrier mobility 

and the use of undoped channels eliminates the threshold voltage variation due to 

random dopant effects which is becoming one of the limiting factors in high 

performance VLSI devices. Reduction or elimination of pocket implants leads to 

reduced band-to-band tunneling in the drain junctions of bulk and partially depleted 

SOI devices, thus reducing the bulk component of the Id-sub leakage. The improvement 

in the Id-sub leakage with the application of a negative side-gate bias is, however, 

limited by the onset of the gate induced drain leakage (GIDL) [52]. GIDL is more 

severe for abrupt junctions of highly doped drains. The side-gate structure surrounding 

the active area of the devices form ground planes with a DC bias. This is similar to 

guard rings and deep trenches employed in mixed signal technology in order to 

suppress the synchronous substrate noise [53]. If the side-gates are biased through a 

low resistance path, the devices can be effectively isolated from the noise generated by 

the neighboring devices. 

4.2.2 Side-gate control over body potential in tri-gate geometry 

While the potential profiles look the same at the bottom portion of the Si fin 

shaped active area in planar and tri-gate geometries, the potential profile on the top 
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portion of the fin is predominantly controlled by the top-gate in the tri-gate geometry. 

The tri-gate structure benefits from the significant reduction in the peripheral leakage 

mechanisms at the bottom portion of the device in the side-gated geometry but the 

channel potential is almost totally independent of the side-gate potential. 

Compared to the standard tri-gate and finFET structures built on SOI substrates, 

bulk tri-gate geometry with the side-gate passivation of leakage currents does not have 

any interfaces which is not electrostatically controlled by a gate. Standard tri-gate and 

finFET devices built on SOI substrates achieve control over the 3 of the 4 interfaces 

between the source and the drain but does not have any strong electrostatic control 

over the bottom active (Si)-oxide interface and suffer from floating body effects. 

Elimination of the bottom silicon-oxide interface results in elimination of fixed charge 

related problems at the bottom of the device, floating body effects and problems in 

heat dissipation due to thermal insulation provided by the oxide layer. Another 

 

Figure 4.8  Simulated potential profile of a 50 nm wide tri-gate structure with 50 nm 
side recess. Vside = -3 V, Vg = 3.5 V 
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advantage of this bulk tri-gate architecture is reduction of the source-drain resistance 

experienced in ultra-thin body SOI structures. 

Figure 4.8 shows simulated 2D potential cross-section of a side gated tri-gate 

structure for Vg = 3.5 V and Vside = -3 V. The bottom part of the fin is kept at a higher 

potential while the top-part is turned on. Figure 4.9 shows the electron distribution for 

the same case. Bottom part of the fin is in accumulation of holes. 

Additional advantages of the tri-gate geometries are increased carrier density 

and reduced polysilicon gate depletion effects due to larger flux of field lines being 

terminated on the channel surface. The electric field in the tri-gate area is also smaller 

compared to planar devices. This is expected to reduce mobility degradation due to 

high field effects. Increased carrier concentration for the same surface area is expected 

to result in increased drive current for a given amount of gate leakage. 

 

Figure 4.9  Simulated electron concentration profile of a 50 nm wide tri-gate 
structure with 50 nm side recess. Vside = -3 V, Vg = 3.5 V 
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4.3 Fabrication 

The side-gated devices are fabricated by slight alterations done to the 

fabrication process described in chapter 2. The tools and the steps used for 

photolithography are the same. The nMOSFETs reported in this chapter are fabricated 

without using any halo implants or silicidation process, similar to the devices 

described in chapter 2. 

4.3.1 Side-gate deposition and patterning 

Active area definition, etch, dopant enhancement and device width reduction 

through oxidation are performed, as explained in chapter 2. The diffusion time for 

dopant enhancement is kept shorter in this case. After these steps a 19 nm conformal 

layer of LPCVD Si3N4 is deposited. Nitride deposition is immediately followed by 

LPCVD deposition of 350 nm n+ in-situ doped polysilicon layer at 600 C. This film 

 

Figure 4.10  SEM micrograph of the active area after side-gate patterning prior to 
STI nitride deposition. The polysilicon film extends away from the device to a 
contact area 
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conformally covers all the surfaces just like the underlying Si3N4 layer. A 150 nm 

oxide layer is deposited using a PECVD system at 400 C to be used as etch mask. 

Side-gate areas are patterned using a mask for side-gate layer following the same steps 

described in section 2.2.1. Mask oxide and polysilicon are etched using RIE following 

the same procedure described in section 2.2.5 for gate poly definition. The remaining 

mask oxide at the end of the RIE process is removed in 6:1 BOE (Figure 4.10). 

4.3.2 Shallow Trench Isolation  

After side-gate definition, a thin layer of stochiometric nitride and a thicker 

layer of low stress nitride are deposited and the wafers are planarized using CMP in 

the same way as described in section 2.2.4. 

In order to achieve the tri-gate structure, wafers are oxidized in O2/N2 ambient 

and oxide is removed in diluted HF after the planarization step. This process results in 

slight increase in the recess of the side-gate structure compared to the silicon active 

area due to the difference in oxidation rate, resulting in the tri-gate device structure 

(Figure 4.3). Tri-gate device structure can also be achieved by keeping the wafers in 

HF solution for an extended period of time, removing some of the nitride on the sides 

between the active areas and the side-gates (Figure 4.11). 

Oxidation of the Si surface is omitted and the exposure of the wafers to HF is 

minimized in order to build the devices with planar top-gate geometry. An alternative 

approach of depositing a thin layer of Si3N4 and a short CMP, after slight recess of the 

side-gates can be used to ensure a planar top-gate geometry. 
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4.3.3 Gate stack 

 A 4 nm oxide layer is grown in O2/N2 ambient at 725 C to serve as gate 

dielectric. In this step, an oxide layer is also grown over the side-gates of the structure 

which will be serving as the side-gate to top-gate isolation. The oxidation rate of 

doped polysilicon is higher, hence leading to a thicker oxide over the side-gates, which 

is desirable for reduced parasitic coupling and increased oxide reliability. The oxide 

grown on the polysilicon is expected to have a lower breakdown field compared to 

oxide grown over single crystal silicon. 

A 100 nm polysilicon layer is deposited using an LPCVD system at 600 C to 

be defined as the top-gate of the structure. The top-gate of the structure is defined and 

etched with RIE in the same manner as described in section 2.2.5 with RIE process 

terminated at the SiO2 surface (Figure 4.37). 

Si

side-gate

side-gate

SiN

source/drain metal contact

recessed 
Si3N4

 

Figure 4.11  Cross sectional micrograph of a side-gated FET gone through side-gate 
Si3N4 recession in HF. Device is cut through the active region using a focused ion 
beam (FIB) system. 
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4.3.4 Self-aligned source/drain formation 

A thin layer of oxide is grown on the sidewalls of the polysilicon gate as 

described in section 2.2.6. Wafers are then implanted with arsenic with 5x1014 cm-2 at 

20 keV with 90° rotation and 8° tilt. 

After the implantation, the films on the back-side of the wafer are removed and 

the back side of the wafer is polished using CMP in the same manner as described in 

section 2.2.12 

 

Figure 4.12  SEM image of a side-gate FET before passivation. The direction of the 
fluid flow in the case of sensor application is indicated, though this particular device 
is not fabricated as a sensor. 
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4.3.5 Passivation & vias 

A 90 nm layer of SiO2 is deposited at 400 C using a PECVD system as a 

passivation layer. A photolithography step is carried out to define the vias. After 

oxygen plasma descum, the vias are opened using wet chemistry in 6:1 BOE. This 

process ensures the termination of the etch process on the silicon surface and results in 

a curved profile going down from the passivation surface to the Si contact areas, 

desired for metal contacts which will be deposited through evaporation of a metal 

stack. 

An additional via is needed to be opened in order to access the side-gate 

contact area. This is carried out by performing an additional photolithography step 

using a mask to open large vias into the side-gate contact areas. The oxide and the 

nitride films at the side-gate contact via areas are etched using RIE with CHF3/O2 

chemistry. 

4.3.6 Metallization & anneal 

Metallization using Ti/Al lift-off process is carried out in the same manner as 

described in section 2.2.11. The Ti/Al stack is evaporated on the back-side of the 

wafer immediately after the metal evaporation onto the front-side, prior to lift-off. The 

wafers are annealed in H2/Ar at 400 – 450 C for 15 min. in order to improve the 

contact resistance and reduce the contribution of the interface states. 

4.4 Electrical Characteristics 

In this section electrical results are categorized as peripheral leakage 

characteristics common to all devices and device characteristics for five different cases 

as tri-gate, long & wide channel, narrow channel, short channel and ultra-narrow 

channel side-gated devices. 
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The peripheral leakage characteristics do not change as a function of the device 

size or topography of the active area, and depend on the doping densities and 

concentration of fixed charges and defects common to all devices. Tri-gate structure is 

presented to show the distinct characteristic of threshold voltage immunity to the side-

gate bias of the tri-gate topography. The long (0.3 µm) & wide (0.6 µm) channel 

device characteristics are demonstrated for comparison with standard nMOS transistor 

characteristics, showing the device performance parameters in the long channel case. 

Narrow channel (W < 100 nm) and short channel (L < 70 nm) tri-gate transistor 

characteristics show potential improvement over standard high performance CMOS 

devices, with extremely low peripheral currents and suppression of short channel 

effects. Ultra narrow-channel (< 10 nm) planar device characteristics show significant 

threshold voltage response to side-gate bias. Drain to substrate leakage and drain to 

source peripheral leakage characteristics are very similar for all cases. Other device 

characteristics such as subthreshold slope (SS), drain induced barrier lowering (DIBL), 

on current (Ion), transconductance (gm) and response of the threshold voltage (Vt) to 

Vside vary significantly depending on the device width and topography of the channel 

surface. 

4.4.1 Drain-to substrate diode 

DC current-voltage characteristics of abrupt n+- p junctions formed at the 

source/drain & substrate interfaces are measured as a function of side-gate bias (Vside) 

(Figure 4.13). Drain to substrate reverse-bias leakage current decreases as a function 

of Vside down to approximately Vside = -1.5 V as the interface is accumulated with 

holes [27]. After this point the leakage current starts to increase again which can be 

explained by increased band to band tunneling known as gate induced drain leakage 

(GIDL) [52]. The Id-Vd characteristics of the side-gated drain to substrate diodes for 



 

 

77

different Vside show that there is no change in the on currents for different Vside (Figure 

4.14). 

The effect of GIDL is not observable for low doped drain (LDD) devices 

(Figure 4.15). In the LDD case, the junctions are graded and a larger negative bias on 

the side-gate is required to increase the band-to-band tunneling process to an 

observable level in the current measurements. 
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Figure 4.13  Reverse-bias leakage current of a drain to substrate diode as a function 
of Vside. Area ~ 5 µm2, perimeter ~ 18 µm. 
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Figure 4.14  Current versus voltage characteristics of a drain to substrate for different 
side-gate potentials . Area ~ 6 µm2, perimeter ~ 18 µm. 
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Figure 4.15  Drain to substrate leakage for a low doped drain as a function of Vside. 
Area ~ 6 µm2, perimeter ~ 18 µm. Leakage due to GIDL is not observed due to 
graded junctions 
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4.4.2 Drain to source leakage  

The sidewalls of the Si active area form transistors between the source and the 

drain. The current level along these sidewalls depends on the Vt at the interfaces, 

which is a strong function of fixed charge density. In the side-gated geometry, the 

side-wall transistor behavior can be observed clearly by varying the side-gate potential 

and monitoring the source-drain current (Figure 4.16). The case without side-gates, as 

described in chapter 2, is equivalent to Vside = 0 V case, which corresponds to 

inversion of the side-wall surfaces for the measured device in Figure 4.16. This 

negative threshold voltage due to interface fixed charges explains the high level of 

source-drain leakage observed in the preliminary devices (Figure 1.14). Drain to 

source leakage currents are significantly suppressed by applying a negative Vside as the 

Si-STI interfaces are turned off. 
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Figure 4.16  Drain to source off current of a side-gated FET as a function of Vside. 
Weff = 1.2 µm, Leff = 0.125 µm. 
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4.4.3 Side-gated tri-gate MOSFET 

The channel potential in tri-gate geometry is predominantly controlled by the 

top-gate as illustrated in section 4.2.2. In these structures, side-gates can be used to 

suppress the leakage currents. The side-gate potential does not have a significant effect 

on other device characteristics. Subthreshold slope of the long channel tri-gate FETs 

are slightly worse than comparable gate length wide planar devices, possibly due to 

corner effects. However, they retain a subthreshold slope of approximately 80 mV/dec. 

even at shorter gate lengths. 

Device response gradually changes depending on the amount of side-gate 

recess and top-gate wrap over the active area. In extreme cases, where the side-gates 

are significantly recessed, Vside only effects the leakage currents and has very small 

impact on Vt, gm, DIBL or subthreshold slope (Figure 4.17). Devices presented in the 

following sections are expected to have very small amount of side-gate recess, if at all. 
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Figure 4.17  Transfer characteristics of a side-gated tri-gate FET. W x L ~ 0.2 µm x 
0.3 µm, tox =7 nm. Vside effectively lowers drain-to-substrate leakage but does not 
have a visible effect on Vt. 
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4.4.4 Side-gated wide MOSFET 

In the case of wide devices, where the device width is larger than 200 nm, the 

top topography at the device edges has a small contribution. Wide planar devices 

behave similar to tri-gate structures with minimal threshold voltage response to the 

side-gate bias. These devices respond to the substrate bias as standard planar bulk 

transistors. 

In this section, detailed analysis of experimental current-voltage characteristics 

of a W x L = 0.6 µm x 0.3 µm device with tox = 4.0 nm is presented. Transfer 

characteristics, achieved by averaging 10 traces, show a subthreshold slope (SS) of 68 

mV/dec. and DIBL of 3 mV/V, suggesting that the device is behaving as a long-

channel device for Vsub = 0 V and Vside = -1.5 V (Figure 4.18). The measured off-

current of the device is suppressed down to approximately 5 fA, which is limited by 
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Figure 4.18  Transfer characteristics of a W x L = 0.6 µm x 0.3 µm device. Sub-10 
fA current resolution is achieved through repeated measurements. Ion/Ioff > 6 x 1010 
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cable leakage in the measurement setup. The measurement of off-current at this level 

is made possible by the ambient noise being higher than the equipment resolution of 

50 fA (see chapter 5 for the details of the measurement technique). Increase in the 

drain to substrate GIDL is visible for Vg < -1.1 V. The drive current of the transistor is 

0.311 mA at Vd = 1 V, corresponding to approximately 0.5 mA/µm. The drive current 

increases to a saturation value of 0.525 mA for Vg = 3 V, corresponding to 0.875 

mA/µm (Figure 4.19).  

The output characteristics of the device are shown as a function of the applied 

drain bias and as a function of the actual potential drop across the intrinsic device by 

accounting for the resistive drop across the contact resistances. 
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Figure 4.19  Id as a function of applied drain bias (Vd) (solid), and potential drop 
across the source and drain (V’ds) accounting for contact resistance (Rc) (dashed). W 
x L = 0.6 µm x 0.3 µm . 
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As the side-gate potential is varied, the transfer characteristics change 

significantly in the Vside = 0 to -1 V range (Figure 4.20). The changes in the 

subthreshold transfer characteristics saturate as the side-channels at the Si-STI 

interfaces are turned off. The saturation in the SS and the DIBL are clearly observed 

as these values are plotted as a function of Vside (Figure 4.22). The saturation value for 

subthreshold slope is 67.7 mV/dec. 

The values for DIBL plotted in Figure 4.22 are higher than what is seen in 

Figure 4.18. Data in Figure 4.18 was obtained from later repeated measurements 

performed on the same device. Slight changes in the device characteristics are 

observed after the devices are stressed during long measurements. In this case, the 

DIBL seems to be slightly improved after stressing. 
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Figure 4.20  Transfer characteristics of wide & long device for different Vside . W x L 
= 0.6 µm x 0.3 µm. 
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Figure 4.21  Threshold voltage and maximum transconductance response to Vside for 
Vsub = 0 V. W x L = 0.6 µm x 0.3 µm. 

60

80

100

120

140

160

180

-2 -1 0
Vside (V)

S
S

 (m
V

/d
ec

)

0

10

20

30

D
IB

L 
(m

V
/V

)

SS(mV/dec)
DIBL(mV/V)

Vsub = 0 V

 

Figure 4.22  Subthreshold slope and DIBL as a function of Vside for Vsub = 0 V. W x 
L = 0.6 µm x 0.3 µm. 
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The variation in the threshold voltage is 55 mV for Vside = 0 V to -2 V range. 

Change in the maximum transconductance is less than 2 % within the same range 

(Figure 4.21). The off currents are suppressed by a factor larger than 106 while the 

degradation in the on current is approximately 5 % (Figure 4.23). 

Reduction in the substrate bias widens the depletion depth which results in 

improved subthreshold slope [21]. A negative substrate bias applied to this device is 

observed to improve the subthreshold slope down to 65 mV/dec (Figure 4.24). As the 

substrate bias is lowered below -1.4 V, band-to-band tunneling in source-to-substrate 

and drain-to-substrate diodes become observable in the I-V characteristics. 

