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A multivariate regular varying distribution can be chaeaied by its marginals and
a finite measure on the unit sphere. That measure is refesrad the spectral mea-
sure of the distribution. The spectral measure descrileestthcture of the dependence
between the marginal distributions. An important class aftivariate regular varying
distributions are multivariate extreme value distribnoExisting models for multivari-
ate regular varying distributions in general and multiaiextreme value distributions
in particular do not utilize the spectral measure. They $oon closed form equations
of the cumulative distribution function. The resulting netglare not flexible enough to
give a realistic and adequate description of the dependsnegture of real life data.

We propose a new model for multivariate regular varyingrifigtions, based on a
very flexible parametric model of the spectral measure. Veauinite mixture model
to obtain a model with as much flexibility as needed to acelyatescribe the spectral
measure of real life data.

Since the spectral measure is a measure on the unit spher@hose directional
distributions as the distributions of the components ofrtiieture model. Directional
distributions provide models for the distribution of rangdwariables on unit spheres. In

particular, we use the von Mises-Fisher distribution. hsperties allow it to be inter-



preted as an directional analogue of the well known nornsdtibution on a Euclidian
space.

We describe how to estimate the parameters of this new moatel datasets. We
introduce a modified version of the likelihood ratio test exidle on how many compo-
nents are needed for an accurate model of the spectral reeasur

We show how our model explains the structure of the spectealsure of several fi-
nancial time series. We develop a comprehensive model farlvariate regular vary-
ing distribution that is based on our model of the spectrahsnes. As one particular
application of this new model we describe how it can be useddafolio optimization.
We found that our model gives much more accurate resultsttharother well estab-

lished models. It significantly improves on the deficiena&the two existing models.
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Chapter 1

Introduction

In the recent years significant attention has been paid tddgtaelopment of models for
multivariate distributions. The main motivation was thedaf good models for the joint
distribution of returns of financial assets. The difficultyareating reasonable models
is the often complex structure of the dependence betwednassets. Increasingly, the
concept of copulas has been advertised as a versatile toobébe such distributions.
A copula is a multivariate distribution whose marginalsénawuniform distribution on
[0,1]. Itis used as a model of the dependence structure.tiegeith appropriate mod-
els for the marginal distributions they can be used as a nfod¢he joint distribution
of the assets of interest. We refer to Joe (1997) and Emizretlad. (2003) as excellent
references on copulas and multivariate distributions.

The most popular copulas are the ones based on elliptidaibditons. Prominent
members of the family of elliptical distributions are the Itivariate normal and the
multivariate t distributions. The dependence structurarirelliptical distribution can
be characterized by its correlation matrix. It is this siitip} that makes elliptical dis-
tributions appealing in practice. Unfortunately they act a very realistic model of
the dependence structure between different financialsas§beey main criticism of el-
liptical models is that the correlation is not an adequatedption of the dependence
structure. Papers by Blyth (1996), Shaw (1997) and Embresthas (1999) demon-
strate that models based on linear correlations can notaetyicapture the non linear
dependence that is present in financial data. The main réagbat they assume that
the dependence between extreme returns is the same as hhetwderate returns. This

assumption is wrong. We refer to the work of Longin and So(di#98), who show in



an empirical study that the dependence between large wegaturns is much closer
than suggested by the correlation coefficient of the entita.dThey also found that the
dependence structure is not symmetric. This is, howeveathan feature of elliptical
distributions. They imply that the dependence structutevéen positive and negative
returns is the same.

In the light of the findings of Longin and Solnik (1998) the dder models that
specifically address the dependence structure in the faslsistribution becomes evi-
dent. Multivariate extreme value theory provides us witba to develop models that
address this need. Several different models and methodsheen introduced in the
last 20 years. These models are based on multivariate extvatue distributions or
multivariate regular varying distributions. A multivargaregular varying distribution
can be characterized by its marginals and a finite measurbeonrtit sphere. Most
commonly, the distribution of a random vecisris called multivariate regular varying,

if there exists a constant > 0 such that the following limit exists for at > 0

P> o X/IX0 €],
PIX[>q o o0 -

where—" denotes vague convergenceSsit!, the d dimensional unit sphere, add
stands for the spectral measure.

The spectral measure describes the structure of the depsmdethe tails between
the marginal distributions. An important class of multiedée regular varying distri-
butions are multivariate extreme value distributions. sBrg models of multivariate
regular varying distributions in general and multivariatereme value distributions in
particular do not describe the distribution via the spéctr@aasure. Instead, they focus
on closed form equations of the cumulative distributionction. Examples of such
models can be found in Resnick (1986), Tawn (1988), Joe e1992), de Haan and

Resnick (1993), @irica (1999), Embrechts et al. (1997), Klueppelberg and May&},99



Embrechts (2000), Embrechts et al. (2003) and Breymann @03) and others.
However, so far none of these proposed models is flexible gntw give a real-
istic description of the dependence structure of the tdila distribution. They usu-
ally use one or two parameters to describe the dependencguse between their
marginal components. As a consequence, their spectralungeabat can be calcu-
lated from the cumulative distribution function, has a veiyple structure. Typically

these spectral measures are therefore fairly simple. Cemsgidcontrast the spec-

0.141
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Siemens

0.2

0 05 1 15
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Figure 1.1:Scatter plot of the absolute values of the log returns of tbeks of BMW

and Siemens (right) and estimate of the spectral measukeeafdrresponding distribu-

tion(left).

tral measure of the joint distribution of the absolute valaé the log returns of the
stocks of BMW and Siemens. A scatter plot of these log retusrgivien in the right
hand side of Figure 1.1. Since the data is positive and litgriits, spectral mea-

sure is a measure that lives in the first quadrant of the urdtec§!, that is on the



set{(z,y) € S' : x = cosf,y = sin6,0 € [0,7/2]}. A non parametrical estimate of
the density of the spectral measure of the joint distrilsuigogiven in the left hand side
of Figure 1.1. We explain in detail how we obtain estimatethefspectral measure in
Chapter 2. We can clearly see that the density indicateshbatdpendence structure in
the tails is too complicated to be described by a single param

This is the motivation for the research presented in thisitheéWe propose a new
model for multivariate regular varying distributions. tead of focusing on the joint
cumulative distribution function, we focus on the specingasure. Since the spectral
measure is a measure on the unit sphere, we work with diredtdstributions. Direc-
tional distributions are distributions designed to modeervations on the unit sphere.
The topology of the unit sphei@ ! is different from the one of the Euclidian space
R?. Directional distributions reflect this different topolpgWe decided to use the von
Mises-Fisher distributions off~! as the corner stone of our models. The von Mises-
Fisher distributions form a parametric family. It is pardereed by the mean direction,
a point inS%!, and a concentration parameter. It can be seen as an anabthe
normal distribution oriR¢. Additionally, we make use of the concept of finite mixture

models. That is, we assume that the spectral measure hasityagnhe form

flx) = Zpifxx); x € §47. (1.2)

The parameterg; are called the weights of the mixture and satigfy> 0,i = 1,...,m
and) " p; = 1. The densitied;(x) are called the component densities. The concept
of a finite mixture model provides us with the flexibility nesbito model complex de-
pendence structures. The number of componeniss itself a parameter of the model.
The drawback is that the estimation of the parameters natial tiask. We used the EM
algorithm to estimate the parameters of the model for a fixedber of components.

The EM algorithm is an algorithm specifically designed fa tdalculation of maximum



likelihood estimates in finite mixture models. We refer tonipster et al. (1977), Redner
and Walker (1984), Titterington et al. (1985) and McLachdawd Peel (2000) for refer-
ences on mixture models and the EM algorithm. Additionally,have to decide on how
many components are needed to accurately describe theapeetsure. If we choose
a number that is too small, we will miss important featurethefspectral measure. On
the other hand, having too many components renders the ramlebmplicated. Tra-
ditionally this kind of problem is addressed with a likelgtbratio test. Unfortunately,
the regularity conditions that guarantee the usual centriaquare distribution of the
test statistic under the null-hypothesis do not hold in thenework of mixture models.
Instead, we were able to use results based on work of Vuor&pj1White (1982) and
Lo et al. (2001). They show that under certain conditionsagymptotical distribution
of the test statistic follows a weighted sum of central ajuare distributions. We found
that if the true spectral measure is not a finite mixture higtron of von Mises-Fisher
distribution, we can apply these results to our model. Thabées us to determine the
number of components needed to accurately model the spewesure, while avoid-
ing models with too many components. We sometimes also ttedsather statistics to
decide on the number of components. These other statigrtsmed well in empirical
studies but lack a theoretical justification.

We found that our model gives an accurate description of pleetsal measure of
bivariate and three dimensional datasets of financialasBet higher dimensional data,
we did not have datasets of sufficient sample size to perfomeaningful statistical
analysis.

We develop a comprehensive model for a multivariate regedaying distribution
that is based on our model of the spectral measure. This roodsists of a part describ-

ing the tails of the distribution and a separate part desggithe body of the distribution.



The model of tails utilizes our model of the spectral measuckescribe the dependence
between the marginal components. The model of the body $tsnsi a simple multi-
variate normal distribution, although other choices arssgue, without changing the
tail behavior of the resulting distribution.

As an application of our new model we consider the problemooffplio optimiza-
tion. We concentrate on the bivariate case. We calculat@dhigolios that minimize
the expected shortfall while having a certain expectedmet?/e compare the resulting
portfolios with optimal portfolios based on two other magleThe first is the bivariate
normal distribution model and the other is a model based aroaula.

While the optimal portfolios based on the normal model ardyfaimilar to the
ones based on our model, the normal model severely undeegss the risk of the
portfolio. The estimates and predictions based on our maded very accurate. The
portfolios based on the t copula model suffer from probleefated to the estimation of
the parameters of that model. As a result, these portfoliosal achieve the expected
return they are designed to have. In addition, despite gaaimuch smaller average
return than the portfolios based on our model and the nornualety they have am
expected shortfall that is comparable in size to the onekeportfolios based on our
model and the normal model.

The thesis is organized as follows: in Chapter 2 we give aodiuiction to the ex-
treme value theory and its related topics. Chapter 3 prowagiesitroduction into di-
rectional distributions and their properties. Chapter 4arp finite mixture models in
general and finite mixtures of von Mises-Fisher models inipaar. We also explain
the parameter estimation using the EM algorithm, the lila@d ratio test and the other
statistics used to decide on the number of components. Int@h&pwve present the

results of modelling the spectral measure of several @iffefinancial assets. In Chap-



ter 6 we develop our comprehensive model for a multivarigtidution, based on the
proposed mixture model of the spectral measure. Finallypt&h& documents the re-

sults of the portfolio optimizations based on our model dredttvo selected alternative

models.



Chapter 2

Extreme Value Theory

2.1 Univariate Extreme Value Theory

2.1.1 Asymptotic Behavior of Maxima

Let (X1, ..., X,,) be i.i.d. random variables with some distributiéh Extreme Value
Theory describes the asymptotic behavior of the probgbdistribution of M,, =

max(Xy, ..., X,,). Of course, we have for any
PM, <z|=PX; <xz,...X, <z] = F"(z). (2.1)

Let 2 denotes the right endpoint of F, definedias:= sup{z € R : F(z) < 1}. One

can show that

Proposition 2.1.1

M, — xp with probability 1, asn — oc.

Proof: See Resnick (198GH

To illustrate the significance and use of extreme value thé&as helpful to consider
the better known result of the Central Limit Theorem. Rechbtif (X, ..., X,,) are
i.i.d. random variables following a distribution with firimeary and variance? < oo

andn is sufficiently large, then the following approximation tisi

Sp —np

Vno

whereS, = " , X,. Consider this result for the case of exponentially distebu

7 =

, is approximately distributed @€ (0, 1), (2.2)

random variables(;, distributed agzp()). SinceX; > 0, S, = >, X, converges to

oo with probability 1. The analogous statement in the cont®&extreme value theory



is made in Proposition 2.1.1. In the light of the degeneraté bf S,,, the central limit
theorem quantifies the limit of; ' (.S,, — b,,) with a,, = \/no andb,, = nu. This result is
very useful in approximating the distribution 8f for largen. In the same way, extreme
value theory describes the convergence,df M,, — d,,) for appropriate sequences
andd,,. The Fisher Tippet Theorem below is the basis of extremeevilaory and its
applications discussed in this thesis. It can be seen asarotimterpart of the central

limit theorem in the field of extreme value theory.

Theorem 2.1.2 (Fisher-Tippet)
Let (X,,) be a sequence of i.i.d. random variables andlét := maz(Xy, ..., X,,). If

there exist constants, > 0 andd,, € R, such that for a non-degenerate distribution H

¢, {(M,, — d,) = M, with distribution H (), (2.3)

n

then H is one of the following types of distributions:

Fréchet : ®,(x) = a>0

Weibull : V,(z) = B a>0

Gumbel : A(z) = exp(—e™), reR

We call two distribution functions F and G of the same typdoifall z € R
F(z) = G(ax +b)
for two constants a and b.

Proof: See Resnick (198GH
The three distribution®,,, ¥, andA are called Extreme Value Distributions, EVD.

If (2.3) holds for (X;) with distribution ', we say thatF’ is in the maximum domain
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of attraction of Hand write ' € M DA(H). The MDA’ for the three EVDs are well
understood. The extreme value distributions and the gqooreing norming constants
are known for the most common distributions. In the follogyinve give a very brief
overview. A more detailed discussion can be found in Emhleeehal. (1997) or in

Resnick (1986).

2.1.2 Domains of Attractions for®,, ¥, and A and the GEV
Fréechet

In order to characterize the domain of attraction of thechet distribution, it is useful

to recall the definition of a regular varying function.

Definition 2.1.3
A measurable function gR, — R, is regular varying atco with indexa € R, if for

anyx > 0 we have that

CONY (2.4)

lim
t—oo g(t)

In this case we use the notatigre RV,.

The classical example of a function that is regular varyihgoawith tail index «
is of coursey(x) = x*. We say that a random variable with distribution functi®ns
regular varying with tail index, o > 0, if its tail function F := 1 — F'is regular varying
at oo with index —a. If the distributionf” is regular varying with indexy, then there is

a slowly varying function’(x), such that
1—F=2“L(z),z > 0. (2.5)

A function L(x) is called slowly varying with if

Lzt
lim <I)

=1,2>0.
e L)
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The relationship (2.5) expresses the fact that, asymplbtiche tail function behaves
like a power function. This is in contrast to the behavior loé EExponential or the
Normal distribution, whose tail functions approach zeraraexponential and superex-
ponential rate, respectively. Typical examples of regulaying distributions are the
Cauchy and the Pareto distributions. It is not hard to showttieaFechet distribution
®,, is regular varying with tail index:.
The following theorem says that all distributions with reaguarying tail function

F belong to the maximum domain of attraction of thééhet distribution with the same

tail indexa.

Proposition 2.1.4
The distribution with cdf F belongs to the maximum domain whetion of ¢, if and

onlyifl — F € RV_,,a > 0.

Proof: See Embrechts et al. (1997), p. 13f.

It follows for example, that the Cauchy distribution isidDA(®,) and thatc,, =
n/m, d, = 0, so thatrn=*M,, — ®,. Other prominent members aff DA(®,,) are
the stable distribution withk < 2 and the Pareto distribution. It is widely accepted that
the log returns of financial time series have marginal digtrons with regular varying
tails. For this reason)/ DA(®,) has received more attention in research papers than

the other two EVDs. See Section 2.1.5 for more result8anA(®,,).

Weibull

The mostimportant fact abod D A(¥,,) is, that all its members have a finite right end-
point. Well known distributions in/ DA(V,,) are the Uniform and Beta distributions.

The following result gives a mathematical description famio Proposition 2.1.4.
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Proposition 2.1.5
A distribution with cdf F belongs td/ DA(V,,) if and only ifzr < cocand1 — F(zp —

r~ 1) = z7*L(x) for a slowly varying function L.

Proof: See Embrechts et al. (199)

Consider for example the Uniform distribution. Singe=1and1 — F(1—z~!) =
2™, the Uniform distribution is il\/ DA(¥,). One finds that,, = n~! andd,, = 1.
Similarly, the Beta distribution with parameters> 0 andb > 0, given by the density
flx) = 55t~ (1= 2)'=!, 0 <z < 1,isin MDA(¥,). We see that the parameter

a of the Weibull distribution indicates “how fast” the digittion I € MDA(V,)

approaches its right endpoint.

Gumbel

The maximum domain of attraction of the Gumbel distributa@mtains most distribu-
tions with an infinite right endpoint with light right tail&Ve say that a distribution has
a light right tail, if all positive moment&[(X*)*] exist and are finite. This is in contrast
to the distributions in\/ D A(®,,), which only have finite moments up to order The

Gumbel distribution itself has the property that

lim 1-AMz) Alz)

T—00 e~ 7T

= 1.

Therefore, all distributions with an exponential or a “@d®” exponential tail are in
MDA(A). In particular, the Exponential, Gamma, Normal and Logamairdistribu-
tions all belong to the domain attraction of the Gumbel dstion. For a more formal

discussion, see section 3.3.3 in Embrechts et al. (1997).
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The Generalized Extreme Value Distribution, GEV

It turns out that the three parametric familiés, ¥, and A are related to one type of
distribution. The distribution is calle@eneralized Extreme Value Distributions, GEV.
We will differentiate between a standard GEV, which has arameter, and the general
GEV. The general GEV has three parameters and can be usepréseat the three

parametric familie®,, ¥, andA in one family.

Definition 2.1.6 (GEV)
Define the standard generalized extreme value distribwsthe distribution with cdf
exp (— (14 2) ) €£0

exp (—exp (—x)) §=0

He(x) = (2.6)

wherel + ¢ -z > 0.

Related to this distribution is a three parameter locatgoale family, consisting of all
distributions that are of the same type as the standard geized extreme value distri-
bution. We refer to such distributions as generalized exérevalue distributions. The

cdf of such a distribution is given by
—-1/¢
exp(—(l—i—{%) ) E£0

p (e (-54)) g0

for z such thatl + (%7 > Owith{ € R, p € Randy € R,

valtﬂﬁ(‘r) = (27)

We will refer to bothH, and H¢ ,, ,, as GEV.

Note thatH, and H¢ , , are of the same type if and only if they have the same
value for the parametéer The two additional parametersands) in the location-scale
family H; , ., are called the location and scale parameter, respectiegrole of those
parameters is made clear in next section. The crucial paesnsethe so calledhape

parameter:
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e £ > 0: The Féchet distribution can be expressed as a distribution offyjhe of
He with ¢ = 1/o. That is, we haveb, = H, ,, for some constants € R and

¥ > 0and¢ = 1/a.

e £ = 0: The Gumbel distribution can be expressed as a distributidhe type of

e ¢ < 0: The Weibull distribution can be expressed as a distriloutibthe type of

Hg with 5 < 0.

This inclusion of the three extreme value distributionsrie parametric family with
three parameters is important for the applications. Suppes would like to decide
whether the data comes from a distribution with heavy oremaliight tails. We could fit
He,.(x) to maxima from that dataset and observe whethiersignificantly different

from 0. For more details, see section 2.1.4

2.1.3 Maxima of Stationary Time Series

The results explained in the previous sections hold fat.i.data. A more reasonable
assumption for real life data, like the one considered is thesis, is that the observa-
tions are not from an i.i.d. time series, but rather from &éiatary one. We therefore
need to consider how the extreme value distribution of &staty time series relates to
the one of i.i.d. data with the same marginal distributiomwHar away from the i.i.d.
case can one go and still have the same distribution of thenmuexx ? The answer to
that question is discussed in detail in Leadbetter et aBZL9n the following, we give
a brief summary:

Let X, X,,..., X, be a strictly stationary time series add, = maz(Xy,..., X,).

Let furthermore)?l, ...,)~(n be an i.i.d. series with the same marginal distribution as
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X, X,,..., X, and Iet]TIn = ma:p()?l, e )~(n). Finally, assume that

¢ (M, — d,) = M, distributed as ,, .. (2.8)

n

Define the sequence of functions(x) asu,(z) = ¢,z + d,,. Then (2.8) is equivalent
to

P[M, < cpx + dy] = P[M, < u,(2)] — Heppp(2).

The constants, andd,, of the linear functions., (z) are determined by the distribution
of the strictly stationary sequencé,, ..., X,,. If the distribution of X1, ..., X, satisfies

two technical conditions that can be expressed by meang(af, then we also have
PIMy < cn + dy] = P[My, < un(2)] — He ().

The two conditions are as follows:

Condition D(u,): For any integers p,q and n
I<y<..<ip<n<..<jg<n
such that forj; — ¢, > [ we have that

‘P ( max X; < un) — P (maXXi < un) P (maXXi < un)‘ < ap g,

i€A1UAg €A 1€Ag

whereA; = {iy,....%,}, As = {j1, ..., J,} anda,,; — 0 asn — oo for some sequence
l=1,=o0(n).

D(u,) can be interpreted as stating that the sequeAGg ghould not have a too
strong serial dependence. For exampleXjfis a Gaussian process, it is known that
D(u,,) is satisfied if the auto-covariance functigfh) satisfiesy(h)log(h) — 0, as
h — oo. This conditions is very weak. It is satisfied by all ARIMA andee all
fractional ARIMA processes. The latter are examples of gses having long range

dependence in the sense that the sequefkeis not absolutely summable. We will
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assume, that the datasets considered in this thesis candmleabby distributions for
which D(u,,) is satisfied.
Condition D’(u,): The relation

[n/k]
lim limsupnz P(X1 > up, X; > u,) =0.

k—oo pooco -
Jj=2

D'(u,) says that extreme observationsof do not occur in clusters, but are isolated
events. The distributions of the data under investigatiothis thesis usually are not
assumed to satisflp’(u, ). The reason is that the data exhibits behavior that makes the
usage of models satisfying’(u,,) unreasonable. We refer to Leadbetter et al. (1983)
and Embrechts et al. (1997) for more detailed discussionbisisubject.

Because we do not assume that the condifitfu,,) holds, we cannot assume that
the distribution ofM,, converges to the same GEV distribution as the oné79f It
turns out that the limit distribution of the maximum,, can be expressed vid, the
limit distribution of Mn and the extremal index of the time seri¥s, ..., X,,, if this one
exists. The extremal index is a measure of the amount ofesiustin the tails. Before

giving the definition of the extremal index, we note that fonad. time series:
P[M, < u,] =P"[X < u,]
— exp[n - In(1 — P[X > uy))] (2.9)
~ exp|—nF(uy,)]

The last approximations follows from the Taylor Series agien approximationin(1—
x) ~ —z for small x. Based on this motivation we state that for a given [0, oo] and

a sequence,, of real numbers we have
nF(uy) — 7 <= P[M, < u,| — ¢ 7. (2.10)

If D'(u,) is violated, (2.9) usually does not hold. Instead, one maeple the follow-
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ing, ford € [0, 1]:

P[M, < u,] =~P[M, < u,

=PY[X < u,
N (2.11)
= explf - n-In(l — PX > u,])]
~ exp[—0 - nF(u,)]
If (2.11) holds we get from (2.10):
nF(u,) — 7 < P[M, < u,] — exp[-07]. (2.12)

Based on these observations we define:

Definition 2.1.7
Consider a stationary time seriés(; ).y With marginal distribution F and lef\/,, =
max(Xy, ..., X,). We say that X )ren has extremal index € [0, 1], if, for everyr,

there exists a sequenc¢e, ), such that

lim nF(u,) = 7

n—oo

lim P[M, <u,] = e (2.13)

n—oo

We refer to Embrechts et al. (1997) as a reference on theneatiedex. The ex-
tremal index can be interpreted as the reciprocal of theageetluster size. The effect of
clustering in the data is illustrated in Figure 2.1. The tay phows 1000 realization of
an AR(1) proces«,, = a- X,,_1+ Y, with Y}, i.i.d. with a student’s t distribution with 2
degrees of freedom and= .8. Such an AR(1) process has extremal index a?=.36.
The bottom plot shows 1000 i.i.d. realizations with the sanaeginal distribution as in
the top plot.

The influence of the extremal index on the limit distributmithe maxima is sum-

marized in the following Theorem.
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Figure 2.1:Effect of clustering in the tails for an AR(1) process (topinpared to an

i.i.d process (bottom).
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Theorem 2.1.8
Suppose thatX,,) is a stationary time series with extremal ind&and defineM,, =
maz (X1, ..., X,). Furthermore, le{.X,,) be an i.i.d. sequence of random variables with

the same distribution agX,,) and M, = maz (X1, ..., X,). Then

—~

lim P[c, (M, —d,) < z] = H(x) (2.14)

n—oo

fora GEVH, if and only if

lim Plc, (M, —d,) < ] = H(z). (2.15)

n—oo

Proof: Embrechts et al. (19918
In the light of the above equations it is important to note thaf is a GEV, so is

H?. This point is made precise by the following equations:
H{, () = Heyy(az + 1), (2.16)

wherea = 7%, b = (1 — 67%)(u — %) if ¢ £ 0anda = 1,b = —log(0), if £ = 0.
Moreover,

He iy (ax +0) = He ;, 5(), (2.17)

wherej = “T‘b,zp = va. Equations (2.16) and (2.17) mean that the adjustments for
the unknown extremal index are incorporated in the model by the paramejeend

1. Equation (2.17) also shows that the same is true for the ingroonstants. Equation
(2.17) gives us the justification for working with the blockse maxima when fitting
the GEV model to data. We do not have to scale the maxima wathdhming constants
from Theorem 2.1.2. The two equations (2.16) and (2.17) ghaithe generalized ex-
treme value distribution (2.7) with its three parameteffteisible enough to incorporate

these adjustments into the model by using the location anddale parametersandq.
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2.1.4 Fitting of a GEV Model to a Dataset
Maximum Likelihood Estimators

In order to fit a GEV to extremes of a dataset, we may proceedliasvs. We divide
the data set into blocks of the same sample size. Within elactk,bve determine the
maximum. The set of the thus obtained block wise maxima &éckas an i.i.d. sample
from a GEV. The parameter estimates are now determined asimgximum likelihood
estimation based on this sample of block wise maxima. Theéoabwjuestion in this
context is: Into how many blocks are we to divide the data? nQother words: How
many observations should make one block?

The answer to that question depends on the data. On the odevwahave to make
sure that the blocks are large enough so that their maximaea#dy i.i.d. and their
distribution is close enough to a GEV. On the other hand, wet Yeekeep the block size
as small as possible. If the chosen block size is too largengimber of blocks may not
be sufficient to produce a reliable estimator. On the othadhd the block size is too
small, the distribution of the block wise maxima may not beselto a GEV and they
may not be independent. We usually tried several differlauidosizes and then checked
the quality of the fit do determine a good block size.

The three parameters are estimated using a maximum likeliheethod. A numer-
ical procedure is needed to find the solutions to the complgxikelihood equations.
We used EVIS 5.0, a software package on SPLUS, to carry outdloelations. If
¢ > —.5, Smith (1985) shows that the MLEs are consistent and asyroaligtefficient
estimators. That is, they are asymptotically normallyridisted and their covariance
matrix is the inverse of the Fisher-Information matrix. Tgwodness of the fit may be

tested using QQ-plots and similar exploratory tools.
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2.1.5 Estimating the Shape Parameter i/ DA(®,,)

If we assume that the distribution function has regular weyyails, we have additional
methods at hand for estimating the shape paranteter equivalently, the tail index
a = 1/¢. The most prominent such method is the Hill estimator. SeaiRle$2002)
for a list of references.
Assume, thafX;, ..., X,, is a sample of non-negative, i.i.d. random variables with a

distribution with regular varying tails. LeX ;) be thei" largest value] < i < n.

The Hill estimator

The Hill estimator of the tail index = ¢! is given byH,;}L, where

1 X }

Hi,==)Y log|——]|. 2.18

=1 o | 218)
The Hill estimator is a consistent estimatorcof= ¢! and, under second order condi-

tions, asymptotically normally distributed:
VE(H, ) — a) = N(0,a?), provided thatr — oo, k — 00, k/n — 0

A summary of the consistency results for the Hill estimatmsvell as a good list of ref-
erences is provided in Embrechts et al. (1997) on p.336 ffnRksand Sérica (1998)
proved consistency of the Hill estimator for certain classiedependent data. The qual-
ity of the estimatorH,;}L depends on the choice of k. If k is chosen too large, the estima
tor becomes biased, because data that is not sufficientgnfaugh in the tails is used.
On the other hand, if k is chosen too small, the estimator inesaunreliable due to the
small sample size used in the estimation and useful infoom& wasted. In practice, it

is customary to study what has become known as the "Hill=p{ét H,;}Z, 1 <k <n}.

One then looks for an area of k where the plot resembles admékline. In some
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cases this works nicely, in other cases this may be veryrftirsg and difficult, as no
such area is easily identifiable. A more detailed discussidihe performance of the

Hill estimator in practice can be found in Embrechts et 89(1).