Drain induced barrier lowering is observed to degrade slightly as the negative 

substrate bias is increased (Figure 4.24). This is due to the widened drain depletion, 

increasing the relative contribution of the drain potential on the channel potential 

aggravating the short channel effects [21]. In the wide channel case, this brings up a 

compromise between the increased short channel effects and improved subthreshold 
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Figure 4.23  Variation in Ion and Ioff as a function of Vside for Vsub = 0 V. W x L = 0.6 
µm x 0.3 µm. 
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slope. An advantage of the increased depletion depth is the reduction in the junction 

capacitances. In the case of the narrow channel devices, which will be discussed in the 

following sections, a negative substrate bias can be used to reduce junction 

capacitances in the large contact areas of the device without any increase in the short 

channel effects due to the extreme control of the side-gates on the narrow body of the 

device. 

The threshold voltage of the device is observed to change by 82 mV in the Vsub 

= 0 to -1.5 V range. The maximum transconductance shows almost no response to the 

substrate bias (Figure 4.25). 
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Figure 4.24  Subthreshold slope and DIBL as a function of substrate bias for Vside = -
1.5 V W x L = 0.6 µm x 0.3 µm. 
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4.4.5 Side-gated narrow channel MOSFET 

The fin width of narrow channel MOSFET structures are comparable to the 

finFET and tri-gate structures in the literature [45][50]. The active area width, in the 

order of 20 nm, is very sensitive to process variations. In order to properly 

characterize these devices a capacitance measurement technique is developed to 

measure the inversion layer capacitances down to sub 0.1 fF range (chapter 5).  

In this section the characteristics of a device with approximately 150 nm gate 

length is demonstrated. The device gate length is estimated from SEM micrographs of 

a twin device in a different die, 2 cm away on the same wafer (Figure 4.26). The 

active area of the structure analyzed with SEM did not complete the process as 

intended. Existence of side-gate polysilicon structures suggest that the active area 

exists slightly below the surface, but parts of it were broken on the very tip, prior to 

side-gate polysilicon deposition. The active area could be exposed as a continuous 

surface if the CMP process was slightly extended. The twin structure analyzed in this 

section has survived the process as it is observed from the electrical characteristics.  
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Figure 4.25  Threshold voltage and maximum transconductance response to the 
substrate bias for Vside = -1.5 V. W x L = 0.6 µm x 0.3 µm. 
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The effective device width of the electrically characterized device is estimated 

to be around 40 nm from the inversion layer capacitance measurements amounting to 

approximately 50 aF (Figure 4.27 inset). 

In this device, with Lpoly ~ 150 nm, subthreshold slope is observed to be 83 

mV/dec. and DIBL is approximately 2 mV/V for Vside = -1.5 V, Vsub = 0 V (Figure 

4.27). The extreme low value of the DIBL suggests that the source-drain potential 

barrier is practically immune to the changes in the drain bias. The subthreshold slope, 

83 mV/dec, is slightly worse than 68 mV/dec measured in the wide device with Vsub = 

0 V. This is possibly due to reduced depletion depth due to the negative side-gate 

potential, larger channel to side-gate capacitance and to the threshold voltage variation 

along the width of the device due to corner effects. This threshold voltage variation is 

due to termination of a larger flux of electric field at the corners resulting in inversion 

of the corners earlier than the planar sections. 

 

Figure 4.26  SEM micrograph of a twin device of the one analyzed in this section. In 
this device, the active area, expected to be ~ 10 nm wide, is not continuous. Gate 
length is approximately 150 nm. 
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Figure 4.27  Transfer and C-V (inset) characteristics of a narrow channel d channel 
device. Effective device width is estimated from the C-V characteristics. 
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Figure 4.28  Transfer characteristics in linear scale for Vd = 0.1 V and 1 V.  
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The DIBL observed in the narrower and shorter channel device is smaller than 

of the wider and longer channel device. This shows that the effect of the negatively 

biased side-gates is very pronounced when the effective device width is in the order of 

40 nm. The accumulation of the interfaces with holes effectively isolates the source 

and drain depletion regions at this device width. Current conduction is significantly 

confined to the top interface, DIBL and punch through is prevented.  

Since this device geometry does not display any sign of short channel effect 

even at 150 nm gate length, it is possible to further scale the gate length of narrow 

channel side-gated FETs compared to wide devices, before running into limitations 

due to short channel effects. 

The transfer characteristics show that this device is fully turning off, with Ioff < 

50 fA (HP 4145B current resolution) and turning on with 23 µA, leading to an Ion/Ioff 

ratio of 109 or better (Figure 4.28) for Vd = 1 V. Transfer characteristics for different 

-2 -1 0 1 2 3
Vg (V)

I ds
 (A

)

10-14

10-12

10-10

10-8

10-6

10-4

Vside = 0 V to -2 V

 

Figure 4.29  Transfer characteristics of a narrow device for different Vside . W x L ~ 
40 nm x 150 nm. 
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side-gate biases show that the interface related leakage is turned off within the Vside = 

0 to -1 V range and threshold voltage continues to shift as the negative side-gate bias 

is increased (Figure 4.29). Similarly subthreshold slope and DIBL improves 

significantly as negative Vside is increased. Subthreshold slope saturates around 80 

mV/dec and DIBL saturates around 2 mV/V (Figure 4.30). 

Output characteristics show that the drive current starts saturating around 33 

µA for Vg = 3 V, 75 % of gate oxide breakdown field and Vside = -1.5 V, and around 

43 µA for Vg = 3 V and Vside = 0.5 V (Figure 4.31). These drive currents correspond to 

approximately 1 mA/µm for Vside = -0.5 V and 0.83 mA/µm for Vside = -1.5 V. 

Output conductance values calculated for 3 different side-gate biases do not 

show any distinctive response to side-gate bias (Figure 4.32).  

With the application of a negative side-gate bias, Ioff is improved by 106 and 

the Ion is degraded by 30 % (Figure 4.33). 
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Figure 4.30  Subthreshold slope and DIBL as a function of Vside for Vsub = 0 V. W x 
L ~ 40 nm x 150 nm. 
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While the subthreshold slope and DIBL saturate for Vside < -1.2 V (Figure 

4.30), the threshold voltage of the device changes by 0.39 V in the range of Vside = -

0.5 to -2 V (Figure 4.34). Maximum transconductance is degraded by 30 % in the 

same range. The degradation in the transconductance is partially due to degradation in 

the carrier mobility due to high field effects and partially due to the reduction in the 

carrier concentration at the fringes of the inversion layer. 

Vt, gm and subthreshold slope does not show noticeable response to the 

substrate bias, slight degradation in DIBL is observed (Figure 4.35, Figure 4.36). The 

potential in the channel is predominantly controlled by the side-gates and the top-gate. 

Device characteristics are fairly immune to the changes in the body potential, 

suggesting that the device is suitable for mixed signal applications where the substrate 

coupling noise is a significant concern [53]. 

These narrow channel device characteristics clearly show that the device 

length can be significantly scaled down if the channel width is kept small. This 

advantage makes the narrow channel side-gated device very attractive for high density 

low-power applications. The increase in the device capacitance due to the additional 

side-gate capacitance maybe compensated by this performance increase in short 

channel devices for very low level of off currents and DIBL. A short channel device is 

discussed in the next section. The performance characteristics of this short channel 

device are very significant. However, the width of the short channel device in the next 

section is larger than 50 nm, which is not fully utilizing the effect of the side-gates for 

the suppression of short channel effects. 
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Figure 4.31  Transfer characteristics of narrow channel side-gated FET. 
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Figure 4.32  Output conductance of narrow channel side-gated FET for different 
side-gate biases (W x L ~ 40 nm x 150 nm). 



 

 

94

 

 

0

10

20

30

-2 -1.5 -1 -0.5
Vside (V)

I on
 ( µ

A
)

I of
f (

A
)

∆Ion = 11.5 mA ~ 30%
∆Ioff > 106 A

10-14

10-12

10-10

10-8

 

Figure 4.33  Variation in Ion and Ioff as a function of Vside for Vsub = 0 V. W x L ~ 40 
nm x 150 nm. 
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Figure 4.34  Threshold voltage and maximum transconductance response to Vside for 
Vsub = 0 V. W x L ~ 40 nm x 150 nm. 
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Figure 4.35  Threshold voltage and maximum transconductance response to Vsub for 
Vside = -1.5 V. W x L ~ 40 nm x 150 nm. 
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Figure 4.36  Subthreshold slope and DIBL as a function of Vsub for Vside = -1.5 V. W 
x L ~ 40 nm x 150 nm. 
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4.4.6  Side-gated short-channel MOSFET 

Preliminary measurements on the short channel device seen in Figure 4.37 

have been performed prior to removing the passivation oxide and the metal in order to 

image the device with SEM. The device seen in the SEM image was not annealed after 

metal deposition step, hence its performance is expected to be worse than the twin 

device extensively analyzed in this section. The physical device dimensions were 

measured to be W x L = 78 nm x 68 nm as viewed from the top. 

This short channel device (seen in the SEM) shows the best subthreshold slope 

and DIBL for Vside = -3 V and Vsub = -1.2 V as SS = 104 mV/dec and DIBL = 165 

mV/V (Figure 4.38). The device characteristics significantly improve as a function of 

 

Figure 4.37  SEM micrograph of a narrow and short channel side-gated FET (35° 
tilt). Image is taken after removing the passivation layer and metal after preliminary 
electrical testing. The single crystal silicon channel is straddled with polysilicon side-
gates. Gate length is measured to be 68 nm (when imaged at 0° tilt). 
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the increased negative side-gate bias. This device also responds to the substrate bias, 

indicating that the channel potential for this device is partially controlled by the 

substrate. The Ion for Vd = 1 V, Vg = 3 V is 66.6 µA, corresponding to 0.85 mA/µm. 

The rest of the measurement results presented in this section are performed on 

a twin device on a different die 2 cm away which contains all the measured FETs 

mentioned in section 4.4 . This die is annealed in forming gas as described in the 

section on fabrication process. 

The capacitance measurements performed on this twin device suggest that the 

effective width is approximately 150 nm (Figure 4.39 inset). The difference between 

the estimated effective width and the width measured using SEM can be partially 

accounted for the physical size difference between the two devices due to process 

variations. This variation is not expected to account for more than 20 nm of variation. 

The second factor is the difference in the recess of the side-gates, which can be up to 
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Figure 4.38  Transfer characteristics of W x L = 78 nm x 68 nm device seen in 
Figure 4.37 for Vside = Vsub = 0 V (dashed), Vside = -3 V, Vsub = 0 V (dot), Vside = -3 
V, Vsub = -1.2 V (solid). 
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30 nm resulting in an effective surface width change of approximately 60 nm. The 

third factor for the increase in the capacitance is expected to be the geometrical factor 

due to the corners of the structure and the top-gate wrapping over the body. 

The current drive of the device corresponds to 0.85 mA/µm, for effective width 

extracted from C-V characteristics, at Vd =1 V, Vside = -3.25 V (Figure 4.39, Figure 

4.40). Output characteristics show that the saturation current density for Vg = 3 V and 

V’ds = 1.7 V corresponds to approximately 1.5 mA/µm of Weff, which is a substantial 

amount of current in the industrial standards for silicon MOSFETs. Due to 

approximately 5.4 kΩ source/drain contact resistance, a source-to-drain potential, V’ds 

= 1.7 V is achieved if the terminals are supplied with Vds = 3 V. The drain current as a 

function of applied source drain bias (solid lines) and as a function of actual source-to-

drain potential drop is shown in Figure 4.41. Avalanche breakdown of the device is 

observable for V’ds > 1.9 V. 
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Figure 4.39  Transfer and C-V (inset) characteristics of a short channel side-gated 
FET. 
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Figure 4.40  Transfer characteristics of a short channel side-gated FET. 
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Figure 4.41  Drain current of short channel side-gated FET as a function of  applied 
drain bias (Vd) (solid) & actual source-drain potential (V’ds) (dashed), Vside = -3.25 V. 
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The best subthreshold slope for this device is measured to be 100 mV/dec and 

best DIBL = 143 mV/V with Vside = -3.25 V, Vsub = -1.2 V. 

The peak value for transconductance of the device is not affected by the 

substrate bias and the threshold voltage changes by only 26 mV in the range of Vsub = 

0 to -1.5 V for Vside = -2 V (Figure 4.42). 

Subthreshold slope goes down to slightly below 180 mV/dec from 250 mV/dec 

as a negative substrate bias is applied with Vside = -2 V. No change in SS observed in 

the case of Vside = -3 V beyond Vsub = -0.2 V (Figure 4.43). Similarly, DIBL is not 

sensitive to substrate bias in the same range for Vside = -3 V. This shows that substrate 

bias does not have an appreciable effect on the channel potential in the case of large 

negative side-gate biases. 
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Figure 4.42  Threshold voltage and maximum transconductance response to Vsub, 
Vside = -2 V of short channel side-gated FET. 



 

 

101

The change in the threshold voltage changes slope around Vside = Vsub and 

maximum transconductance peaks around the same point (Figure 4.44). 

Subthreshold slope and DIBL improve for larger side-gate biases, saturating at 

approximately SS = 100 mV/dec, and DIBL = 150 - 200 mV/V for Vsub = -1.2 V 

(Figure 4.45). For the same side-gate bias range with Vsub = -1.2 V, Vd = 1 V, Ion 

degrades by 20 % while the suppression in the Ioff is in the order of 109 with the 

increased negative side-gate bias (Figure 4.46). 

Significantly high current drive of the device for its physical size is mainly due 

to the carrier density in the channel as extracted from the gate to source/drain C-V 

measurements performed on the device Effective electron mobility (µeff), extracted 

from the I-V and C-V measurements performed on this device, is calculated to be 208 

cm2/V.s in the high field regime for approximately 7.5 MV/cm across the gate oxide 

(Figure 4.47). This value is comparable to high-field effective electron mobility in 

standard silicon MOSFETs. The calculated mobility value is very sensitive to the 

errors in gate length estimation at this device scale. An error of 10 nm in the effective 

device length estimation results in approximately 14 % error in the calculated value 

for µeff. 

The drive current of the transistor, approximately 1.5 mA/µm, is calculated 

using the effective device width extracted from the C-V characteristics. With this drive 

capability and very low off currents indicate that the short channel effects can be 

significantly suppressed for a sub 70 nm gate length device using a side-gated 

approach. The short channel effects, mainly DIBL is expected to be even more 

suppressed for devices with sub-50 nm width. 
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Figure 4.43  Subthreshold slope and DIBL response to Vsub of short channel side-
gated FET for two different Vside. 
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Figure 4.44  Threshold voltage and maximum transconductance response to Vside of 
short channel side-gated FET, Vsub = -1.2 V. 
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Figure 4.45  Subthreshold slope and DIBL response to Vside of short channel side-
gated FET, Vsub = -1.2 V. 
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Figure 4.46  Variation in on current and off current as a function of Vside for short 
channel side-gated FET. Ion and Ioff are maximum and minimum current levels in Vg 
= -2 V to 3 V range for Vd = 1 V. 
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Figure 4.47  Effective electron mobility versus carrier density for short channel side-
gated FET. Inset show gate to source/drain capacitance characteristics used for 
mobility extraction. 
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Figure 4.48  Transfer characteristics of a Weff x Leff = 1.2 µm x 125 nm side-gated 
FET with tox = 4.3 nm, Vside = - 1.5 V. Vt = 0.3 V, DIBL = 70 mV/V, SS = 81 
mV/dec, Ion = 0.588 mA, Ion/Ioff > 1.1x1010 
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The improvement in the off currents, subthreshold slope and DIBL for narrow 

and short channel devices is not purely due to suppression of the leakage currents at 

the interfaces. A wide device structure with Leff ~ 125 nm, comparable to the gate 

length of the device presented in section 4.4.5, exhibits more dominant short channel 

effects (Figure 4.48). The side-gate biases reconstruct the potential barrier between the 

source and the drain as discussed in section 4.2.1. However, the effect of the side-

gates in narrow channel devices build on bulk substrate is expected to be more 

significant than what is seen in the 2D simulation results in section 4.2.1. 

In a bulk FET, the gate electrode controls the electrical potential of the volume 

(dG) below the interface between the source and drain regions (Figure 4.49). The 

depletion regions of source (dS) and drain (dD) junctions start merging and the volume 

controlled by the gate of the transistor (dG) gets smaller as the gate length of the 
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Figure 4.49  Cross sectional schematics of a short channel bulk FET (top) and a 
shorter channel bulk FET (bottom). Dashed lines indicate the boundaries of depletion 
regions controlled by source, drain and the gate. Dotted lines indicate the 
metallurgical junctions. 
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device is scaled down, assuming that the source/drain junction depths are kept 

constant (Figure 4.49 bottom). The electrical potential of the depletion regions around 

the source and drain junctions are strongly coupled to the source/drain potentials; 

hence the depleted volume slightly below the gate oxide interface is no longer 

controlled by the gate potential. This results in short channel effects and punch 

through, observed as increased off currents, degraded subthreshold slope and 

increased DIBL. 

If a negative gate bias is applied for an nFET, the area under the gate is 

accumulated with holes. For larger negative gate biases, the holes are brought into the 

n+ source/drain regions at the interface and these volumes are inverted (Figure 4.50 

top). This results in increased gate length at the top interface and increased band-to-

band tunneling known as GIDL for larger negative bias (Figure 4.18). The same 

dynamics take place if a large negative bias is applied to the side-gates of a side-gated 
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Figure 4.50  Cross sectional schematics of a short channel bulk FET, top interface 
accumulated with holes (top). Cross sectional schematics of a narrow channel side-
gated device where the body of the transistor is in accumulation (bottom). 
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device. As the channel width of a side-gated FET is reduced, the accumulated volumes 

at the two side interfaces merge, leading to accumulation of the whole body of the 

transistor with holes (Figure 4.50 bottom). Hence, junction depths are significant 

reduced. The boundaries between the hole accumulated volume and the depletion 

regions of the junctions move beyond the metallurgical junctions as –Vside is increased, 

inverting the parts of source drain regions with lower doping level (Figure 4.50 

bottom). This results in a significant increase of the distance between the source and 

drain junctions, effectively increasing the device channel length. Hence, narrow 

channel side-gated devices can achieve very low off currents even at very short gate 

lengths when the top-gate is set at a low potential. The side-gate bias is needed to be 

optimized to prevent increased substrate leakage due to GIDL. 

The junction regions at the top-interface can be accumulated easily with 

electrons as a positive top-gate bias is applied, and the channel is inverted at larger 

positive top-gate biases (Figure 4.51). The volume slightly below the top interface 

remains in accumulation of holes due to strong coupling to the side-gates and the large 

negative side-gate bias. Source-drain current is confined to the top interface, resulting 

in large drive currents while achieving low off currents, reduced DIBL and good 

subthreshold slope as seen in sections 4.4.5 and 4.4.6. 
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Figure 4.51  Cross sectional schematics of a narrow channel side-gated device where 
the body of the transistor is in accumulation and the channel is in inversion. 
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4.4.7 Ultra-narrow width side-gated MOSFET 

In the case of the narrow channel planar device geometry, the side-gates have 

strong control over the body potential as shown in the simulation results (Figure 4.4). 

In this section the data obtained from an ultra-narrow width device with a gate length 

within 0.2-0.3 µm range is presented. The device width is expected to be in the order 

of 10 nm, possibly narrower. A planar device structure with ultra-narrow width, as in 

this device, is the desired device geometry for the FET based charge sensor for the 

detection of the biomolecules. 

This device shows significant threshold voltage response to side gate bias 

along with the suppression of the edge related leakage currents but the subthreshold 

slope is significantly worse compared to the wide-channel and tri-gate structures 

discussed in the previous sections (Figure 4.52 - Figure 4.54). This is possibly due to 

the strong control of the side-gates pinning the channel potential. The pinning of the 

channel potential is stronger on the two edges of the device, possibly resulting in a 

gradual channel formation starting from the center of the device to the edges. 
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Figure 4.52  Transfer characteristics of an ultra narrow width side-gated FET.



 

 

109

 

0

1

2

3

-2 -1 0 1 2 3
Vg (V)

I d 
( µ

A)

Vside= -0.5
Vside = -1V

Vd = 0.1, 1V

 

Figure 4.53  Transfer characteristics of an ultra narrow device W < 10 nm, L ~ 0.2-
0.3 µm. 
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Figure 4.54  Transfer characteristics for different side-gate biases of an ultra narrow 
side-gated FET. 
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The threshold voltage of the device changes by 2.63 V within the range of Vside 

= -0.3 V to -2 V, with an average sensitivity of δVt / δVside = 1.55 V/V (Figure 4.52-

Figure 4.54). This level of sensitivity is significantly larger than in the wider channel 

devices illustrated in the earlier sections. The sensitivity of best performing threshold 

voltage tunable dual-gate structure reported in the literature so far is approximately 

δVt / δVside = 0.79 V/V [30]. 

The threshold voltage of the device is calculated using linear interpolation of 

the current at the maximum transconductance condition for Vd = 1 V within the Vside = 

0 to -0.6 V range (Figure 4.55). The threshold voltage shift of the device for large 

negative side-gate bias is calculated using a constant current method since the devices 

are not turning on within -2 V < Vg < -2 V range for Vside < - 0.75 V. The constant 

y = -0.54x2 - 2.83x + 0.51
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Figure 4.55  Threshold voltage response to Vside of an ultra narrow channel side-
gated FET. The data in the -2 < Vside < -0.3 V range is fit by a quadratic function. The 
arrows highlight the locations where the Vt change seems to have a stepwise increase. 
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current method for the extraction of the threshold voltages could not be used for the 

low Vside cases due to significant level of leakage currents. The change in the Vt in the 

Vside = -0.6 V to -2 V is added to the value of Vt at Vside = -0.6 V in order to obtain the 

values for Vt in the Vside = -0.6 to -2 V range. 

The Vt response to Vside follows a parabolic trend, saturating at larger negative 

side-gate biases (Figure 4.55). The sensitivity, δVt / δVside > -2 V/V for low Vside and 

goes down to 0.8 V/V for Vside = - 2 V (Figure 4.56). 

The Vt of this device seems to be increasing in a stepwise fashion as indicated 

in Figure 4.55. This can either be due to quantum confinement effects or trapping of 

charges at the interfaces during measurements. Studies on similar structures using 

SiO2 side-gate isolation are necessary to minimize the contribution of charge trapping 

at the interfaces. 
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Figure 4.56  Threshold voltage sensitivity as a function of side-gate bias for ultra 
narrow channel side-gated FET. 
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The drive current of the transistor is approximately 2 µA for Vside = - 0.5 V and 

Vg = 3 V. The current is observed to saturate at around Vd = 0.75 V (Figure 4.57). The 

saturation level of the drive current suggest that if the gate oxide thickness is around 4 

nm , as in the case of surrounding devices, the current limiting area of the transistor is 

< 10 nm in width. For an estimated current level of 0.5 mA/µm calculated from other 

devices in the same sample, the current limiting section of the transistor is calculated 

to be approximately 5 nm in width. This is assuming that there is not an appreciable 

carrier mobility degradation in the device. It is possible that the width of the whole 

transistor is < 10 nm or there are narrower regions along the transistors length which 

are forming the bottle neck for the drive current. Avalanche breakdown of the device 

is visible for Vd > 2.1 V for Vg = 0 V. 

The transistor is also operated in a double gate mode (Figure 4.58) where the 

side-gate biases are changed along with the top gate bias with a scaling factor and 

offset in order to accommodate the difference in the dielectric constants and 
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Figure 4.57  Output characteristics of an ultra narrow device W < 10 nm, L ~ 0.2-0.3 
µm. 
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thicknesses, and the difference in Vt due to different fixed charge density on the top 

and side-surfaces. In the double gate operation, the drive currents are as high as 0.137 

mA and the subthreshold slope is 78 mV/dec. This suggests that there are no contact 

related problems limiting the current drive. 

The maximum transconductance measured in the -2 V < Vg < 3.2 V range 

significantly degrades for Vside < -0.5 V (Figure 4.59). The turn-on behavior of these 

devices are rather gradual due to large source resistance, since the source potential 

changes depending on the amount of current passing through the device. This, 

combined with extremely high threshold voltages for Vside < -0.5 V results in a 

significant degradation in the maximum transconductance observed in the device. The 

devices are no longer getting into strong inversion for Vside < -1 V, as it can be seen in 

the transfer characteristics (Figure 4.54). The control of the side-gates on the top-

channel potential is strong enough to turn the devices off even at for Vg = 3.2 V 

(Figure 4.60). It is also seen that the Ioff of the device changes by a subthreshold slope 

-2 -1 0 1 2 3
Vg (V)

I ds
 (A

)

Ion = 0.137 mA
Ioff < 10-14 A
SS= 78 mV/dec.
DIBL = -17 mV/V

Double gate operation
Vside = 0.4 x Vg -1.2 V
(from -2 V to 0 V) 
Vsub = 0 V

10-15

10-13

10-11

10-9

10-7

10-5

10-3

 

Figure 4.58  Double gate operation of the ultra-narrow device where the side-gate 
potential is changed along with the top gate potential as indicated in the figure. 
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of 75 mV/dec, indicating that the side-gates are forming a good double gate FET on 

the side-walls of the structure. 

The subthreshold slope and the measured DIBL in the device significantly 

improves as the devices edges are turned off for Vside < -0.5 V. Part of the contribution 

for these improvements is the reduction in the leakage currents along the sidewalls. A 

big part of the improvement is expected to be due to accumulation of holes in the body 

of the device between the source and the drain, induced by the large negative side-gate 

biases reducing the source drain junction depths significantly suppressing short 

channel effects. 

The subthreshold slope saturates around 200 mV/dec. (Figure 4.61). These 

subthreshold characteristics are significantly worse compared to the wider channel 

devices reported in the earlier sections. This value for the subthreshold slope suggests 

that the channel is coupled to the side-gates and the substrate twice as strongly as it is 
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Figure 4.59  Maximum transconductance as a function of Vside of ultra narrow 
channel side-gated FET 
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coupled to the top-gate unless other ultra-narrow width effects are playing an 

important role. 

DIBL measured on this device fluctuates around 0 mV/V for Vside < -0.5 V. As 

it can be seen from Figure 4.52, the transfer curves for high Vd and low Vd cross over 

each other. This is partially due to trapping and untrapping of electrons at the 

interfaces. Quantum confinement effects may also have a role in this behavior. 

Subthreshold slope and DIBL is observed to have a degrading trend as the 

substrate bias is reduced for a given Vside (Figure 4.62). The threshold voltage and 

maximum transconductance of the device is observed to be independent of the 

substrate bias (Figure 4.63). As Vsub  approaches Vside the side interfaces of the device 

move from accumulation to depletion and into weak inversion. The degradation in the 

subthreshold slope and the DIBL can be explained by reduced effect of the side-gate 

bias and aggravated short channel effects for low Vsub values. 

Due to the extremely narrow width of the device, the source-drain currents of 

these devices are very sensitive to any changes in the trapping-detrapping taking place 

in the dielectrics surrounding the active areas. This was observed in the repeated 

measurements performed on this device (Figure 4.64). The variation in the threshold 

voltage of the device is in the order of 0.1 V as extracted from the subthreshold 

electrical characteristics (Figure 4.65). 
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Figure 4.60  On current and off current as a function of Vside of ultra narrow channel 
side-gated FET. 
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Figure 4.61  Subthreshold slope and DIBL as a function of Vside of ultra narrow 
channel side-gated FET. 
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Figure 4.62  Subthreshold slope and DIBL as a function of Vsub of ultra narrow 
channel side-gated FET. 
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Figure 4.63  Threshold voltage and maximum transconductance response to Vsub of 
ultra narrow channel side-gated FET. 
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Figure 4.64  Threshold voltage of ultra-narrow channel side-gated FET extracted 
from repeated measurements. Vt is calculated linear interpolation and using a 
constant current method. 3x10-8 A is used as the threshold current level, Vside = -0.5 
V. 
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Figure 4.65  Threshold voltage variation in ultra-narrow channel side-gated FET. Vt 
is calculated using constant current method using 3x10-8 A as threshold level. Vt 
variation in the repeated measurements is around 0.1 V. 
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4.5 Mobility 

In order to calculate the effective carrier mobilities in these devices, effective 

device dimensions (section 7.4) and contact resistance values (section 7.5) should be 

known. Using these values, and inversion layer capacitance information and the 

transfer characteristics obtained from the devices at low Vd bias, we can calculate the 

effective carrier mobility (section 7.6). Knowledge of inversion layer capacitance 

necessitates capacitance measurements to be performed on the actual devices due to 

the complicated 3D geometry, corner and edge effects (chapter 5). 

A combination of the information obtained from the SEM micrographs and the 

measured inversion layer capacitance is used to extract the effective device 

dimensions. The total contact resistance (RC) for each device is calculated from Weff, 

Leff and resistivity data obtained from gate-less devices. The effective carrier mobility 

(µeff) is then calculated using: 

∫−
=

gginvc
gd

d

eff
geff

dVVCR
VI

V
L

V
)()

)(
(

)(
2

µ  

The electron mobility in the measured devices are in the order of 200 cm2/V.s 

for an applied gate field of 7.5 MV/cm (Figure 4.66). The calculated mobilities vary 

slightly from device to device. The variation is expected to be due to processing and 

variation in the stress levels. Large side-gate biases are observed to result in reduction 

in transconductance of the devices. Capacitance measurements performed on the 

devices suggest that there is not a significant reduction in the carrier density in the 

channel of the device (Figure 4.66 inset), hence the reduction in gm is due to 

degradation in electron mobility in the channel. The reduction in the effective electron 

mobility is in the order of 10 % for 1 V increase in negative side-gate bias. Due to the 
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increased field at the channel gate-insulator interface in order to achieve the same 

channel potential and carrier density, increased surface scattering, hence, carrier 

degradation is expected. 

Using a side-gated approach, sub-70 nm gate length devices can be fabricated 

with 3 x 1017 cm-3 doping density and the short channel effects can be significantly 

suppressed using a field applied from the side-gates. The doping density should be 

increased to 1018 cm-3 range in order to achieve acceptable device performance using 

standard planar device geometry, which results in increased impurity scattering and 

increased field at the channel-gate insulator interface. Therefore, narrow channel side-

gated FETs are expected to have comparable or better carrier mobilities, compared to 

standard planar devices fabricated using same process conditions and surface 

roughness. 
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Figure 4.66  Effective mobility versus electron concentration of a narrow channel 
side-gated nFET for Vside = -0.5 V (solid), -1.5 V (dashed) (Vd = 20 mV). Inset 
shows Cinv as a function of Vg for the two Vside. 
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Even though the mobility of these narrow channel devices are not higher than 

those of the standard planar devices, the current derives are significantly higher due to 

higher density of carriers inside the device for a given surface area, possibly due to 

corner effects (Figure 4.39). 

4.6 Capacitance penalty 

The significant reduction in the leakage currents and possibility of using 

smaller scale devices with overall smaller capacitances by employing the side-gate 

structure, comes at the cost of additional side-gate to top-gate (Cg-sg) overlap and 

drain-to-side-gate (Cd-sg) overlap capacitances (Figure 4.67). The relative ratio of Cg-sg 

to gate capacitance (Cg) can be minimized by using a very thin polysilicon film for the 

side-gate. The Cd-sg can be reduced significantly by recessing the Si3N4 between the 

source/drain and the side-gate down to the level of the drain-substrate metallurgical 

junction. 

The concerns about overlap capacitances differ depending on the intended 

application. For sensor devices, where a small charge is trying to be sensed, side-gate 
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Figure 4.67  Schematic view of the side-gated FET cross section taken through the 
channel area(left) and 3D illustration (right). 
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to top-gate overlap capacitance is not a concern since both of these gates are statically 

biased during the measurement. The top-gate to channel, side-gate to channel and 

side-gate to drain and source overlap capacitances are important. The side-gate to 

channel capacitance affects the subthreshold slope of the device, hence the current 

sensitivity to the charge perturbations coming from the sample. Side-gate to drain and 

source capacitances increase the RC time constant of the system, resulting in 

limitation on the current measurement speed.  

The side-gate to top-gate overlap capacitance is extremely important for logic 

applications in addition to the side-gate to body and drain/source to side-gate overlap 

capacitances. The relative contribution of the overlap capacitance has to be evaluated 

as a function of the desired Ion and Ioff. Even though the relative contribution of the 

Cg1g2 (Figure 4.67) is more significant for narrow channel devices, since the short 
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Figure 4.68  Additional top-gate to side-gate capacitance as a percentage of 
inversion layer capacitance as a function of effective device width, if gate length is 
kept constant (solid) and if gate length is scaled along with width for Weff < 100 nm 
(dashed). 
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channel effects are significantly reduced, the gate length of the device can be made 

significantly shorter, while still achieving the targeted Ioff values. Reduction in the 

gate-length results in a reduction in the scaling factor of the overlap capacitances and 

reduces the channel resistance, allowing larger current drive in a smaller width device 

(Figure 4.68). 

For larger width devices, the affect of the side-gate on suppression of short 

channel effects weaken, but the relative contribution of the Cg1g2 also reduces. 

All of the devices benefit from the reduction in the peripheral leakage currents. 

Narrow channel devices benefit more in suppression of short channel affects, wider 

devices do not experience significant increase in parasitic capacitances, hence the 

side-gated approach can be implemented in VLSI circuits successfully using the 

flexibility of employing devices with different channel width and gate length.  

4.7 Channel optimization for sensor application 

The device parameters are needed to be optimized for high sensitivity charge 

detection using these devices. The channel width of the FET is needed to be as small 

as possible for increased spatial resolution and for increased current response to the 

charge perturbations on the channel. The effect of a charge perturbation is larger if the 

capacitances coupling the channel to the surrounding electrodes are minimized. This 

can be achieved by employing thicker top-gate and side-gate dielectrics. 

The current in ultra narrow channel devices are very sensitive to trapping and 

untrapping events take place at the device interfaces. The defect density is much larger 

at the Si-Si3N4 interfaces compared to Si-SiO2 interfaces. The Si3N4 layer on the 

edges of the channel can be recessed using HF after tunnel formation and a thin oxide 

can be formed on the device edges in order to minimize the noise contribution of the 
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defects at the interfaces. This will also allow increased confinement of the electrons to 

the central section of the device. 