The QQ-estimator

The QQ-estimator is sometimes a valuable alternative tdithestimator. It is based
on the idea that if the distribution of the data is regularyirag with tail index« and
k is small compared to the sample size n, then the points obéé— log(i/(k +
1)),log(X)), 1 < i < k} should form a straight line with slope™'. Hence, the slope
of a least squares line fitted to the getlog(i/(k + 1)),log(X(),1 < i < k} should

be a reasonable estimatewf!. Therefore, we define the QQ- estimator as
Oy = SL({—log(i/(k +1)),log(X(»), 1 < i < k}), (2.19)

where

%Z? 1 Lili — (% 2?21 xz)(g Z? L Yi)
1211 & (%Z’L 11’1)

is the slope of the line fitted tor;, y;},7 = 1, .., n} by means of least squares. We have

SL({zi,y;}i=1,..,n}) =

that

a;L % a7, provided that — oo andn/k — oc.

However, one is faced with the same problems of choosing proppate value fok

as in the case of the Hill estimator. Similar to the case ofHileestimator, a plot of
{k,arn,1 < k < n} is studied and one tries to identify an area of k, where thé plo
resembles a horizontal line. These plots have a tendency &abier to interpret than
the Hill plots and it may be easier to find an reasonable egtiwfay.

Other estimators have been proposed, see Embrechts Q%) (Bection 6.4.
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2.1.6 Peaks over Threshold

We first give the definition of a distribution related to the\GEamily

Definition 2.1.9

Define the standard Generalized Pareto distribution as fk&idution with cdf

_ ~1/¢
Ge(x) = o) <70 (2.20)
1—e™™ £E=0
where
x>0 if €20

0<z< -1/ if £<0.

As in the case of the GEV, there is a three parameter locat@ie gamily associated
with this distribution that is flexible enough to allow fitsdatasets. It is constructed by

replacingz in (2.20) by(z — v)/3:

|- (1 +§U)_1/5 €40
Gepu(r) = ’ (2.21)
1 —exp (—%) E=0
wherel + £ 20 andé¢ € R, € Randg € R,. Note that all the members
of this parametric family are of the same type as the stan@&D. We refer to these
distributions as Generalized Pareto distributions, GPB WM denote the special case
Ge po(z) by Ge g(x). Similar to the GEV, the crucial parameter is the shape patem
&, while g andv are chosen to make the distribution flexible enough for gttma data

set.

Define the excess distribution function of a random variablas
Fu(z) =PX —u <z|X > u.
Then we can write

F(z) =PX <z|X >u]-P[X >u] = F,(x —u)(1 — F(u)).



24

The connection with the results about the distribution okima is given by the follow-

ing equation, given in Embrechts et al. (1997). We have fiof al R:

F e MDA(H¢) <= lim sup |F,(z) — Gepuy(z)] =0 (2.22)

U—=TF 0<z<zp

for some positive functior(u). This result says that the GPG; s appears as the
limit distribution of scaled excesses over high thresholids.d. data in the domain of
attraction of H.. For high thresholds we may thus use the approximatidi(x) ~

Ge¢ 3(z). This leads to the following approximation for high quagsilof F. We have for

x > u andu large enough:
F(r) = Fu(z —u)(1=F(u) = Geg(z —u)(1-F(u) = Gepulr)(1 - F(u)) (2.23)

For estimation purposes, one chooses a high threshdeétsy = v and then estimates
the parameter§ and 3, for example using maximum likelihood techniques. There is
no obvious preferred choice for the threshaldOne faces similar problems as for the
estimation of the tail index: or the parameters of a GEV.dfis chosen too high, only
very few observation remain above the threshold and themat#s of¢ and 5 become
unreliable due to their large variability. On the other haind: is chosen too low, too
many points are above the threshold and one can no longectakpéa GPD is a good
approximation of the distribution of the excesses. Henne,would introduce a bias in
the estimates of and 5. We usually consulted QQ-plots and other exploratory ttmls
assess the quality of a fit and subsequently chose the lolrestibld that resulted in
good fits.

In this context, it is important to note that the class of GRDdosed under changes

of the threshold as explained in the following. We have

Gepu(w+u)
— = = Ge¢grean(W), (2.24)
G{ﬂ,u (U) §,8+¢



25

whereGG = 1 — G. This equality is important, because both the left hand aitéthe

right hand side can be seen as an approximation of

PIX > w+ ulX > u] = % (2.25)

if u > v is large enough. To see this for the left hand side, chooseeattbldy > 0. If
we haveu > v, we can use (2.23) as an approximatioiP@k > w + u] andPlz > u]

to get:
PX > w+u] ~ (1 — Gepp(w+u)PX > v] = Gep,(w+u)P[X >v] (2.26)

and similarly

PX > u| = (1 — Geg(u)Plz > v] = Gego(uw)Plz > v). (2.27)

Hence we obtain the approximation

PIX >w+u]  Gego(w+u)

P[X > ’U,] - Ggwg,y(U) (228)

PX > w+ulX >u] =

For the right hand side of (2.24), we consider the applicatib(2.23) when choosing

v = u. We get similar to (2.26):

PIX >w+u] = Gg g, (w+ w)P[X > u] (2.29)
for two parameters and3. This leads to the following approximation of (2.25):

PX >w+ul = C_T*g’[;’u(w + u) (2.30)

If the technique of approximating the distribution of highaaptiles by means of a
GPD is to be consistent for different choices of the thredhible two right hand sides
of (2.28) and (2.30) need to be the same. That is, we need tblbdmexpresg and
with 5 with &, 5 andu. This is exactly what (2.24) asserts us is true. It says&hatg
and that? = 3 + fu.
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A nice discussion of the GPD and its properties, includiregrésults in this section,
can be found in Embrechts et al. (1997). It also provides ahnagézper introduction
into the Peaks over Threshold techniques. We used the E0ISdBtware for all our

statistical analysis involving Peaks over Threshold.

2.2 Multivariate Extreme Value Theory

In the univariate case, the Fisher-Tippet Theorem, The@dn2, describes the class of
limiting distributions for extremes. In the multivariatase, the class of possible limit
distributions for extremes is much wider, because of theeddpnce structure between
the marginal components. Usually, the limit distributiohnaultivariate extremes is

described by

e the marginal distributions, which are given by the Fishigyp&t Theorem and

were discussed in the previous section;

¢ afinite measure on the unit sphere, referred to as the spectragular measure,

that describes the dependence structure between thesdifl@@mponents.

We first describe the possible limit distributions of mudtilate extremes. Then we
show how multivariate regular variation can be used to attareze the MDASs. Finally,
we show how the spectral measure can be consistently estim@&ood references on
these topics were written by Resnick (1986), Resnick (20G2a)jc& Strica (1999), and

Einmahl et al. (2001).

2.2.1 Limit Distributions for Multivariate Extremes

We first introduce the notation that we will use throughoug gection. All operations

on vectors are understood componentwise. For example, vesfbiatwo vectors and
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y and two pointsx andb in R%:

x <y means zW <y® i=1 ..4d,
x <y means z% <y® =1 ..4d,
x+y means (zM +yM . 2@ 4 yd)

KOV YO,V @)

a®, bM) x .. x (aD b @) C R if a<b

(

x-y means (z(M.yM @ .y @)
x\/y means (
(

(a,b) means

Let {X;}ien = {(XZ.(”, o XZ.(d))}ieN be i.i.d. random vectors iR¢. We are considering
limit distributions forM,, = (M{", .., M{?) = (\/;L:1 x LV, XZ.(d)>. Denote the
joint cdf of X, with F'(x). Assume that there exist sequences of vedtigre R and

a, > 0, such that

Mn - bn
P [a— < X:| = F"(a,x +b,) — G(x), asn — oo, (2.31)

where(G(x) has non-degenerate marginglgx),: = 1, ..., d. By the results from the
previous section, we know that each of tigis a GEV. However, the marginals need
not be of the same type. To simplify the task of describingdlags of possible limits
distributions with non-degenerate marginals, it is hdlffistandardize the marginals to
a specified distribution. We chose the unié€net distributiorb,, introduced in Section
2.1.1. That enables us to use results about multivariatelaegariation. Different
standardizations could be and have been considered. Theydesimilar results as the
one described in the following. The first result assertstimaistandardization does not

create any changes in the convergence behavior.

Proposition 2.2.1 Define the random vectofsX; },cn as above with joint distribution

function F' and marginal distribution functiong;. Assume that (2.31) holds and that
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the marginals of the limit distribution are non-degenerddefine for: = 1, .., d

vi(z) = (1/(=1og(Gi))) ™ (x),z >0 (2.32)
and
G.(x) = G(?ﬂl(l’(l))a -~-7¢d($(d)))-

ThenG.(x) has®; marginalsG.;(x). If G is a multivariate extreme value distribution,
S0 isG..

DefinelU;(z;) :== 1/(1 — Fi(z;)),i = 1, ..,d, and letF, be the distribution of

(U1 (Xf”) Uy (Xl( )) That s, let

F.(x) = F(U; ('), .., Ug («'9)),
Then, ifF € D(G), we have that, € D(G.) and

L U XZ Yn<zWi=1,.4d| = F'(nx) — G,(x), asn — co.  (2.33)

Conversely, if (2.33) holds and if far = 1,..,d: Fr(az + b)) — Gi(z), non-

degenerate, we have thate D(G) and that (2.31) holds.

Proof: See Resnick (198GH

The following theorem gives the exact description of theslaf limit distributions
with ®; marginals. Proposition 2.2.1 asserts that this is suffi¢@rdescribing the class
of multivariate extreme value distributions, since for gvextreme value distribution
G there exist a standardized extreme value distribufin obtained fromG by the

transformation given by (2.32).

Theorem 2.2.2 The following are equivalent:

1. GG, is a multivariate extreme value distribution widh marginals.
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2. There is a Radon measyig onE = [0, 00) \ {0} C R? such that
G.(x) = eap(—.(]0,]°)), (2.34)
such that forr > 0 and a Borel setd € S 1 = {y e R?: |ly| = 1}
pdy €E: lyll > llyll~y € A} =r7'S.(4), (2.35)
whereS, is a finite measure oR = E N S?~! satisfying the marginal conditions

/x(i)S*(dx) =1,i=1,...d. (2.36)
N

Proof: See Resnick (1988

The finite measure, in (2.35) is referred to as the spectral measure or angular
measure. The Radon measyres referred to as the exponent measure. Both measures
completely describe the distribution functiofy. S, can be interpreted as the description
of the dependence structure®f and hence it describes the dependence of the extremes
of X;. From the above two results we see that the extreme valuédisdn of G(x) of

X, can be described by
e the marginal distributioné&s;,
o the spectral measure of the standardized extreme value distribut@n

In that sense, the spectral measure has a similar functithea®pula in describing the
dependence structure of the limit distribution. Recall thatcopulaC' of a distribution

function £’ with marginalsF;,i = 1, ..., d is given by
F('rh .-,.Td) = C(Fl(xl)a "-7Fd(‘rd)) — C<u17 -"7ud) = F(Fr(u1)7 ) Ff(“cl))

The copula, having standardized Uniform[0,1] marginakssadibes the dependence

structure, to which the desired marginal distributionsattached.
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It is worthwhile to mention two specific cases of possible etefence structures de-

scribed bysS,, or equivalently by,.

1. The exponent measure concentrateg p{0 x ... x (0,00) x ... x 0}. In that
case, the spectral measure is a discrete measure conicgritsatnass on the axes
e, ={x:2; =0,5 #14},i =1,...,d. Inthis case, iX, is distributed ag~., the
marginal components; are independent. In the cage= 2 this means thaf,
concentrates on the x and y axis. As a consequence of eqatR&8), in polar

coordinatessS, is a measure with mass 1 on the points 0 apgl

2. 11, concentrates of¢1,¢ > 0} and hence, concentrates off1||~'1. In that case
there is total dependence among the marginal compoﬂéﬁtsf X,. Thatis, we
haveP[X!" = .. = X{?] = 1. In the casel = 2, this means tha$, puts all its
mass in the poink € S! : x; = x,. Expressed in polar coordinates, is a point

mass concentrated oty 4.

2.2.2 Regular Variation and Domains of Attraction

The spectral measure can be used to identify and describdotihains of attraction
of G,, using regular variation. Regular variation of univarisa@dom variables was
introduced in Definition 2.1.3. In the multivariate settiagunctionf : ¢ ¢ R? —
(0,00), whereC'is a cone, is callecegular varying with limit function\(x), if and only
if there exists a functioft” : (0,00) — (0, 00) such thal” € RV, and for allx € C we

have

flix)
i Ty = A

The following theorem describes how the domains of attoaatf a multivariate extreme

value distribution withd; marginal distributions can be characterized.
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Theorem 2.2.3LetF,, G., u. andS, be as in Proposition 2.2.1 and Theorem 2.2.2. Let
E = [0,00) \ {0} and® = E N S?*. The following are equivalent:
1) F. € D(G,)

2) 1 — F, is regular varying onE with

i L2200 —log(GL(9) ([0, %))
tooo 1 — F,(t1)  —log(G.(1))  p.([0,1])

(2.37)

3) Let M, (E) denote the space of Radon measure&oupposeX; is distributed as
F,. Then

X. v .
tE.(t) = tIP’[Tl €] p,in M, (E), ast — oc. (2.38)

Here % stand for vague convergence.

4) Define(R, ©) := (| Xq]], [|X1]7*X4). In M, ((0, 00] x R) we have that

t]P’[(%, 0) € | % r2dr x S.(df). (2.39)

5) LetXq, ..., X, be i.i.d. random vectors with joint distribution functidn. For any

sequencé = k(n) — oo such thati/k — oo andk(n) ~ k(n + 1)

1 n
E Z €(Xi/2) = M (2.40)
=1
in M, (E).

Proof: See Resnick (20028

Remarks: The theorem shows that the extreme value distribuigrin whose do-
main of attractionF, is, can be found and described by the regular variation ptppe
(2.37). The extreme value distributi@#, is determined by the exponent measuyeln
polar coordinates, this exponent measure appears as acpradasure o0, co] x N
of r—2dr and the spectral measusg(df). Both the spectral measure or the exponent

measure completely describg.
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To identify the extreme value distributidi in whose domain of attractioR' lies, pro-

ceed as follows:

1. Compute the marginals; and then find the univariate extreme value distribution

G, such thatFi”(aff)x + bﬁf)) — Gi(z).
2. ComputeF, and use Theorem 2.2.3 to firdél,, such thatF, € D(G.).
3. Calculate

G(x) =G, ... 29 =a, (77[)1_(:17(1))7 ...,@/)j(x(d))) ‘

In Theorem 2.2.3 we worked with the assumption that the &lrttarginal distribu-
tions are®;. This assumptions is clearly unrealistic as far as real dat@ncerned.
There is no reason why one should assume that the tail indé»emch marginal dis-
tribution should be the same, not to mention why they shoelcetpual to one. We
therefore have to make different, more general, assungpéibaut the joint regular vari-
ation of the distribution ofX; than the one given in the theorem above. We assume
that the distribution satisfies the two regular variationditions given below, found in
Resnick (2002). As before, I& = [0, co] \ {0}. Define the measures,, on (0, oo] by

o, (z,00] = 7% «a; > 0. Define the sequencééﬁf), n > 1,1 <i < d} such that

lim b = o00,i=1,...,d.

n—~o0

Marginal Condition For each i=1,...,d, we have i/, ((0, o))

X(Z) Y
nlP [b(_lz) € ] — o, - (2.41)

Global Condition There exists a measureon Borel subsets d, such that in\/ (E)

X1

np | — =t
@D, ..., b

€ ] R M. (2.42)
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We say that the random vectHr, is jointly regular varying if the both the Marginal
and the Global Condition are met. Equation (2.41) is equntaie the definition of
regular variation for univariate random variables, givarlier. The marginal condition
therefore states that the marginal distributions havelaegwarying tails. The global
condition is a more general formulation of (2.38), given medrem 2.2.3 above. In that
case we may choogd) = n,i =1,...,d and we havey;, = 1,7 = 1, ...,d. The global
condition describes the dependence structure among tlggmabcomponents oX ;. It
is not hard to show that (2.41) and (2.42) are necessary dficiesot conditions for

P[\n/égx

i—1 -n

— G(x) = exp(—u([0,%])) (2.43)

and the limit distributiorG(x) has marginal distributiong,,, .
The following result states that this definition is consisteith results in Theorem
2.2.3, where we assumed that all marginal distributionsbardt essentially rephrases

Proposition 2.2.1 in the language of regular variation.

Proposition 2.2.4 Assume thatX; is a jointly regular varying non-negative random
vector. That is, assume that the Global and Marginal Condgitormulated above hold
for some sequencés,, defined as above. Lé; (z) be the ik marginal distribution

function and define
1

U (r) = 1= Fu0)

(), > 1.

Then we have

1. Standard Global Convergence:

) X(i)
nF,(n-) := nP (—U(Z)< L)
n

0= 1n> € ] o in ML (E),  (2.44)

where
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on Borel subsets d&.

2. Standard Marginal Convergence:

U X(i)

n

1

> x] —x x> 0. (2.46)

Proof: See Resnick (2001

The Proposition essentially verifies that we can replacecttiwergence condition
given in (2.31) with the regular variation conditions givabhove and still apply the
transformations described in Proposition 2.2.1. As a Carplio Proposition 2.2.4, we
get the following important relationship between the exgdmeasures andy, from

(2.43) and (2.44)
Corollary 2.2.5 Letyu be asin (2.43) and let, be as in (2.44). Then
([0, %)) = p([0, /). (2.47)

Proof: See Resnick (20018
This relationship plays an important role in the estimatibthe spectral measure,

discussed in the next section.

2.2.3 Estimation of the Exponent and Spectral Measure
The Ranks method

For references on the following results we refer to Resni@R}. LetX;,i =1,....n
be a sequence of i.i.d. positive random vectors as aboven®#fe (anti)-ranks for
i=1,..das

T](-i) = Z 1[Xl(i>>X](-i)] andrj = (7”](-1), e T](-d)) (248)
=1
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to be the number of” components bigger thaNJ(i). Then we have, aB — oo, n —

00, k/n — 0,

3

%i e<i> = . in M, (). (2.49)

Applying the transformation into polar coordinatesx) := (||x||, ||x[|~'x) =: (R, )
we get withT(rﬁj) =: (R, x,0;) and applying the continuous mapping theorem that
1< :
D €00 = e X Sy in M ((0, 00] X R)
j=1
for a constant > 0. Therefore, if our sample sizeis large enough, we may use the

approximation

1 n
=D e (1,00] X A) = g (1,00]) x 5.(A),
j=1

for a Borel setA C N and a constant > 0. This motivates the following estimator for

the spectral measure:

> i1 :!;(R]lk>1)€(ejyk)(.) = S, (2.50)
2 i1 (R0

Son(") =

This estimator depends on a good choicé.0fVe used the @rica plot to make a choice
of k, see below. The advantage of the ranks method is that we d@weto estimate the
different tail indexesy; > 0,7 = 1..,d. These estimations can be difficult, as explained
in the section about the Hill estimator. However, the raties,data used to estimate

in (2.50), are not independent. For this reason, asymppotiperties of the estimator
§,:n are hard to come by. It is also an open question whether thes tatistics (2.48)

is a sufficient statistic for the description of the exponaetisure. Therefore, it may be
desirable to consider a second approach that avoids thekkeprs. However, it forces

us to use the possibly unreliable estimates of the diffehindexes.
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Direct approach adjusting the tail indexes

The following method for estimating the spectral measut@gsed on the results found
in de Haan and Resnick (1993).

Recall from (2.40) that it: — oo, n/k — oo, we have that

1 n
k D ki) = b
i=1

if the dataX,, is i.i.d. with distributionF, as defined in Proposition 2.2.1. Similarly, if
X, has a regular varying distributiof;, with tail index«; > 0, equation (2.42) implies

under the same conditions fbrandn that

1 n
A D/ =
j=1

We adjust the tails for their respective and possibly défertail indexes. From (2.41)

x® \ "
nP . 1n c-| 5.
[(bm(z)) ] 1

Remembering that operations are carried out componentwesebptain

we have that

- € o= [l (2.51)

Suppose that we had consistent estimatorscaind b(7), denoted bya and B(%).

de Haan and Resnick (1993) showed that using these estimatésyve that

PO I
o= 1 ;e<x7_/g(%))a. (2.52)

is a consistent estimator of.

In practice we have to:

1. Choose an appropriate We use the @irica plot, see next section below.
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2. Consistently estimate(n/k). Since

P

b (n/k) /X, = 1,

see de Haan and Resnick (1993), we usekhe 1)st order statistitb(Ai)(n/k) =

X (@)

(k1) @S @n estimator df*)(n/k).

3. Consistently estimate the tail indexes We use the Hill estimator, introduced in

section2.1.5 for that purpose.

Proceeding in a similar fashion as with the ranks method, bbtaio an estimator of the
spectral measure by using a transformation into polar ¢oatels. Using the transfor-

mation to polar coordinates as above, nani&lx) := (||x||, ||x[|"'x) =: (R,6) and

x; \°
RjJC, ik =T = J s
e (o

defining

we have that
Z;‘Z:l 1(Rj,k>1)€(¢j,k)(')
Z;l:l 1R1,k((17 OO])

estimatesS,(-) consistently, see de Haan and Resnick (1993). Essentiggina X

(2.53)

Spn() ==

is considered extreme in the sense that it is used in the &svimof S, (-), if the corre-

spondingR;; > 1.

Choosing k: The Sérica Plot

Both methods of estimating the spectral measure descrilme alepend on choosing a
k. The following idea, due to &tica (1999), uses the scaling property of the exponent

measure

b (t-) = () (2.54)
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to make a choice fok. Suppose that we have an estimgior= /i, ., of u.. We use it

to plot

{ tp. (tA)
i (A)

whereA = {x € E : ||z|| > 1}. If kK was chosen appropriately, will be a meaningful

, for t in a neighborhod of} ,

estimator ofu, and the plot should be close to a horizontal line at 1. Difiehoices
of k& will result in different plots. We choose thiethat results in a plot that most closely
resembles the horizontal line at 1. Using the ranks methad &n estimator fou,., we

obtain

tntd) P2 Ay 1
ﬁ* (A) Z?:l E(rﬁ)(A) Z;l:l l(R]',k>1) ’

where{R,:,j = 1, ...,n} are the radial components of the polar coordinate reprasent

(2.55)

[

tionof {£,j=1,....n;}.
J
Alternatively, we could also use equation (2.52) as an egbtnfor 1. In that case
we plot
—~ 5" ~ al(t n
thu.(tA) 2j1 E(Xj/b(%)) (tA4) _ £ 51 Ly

LtA) i , (2.56)
M*(A) Zj:l E(X]./B(%))a(‘A) Zj:l l(Rj,k>1)

where{R,;,j = 1,...,n} are the radial components of the polar coordinate represen-

tations of (Xj/g(%)>a. We use the firstk + 1) order statistics oX; and the Hill

estimator foﬂg(%) anda respectively, for reasons explained above.

2.2.4 The Spectral Measure for non-positive Data

So far, we have only considered tail dependence for positva. We explained how we
describe the tail dependence of positive random vectoth, nangeE = [0, oo] \ {0},

with the spectral measure. We also introduced two diffenegthods for estimating the
spectral measure from data. However, in a number of apgit@bne has to work with

data that contains positive as well as negative obsenatid¢inis one of the goals of
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this thesis to describe the tail dependence between theetagas of different stocks.
It may be of interest to learn about the structure of the tepeshdence of a bivariate
distribution in all four quadrants and not just the first guzad only. We may for example
be interested in the tail dependence between large negativas between two stocks.
This poses the problem of how to define and estimate the sppentiasure for data that
is not non-negative.

Assume that the random variablés®? and X describe the log returns of two
stocks respectively. If it is our intention to only focus drettail dependence between
large positive returns of the stocks, we do not need to censiet negative returns. We
consider only the observations for which both stocks haveranegative return. This
way, we obtain a dataset of only non-negative observatidnis. allows us describe the
tail dependence with the spectral measure. Consequentlgaweise the techniques
explained earlier in this chapter.

To study, say, the dependence between large negative setmencan proceed in a
similar way. We only consider observations for which bottcks have a non-positive
return. We hence discard all observations for which eiffiét or X ® is positive. This
way we obtain a dataset consisting of only non-positive nlag®ns. By considering
the absolute values of these observations, we obtain a egatiie dataset. This way,
we can again make use of the concept of the spectral measiesddbe the tail depen-
dence. In a similar fashion, we can study the tail dependbateeenX® and—X®
or — XM and X ®. Obviously, this solution is not limited to the two dimensi case
and an extension to higher dimensions is straight forwareln ¢hough the number of
different cases to be considered grows exponentially wighdimension.

However, this approach is not satisfying. We would like t@bke to describe the en-

tire tail dependence of the considered random variabldstive concept of the spectral
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measure. With the approach outlined above, we are only ib@sgthe tail dependence
in certain quadrants by separate spectral measures. Wemdefine the spectral mea-
sure of the entire distribution. The definition has to be iaat with the definition of

the spectral measure given earlier in this thesis. We thed tedescribe how we esti-
mate this spectral measure. The following definition introgs the notion of a spectral

measure for a distribution with both positive and negativsesvations.

Definition 2.2.6 The distribution of a random vectd is called “multivariate regular
varying” with tail index o and spectral measure S, if the following limit exists for all

x > 0:

PUX| > te, XXM €], 4
PIX] > 1] — o S(), (2.57)

where—" denotes vague convergence$sii!, the d dimensional unit sphere.

The definition is consistent with the definition that we gaaéier for the spectral

measure of positive data. Recall that in Theorem 2.2.3 we tladeldsthat
F, € D(G.) (2.58)

if and only if for (R, ©) := (||X;]], [|X1]7*X1) we have that

t]P’[(%, 0) € ] L r2dr x S.(db). (2.59)

In this framework, Definition 2.2.6 naturally extends thesjpal measure as a tool to
describe the tail dependence onto the entire unit sphere.

However, (2.57) assumes that the tail indexes of all matglisdributions are the
same, namelyv. It also assumes that the tail indexes of the left and the tajhof
each marginal distribution are equal. Clearly, this is na@asonable assumption. In the
context of Theorem 2.2.3, we did not assume that the actasllition F' of the data

satisfies the regular variation condition (2.59). Insteae assume that the distribution
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of the data satisfied two conditions, called the “Marginal dtan” (2.41) and the
“Global Condition” (2.42). Proposition 2.2.4 states, tha{2.41) and (2.42) are met,
then there exists a transformation of the data, such thafRolds for the transformed
data. We need to adapt these results for the case of data thatnon-negative.
Suppose, that we have a random vec¥or= (X .. X)) ¢ R? Define the

random vectoZ € R?? as a functiori” of the random vectdK, as follows:

Z = (ZW, .., 22D =7 (X) = T((XV,..., X)) € R*; where
VAS Xf) = max(X®,0),i=1,...,d and (2.60)
7z = X% = max(—X®,0),i =1, ..., d.

The random vectoZ is a non-negative random vector. We can therefore apply the

results from Section 2.2.2. This motivates the followingrigon:

Definition 2.2.7 We say that a random vectd® < R? is jointly regular varying, if the
random vectoZ = T'(X), defined by (2.60), satisfies the “Marginal Condition” (2.41)

and the “Global Condition” (2.42).

It follows from Proposition 2.2.4 thak has standard global convergence (2.44) and
standard marginal convergence (2.46). Therefore it hagetrgph measure. Due to the
special nature of the random vect@ythe spectral measure @fcan be translated into

a spectral measure describing the tail dependence of tdemamectorX.

Definition 2.2.8 The spectral measuréx of a jointly regular varying random vector
X € R?is defined as the map of the spectral measiy®f Z = T(X) underT. That
is, we define

Sx () = Sz(T(")). (2.61)

To illustrate this definition, consider for simplicity thased = 2. Assume, that we

wish to study the spectral measure of the random veéter (X, X?)) ¢ R2. We
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have that

The spectral measure @fis a measure on the 4 dimensional unit sphere. However, the
way we definedZ, we have that eitheZ ") = 0 or Z(?) = (. At the same time, we have
that eitherZ® = 0 or Z) = 0. In either case, at least two entries of the ve@aqual

0. The distribution ofZ concentrates on 2 dimensional sub-planeRbfEach of those

planes corresponds to a quadranRi

e If Z lies in the sub-plang® = 0 andZ™ = 0, thenZ corresponds to the point

(X®, X®) with both X® > 0 andX® > 0.

e If Z lies in the sub-plang ) = 0 andZ™ = 0, thenZ corresponds to the point

(XM, X@)with XM < 0andX? > 0.

e If Z lies in the sub-plang ) = 0 andZ® = 0, thenZ corresponds to the point

(X®, X@) with both X < 0 andX® < 0.

e If Z lies in the sub-plang® = 0 andZ®) = 0, thenZ corresponds to the point

(XM, X)) with XO > 0andX? < 0.