If the channels are intended to be formed on the two edges of the active area, 

making use of the positive fixed charges at the interfaces (Figure 4.69), the channel 

width should be chosen to be wider. However the width of the device should be 

chosen such that subthreshold leakage in the central part of the active area is much less 

than the current flowing in the inversion layers forming on the two edges of the active 

area. One of the two channels forming at the edges of the device can be kept off and 

the subthreshold leakage in the central portion of the device can be adjusted through 

angled implants. This approach is limited with the diffusion of the dopant atoms in the 

later high temperature steps. 

The approach of confining the electrons to the edges of the device can increase 

 
Figure 4.69  Simulated potential profile of a 12 nm wide channel with side-gates. 
The side-gates are negatively biased, the top-gate is positively biased. Qint = 3 x 1010 
cm-2 [51]. 



 

 

125

the current confinement down to 1 nm regime (Figure 4.70), however, it is more prone 

to current fluctuations due to trapping and untrapping events which take place at the 

interfaces. 

4.8 Side-trapping non-volatile memory 

As it is demonstrated in the section 4.4.7, is possible to change the threshold 

voltage of the planar narrow channel devices significantly by changing the side 

potentials of the side-gated FET. This suggests that it is also possible to trap charges 

on the two sides of the channel in order to change the threshold voltage of the device, 

hence operate as a non-volatile memory. The side dielectrics of the fabricated 

prototypes are silicon nitride, which has a large density of traps. It is possible to trap 

charges in the nitride between the side-gate and the channel in order to demonstrate 

this concept. 
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Figure 4.70  Cross sections of simulated potential profile and electron density at the 
top interface for Vside = -1.5 V (solid) and Vside = -3 V (dashed) [51]. 
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The transfer characteristics (Id-Vg) of a side-gated FET with tox = 7 nm is 

measured with Vside = 0 V (right curve in Figure 4.71). The device is then biased with 

Vside = +3 V for 30 seconds in order to inject charges into the nitride layer serving as 

side-dielectric. Next, Id-Vg characteristic is measured again with Vside = 0 V as before 

(left curve in Figure 4.71). The transfer characteristics of the device before and after 

“write” operation show a Vt shift of 1.3 V. This significant Vt shift results in a 

maximum current level change by a factor of approximately 106. This result suggests 

that side-trapping architecture is a viable approach to making non-volatile memory 

devices. If the side dielectrics are deposited as oxide/nitride/oxide stack or oxide with 

embedded Si nano-crystals instead of silicon nitride, the side gated device can be used 

as a side SONOS memory with side interface storage and high speed read from top 

transistor. This concept is similar to back gated SONOS memory demonstrated by H. 

Silva & S. Tiwari [66]. 
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Figure 4.71  Weff x Leff < 0.2 µm x 0.33 µm , Vside= 0 V for read, Vside= +3 V for 30 
seconds for write. Effective device width is estimated from the design dimensions 
and a set of measurements performed on an array of devices with different 
dimensions. The actual device width may be smaller than 0.2 µm. 
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The possible advantage of this structure is utilizing combination of quantum 

confinement effects and electrostatics in ultra narrow channel structures to change the 

Vt, while the electrostatic effect of the charges are enhanced due to charges stored on 

both sides of the channel. This device structure can be scaled down smaller than the 

standard floating gate FLASH structures since the control oxide of the device can be 

made very thin, suppressing the short channel effects, as in the case of [66]. This 

structure also has isolated read operation, using the top gate which would not perturb 

the stored charges on the two sides of the channel. 

4.9 An instrumentation anomaly 

In the case of some of the narrow channel devices the transfer characteristics 

measured with HP 4145B parameter analyzers showed significant changes in the 

transfer characteristics depending on the applied side-gate bias. The transfer 

characteristics of a narrow channel side-gated device with 19 nm Si3N4 side-gate 

dielectric and top-gate dielectric of 7 nm SiO2 is as seen in Figure 4.72 (left) for Vside 

= -0.5 V. This device is not annealed in H2/N2 ambience, hence the defect density is 

expected to be higher than those devices reported in sections 4.4.4 - 4.4.7. As the Vside 

varied from -0.8 V to -1.6 V subthreshold slope of the device seem to degrade 

significantly and the current level of the device start changing in a very non-linear 

fashion. The current seems to be settling at some certain current values for Vside ~ -1 V 

and for higher negative side-gate biases sudden drops in the current level is observed. 

The periodicity of these drops and the amount of reduction in the current level change 

consistently as the negative side-gate bias is increased. In the case of -1.6 V < Vside < -

1.8 V this dependency on the side-gate bias is clearly observed (Figure 4.73). For Vside 

= -1.8 V the current level drops down by a factor of 30 as the Ids reaches 1 nA. In all of 

the figures seen in this section Id and Is are plotted together. In some of the plots slight 
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differences between Id and Is are visible for some Vg values, however the difference in 

these current levels are extremely small. This suggests that the drops observed in Id are 

real and not due to leakage into other terminals.  

Repeated measurements on the same device with the same bias condition have 

resulted in significantly repeatable results (Figure 4.74). The drop in the current level 

is consistently taking place around 1 nA. In most measurements, the current level 

drops down by approximately 30 times and in some cases it only drops down by a 

factor of 2. The measurements were repeated by using a different 4145B parameter 

analyzer and very similar results were obtained. 

In order to understand the effect of charge trapping on the device behavior, 

hysteresis measurements are performed. After taking a forward sweep, going from Vg 

= -2.5 V to 2.5 V, another sweep is started after a few seconds going from Vg = 2.5 V 

to -2.5 V (Figure 4.75). This measurement showed that there is a very significant 

change in the current level at the start of the reverse sweep and the current level 

significantly drops down to below 50 fA for Vg < 1.5 V. 

The existence of significant hysteresis in the transfer characteristics suggest 

that there is a very significant influence of charge trapping in the device characteristics. 
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Figure 4.72  Transfer characteristics obtained for small Vside using short integration 
time (left) and for larger Vside values using medium integration (right). 
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However it was not very clear why we would be observing the zigzag behavior in the 

current level. 

Electrical measurements conducted on nano-crystal memory structures [67] 

with H. Silva using an Agilent 4156C parameter analyzer has resulted in similar 

sudden drops in the current level and zigzag pattern for certain bias conditions. 

Monitoring the parameter analyzer while making the measurements, we have observed 

that the parameter analyzer spends more time at some bias conditions as the current 

level moves from one decade to the next. This significant change in the time scale of 

the measurement is not observed in standard logic FETs as such presented in sections 

4.4.4 - 4.4.7. This is probably due to a combination of more than one phenomenon. 
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Figure 4.73  Sudden drops in current is observed as the current value approaches 1 
nA. The number of peaks observed in the measurement window consistently 
decrease as negative Vside is increased. 
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As it is demonstrated in the previous section, it is possible to inject charges 

into the nitride on the two sides of the channel which results in significant change in 

the threshold voltage of the device. The amount of threshold voltage shift observed in 

the device depends on the amount of charges stored in the nitride, location of the 

charges and the width of the channel. The width of the channel can have slight 

variations due to processing. The defect locations in Si3N4 and Si-Si3N4 interface and 

the time required to trap and detrap charges from these defects have significant 

variations. Since there is no oxide barrier layers on either side of the nitride layer the 

traps in the Si-Si3N4 interface and inside Si3N4 film in close proximity to the interfaces 

can get filled and emptied rather easily. These traps can be filled or emptied during the 

time period of a voltage sweep performed to acquire the transfer characteristics of the 

device. 

The traps filled with electrons increase the Vt of the FET. Some of these traps 

are filled during the period of the gate voltage sweep, which result in a continuous 

change in the Vt of the device during the measurement. At every decade HP 4145B 
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Figure 4.74  Consistent current drops observed in repeated measurements. 
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spend slightly more time in acquiring data, this is probably due to amplifier switching 

in the parameter analyzer. During this switching period, the current level in the device 

continues to decrease due to continuous injection of changes, hence Vt shifts. Since 

the current level is dropped below the threshold value of the current required to switch 

the amplifier for sensing a larger value of current, the parameter analyzer switches 

back to the earlier sensitivity level. During this time period, which can be as long as 1 

sec, the current level drops down significantly. As Vg is further increased, the current 

level is again increased to a threshold level, such as 1 nA. This results in the repletion 

of what has been taking place at this current level. This process, repeated for increased 

Vg values, result in a zigzag pattern in the current level. 

In the case of the reverse sweep, the current level for Vg = 2.5 V is 

significantly high, suggesting that the Vt of the device is low, hence significant portion 

of the traps are empty. As the measurement started, the traps get filled as in the 

forward sweep. However, this time Vg is continuously reduced and any extra time 

-4 -2 0 2 4
10-15

10-10

10-5

Vg (V)

I d
(A

)

Vside=-1.8 V

 
Figure 4.75  Hysteresis measurement on the same structure. 



 

 

132

spend in amplifier switching results in a drop in the current level, which is observed as 

improved subthreshold slope (Figure 4.75). 

The particular device analyzed in this section exhibits a Vt shift larger than 4 V 

during the measurement of transfer characteristics. This suggests that the current 

limiting section of the channel is rather small and the trap density on the two sides of 

the device are significantly high. Experimentalists working on charge trapping devices 

should be cautious about similar instrumentation anomaly. 

4.10 Transconductance oscillations 

It is possible to observe single electron effects in the ultra narrow channel 

devices. The single electron effects become more dominant as the device width is 

scaled down. It is possible to shrink the device width down by applying larger 

negative biases on the side-gates of a side-gated narrow channel transistor. The filled 

traps on the two sides of the channel also have a strong contribution on the channel 

potential, hence can lead to further reduction in the channel width. Due to non-uniform 

filled 
traps

- Vside

- Vside

Source Drain

 
Figure 4.76  Schematic view of effect of non-uniformly distributed filled traps on 
the two sides of a narrow channel side-gated FET with strong side-gate biases. The 
channel may be pinching off at various locations forming one or more quantum dots 
inside the channel. 
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distribution of these traps, it might be possible to achieve isolated potential wells 

along the channel of the device forming quantum dots (Figure 4.76). These 3D 

confined areas can lead to coulomb blockade oscillations. If the region of electron 

confinement is small, these oscillations may be observable at room temperature. 

However, due to instrument related complications of charge trapping devices, 

observations of narrow channel device behavior should be done at a bias regime where 

it is known that there is not any contribution of the instrumentation in the 

measurements. In order to eliminate the problems described in the previous section, 

the devices are biased with a large Vside value which keeps the current level below the 

1 nA level where amplifier switching seems to be resulting in sudden current drops. 

Experiments conducted on some of the devices showed that these are some 

non-linear changes in the current level during Id-Vg sweeps conducted at room 

temperature (Figure 4.77). Although the repeated measurements do not reveal the 

same exact transfer characteristics, all of the measurements showed these non-linear 

behavior in Ids. The first derivative of the transfer characteristics show clear 

transconductance oscillations for two different side-gate bias conditions in Figure 4.78. 

Figure 4.79 show the transfer characteristics for Vside = -3 V for 3 V < Vg < 4 

V. The solid dots in the plot show the actual measurements of Id and |Is| and the solid 

lines are formed by using a moving average of the data. In this regime there are two 

clear plateaus in Id and Is. Transconductance in the -2 V < Vg < 4 V show clear 

oscillations corresponding to these plateaus and also some smaller oscillations (Figure 

4.80). The oscillation amplitude is smaller for Vside = -3.1 V case. For Vside = -3.1 V 

the transconductance calculated from Id and |Is| slightly differ. 
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Figure 4.77 Transfer characteristics of a side-gated FET after a write bias for Vside = 
-3 V, -3.1 V. Data is taken with 25 mV steps in Vg. 

-4 -2 0 2 4
-1

0

1

2

3 x 10-12

Vg(V)

dI
d/d

V g, d
I d/d

V g (A
/V

)

 
Figure 4.78  Transconductance as a function of top gate bias for Vside = -3 V, -3.1 
V. 
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Figure 4.79 Transfer characteristics of a side-gated FET for 3 V < Vg < 4 V after a 
write bias for Vside = -3 V. Zoomed in version of Figure 4.77. The points are actual 
measurements, the solid lines are constructed through a moving average. 
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Figure 4.80  Transconductance as a function of top gate bias for 3 V < Vg < 4 V and 
Vside = -3 V, -3.1 V. Zoomed in version of Figure 4.78. The points are the actual 
measurements, the solid lines are constructed through a moving average. 



 

 

136

It is very hard to identify the reason for these transconductance oscillations. 

One dominant contributor is the charging of the traps. If the charging of the traps are 

resulting in formation of 3D confinement regions, these regions change over time and 

also as the Vg is varied. Although there is not conclusive evidence, the oscillations are 

possibly due to the combined effect of both, charging during the measurement and 

formation of isolated quantum dots inside the channel region. Further studies should 

be conducted on a system where the nitride trapping layer is isolated from the channel, 

the side-gate and the top-gate with thin oxide layers. In this configuration the charges 

can be kept in the traps for a longer time and detailed transconductance measurements 

can be conducted. 

4.11 Low-power resonant gate AC Write/Erase DC read non-volatile 

memory for RF-ID applications and RF imaging schemes 

FETs which can be fabricated utilizing HF resistant STI structure, using silicon 

nitride as isolation material with excellent transistor characteristics, allow a number of 

other possible device architectures where a released polysilicon gate can be integrated 

with the FET structure. This possibility can be utilized by making use of high 

frequency mechanical resonant response of short polysilicon beams in very close 

proximity to the channel of the transistor [10]-[14]. 

4.11.1 Non-volatile memory 

A very promising device architecture is a floating gate memory structure where 

the control gate of the transistor is suspended over the floating gate, where the only 

isolation material between the control gate is air (or vacuum)(Figure 4.81). With the 

application of a small AC signal corresponding to the resonant frequency of the 

polysilicon beam, forming the control gate, the control gate can be made to touch the 

top surface of the floating gate of the structure in each cycle. In this manner the 
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floating gate of the transistor can be brought to the electric potential of the control gate 

through the transfer of the charges. The floating gate can be charged to the desired 

level by application of a DC bias on the control gate. When the AC signal is removed, 

the control-gate stops its movement and the transistor can be operated with a DC bias. 

Depending on the charge level of the floating gate, the transistor can read a high 

current or a low current at the read bias just as in a standard floating-gate non-volatile 

memory. 

The gap between the floating gate and the resonant control gate can be made to 

be smaller than 10 nm using the HF release process. The bottom dielectric, between 

the floating gate and the channel, can be made out of silicon nitride. The resonant 

response of the gate can be designed to be in the 1 GHz to 10 GHz range depending on 

the details of the structure. 

The low power operation of this non-volatile memory structure makes this 

approach a very attractive solution for rewritable RF-ID tags where the power is 
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area
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Support resting 
on field isolation  

Figure 4.81  Schematics illustration of the resonant gate non-volatile memory 
structure. The resonant-control-gate is suspended over the floating gate. Charge 
transfer is carried out by physically contacting the control-gate to the floating gate  
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delivered to the device through radiative coupling and it is difficult to achieve > 10 V 

of write-erase voltages required by standard floating-gate memory structures. 

The resonant nature of the write-erase process makes it possible to implement 

some level of frequency domain addressing of the devices, where application of a 

signal with different frequency components can selectively write or erase devices. 

This allows connecting the gates of the devices with different resonant frequency 

together in a high density array. This scheme maybe particularly useful for write-erase 

processes for close proximity RF-ID devices where the memory elements can be 

written or erased all at once by direct radiative coupling of the signal onto the whole 

array. 

The side-gated device architecture gives increased flexibility in this memory 

structure since the side-gate of the structure can be used as an additional electrode to 

tune the necessary electrostatic force required to get the anticipated mechanical 

response from the resonant gate. 
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Figure 4.82  Alternative resonant-gate non-volatile memory structure which can 
possibly achieve a higher level of charge density in the floating gate. 
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It is also possible to achieve DC write & erase with application of larger biases 

between the control gate and channel / side-gate. This can possibly be used to achieve 

high speed ‘block-erase’ as well as for the applications where the write-erase voltages 

are not required to be extremely low. 

A slightly different structure can be formed by modifying the floating gate to 

form a ring around the control gate in order to achieve high level of charge density 

with very small amount of power (Figure 4.82). In this case the charges deposited on 

the floating gate are expected to distribute themselves on the outer periphery of the 

structure allowing a higher level of saturation charge which can be achieved on the 

floating gate (Figure 4.83). 

In this case, capacitive coupling to the sides and the top surface of the floating 

gate are needed to be adjusted properly in order to maximize the effect of the stored 

charges during read operation. If the capacitive coupling to the top portion of the ring 

forming the floating gate is stronger than the bottom part, the charges would move to 

the bottom part of the ring, between the gate and the channel of the device as a large 
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Figure 4.83  Schematics showing the charge transfer process from the charge pump 
to the resonant gate (top) and from resonant gate to the floating gate (bottom)  
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bias with the same sign of the stored charges is applied to the gate (Figure 4.84). If the 

capacitive coupling to the bottom portion is stronger, the stored charges would move 

to the top portion. 

4.11.2 Microwave imaging 

There is a demand for low cost, high frequency microwave imaging arrays for 

detection of metal objects for high speed, remote sensing for security purposes [67]. 