This way, the distribution oF has a one to one relationship with the distributiorXof
The same relationship therefore also applies to the ragpesgectral measures. Since
the distribution ofZ is concentrated on 2 dimensional the sub-planes, the sare i®r
its spectral measure. The spectral measure in each sub-pdanhence be interpreted
as the spectral measure Xfin the corresponding quadrant. This idea is captured in
Definition 2.2.6.

The estimation of the spectral measure&gfbased on a sampke, ..., X, follows

naturally from the above definition of the spectral meastfir¥ 0We obtain an estimate
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Sy, of the spectral measure of the transformed sarple- 7'(X;),i = 1, ..., N, using
the techniques described in Section 2.2.3. We then obtaiodiresponding estimate of
Sx from

Sx () = S4(T()). (2.62)



Chapter 3

Directional Distributions

Directional distributions model observations that aredions. The observations are
usually recorded as points on the unit sphere. In the foligywive will first concentrate
on the relatively simple case of observations on the unitein R?, before describing
the general case of the d dimensional unit spl§éré = {x € R? : ||x| = 1}. The
problem of defining a distribution and its characteristios distributions on a sphere
is different from the problem of defining a distribution iretEuclidian spac&?. The
usual concepts of distributions R’ are not appropriate, because the sphere has a very
different topology. Consider the case of the unit circl&i If ¢ — (cos(¢), sin(¢))

is a parametrization of the unit circle, we know that the pdims(0), sin(0)) is the
same point ascps(27), sin(27)). This periodicity is not present in the regular Euclid-
ian space. This natural periodicity of the circle in parécuand the sphere in general
should be reflected in the description of distributions andincle and the sphere. In the
following, we will refer to distributions on the unit circlas circular distributions and
distributions on the sphe&~!, d > 3, as spherical distributions. The most common

references on directional distributions are Jupp and M&g200) and Mardia (1972).

3.1 Circular Distributions

3.1.1 Definitions and Descriptive Measures

Throughout our work we use the following parameterizatiohthe unit circle:S' =
{(z,y) € R* : = cos(¢),y = sin(¢),¢ € [0,27)}. For the discussion of certain

properties it is more convenient to consider the complekcirgle, rather than the real

44
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unit circle. This allows the representation of a circulardam variableX asX = /@,
® € [0,27). Let X = €* be a random variable with values on the unit circl&®h In a
slight abuse of notation, we will refer to the random vamakl = ¢!* with both X and

®, depending on which notation is more convenient.

Definition 3.1.1 A function F with domaimR is called circular cumulative distribution

function (cdf) of a circular random variabl& = ¢®, if the following equations hold:
1. F(p) =P0<d < ¢],0 < p<2r

2. F(p+2m)— F(p) =1,Vp e R

The first property is similar to the definition of a cdf of a rand variable on the
real line. It impliesF’(0) = 0, unless there is a atom at 0, afAd27) = 1. The second
property describes how to extend the domairk'db the real line. In a similar fashion,

we can define the density of an absolute continuous randoiaiNer

Definition 3.1.2 A non-negative function f with domalis called probability density

function (pdf) ofX = ¢?, if the following equation holds for a circular cdf:

¢
Fg) = /O F(6)d6,0 < 6 < 2m

The two definitions imply the following properties for a dép®f a circular random

variable:
1. f(¢p+27m) = f(¢),0 < ¢ <27 a.s.

2. 77 f(¢)de =1

Conversely, any positive functiof{¢) that satisfies the two properties above is a density

function for a circular distribution.
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We now give a definition of the characteristic function. We tise theory of Fourier
series for periodic function, that implies that, in ordechk@racterize a distribution, it is

enough to consider integer values for p.

Definition 3.1.3 Let X = ¢'® be a circular random variable. Then the function
¥, = U(p) = EX7) = Ele) = [ " Fdg)p ez (3.1)
0

is called the characteristic function (ch.f.) of X.

We write
v, =a, +1ib, = ppeio‘g, (3.2)
where
2
oy = Bleos(p®)] = [ cos(p)Plao) (3.3)
and
2
by = Elsin(p®)] = [ sin(po)F(a0) (3.4)

The sequences, andb, are referred to as the trigonometric moments{of= ¢'®. For
the special case p=1 we use the notations- p anda! = «y. The key property of the
ch.f. of circular distribution is that such distributioneadetermined by their ch.f., see

Jupp and Mardia (2000).

Definition 3.1.4 U, is called the resultant, is called the mean direction of = ¢*®,

while p is called the resultant length.

The mean direction takes the role that the mean has for abdistm on the line.
One can show that the mean direction is the solution to thatemms
E[sin(® — ag)] = 0,a9 € [0, 27) (3.5)

El[cos(® — ag)] > 0. (3.6)
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The resultant length is then given by
p = Elcos(® — ap)]. (3.7)

See Mardia (1972) for a reference. It is important to poirittbat the mean direction
is only well defined ifp > 0. The Lattice distribution and the Uniform distribution are
examples of circular distributions for which resultantdémis 0. The reason why we

are not considering the usual mean is illustrated in thefotig example.

Example 3.1.5Let X = ¢'® be concentrated on two points,/100 and 199/100r,
each attained with probability 0.5. The mean, as calculatedaf distribution on the
line, would ber. Note that both values @b are close to 0. Obviously, a mean of
is not what we expect intuitively in this case. On the other havelhave thatl; =
cos(m/100) =~ 0.9995. Hence the resultant length js = cos(w/100) and the mean
direction isagy = 0.

Now consider a change in the coordinate system, making teetdiny = —7/50
the new zero direction. In the new coordinate systehas values/100r and1/100x.
Therefore the mean, as calculated for a distribution on the Is now1/507. On the
other hand, we hav@| = cos(7/100)e/°7, The mean direction is therefore also
1/50r. We see that the new mean directigsatisfiesn, = a, — v. If we choose a
new zero direction, we cannot expect the direction of the nagaralculated on the line
to change by the angle between the new and old zero direct@rthis reason, the new

definition of a mean direction is needed.
The resultant length is used to define the circular variamoegasure of dispersion.

Definition 3.1.6 Let X be a circular random variable with resultant length The
circular variance ofX, V;, is defined a3y =1 — p = 1 — E[cos(® — ag)] € [0, 1],

using (3.7).
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Note thatlj is invariant under changes of the zero direction. This istne for the
variance as calculated for a distribution on the line. Thiglustrated by the following

example.

Example 3.1.7Let X = ¢® be as in Example 3.1.5. The variance as calculated on
the real line is 9.67. On the other hantly is equal to 0.0005. Note that since the
distribution is concentrated on two points that are closestbgr, the large value of the
variance as calculated on the real line is not meaningful.

Now consider again the change in the coordinate system, makedirectiony =
—m /50 the new zero direction. In the new coordinate sysfehas a different mean as
calculated on the line and hence also a new variance, whichia®001. On the other
hand, the length of the resultant and therefore the circutarancel;, do not change.

For this reason the new definition of a variance is needed.

Let z, = &/*,... x, = €/ be an i.i.d. sample of a circular random variable

X = €'®. The sample trigonometric moments

Cp = % Z?:l cos(pg;)

Sp = 3 Lj=1 5in(pe;)
are unbiased estimators of the trigonometric moments. @icpéar interest are; =:
C andS; =: S, as they are used to estimate the resultant length and the direation.
The resultant length is estimated by the mean resultant

T (€2+§2>1/2.

The mean direction is estimated by the sample mean direcliom sample mean direc-

tion is the solutiorig of the following system of equations, whenever 0:

C = Rcos(ap) (3.8)

S = Rsin(a)
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The sample mean direction is a consistent estimator of ttemeection, see Jupp and
Mardia (2000). In general, it needs not be an unbiased estimaut it is unbiased in
the case of a von Mises distribution, as we will see below. \&atwo point out that the
sample mean direction and the mean resultant length cabalerpressed hy,, ..., =,

in cartesian coordinates. To that end, defines@i®ple mean vect@s

T = lZl’i. (3.9)

n 4
=1
Then we have

R =||z||, andag = ||z|| 7. (3.10)

3.1.2 Important Circular Distributions

We now present several important circular models. Of paldidnterest are the Wrapped
Normal distribution and the von Mises distribution. They ¢z seen as the analogues
of the Normal distribution on the circle. Neither of them baall the important charac-
terizations that the Normal distribution on the line inaangtes. Some of those charac-
terizations are held by the Wrapped Normal distribution,levbthers are held by the
von Mises distribution. It turns out that these two disttibos can be seen as approxi-
mations of each other. We may therefore use either one of #isethne circular analogue

of the Normal distribution on the line.

Point Distribution

X = ¢'® is said to have a point distribution, if there isare [0, 27), such that:

In that casex is also the mean direction, the resultant length is 1, thaular variance

is 0 and the ch.f. is given by, = e,
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Lattice Distribution

A lattice distribution is a discrete circular distributiooncentrating its mass on a count-

able number of equally spaced points. It has probabilityfiom
2nr
P ((ID =v+ W(mod 277)) =p, forr=1,..., mandv e (0,27], (3.11)

wherep, > 0 are the probabilities of the points of suppért+ 2mﬂ, r=1,..,m} with
> ,pr = 1. The points of support have equal distances from their teighon the
circle. They are the vertices of an m-sided regular polygoapecial case of the lattice
distribution is called the discrete uniform distributioitlvm points of support. It is the

lattice distribution withp, = 1/m for all » = 1,...,m. The characteristic function of

this uniform distribution is given by

1, p=0(mod m)
0, otherwise.
In particular, we see from the ch.f. thatyif > 2, then the resultant length is 0. This

means that the mean direction is not defined.

Uniform Distribution

If X = ¢® has pdf

f(6)= 5.0 <6 <2
we say thatX = ¢'® is uniformly distributed on the circle. Note that the reantt
length is 0. Therefore, the mean direction is not defined hactircular variance is 1.
The ch.f. is¥, = (e#*™ — 1)/27ip, p # 0. Therefore we hav@, = 1, if p = 0
andW¥, = 0, if p # 0. The Uniform distribution appears as the limit distributiof
sums of i.i.d circular random variables. L& = ¢'®, (j € N) be an i.i.d. sequence of

circular random variables. If the distribution & is not a lattice distribution, thesi, =
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H?Zl X;=¢ 2j=1%5 converges weakly to a uniformly distributed random vaeafilhe
summation of the random variabl@s is understood modul@r. See section 4.3.1 Jupp
and Mardia (2000) for a proof. In particular, X is itself uniformly distributed on the

unit circle, then the distribution of,, is also the Uniform distribution, for alt € N.

Wrapped Normal Distribution
A random variable whose distribution has the characterigtiction given by
U, = gleor—po*/2, (3.12)

is said to have a wrapped normal distributi®i N (ay, p). It's trigonometric moments
are given by

a, = e P72 cos(pay) andb, = e 77" 2 sin(pay). (3.13)

The distribution is unimodal and symmetric abayt As p — 0, it tends to the Uni-
form distribution, while, ap — 1, it tends to the Point distribution aty. The pdf of
W N(ay, p) is given by

- — — 2
CTTY) —— eXp{ (¢ — ap + 2k)

D)o 20 (p)? (3:14)

The distribution has its name because of the following prigpeet X have a normal
distribution with mean: and variancer?, N (u, 0?), on the real line. Then the circular
random variableX = ¢* with ® = X (mod2n) has a wrapped normal distribution. Its
mean direction is given by, = u(mod 27) and its resultant length has the following
relationship witho:

2 —

o(p)* = —2log(p) & plo) =772,
We refer to Jupp and Mardia (2000) as a reference.
On the line, we have that the sum of independent normallyildiged random vari-

ables has again a normal distribution. Not surprisinglys groperty transfers to a
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similar property for the wrapped normal distribution. X, = ¢™®/,j = 1,...,n, are
independent and’; has alV' N («;, p,) distribution, then we have that

HXj = exp (2 Z q)j) is distributed asV N (Z a;j(mod 2m), H pj> . (3.15)
=1 j=1

j=1 i=1
Several other wrapped distributions have been consid&eel Jupp and Mardia (2000)

for definitions of a wrapped Poisson and a wrapped Cauchytistn.

Von Mises Distribution

X = ¢® is said to have a von Mises distribution with parameteendx, M(a, k), if

it has density

1

—encos(¢—a)70 < ¢ <2m,k>0,0< a<27. (316)
271'[0(:‘4))

fM(¢a a, "{) =

wherel,(x) denotes the modified Bessel function of the first kind of oréeoz

2w

1 /m\2» 1
_ v _ K cos(t)
Iy(k) E CIE <2> o, e dt. (3.17)

n=0

« is the mean direction, as we will see below, whiles a concentration parameter, but
not the resultant length.

Note that the density of the von Mises distribution can aleekpressed in carte-
sian coordinates. If we defing = (11, u2) := (cos(a),sin(«)) andx = (xy, z3) =

(cos(¢), sin(¢)), then we can rewrite (3.16) as

1

= ———ermmtuar), St : 3.18
27_‘_]0(/1)6 7I~'I’7X€ 7K‘>O ( )

fM(X; K, E)

For this reason, we sometimes also use the notaltitiu, ~) when referring to the von
Mises distribution.
The densityfy (¢; «, k) is strictly positive for allp € [0, 27|, as long as the con-

centration parametey is finite. The distribution function of the von Mises diststipn
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cannot be expressed in an easy closed form. We used numetegghtion with Matlab

to evaluatel'y/ (¢; a, k) = fo‘” fu(o; a, k)do. Alternatively, one could work with tables

of values ofF;(; 0, k). Such tables can for example be found in Mardia (1972). The
distribution is unimodal and symmetric abaut If x = 0, then fy,(¢; a, k) = % the

pdf of the Uniform distribution. A% — oo, P[® € [a — ¢, + €]| — 1, so that the dis-
tribution converges to the point distributionat Figure 3.1 shows a plot of the density
of the von Mises distribution. Note how the distribution mncentrated much closer

around the mean direction far= 10 than it is forx =2 or 0.2.

15

Density

Figure 3.1: The densityfy/(¢; «, k) of the von Mises distributions with = 1 and

xk = 10,2 and 0.2, respectively.
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The ch.f. is given by

— ipaM
U,=e To(R)’ (3.19)

I,(r) denotes the modified Bessel function of the first kind of ogder R*, which is

given by

(k) = (§)i i o (3.20)

= Tl+i+DIG+1)
whereI'(z) denotes the Gamma function. For the purpose of calculatiegh.f. it is
enough to considef, () only for integer values gb. However, for other purposes that
we will discuss later in this thesis, we need to considertinetion/, () for non integer

values ofp. The following equation including an integral will provelbe helpful.

_ (%yj ! _ $2\p—3 nt
L(k) = m/l(l )P 2e™dt

7\/7?;(%;: y /0 (1— 2P~z (e + ™) dt (3.21)

In case ofp € N, we also have the following equation:

TRy g —

T

As a consequence of this last equation we see that the tmgetne moments of order

p € Nare

Ip(K)

a, = To(r) Ly(x) sin(pa). (3.22)

Ih(k)

In particular, we have for the resultant length that

cos(pa) andb, =

p=A(k) = (3.23)

and thatx is the mean direction. Hence the circular varianceis= 1 — A(k).
The von Mises distribution can be related to other circuisirithutions. We already
discussed the relations to the Uniform and the Point digiobs. For large values af,

one can furthermore show that the von Mises distributidfxy, x) can be approximated
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by a Wrapped Normal distribution with resultant length- A(x). A result due to Kent

(1978) states that

fu(dsa, 8) — f(d;a, A(k)) = O(~1/?), (3.24)

where f),(¢; a, k) is the density of the von Mises distribution affigh; o, A(k)) is the
density of the approximating Wrapped Normal distributionhisTcould for example
be used to obtain approximatelyt(«a, ) distributed samples. A more sophisticated
algorithm for simulating the von Mises distribution is givim Jupp and Mardia (2000).

While the sum of independent von Mises random variables isvain Mises ran-
dom variable again, it can be approximated by a von Misesamneariable. One can
show that as a consequence of the closeness of the von MddiseaWrapped Normal
distribution and (3.15), we have the following approxirati Assume thak; = ¢ is
distributed asM («ay, x;) and thatX, = ¢*®2 is distributed as\(as, k2). Then we have
that®, + @, is approximately distributed a%1(a; + s, k3) With A(k3) = A(k1)A(k2).
See again Mardia (2002) Jupp and Mardia (2000) for a proof.

The following two characterizations of the von Mises dmition are analogous to
those of the Normal distribution on the line. We refer to Japd Mardia (2000) for a
more detailed discussion.

The first characterization is the Maximum Entropy Charazédion. The entropy of
a distribution on the unit circle with pdf(¢) is the defined as- f02” f(o)log f(p)do.
The von Mises distribution has the maximum entropy of altribstions with given
mean direction and circular variance. The Normal distidoumaximizes the entropy
on the line for fixed mean and variance.

Let f(¢ — «) be a pdf of a distribution on the circle belonging to a locatiamily
with varying mean direction. If the maximum likelihood estimator of is the sample

mean direction, therf is the pdf of a von Mises distribution. Compare this to the
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situation on the real line: If (x — «) is the pdf of a distribution on the line belonging
to a location family, therf is pdf of the Normal distribution if and only if the maximum

likelihood estimator of the meam, is the sample mean.

Maximum Likelihood Estimation in a von Mises distribution Let Xi,.., X, be
i.i.d., distributed asM(«, k). The corresponding log-likelihood function for the ob-

servationx = (z1, ..., z,) of Xi,.., X,, is
L(a, k;x) = —nlog(2m) — nlog(ly(k)) + K Z cos(z; — ). (3.25)
i=1

It turns out that the MLE of the mean directiarcan be determined without any knowl-

edge about. We have

oL

o /{Z sin(z; — a) = mZ(sin(mi) cos(a) — sin(«) cos(x;))

— k(S cos(a) —sin(a)C), (3.26)

whereC' = >  cos(z;) andS = > sin(z;). The second derivative of the log-
likelihood function is given by

0?L

da?

= —k(Ssin(a) + C cos(a)). (3.27)
Let R = /(S? + C?). Then by (3.26) and (3.27) the ML& of o must satisfy

C' = Rcos(Q) (3.28)
S = Rsin(a)

The solution of (3.28) solvegg =0 and% < 0, as long ask > 0. Therefore, by

comparing with (3.8), we see thatis just the mean direction.

Turning to the estimation of, we have:

g—i = —njigg + Zcos(xi — ), (3.29)
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wherel((x) stands for the derivative of thg(x). Using the fact thaf;(x) = I;(x) and

recalling thatd (x) = -4, we therefore have:
L
Z—K = —nA(k) + cos(a)C + sin(a)S. (3.30)

Solving g—ﬁ = 0 and replacingy with @, we obtain the equation

C?+ 52

—nAR) + —0endR)=Re AR) =Rer=A"YR). (3.31)

Thus the MLE ofx is well defined and unique, if the equatigifzx) = R has a unique
solution for allR € [0,1). This is the case, if the functiod(z) has the following

properties:
o lim, (A(z) =0,
o lim, ., A(z) =1,
e A(z)is strictly monotone increasing.

In the following section, we will consider a extension of than Mises distribution to
higher dimensions. We will need that a family of functionsiar to A(z) satisfies
the three properties above. We therefore show that these titoperties are not only
satisfied byA(z), but rather by a larger family of functions, referred tofagz). Note

thatA(z) = By(2).

Proposition 3.1.8 Letd > 1 be a real number. Define far> 0

14(2)
B,(z) :=
a(2) e
ThenBy(z) has the following properties:
lirr(l)Bd(z) = 0, (3.32)
lim By(z) = 1, (3.33)

Z—00

By(z) is a continuous, strictly monotone increasing function  (3.34)
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Proof:
For the proof of (3.32) we make use of equation 9.6.7 in Abraitzoand Stegun (1972):

(32)
I'(p+1)

,for fixed p and ag — 0.

Ip(z) ~

Hence, we have immediately:

and thereforéim, .o By(z) = 0.

For the proof of (3.33), recall from (3.21), that

By(z) = B = 5) Jo (L 2)7h (et e dt
(5)10(d + 3) (1 — 2)45 (et 4 e~#t) dt
Using thatl'(d + 1) = (d — )I'(d — 3) this simplifies to
(2) [y (1 —#2)%3 (e e dt
Bd(Z) = (d _ %) fol(l . tg)d—g (ezt + 6_2t) dt

We therefore need to show that,as- oo,

1 -1z -z
fo(l—tQ)d ?(et+e t)dtN2(d—%) (3.35)
(=) (et pestyar 2
We have, ag — oo, that
i@ =) 3 (e e~y dt  [)(1— )4 zedt
3 Y
2

(et +e2t)ydt  [)(1—t2)% 2extdt

fol(l - tQ)di

Furthermore, we have thst, 30 = J(z, €), such that

(1-9) (/01(1 — t2)d—%ezfdt) = /11 (1— ) 2e74dt, (3.36)
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As z — oo, we haveve > 0 thatéd = §(z,€) — 0. Therefore, we get that

fol(l . t2)d—l zt It f11,€<1 . t2)d_ (6Zt) dt
J =y etdr [l (1 2)yE (et di

asz — oo. A Taylor series approximation gives (s — t?) ~ 2(1 —t) , ast — 1.

Njw N

Therefore, we get

e A G L o

(eNdt _J (18"
[L. (1 —2)43 (et dt fl 2072 (1 - 1)

(eydt [ (1—t)*3 (ext)dt

le tol»—t

With an argument analogue to (3.36) we get

fle d—l(zt>dt fol—td
f1 . -(ezt)dt fo (1—1t)4

We multiply the integrand in both the numerator and the denatar by the constant

(e*t) dt
e*t) dt

le N’U—‘

terme—* and then use the change of variable- (1 — ¢) to get

Jo (=) setdt _ f, (1—t)"

Jo (U =ty=Restar~ [i(1— 1)

e 2=t ¢ B fol 2l ey

e—2(0-Ddt fol i 3e—2edy

A second change of variable= zz gives us

1 g 1 .. 1 1 z g-1 _
Jiatbe e fiytbeviy 2 [ ytlevn

Yy
Jy e rermde [N evidy 2 [Tyt ievdy

Remembering that

we observe that

2 [7y*hevdt yd——e vat 2 fo~ yd——e vdt  2T(d+3) _g(d_1>
iy ledy  E Tyt ey 2Td—g) 2\ 2)

Together we have therefore shown that; as oo,

[ (1 — 1223 (e + et dt z(d 1).

1
2
Jo(U =123 (et etydt

This is exactly (3.35). This shows thBY;(z) — 1, asz — oo.
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To show thatB,(z) is a strictly monotone increasing function, we first obsehat

[ =2y etat
[0 ey Tear

Biy(z)=¢1 -2

wherec; is a constant. Using integration by parts, we obtain for titegral in the
numerator:
2\d—1 1 ' 1 2\d—3 ! 2\d—3
(1=t ze |1 +/ d_E 2t(1 —t%) _ietht:cz-/ t(1 —tH) 9 2edt,
—1 -1

wherec, stand for a constant. Define

We can now rewrité3,(z) as

[Ltf(t)estat
[1 f(t)estdt

for a constants. To show that the right hand side is strictly monotone insireg we

Bi(z) =c3- 2

note that
JL (=1t ) f(t)etdt _ [+ 1)f(t)e“dt‘

[ f(t)etdt - [ f(t)etdt

The fraction on the right hand side can be written as

f—ll f{t)erdt fil dx _ f_11 dx fxl f(t)e*dt
[orwestat [N f@)etdt

Hence, we can writd,(z) as

! 1 zt
R
In order to show thaB,(z) is strictly monotone increasing, it is enough to show that th
function
(o) = L0

-, f(t)extdt
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is non-decreasing. We can split the integral in the denotoira obtain

fxl f(t)e”dt B ffl f(t)@tht -1
f2(2) <le (e +1> .

f2(z) is non-decreasing, if and only if

S F@etdt [T (et
fxl f(t)@tht o fxl f(t)ez(tf:p)dt

is non-increasing. Note that, for the integrand in the natoey we have < x. There-

(3.37)

fore, e**=") is a non-increasing function af since(t — ) < 0. As a consequence the
numerator is a decreasing functionz0fOn the other hand, for the numerator, we have
t > 2 and hence*(*~*) is an increasing function of. Therefore, the denominator is a
increasing function ot. Hence, we see that the right hand side in (3.37) is a decreas-
ing function ofz. This is turn implies thaf(z) is non-decreasing and hengg(z) is
strictly monotone increasing. Finally, the fact thatz) is a continuous, positive func-
tion for z > 0 andd > 0 implies thatB,(z) is a continuous function on > 0. Equation
(3.32) proves continuity at

Unfortunately, there is no explicit, closed form equationthe evaluation oft=!(-).
We used a numerical procedure implemented in Matlab to etald—!(-). Alterna-
tively, one could use tables or polynomial approximatiansvaluated—!(-). Suitable
approximations can for example be found in Jupp and Mardl@@® Further approx-
imations could also be based on corresponding approximsfar /,(z) found in sec-

tions 9.7 and 9.8 in Abramowitz and Stegun (1972).

3.1.3 Distributions on (0, 27 /k)

There are instances where one needs a circular random Ieawdilose range is only

a part of the unit circle. That is, we are interested in dgvelp models for random
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variablesX* = ¢*®" with ®* € [0,27/l) for a real numbet. Typically [ is an integer.
For example, if one is attempts to model the angle, with wiubjects like asteroids
enter the earth’s atmosphere, one would want to work witmdom variableX* = ¢®"
with ®* € [0,7/2). Such random variables are derived from circular randorialbes

X = ¢®, with ® € [0, 27) by setting
P =P/l = X* =X (3.38)

This allows us to adapt any circular model to describe randanables whose angle

only has values if[0, 27 /1). If X = ¢® & € [0, 27) has densityf(¢), then

(o) =f(p-1)-1,¢ € (0,21)1) (3.39)

is the density ofX* = ¢®". Following this idea, we may define the ch.f. &f = ¢®
as¥, = E[¢"*"]. As a consequence, it seems natural to define the mean directi
of X* = ¢! asaj = ay/l, whereay is the mean direction ok = ¢®. It is not
easy to obtain an appropriate definition of the circularammece of X* = ¢®” from the
corresponding definition of}, the circular variance o = ¢*. See Section 3.5.2
Mardia (1972) for a discussion. They suggest that the veeidqfy of X* = ¢!*" be
defined as

Vi=1-(1-Vp)"". (3.40)

3.2 Spherical Distributions

3.2.1 Definitions and Descriptive Measures

Let {©2, (A), P} be a probability space. We say that the random varidbleas a spher-

ical distribution, if

X(w)esSt ={xeR?: |x| =1}, Vw € Q.
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Due to the special topology ¥, the concept of a cdf is not widely used in the de-
scription of spherical distributions. It is customary tesdebe such distributions either
using density functions or probability functions, depemgdon whether the distribution
is absolute continuous or discrete. The definition of a pd&fepherical distribution is

as follows.

Definition 3.2.1 A nonnegative functiopwith domairS?—! is called a probability den-

sity function, pdf, of a spherical distribution, if

/§d1 g(x)do(x) =1, (3.41)

wheredo(x) denotes the surface measureSsn'. That is,do(x) is the Lebesgue mea-

sure restricted t&? !, satisfying

27.‘_d/2
d = —.
/S o) = T
It is sometimes more convenient to express a pdf in sphasaraidinates. The rep-

resentation of a point = (z1, ..., z4) € R? in spherical coordinates is as follows:

d—2
r = rcos(gb)Hsin(Hi), (3.42)
i=1
d—2
Ty = rsin(gb)Hsin(Qi), (3.43)
i=1
d—2
v; = rcos(f;) [ sin(6:), forj=3,....d-1, (3.44)
i=j—1
rg = rcos(fy2), (3.45)
where
r = [|x]|, cos(¢) = x1,sin(¢) = o and (3.46)

\/ ST g2
tan(f;) = ="' i—1,...,d—2. (3.47)

Ljt2
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Here,r > 0, ¢ € [0,27) andf; € [0,7) for j = 1,...,d — 2. Using this defini-
tion of spherical coordinates, we can reformulate the dedmiof a pdf of a spherical

distribution inRR¢.

Definition 3.2.2 A nonnegative functiofi with domainD = [0, 27) x [0, 7)4~2 is called

a probability density function, pdf, of a spherical distrtion in d dimensions, if
/Df(d),el, o 04-0)dpdby, .. Oy = 1.
The domain can be extended as follows
Flo+2m, 01, ... 049) = f(b,....00 )Y€ [0,27),V0; =[0,7),i=1,...,d—2.