Resonant gate non-volatile memory architectures seen in Figure 4.81 - Figure 4.82 are 

viable low-cost approaches which can be implemented in these high frequency 

imaging arrays. The beam designs can be made to correspond the resonant response of 

the gate structure with the frequency of the RF signal used for imaging. Gates are 

needed to be either designed to serve as the miniature antennas, or they should be 

attached to miniature on chip antennas. After the image capture process, the data can 

be read from the devices at a much lower speed which can easily be handled by the Si 

circuitry.
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Figure 4.84  Schematics illustration of movement of stored charges during read 
operation. Positive charges can move down (left) or up (right) depending on the 
capacitive coupling ratios to the bottom and top. 
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5 aF Resolution Split C-V Characterization of Nanoscale 
FETs using Random Fluctuations 

5.1 Introduction 

Carrier mobility and effective device dimensions are important parameters in 

CMOS design [54]-[57]. Modern deep submicron FET structures exhibit significant 

edge and stress related effects [14], and non-uniform distribution of carriers due to 

complicated electric field pattern [41][50]. Due to these effects, which vary with 

device dimensions, parameters such as carrier distribution and mobilities, effective 

device width (Weff) and length (Leff) can only be extracted using C-V measurements 

performed on the specific small scale devices. Techniques for high resolution 
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Figure 5.1  ∆Cg-s/d and ∆Gg-s/d characteristics of a side-gated device. Average of 177 
sweeps using 45 mV AC signal with 8 point average at each Vg (Vside = -1.5 V). 
Capacitance data has a resolution of 0.5 aF and σC = 4.0 aF for 1.2 V < Vg < 2.4 V. 
Inset shows the distribution in acquired C for a fixed bias condition. 



 

 

142

capacitance measurements are also needed to quantify the high carrier mobilities (µeff) 

reported for carbon-nanotubes [60] and mobilities reported for semiconducting 

nanowire transistors [61]. In order to avoid capacitance contribution from interface 

states, room temperature C-V measurements should be performed at a frequency 

higher than 200 kHz [58]. Capacitance extraction from frequency dependent RF 

measurements are reported down to a few fF resolution [62][63], Wafer level 

measurements with down to 0.1 fF resolution using an RLC meter have been reported 

in [64], however, source/drain dopant gradings are not accounted for, resulting in 

significant underestimation of hole mobility. In this chapter, reliable wafer level 

measurements of gate to channel capacitance on side-gated bulk Si nMOSFETs [5][41] 

are demonstrated down to 0.5 aF resolution and 4 aF standard deviation (Figure 5.1) 

using 45 mV, 1 MHz AC signal by taking advantage of random fluctuations [34]. 

Using this technique effective device dimensions and carrier mobilities of the side-

gated devices are extracted. The resolution can be improved and the required time for 

the measurement can be reduced significantly if 100 mV AC signal is used (Figure 

4.27 inset). 

5.2 Experimental details 

Wafer level C-V measurements are carried out by using a HP 4275A RLC 

meter operated at 1 MHz with 20-45 mV AC signal amplitude. The probe station is 

encapsulated in a shielding box, isolating the ambient electrical noise and reducing the 

mechanical perturbations on the probes caused by the ambient air currents. Signal 

output (low) is connected to source and drain, and signal (high) is connected to the 

gate through 16048A Test Leads with 1 m coaxial cables, through contacts on the 

shielding box, short coaxial cables and low frequency probes (Figure 5.2). The bias 

voltage applied by HP 4275A RLC meter is measured by a multimeter. The RLC 
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meter and the multimeter are software controlled by a PC through the GPIB network 

(Section 7.2.3). 

Pad to substrate overlap capacitances are bias dependent for semiconducting 

substrates and are much larger than the inversion layer capacitance of small scale 

devices. Although this constitutes a significant problem in determining the gate-to-

substrate capacitance (Cg-sub), it is possible to measure the changes in gate to 

source/drain capacitance (Cg-s/d) accurately when the system is calibrated. The 

variation in the source/drain to gate contact parasitic capacitance is in the order of 50 

aF within the -2 V < Vg < 3 V range for the measured devices. This change in the 

parasitic capacitance is non-linear, however, since it is in parallel with the change in 

Cg-s/d it can be subtracted out. In order to subtract out this parasitic component, C-V 

measurements should be performed on devices without gates but with same pad and 

contact configuration. The details of this procedure are explained in section 7.2.5.3 

(page 181). 

The short-calibration of the system is carried out only once by disconnecting 

the coaxial cables off the gate and drain probes and connecting them together through 

 
Figure 5.2  Schematics of the electrical connections for the C-V measurements. 
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a transmission line approximately twice the length of one probe extension which 

connects the probe needle to the coaxial cable. The open-calibration is carried out at 

the beginning of each sweep with the probes contacted to the pads and Vg = 0 V in 

order to remove the parasitic contribution of the contact pads. The threshold voltages 

(Vt) of the measured FETs are around 0.3 V. 
In a system where the fluctuation level exceeds the measuring instrument 

resolution, resolution is no longer limited by the resolution of the measuring 

instrument [65]. Hence, there is an optimum level of noise, in the order of the 

resolution limit of the instrument, known as stochastic resonance [34]. Increase of 

noise after this level degrades the signal to noise ratio, hence the standard deviation. 

As the signal + noise from repeated measurements are averaged, the capacitance value 

can be obtained with high precision. The standard deviation in the average decreases 

with the square root of the number of readings (N) and the precision increases linearly 

with N. 
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Small changes in the orientation and the placement of the probes lead to 

sudden jumps of 0.1 - 0.5 fF in capacitance and/or 1 - 5 nS in conductance (G) offset 

values. The angled probes used to make pressure contact to the pads, in wafer level 

testing, are prone to slight changes in the orientation and placement over time. 

Minimizing the time for completing full traces, reduces the probability of these 

changes during the sweeps. Even though, changes in the offset values during a sweep 

make the acquired data unusable, changes between two sweeps are undisruptive. 

Using an HP 4275A RLC meter, 0.1 fF resolution capacitance data can be acquired 

every 1 second with a fluctuation level of around 0.5 fF (Figure 5.1 inset). Averaging 
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6-10 readings at every bias point was found to be sufficient for easy detection of any 

sudden changes in offset values in our setup. 

5.3 Analysis  

C-V traces which do not exhibit sudden discontinuities in C-V or G-V data are 

selected and averaged (Figure 5.1, Section 7.2.5). The C-V and G-V data have 

arbitrary offset values depending on the open-calibration conditions. If the change in 

measured quantity is monotonous, such as the conductance value obtained in our 

measurements, absolute value of the measured quantity cannot be achieved. However, 

in an FET structure the Cg-s/d -Vg relationship has two characteristic slope changes; 

first at the onset of inversion (m0 to m1) and second as the device gets into strong 

inversion (m1 to m2) (Figure 5.1) [21]. Initial slope (m0) in the C-V data is related to 

the changes in the g-s/d overlap capacitance due to accumulation of the holes in the 

gate oxide - silicon interface when the device is off [21]. m0 is independent of Leff , 

scales linearly with Weff  and it is more pronounced as the g-s/d overlap length scale 

becomes comparable to Leff. Onset of inversion is calculated by fitting a line to the 

linear part of the C-V data below the m0-to-m1 kink and identifying the point where 

the data deviates by 3σm0 from the fit, where σm0 is the standard deviation in the fit 

(Section 7.2.5.3). 

It is possible to extract Weff of the fabricated devices by plotting Cinv as a 

function of design width (Wmask) for a constant design gate length (Lmask) (Figure 5.3a). 

The intercept of the linear fit to the data (∆W) gives the difference between Wmask and 

Weff [50]. The accuracy of extracted absolute Cinv value is verified by plotting Cinv as a 

function of maximum transconductance (gm) data obtained from Id-Vg measurements 

performed on the same devices (Figure 5.3b). Cinv is -12 aF ± 183 aF for gm = 0 mA/V 

as obtained from a linear fit, verifying that Cinv is extracted accurately from the C-Vg. 
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data. The error in the fit is dominated by errors on the active and gate level masks and 

process variations. 

5.4 Application of this technique for fA resolution current 

measurements 

The technique used for achieving aF resolution capacitance data can be applied 

to current measurements to achieve a resolution much better than the current 

measuring equipments resolution limit. The resolution limit of an HP 4145B 

parameter analyzer is 50 fA in the highest sensitivity range. The typical reading 

obtained from this parameter analyzer is as seen in Figure 5.4 when the probe is lifted 

slightly above the pads to disconnect the probe from the device. The ambient noise 
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Figure 5.3  (a) Cinv versus Wmask for Lmask = 1.5 µm. Inset shows cross-section 
schematics of a side-gated FET. (b) Cinv versus gm for the same devices. Dashed lines 
are linear fits to the data. 
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results in slight deviations from zero in the measured current, while the grand majority 

of the data points are measured to be zero. By averaging a large number of traces as 

such, it is possible to get a good measure of the leakage currents in the probe and cable 

assembly which are less than 50 fA (Figure 5.5). 

The drain to substrate current can be measured in the same manner after the 

probe is connected to the drain of a side-gated device and sweep the side-gate bias. 

Averaging a large number of traces shows that the minimum leakage current in a 

reverse biased drain to substrate diode is less than the leakage current in the probe and 

cable assembly used to carry out the measurement (Figure 5.5). The leakage currents 

in the setup are in the order of 10 fA, 5 times smaller than the resolution limit of the 

instrument. It is possible to obtain a measure for the lowest level of current leakage in 

the drain to substrate diode by subtracting the measured leakage currents in the setup 

from the values obtained from the current measurement performed on the drain to 
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Figure 5.4  A typical drain current reading when the drain probe is lifted. The reading 
is intended for estimation of leakage current in the probe and cable assembly. The 
resolution limit of the parameter analyzer is 50 fA. 
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substrate diode. It is possible to achieve a very reliable measure of the leakage currents, 

with better than 10 fA resolution if a larger number of measurements are performed. 

5.5 Conclusion 

In this chapter it is demonstrated that the absolute capacitance information of 

the inversion layer in nanoscale FETs can be extracted with sub-aF resolution using an 

instrument with 0.1 fF resolution in a split C-V setup by utilizing the random 

fluctuations in the system and non-linear response of gate to source/drain capacitance. 

The resolution of the measurement is only limited by the total acquisition time. 

Accuracy of calculated inversion layer capacitance depends on how well the onset of 

-2 -1.5 -1 -0.5 0
Vside (V)

I d 
(A

)

10-15

10-13

10-11

10-9

drain 
current

equipment 
resolution

back-ground leakage

Vd = 0.1 V

 
Figure 5.5  Average of 114 I-V measurements of drain to substrate reverse biased 
diode (solid) and average of 143 I-V measurement of the drain leakage when the 
drain probe is not connected to the pad (gray dots). The dashed line shows the 
parameter analyzer’s resolution limit of 50 fA. The leakage current measured for the 
diode is less than the current leakage in the probe and cable assembly. 
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inversion is extracted. Using the capacitance information, reliable effective carrier 

mobility and effective device dimensions of nanoscale FETs with complicated 3D 

geometries, nanowires, nanotubes, and device-dependent stress variations can be 

extracted. It is possible to achieve fA resolution current measurements using the same 

technique. 
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6 Conclusions 

A nanometer scale air-gap FET structure integrated with on-chip microfluidic 

delivery system is successfully fabricated using silicon nitride based shallow trench 

isolation scheme. The processes developed for the fabrication of the transistor, using 

optical lithography, allow the scaling of the channel width of the transistors below 10 

nm, and formation of tunnels with less than 10 nm in height, passing between the gate 

and the channel, by removal of sacrificial oxide. Achieving good electrical 

performance in the FET operation at narrow widths is critical for the desired high level 

of sensitivity. The relative contribution of peripheral electrical leakage at the active-

isolation interfaces become increasingly important as the device width is scaled down. 

These leakage currents degrade the device sensitivity and result in increased noise. 

The side-gated approach resulted in effective suppression of peripheral leakage 

currents. In addition, short channel effects are significantly suppressed in narrow 

channel devices, which in turn permit gate length scaling beyond the scaling limits of 

standard planar bulk MOSFETs. In the case of ultra narrow channel devices, 

significant threshold voltage tunability is achieved. 

Suppression of peripheral leakage currents leads to close to ideal DC 

performance with less than 65 mV/dec subthreshold slope and Ion/Ioff > 6 x 1010 in 

wide and long channel devices. In the case of narrow channel devices, negative bias 

on the side-gates accumulates holes in the volume between the source and the drain 

junctions, reducing the junction depletion depth, and raising the potential barrier 

between the source and drain. Hence, short channel effects are totally eliminated, as 

demonstrated for devices with 40 nm effective width, 150 nm physical gate length 

exhibiting DIBL = 2 mV/V. Drive currents exceeding 1.5 mA/µm and Ion/Ioff > 2 x 109 

are achieved in sub-70 nm channel length devices. 
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In the ultra narrow channel side-gated devices, where the device width is 

reduced down to sub-10 nm, significant threshold voltage response to side-gate bias is 

observed. The electrostatic threshold voltage tunability range exceeds 2.5 V with an 

average sensitivity of δVt/δVside = -1.55 V/V, higher than any of the threshold voltage 

tunable devices reported so far. The sensitivity exhibits a quadratic behavior with 

maximum δVt/δVside = -2.5 V/V and minimum δVt/δVside = -0.8 V/V for -0.3 V < Vside 

< -2 V leading to a threshold voltage variation from 1.4 V to 4 V. 

The performance parameters for side-gated devices are comparable or better 

than state-of-the-art silicon devices used for high-performance and low-power VLSI 

applications. Threshold voltage tunability achieved in narrow and ultra-narrow 

channel side-gated devices allows implementation of power adaptive circuits and the 

use of this structure as a multi-gate building block for analog circuit applications. 

Planar side-gated ultra-narrow width device architecture can be used for 

detection of localized charges over long biomolecules. This device architecture allows 

electrostatic confinement of electrons to the central part of the silicon channel, which 

is expected to minimize the current fluctuations due to the interface traps on the two 

sides of the structure, while improving the spatial resolution of the sensor. The 

demonstrated results suggest that it is possible to achieve single nucleotide resolution 

using the side gated FET based sensor where the channel width can be electrostatically 

reduced down to 2 nm. In this case, the data acquired from the sensor would be a 

convolution of potential perturbations due to 6 nucleotide long molecule sections. A 

signal processing scheme is needed to extract the sequence information from the time-

domain information obtained from the sensor. 

Using the side-gated device architecture, it is possible to reduce the channel 

width down to slightly less than 2 nm by confining the channels to the two sides of the 

active area instead of the center, utilizing the contribution of the positive interface 
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fixed charges and tuning the side-gate biases. This approach can increase the spatial 

resolution; however, current fluctuations due to trapping events at the Si-SiN interface 

can deteriorate the device sensitivity. 

The ultra-narrow channel device structure should be engineered to minimize 

the inversion layer width, channel capacitance, and the fluctuations in the current level 

due to traps in order to achieve the required sensitivity to the variations in local 

charges on the sample, which are separated by 0.34 nm in the case of DNA and RNA. 

Side-gated device architecture has served as a very valuable diagnostic tool, 

allowing evaluation of the leakage currents, their causes and level of sensitivity which 

can be achieved from ultra narrow-channel devices. As a result of this diagnosis, an 

ultra-narrow channel pFET device utilizing silicon nitride STI and the processes 

described in this thesis came into sight as a possible alternative for achieving high 

sensitivity and spatial resolution. In the case of a pFET, the positive fixed charges at 

the Si-Si3N4 interfaces would rather enhance the device performance by reducing the 

leakage currents and increasing the channel confinement. These positive fixed charges 

would suppress the drain to source peripheral leakage currents. The drain to substrate 

leakage is also expected to be very low, due to accumulation of low-doped body-STI 

interface. Significant confinement of holes to the central part of the device would be 

achieved, resulting in effective device width much smaller than the physical 

dimension for sub-10 nm channel widths. This potential well for holes, formed in the 

central part of the channel, can be as effective as a potential well formed by side-gate 

biasing in an nFET, and it can further be enhanced with the employment of a 

positively biased side-gate structure in the pFET. 

The ability of shifting the threshold voltage of the device by storing charges on 

the two sides of the narrow channel enables the side-gated device geometry to be used 

as a non-volatile memory structure. This approach utilizes the combined effect of 
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electrostatics and quantum confinement effects. The decoupled write/erase and read 

operations of this structure and the ability of changing the threshold voltage beyond 

1.3 V make this structure a good candidate for extending the scalability of FET based 

non-volatile memories into sub-50 nm gate length range. 

Compatibility with HF release processes, using silicon nitride device isolation, 

provides increased flexibility for integration of HF-released active and passive 

elements, such as resonant gate structures, with electronics for a variety of different 

applications including alternative non-volatile memories and sensors. The side-gated 

device architecture allows use of high-K and low-K isolation materials for a large 

number of applications and achieves very low levels of leakage currents. Side-gated 

devices with sub-10 nm channel width can be used to study quantum effects in 

extremely confined geometries. The use of optical lithography and CMOS compatible 

processes for building these structures makes it possible to build large number of 

devices in a cost efficient manner. This also allows building of very large scale 

integrated circuits with ultra narrow devices which exhibit non-classical behavior. 