The connection between a pgfx) in cartesian coordinates and the corresponding pdf
f(o,61,...,04_2) in spherical coordinates is given by the well known theorescdb-
ing the change of variables, see for example Billingsley §)98. 215ff or p. 225ff.

Noting that the Jacobian determinant of the transformagieen by (3.42) - (3.45) is

d—2

[ T(r, 0,01, 04—)| = r*~ [ [ (sin (6,))",

=1
we get the following relationship
d—2 -1
g(x1, - xa) = f(&,01,...,0a-2) (H(Siﬂ (Qz))z) : (3.48)
=1
We will work with densities in both cartesian and sphericar@inates, depending on
which notation is more useful.
The main characteristic of spherical distributions is, asdircular distributions,

the resultant. It is easier to define the resultant usingese coordinates rather than

spherical coordinates.
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Definition 3.2.3 Let X be a d dimensional spherical random vector whose distriloutio
is given by the pdf(x), expressed in cartesian coordinates. Then the populatieerm
resultantp of X is defined as

p= <Z(E[X¢])2> —: (E[X]"E[X])?, (3.49)

=1

where
E[X;] = / r;9(x)do(x)),fori =1,...,d.
§d—1

The population mean direction is defined by
po = p~ E[X]. (3.50)

The definition of the resultant length and the population mgigection are higher
dimensional analogues of the respective definitions farutar distributions, given in

Definition 3.1.4. Also very similar to the circular case, wefide for a sample of points

X1,...,%, onS? ! thesample mean vectas
I zn: (3.51)
X =— X;. .
n i=1

As in the circular case, we define theean resultant lengtik® and thesample mean
directionx, as

R = x|, andx%, = ||X|~'%. (3.52)

Another important measure of dispersion for sphericatitistions, that we mention

for completeness, is thexatter matrixI” about the origin defined by

_ 1
jﬁ - — i Zt
- ; XX\
It may be useful to note thdt can be thought of as the inertia tensor about the origin of

a group of particles with equal mass! located at positions;, ..., x,. The use and

interpretation ofl” is given in Section 10.2 in Jupp and Mardia (2000).
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3.2.2 Important Spherical Distributions

In the following we present some of the most important slaémistributions. We
mostly concentrate on the von Mises-Fisher distributiorgesit is our preferred choice
for modelling the distribution of directional data in theafnework of finite mixture

models.

The Uniform Distribution, U(S¢-1)

This is the most basic distribution 84~. If X is distributed a#/(S*"!), the probability
P[X € A] is proportional to the surface area dfon S¢~!. Therefore, we have in

cartesian coordinates

R ['(d/2)
g(x1, ..y xq) = @) 2mi (3.53)
where
d) = dofx) = 2% 3.54
C( )_/Sd_l O(X>_F(d/2) ( . )

denotes the surface area3¥f ! and wherd’(z) denotes the Gamma function. In spher-

ical coordinates we therefore get

F(0.0, . 04r) = ﬁ ﬁ(sin (0:)) = I;(fd/ Z) H(sin (6:)". (3.55)

The population mean resultambf the Uniform distribution is 0, as in the circular case.

Therefore, the population mean direction is not defined.

The von Mises-Fisher distribution

The von Mises-Fisher distribution is the natural extensdrihe circular von Mises

distribution into higher dimensions. Recall that the von&gislistribution has density

1 1
gu(X; p, k) = et

_ — = k(pzitpueze) 3.56
21y (K) 2#]0(/1)6 (3.56)
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expressed in cartesian coordinates. Based on this observate make the following

definition.

Definition 3.2.4 The von Mises-Fisher distribution &4, denoted byM (pu, ), is the

distribution whose density in cartesian coordinates is gilkg

d
g (x5 p, k) = ca(k) exp(r - ' x) = cq() exp (ff Z u:c) : (3.57)

with c4(x) as given belows > 0, p = (uy,...,p1q) € S*! the mean direction, ex-

pressed in cartesian coordinates ard: S?!.

In their book, Jupp and Mardia (2000) give the following etiprafor c,(x):

! L(d/2)14j2-1(r)’

where I,,(z) denotes the modified Bessel function of the first kind of orderen by
equation (3.20). Unfortunately, this is not the correctriafa forc,(x). The following

Lemma gives the correct equation for the constafit).

Lemma 3.2.5 We have

K /2)d/2-1
ca(k) = —27r(d/£2/2_1(m)' (3.58)

Proof:

We need to show that

cal) " = [ el wTx)dox)

We expresg: andx in spherical coordinates, as explained in (3.42) - (3.45%).e\press
p with the anglesy, 34, ..., Bq—2 andx with ¢, 0 ..., 0,_,. After applying a change of
coordinates, we may assume, without loss of generality,(tha = 0. Through equa-

tions (3.42) - (3.45) we see that this means= 1 and sinceu € S?!, this implies
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1 = ... = pug—1 = 0. The integrand therefore simplifies to

exp(k - u'x) = exp(k - pgzq) = exp(k - cos(f4_2)).

Therefore, we have

d—2
/ / / K- COS 9d 2 H Sln d91 e ded—quS
=1

P / / T (sin (6))'dos ... 6, / e 00-2) gin (0, 5)"2dly ».
0 0 iy 0

Note, that

7r xd—3 ' i B 9(d=1)/2
27r/0 /O H(sm(@)) d@l...dﬁd_g—m.

because the left hand side equalé — 1) = [., . do(x), which equals the right hand
side by (3.54). Furthermore we have from equation 9.6.18kbrafowitz and Stegun

(1972) that

" 6/{COS(G) sin 2v v = \/7_TF(V + 1/2)IV(K)
/ o Ry

Settingr = d/2 — 1 and combining the two equations, we get

27Td/21d/2_1 (FL)

ca(r)™ = (r/2)3/21
[
In particular, we see that for d=2 and d=3 we have:
(/) = > (3.59)
W)= 2mly(K) '
k
calk) = 4 sinh(k)’ (3.60)

where we used thdi »(x) = (:£)'/?sinh(z) for (3.60). For d=3, we get the following
equation for the density of the von Mises-Fisher distritnitiexpressed in spherical

coordinates:

k

"™ klcos BcosO+sin Bsin 6 cos(p—a)] ; 0 3.61
47 sinh(k) ‘ () ( )

Fru(o,0; (Oz,ﬁ),/i) =
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with 0 < 0,6 < wand0 < ¢,a < 27. Ford > 3, the density is usually only
expressed in cartesian coordinates, as the expressiopkenical coordinates become

to complicated.

25 -
2
| % 1.5 \\
% |
A 14
L
o, e

2.5

Figure 3.2:The density of the von Mises-Fisher distribution with meaadtion given

by a = m and 3 = 7 /4 in spherical coordinates. The value rofs 20.

The density of the von Mises-Fisher distribution is uninmlogih the mode atu,
provided thatx > 0. If k = 0, the von Mises-Fisher distribution equals the Uniform
distribution onS?~!. The larger the value of, the more the distribution is concentrated
aroundu. One can show that the density is rotationally symmetricziatiee mean direc-

tion u. In that sense, the von Mises-Fisher distribution is comiplarto a multivariate
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Figure 3.3:The density of the von Mises-Fisher distribution witk= 7 and 5 = 37 /4

in spherical coordinates. The value ofs 1.
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Normal distribution with a diagonal Variance-Covariancenma
As mentioned beforgy is the population mean direction. The population resultant
lengthp is given by

p=Auk) = %.

Figures 3.2 - 3.5 exhibit the different shapes that the vasel! Fisher distribution

(3.62)

M(u, k) on S? can have. The figures show the density of von Mises-Fishéri-dis
butions, given by (3.61) with various different choicescofs and. Notice how the
distribution is closely concentrated around the mean tioeen Figure 3.2, where is
fairly large, whereas in Figure 3.3 it is spread out over thire unit sphere. Figure
3.4 clearly shows the periodicity of the density given by{3.in the first spherical co-
ordinate,¢. Figure 3.5 shows a von Mises Fisher distribution with a mgiegction of
(0,0, 1), expressed in cartesian coordinates. The distributionrisentrated around the
positive z-axis. Recall that the distribution has a rotatlsymmetry about the mean
direction. Since the mean direction in this case is the g;dhe variable is uniformly
distributed, while the second variabledescribes how concentrated the distribution is
around the mean direction.

Notice that, with the exception of the density in Figure 3 densities do not
appear to be rotationally symmetric. This is due to distodi created by the change
of variables, given in (3.42) - (3.45). We would also like wtethat the family of von
Mises-Fisher distributions is closed under orthogonaigfarmations. That is, iU is a

orthogonal transformation, ail < M (p, %), thenUX £ M (Up, k).

Maximum Likelihood Estimation in a von Mises Fisher distributio n

Since the von Mises-Fisher distribution is an extensiormefiton Mises distribution, it

is not surprising that the maximum likelihood estimatorghef mean direction, and
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the concentration parameterre also analogues of their counterparts in the von Mises
case. Leky, .., x, be arealization of the i.i.d. sequence of random varialles., X,
distributed asM (u, x) on S%~1. The log-likelihood function, expressed in cartesian

coordinates is

L(Ma ’i;xla“axn) = nlog(cd(li)) +ZHIJ’TX7§
=1

= n(g —1)log (g) — nlog(2n%?)
—nlog(lys 1(K)) + ““T(Z X;). (3.63)

Concerning the MLE of the mean directiq) we note that we can maximize the term
involving p, namelyxp” (3°7 | x;), independently of the value ef This term is max-
imized by the vector if§?~! with the same direction a_" , x;). That vector is of
course the sample mean directigg, as defined in (3.52). We conclude that the MLE
of the mean direction is

o= Xo. (3.64)
In that case we have

’iﬁT(Z X;) = KXo (nX) = nkR,
i=1

wherex is the sample vector mean aits the mean resultant length.

Concerning the MLE of, we therefore need to maximize
d —
L(k) = (5 — 1) log(k) —log(la/2—1(K)) + KR

over the se{x > 0}. The first derivative ofL with respect tos is

3_5 o % -1 12/271(@

= - +R,
Ok K Lija-1(k)

wherelj, (k) = 2 I4/5-1(k). From Abramowitz and Stegun (1972) we know that

the following recurrence equation holds for- 0:

I)(k) = Lysa (%) + — 1, (x). (3.65)
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Therefore, we obtain

d/2—1
% N g -1 B [d/2<"£) —+ /n Id/2_1</€) _ —R
Ok K Iy/o-1(K)
Hencex solves the equation
tipl)
Id/Q—l(H)
If we define
Id/g(li)
Ag(r) = ————, 3.66
d(k) Tajs 1 () (3.66)
we see that the MLE of, k satisfies
A4(R) = R. (3.67)

ComparingA,(z) with the functions considered in Proposition 3.1.8, we hae4,(z) =
Ba/s(z). Proposition 3.1.8 hence implies thdf(-) is a monotone strictly increas-
ing and continuous function and we hale, ., A;(x) = 0. In addition, we have
lim, .o Aq(x) = 1. Thereforex is unique and well defined, sindeis by definition a
value in the interval0, 1]. As for A(x) = Ay(k), there is no explicit formula for ;! (+).
We again used a numerical procedure, implemented in MattabyaluateA;'(-). It
should be noted that the maximum likelihood estimator isurdiiased, see Best and
Fisher (1981). Modified estimators have been proposed te ke stimator of more
robust. See Fisher (1982) for a reference on the 3 dimeristasa. However, both the
MLE for p andx are consistent and asymptotically efficient estimatore Xgp and

Mardia (2000) for more properties of the estimators.

Generalizations of the von Mises-Fisher distribution

Recall from the definition of the von Mises-Fisher distributithat logarithm of the

density is linear irx. Generalizations of the von Mises-Fisher distributiondggly add
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higher order polynomials to this linear term. The easiestda given below, where
guadratic terms have been added.

TheFisher-Binghanmodel (Mardia (1975)) has density

g(x; p, K, A) = exp{r - pu’ - x +x' Ax}, (3.68)

a(k, A)
whereA is a symmetrial x d matrix. The constraint”x = 1 allows us to assume that
tr(A) = 0. Further models can be obtained by adding appropriateiadditrestrictions
on the parameters of the Fisher-Bingham distribution. Aetgrof such models are
listed in Section 9.3.3. of Jupp and Mardia (2000).

The Kent distributionhas the same density as the Fisher-Bingham distribution, but
with the additional constraimi p = 0.

The Fisher Watson distributioms obtained from (3.68) by replacing the restriction

tr(A) = 0 with the assumption that A is a diagonal matrix of full rank:

1

— eap{ko- ! x4+ r(u"x)?). 3.69
G(H,M,No,/fo) p{ 0" Mo (l’l’ ) } ( )

g(X; s Ko, Ky "10) =

A rotationally symmetric spherical distribution with a naddidge along a small circle,
instead of a mode at a single point, can be modelled bythgham-Mardia distribu-

tion. This 'small circle’ distribution has density

9(x; 5, v) = $exp{mwx v}, (3.70)

The main problem for all those models is that the evaluatiotih@ norming con-
stants,a(k, A), a(k, i, o, K, ko) anda(x) respectively, is not easily done and may
pose significant practical difficulties. This makes paranestimation, using for ex-
ample maximum likelihood methods, very difficult. This wag tmain reason that we

decided to work with the simpler von Mises-Fisher model.



Chapter 4

Mixture Models of von-Mises distributions

4.1 Definition and Characteristic Function

Definition 4.1.1 We define a finite mixture model of von Mises-Fisher distiolmst as
the distribution with the pdf
fmim(x; 7) = sz : gM<Xa i, /{i)a X € Sd_lu (41)
=1
where gy, (x; us, ;) is the density of the von Mises-Fisher distribution with mean

rection u; € S?! and concentration parameter; > 0, and0 < p; < 1 are numbers

satisfyingd ;" | p; = 1. Finally,
Y= {l’l’la"al’l’ma’%lv'wl{'mvpla"7pm—1} (42)

denotes the parameter matrix of the mixture model.

The p; are referred to as the weights or mixing proportions. Ndtat bne of the
weights is redundant because of the linear constdajfit, p; = 1. We arbitrarily chose
to omit them!* weightp,, in the definition of the parameter. The von Mises-Fisher
densities)y, (x; u;, ;) are called the component densities. In (4.1) it is assunegarth
the number of components, is fixed. In practice, the choice of a part of the model
and typically not known. By considering the number of compuses yet another
parameter of the model, the framework of finite mixture medél1) provides us with
a very flexible method of modelling directional data. By chingsan appropriately
large number of components, the density (4.1) can be madetide an adequate fit
to almost any data set. However, one has to be careful noteditthe data and then

end up with a meaningless model. For example, a seeminglggtenodel for a data

77
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set(xy, .., x,) of sample size N can be obtained with m components choeasirgoo,
p; = x; andp; = 1/m. However, such a model has no predictive power for future
observations and is obviously of little use. We will addreées problem of choosing an
adequate number of components in subsectidn

Mixture models are especially useful in modelling hetereg® in the data that
stems from factors. Consider a categorical random varidhigth a distribution given
by P[Z = i] = p;, i = 1,..,m. Assume, that there is another random varidblthat
has conditional density;(y), given{Z = i}. ThenY has unconditional densitf(x) =
Yo pi - fi(z). Inthis way,Y” can be thought of as being drawn frempopulations
with densitiesf;(y) and proportiong;. First, the categorical random variatifechooses
the population and theW is drawn from the chosen distribution. The same framework
also lets us interpret a mixture model as a case of incomglge We regard” as the
observable part of the random vectdr= (Z,Y), with Y andZ as above. However,
we assume that the categorical random variahléhought of as the label df, has not
been recorded or is not observable. Thus, we don’t know wpagulation generated
Y. This idea of attaching missing labels to the observatisnery useful in maximum
likelihood estimation, as we will see in Section 4.2.2.

To calculate the characteristic function of a mixture of\Mises distributions in the
special case of = 2, recall from (3.19) that ifY = ¢! has a von Mises distribution,

M(a, k), we have for its ch.f. that
v, = elPr o2
Therefore, if a random variable has a density given by (4 hgs ch.f.:

\IJP = / eiprmia:(x; V)dx
st

m 27 ) m ) [ Ko
= ij/ e frr(p; j, 1) dip = ijew%# (4.3)
=1 70 =1 olr3)
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Hence the trigonometric moments are:

[ Kj

a, = E[cos(p®)] Zp] cos(pp; fzgli]; (4.4)
j
I Kj

b, = Elsin(p®)] Zp] sin(pp; IzEF&J'; (4.5)
j

Recall that for spherical distributions &1-!, for d > 2 we did not define a charac-
teristic function or trigonometric moments. However we gare the population mean
direction and the population resultant length. Recall fr8r62) that the resultant length
of a von Mises-Fisher distribution with concentration paeterx is p = A,(x). Hence,

we have that ifX has aM (u, ) distribution, then

BX] = [ xou(xips )do(x) = p- e = Ad)

Therefore, we have for a finite mixture of von Mises-Fishatrabutions (4.1)
BX| = [ xfualiy)dot
§d—1

= /Sd1 X <sz - g (X5 s, “i)) do(x)

=1

= ZpiAd(/{»ﬂ'% (4.6)

We see that the expectati@®jX] is a linear combination of the mean directigag of
the components with coefficientsA,(x;). As a consequence, we get for the resultant

length and the mean direction

‘Ad(/fz‘)ui

andp, = Y pida(kipi - p (4.7)
=1

unlessp = 0.



80

4.2 Parameter Estimation

4.2.1 Identifiability

Consider a parametric family represented by densjties~). Estimation of the param-
eter~, based on a sampie= (1, .., zy) is only meaningful, if the parameterof the
density f(x; ) is identifiable.~ is called identifiable, iff (x;v,) = f(x;~,), Vz im-
plies~v, = ~,. Put in words, this means that distinct parameter valuasgtresdistinct
densities. This is not true for finite mixture densities. Arpatation of the compo-
nent densities leave x; «) invariant. Assume that the component densifigs; ¢;),

1 =1,...,m belong to parametric families. We have:

IK '71 = Zp] f] Z; 5] prr f7r ]) x; gw ])) f(IL’;’72>, (48)

wherer is a permutatlon of the numbers.., mandvy, = (&, ..., &m, D1, -, Pm—1) @nd

= (&1)s - Er(m)s Pr(m)» - Pr(m—1)) denote the parameter of the right hand side
and left hand side of (4.8), respectively. Then we have iregdrthaty, # ~,, but,
neverthelesy (z;~v,) = f(z;7,). For this reason, the parameter vectoof a finite
mixture is not identifiable.

Fortunately this problem does usually not pose problemsante for maximum
likelihood estimation. The important exception to thistetaent is encountered when
one uses Bayesian techniques using reversible Jump Markawn ®loate Carlo tech-
nigues to determine the maximum likelihood estimators. d3@ferences on that topic
include Green (1995) and Green and Richardson (1997).

In order to obtain an identifiable model, we may for examplpase restrictions on
the parameters. In the von Mises-Fisher case with paramegimen by (4.2), we might
for example impose the following conditions on the paramsetq , .., ttin, K1, -5 Km,

andpl, vy Pm—1-
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1 ki <k <...<kKp

2. In case of a tie, that is, in case for any ~, = x;, we have, then we have

i S “jl'

3. In case this does not resolve the tie, that is; i= x;, andu;, = pj,, we have

My < pj,. If the tie is still not resolved, we compayg; < p;, and so forth.

These three conditions define a complete order on componéthe mixture model,
unless two components are identical, that is unless wehaves;, andu; = p;. If the
above restrictions are placed on the parameter spate parameter of a finite mixture
model becomes identifiable, provided that no two componargsdentical. We will
for the remainder of the thesis assume that the parametee $@& been restricted by
a set of conditions like the one listed above in order to mhkeparameter identifiable
and that not two components are identical. However, we wble @ carry out the
maximum likelihood estimation without this restrictionsing an EM algorithm, as we
will describe below.

The case of two identical components is more problemati@risies for example
from attempts of fitting a model with too many components. Wayrfit a mixture
model ofm + 1 components to data that stems from a mixture density witompo-
nents by either
(i) setting one the weights, = 0, or
(i) splitting a component into identical components.

We encountered this phenomenon in practice. In partictilae worked with data that
was simulated from a von Mises-Fisher mixture model wittcomponents and tried
to fit a model withm + 1 components, the EM algorithm returned parameter estimates

with 1, = p;, k; = K;, for two components # ;. While working with our implemen-
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tation of the EM algorithm we observed that it splits compasavhen the model is not
identifiable because it has too many components.

However, suppose that we are working with the right numbepaiponents and add
constraints like the ones listed above to the parametemgoid an unidentifiable model
due to permutations. In that case Titterington et al. (138%)ws that the parameters of
finite mixtures of a large class of continuous densities@eatifiable. The identifiability
of the parameter of a finite mixture of von Mises distributieas proved in Fraser et al.
(1981). The identifiability of a larger class of directiomigtributions, including the von

Mises-Fisher distribution follows from a result in Kent g3).

4.2.2 The EM Algorithm for General Mixture Models

It turns out that explicit formulas for the parameter estiesaor mixture models are
usually not available. The estimates of von Mises-Fishettuné models in general
and von Mises mixture models in particular are no exceptidhere is a wide spec-
trum of literature listing a variety of methods that haverbesed to obtain parameter
estimates of various mixture models. They include Maximukelihood (ML) esti-
mation Redner and Walker (1984) Dempster et al. (1977) , Bagesstimation Green
(1995), Green and Richardson (1997), Method of Moments lap@sd Basak (1993),
Minimum Distance methods Chen and Kalbfleisch (1996) andhgcapmethods. For
a detailed overview of early work done on the estimation aftdimixture models we
recommend Redner and Walker (1984) and the book Titteringt@h (1985). For an
overview over later results, please consult McLachlan a®l 2000).

We decided to use ML estimation. We employed the EM algoritbriteratively
compute the ML estimates. The main reason for the use of Minatbn are Theorems

4.2.4 and 4.2.6 given below. They state that in the framewbfkiite mixture models,
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the maximum likelihood estimator is asymptotical efficiand that the EM algorithm,
started with proper starting values, converges to the MbhEhis section we describe
the EM algorithm in a general framework. We will consider 8pecial case of von
Mises-Fisher distributions in Section 4.3.

Consider a finite mixture model involving parametric deesitf;(x; &;). We adopt
the interpretation of a mixture measure as a case of incaengiga, mentioned in Sec-
tion 4.1. Lety = X x {1,..,m}, whereX is a measure space. Consider a sample of
realizationsy = (yi,..,yn) With y; = (z;,7;) € Y, wherex; € X are referred to as
the observations ang are the unobservable labels. Assume that the joint denfsibyeo
realizationsy, with respect to the product measure of the Lebesgue measureand

the counting measure di, .., m}, is given by

ch Tj,15); th fiy(@56))- (4.9)

Herey = {&, .., &n, P15 - Pm-1, } € 2, Where€2 is the parameter space apgd =

1— >, p;. We assume tha is a subset of the Euclidian spae'**1)~!. That s,
we assume that € Q, with Q C R?. As explained in Section 4.1, a categorical random
variable Z chooses the population and then the observation is dravm tihe chosen
distribution, independent of. An alternative notation for this model makes use of a

matrix to label the observations. The matrix, denoted wiih defined by

1, ifi; =i
zij = (2)ij = (4.10)
0 otherwise

Then we can express the density introduced in (4.9) as

°(x,2;7) HH P filay; &) (4.11)

Jj=11i=1

This is referred to as the complete model, because we knoeefcin observation from

which densityf;(z;¢;) it was drawn. However, this is the information that we assume
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to be missing in the mixture model context. We do not know é&teli; that belongs to
the observed value,, j = 1,...,m. The recorded observatioa’s= (z1, .., zy) thus
have the following joint density, induced by (4.9):

N m
m1x X '7 Hfmm iL’j, ) = H [sz . fz(xj:&)] . (412)

Jj=1

This is referred to as the incomplete model.

While we do not know from which population a specific obsensmtoriginated,
we are able to make some inferences about the lost label. Fobservationr € X
defineY(z) = {y € Y : y = (x,i),7 € {1,..,m}}. The complete model (4.9) and
the incomplete model (4.12) induce a conditional densitywespect to the counting
measure or)(z). We denote that counting measure in the followingdyy). The
conditional density o)(z), givenz, induced by (4.9) and (4.12) can be given in the

notationf“(y; x,~v) = k(y;z,7) + fmiz(z;7), where

fc(yaf v) _ bi- fi(z; &)

k(y;z,7v) = (4.13)

k(y;x,~) can be interpreted as the posteriori probability that theeokationz origi-
nated from the® population. In a similar fashion, we define the spat&) = {y €
YNy = (x4,44),4 € {1,..,m},j = 1,.., N}. Assuming that the realizationsare

i.i.d., we define

(4.14)

fc y,X al bi; - fz] L 7&])
K(y;x,7) = %) =11 :
7=1

fmlx X 7 fmz:c Ija’Y)

as a density od’(x) with respect to the counting measurex)".
This provides the framework that we use to maximize the lkgihood function of

the incomplete data:

LN(’Y;X) - 1Og< mix X '7 Zlog fmwz T ) (415)
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Consider a fixed parameter valgeof v € 2. We express the log-likelihood function

as an expectation using the kernel density (4.14) with tleglfparametef. That is, we

write:

Ln(rix) = /y Log ((Fumix (3 7) Ky %, 7)(dy)

N

- /y 0B ) s 25, ) )

- Z Z og(fmiz (255 7))% (4.16)

Using (4.13), we substituteg( f,i.(x;; 7)) with log(f*(y;;v)) — log(k(y;; x;,~)) and

using that in the term

WP filwp&)
togl fmis 253 1) e F)

y; stands for(x;, 1), we get:

Ly (v;x)

Zzlog(fc(yj;v))w

j=1 i=1 fmzac(J;j;FY)
N m -~ ~
_ loa k(.- 2. ZM
;; og(k(y;: z;.7)) Fon(@i3)

N

Z /y 108"y )y 3. 9) )

N

—Z / )1og (45325, %))k(y; 25, ) e(dy)

N
ZElogf@yJ, )z, 3] = Ellog(k(y;; x5, 7))l 7]
7j=1

Eflog(£(y: 7))l 7] — Ellog(k(y; x, 7))|x. 7]

Qyly) — H(v1) (4.17)
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Consider the ternt/ (v|7v). By Jensen’s inequality, we have that foralk 2 :

Hi) ~ HGR) = B |og (022 ) o] @.18)
(
K

< log( [ky 7;| D (4.19)

= log (/ k(y;x, 'y)c(dy)) =0. (4.20)
V()

The last equality follows from the fact thkty; x, ) is a density or)/(x) and hence its

integral over)(x) equals one. We conclude that for glly € 2

H(y[7) < HA)- (4.21)

Algorithm 4.2.1 (The general EM algorithm)
Given a current estimat&, obtain the next approximationt as follows:

1. E Step: Determing(v|7)

2. M Step: Choose* = argmax,., Q(v/7)

Equation (4.21) suggests that in each step, in order torotitainext approximation
to the MLE of~, itis enough to find a new estimate that maximiggsy|v). Any value
~* that maximizes)(~|v) will reduce the value ofi(v|¥y). Therefore, we have that

(4.21) and the definition of ™ imply that

L(v"x) = Q(y'17) — H(v"17) = QYY) — HF1Y) = L(¥; ). (4.22)

In others words, if we search for the maximum likelihood restior of v by means
of the EM algorithm, the value of the likelihood increaseshweach iteration. It is
this monotonicity property that makes the EM algorithm vatiyactive. It is also the
property behind the convergence theorems given below.

The practicability of the EM algorithm heavily depends omieasy the maximization
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in the M-step is. We have

QUA) = 3 log(e(yyiy) LS

J=1 i=1 fmm(xja’y)

m N ~ =~
_ 1 i pi- fz‘(%;é)

log(fi(z:: & pz fl(xﬂ’?). 4.23
+;le e f o 5 fmzx(x]77) ( )

This allows us to maximize the two terms separately. The mi&tion of the first term
will give the new approximatiop;” of the component weight;, while the second term

will give the new approximatior;” of £. One can easily verify that the maximizer
7+ = (p;ra "7pr—~1_17 5?7 eey ET—;) satisfies

1 @fz(iﬂ,gz)
R S AL 4.24

7j=1

& - argma%@jz;log i) L), (4.25)

The difficulty of solving equation (4.25) depends on the petic family f(z; ) con-
sidered. It turns out that usually eachis easily and often uniquely and explicitly
determined by (4.25). This is the case for example for exptimlefamilies and also the
von Mises-Fisher distribution.

Note that

i fil2j &)

is the posterior probability that; was drawn from thé’ component population, based

on the current estimatg. p;" is just the sample mean of those posterior probabilities.

Stopping Criteria  The easiest stopping criteria involve the size of the chamgeher
the parameter or the log-likelihoally (v; x). According to such a criteria, we would

stop the algorithm as soon as the change in the value oL they; x) or the change
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of the parameters falls below a certain threshold. Howdliese are measures of lack
of progress and not measures of convergence. We often @astrat for many itera-
tions of the EM algorithm the change iny(+; x) remained small only to consequently
grow to significant proportions again. This happened as tMeakforithm struggled
through a sequence of approximatieyl¥) of the parametey that brought little change
in L(v®;x) or v* itself before finding significantly better estimates agak@.ob-
served that the rate of convergenceldf) = L(v™*);x) appeared to be very slow.
Unfortunately this is known as the biggest drawback of the &fybrithm. See Redner
and Walker (1984), McLachlan and Peel (2000), Titteringtbmal. (1985) or Lindsay
and Basak (1993) for references on what they call "linearveogence behavior of the
sequencd.(*). What they mean by "linear* is made precise in the followingduation
(4.26). In this situation a stopping criteria, called thek&n stopping criteria (ASC)
is more adequate than the simple criteria mentioned in tgabeg. Assume that the

sequencd.(*) converges to some valug as follows:
L*) o a(LW — L) = LE) LW ~ (1 —a)(L* = LW).  (4.26)

Even though the referenced authors refer to this conveegaadinear, we feel more
comfortable characterizing this form of convergence asoaggtric convergence. Under
(4.26), ifa is close to one, a small differendg*+*?) — L(*) does not imply that.*) is

close toL*. We rather have that

1
—— (LD L)y, (4.27)

L~ LW 4
1—a

Hence we obtain an estimate 6f, called Lf“), by replacinga in (4.27) with an

estimate, say
L+ _ (k)
k) = T — [—1)°
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We obtain better stopping criteria

ILED — LD < cor (4.28)
¥ LW < (4.29)

wheree > 0 is a chosen tolerance.

4.2.3 Properties of the MLE and the EM Algorithm in Finite Mix-

ture Models

The results in this section are taken from Redner and Wall@84)l who summarize
earlier results by Wald (1949) and Redner (1981). They addhesconsistency of the
MLE and the convergence of the EM algorithm under the regylassumptions below.
In the following, we denote the true parameter vectornbyand the MLE ofy* based
on N observations by .. For this section only, we writg = (&, ..., &) with §; € RL.

v denotes the dimension of the parameter vector.

Assumption 4.2.2 For all v € €, for almost allz € R? and fori, j,k = 1,...,v, the

partial derivativesdg/9¢;, 9*g/0&,0¢;, and 93 g/ dE,0¢,;0&, exist and satisfy

afmix(ﬂﬁ;’)’) ; 82fmix($;’7) ijk
' ‘ ‘ dgoe,06, | =1

=50 < i, [Pl ‘su#%xx1

wherefi and ¥ are integrable andf“/* satisfies
/ %) frnie (237 )d2 < 00
Rd
Assumption 4.2.3 The Fisher Information matrix

1) = [ (9108 i3 7))V 108 s ) s 7)

is well defined and positive definite-at.
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Theorem 4.2.4If Assumptions 4.2.2 and 4.2.3 are satisfied and any suffigismall
neighborhood ofy* in €2 is given, then with probability 1, there is for sufficientlyda
sample size N a unique solutiey), of the likelihood equation¥ ~ Ly (v;x) = 0 in
that neighborhood, and this solution locally maximizesltigelikelihood function. Fur-
thermore,v/N (75 — v*) is asymptotically normally distributed with mean zero and
covariance matrix/ (v*)~'. Furthermore, ifH () = Ej.vzl V»YV,TY log( fimiz(xj;7y)) is

the Hessian of the log-likelihood function, with probalyilit,

N . *
dim SHFy) = —1(77)

While assuring us that the ML, is an asymptotically efficient estimator fgr the
theorem still leaves two questions unresolvedy |sreally the largest local maximum
of the log-likelihood function? Does a sequence of parametmatesy’) generated
by the EM algorithm converge t§,,? The answer is given in the next theorem. We
need Assumptions 3 and 4 given below. Roke () and sufficiently small > 0, let
N, (7) denote the closed ball of radius r abeuin €2 and define

fmix(x;’%r) = ~ sup fmzx(xa;)v/)
YEN-(7)

and

f*(ZL’;’Y,T) - max{l?fmim<x;77r)}

Assumption 4.2.5 For eachy € Q and sufficiently smaklt > 0,
. (@59, 7) frnia (597 )dr < 00
R
Theorem 4.2.6 Suppose that Assumptions 4.2.2 through 4.2.5 holf,imnd let ('
be a compact subset 6f which containgy* in its interior and such thaff,,;.(x;vy) =

fmiz(x;v*) almost everywhere infor v € ' only ify = 4*. Suppose further that with
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probability 1, the functior)(~|7)) of the E-step of the EM algorithm is continuousyin
and~ in ' and bothQ(~|7) and the log-likelihood functioh  (v; x) are differentiable
in v, for v € Q'. Finally, for v in ' denote by{v"},_, 1. @ sequence generated

by the EM algorithm inf?’, i.e., a sequence ift’ satisfying

YU = argmax Q(v|y"), 7 =0,1,2, ...
ye

Then, with probability 1, wheneveé¥ is sufficiently large, the unique strongly consistent
maximum-likelihood estimatg,, is well defined i)’ and¥y = lim; .., v) whenever

~(0) is sufficiently nea® .

Theorems 4.2.4 and 4.2.6 assure of existence and uniquehasgrongly consis-
tent maximum likelihood estimate that can be obtained asaheéion of the likelihood
equations. We can find that estimate using the EM algoritlirmei have a starting
point that is good enough. The two theorems provide the #ieait basis needed to jus-
tify the use of maximum likelihood estimation and the EM algon. However, many
practical problems remain. Typically, the log-likelihofuhction will have many local
maxima and may even be unboundedtyaapproaches the boundary of the parameter
spacef2. The likelihood equation may have solutions that are natllotaxima of the
log-likelihood function. In addition, the EM algorithm eikiits a very slow convergence
behavior. It often takes several hundred iterations betloeeconvergence criterion is
met. It is therefore crucial to have a good starting pointiteralgorithm. We explain in

Section 4.3.1 how we obtain good starting values.

4.3 The EM Algorithm for Finite von Mises-Fisher Mixture Models

It is easy to see that Assumptions 4.2.2 through 4.2.5 of teeiqus section hold for

a finite mixture of von Mises-Fisher distributions, becatrse support of the densities
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is compact and each component density i€'fa(S?!). We will make this point more
precise below in Sections 4.4.1 and 4.4.2. In those sectansarefully check the
validity of a set assumption that include or guarantee thidityaof Assumptions 4.2.2,

4.2.3, and 4.2.5. Therefore, we can apply the results of FEme®4.2.4 and 4.2.6.

The M-step in a finite von Mises-Fisher mixture model In the execution of the EM
algorithm, letu;, <; andp; be the current approximation to the MLE of the parameters of

thei®® component of the mixture model. Recall from (4.24) that the approximation

pt = (pf,...,p,) of the weightsp = (py, ..., pm) is given by

al D s N
1 Pigm (Xj5 s, K;) 1
+ J
N;Zk—lpkgM(Xj;uk,nk) NZ (x;)

j=1
To find the new approximation &f; = (4, k), = 1,...,m, in the following denoted
by &+ = (uit,kF),i = 1,...,m, we need to solve equation (4.25). We need to find
the pairs(u, x;), that maximize the equations

N

> log(gn(x;; i ki) Pi(x5),i = 1,...,m. (4.31)

j=1
Recalling the definition of the von Mises-Fisher dengity(x;; 1, ;) from (3.57), we

have, after the simplifying and dropping the constant tethet,

Kg - 1> log(k;) — 1og(]d/2_1(m))1 jilﬂ(xj) + Ripti” (Jil XjPz(Xj)) - (432

We see thajs; only appears in the second term. As in the case of the simpl&Ases-
Fisher distribution, we can therefore calculate the new@pmations ofx; and u;

separately. The second term, which needs to be maximizeggwe S¢~!, is the inner
product of the two vectorg; and(Zj.V:1 x;P;(x;)). Therefore, we conclude that

—1 N

DX Pix;) (4.33)

N

> % Pi(x;)

=1

Hi+ =
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Studying the first term of (4.32), we see that we can also olttes new approximation
k; for k; in a similar fashion as we obtained the MLE for the conceitnaparameter
of a single von Mises-Fisher distribution. We have with theae notation, using (3.65)

and (4.33):

0
8/@-

N
( 10g(M(Xj§Ni+,/fi))Pz‘(Xj)> =0 (4.34)

—

= @ii Q(g — 1) log(r:) — log(]d/2—1(lfi))} > B(xj)> (4.35)

1Y xPx)) ):o

%—1 [c,l/Q (5] & n al
= - Pi(x;) + s x;P(x;) =0
P T (k)) ; (x;) + < i Fi(x;)
Id/g(,‘{)—-’_) N N
= - ! Pi(x;) + x:P;(x;)|| =0
Id/Q—l(Hj_) ]Zl ( J) ; J ( J)
N
[P x)
—  Aur) = 5 (4.36)
Zj:l Pi(x;)
(=)
= K =4 ~ (4.37)
Zj:l Pi(x;)

We already mentioned that,(x) is a monotone strictly increasing function satisfying

lim,_o A4(k) = 0 andlim,_., A4(k) = 1. Therefore, (4.37) is meaningful, if

HZ?[:l x; Fi(x;) ‘
0< N <
Zj:l Pi(x;)

for all samples(x; € S*!,j = 1,..., N} and for all choices of parametess p; and

1, (4.38)

r; that impactP;(x;). Indeed,Z?’:1 x;P;(x;) is a linear combination of the vectors
x; € S with parameterd’(x;). The length of the resulting vector is less or equal to
Zj.vzl Pi(x;), with equality if and only if for allj all x; = x for somex € S*~!. Hence,

equation (4.38) is satisfied.
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Summarizing, we can write the EM-Algorithm for a finite mirguof von Mises-
Fisher distributions as follows:

Giventhe currentvalugs,, . .. ttym, K1, - - -, Km, P1» - - - , Dm, WE Obtain the updated value
for p; via (4.30), get the new values far; from (4.33) and the new values faf from
(4.37),i = 1,...,m, until the Aitken stopping criterium (4.28) is met.

We see that for each component carrying out an iterationeoEfd algorithm is no
more difficult than obtaining the MLE for a single von Misesstter distribution. Thus
the speed the algorithm depends on the number of componedttha efficiency of
calculating the MLE of the parameters of a von Mises-Fisl&ridution. Special care

should be devoted to program an efficient version of the swarof A,(x).

4.3.1 Obtaining Good Starting Values: Method Of Moments

This approach to finding good starting values for the EM atgor is based on results

for finite mixture models of univariate normal distributeonWhile it is easy to imple-

ment and fast, it suffers from the drawback that it can only$&ed for von Mises mix-

ture models. In other words, it is not useful in finding stagtvalues for finite mixture

models in higher dimensions th&q. It's use is therefore limited in practice.
Suppose that we wish to run the algorithm to fit a mixture maxfelon Mises

distribution withm components to a dataset on the unit cirSle We have to find

starting values for

1) the concentration parametexs, . . ., k.,

2) the mean directiong, . . ., ttm

3) the population weights,, . . ., p,, such thad ", p; = 1.
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Estimation of the location parameters

In Lindsay and Basak (1993), a fast method of moments is intred to obtain starting
values for the EM Algorithm in the case of finite mixtures ofltivariate normal distri-
butions. The paper is based on results of moments matricesl io the Appendix Il of
Uspensky (1937). His results describe how one can idertdy: tpoints of support of
a discrete distribution and their weights. We adapt soméefr¢sults to the situation
of discrete distributions on the unit circle and then explaaw they can be used to find
starting values for the location parameters.

Let as beforeZ = ¢© be a circular random variable with distribution function

F(do). Let A, bep x p matrix defined as

(Ap)ij = Wirjz = E[Z777]
for1 <i,j,<p.
Finally let A, = det(4,), p > 0. We set¥; = A, = 1.
Assumption 4.3.1 We have

Ng#0,A1#0,...,A,#0 (4.39)
except on a set of parametefg;,...,ps_1,,...,as} of Lebesgue measure 0 in
[0,1]5~1 x [0, 27)".

Assume thatZ = ¢© is a discrete circular random variable. Assumption 4.3.1
enables us to identify the points of supppft= ¢/, j = 1,...,n and their weightp,
of Z. Since the distribution of is discreet, it is entirely concentrated on the points of
support. These points of support appear as the atoms ofstréodtion function/” of Z

and the corresponding weights satisfy the linear congtrain

ij =L
j=1
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Evaluating the first 2n-1 moments and the linear constrairthe weightg; yields the

following system of equations:

7,1: p = 1
2= P (4.40)
Pt =W, p=1,...,2n—1
(4.40) can be replaced by the more general but equivalenireggent that
2w n
E[T(Z)] = / T(e**)F(d¢) =Y  p;T(u;) for all functionsT. (4.41)
0

7=1
It is in particular true for all polynomials with with dég < 2n — 1. Suppose that
such a polynomiall’(z) can be factorized as followsT'(z) = a(z) - Q(x), where
Q(z) = I/ (& — py) = Yp_ae” anda(z) = Z?;& a;x’ is any polynomial of
degree no more tham — 1. Since the points of support &f(d¢) are exactly the roots

of Q(x), we have

B(Z)Q2)] = [ ale®)Qe)F(d0) = 3 praliy)Qlus) = .

On the other hand we have that

21 29rn—1 n
| aene@enras) = [ 33 aae 0 ps)
0 0 j=0 k=0
n—1 n
= > q chbk;ﬂ) =0
7=0 k=0
Since this must hold for arbitrary;, we must have tha}";_, gx¢x; = 0 for all j =
0,...,n — 1. In matrix notation this is written as:
¢0 S (bnfl (bn qo0 0
= |, (4.42)
¢n—1 s ¢2n—2 ¢2n—l Gn—1 0
0o ... 0 1 Gn c

-~

=B
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by adding the additional conditiof), = ¢ to makeB a possibly regular matrix, which
would guarantee uniqueness of the solution. If Assumpti@ilsholds, we have that
except on a set of parameters of Lebesgue measutetQ3) = A,,_; # 0. Using

Cramer’s rule we express the unique solution as follows:

¢ - i1 0 Qi1 ... On
det
Gn-1 oo Ontj—2 0 Gnyyi ... Do
0 o 0 c 0 o 0
“ = det(B)
A o ... Qi1 Qjp1 .. On

_(=1)te . . . . . .
= A det : : : : : : (4.43)

¢n—1 cee ¢n+j—2 gbn—‘rj cee ¢2n—1
Therefore, we can writ€)(z) elegantly as the following determinant:

1 z ... zZ"

Q) = C e d)_o ¢.1 (b" (4.44)

¢n—1 ¢n s ¢2n—1
Note that if Assumption 4.3.1 holdg)(z) is indeed a polynomial of degree n, since the
highest coefficient of)(z), ¢, = (—1)"¢, is nonzero. We have proved the following

Proposition.

Proposition 4.3.2 Suppose thaZ = ¢© is a discrete circular random variable with
n points of support, calleg; = ¢’“,j = 1,...,n, such that Assumption 4.3.1 holds.
Let U, = E[Z?]. Then the points of support are the simple and distinct robthe

polynomial are given by (4.44).
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We apply this result to the problem of obtaining startingseasl for the mean direc-
tions of the von Mises mixture model. Assume for the momeait &l the components
in the mixture have the same concentration parameter. Wevgesa random variable
Y = X with that distribution stochastically @ = ¢/ ©+M), 7 = ¢© is a discrete
random variable with n points of suppeit = e, ... u, = e andP[Z = u;] = p,
andM = ¢ is a von Mises random variable with mean direction 0 and coinaton

parametek, independent off. Remembering that for a von Mises random variable we

have that
== 215
we get
E[Y?] — E[e#®eoM] — Be®)EM?) = w,- 2%) _ oy ) (a.5)

7 To(k)
whereV, = 37", p;e?*. Given an estimatg of x we can therefore estimate, by

5 _ W)
RO

Wherem is an estimator for,,(x). We use the f§ sample mean of the respective
data set. We us@,, instead of the true and unknown momeitsin (4.44). We calculate
the roots of the resulting polynomiél(x) and would like to use them as starting values
for the location parameters in the EM algorithm. Howeveeg tlata does not really
follow a von Mises mixture with equal concentration paraengt Therefore, the roots
of Q(2) typically do not lie on the unit circle. However, we foundtifgi; = r;e'@i, j =
1,...,m are the roots of the polynomial, the valués= ¢%/,j = 1,...,m provide
good starting values.

If Assumption 4.3.1 is violated, we may in particular havatttet(B) = A,,_; = 0.

In that case the matri® is not regular and the coefficients of the polynonilz)

cannot be determined from equation (4.42). In that caseatems (4.43) and (4.44) are



99

meaningless because of the divisiondey(B) = A,,_; = 0. However, this was a case
that we never experienced in our implementation of this wettAssumption 4.3.1 was
never contradicted by empirical evidence. This allowedusbtain good starting values

by means of a method of moments.

Estimation of the concentration parameters

If we wish to apply the method of moments technique to findtistarvalues for the
mean directions of the EM algorithm, we need to obtain a gatidhate ofx, the con-
centration parameter, that we assume to be equal for all coems. The quality and
usefulness of the starting values for the mean directi@expected to depend on how
good our estimate of is. Since the results in the previous paragraph assumelthat a
k;,J = 1,...,m have the same value, the quality of the starting values Vgl depend
on accurate that assumption is. If the actual concentrgtagsameters:; are close to
each other, we can expect to get fairly good starting valdesvever, if the true values
for ; are very different, we might get starting values for the maiagction that do not
lead the EM algorithm to the global maximum of the log-likelod function, but rather
only to a local maximum. We therefore try to identify a singéduex that is best used
as the starting value for all;, j = 1,...,n. For a simple von Mises distribution, the
concentration parameteris a function of the resultant length. We therefore conalude
in (3.67) that the MLE of is a function of the mean resultant length. In our situation
the situation is much trickier, since we have several coraptmthat influence the re-
sultant length. The resultant length might even be 0. Thisri@xample the case for
a two component model with; = ko > 0, u; = po + m and weightgp; = p, = .5.
This is however not a situation that we expect to see in pracBut we do expect that

different components of the mixture that have different mdeection will have a re-



100

sultant length that is smaller than the resultant lengthachecomponent alone. There
is no easy and reliable way of separating the different comapts, before making some
assumptions about the components of the model.

The following approach is therefore not expected to resudt ieliable estimator for
k. It does, however, provide us with a reasonable startingevidr ~, in the sense that
it resulted in reasonable starting values for the mean titrez. We need to make a
number of simplifying assumptions about the nature of thetumé components. The
first assumption is that we assume that each ofntheomponents of the mixture is a
random variableZ; = ™', where©’ has rangéa; — 2%, o; + 2] i = 1,..., n. Herew;
stand for the mean direction of th& component. To get an estimaterofve therefore
essentially consider a circular random variabtés= ¢’©" with ©’ € [0, ZZ]. In Mardia
(1972) itis argued that a reasonable definition of the cancuhiriancé/; of © could be

defined as:

Vi=1-(1-1p)"",

wherel} is the circular variance of the random varialle= m - ©' with range[0, 27).
In Chapter 3, we saw defindd asV, = 1 — p, wherep is the resultant length. We
introduced the mean resultant lengthas an estimator of. Unfortunately there is no
easy way of estimating the resultant lengthédf= m - ©" of each component. We
therefore make another simplifying assumption, namelytttemean resultart of the

entire data can be used. We therefore use

—1/m?

Vo =1-(1-Vp)V” =1-R

as an estimator dfj;, since we need to obtain an estimaté/pbf a generic component.
Now recall that for a von Mises distribution, we have that tireular variance id —

A(k) = 1 — p, wherep is the resultant length, estimated by the mean resultagthen
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Therefore an estimator of the concentration parametér efe’® is the solution of

1/m?

AR)=1-VI=R (4.46)

We obtain the starting value for the concentration parameté the von Mises mixture
model by using the mean resultant length of the entire dateseur choice folR in
(4.46) and then solve fot.

This is a similar equation as the one solved in the maximuelilikod estimation
of the concentration parameter of a single von Mises digiob. Of course we are well
aware that this method is fairly crude. As stated beforestiases that the concentration
parameters,; have the same values. The interpretation of each composentaadom
variable on only a part of the circle is also only valid forgawalues ok. In that case the
corresponding random variable will be closely concenttaeund its mean direction
and can therefore essentially be regarded as a random leaoiabnly a part of the unit
circle. Clearly, this is not true i is fairly small. In addition, our technique implies the
assumption that the resultant length of a mixturenofomponents with equal resultant
length p is given byp!/™*. This need not be the case as pointed out by the example
above with the two components placed on opposite placeafrit circle.

However, we only use this technique to obtain starting \v@kmed not actual estimates

Ofﬁj,jzl,...,n.

Estimation of the weights

Given the starting values for the mean directions and theeamanation parameter, we
need to obtain starting values of the component weightsalligeve would like to use
equations (4.40), replacing, = ¢ with the starting values for the mean directions

described above. However, the data does not really followraMises mixture with
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equal concentration parameters. Therefore the roots ddrtipgrical version)(z) typ-
ically do not lie on the unit circle. Therefore the solutidps, .. ., p,) of (4.40) need
not be real. This would likely even be true if the true digitibn were a von Mises
mixture model with equal concentration parameters, becafishe noise in the data.
However, we may take the real parts of that solution and theah as starting values.
Unfortunately, sometimes we even found that not all reaispae positive.

As an alternative, we consider a maximum likelihood estomapproach to obtain

starting values of, ..., p,,. We first obtain starting values for, = ¢, ... u,, =
e'“m andx. We then find the values, . . ., p, that maximize the log likelihood function,
whereyy, ..., u, andk; = --- = k,,, = k are considered parameters and not variables.

That is, we treat the starting values for the location andeatration parameters as the
true values in the execution of the EM-Algorithm and only imngize the log-likelihood
function over the possible values of the component weigReall from (4.23) that in

the E-Step we calculate

QUWIA) = Y los(r) D w

] = 9(x5:7)
U Pi - f(5:6)
k iy Sk
+3 ) log(f(x5:6)) Lo (4.47)
k=1 j—=1 g($]77>
wherey = (1, ., fim, K1, - -+, Em, P1,---,Dm) denotes the current estimate. The

new estimate are found in the M-step in maximizi@g¢y|~y). Assuming thatu;, =
W1y .oy fbm = Im, @andk; = --- = k,, = k are fixed at the values that we obtained
by the methods described in the previous paragraphs, wenoakymizeQ(~y|vy) over
p1,---,Pm- Given our current estimag, . . . , p.,, we find the new estimates according
to the M-Step as

1 o= iy (s 115, R)
e P3Ji\Tks Fys ™) 4.48
PN R (449

wherey = (i, ..., fim, R, - - -, R, D1, - - -, Dm)- The value of the log likelihood function
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increases in each iteration. The algorithm stops when theeAiconvergence criterion
(4.28) is met. Since (4.48) provides an explicit formulatfte new estimates, the algo-
rithm usually is efficient and fast. The returned estiméfgs. . . , p,,) can subsequently

be used as starting values for the EM algorithm.

Performance in practice

In practice, the starting values,,, obtained by this method proved to be good if the
number of components of the fitted model was small, typicadlylarger than 5. The
value of the log-likelihood functior.(v,; x) is reasonable close to the one at the MLE
~, L(7;x). The EM algorithm, started af,, usually converges to the largest of the
local maxima ofL 5 (v; x) in a reasonable number of iterations.

However, if a model with a larger number of components wasdijtproblems with
the starting values of the weights arose. The restricted Igbtiéhm used to obtain start-
ing values for the weights,, . . . , p,,, often converges to a vectgy,, . . ., p,,, with one or
more of the estimates; very close to 0. This makes the corresponding component, and
hence its mean direction and concentration parametegnifisiant in its influence on
the value of the log likelihood function. In most of theseesmthe maximum likelihood
estimates of those weights were distinctively differeanrO, indicating that the starting
values were very poor. It usually took the EM algorithm maeyations to recover from
the bad starting values of the weights, if it did so at all.edfimes, the real parts of the
solution(py, . . ., p,,) Of (4.40) or even the crude estimajgs= %,j =1...m provided
better starting values. A possible reason for the poor paidace of the method of mo-
ments with a relatively large number of components is thadifferences between the
different concentration parameters leads to a significastih the estimates of the mean

direction. This in turn results in unreliable estimateshaf weights. We often observed
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that for a small number of components the estimates for theartration parameters
were in the same range. However, when more than 5 componedglsnwere fitted,
estimates for some; were in the range of over 500-700, while others were well\lwelo
10.

Especially for models with a large number of componentsptioeedure presented
in the next section proved superior to the method of momevtide the latter proved
very helpful for models with a small number of componentsefEmore important is the
fact that the procedure to be introduced below is applicadsleata of any dimension,

unlike the method of moments that we only implemented fotweedimensional case.

4.3.2 Starting Values Based on a Smaller Model

The need to fit a mixture model with a large number of compaeften arises because
a reduced model does not provide a satisfactory fit. One raigbttry to justify the cur-
rent model by fitting a model with an increased number of camepts and then showing
that the new model provided no significant improvement dvercurrent model. In both
cases, the parameter estimates of the current model magwlgéve us good informa-
tion about the parameter estimates of some of the compoagthts larger model. This
is especially true for models with a large number of comptsidrecause in that case the
current model usually already provides us with a moderaetd fit of the data. There-
fore, we need not obtain starting values for all parametsirgguthe method of moments
described in the previous subsection. Instead, we can esadkximum likelihood es-
timates of the parameters of the smaller model as startihgsdor the parameters of
the first components of the larger model. Assume that wedjrehtained a maximum
likelihood estimate of the parameters of a mixture modehwitcomponents. We wish

to fit a mixture model withn 4+ 1 components. We assume that the MLE’s of the mean
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directions,uy, . . ., i1, and concentration parameters, . . . , k,,, of them components
provide adequate starting values for the firstcomponents of the larger model. We are
therefore left with the problem of finding starting values fioe weightsp,, ..., p,i1

and the parameteys,,, ; andsx,, 1.

We choose the values that maximize the log likelihood famcof the larger model,
wherep,, ..., ,,, K1, .., Ky, have been fixed and are considered parameters and not
variables. We therefore consider the log-likelihood fimtonly as a function i, ;,

Km+1 @nd(py, ..., pme1). Thatis, we attempt to maximize the following function

‘C(.u‘erla Rm+1,P15 -+ s Pm+1; X1, - - -, XN, ﬁlv S 7ﬁm/"%l> s 77€\m) =
N m
> log (ij - M (%53 Hjy Ky) + Pt M (X35 By /fm+1)> : (4.49)
i= j=1
wherep,, ..., p,, andxsy, ..., k,, are the maximum likelihood estimate of the respec-

tive parameters in the smaller model withcomponents.

To find the desired starting values, we run a restricted EMrélgn similar to the
case of determining the starting values of the weights imteéhod of moments tech-
nique, described in the last subsection. In each step, we update the estimates
of the values of the weightg,, ..., p,4: and the parameterg,, ., and x,,;:. Let
(D15 -+, Pm+1s Bps1, Fm41) denote the current approximations to the restricted MLE
of (D1, -+« Pt 1s Bm1s Kmr1)s 1€0(By, -+ ooy i, R1,y - - -, Rin) dENOte the fixed MLE's of
the parameter§u,, ..., u,,, K1, - . ., Ky,) Of the first m components, and finally define

Y= (B1s- s By By 1 K15 - -« s By Bt 1, D15 - - - s Dmt1)- ThEN we obtain our new ap-

proximations as:

+ pkgM(Xu Mg, /fk)
P = = , for k=1,. +1 (4.50)
b Z mzx(xza 7)

sz m+1 Xz (451)

+
l’l’m—‘rl -
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(1B P x)

kT = A
e 4 SN Poga(x:)

whereP,,,(x;) is as in (4.31), using the current approximations to therpaters. It

‘ (4.52)

is the calculation of the update of the concentration pataradhat slows down the
EM algorithm for the von Mises-Fisher model. This algoritusually converges in a
short time compared to the full fledged EM algorithm, sincly ¢ine parameters of one
component and the weights have to be updated in each iter&ien though many iter-
ations may be needed to find the desired starting valug®for. . , 11, 15 Km+1)
the procedure proved to be very efficient in practice.

We usually started the algorithm with several differenti@iguesses fo(p, .. .,
Pmt1, Bma1, Kmt1). Typically these different initial values resulted in selaifferent
possible starting values for the EM algorithm. Among thosssible starting values we
typically preferred the one with the largest log-likeliltbealue. We observed however
exceptions to this rule. Therefore, we usually ran the ENbtigm from all obtained
possible starting values.