Mobility and carrier concentration of ultra-small devices, nanowires and nano-

tubes can be studied through C-V measurements conducted on the actual small-scale 

devices using the described sub-aF resolution C-V measurement technique. This 

technique, utilizes ambient noise in order to achieve a resolution more than 100 times 

better than the resolution of the equipment used for the measurements. The accuracy 

of the technique relies on non-linear behavior of the measured C-V characteristics 

since the parasitic capacitances in the system are several orders of magnitude larger. 

Inversion layer capacitance in FET structures can be extracted with aF accuracy 

making use of the non-linearity in the source/drain to gate C-V characteristics. The 

ability to directly measure these small capacitances can lead to a better understanding 

of carrier transport in highly confined geometries.
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7 Appendix 

7.1 Details of fabrication process 

The details of the side-gated device fabrication, monolithically integrated with 

microfluidic delivery system is given in a table format as below. The masks used for 

the process are named as ‘ALI 0 ALIGN’, ‘ALI 1 STI’, etc. 

 
 Task Tool Process Par. 1 Par. 2 Par.3 Rate 

1 
Alignment 
Marks   RCA Clean         

2   
MOS Oxide 
Furnace 

Wet 
oxidation 1000 C 40 min 

300 
nm   

3   
YES wafer 
priming oven 

vapor 
prime 
HMDS   30 min     

4     spin resist 620-7i 
4000 
RPM 60 sec   

5   Hot plate Bake   90 C 75 sec   

6   AutoStep 
ALI 0 
ALIGN 0.35 sec F=0     

7   Hot plate Bake   115 C 75 sec   
8     Develop 300 MIF 90 sec     
9 Etch Si Aura 1000 Descum D O2 heated 15 sec   

10   Oxford 80  etch oxide 
CHF3 / 
O2 15 min 

300 
nm 

~ 30 
nm/min 

11   Oxford 80  etch resist O2 10 min   
~ 100 
nm/min 

12   Oxford 80  etch oxide  
CHF3 / 
O2 1 min   

~ 30 
nm/min 

13   PT 720 etch Si 
Cl2 & 
BCl3 10 min 1 µm 

~ 100 
nm/min 

14 STI 
YES wafer 
priming oven 

vapor 
prime 
HMDS   30 min     

15     spin resist 620-7i 
4000 
RPM 60 sec   

16   Hot plate Bake   90 C 75 sec   

17   AutoStep ALI 1 STI   
0.35 
sec F=0   

18   AutoStep 
ALI 11 
MASK   0.5 sec F=0   

19   
HTG Contact 
Aligner 

expose 
between 
dies   30 sec     
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20   Hot plate Bake   115 C 75 sec   
21     Develop 300 MIF 90 sec     
22   Aura 1000 Descum D O2 heated 15 sec   

23 Etch Si Oxford 80 etch oxide 
CHF3 / 
O2 12 min 

300 
nm 

~ 30 
nm/min 

24   Oxford 80 etch resist O2 15 min   
~ 100 
nm/min 

25   Oxford 80 etch oxide  
CHF3 / 
O2 1 min   

~ 30 
nm/min 

26   PT 720 etch Si 
Cl2 & 
BCl3 10 min 1 µm 

~ 100 
nm/min 

27 
Clean  
Side-Wall   RCA Clean         

28   
MOS Oxide 
Furnace 

Wet 
oxidation 
(no 
Anneal) 850 C 30 min 

40-50 
nm   

29   Diluted HF 
Wet etch 
oxide   

remove 
all 
oxide     

30 
Body 
Doping B implant 

3.5e17 
/cm3 @ 
0.5 µm 
(peak ) 

5e13 cm-2 
100 KeV       

      RCA Clean         

31   
MOS Oxide 
Furnace 

Wet 
oxidation 
( + Anneal) 850 C 30 min 

40-50 
nm   

32   

LPCVD 
Polysilicon 
Furnace P++ poly 600 C 30 min 

100 
nm 

double 
spaced 

33   
MOS Oxide 
Furnace 

Wet 
oxidation 

~ 350 nm 
oxide 950 C 60 min   

34     Anneal 950 C 30 min     

35   Diluted HF 
Wet etch 
oxide 

remove all 
oxide       

36 

SiN STI 
with 
Side-gate 

LPCVD 
Nitride 
Furnace 

Stochiomet
ric Nitride 800 C 6 min 

~ 20 
nm 

single 
spaced 

37 Side-gate  

LPCVD 
Polysilicon 
Furnace n++ poly 

600 C, 
300 mT 

200 
min 

380 - 
400 
nm   

38   GSI PECVD 
low dep. 
Rate ox. 400 C 60 sec 

~ 130 
nm   

39 
photolith - 
Side-Gate 

YES wafer 
priming oven 

Vapor 
prime 
HMDS   30 min     

40     spin resist 897-12i 
4000 
RPM 60 sec   

41   Hot plate Bake 90 C 75 sec     
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42   AutoStep ALI  SG   
0.35 
sec F=0   

43   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

44   Bake   115 C 75 sec     
45   Develop 300 MIF   90 sec     

46 
Etch Side-
Gate  Aura 1000 Descum D O2   15 sec    

47   Oxford 80 etch oxide 
CHF3 / 
O2 5 min   

~ 32 
nm/min 

48   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

49   Oxford 80 etch oxide  
CHF3 / 
O2 1 min   

~ 32 
nm/min 

50   PT 720 etch Si 
Cl2 & 
BCl3 5 min   

~ 100 
nm/min 

51   
wet etch 
oxide   BOE (6:1) 

remove 
all   

~ 100 
nm/min 

52   

LPCVD 
Nitride 
Furnace 

Stoic 
Nitride 800 C 25 min 

~ 150 
nm   

53   

LPCVD 
Nitride 
Furnace 

Low Stress 
Nitride 850 C 

300 
min 

~ 
1100 
nm   

54 
Planar-
ization CMP 

Chuck 25, 
Table 30 
RPM  

Slurry 150 
ml/min 

P=1psi, 
Down 
F=8psi 7 min 

~800 
nm left 

55 Leveling 
Wet etch 
Nitride   49 % HF 1 min     

56 

Touch 
polish to 
get flat Si 
surface CMP 

Chuck 25, 
Table 30 
RPM  

Slurry 
150ml/min 

P=1psi, 
Down 
F=8psi 20 s   

58 Gate Stack  

LPCVD 
Nitride 
Furnace 

High Temp 
Oxide Dep. 850 C 10 min 10 nm 

~ 1 
nm/min 

59   

LPCVD 
Nitride 
Furnace 

Stoic 
Nitride 800 C 10 min 30 nm    

60   

LPCVD 
Polysilicon 
Furnace n++ poly 

600 C, 
300mTorr 

200 
min 

400 
nm    

61 
Oxide Etch 
Mask Dep. GSI PECVD 

Low dep 
rate oxide 400 C 60 sec 

~ 130 
nm   

62 
photolith - 
Gate   

vapor 
prime 
HMDS   30 min     

63     spin resist 620-7i 
4000 
RPM 60 s   
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64   Hot plate Bake 90 C 75 sec     

65   AutoStep 
ALI 1 
GATE   

0.35 
sec F=0   

66   AutoStep 
ALI 11 
MASK   0.5 sec F=0   

67   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

68   Hot plate Bake 115 C 75 sec     
69   Develop 300 MIF   90 sec     

70 
Etch Gate 
Poly Aura 1000 Descum D O2   15 s   

71   Oxford 80 etch oxide 
CHF3 / 
O2 5 min 

slight 
over 
etch 

~ 32 
nm/min 

72   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

73   Oxford 80 etch oxide  
CHF3 / 
O2 1 min   

~ 30 
nm/min 

74   PT 720 

etch Si / 
SiN stop 
on SiO2 

Cl2 & 
BCl3 6 min 

400 
nm / 
30 nm 

100 / 
20 
nm/min 

75 

Self-aligned 
Source / 
Drain    RCA Clean         

76 
Side-wall 
formation 

MOS Oxide 
Furnace 

dry 
oxidation 800 C 30 min 7 nm   

77   implant As 
7° Tilt, 90°  
Rot. 

5e14 cm-2 
30 keV       

78 
Remove  
Mask oxide  BOE (30:1)

 remove 
all    

30 
nm/min 

79   MOS Clean           

80 
Backside 
etch 

Spin resist on 
front side   897-12i 

3000 
RPM     

81   Oxford 80 

etch films 
on 
backside CF4 60 min     

82 
Backside 
Polish CMP 

CMP 
backside 

oxide 
Slurry ~ 9 min     

83   
Hamatech 
Clean           

84   
IPA & 
Acetone 

Strip 
Resist         

85   MOS Clean           

  
Tunnel 
Formation             

86 

Tunnel 
Sacrificial 
Ox. Dep. GSI PECVD 

low dep. 
Rate oxide 400 C 2 min 

~ 250 
nm   
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87 
large 
tunnels   

vapor 
prime 
HMDS         

88     spin resist 897-12i 
4000 
RPM 60 sec   

89   AutoStep ALI  FL2   0.9 sec F=0   

90   AutoStep ALI 7 VIA   
0.45 
sec F=0    

91   

YES oven - 
Image 
Reverse NH3         

92   
HTG Contact 
Aligner 

Flood 
expose    30 sec     

93   Hot plate Bake  115 C 3 min     
94   Develop 300 MIF   90 sec     

95 
Tunnel 
Etch 1 

Thin down 
oxide to 20 
nm BOE (30:1) 7 min     

~33 
nm/min 

96   
Inter. Thick. 
Measurement 

shoot for ~ 
20-25nm 
oxide         

97   Strip Resist 

Spin 
Acetone & 
IPA         

98 
shallow 
tunnels   

vapor 
prime 
HMDS         

99     spin resist 897-12i 
4000 
RPM 60 sec   

100   Hot plate Bake 90 C 75 sec     
101   AutoStep ALI  FL1   0.9 sec F=0   

102   
AutoStep 
(optional) ALI  FL2   0.9 sec F=0   

103   
AutoStep 
(optional) ALI 7 VIA   

0.45 
sec F=0    

104   

YES oven - 
Image 
Reverse NH3         

105   
HTG Contact 
Aligner 

Flood 
expose    30 sec     

106   Hot plate Bake 115 C 3 min     
107   Develop 300 MIF   90 sec     

108 
Tunnel 
Etch 2 

Remove all 
surface oxide BOE (30:1)     

1.5 
min 

33nm/
min  

109   
Inter. Thick. 
Measurement 

shooting 
for ~ 0 nm 
oxide 

over etch 
to remove 
gate mask 
oxide       

110   Strip Resist 

Spin 
Acetone & 
IPA         
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111 
Tunnel Cap 
Nitride Dep. 

LPCVD 
Nitride 
Furnace 

Stoic 
Nitride 800 C   33 min   

112     LS Nitride 850 C 
~ 700 
nm 

240 
min   

113 Fluid Open YES oven 

vapor 
prime 
HMDS         

114     spin resist 897-12i 
4000 
RPM 60 sec   

115   Hot plate Bake 90 C 75 sec     
116   AutoStep ALI  FLOP   0.9 sec F=0   

117   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

118   Develop 300 MIF   90 sec     

119 
Etch Nitride 
open Aura 1000 Descum D 15 sec       

120   Oxford 80 CHF3 / O2 
25 min + 1 
min       

121   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

122 
Empty 
Tunnels 

wet etch 
oxide HF 5-10 min       

123 
Test 
Tunnels 

drop of DI 
water 

under µ-
scope         

124 

Recess 
nitride for 
metal YES oven 

vapor 
prime 
HMDS         

125     spin resist 897-12i 
3000 
RPM 60 sec   

126   Bake Hot plate 90 C 75 sec     

127   AutoStep 
ALI 8 
METAL   0.9 sec F=0   

128   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

129   Oxford 80 CHF3 / O2 
leave 
~150 nm       

130   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

131 Via YES oven 

vapor 
prime 
HMDS         

132     spin resist 897-12i 
4000 
RPM 60 sec   

133   Hot plate Bake 90 C 75 sec     
134   AutoStep ALI 7 VIA   0.9 sec F=0   

135   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

136   Hot plate Bake 115 C 75 sec     
137   Develop 300 MIF   90 sec     
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138 Etch via Aura 1000 Descum D 15 sec       

139   Oxford 80 CHF3 / O2 
leave  
~ 20 nm       

140   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

141 

Open side-
gate 
contact YES oven 

vapor 
prime 
HMDS         

142     spin resist 897-12i 
3000 
RPM 60 sec   

143   Bake Hot plate 90 C 75 sec     
144   AutoStep ALI SG OP   0.9 sec F=0   
145   Hot plate Bake 115 C 75 sec     
146   Develop 300 MIF   90 sec     

147   Oxford 80 CHF3 / O2 
slight 
over-etch       

148   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

149   
wet etch 
nitride  HF 

down to Si 
in vias       

150 

Channel 
oxide 
regrowth 

Dry Oxidation 
Furnace 

shoot for 
~2-3nm 
oxide 700 C 20 min     

151 
Metal 
Contacts YES oven 

vapor 
prime 
HMDS         

152     spin resist LOR-10A 
3000 
RPM 60 sec   

153   Hot plate Bake 160 C 5 min     

154     spin resist 897-12i 
4000 
RPM 60 sec   

155   Hot plate Bake 90 C 75 sec     

156   AutoStep 
ALI 8 
METAL   0.9 sec F=0   

157   Develop 300 MIF   90 sec     
158   Aura 1000 Descum D 15 sec       

159   
wet etch 
oxide BOE (30:1) 30 sec       

160 Metal Evaporate Ti 200 nm         
161   Evaporate Al 700 nm         

162   lift-off  
1165 res. 
Remover   

over-
night      

163 
Metal 
Anneal anneal 350 C 15 min       

164 
Electrical 
Testing             

165               

166 

Seal 
Irrigation 
Holes GSI PECVD 

Oxide Dep. 
2 to 3 
Microns 400 C 

~10-15 
min     
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167 

contact 
open, fluid 
I/O YES oven 

vapor 
prime 
HMDS         

168     spin resist 897-12i 
4000 
RPM 60 s   

169   Hot plate Bake 90 C 75 sec     

170   AutoStep 
ALI 
CONTOP   0.9 sec F=0   

171   AutoStep ALI I/O         

172   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

173   Hot plate Bake 115 C 75 sec     
174   Develop 300 MIF   90 sec     
175 Etch Aura 1000 Descum D 15 sec       
176   Oxford 80 CHF3 / O2 down to Al       

177   Oxford 80 etch resist O2 10 min   
~ 100 
nm/min 

178 
photolith 
fluid I/O YES oven 

vapor 
prime 
HMDS         

179     spin resist 897-12i 
4000 
RPM 60 s   

180   Hot plate Bake 90 C 75 sec     
181   AutoStep ALI I/O   0.9 sec F=0   

182   
HTG Contact 
Aligner 

Between 
Dies   30 sec     

183   Hot plate Bake 115 C 75 sec     
184   Develop 300 MIF   90 sec     
185 Etch Aura 1000 Descum D 15 sec       

186 

Clear inner 
surfaces of 
the tunnels 

Diluted HF 
(50:1)           

187   
Acetone & 
IPA 

remove 
resist         
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7.2 Software tools developed for instrument control for electrical 

characterization 

7.2.1 Parameter Analyzer 

The parameter analyzer controller program is developed for HP 4145B 

parameter analyzers using LabviewTM 7.0 (Figure 7.1). This program can also be used 

for HP 4145A parameter analyzers by increasing the delays in the program. 

The program has the indexing and the numbering functions which is identical 

in all of the measurement tools I have developed. The index file stores a significant 

portion of the information about the measurements including; the time and the data, 

file name, most of the measurement parameters, the user comments and wafer label 

entered in the windows at the bottom portion of the control panel. The index file path 

is displayed on the top portion of the control panel and it can be changed by the user. 

The ‘file path’ is the directory and file name prefix for the measurement. The data file 

name is composed by appending a file number and a suffix of ‘.data’ to the prefix. The 

file number is kept in a file in the hard drive. The number is incremented for each 

measurement if the counter is turned on by pressing the ‘count’ button. The file 

number is not incremented if the counter is off. The file number can be reset to a 

desired number by pressing the ‘reset’ button and entering the ‘offset’ value. The data 

file name is constructed and displayed in the ‘file name’ field as the program is run. 
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Figure 7.1  Front panel of parameter analyzer HP 4145B controller developed using 
LabviewTM 7.0. 
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The parameter analyzer GPIB address should be entered in the ‘address’ field. 

Parameter names, functions and compliances can be set for four SMUs and VS1 (one 

of the two sources in the HP 4145B without measurement capability). 

The parameter values for variable 1, variable 2 and variable 1’, hold time and 

delay time can be entered from the front panel and these values are transmitted to the 

parameter analyzer and executed if the ‘Normal Operation (Set Variables)’ light is lit. 

The program acquires data without setting these variable values if this button is turned 

off, displaying ‘do not set variables’. The time for setting the parameter values is 

eliminated for repeating the same measurements if this button is turned off. The 

integration time is set by the slide rule on the right side. 