This method proved very valuable in practice, especiallyaddarger number of
components when the method of moments estimates for thehtgsesgffered from de-
ficiencies described above. In higher dimensions it was aly ol to obtain good

starting values.

4.4 Deciding on the Number of Components

The problem of determining the number of components in aefimixture model has
proven to be surprisingly tricky. A commonly used tool toatetine the dimensionality
of amodelis the Likelihood Ratio (LR) test. Under certain lagty conditions, the test

statistics asymptotically has a centsgl distribution with a known number of degrees
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of freedom, see Shao (1998) for a reference. Unfortunabelge regularity condition
are not met in the context of mixture models. Assume that vai o test

Hy: The data arises from a mixture distribution witlhy components.

Hi: The data arises from a mixture distribution with > m, components.

Recall from Section 4.2.1 that we can fit a model withcomponents to data that stems
from a mixture density withm; < m, components by either setting one the weights
p; = 0, or splitting a component into identical components. Theans that undeH,

the parameters of thH; model are not identifiable or may lie on the boundary of the
parameter space. It is not meaningful to estimate param#tat are not identifiable
since the maximum likelihood function does not have a glomaimum. It is therefore
not meaningful to conduct likelihood ratio tests comparing two models. Further-
more, the fact that the parameter estimates of the model manlthe boundaries of
the parameter space is a violation of the conditions nepe$sathe test statistic to
have a central? distribution. We refer to McLachlan and Peel (2000), wha@dss the
problem of likelihood ratio testing in this framework in neodetail. They note that the
distribution of the usual likelihood ratio test functionpads on the unknown parame-
ter.

However, if we relax the assumptions about the true digioby we can apply a
result by Lo et al. (2001), presented for normal mixture ni@déat is based on earlier
papers by White (1982) and Vuong (1989). This is our approatiich we explain
it in more detail in this section. We assume that the true aridhown distribution of
our observations is not part of our parametric model. To nthisepoint more precise:
We assume that the true distribution is not a finite mixtureleh@f von Mises-Fisher
distributions.

Before we discuss this approach in more detail, we addredbempractical con-
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cern in deciding on the number of components of a von Misebkdfimixture. It is the

existence of spurious maxima of the log-likelihood funetiolrhese are local maxima
that occur as a consequence of a cluster of a few data poettsaté relatively close

together. These local maxima typically have at least onepoorant with a very large

concentration parameterand a very small component weight The models associ-
ated with these local maxima may have a high log-likelihond therefore appear as
a significant improvement over a reduced model in which theisps component has
been omitted. However, they are of little practical use amdat have a meaningful real
world interpretation.

The following guidelines help identify spurious maxima aigdore them, even
though they may seem as significant based on the model selexsiieria explained
in this section. Typically, the spurious component is notl we®lated from the other
components. It usually features a concentration paranteérs much larger than the
ones from the other components and at the same time a wemghistmuch smaller,
compared with the other weights. We often see 200 andp < 0.01 for such a com-
ponent. On the other hand, if a component is well separated fine other components
it may have a meaningful real world interpretation, everutifoit shows a smaj and
a largex. In addition, the EM algorithm usually only converges to arspus maximum
from a particular starting point. If even a moderately difat starting point is chosen,
convergence to another local maxima is observed. Isolaieghonents with a large
and lowp do not have that property. This observation is useful indlagion whether a

solution is spurious.
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4.4.1 MLE and Likelihood Ratio Testing in Misspecified Models

In this section we present a summary of the results aboutrmanilikelihood estima-
tion and likelihood ratio testing in misspecified models.eTasults first explain prop-
erties of the maximum likelihood estimators of the paramseté parametric models, if
the true distribution of the observations is not includethim parametric model consid-
ered. They then continue to explain how to compare diffesanh misspecified models
in order to determine which one is closer to the true distrdou What exactly “closer
to the true distribution” means will be made clear in thedaling. We will show later
how these results can be applied to finite von Mises-Fishetumrg models.

Consider two different parametric models for the distribatof a random variable

X. Following Vuong (1989), we assume théthas values in a Polish spadé
Foy = {F(z;7v),y €'} CR™, (4.53)

and

Gg = {G(z;6),6 € A} C R™. (4.54)

We assume that, < n;. During this general discussion, the two families may or
may not contain the true distributio (x) with densityh(z) with respect to a finite
measure:y on X. Itis convenient to think oft’ as the d-dimensional Euclidian space
R and to assume thaty is the Lebesgue measure.

Itis our goal to decide which of the two parametric modelsiigesior over the other
one as explained in the following, based on a statistical W& make the assumptions
given below about the two competing families. The assumptend results are stated
only in terms of members df~, but it is assumed throughout that analogous statements

and results also hold for members@j;.
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Assumption 4.4.1
The random variables(y, .., Xy are independent and identically distributed with the

density functiork(z), which is strictly positive for almost all € X.

Assumption 4.4.2

(a) For everyy in I, F(z;~) has a densityf (z; v) that is strictly positive for almost all
reX.

(b) The parameter spadeis a compact subset & and f(x;~y) is continuous iny

for almost all x.

Assumption 4.4.3

(a) For almost all x,| log(f(x;))| is bounded above by a function of x, independent of
~, integrable with respect to H.

(b) The functiorE [log(f (x;v))] = [ log(f(z;~))h(x)px(dz) has a unique maximum
aty*inT.

(€) Epllog(h(x))] = [log(h(x))h(z)pr(dz) is well defined and finite.

Definition 4.4.4 Define
e = 5 ()]
-/ " log(h())h(x)dz — / " log(f(x;7))h(x)u(dz). (4.55)

o0 —00

The functionI(h : f|v) is called the Kullback-Leibler Information criterion (KLIC)

statistic.

We refer to Kullback and Leibler (1951) for a discussion o tf the KLIC and
its properties./(h : f|v) can be understood as a measure of the distance between the

model F'(z;~) and the true distributiot/ (z), see Akaike (1973) and Akaike (1974).
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Assumptions 4.4.3 (a) and (c) assure that the KLIC is wellngefi Definey* as the
value~y € I' that minimizes the KLIC statistic over the parametric faniily,. ~* is
called the quasi true value f Assumptions 4.4.3 (b) and (c) ensure thais globally
identifiable. Since we interpret the KLIC as a measure of thiadce of the model from
the true distribution, we can use it to compare two competioglels. We say that~

is a better approximation t& thanGs, if
I(h: flv") < I(h:g|d"). (4.56)

To use this idea in practice, we need to find a test statisasgd on a sample. We
especially need to estimatg® and §*. To that end, define the quasi log-likelihood

function of the sampl&X = (X3, .., Xy) as

N
Ly(v:X) =) log(f(Xi7)) (4.57)

=1
and define theuasi log-likelihood estimatoy ,, (QMLE) as a parameter that solves
max L (v; X). (4.58)

The reason that we refer &, as the QMLE, rather than the MLE, is that we do not
necessarily assume that the true distribution is a paregbénametric familyf~. There-
fore, v does not necessarily estimate the true parameter, sinee ey not be a true
parameter. But the QMLE is a natural estimator4or This is made clear by the result
below, addressing the consistency of the QMLE. Furthermmbtiee true distribution is
indeed part of the parametric familx, then the QMLE is just the MLE and the quasi
true valuey* is of course the true value of That is the reason why we use the notation

~ v for both the QMLE and the MLE.
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Theorem 4.4.5If Assumptions 4.4.1 through 4.4.3 hold, then for /slithere exists a
measurable QMLEy, and~, — ~* holds with probability 1, asV — oo. Further-
more, we have that with probability 1:

1

~ v An) = Eallog(f(X:77))] (4.59)

Proof: See Vuong (1989) or White (198W.

A direct consequence of Theorem 4.4.5 is that we have withglitity 1

%LRN = —Zl ( XZ"YN)) (4.60)

XlJ(SN)

. R, [Iog (%)} = I(h:g|6")—I(h: fly*) (4.61)

Therefore, the likelihood ratio test appears as the natesaktatistic for testing the null

hypothesis that
I(h: flv*) = I(h: |8") (4.62)

against the alternative hypothesis that
I(h: flv") < I(h:g|d") (4.63)

We cannot expect that the asymptotic distribution of the R statistics will be the
usual central? distribution, since the true distribution may not be ingddn any of

the two parametric families. In order to get a more genersilitedescribing a non-
degenerate limit distribution, we need to make the follgvuarther assumptions. We

first introduce the following notation. Let

(8log(§§m;7))) and (alog<§§x;v>>>T

be the vector with entries

(810g(f(3:;’7))) _ dlog(f(x;)) =
oy j v
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and its transposed, respectively. Let

(v o)

be the matrix containing the second derivatives

9% log(f(z;y)) . :
,aia=1,...,n;7=1,...,n
(0,) - (07;) v :

of log(f(x;7)).

Assumption 4.4.6
(a) For H almost all x/og( f(z;~)) is twice continuously differentiable .

(b) For H almost all x, the functions

(alogg(x;v))):” (alogg(m)))
Y Y

and

82log(f(x;~y))> - o
’( (0) - (0v)" (i’j)’l_ o) =100 m

are dominated by H-integrable functions that are independé-y.

Assumption 4.4.6 ensures the existence of the followingioes:

_ o [9Plog(f(X;))
R R | oo
Olog(f(X:7))\ (Olog(f(X:7))"
Bi(y) = E, ( 5 )( ) ] (4.65)
Y 0y
By — B (@bﬂggW) <8log<ggx;a>>)] (4.66)

Note, that we haveB];(d,v) = By,(v,9). If the true distribution is indeed in the
parametric familyF'(z; ), we have under certain regularity conditions that;(vy*) =
Bs(v*) = I(v*), wherel(~*) denotes the Fisher Information matrix. This is made
precise in Corollary 4.4.9 below. Before stating the main ltesuhis section, we need

to make one more assumption.
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Assumption 4.4.7
~* is an interior point ofl" and a regular point ofA;(-y), that is, A;() has constant

rank in a neighborhood of*.

A result in White (1982) states that under Assumptions 4. 446, Assumption
4.4.7 implies thatd ;(v*) is negative definite and hence of full rank. We can now state

the main results of this section.

Proposition 4.4.8 Assume that the Assumptions 4.4.1 through 4.4.7 hold. Then we
have, asV — oc:

VN@EN =77 = N(0,C5(v") (4.67)
whereCy(v*) = A7 (v*) By (v) A (v7)
Proof: White (1982)1
In order to understand Proposition 4.4.8 it is helpful tosidar its statement in the

case where the model is not misspecified. That is, considecdlse where the true

distribution is part of the parametric family(z; ~).

Corollary 4.4.9 Given Assumptions 4.4.1 - 4.4.7 andhifr) = f(x;~,), for some

v, € I', we have that

Y =, andA;(y,) = —B;(o) so thatCy(y,) = B, (v,) = —A; (7). (4.68)

In that caseC's(~y,) is the Fisher Information matrix.

Proof: White (19821
We see that the interpretation of the maitfix(+,) is analogue to that of the Fisher

Information matrix. Assumptions 4.4.1 - 4.4.7 can be seethasregular maximum
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likelihood conditions. However, unless the model is caityespecified, we cannot ex-
pect thatd (v,) = —B/(7,) and hence the asymptotic variance-covariance matrix may
not equal the Fisher Information matrix.

In the framework of testing whether the larger modgl:; +) is significantly better
than the smaller modeF(x; d), we need to make an assumption of how the smaller

model can be seen as a special case of the larger model. Shimpison is as follows:

Assumption 4.4.10
There exists a functiofi-) from A to I" such that, for almost all xg(x; §) = f(x;£(d)),

for everyd € A.

Given Assumption 4.4.10, together with Assumptions 4.4rbugh 4.4.3, we have

that
Enflog(f(X;v%))] = Enllog(g(X;6%))] <= I(h: flv*) = I(h: g|d"),

implies thatf (z;~v*) = g(z; ") for almost allz.
The following definition introduces the distribution thagpeears as the limiting dis-

tribution of the LR test statistic (4.60).

Definition 4.4.11 Let 7, ..., Z, bei.i.d. standard normal random variables. Let . . .,
A, be real numbers. Then the distribution of the random vagdbJ’_, \;Z? is called
weighted sum of chi-squared random variables with parameteks We use the nota-

tion: P>, \iZ2 < z] = My, (x; M), x € R.

The distribution function/,,(x; \) is not available in closed form. We can however

write it as an integral:

_%A”éﬂﬁ@hw (4.69)
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where

_ BN 1 _ - 2, 2\1/4
d(u) = 5 ;arctan()\lu) 5T plu) = E(l + Ajut)
Theorem 4.4.12 Assume that Assumptions 4.4.1-4.4.10 hold and that forsiladbx
we havef(z;v*) = g(z;6"). Then Z Ry converges weakly to a weighted sum of chi-

squared random variables:
PRLRN < y] — M, 4o (y; A), (4.70)

where is the vector of eigenvalues of the matrix

o[ B Bl | )
By(87)  By(6)4,'(8)

If on the other handE,[f(x; v*)] > Ep[g(x; 67)] then
2L Ry — oo with probability 1. (4.72)

Proof: Lo et al. (2001), Vuong (19891

In practice,\ has to be consistently estimated by the vector of the eigi;eam§
of the matrix}¥/, which is an estimate df/’, obtained by replacing the expectation in
the equations (4.64)-(4.66) by sample means and replaging™ by their respective
QMLE's.

4.4.2 Testing the Number of Components in a von Mises-Fisher Mix-

ture Model

In order to use Theorem 4.4.12 we need to make sure that Assuma@.4.1 through
4.4.10 are satisfied. In the following, we assume specifidhiat F~ is the family

of von Mises-Fisher mixtures witim components and thak s is the family of von
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Mises-Fisher mixtures withn — 1 components > 2. It is useful and sometimes
even necessary during this section to work in sphericaldinates. We will especially
need to express the mean direction of the components inispheoordinates, when
considering the derivatives mentioned in Assumptions34athd 4.4.7. The reason is
when we are taking derivatives, we need to make sure tha #temo hidden constraints
among the entries of the parameter vector. The mean dinsctibthe components of
the mixture appear ag dimensional vectors when expressed in cartesian cooedinat
However the condition that they are vectors of unit spheselte in the fact that they
only haved — 1 degrees of freedom. If we were to take derivatives with respe

the mean direction of a certain component, expressed iesiart coordinategy; =

Y, iy, we would have to consider the constraint
d
AN\ 2
3 (1) -1
j=1
If we work in spherical coordinates and expressas u; = (ai,ﬁi(l), o ,ﬁf‘”’) €

[0,27) x [0,7]@? c R4 we do not have constraints among the parameters compo-
nents. In the following we mostly think in spherical cooralies. We also implemented
the ratio likelihood ratio test described in this sectiorpmograms that carry out the
calculations in spherical coordinates.

Concerning Assumption 4.4.1: We do not know what the trueildigion of the data
is, therefore we do not know whether its density is strictgifive for allx € S*!. We
will assume that this is true.

Concerning Assumption 4.4.2: The von Mises-Fisher densitgtiictly positive
on the unit sphere as long as the concentration paranmseterfinite. Therefore a
finite mixture of such densities is strictly positive, if aalst one of the concentra-
tion parameters is finite. Below, we impose a finite upper booimdhe concentra-

tion parameters to ensure compactness of the parameteas. spherefore, 4.4.2 a) is
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true. In order to address Assumption 4.4.2 b), we considemtlean directions in
spherical coordinates. That is we haye= {p1, .., thm, K1, -, K, D1y -+, Pm—1} With
Wi = (ai,ﬂfl),...,ﬁfd_”) € [0,27) x [0,7]472, k; > 0, and0 < p; < 1 are num-
bers satisfyingd ", p; = 1. We need to impose certain restrictions on the values
of the parameters in order to obtain a compact parameteesp@e start by mak-
ing the range ofy; compact, by restricting its parameter values to the clostafval
[0, 27 — €], wheree > 0 is chosen small enough so that this restriction is not oftprac
cal importance. We further introduce a maximal admissiklee for the concentration
parameters;;. This is necessary to obtain a compact parameter spaceadtiqar, we
never saw an estimate of a concentration parameter thaé@edea value of a 1000.
We may therefore safely add a constraint of the farr< x; < e %, i = 1,..,m,
wheree is as above. Finally, we need to make the range of permisgibles ofp;,
i = 1,...,m compact. We therefore demand that forigli, € [¢,1 — ¢]. Againe is
chosen small enough so that the restriction is not of praldtigportance. In practice, we
never saw a parameter of the weights that was smalleritbrah not even for spurious
components. Note with this restriction the space of perbiisyalues of the weights
{p= (1, ...,pm) € [e,1 — €™ : >, p; = 1} is compact. Together we have that the
space of possible values of = {1, .., tm, K1, - Km, P15 --» Pm—1} IS COMpact. In the
following, we denote this compact parameter space With

Finally, it is easy to see that the density of a von Mises-€fishodel is a continuous
function in each of the parameters.

Concerning Assumption 4.4.3: As we mentioned bef6fe,! is a compact sub-
space inR“. Therefore the density of a finite von Mises-Fisher mixtusgribution, is
a continuous function i € S~ on a compact set. We just mentioned above that it is

also a continuous function in the parametee I'., also a compact space. Therefore,
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the density is a continuous function (&,~) € S x I'.. As a continuous function
with a compact domain it is a bounded function. Combining Witk the fact that the
density is strictly positive, we get thalog( f,,.:.(x,7))| is @ bounded function and that
the bound is independent of the parameter

In order to make the identifiable, we firstimpose the constraints introducedan-S
tion 4.2.1. We denote the parameter space obtainedIfrdoy imposing the constraints
1. through 3. from Section 4.2.1 & However, if the true, unknown distribution
H is indeed a finite von Mises-Fisher mixture distributionsasption 4.4.3(b) is still
violated whenever the true distribution has less thanomponents. In that casgis
not identifiable, as we mentioned earlier in Section 4.2.&.th¢refore need to assume
that the true distribution of the data is either von MiseshEr mixture with at least
components or that it is not a finite von Mises-Fisher mixtatrall. We worked with
the second alternative. We assume that the true distribigisuch that the parameter
of the von Mises-Fisher mixture distribution is globallyerdifiable in the sense that
Ep[log( fmiz(x,7)] has a unigue maximum at a parametérin the parameter space
I'. We need to stress that this assumption is stronger tharsthargtion that the true
distribution is not a finite von Mises-Fisher model. Ther@dsguarantee that the pa-
rametery of the mixture models is identifiable if we permit any distriion other than
finite von Mises-Fisher distributions as the true distiidnat Since we do not know the
true distribution, how do we justify this assumption? Wearpn Section 4.2.1 how
our implementation of the EM Algorithm handles the attengpéestimate a non iden-
tifiable parameter. We attempted to fit a von Mises-Fisherehwith m + 1 to data
that we simulated from a finite von Mises-Fisher mixture madéh only m compo-
nents. As described before, the parameter of the mixture mwit- 1 components is

not identifiable. We observed that in this situation, the EMokithm converges to a
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parameter estimate with two identical components. That isfurns a parameter esti-
matey = {ft1, .., b, K1, --s K D1, -, Pm—1} With p1; = pj, andi; = &; for i # j. If
we would observe the EM algorithm return such estimatesdak life data, this would
indicate that the parameter we are trying to estimate isdwesttifiable. However, we
did not observe this phenomenon, when working with realddéa. This gives us con-
fidence to work with the assumption that the underlying, ttisgribution is such that
the parameters of the finite mixture models of von Mises-&islstributions is identi-
fiable, regardless of the number of components in the mixtewethermore, we have to
remember that the finite von Mises-Fisher mixture model g amodel. We cannot ex-
pect the data to originate precisely from any particular eh@ee choose. Therefore the
assumption that the true distribution is not captured inmoadel is not an unreasonable.
We maintain however, that a finite von Mises-Fisher mixtgra igood approximation
to the true unknown distribution. The results in the presisaction give the theoretical
background of using the EM algorithm to obtain maximum likebd estimates of the
parameters under Assumption 4.4.3 b).

Finally, since we do not know the true distribution, we carwerify whether As-
sumption 4.4.3 c) holds. Since we assume that the dehsgystrictly positive on the
compact se§?, it is reasonable to assume that Assumption 4.4.3 c) holds.

Recall that based on these assumptions, Theorem 4.4.5 sais$satehe likelihood
ratio test statistic converges almost surely to the diffeecof the KLIC statistics for
two competing models.

Concerning Assumption 4.4.6: It is not hard to see that thetfonlog( f,....(x,~y)
is twice continuously differentiable. An examination o&tresulting first and second
derivatives reveals that they are all not only continuousfions ofx, but also of the

parametety. Therefore, we can repeat our argument from Assumptio8 #o4onclude
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that, as a continuous function on a compact set, the demgtf| log( f,...(x,~)| are
bounded by a constant and hence Assumption 4.4.6 b) holds.

Concerning Assumption 4.4.7: The quasi true parameter I' of the mixture
models considered is in the interior of the respective patanspace, as long as the
representation in spherical coordinates of the mean dreall have only angles that
are in the interior of their permissible ranges. That we rtediave thaﬁi(j)* € (0,m)
fori =1,...,mandj =1,...,d — 2 and thato} € (0,2r —¢) fori = 1,...,m.
We can assume that this is true, otherwise we can apply dawtat the coordinate
system. Since we have from Assumption 4.4.3 thas$ identifiable, we have that all
weights satisfyp; € (¢,1 — ¢) as long as has been chosen small enough. Finally we
need to note that the conditiotf € (0, ') only excludes uniform components. We
can therefore safely assume that Assumption 4.4.7 a) sisati

Checking thaty* andé™ are regular points ofi;(~) and A,(d) respectively is not
possible without knowledge of the unknown true distribatid. In practice we consider
the corresponding estimates and check that they are indgetar. We never encoun-
tered a instance, where one of those matrices was not regular

Finally, assumption 4.4.10 is trivially satisfied.

After convincing ourselves that Assumptions 4.4.1-4.5hakl, we can apply The-
orem 4.4.12 to perform likelihood ratio tests to comparetdimixture models with
different number of components. As a result of Theorem 2.4lie following statisti-

cal test has asymptotical significance lexel

Likelihood ratio test for von Mises-Fisher mixture models:
Let f(x;~) be the density of a von Mises-Fisher mixture with components and let

g(z; d) be the density of a von Mises-Fisher mixture with components. Of course,
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we assume that, < m;. The statistical test considers

Hy : Epllog(f(x;v*))] = Enllog(g(x; 67))] i.e the two models are equivalent, versus
Hy :Epllog(f(x;v*))] > Enllog(g(x; 6%))], i.e. the larger model provides a significant
improvement.

We rejectH,, based on a data samplé€,, ..., Xy, if
2LRy > M7 (1 —a;)\), (4.73)

whereM:~(-; \) denotes the quantile function of the distributidfy,(-|\), andm is the
total number of parameters from both models
We use this test as a tool in an algorithm to determine the eawiiocomponents in

a von Mises-Fisher mixture. We proceeded as follows, sigktiith m=2:

Algorithm 4.4.13 (Determining the number of components)

1. Estimate the parameters of a von Mises-Fisher mixture magtelm andm + 1
components.

2. Perform the likelihood ratio test (4.73) to compare the twalels.

3. If the Null hypothesis is rejected, repeat steps 1. and 2. witieplaced bymn + 1,

else accept m as an adequate number of componen@(ana) as the best fitted model.

This is an automated procedure to determine an adequateenwwhbomponents.
Why then do we not compare a model with a certain number of comts, sayn with
all reduced models with, 3, .., m — 1 number of components? The reason is that some
of those tests would fail to reject the null hypothesis, wtuthers would reject it. How
would we decide which model is the best?
For example, the model with 4 components could appeartstatly significantly supe-
rior over the model having 2 components. At the same timeal not appear signif-

icantly superior compared with the model having 3 companemhat model in return
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may or may not be significantly superior compared to the madldl 2 components.

Should we conclude that the model with 4 components is the amesgquate model,
based on its superiority over the 2 component model? Or dheelchoose the 3 com-
ponent model, because it is statistically significantlyesigr over the 2 component
model, while not being significantly inferior to the 4 comon model? Our approach
resolves these questions by only comparing each model atiiyaunodel that has either
one component more or one component less. The procedureiiatad and justified,

at least to some extend, by the following result, found in @aaed Smyth (2000):

Proposition 4.4.14 Denote withf, the density of the mixture density

k

fk:(ﬂf) = Z@M(Cﬁj; ﬁi,/f@')

Denote withZ, the log-likelihood value of the mixture model with k compdsewalu-
ated at the maximum likelihood estimates u;, x;);¢ = 1,..., k. If for k; and ky, we
have that

= fi — f
Ly, — L, =) % (4.74)
J=1 !

for a constantv. Then we have that
Lyt1 — 2L, + L1 <0,

where

Lk — Zlog (sz xj7u1’K/Z )

stands for the log-likelihood value of the mixture model witomponents evaluated at

the maximum likelihood estimatés, u;, x;);i = 1,..., k.

In other words, the log-likelihood function, evaluated lz torresponding MLE’s
is a concave function in the number of components used, wet&in technical con-

ditions. Cadez and Smyth (2000) note that if condition (4haljls approximately, the
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log likelihood is approximately concave. We refer to Caded 8myth (2000) for a
more detailed discussion. As a consequence, the likelinaial test statistiQ LRy is
approximately monotone decreasing in the number of commen&his does not imply
that the p values of the corresponding likelihood ratiosgedescribed in this chapter,
will also be monotone decreasing. Remember that the distibof the statistic de-
pends on the vector of parametersdefined as the vector of eigenvalues of the matrix
given in Theorem 4.4.12. This means that because of diffe@nes associated with
a likelihood ratio test, a test with a lower value of the teatistic than that of another
test may reject the null hypothesis, while the later does ibis is however not very
common.

We stop when the first likelihood ratio test comparing a nigtmodel withm — 1
components with a model witlh. components fails to reject the null hypothesis. Even
though there is no guarantee that a subsequential test cogppaodels withm and
m+ 1 components will not reject the null hypothesis, Proposidad.14 tells us that the
value of the test statistic is monotone decreasing and hteatéuture significant values
become fairly unlikely. In practice, we rarely saw this hapmg. When it happened, it

was due to components that appeared to be spurious.

4.4.3 Information Criteria

As an alternative to the likelihood ratio test we also coesed a variety of so called
"information criteria”. They are based on the Kullback Ueibinformation criterion of

a parametric family with density(x; «), introduced in (4.55):

h(X)
f(X57)

10 1) =8 [tog (75025 )| = [1osthtanioe ~ [ ogtstamntes
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As before,h(x) stands for the density of the true distribution that may oy met be
included in the parametric familf(x; «). If we had an estimator of the KLIC, we could
therefore pick the model that minimizes said estimator. \Wéidels with a different
number of components and choose the one that seems to nenithiz f|v). Recall
that under certain regularity conditions, discussed irtiSea.4.1, we had in Theorem

4.4.5:

1

N
SN Ay) = 1 S I08(f(XiAy)) — Eallog(£(X:7)], asN — o
=1

Recall thaty* stands for the quasi true valuepfwhile 7, stands for the QMLE, based
on a samplex = (x4, ...,zy) of X = (X, ..., X) of sample sizeV. Hence we would
choose the model that maximizés; (X, 4 ). Unfortunately, the idea suffers from the
problem thatl (X, 4,) is @ monotone increasing function in the number of compo-
nents of the model, leading to over-parametrization. Aslatiom, we consider criteria
based on functions that subtract a penalty term fioniX,~,). The motivation for
this approach is given by the fact, that even though we knatwitL v (X, 5 ) is a con-
sistent estimator foE,[log(f(X;~*))], it needs not be unbiased. Indeed, McLachlan
and Peel (2000) mention, that the log likelihood usually &@®sitive bias. The bias is

given by

bh) = B | - D log(/(Xs fm)] - [ oy ha)ps (o)

This leads to the idea of estimatifiiy [log( f(X;~*))] by a term of the form

N Ay) — 6(R) (4.75)

—_

whereb(h) is an appropriate estimate of the bid#). In the framework of mixture
models, this motivates a new criterion for selecting the bemnof components of the

model. Since the value diy(X,4) is strictly monotone increasing in the number of



126

components, we choose the model that maximizes a functidineoform of equation
(4.75). In literature, such functions are referred to asrim@tion criteria, since they
aim to find the model that minimizes a modified version of thd®&LThey are typically

expressed in the following form:
—2LN(X,¥N) +2C(Fn), (4.76)

where2C'(7 ) represents an appropriate penalty term. After fitting modath differ-
ent numbers of components, we choose the model that mirsraignction of the form
(4.76).

Obviously, the choice of'(7 ) is critical to the sensibility of the criterion. There-
fore, considerable effort has been devoted to an apprepetatice ofC (7). In the

following, we present some proposed penalty terms that weidered for our work.

Akaike’s Information Criterion

Akaike (1974) shows that, under certain regularity coodsi the bias terti2) asymp-
totically tends tad, the total number of parameters in the model)Ngghe sample size,

tends tooo. This motivates thé\kaike’s Information Criterion, AIC
AIC(X;qy) = —2Ly(X, 7 y) + 2d. (4.77)

However, according to Titterington et al. (1985), the regity conditions used by Akaike
and other authors to derive the AIC are the same as the onésdi the classical like-
lihood ratio test. As mentioned in the beginning of Sectichtthese conditions break
down in the framework of finite mixture models. However theCA still frequently
used in deciding the number of components in various mixtuwsdels. In an empirical
study we observed that the AIC tends to overestimate thentnager of components,

see Sectiod.4.4. This is in line of what other researchers reported as well.
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Ishiguro et al. (1997) proposed using a bootstrap methodtimate the unknown
bias term. See also McLachlan and Peel (2000) for a brietidson of the resulting

Efron Information Criterion, EIC

Bayesian Information Criterion

The AIC and EIC are directly motivated by estimating the b&sn in (4.75). The
following criterion originated in the framework of Bayesianalysis, but has a similar
form. Since it can be used in a non-Bayesian framework andtisarder to implement
than the AIC, we found it to be very useful. In a Bayesian franmywassume that
the prior distribution of the parameteris given by the density,(v). The integrated

likelihood is then defined as

f1(%) = / Fo(r) Lv(x, 7).

Define the posterior mode,, as the value ofy that maximizesdog(f,(v)Ln(x,7)). It

solves the equation

dlog(fp(v)Ln(x,7))
oy

—0. (4.78)

Using a second order Taylor approximation about the pastaeddey ,, we can approx-

imate the integrated log likelihood with
~ ~ 1 - 1
log(fr(x)) = L (x,7n) +10g(f,(Yn)) = 51 (h: fAw)[ + 5dlog(2m).  (4.79)
Schwarz (1978) essentially obtained Bisyesian Information Criterion, BIC
BIC(x;7y) = —2Ln(x,vy) + dlog(N) (4.80)

from (4.79) by ignoring the termbg(f,(7y)) and 3dlog(2r) and using thatl(h :

fAn)I = O(dlog N).
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Comparing with the AIC, we see that as soonl@g/N) > 2, the penalty factor
of the BIC is larger than the one of the AIC. Because of the largeafty, the BIC
has a smaller risk of choosing a too complicated model tha\tl. In our simulation
study, presented in Section 4.4.4, we found that the BIC ihgmeformed better than
the AIC. Other researchers reported similar findings in theexd of mixture models,
see McLachlan and Peel (2000), p. 209.

McLachlan and Peel (2000) mention however, that the refyleonditions needed
for the Taylor approximation, as well as other approximagiteading to (4.80), are not
satisfied by mixture models. In particular, the approxiorat{4.79) requires that the
parameters of the model be identifiable. As for the AIC, therkence no theoretical
justification for using the BIC in a mixture model context tacike on the number of
components. As explained in the introduction to Section #.the true distribution
is part of the considered mixture family, and we are consigea model with more
components than the true distribution, the parameterseafihdel are not identifiable.

However, Leroux (1992) has shown that asymptotically, #ogé sample sizes, both
the AIC and the BIC do not underestimate the true number of copts. This is
reassuring. It means that when using the BIC and/or the Al@dording on the number
of components in the model, we will likely not choose a modielt tis too simple and
therefore miss important information about the tail deme in the distribution.

McLachlan and Peel (2000) mention two more complicate@catthat are based
on Bayesian methods, the Laplace Metropolis Criterion andLépéace Empirical Cri-
terion. It should also be noted, that Green (1995) presentyadan approach to the
estimation of the parameters of a model that Green and Risbar(1997) applied to
finite mixtures. In that approach the number of componenteated just like another

parameter. With the help of a Monte Carlo method, discuss&téen (1995), a pos-
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terior distribution on the number of components is deriiddwever the computational
requirements are significant, even for univariate data amaldvincrease dramatically

for multivariate data.

Classification-Based Information Criterion

We introduce two criteria that are based on the idea thatrtfeerhodel should be able
to classify the observations using the different companehthe model. It should be
possible, with the help of the model, to determine from whiomponent a particular
observation originated. Recall, that the complete modélpduced in Section 4.2.2,
refers to the case where we know for each observation fromwtomponent it comes

from. Its density is given by equation (4.9):

N

= 17y iim) = ]I w - Flsi &),

j=1

where¢; are the parameters of tli¢ component density. To express the log likelihood

of the complete model,5,, recall from (4.10) the definition of the matrix

1, |f ij - Z
Zij =
0 otherwise
Then we have
m N
Ly(xiz:7) = D>z [log(pi) + log(f (53 6))] (4.81)

=1 j5=1

The connection betweeh$, (x; z;~) and the log-likelihood functiorl x (x;~) of

the incomplete model is given by the equation
Ly(x;2;v) = Ln(x;y) + log(kn (x; 25 7)), (4.82)

where
m N

log(kn(x;2;7)) ZZ'Z” log(75),

i=1 j=1



130

see McLachlan and Peel (2000), and

g Pif(6)
7ij = Elzij|z;] ST ot (231 60)

is the posterior probability that; belongs to the component of the mixture. We

(4.83)

would like to choose the model whose complete form has thge#rlog-likelihood
value L¢(x;~y). To estimate the complete log-likelihood function, we cbuse (4.82).
The termLy(x; ) is estimated byl y(x;7 ). Since we do not know the matrix;,
we approximatéog(ky(x;~y)) by its expectation, given by
]E[log(kN X Z; 7 |X ZZTU log 7—1]
=1 j=1

The posterior probabilities;; can be estimated using the MIF5, of ~:

~ pzf(xj’g)
Zk 1pkf(x]7€k>

The model is able to clearly classify the observations atingrto their components, if

(4.84)

the posterior probabilities clearly indicate from whichhg@onent each, or at least most,
observations originated.

Define

m N
=3 ) #jlog(F). (4.85)

i=1 j=1

This motivates thelassification likelihood information criterion, CLC
CLC(x;79y) := —2Ln(x,vy) + 2EN(T). (4.86)

The size of the penalty factd? N (7) depends on how well the model is able to classify
the observations. If, for a particular observatignthe estimated posterior probabilities
7,; are large for one particular component and close to zerdlfotreer components, we
say that this observation has been clearly classified. $iecermsr;; log(7;;) are close

to zero, if the corresponding values©f are close to zero or one. Therefore, if most
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observations can be clearly classified, the penalty facttbioe small. If the number
of components in the model is either too small or accuratestrabservations should
be clearly classified, as the components are clearly sephrdte observed this in most
instances when applying the von Mises-Fisher model to tineal data. However, if
the model has too many components, the observations caaermtedrly classified. The
posteriori probabilities;; of a large number of observations may be significant for more
than one component. In that case, many of the tétmesg(7;;) will not be close to zero
and the size of the penalty term can be considerable. The Git€sdhat an additional
component should only be added to the mixture model, if th@adese in the clarity
of the classification of the points is not greater than theease in the log likelihood
function. One of the drawbacks of the CLC that we observedas ithis not even
monotone in the number of components. As a consequences EHTC of a model
with m + 1 components is larger than the one of the model witkomponents, there
is no guarantee that model that minimizes the CLC has morerthanl components.
A study done by Biernacki et al. (1996) states that the CLC teéndwerestimate the
correct number of components. For these reasons, we uslidlhot consult the CLC
when deciding the number of components, but rather workédavi improved version,

called the ICL-BIC.

Integrated Classification Likelihood Criterion

ThelIntegrated Classification Likelihood Criterion, IChttempts to improve the short-
comings of the CLC. In the following we give a brief outline oktmotivation for the
ICL, essentially found in McLachlan and Peel (2000) and Bieknand Govaert (2000).

Define the integrated classification likelihood as

fualx,2) = / 1507 7)o (1),
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wheref§ (x, z; v) denotes the complete likelihood function given by

fN X, Z; 7 HpZ” fz x]’fl Z”

and f,() is a prior density on the model parameter Assume that the prior density

can be factorized as
fp(')’) = fpl(p)fzﬂ(f)a

wherep = (p1,...,pm) € P denotes the vector of the component weights &nd
(&1,...,&n) € Z is the vector of the parameters of the component densitiesfiinite
mixture withm components.f,; and f,» denote the respective prior densities. In that

case the integrated likelihood functigp, (x, z) factorizes as

fa(3%,7) = fia(x12) fia(2), (4.87)
where
fualxlz) = [ fi(x.€l2)fal€)de
with )
(%, &lz) = Hf 75 &)
and

fia(z / (H pz”) fn(p

Biernacki and Govaert (2000) assume that the prior disiohuf,, (p) is the Dirichlet

distributionD(a, ..., a,y, ), given by density

(zaz_m) TToe T

with I'(x) denoting the Gamma function. They work with = ... = «,,, = @ and show

that under these assumptions, we have that

log(fia(z)) = K(Ny, ..., Np). (4.88)
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In the above,N; = Zjil 21 = 1,...,m, are the number of observations in the

component and{ (N, ..., N,,, «) is the function

K(Ny,...,Np,, o Zlog (N; + ) —log(T(N +m - a))

—mlog(F( ) + log(T'(m - «)).
They also show that the following approximation holds fQr(x|z):

d
fialx]2) 7= maxlog( iy (x,£l)) — =5 log(N), (4.89)
whered, is the total number of the parameters exgept = 1, ..., m. McLachlan and
Peel (2000) note that if we estimate the unknown matrith 7, we have that

mEXIOg(f]CV(Xa €|Z)) = LN(X7;Y\N) EN szz log pz) (490)

=1

wherep; is the MLE for the weights of the components of the mixture sl@hdE N (7)
is as in (4.85). Combining (4.88) to (4.90) we have from (4183}
log(fi(x,2)) ~ Ln(x,7y) = EN(F) = N ) _plog(p:)
=1
wherep; is the MLE for the weights of the components of the mixture elpd, is the
total number of the parameters excepti = 1,...,m and EN(7T) is as in (4.85). This
motivates the following definition of thimtegrated Classification Likelihood Criterion,
ICL
ICL(x,qy) = —2Ly(x,9y)+2EN(7)+2N Y _ p;log(p;)
=1

+dilog(N) — 2K(Np1, ..., Npm)- (4.92)

We see that the ICL incorporates elements from the CLC as wdloas the BIC.

Biernacki and Govaert (2000) derived the following appraadion to (4.92), based on
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Stirling’s formula and therefore only valid, when the teriig; are large. It is referred

to as thdCL-BIC criterion:
ICL-BIC(x;7,,) := —2Lnx(x,4y) + 2EN(T) + dlog(N), (4.93)

whered is the total number of parameters in the model. We see thdCihéIC com-
bines the penalty terms from both the BIC and the CLC. Biernacél.€1.996) report
that the performance of the ICL-BIC differs little from the IC&yen if the estimated
cluster sizesVp; are not large.

Even though the ICL-BIC is also not necessarily concave in thaber of com-
ponents of the model, it performs much better than the CLC. \Wetkat the growth
of BIC term dlog(N) outweighed the fluctuations of the CLC ter@¥, N(7), as the
number of components increased. Therefore we observetbtirabst datasets consid-
ered, the ICL-BIC is a concave function in the number of comptsm the model. We

therefore worked with the easier ICL-BIC rather than the CLC.

McLachlan and Peel (2000) report an empirical study, compgahe performance
of the criteria introduced in this section. They used malii@te normal distributions
as the component distributions. The study concludes thigttbe ICL and the ICL-
BIC are able to correctly pick the right number of componentstiie three different
datasets they considered. The AIC, and to a lesser exten@LiBeas well as the BIC
overestimated the complexity of the model. However, owasion is very different
from the one considered in McLachlan and Peel (2000). Not ard we considering a
different class of distributions as component distribogiove also consider distributions
on a different space. McLachlan and Peel (2000) consid¢nilmitions inR?, we are
considering distributions oB89~!. Therefore the criteria may perform very different

than McLachlan and Peel (2000) reported and their resulf{smotbe valid. For these
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reasons, we conducted our own empirical study. We presemésults and conclusions

in the following section.

4.4.4 Empirical Comparison of the LR Test and the Information

Criteria

In order to compare the different information criteria ahd tikelihood ratio test pro-
cedure, introduced in the last sections, we conducted aifrieaistudy. We simulated
datasets from 6 different settings of dimension, numbepafmonents and sample size.
In all instances, data from a finite mixture of von Mises-EisHistributions was gen-
erated. For each of the 6 choices we created 5 to 10 datasetea€h dataset, we
proceeded to calculate the maximum likelihood estimatasive EM algorithm. We
usually started by estimating the parameters of a 2 companedel. We then pro-
ceeded to repeatedly increase the number of components fittdd model by 1, until
the information criteria and the likelihood ratio proceelimdicated that we had passed
the optimal number of components. Starting values for thegiddrithm were usually
obtained by the method of adding a components, describeglto® 4.3.2 or from ran-
domized starting points. The sample size was typically betw200 and 500, as those

were the sample sizes that we worked with for real life dasase

Case 1: A 6 component mixture ors?

The true parameters of the model are given in Table 4.1. Théalde shows the true
parameters of the model considered, while the right talWesgan overview of the per-
formance of the criteria considered. The mean directionachecomponent is given
in spherical coordinates by € [0,27) and 5 € [0,7]. x denotes the concentration

parameter of the component apdists the weight of the components. Components
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Table 4.1:0Overview of case 1 of the simulation study.

The true parameters of the model The number of components

a f K p Dataset Number;1 2 3 4 5
1) |0 7/10r 20 .15 AIC: 9 7 8 7 7
2) | nl2 3l4r 60 .05 BIC: 6 6 5 6 6
3)|1 /2 10 .30 ICL-BIC: 5 5 6 5 5
4)| 4 2 24 .10 LR Test %: 9 7 6 7 7
515 1 30 .15 LR Test %: 8 6 6 7 7
6) | 45 w/2 10 .25

4 through 6 are not very well separated, whereas the firsé tboenponents are fairy
well separated. This is made clear in Figure 4.1, which shaytot of the density
f(#,0),6 € [0,2m);0 € [0, n] of the distribution with parameters as in Table 4.1. We
created 5 different datasets, each with a sample size of B@number of components,
m, as estimated by the different criteria, for each datasgiven in the right portion of
Table 4.1. We see that the AIC overestimates each dataset. The BIC estimates
correctly in 4 out of the 5 datasets, underestimating it bylly o the 37¢ dataset. The
ICL-BIC also performs fairly well, although its estimaterafis correct only in dataset
3. But it only underestimates by 1 in all other datasets. The likelihood ratio test seems
to perform better than the AIC, but also has a tendency to etiarate the number of
components. Testing at the high significance level%fimproved the precision of the
estimates ofn, compared to testing &b%. It reduced the number of components chosen
by the likelihood ratio method by 1 component in both the farsdl the second dataset.

The results are well in line with what other authors repoesdar as the AIC goes. We
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Figure 4.1:The density of the von Mises mixture distribution from whighdatasets of

case 1 were created.

found the rather poor performance of the likelihood ratst @isappointing, since the
likelihood ratio test procedure was given theoreticalificsttion in previous sections of
this chapter, whereas the AIC, the BIC and the ICL-BIC lack thssification and were

only considered because other authors mentioned in Mcaadhd Peel (2000) had

commented on their usefulness.

Case 2: A 5 component mixture orS*

Dataset 2 had a higher dimension, but only 5 components.aselatwith a sample size
of 300 each, were created. This is less than for the previatasdts. An overview over
the true parameters of the distribution and the performafdhe criteria is given in

Table 4.2. The left side of the table shows the true paramefahe model considered,
while the right hand side table gives an overview of the pentnce of the criteria con-

sidered. The mean direction for each component is agaim givepherical coordinates,
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represented by the angles= [0, 27) andg; € [0, 7,7 = 1, ..., 3. Itis nearly impossible

Table 4.2:0verview of case 2 of the simulation study.

The true parameters of the model The number of components

a (i P2 Pz K P Dataset Number;1 2 3 4 5
1) 0 15 15 15 10 .30 AIC: 5 55 5 6
2)|1 1 15 2 50 .10 BIC: 5 5 5 5 5
3|4 3 2 2 20 .25 ICL-BIC: 5 55 5 5
4)|5 25 1 1 10 .30 LR Test%: 5 55 5 6
515 2 15 15 100 .05 LR Testi: 5 5 5 5 6

to get a good impression of the shape of the distributiortesaven in spherical coordi-
nates, its density has a 4 dimensional domain. We studied 3 alimensional scatter
plots of the datasets. It appears from those plots that thieXicomponents are fairly
well separated from each other, while the last two seemed tidser together.

The performance of the different criteria is amazingly goBdth the ICL-BIC and
the BIC estimate the correct number = 5 in each dataset. The likelihood ratio test
and the AIC both overestimate in the last dataset, but provide a correct estimate of the
number of components otherwise as well. A possible explamét that the components
are sufficiently separated so that each of them is cleartygr@zable in a sample of the
size considered here. Therefore, a model with less than paoemts will omit at least
one of those components, resulting in a much lower log hicgd value compared to
the 5 component model. This makes the 5 components modéficzgm compared to
a model with a lesser number of components. On the other lsmck each of the
components is simulated from a von Mises-Fisher distramytit is very hard to fit a

model with 6 components and a significantly higher log-likebd value to the dataset.
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In order to succeed, we would need to fit two von Mises-Fisbemmonents to a subset of
the data representing one component. Since that subseinaated from a single von
Mises-Fisher distribution, this is unlikely to produce ggincrease in the value of the
log-likelihood function. The criteria never saw such a 6 poment model as significant
over the 5 component model, with the exception of the AIC &edikelihood ratio test

procedure in the last dataset.

Case 3: A 4 component mixture orS!

Dataset 3 is a mixture model with 4 components in only 2 dinmmsWe created 10
datasets, each with a sample size of 400. The reason wecattéatather than 5 datasets
is that an earlier analysis of a similar model had not beewrlosive enough based on

only 5 different datasets. The true parameters of the maddband in Table 4.3. The
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Figure 4.2:The density of the von Mises mixture distribution from whieghdataset of

case 3 were created.



Table 4.3:The true parameters used in case 3.

Table 4.4:The number of components estimated in case 3.

1)
2)
3)

4)

o~ O

10
20
10

.35

.35
.10
.20

Dataset Number;1 2 3 4 5 6 7 9 10
AIC: 5 55 6 4 4 4 4 4
BIC: 4 4 4 2 2 4 3 2 3
ICL-BIC: 4 2 4 2 2 2 2 2 2
LR Test 5%: 5 5 4 3 3 4 4 3 4
LR Test T%: 5 4 4 2 2 4 4 3 4
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density of the mixture is shown in Figure 4.2. We can see tmafitst component is
clearly separated from the other three components. These dther components are
not very well separated, but they are still clearly distispable.

The AIC is able to correctly estimate the number of companient= 4, for 6 out
of the 10 datasets. In the other instances it overestimagasumber of components, in
the case of tha'" even by two components.

The BIC on the other hand shows a tendency to underestimateuthber of com-
ponents. Only in 4 out of the 10 datasets is it able to coyexdtimaten = 4. For 3
dataset it even settles for 2 components, not being ablestmgiuish components 2,3
and 4. In the other 3 cases it picked a model with 3 componketsiuse it was not able
to clearly distinguish the last 3 components as well.

As the ICL-BIC has an ever greater penalty term, the underastmof m is is even
more severe. With the exception of two datasets, the ICL-Bl@oisable to see that
there are 4 rather than just 2 components.

The results for the likelihood ratio test are mixed. For bttt significance level of
5% and 1%, we see instances whene is overestimated and instances where it is un-
derestimated. The likelihood ratio procedure introducedlgorithm 4.4.13 performs
better here when using the lower significance level%f For both thes% and thel%
significance level the likelihood ratio test estimatesorrectly for 5 of the 10 datasets.
But the underestimation for datasets 4 and 5 is again sevemlwasignificant 2 com-
ponents are identified. Overall, the AIC and the likelihoatia test ath% seemed to

perform best here.
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Case 4: A 6 component mixture orS?

Case 4 is a mixture with 6 components in 4 dimension. We creatgatasets, each
with a sample size of 300. The true parameters are found ifethiand side of Table
4.4, while the right hand side table gives an overview of ttéggrmance of the criteria

considered. Since the distribution is on the 4 dimensionglgphere, it is hard to deter-

Table 4.5:0Overview of case 4 of the simulation study.

The true parameters of the model The number of components

a B P Kk p Dataset Number;1 2 3 4 5
1) 2 2 2 6 .25 AIC: 7 5 5 5 5
2)|4 2 2 10 .15 BIC: 5 55 5 5
3)|5 1 1 20 .10 ICL-BIC: 5 55 5 5
413 3 1 10 .20 LR Test%: 8 5 5 5 5
56 3 1 5 .20 LR Test %: 7 5 5 5 5
6)|2 05 2 20 .01

mine to what degree the components are separated. Howeoking at the parameter
values, it appears that components 4 and 5 might not be glegphrated. Because their
second spherical coordinate is closertdhe difference in the first spherical coordinate
does not mean the points are far apart. In cartesian cooegitizeir mean direction are
given by(0.1140, —0.0332, —0.8330, 0.5403) and(—0.1176,0.0168, —0.8330, 0.5403),
respectively. The other components are very different ileast one coordinate. We
confirmed this idea by looking at 3 dimensional scatter ppothe simulated datasets.
Looking at the results of the estimation of by the various criteria, we see that,

expect for the first dataset, all criteria considered iretity estimaten = 5. In the
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first dataset the AIC and the likelihood ratio tests cleavgrestimaten, while the BIC
and the ICL-BIC still estimaten = 5. This is most likely due the fact that the criteria
were not able to separate components 4 and 5. The 3 dimehsiatéer plots that
we considered also indicated that the choices of the coratemt parameters; = 5
andx = 10, respectively lead to fairly far spread out components. idaltally, as me

mentioned above, the mean directions are very similar.

Case 5: A 10 component mixture orf?

Case 5 was motivated by the study of the spectral measure dbghesturns of the
three stocks IBM, Intel and Apple, see Section 5.1. The pat@nvalues in the right
table of Table 4.6 are the parameter of a 10 component vorsMigiher mixture model
fitted to the spectral measure of the distribution of theydkiy returns of the three
stocks. See Section 5.1 for details. The right table givessarview of the performance
of the criteria considered. Notice that components 1, 4,,@® @nd 10 have a very
high concentration parameter Those components are very closely concentrated about
their mean direction. Those mean directions turn out to leeatkis directions. For
example, the mean direction of the first component in camesopordinate ig;; =
(0.9999, 0.0072, 0.0098), which is almost the direction of the x-axis pointing in go&
direction. Similarly, components 4, 6, 7, 9 and 10 have magesctibons that closely
follow one of the axis. Compared to those 6 components, thaireng components
2,3,5 and 8 are fairly spread out. We present a contourplotwbim Figure 4.3. We
see that while the 6 highly concentrated components arewellyseparated from each
other, components 1 and 2 and components 5 and 6 are not véryeparated. The
components 3 and 8 appear isolated, but they are so far spreathat points from

those components might get mixed with points from other camepts.



The true parameters of the model

Table 4.6:0verview of case 5 of the simulation study.

The number of components

144

o B K P
1) | 0.01 1.56 329.8 0.09
2) 017 1.47 39.7 0.05
3) 1078 0.32 13.2 0.10
4) |1.31 001 5754 0.09
5) [1.35 1.45 20.4 0.09
6) |1.55 1.54 4915 0.09
7) 1320 1.61 1885 0.10
8) |3.87 229 38 0.9
9) |4.07 3.09 477.3 0.09
10) | 4.67 1.62 85.7 0.11

Dataset Numberfl 2 3 4 5
AIC: 11 10 10 11 11
BIC: 10 10 10 10 10
ICL-BIC: 9 10 10 8 9
LR Testb 11 10 10 11 10
LR Testa 10 10 10 11 10
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Figure 4.3:A contour plot of the mixture discussed in case 5.

Overall, the criteria do a good job of estimating The AIC overestimates: in
three out of the five datasets by one component. The BIC is ftaverd gets the correct
estimaten = 10 for every dataset. The ICL-BIC seems to be penalizing too hasestu
therefore underestimates in exactly those datasets where the AIC is overestimating
it. For the4'" dataset it even claims that a 8 component mixture is the bedemThe
likelihood ratio tests perform better than AIC, but they adserestimaten. Comparing
the model withm = 10 with the model withm = 11, the p value of the likelihood
ratio test statistic undefll, for the first dataset was58%. Therefore, ab%, the 11"

component is significant, while at; it is not.

Conclusions

None of the criteria that we considered performed flawless.féMnd that there is no

single criterion that outperforms the others and shouldefloee given clear preference.
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The BIC showed the most consistent performance, especialtpedataset o§? and
in higher dimensions. It showed a tendency to underestithateumber of components
in S, as is made clear in case 3. Since ICL-BIC has a greater pehaltytie BIC, it's
tendency to underestimate the number of components wasnesenpronounced. As
for the BIC, the performance improved with the growing numbethe dimension in
the dataset. While the AIC performed as well as the otherr@ite case 3, it showed a
tendency to overestimate the number of components in hadjhnsions. It was almost
always the criterion that selected the largest number opamants in each mixture. The
algorithm 4.4.13, based on the likelihood ratio test hadrlyfeonsistent performance in
case 3. However it showed a tendency to overestimate theetushbomponents in the
higher dimensional cases. We conclude that the likelih@bid test procedure should
rather be used with the significance level16f, rather than the customafyo. This
helps reduce the danger of overestimating the complexithe@imodel. Based on our
observations, it seems reasonable to use the likelihoaultestt procedure for datasets
in S*. For the datasets of higher dimension we recommend comnsipére BIC as the
preferred choice for determining the number of components.

In the next chapter we describe the results of fitting mixim@els to various fi-
nancial datasets. We see a much greater disagreement akooptimal number of
components in the model indicated by the various criterisseBaon the results of our
empirical study, we mostly consulted the BIC and the likebtioatio test procedure
with 1% significance to decide on the complexity of the model. Howewe also con-

sidered other factors and aspect of the various models daieag in the next chapter.



Chapter 5

Analysis of Datasets

In this chapter we present the results of modelling the splegteasure of several dif-
ferent financial time series with finite von Mises-Fisher taie models. In each case,
we first calculated the log returns of each of the time seflé® log returns of a time

seriesXy, ..., X,, are defines as

We obtained a non-parametrical estimate of the spectrasuneaf the log returns by
means of the ranks method, introduced in Section 2.2.4. Reoal (2.50), that an

observation is chosen by the ranks method, if and only if
Rch > 1,

where R, ;. is the norm offj andr; = (rj(»i),z' = 1,...,d) is the vector of the ranks

of the observatioij(.l), ey X](d)). The non-parametric estimate of the spectral measure
consists of the angular compone@ts; of the pointsrﬁj chosen by the ranks method. We
determined the numbdr, denoting the number of upper order statistics, with the hel
of the S&rica plot, explained in Section 2.2.3. We refer to observatibasget selected

by the ranks method as extreme observations. These areshesations that we use in
the estimation of the parameters of a parametric model tosgiectral measure. In this
chapter, we discuss the results of fitting a von Mises-Fistigture model to the points
0, € S™'. The number of components was determined with the help oftiteria

introduced in Section 4.4.
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5.1 Log Returns of IBM, Intel and Apple

The dataset under consideration consists of the dailyradqsiices of the stocks of IBM,
Intel and Apple between 1/1/1986 and 10/6/2000. In our amalye work with the time
series of the log returns of these prices. The resultingséatontained 3612 daily log

returns for each of the three stocks.