Parameter analyzer can be set to run a single trace or can be put in the repeated 

mode by turning on the ‘repeat’ button, which otherwise is labeled as ‘single’. The 

repeated measurements can be stopped by clicking the stop button below this switch. 

In this case, the data from the last measurement is transferred to the computer. If 

undesired values are accidentally entered as the parameters for the measurement, the 

measurement can be stopped by clicking on the same stop button on the front panel of 

the program. 

At the end of the run, the program changes the order of the values for variable 

1 in order to do a reverse sweep if the ‘Hyst’ button is pressed. This option is useful 

for observation of charge trapping in the dielectrics surrounding the channel of the 

transistor. 

The two parameters of interest can be displayed on the parameter analyzer 

screen and transferred over to the computer. The display setting for the parameter 

analyzer are controlled for each parameter next to the ‘name’ field which determines 

the parameter to be plotted. The second ‘name’ field can be left blank if only one 

parameter is going to be measured. 
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If the program is run indefinitely by using the automatic rerun option of 

LabviewTM, a delay time between the measurement can be set by changing the value 

set in the ‘rerun after’ field in seconds. This option can be useful for large number of 

measurements done on devices which change over time.  

The parameter value for SMU4 or VS1 can be changed in a loop by setting the 

stop and the step values at the bottom portion of the control panel. Using this option a 

third parameter, other than variable 1 and 2, can be incremented. The switch is needed 

to be set to the parameter which is wanted to be looped. If the stop value of the 

parameter is the same as the start value, the program is executed only once. This 

feature is useful for gathering the parameters like DIBL, SS etc. for different substrate 

or side/back-gate biases. The plotting program has a feature of plotting sequential data 

files one after another automatically in order to allow easy viewing of large number of 

files generated using this additional loop. The plotting program also logs all the 

calculated parameters for the data files in a tab delimited text file for convenient 

plotting of the parameters. 

The data acquired from the parameter analyzer is displayed separately for each 

measured quantity on the right side for debugging purposes. If no data is being 

received from the parameter analyzer, the problem is most likely to be caused by the 

GPIB network. This can be fixed by either restarting LabviewTM, restarting the 

computer or the parameter analyzer. 

It is possible to automatically run another window of the same program, saved 

with a different file name, if the ‘run output’ button is pressed. In this case the 

parameters on the second window can be set for output characteristics if the main 

program is used for transfer characteristics, allowing efficient device characterization. 

The time domain control section is set for time domain measurements. In order 

to run a time-domain measurement, all of the parameters should be set to be constant. 
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7.2.2 Software tool developed for analysis and algorithms used for 

MOSFET parameter extraction 

The plotting program, ‘plot_all’ is developed using LabviewTM 7.0. The 

program plots the data in the large window and calculates a large number of 

parameters which are mainly suited for transfer curves of an FET (Figure 7.2). 

Program is setup to plot the data by treating the first column as the x-axis data and the 

rest of the columns as y-axis data. The first line in the data file is expected to be the 

title row and it is displayed as “File Header”. Different data sets can be plotted 

together if the ‘clear graph’ button is not pressed. The last data replaces the previously 

plotted data if the ‘clear graph’ button is pressed. ‘clear graph’ button is alternated 

automatically every time the program is run if the ‘hyst’ button is pressed. This allows 

easy viewing of the measured hysteresis curves. The absolute value of the data can be 

plotted, while keeping the x-axis the same, by pressing the ‘ABS’ button. The number 

 
Figure 7.2  Front panel of parameter analysis tool developed using LabviewTM 7.0 
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of columns and the rows for data read from the file are displayed in the lower right 

corner. 

7.2.2.1 Data File Selection 

The program can be either run independently or called from other programs, 

such as the program written to control the parameter analyzer. If the program is run 

independently the file name is needed be entered in the window labeled as ‘File’. Data 

file name is the only input parameter if the plotting program is called from another 

program. Multiple data files with consecutive file numbers can be plotted one after the 

other if the ‘counter’ is turned on. If the ‘counter’ is on, the program takes the file path 

entered in the ‘Data File Path’ field and appends a number, starting with the number 

indicated in ‘File # start’ window, and a suffix indicated in the ‘suffix’ window. The 

file number is incremented and the data is plotted until the data, with the file number 

as indicated in the ‘# end’ window. This file numbering scheme is compatible with all 

the controller programs I have developed. The consecutive data can be displayed one 

after another with a time delay. The time delay is set in seconds in the ‘hold (s)’ 

window. This aids the visualization of the evolution of the device characteristics if an 

additional parameter is varied, such as in the case of the transfer curves for two drain 

biases for different side-gate biases. 

7.2.2.2 Data Selection 

Four curves can be selected for the calculation of the parameter extraction. 

These are labeled as ‘a & b’ and ‘c & d’. The program is setup assuming that the drain 

current and the source currents are measured for two different drain bias values. The 

small window under the large plot allows the choices of ‘Id’, ‘Is’ and ‘Id&Is’. If ‘Id’ is 

selected the parameters are calculated using the curves selected as ‘a’ & ‘c’, if ‘Is’ is 

selected the parameters are calculated using curves ‘b’ and ‘d’ and if ‘Id&Is’ is 
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selected, the parameters are calculated using the average of ‘a’ and ‘b’, and ‘c’ and ‘d’. 

Usually the first pair (a & b) is setup to be high Vd (e.g. 1 V) and the second pair (c & 

d) is set up to be low Vd (e.g. 0.1 V), and the curves will be referred to as such in the 

rest of the descriptions in order to avoid confusion. 

7.2.2.3 Calculated Parameters 

A number of parameters relevant to FET characteristics are calculated, 

displayed and saved by the program. Device dimensions ‘W’ and ‘L’, ‘noise floor’, 

‘Vd step’ and the curve selections ‘a,b,c,d’ are taken as input parameters. The device 

dimensions entered in the front panel are recorded in the parameter file but they are 

not used for calculation of any parameter. 

7.2.2.4 Extremum 

Minimum and the maximum values and their ratios of the selected curves are 

displayed as ‘Min a’ and ‘Max a’ for high Vd and as ‘Min b’ and Max b’ for low Vd. 

The ratio of the extrema in the current values are calculated and displayed as 

“Ion/Ioff”. 

7.2.2.5 Conductance 

Minimum conductance and maximum conductance values (the first derivative 

of the plotted data) are calculated for high Vd (a & b). The maximum conductance 

corresponds to maximum transconductance in the case of transfer characteristics and 

minimum conductance corresponds to output conductance in the case of output 

characteristics. The maximum and the minimum conductance values and the 

corresponding voltages are displayed in the front panel. These conductance values are 

calculated from the slope achieved from two consecutive data points. 
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In order to get an accurate value for the output conductance, in the case of 

output characteristics, a linear fit is used as a second method for calculating the 

minimum conductance. The points around the minimum conductance point as 

identified using the first method are fitted to a line. The number of points to be used 

for the linear fit is entered in ‘# of pt for g fit’ window. The minimum conductance 

from the fit is displayed in the ‘min conductance from fit’ window. The corresponding 

current level is displayed in ‘I @ min cond’ window. 

7.2.2.6 Threshold Voltage 

The threshold voltage is calculated using two different methods; one using a 

linear fit to the transfer characteristics in the on regime and the second using a 

constant current method in the subthreshold regime. 

The first method for obtaining the threshold voltage (Vt) is carried out by 
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Figure 7.3  The linear interpolation for the Vt is taken from the maximum 
transconductance point and the Vt is calculated as the x-axis intercept. 
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identifying the maximum transconductance bias condition and extrapolating a line 

from this point with the same slope as the maximum transconductance, intercepting 

the x-axis. The x-axis intercept is taken to be the threshold voltage (Figure 7.3). 

The second method, constant current method, is carried out by identifying the 

gate voltage corresponding to a certain current level. This gate voltage is identified as 

threshold voltage and the desired current level is set in the small window at the bottom 

of the front panel labeled as ‘I for Vt’. The program finds the corresponding voltage 

value through linear interpolation of the log(Ids) between the two closest points to the 

specified current level and displays it in the window labeled as ‘Vt from subth’. This 

method is especially suitable for measuring the threshold voltage changes in a single 

device for different side-gate or back-gate values. The change in the threshold voltage 

value can be extracted even for the bias conditions where the device does not turn on. 

This method also avoids complications in the change in the extracted threshold voltage 

due to large contact resistances. 

7.2.2.7 Subthreshold Slope 

Subthreshold slope (SS) is calculated from the a&b curves at the steepest 

location, using the slope calculated from two consecutive data points (Figure 7.4). SS 

for c&d is calculated and displayed separately. The noise in the measurement can 

result in significant fluctuations in the 10-13 A regime. When the slope of log(Ids) is 

calculated, the fluctuations in the measurement in the very low current levels can yield 

the maximum slope. In order to avoid this problem, a constant value can be added to 

the data. The added value is specified in the ‘noise floor’ window and should be 

adjusted depending on the noise level in the measurement. The log plot of the data 

with the added value for ‘noise floor’ is displayed in the bottom right plot. For most 

measurements it is sufficient to add 10-11 to 10-13 A to the measured data in order to 
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avoid this problem. This added value results in a slightly increased value of 

subthreshold slope measured in mV/dec. This increase is less than 1% if the added 

value is in the 10-11 A range for most measurements. The value for ‘noise floor’ should 

be set as low as possible to avoid miscalculation of the subthreshold slope. The 

calculated values for SS and the corresponding voltages are displayed. 1/SS for both 

curves is plotted in a window on the bottom right in units of decades per V. 

7.2.2.8 Drain Induced Barrier Lowering 

Drain induced barrier lowering, DIBL, is defined as δVt/δVd and it is extracted 

from the subthreshold characteristics in this program. DIBL is calculated from the bias 

condition corresponding to the minimum subthreshold slope, steepest point on the 
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Figure 7.4  DIBL is estimated from subthreshold characteristics of the Id-Vg  curve. 
Minimum subthreshold slope is calculated for high Vd and low Vd cases. A line is 
passed at these points with the slope of the low Vd case. The difference in the 
intercepts is taken to be the value for DIBL. 
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log(Ids) curves (Figure 7.4). The SS for high Vd and low Vd cases can differ 

significantly for small scale devices. Therefore, it is not possible to get an accurate 

value for DIBL by simply fitting lines to the curves at the minimum SS conditions and 

taking the difference of the intercepts. In order to avoid this problem the slope of the 

low Vd curves are used for calculation of intercept for high Vd curves as well. A line 

for high Vd case is fitted by using the slope of the low Vd curve and the point 

identified as the minimum SS point for the high Vd case in order to calculate the 

intercept (Figure 7.4). The intercept for the low Vd case is calculated by fitting a line 

to the curve at the minimum SS point and using the slope at that point. The difference 

between the two intercepts are calculated and displayed in mV in ‘DIBL(mV)’ 

window. DIBL as mV / V is calculated by diving this value by the difference in Vd for 

the two curves, as entered in the ‘Vd step’ window. 

7.2.2.9 Parameter File 

All of the calculated parameters and the input values are written into a tab 

delimited text file along with the data file name. The parameter file is chosen in the 

‘Parameter File’ window at the bottom of the front panel. A header line would be 

inserted into the file if the ‘New file ?’ is turned on. 

The header line for the recorded parameters is: 

data file, W(um), L(um), min a, max a, max a/min a, min b, max b, max b/min 

b, Vt(V), SS(mV/dec), DIBL(mV/V), Max Cond (A/V), Min Cond(A/V), Max 

Cond@V, Min Cond@V, SS@ V, c&d SS(mV/dec.), c&d SS@V, DIBL(mV),Vd step, 

a, b, c, d, noise floor, slope, intercept, min. cond from fit, I@min cond, Vt (subth), I 

for Vt 
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7.2.2.10 NFET / PFET Switch 

This program is designed to extract the parameters for nFET devices. However, 

it is possible to extract the parameter for a pFET by switching the nFET/pFET switch 

to pFET. By doing so the parameters such as Vt, DIBL, SS are accurately calculated 

but the calculated voltages are negated. The user should be attentive to this difference 

for pFET characterization especially for the value for Vt. 

7.2.2.11 Slope & Intercept 

The data for high Vd is fitted to a line. The slope and the intercept of the fit is 

displayed under the conductance plot window. These values allow easy 

characterization of resistors, useful for contact resistance extraction. In the cases 

where the contacts are ohmic and there is no current saturation in the resistor, the 

current voltage characteristics are linear and pass through origin. 

7.2.3 Software tool developed for C-V measurements through LCR meter 

Majority of the capacitance measurements are done at 1 MHz for 

characterization of MOSFETs in this work. In order to make the capacitance 

measurements at this frequency range a HP 4275A LCR meter is used. The HP 4275A 

LCR meter has the capability of carrying out measurements at a number of frequencies 

between 10 kHz and 10 MHz and has an internal DC voltage source which can be 

used for bias sweep. The applied DC bias is monitored by a HP 3456A multimeter 

connected to the LCR meter from the back panel of the instrument and both of these 

instruments are controlled by a single program developed in LabviewTM (Figure 7.5). 
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Figure 7.5  Front panel of capacitance measurement program for HP 4275A LCR 
meter using a HP 3456A multimeter for external bias monitoring.  
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The interface for the data file name, numbering, user comments and wafer 

label are identical to the interface for the parameter analyzer HP 4145B control 

program (page 162). Similarly, this program also has the hysteresis option. After the 

completion of the first measurement a second measurement is started by swapping the 

start and stop values and negating the step value of the DC bias if the ‘Hyst’ button is 

turned on. 

This program can perform a bias or frequency sweep, determined by the 

‘Bias/Freq’ switch. However there are only a few discrete frequencies available. The 

program can step each available frequency or skip some determined by the ‘step x’ 

value. 

If the sweep is set to be ‘bias’, the chosen frequencies are stepped. A ‘delay 

time’ and a ‘hold time’ can be set from the front panel in mS. The ‘delay time’ is the 

wait time after the first bias point is set until the first measurement is acquired. The 

‘hold time’ is the wait time for the bias points after the first bias point between each 

bias change command and the first measurement acquired at that bias point. The 

program can acquire data multiple times at each bias point set by ‘Number of Reads’. 

The average of the acquired data and the associated standard deviations are written 

into the data file, forming a six column data file. The name for this data file is 

constructed from the data file path, file number and a suffix which includes the 

frequency of the signal used for acquisition. All of the acquired (raw) data are 

recorded into an additional file with the same file name but with the file extension of 

‘data_detail’. 

The amplitude of the AC signal can only be set from the front panel of the 

LCR meter. The multiplication factor is set from the front panel of the program 

(program resets the multiplication factor at the beginning of each run). Two quantities 
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can be measured simultaneously, first of which can be controlled from the program 

but the second quantity is needed to be set from the front panel of the instrument. 

For C-V measurements, the first quantity is set as C (capacitance) and the 

second parameter as G (conductance) by default. HP 4275A is capable of reading 0.1 

fF resolution data for C if the signal amplitude is less than 100 mV. It can read 10 aF 

resolution data for C if the signal amplitude is equal to or larger than 100 mV. The 

fluctuation level in the measured value decreases with the increased AC signal. The 

fluctuation level is in the order of 0.5 fF for 45 mV signal. Very high resolution C-V 

information can be achieved through averaging as described in chapter 5. 

A gate dielectric thickness is calculated in real time if the permittivity of space, 

the dielectric constant and the area of a parallel plate capacitor is entered in the front 

panel. The dielectric thickness is displayed in the ‘Tox(nm)’ window in nm. 

This program is also setup to use an HP Signal Generator as an additional 

external power supply. The start, stop and step values can be entered from the front 

panel. The program has an out-most loop setting up the signal generator bias before 

running the measurements. The hysteresis loop is within this loop. 

The signal generator used for this purpose has an output resistance of 50 Ω. 

The user should be attentive to this while biasing the devices and consider proper 

termination of the signal generator output. If a gate is biased, where the input 

impedance to the device is very large, the applied bias to the gate will be as high as 

twice the desired value. An external multimeter can be used to monitor the actual bias 

applied by the signal generator. 

The GPIB addresses of the Multimeter, LCR meter and the signal generator 

can be set from the front panel of the program. The program will still run if no signal 

generator is connected to the GPIB network or if wrong address is entered. This 

configuration is used to make a large number of repeated measurements without using 
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the signal generator as an external power supply. In this case the parameter analyzer, 

HP 4145B can be manually run in repeat mode in time-domain, in order to supply the 

desired additional external bias. 

7.2.4 Plotting 

The C-V data file generated by the data acquisition program contains six 

columns. The fist column through third column are the applied potential, measured 

capacitance and measured conductance. The errors associated with these measured 

quantities are recorded as columns four through six. The capacitance and conductance 

curves are plotted in two different programs, one using the second column and the 

other using the third column as vertical axis data. The plotting programs can be called 

from the C-V measurement or analysis program or operated independently. If the 

plotting program is operated independently, the file name is needed to be entered in 

the indicated field (Figure 7.6). The most recent data will be plotted on both the right 

 

Figure 7.6  Front panel of capacitance plotting program. The most recent plot is 
displayed on the left. The window on the right accumulates all the plotted data. 
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and the left windows. The right window will accumulate all the plotted data unless 

‘clear graph’ button is pressed. In this case the previous data will be deleted and only 

the most recent data will appear in both of the windows. 

The conductance data is plotted in the exactly the same fashion as the 

capacitance data using a program identified as ‘graphfile_G’ (Figure 7.7). 

7.2.5 C-V Analysis 

aF resolution C-V information can be achieved through averaging a large 

number of repeated measurements (Chapter 5). In order to handle a large number of C-

V data files two programs are developed for the data analysis. The first one, named as 

‘CV Review’, is an averaging program allowing the user to plot a large number of data 

files numbered in a sequence, select the desired data files and average them. The 

second program “CV hyst average” allows the user to select the averaged C-V data for 

forward and reverse sweeps, average the two and extract a number of parameters, and 

generate data files where the offset capacitance is subtracted. 

 

Figure 7.7  Front panel of conductance plotting program. The most recent plot is 
displayed on the left. The window on the right accumulates all the plotted data.
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7.2.5.1 CV Review 

This program has the same data file name interface as the data acquisition 

programs (Figure 7.8). The file name is constructed from the data file path, file 

number and the suffix entered in the front panel. The data file number is set to start at 

the value entered in the ‘File # start’ field and is incremented by one, ending with the 

file number indicated in the ‘# end’ field. If ‘Plot all?’ button is turned on, all the data 

files in the range are plotted one after the other. If the ‘Review all’ button is turned on, 

then a small window appears after plotting each data file asking the user if the last 

 

Figure 7.8  Front panel of CV review program. Program allows plotting of individual 
data files for selection and averages the selected files with in a sequence. 



 

 

180

plotted data should be included in the average or not (Figure 7.9). If the ‘Review all’ 

button is not turned on, all the data in the range are averaged. 

The averaged data is saved into a data file where the data file name is 

constructed as ‘output average file path’ + ‘start#’ + ‘_’ + ‘end#’ + ‘extension’. The 

file names and the number of the files used for the averaging is recorded in a log file 

as indicated in the ‘CV_rev_log’ field. 

7.2.5.2 Data file selection criteria 

The reason for review of all the C-V data files is to identify the data sweeps 

 

Figure 7.9  Data file selection process. A small window appears after plotting the C-
V and G-V data asking if the displayed data should be included in the averaged file. 
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during which the setup has undergone some sudden changes resulting in changes in 

the offset values. The acquired data has arbitrary offset value, since we can only 

measure the change in capacitance rather than absolute capacitance in this range. The 

changes in the offset values which occur between two runs are not disruptive since all 

the data in each sweep has the same constant offset values. However, changes in offset 

values during a sweep make the data from that particular sweep unusable. These 

sudden changes are likely to be due to slight changes in the probe locations or the 

cable orientations. If the cable connections are not changed for a long time, these 

changes are observed to be a lot less frequent than otherwise. The changes in the LRC 

meter resulting in changes in offset values due to internal and environmental factors 

are relatively slow and can only be isolated by averaging of large number of data sets. 

The sudden changes in the setup show up as discontinuities in the conductance 

or capacitance data. These data files should be excluded from the average by clicking 

‘no’ in the window which appears after the plotting of the data. If ‘cancel’ button is 

clicked, the program is stopped. The number of selected files is displayed in the front 

panel of the ‘CV review’ program. 

7.2.5.3 CV hysteresis average  

This program is setup to take the averaged data files generated by the ‘CV 

review’ program as input, average the forward and the reverse sweeps together, and 

carry out an offset subtraction from the capacitance data (Figure 7.10). The data file 

name is constructed by appending the chosen file extension to the ‘Averaged File 

name’. The program expects to have a reverse sweep data with the same file name but 

identified with an additional string before the file extension, ‘h’ by default, forming a 

name as ‘Averaged File name’ + ‘hyst identifier’ + ‘extension’. 
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The capacitance data from the measurement has an arbitrary offset value since 

it is not possible to calibrate the system in order to extract the actual capacitance of the 

transistor for very small scale devices, with less than 1 fF inversion layer capacitance. 

However, since the source/drain to gate capacitance of an FET structure is a nonlinear 

function of the gate bias, it is possible to calculate the absolute inversion layer 

capacitance with a good accuracy. This is through identification of onset of inversion 

from the data. 

 

Figure 7.10  Front panel of CV_hyst_average program. Program takes the averaged 
forward and reverse sweep data, calculate a number of parameters and generate off-
set removed data files 
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This program is setup to identify the onset of inversion in the C-V data by 

fitting a line to the data in the bias regime where the channel is not inverted (-2 V < Vg 

< -0.5 V range in Figure 7.11). The change in the capacitance value in this regime is 

primarily due to source drain grading. As the inversion layer starts forming, the gate to 

source/drain capacitance starts increasing at a much higher rate compared to the 

capacitance change due to the source/drain dopant grading. This line is fit to the first 

data points in the data file, up to the bias point identified in the ‘Line fit up to (V)’ 

field. The fit parameters and the standard deviation, σ (sigma), in the fit are calculated 

and displayed in the front panel as ‘slope’, ‘intercept’, ‘rmse’ (root mean square error). 

The deviation from the fitted line is calculated for all the data. The break point, 

identified as the onset of inversion is set to be 3σ by default, and it can be changed as 

desired by the user by changing the number in the ‘break x sigma’ field. 3σ point was 

found to be sufficient to avoid any errors due to the noise in the measurement and 
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Figure 7.11  A typical averaged C-V data for a device with Leff < 0.2 µm. The onset 
of inversion is determined from the point where the data deviates 3 σ from the line 
fitted to data points for Vg < -0.5 V 
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accurately identify the breakpoint in the C-V characteristics. The index of the break 

point and the corresponding gate bias are also displayed on the front panel. 

The program calculates and displays the average step size in the gate bias 

increments and the maximum slope in the C-V data in F / V.  

The inversion layer capacitance is calculated to be the difference between the 

identified breakpoint and the value for the saturation capacitance. The saturation 

capacitance is calculated to be the average of the values beyond a certain bias point set 

in the ‘Cmax start’ field. The average value is displayed as ‘Cmax mean(F)’ and the 

standard deviation in the average value is displayed in the ‘std (F)’ field. The user 

should be attentive to these values if there is a significant change in saturation 

capacitance due to gate depletion. 

The program allows the user to enter the number of traces used to make the 

forward and the reverse averages and allows the user to choose to use forward, reverse 

or the average of the forward and reverse sweeps. The program generates five 

different data files with slight variations. These files are identified by a letter appended 

to the file name before the file name extension. The file identified as “Grand Avg”, ‘a’ 

by default, is the average of the forward and the reverse sweeps. The file identified as 

“offset fixed”, ‘b’ by default, has the slope prior to onset of inversion (break point) 

subtracted from the data, up to the onset of inversion and the constant value of the 

capacitance at the break point is subtracted from the rest of the data. “Offset matched”, 

‘c’ by default, has the constant value of the capacitance at the break point subtracted 

from all the data, bringing the onset of inversion (breakpoint) to zero. “0 base line”, 

‘d’ by default, has all the points prior to the break point set to zero and the value at the 

break point subtracted from all the data points. “slope subt all”, ‘e’ by default, has the 

initial slope subtracted from all of the data points. Among these data files, ‘b’ and ‘d’ 
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reflects the inversion layer  capacitance and they should be used for extraction of 

effective carrier mobilities. 

The program also has the option of subtracting a background capacitance 

change from the data prior to calculating any of the parameters. If “subtract 

background” is turned on, the program subtracts a curve from the data, defined by a 

cubical function. This utility is useful for very small inversion layer capacitance values, 

in the order of 100 aF, or smaller, where the changes in the coupling capacitance 

between the contacts pads are comparable to the inversion layer capacitance. This 

variation in parasitic capacitance is in the order of 30-50 aF for most side-gated 

devices reported in this thesis. The function for the background capacitance can be 

obtained by fitting a cubical to the C-V characteristics measured on gateless devices, 

where the change in the capacitance are purely due to the parasitics, mainly the 

coupling capacitance between the contact pads through the field isolation and low 

doped semiconductor substrate. The users should be attentive to the device to device 

variations in the parasitic capacitances due to slight variations in leakage currents. 

These changes are in the order of 30 aF for the side-gated devices with large contact 

areas. The function for the background capacitance change can only be changed in the 

block diagram by changing the expression field. 

7.3 C-V extraction through RF measurements 

It is possible to extract capacitance of a device through transmission and 

reflection measurements performed on the device using a network analyzer. Using 

these parameters it is possible to calculate the impedance of the device as a function of 

frequency. Performing a linear fit to the data it is possible to extract the capacitance of 

the device. The details of this technique can be found in [62][63]. This technique is 
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reported to be suitable for leaky dielectrics and can be used to extract the capacitance 

characteristics of the devices in GHz regime. 

The C-V extraction algorithm form S-parameter measurements are 

implemented in a program named as “network_march_30_2004”. This program 

calculates C for each bias point and records in a data file. The program calls “plot_all” 

in order to plot the generated C-V data file. 

The data obtained using a low-frequency setup were as expected from large 

scale devices, where the capacitance values are in the order of pF. However, the signal 

to noise ratio in the setup was not good enough to achieve the desired aF resolution in 

the setup used for the measurements. This technique may also result in sub fF 

 

Figure 7.12  Front panel of C-V extraction using S-parameters. The program uses a 
network analyzer and a DC power supply to calculate C from frequency response. 
The calculated C for different bias points are then plotted using a simple version of 
“plot_all” program 
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resolution capacitance characterization if a high frequency setup is used or the devices 

are individually packaged for high frequency measurements [69]. 

7.4 Effective device dimension extraction from electrical 

measurements 

Knowledge of effective device dimensions is important for understanding the 

performance parameters. Physical gate length and channel width can be measured 

using an SEM or AFM prior to deposition of passivation layer on the devices. The 

data obtained from SEM can give a good understanding of the physical gate length. 

However, it is difficult to estimate the effective device width for narrow channel 

devices with non-planar topography due to the corner effects. 

The physical device dimensions cannot be measured using SEM or AFM once 

the device processing is completed in a nondestructive fashion. Hence it is important 

to be able to extract the effective device dimensions from electrical measurements 
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Figure 7.13  Maximum transconductance as a function of designed device width for 
three different design gate lengths in µm. 
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which can be performed on the devices. 

It is possible to extract the effective device dimensions from electrical 

measurements if there is an array of devices with different mask dimensions. However 

uncertainty in the mask dimensions and non-linear variation in printed dimension of 

small-scale devices, dimension dependent processing variations result in significant 

difficulties in device dimension extraction using linear fits (Figure 7.13). 

If these dimension dependent process variations are small, the difference 

between the design and fabricated dimension of the devices are expected to be a 

constant amount for all devices due to constant amount of resist trimming and 

oxidation on all devices. The effective device width can be extracted from electrical 

measurements performed on devices with the same gate length and varying widths. 

Similarly, effective device length can be extracted from electrical measurements 

performed on devices with same width and varying gate length. Although it is possible 

to extract the effective width from both C-V and I-V measurements, gate length 

extraction in the very small scale devices can be done more accurately from C-V 

measurements. The inaccuracy for the device dimension extraction from I-V 

characteristics in the small scale devices arise from short channel effects, dimension 

dependent contact resistances and device to device contact resistance variations. The 

most accurate way of extracting the device dimensions from I-V characteristics is by 

plotting the maximum transconductance of the devices as a function of design 

dimension. The transconductance of the devices are less affected from the variations in 

the contact resistance and Vt of the devices compared to the drive currents, especially 

for higher drain biases where the device is in saturation. In this case the x-axis 

intercept of a line fitted to the data would result in the offset value which indicates the 

difference between the design dimensions and the physical dimensions of the devices. 
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Both the measured conductance of the gateless devices and the 

transconductance of the  fabricated FET structures (Figure 7.13) show a non-linear 

behavior as a function of design width. This variation can be due to process variations, 

mainly due to dishing in the CMP process. 

Since the sidewalls of the active layer etched into silicon does not have 

perfectly vertical sidewalls. If the top surface is etched down slightly more, the 

effective device width increases. Although the variations and the reasons for the 

variations are hard to understand, we can try to go around the problem by using the 

capacitance measurements done on long channel devices (Leff ~1.2 µm). 

Inversion layer capacitance data on the long devices show a similar non-linear 

behavior as a function of design width as the transconductance data on the measured 

FETs to some extend. However it is much easier to extract the effective width of 

devices from a Cinv versus Wmask data. 

7.5 Contact resistance extraction from electrical measurements 

Effective carrier mobility is an important parameter for small scale FETs and 

there is a growing interest in investigating carrier mobility in nano-structures. One of 

Source DrainGate

Rc/2 Rc/2
Rext/2 Rext/2Rch

Rdevice=Rc + Rext + Rch

Source DrainGate

Rc/2 Rc/2
Rext/2 Rext/2Rch

Rdevice=Rc + Rext + Rch  

Figure 7.14  Cross section schematics of an FET, indicating the resistances between 
the source and the drain contacts: metal-semiconductor contact resistance, extension 
resistance, and channel resistance for a given bias condition. 
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the important parameters necessary for effective carrier mobility extraction is the 

contact resistance of the devices. The total contact resistance from the metal contacts 

to the intrinsic FET consists of the resistance at the metal-semiconductor contacts and 

the leads extending to the devices (Figure 7.14 - Figure 7.16). If the variations in the 

device width due to processing are relatively small, it is possible to extract the contact 

resistance of the devices by plotting 1/Weff as a function of the measured resistance of 

gateless devices. The gateless devices are fabricated in the same way as the regular 

FETs but since they do not have gates, all the active surfaces are implanted with As 

ions. The intercept of the 1/Weff versus resistance plot gives the resistance value 

common to all of the devices (Figure 7.17). This resistance value is the sum of metal-

semiconductor contact resistance and the resistance of the large source/drain 

connecting to the lead areas of the devices. The lead resistance varies as a function of 

1/Weff and the total resistive extend leading to the device, Ltot-Leff. 

 

Figure 7.15  Optical images of active area patterns on the mask for a narrow channel 
(left) and a wide channel (right) device. The narrow areas are the extension regions 
for short channel devices. 



 

 

191

The inversion capacitance for the MOSFETs are directly proportional to Weff. 

The total resistance of the gateless devices, Rgateless, have 1/Weff dependence. Rcontact 

value can be extracted from the intercept of 1/Cinv of Leff = 1.2 µm versus Rgateless for 

Active

Gate

Ltot= 2 µmLeff

Weff

Active

Gate

Ltot= 2 µmLeff

Weff

 

Figure 7.16  Schematic view of the device layout. The only two varying parameters 
for different size devices are the effective gate length (Leff) and effective channel 
width (Weff). 
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Figure 7.17  Inverse of inversion layer capacitance for design gate length of 1.5 µm 
versus average resistance of the gateless devices for different design widths 
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the same design widths. Here Rcontact is the sum of the lead resistance common to all 

devices and metal-semiconductor contact resistances.  
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The total contact resistance of all of the devices can be calculated using the 

Rcontact value and the resistivity of the source drain extensions, ρ, which can be 

extracted from the slope of the linear fit. The slope of the plot in Figure 7.17 is: 

 toteffSiO

ox
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2

1 ==  

The effective oxide thickness can be extracted from C-V measurements 

performed on large, 100 µm x 100 µm devices. The oxide thickness, tox = 4.0 nm for 

the devices reported in chapter 4. Ltot = 2 µm by design, and effective gate length is 

estimated to be Leff = 1.167 µm for the devices used for capacitance information as 

extracted from the series of capacitance measurements. Using these known parameters 

and the slope from the fit, the resistivity, ρ of the source drain extension regions are 

calculated. 
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7.6 Carrier Mobility Extraction 

In order to extract the carrier mobility in the channel of the transistor, the 

effective device dimensions, carrier concentration and the current drive and the actual 

potential drop across the device is needed. 

The effective device dimensions can be estimated from SEM micrographs or 

the I-V and C-V measurements performed on the array of devices with varying 
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dimensions. The carrier concentration in the channel can be calculated from the 

inversion layer capacitance. The current level for a given bias condition is measured 

and the actual potential drop across the device can be calculated if the contact 

resistance values are known. 

The channel resistance for a given device is: 
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If the capacitance measurements are performed on the same device, the Weff 

terms cancel out: 
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The effective carrier mobility can be extracted by plugging in the values for 

Rcontact and Rext: 
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7.6.1 Software Tool for Carrier Mobility Extraction 

The parameter analysis tool “Plot_all” is modified to calculate carrier 

mobilities in nFETs. This version of the program takes additional inputs of C-V data 

file, contact resistance, gate length and drain bias values. For the selected curves. It 

calculates the mobility from the Ohm’s law as derived in previous section and from 

the theoretical transconductance expression for long channel devices [61]: 

g
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eff
eff dV

dI
VC

L 2

=µ  

 
Figure 7.18  Front panel of parameter analysis tool with mobility extraction, 
developed using LabviewTM 7.0
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 The values calculated using both methods are written to a file selected in the 

“Mobility” field. The mobility versus gate bias data for the two methods are plotted in 

separate windows on the lower right corner. 

The capacitance file used for the measurement is required to have the offset 

value subtracted properly in order not to over estimate the number of carriers in the 

inversion layer. The C-V data and the total charge calculated by integrating the C-V 

data are plotted on the top right corner in separate windows.
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