5.1.1 Preliminary Analysis of the Spectral Measure

We started our analysis by estimating the tail indexes ofdgeeturns with the Hill es-

timator and the QQ-estimator. We obtained the estimatesepted in Table 5.1. These

Table 5.1:The estimates of the tail indexes of the log returns of theetstocks consid-

ered in this section.
IBM: RightTail 3.5 INTEL RightTaill 4.0 APPLE RightTail 3.2

Left Tail 2.8 Left Tail 3.0 Left Tail 3.0

values are fairly typical for financial data. It is usuallysased that the tail indexes
for financial time series are between 2 and 4. Based on our &stsmwe created and
studied Sarica plots. We determined that= 80 is an acceptable choice for the purpose
of estimating the spectral measure. We used the ranks mefitiothis value and found
that 424 observations were chosen for the estimation of gketsal measure. Figure
5.1 shows a scatter plot of the points that are selected byatiles method. The plot
shows the directional arguments of the selected pointst i$heach point in Figure 5.1
gives the angular paft; ». 6, ) € [0,27) x [0, 7| of the spherical coordinates of a point
(Rjk, (055, 05%)) with R, . > 1. This can be seen as a non-parametrical estimate of the

spectral measure. For 257 of the 424 points selected, thespamding log returns all
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Figure 5.1: Estimate of the spectral measure of the joint distributiérihe daily log

returns of the stock prices of IBM, Intel and Apple. See tkefte more details.

had the same sign. This is a first indicator that there is digrere among the extreme
observations. A significant number of observations thatateeme, consist of returns
that are either all positive or all negative. We see an inghoaof this in Figure 5.1 by
the points in the area@,0) € [0,7/2] x [0,7/2] and(¢,0) € [m,37/2] x [7/2,7].
The number in those areas is significantly larger than thebeurof points in the other
areas. The points if0, 7/2] x [0, /2] represent observations where all three returns
were positive, while the points ifrr, 37/2] x [r/2, 7] represent the observations with
negative returns.

We note that the a significant portion of the points is closerte of the following
points: (¢1,01) = (0,7/2), (¢2,02) = (x/2,7/2), (¢3,03) = (m,7/2), (¢a,04) =
(3w/2,7/2). We also see that two more clusters are grouped aréyne- 0 and

0¢ = m. These six coordinates represent the axes of the cartestadicate system.
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(¢1,61) = (0,7/2) represents the poirt, 0,0). Points that lie close to that point are
observations for which the log-return of IBM is extreme andifree, whereas the cor-
responding returns of Intel and Apple are comparatively enagk. Similarly, points
close to(¢,, 6,) = (7/2,7/2), which corresponds to the poifa, 1,0), correspond to
observations for which the return of Intel is extreme andtp@s while the returns for
IBM and Apple are moderate. The interpretation of the othdudters is similar.

It also appears that a significant portion of the points acatkd near one of the
planes{(¢,0) : ¢ € {0,7}}, {(¢,0) : ¢ € {r/2,3n/2}} andf = =/2. These are
the planes that are spanned by either two of the axes of thes@@ar coordinate system.
The points close to those planes correspond to observattbese two of the three
stocks have a extreme return, while the third one only has @enate one. The plane
represented by = =/2 is referred to as the "IBM-Intel” plane, since it contains the
observations for which only the returns of IBM and Intel wexgreme. Similarly, the
plane{(¢,0) : ¢ € {0,7}} is referred to as the "IBM-Apple” plane and the plane
{(¢,0) : ¢ € {r/2,3w/2}} is referred to as the Intel-Apple plane in Figure 5.1.

We created a program in an attempt to separate points close axis and points
close one of the planes mentioned above. First, obsergaitiat are closer to one of the
axes than a certain tolerance are filtered out. From amongthaining points we then
filter out the ones that are closer to one of the planes thacamddolerance. This gives
us a preliminary picture of the structure of the dependeNcechoice of the tolerances
can be the only correct one. If they are chosen too small, motgh points will be
deemed as close to an axis or a plane. Clusters around the axés still be visible
after removing the points selected as being close to the dikes the other hand, the
tolerance is too large, points that are not really close texas will be included in that

category. We tried several different values and found thatas reasonable to consider
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a point as close to an axis, if, in cartesian coordinatespbhes coordinate had a value
of greater than 0.99. We considered a point that was not ¢toaa axis, as close to a
plane, if, in cartesian coordinates, the absolute valuaefas his three components was
not larger than 0.1.

We found that 216 observations were close to an axis and MdiBawdhl points were
close to a plane. 90 points were of full dimension. Figure $h@ws the separated

dataset.
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Figure 5.2:Top left: Scatter plot of the observations close to an axog. fight: Scatter
plot of the observations close to a plane. Bottom left: $catiot of the points that are
neither close to a plane nor close to a plane. Bottom righte Tl dataset representing

the spectral measure of the log returns of IBM, Intel and Apphis is the same plot as

Figure 5.1.

Recall from Section 2.2 that the components of a random vex®rsaid to be
asymptotically independent, if the corresponding spéateasure concentrates on the

axes. For such a distribution, extreme observations doaygpén in more than one co-
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ordinate at the time. For the dataset of this section we niane half of the points close
to an axis, but we see that there is also a significant numbgoiofs far away from an
axis. These points correspond to observations where ditlteor all three of the log
returns are extreme. From this preliminary analysis we B&emg evidence that the log
returns of IBM, Intel and Apple are not asymptotically indegent.

Extreme changes in stock prices, positive and negativeysarally caused by some
type of shock in the economy. Examples of these shocks ares akaut the company,
the industry that the company operates in, or the economlyeotU'S. Some shocks af-
fect a large number of stocks at the same time, while oth&stadnly certain stocks at
a time. An increase or decrease in the federal interest ratewo numbers on the US
economy would however affect most stocks at the same timetai@arews might be
related to a certain industry, thus only affecting compsimethat industry. 1BM, Intel
and Apple are companies that operate in similar, but notaheesndustry. This helps to
explain some of the structure that we see in the spectralunea$the three stocks. As
explained before, points that are close to an axis refer semfations where only one
of the three stocks experienced a extreme return. Thesevalis@s could have been
caused by events or news only concerning that particulapeosn Other observations
reflect shocks that affected more than one of those compatiésere are no shocks
that affect more than one company at the same time, they viamiltsymptotically in-
dependent. The corresponding spectral measure would lserivated on the axes. We
see that this does not seem to be the case.

In the following, we will make our claim that the three stoeke not asymptotically
independent, more precise by fitting a von Mises Fisher mextnodel to the points
selected by the ranks method. If the log returns of IBM, Intedl &pple would be

asymptotically independent, a model with 6 components dpubvide an adequate fit.
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The 6 components would have mean directions that, expréssagtesian coordinates,
approximately equa(l,0,0), (-1,0,0), (0,1,0), (0,—1,0), (0,0,1) and (0,0, —1).
They would also have fairly large concentration parametgush a mixture distribution
would be an approximation to a distribution Bhthat concentrates all its mass on the
axes. Since our preliminary analysis, based on Figuresrid15&2, indicates that is
not the case, we are not surprised that we need a more complgel o describe the

spectral measure.

5.1.2 A von Mises-Fisher Model of the Spectral Measure

Based on the preliminary analysis, we decided that a 6 conmponigture model was
the simplest model that we fitted to the data. We then conditoeonsider more com-
plicated models. For each given number of components werdited the (quasi) max-
imum likelihood estimates. We checked that the estimateaadalescribe spurious
components. We compared the models of increasing complesing the criteria ex-
plained in Section 4.4. We present an overview of the valfifseccriteria in Table 5.2.
Each entry represents the value of the correspondingiarfarthe best model with the
corresponding number of components. The highlighted galudicate the estimate of
m by each criterion. We see that the criteria indicate thantimaber of components of
the model;n, is between 10 and 13. The ICL-BIC gives the smallest estimate, 10.
The values of the BIC indicate that equals 11. Note however, that value of the BIC
for the 11 component model, 887.09, is only slightly lowerththe corresponding value
for the 10 component model, reported as 888.11. The BIC therettates that the 11
component model is just barely more significant than the X@pmment model. The
likelihood ratio test procedure and the AIC both indicatat tve need 13 components.

In addition, we see that the value of the AIC for 13 compongnjisst barely lower than
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Table 5.2:0verview of the model selection criteria.
# of components AIC BIC ICL-BIC P value LR test

6 1140.5 1233.6 1282.5 -

7 966.22 1075.6 1168.4 0.28%
8 799.73 925.27 1036.5 0.27%
9 778.24 919.98 1056.8 0.043%
10 730.17 888.11 1023.65 0.084%

11 711.95 887.09 1041.85 0.063%
12 701.49 891.83 1088.8 0.153%
13 684.09 890.63 1074.85 0.107%
14 684.45 907.18 1089.8 6.3689%

the one for 14 components. At the same time, the value for h@poaents is signifi-
cantly higher. Similarly, the likelihood ratio test compay the models with 12 and 13
components clearly rejects the null hypothesis that dataahaixture distribution with
only 12 components. The corresponding p-value is about OTI% p-value of the test
comparing the models with 13 and 14 components is also justeathe 5% threshold.
This indicates, that there is some evidence there may bersgenthan 13 components.
The results are in line with what we would expect from our emogl study in Sec-
tion 4.4.4. We had seen that the AIC and the likelihood ragi tend to return larger
estimates for the number of components. However, the diffex between the estimates
was less significant compared with what we observe here.iF dise to the fact that, in
the empirical study, the data actually had a von Mises-Fistigture distribution. The
dataset under consideration here is real life data and waot@xpect that its distribu-

tion is a von Mises-Fisher mixture distribution.
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In the empirical study we had concluded that the BIC and thaihikod ratio test
procedure with a significance level of 1% are the most cogrsistriteria. For the IBM-
Intel-Apple dataset they pick two different models, the Bltbases the one with 11
components and the likelihood ratio test the one with 13 aomepts. We noted in the
empirical study, that if the dimension is higher than 2, tkelihood ratio test procedure
showed a tendency to overestimate the number of compon&h&sBIC on the other
hand, showed a very consistent performance. We are thergfdined to rely on the
BIC rather than on the likelihood ratio test. Before we make texision, we want
to compare the two selected models. The parameter estimbhtase model with 11
components is given in Table 5.3. The mean direction is ginespherical coordinates
(¢p,0) € [0,27) x [0, 7]. The column “Points” indicates how may points belong to each
component. The first six components of the model have meaugtatins that are very
close to the six axes points on the unit sphere. Each of ttespanents also has a large
concentration parameter. These six components descebaukters of points around
the axes, that we detected in the preliminary analysis. €heaming five components
describe the remainder of the data. With the exception ofpmomant 11, they have a
much smaller concentration parametethan the first six components. A closer look
at the components reveals that component 7 is fairly closergponent 3, component
9 is close to component 5 and that component 11 is close to @oemp 6. Essentially,
these components are adding more structure to the modelfiithg clusters around the
axes. The structure of those clusters seems to be too catgalito be described by a
single von Mises-Fisher component. Component 10 modelsaimésthat represent the
observations where all three log returns are positive. Cor@apb8 models the points
representing the observations where all three log retumeegative. It is the presence

of these two components in both the models with 11 and 13 caemis, that allow us
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Table 5.3:Parameter estimates for the model with 11 components. Sefetebetails.

Component Mean Direction

1 (1.3062,
2 (4.6713,
3 (0.0071,
4 (4.0730,
5 (1.5521,
6 (3.1486,
7 (0.1673,
8 (3.9103,
9 (1.3506,
10 (0.7845,

11 (3.2628,

0.0048)
1.6188)
1.5610)
3.0861)
1.5401)
1.5727)
1.4691)
2.3116)
1.4467)
0.3195)
1.6766)

K
575.51
85.80
329.49
478.07
492.37
699.51
39.91
3.82
20.32
13.21

144.40

weight Points

0.08529
0.10996
0.09430
0.08712
0.08627
0.05306
0.05568
0.18647
0.08988
0.09741

0.05453

38
50
43
38
39
24
21
73
35
40
23
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to state that, based on our model, the log returns of the staek not asymptotically
independent.

Recall from the definition of the CLC and ICL-BIC criterion, thafiaite mixture
model allows us to calculate the posterior probability ta@articular point belongs to
a particular component. The posterior probabilities avemgiby (4.84). It turns out
that the points in this dataset can be clearly classifiedahis We found that for every
point, there is one component for which the posterior prditaks greater than 0.5. We
use these probabilities to classify the points accordirtheccorresponding component.
The last column in Table 5.3 shows how many points can be ededahis way with
each component. Figure 5.3 shows a scatter plot of the pgirdaped by their respec-
tive component. All points belonging to the same componenpéctured in the same
color and style. The number next to the group gives the nurobtre corresponding
component in Table 5.3 We now turn our attention to the moelelcsed by the likeli-
hood ratio tests and the AIC. The parameter estimates of therbponents are given in
Table 5.4. The mean direction is given in spherical cootdsia, 0) < [0, 27) x [0, 7].
The column “Points” indicates how may points belong to eamhgonent. “Difference”
lists how many points each component has lost or gained cadpathe 11 component
model. The 13 component model is essentially an extendesioveof the 11 compo-
nent model. The first 11 components are very similar to thepmrants of the smaller
model. The most significant change of the parameter estinsaturs in th&!” compo-
nent. We also note that this component now only has 30 poititbuted to it. It used
to have 73 points associated with it in the model with 11 congmbs. A scatter plot,
similar to Figure 5.3, reveals that the points that used tads®ciated with component
8 are now associated with 3 different components in the 13om@nt model. A more

detailed analysis revealed the following passing of pdaettsveen components:
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Table 5.4:Parameter estimates for the model with 13 components. Sefetebetails.

Component

1
2

A W

© 00 ~N o O

11

12
13

Mean Direction

(1.2975,
(4.6915,
(0.0100,
(4.0438,
(1.5519,
(3.1452,
(0.1508,
(4.2573,
(1.3637,
(0.7855,
(3.2644,
(3.4617,
(4.57186,

0.0048)
1.5879)
1.5591)
3.0880)
1.5393)
1.5715)
1.4963)
2.8729)
1.4546)
0.3120)
1.6313)
1.8748)
1.7170)

k  weight

S577.7734
349.9370
339.9207
530.8783
508.6555
700.6945
27.4700
14.2850
19.4902
13.1067
391.0939
11.8493

19.6770

0.0851
0.0642
0.0932
0.0815
0.0853
0.0513
0.0606
0.0763
0.0920
0.0979
0.0379
0.0932

0.0816

38
32
43
37
39
23
22
30
36
40
16
37
31

Points Difference

-18

+37

+31
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Figure 5.3:Classification of the points according to the posterior proitities (4.84)

using the 11 components of the mixture model with parametees ¢n Table 5.3.

-The 12" component contains 29 points that were in 8fecomponent and 8 points
that were in the 1* component in the smaller model.

-The 13" component has 13 points that were in & component and 18 points that
were in the2"? component in the smaller model.

-The 11** component contains one point that was in éHecomponent, thg** and9*"
components now each contain a point that was irsth@eomponent, which in turn ac-

quires a point from tha** component.

The split of component thé* by adding two components in its neighborhood is
deemed significant by the AIC and the likelihood ratio testt ot by the BIC. To
answer the question of whether 11 or 13 components are néededurately model the

data, we need to decide whether #ffecomponent of the smaller model is sufficient to
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Figure 5.4:Classification of the points using the 13 components of théumixnodel

with parameters given in Table 5.4

describe the dependence in the area representing extregagveereturns of all three
stocks. The criteria and our more careful analysis do natatd a clear and objective
answer. We may note that in the area representing simuligreedreme positive returns
of all three stocks, one component was sufficient. This casele® as a motivation to
conclude that an 11 component mixture model with the pararsaefiven in Table 5.3

is an adequate description of the spectral measure. Howteeadifferent clusters have
different structures. This may result in a more complex nhéateone cluster than for

another one, thus favoring the model with 13 components.

We want to stress that despite having a different number pfpoments, the two

model are fairly similar in their description of the spettreeasure. Both models ac-
knowledge the presence of clusters around the six axes. Badelshacknowledge the

presence of dependence among extreme negative and exisitiegreturns. They dif-
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fer in how to describe the dependence between extreme wegetiirns. In our opinion
both models offer a valid and insightful option to describe tail dependence among
the log returns among the three stocks. Both models coulddmtosdevelop a holistic
model of the distribution of the three stocks that could faraple be used in assessing

the risk of a portfolio of these stocks.

5.2 Log Returns of IBM and Intel

The dataset used in this analysis is the same as in the psesaation. However, we con-
centrate on the daily log returns of the two stocks of IBM aneéllonly, thus ignoring
the log returns of Apple.

Before we describe the results of our analysis of this dath thig help of our von
Mises-Fisher mixture model, we want to consider the folluywijuestion: How does the
spectral measure of the joint distribution of IBM, Intel angdpe compare to the one of
the distribution of IBM and Intel? Is there an easy way to abtaconsistent estimate
of the spectral measure of the returns of IBM and Intel fromabreesponding estimate
of the spectral measure of IBM, Intel and Apple?

Recall that we had chosen Apple to be the third coordinatedrpthvious section.
We could therefore just use the first angular compowentof the points(R; i, (¢; .
8;x)), selected by the ranks method, as an estimate for the spheetaaure of IBM and
Intel. However, in doing so, we would keep the points thategpond to observations
that were chosen only because of the extreme return of Afjjle.same observations
would not be chosen when we’re using the ranks method on theitwensional dataset
of the log returns of IBM and Intel. We would hence include toany observations
and obtain a biased estimate of the spectral measure. Ordgtbyating the spectral

measure using the ranks method (2.50) or the direct app(@a&B) from the dataset of
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IBM and Intel can we consistently estimate the spectral measu

We used the tail index estimates listed in Table 5.1 in that@e of Sérica plots.
These plots indicated that= 80 is an acceptable choice and the ranks method selected
302 points. Recall that for the three dimensional datasdtanast section we had also
usedk = 80, but obtained 424 points. This indicates that 122 pointsevesiected
only because of the extreme return of Apple in these obsensat These observations
naturally did not get selected by the ranks method run oroifpedturns of IBM and Intel

only. We present a scatter plot of the angular gayt € [0, 27) of the polar coordinates

0.7F

Figure 5.5:A scatter plot of the points; ;, j = 1, ..., 302 selected by the ranks method

and a non parametric estimate of the spectral measure of IBMiatel.

of the points(R;x, ¢;x);j = 1,...,302 with R;;, > 1 in Figure 5.5. We add a non -
parametrical estimate of the corresponding density.
It is not a surprise to see 4 significant clusters, concesdrat the coordinates =

0(= 2m),n/2,7 and3r7/2. Points in these clusters correspond to observations where
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only one of the two stocks has a extreme return. We also nibtadehere is a significant
number of points withp;, € (0,7) or ¢, € (m,37/2). We will refer to the area
(0,7/2) as the first quadrant and to the afea3r/2) as the third quadrant. Points in
these areas correspond to observations where both thasetfulBM and Intel’s stocks
were large. This shows that there is a good chance that extpasitive returns as
well as extreme negative returns of IBM and Intel occur at #ti@estime. This is a
clear indication that the returns of the two stocks are ngingotically independent.
Furthermore, we see that there are basically no pointsgvithe (7/2,7) and¢;; €
(3m/2,2m). These areas are referred as the second and fourth quacspectively.
The fact that we see no points in these quadrants means thamexnegative returns
of IBM and extreme positive returns of Intel (and vice-verda)not occur at the same
time.

Similar to our analysis in the previous section, we fitted gueace of von Mises
mixture models with increasing complexity to the pointesetd by the ranks method.
An overview over the value of the criteria estimating therappiate number of compo-
nents is given in Table 5.5. Each entry represents the vdliie @orresponding criteria
for the best model with the corresponding number of comptsnéiighlighted are the
estimates ofn by each criterion. As usual, the ICL-BIC chooses the smallestber
of components. In this case it picks a 5 component model. Triwatel captures the
4 clusters close to one of the axes as well the structurel®igibthe third quadrant.
However, the non-parametric density plot in Figure 5.5¢atks that a sixth compo-
nent modelling the data in the first quadrant is needed. TheB&.showed a serious
tendency to underestimate the number of components of a veesihixture model of
similar sample size in the empirical study. We thereforeniis the suggestion of the

ICL-BIC and concentrate on the other criteria. The BIC sugga€somponent mix-
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Table 5.5:0verview of the model selection criteria.
# of components AIC BIC ICL-BIC P value LR test

2 1073.6 1092.1 1194.8 -

3 838.68 868.37 929.96 0.38%
4 756.85 797.67 805.33 0.14%
5 669.94 721.88 783.10 0.14%

6 611.50 674.58 801.5 0.10%
7 606.19 680.40 850.59 0.2%%
8 602.26 687.6 894.81 1.55%
9 603.14 699.61 935.60 6.37%

ture model whose parameter estimates are presented inSl&éblEhe mean direction is
given in polar coordinates € [0, 27). The column “Points” indicates how may points

are associated with each component. The model includes parzents close to an axis

Table 5.6:Parameter estimates for the model with 6 components. Se®teaidtails.

Component Mean Direction r weight Points
1 0.0203 189.0630 0.1900 59
2 1.5263 194.1920 0.1974 63
3 3.1922 217.5353 0.1548 51
4 4.6760 216.1783 0.1527 49
5 0.8102 44682 0.1188 31
6 3.8834 3.7299 0.1863 49

and one component for the points representing the obsengtere both log returns

are positive and negative, respectively. It thus includesdomponent that we were



165

missing in the 5 component model.

The likelihood ratio test procedure with the 1% significalese! indicates a 7 com-
ponent model whose parameters are given in Table 5.7. The diesction is given in
polar coordinate® € [0,27). The column “Points” indicates how may points belong
to each component. The column “Difference” lists how maninfgeach component

has lost or gained compared to the 6 component model. Compzatkd 6 component

Table 5.7:Parameter estimates for the model with 7 components. Se®tealdtails.

Component Mean Direction x weight Points Difference
1 0.0193 690.9928 0.1155 44 -15

2 1.5370 281.6753 0.1792 58 -5

3 3.1922 217.5969 0.1548 51 -

4 4.6760 215.9547 0.1528 49 -

5 1.1129 8.2541 0.1037 27 -4

6 3.8829 3.7424 0.1863 49 -

7 0.0755 39.7497 0.1076 24 +24

model, a new component, close to component 1, has been atdiledhosterior prob-
abilities indicate that 24 points are attributed to that reamponent. Most of those
points belonged to component 1 before. This models imphiasthe structure of the
points with values ob; ; close to)(= 27) should not be modelled by a single von Mises
distribution. Instead, a second component is needed.
The AIC and the likelihood ratio test procedure with a 5% #igance level indi-

cate a model with 8 components. Table 5.8 lists the correlipgrparameter estimates.
While the model with 7 components added complexity to the rtiodeof the depen-

dence structure of extreme positive returns, the model &itomponents adds to the
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Table 5.8:Parameter estimates for the model with 8 components. Se®taidtails.

Component Mean Direction r weight Points Difference
1 0.0193 690.9928 0.1155 44 -

2 1.5371 283.0930 0.1790 58 -

3 3.1871 250.4561 0.1448 49 -2

4 4.6761 691.1801 0.0900 35 -14

5 1.1151 8.1819 0.1045 27 -

6 3.6220 6.8114 0.1488 38 -11

7 0.0753 39.7523 0.1077 24 -

8 4.6417 32.6825 0.1097 27 +27

complexity of the dependence for extreme negative retutredds a component very
close to component 4. It contains 27 points, most of whichedmm components 4
and 6. It has thus a similar role and interpretation as compon does.

As was the case for the models considered in the previoumsscthere does not
appear to be a single correct model. All the three models @ith or 8 components
are valid models for the spectral measure of the two log metof the two stocks. We
recall from the empirical study in Section 4.4.4, that fordviate data the BIC has a
tendency to underestimate the number of components. Ontliee band, the study
indicated that the AIC and the likelihood ratio test with a Significance level tend to
overestimate the number of components. We are therefotdedeiavor the proposition
of the likelihood ratio test with a 1% significance level thanhodel with 7 components
accurately describes the spectral measure of the log seetdiliBM and Intel.

We can use the model of the spectral measure to show that thes gelected by

the ranks method fall into two categories. The first categmmgtains the points in
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components 1 through 4 in the model. If we work with a modet tietains 7 or 8

components, the points in components 7 and 8 also fall ireditht category. These
points correspond to observations where only one of the taaks showed an extreme
return. If those were all the points selected by the rank$atktwe would have strong
evidence to conclude that extreme returns of IBM and Intelat@ocur at the same time
and that the stocks are therefore asymptotically independeis the presence of the
points in the second category that shows that there is intheledependence between
the two stocks. These are the points in components 5 and 6seTtia® components
together contain 76 out of the total of 302 points, that i$2&. This means that about
one out of four extreme observations of the vector of thernstwf IBM and Intel is

caused by simultaneous extreme returns of the two stocksthEanajority of the 302

observations considered extreme, only one of the stockaihatreme return. Never-
theless, the number of extreme observations were bothstoatk a extreme return is
significant. All the three mixture models analyzed in thiste® recognize these points
by attributing two components to them. They therefore tejlee notion that the two

stocks are asymptotically independent.

5.3 Log Returns of BMW and Siemens

This dataset is available with the EVIS package for the SPEbf8vare. The software
package is available at http://www.math.ethz-amcneil/software.html. It consists of
the daily closing prices for the stocks of BMW and Siemens fdamuary 1973 to July
1996. The sample size of the dataset after calculating theeloirns is 6146.

As for the previous dataset, we started our analysis by asitignthe tail indexes
of the right and left tail of the marginal distributions. Thstimates of the tail index

are similar in size to the estimates obtained for the datasthie stock prices of IBM,
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Intel and Apple. Based on these estimates, given Table 5.@reduced SHrica plots

Table 5.9:The estimates of the tail indexes of the log returns of thiy déasing prices

of BMW and Siemens.
BMW: RightTail: 3.5 Siemens: RightTail: 4.6

Left Tail: 3.4 Left Tail: 3.2

to decide on an optimal value &f We concluded that = 65 was the best choice. The
ranks method selected 225 observations in its estimatitmeadpectral measure. A plot
of the selected points in polar coordinates together witbraparametrical estimate of

the corresponding density is given in Figure 5.6. Similathi IBM-Intel case, we see

Figure 5.6:A scatter plot of the points; ;, j = 1, ..., 225 selected by the ranks method

and a non parametric estimate of the spectral measure of BMi\S@emens.

that most of the points; , are concentrated in the first and third quadrant. Of the 225

points selected, 100 points were located in the first quadrah 104 more were located
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in the third quadrant. Only 21 points were found in the secand fourth quadrant,
mostly close to one of the axis points= 0, ¢ = 7/2, ¢ = w and¢ = 37/2. We
also see that the points seem to form clusters around thgaixits. The clusters seem
to be less pronounced compared with the IBM-Intel case. Bramiindication that the
dependence between extreme positive returns of both stoeikdreme negative returns
of both stocks is stronger than in the case of IBM and Intel.

We proceeded to fit a von Mises-Fisher mixture model to thatpaelected by the
ranks method. The values of the criteria considered fomeding the correct number
of components are given in Table 5.10. Each entry represkatsalue of the corre-
sponding criteria for the best model with the correspondimgnber of components. We
highlighted the values indicating the optimal number of pements chosen by the cor-

responding criterion. Based on the non-parametrical estirofthe spectral measure

Table 5.10:0Overview of the model selection criteria.

# of components AIC BIC ICL-BIC P value LR test
2 734.2737 751.3542 768.9404 O

3 663.9369 691.2657 708.8292 0.1193

4 609.5200 647.0971 673.5731 0.0931

5 550.2912 598.1166648.2170 0.1032

6 530.6834 588.7571 671.6614 0.1259

7 525.7542 594.0762 688.8775 2.4840

8 526.5636 605.1339 708.430%1.4340

9 529.4050 618.2236 722.5192 8.5537

in Figure 5.6, we do not think that a model with less than 6 conemt will adequately

describe the spectral measure. However, we wanted to cathfisrimtuition. Therefore,
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we estimated the parameters of models with a smaller nunflEmaponents. The es-
timates for the number of components that we thus obtained wary similar to the
case of IBM-Intel. Again, the ICL-BIC gives the smallest estimalt indicates that 5
components are enough. The BIC and the likelihood ratio testealure with the 1%
significance level both estimate that 6 components are dedde estimate of the AIC
of the number of components is 7 and the likelihood ratiowgtst a significance level of
5% even returns an estimates of 8 components. Since, asomedtefore, the BIC and
the likelihood ratio test procedure at 1% are the criteridnwst most, we are inclined to
conclude that a mixture model with 6 components is the optaiaice. The parameter
estimates of the model with 6 components are given in Talile 3'he mean direction is
given in polar coordinateg, € [0, 27). The column “Points” indicates how may points

are associated with each component. As expected, therelaredmponents, numbered

Table 5.11:Parameter estimates for the model with 6 components. Se®tadtails.

Component Mean Directionx weight Points
1 0.0375 216.2548 0.1417 35
2 1.5404 693.8882 0.1264 31
3 3.2333 139.3197 0.1388 33
4 4.6104 125.9612 0.1179 29
5 0.8883 5.7989 0.2431 49
6 4.0226 9.2655 0.2321 48

1-4 in Table 5.11, whose mean directions are close to thepmkigs = 0, ¢ = 7/2,
¢ = mand¢ = 3w /2. Each of those components has a large concentration paamet
indicating that the component is very narrowly concenttaund the mean direction.

Component 5 models the dependence in the first quadrant vamipa@nent 6 models the
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dependence in the third quadrant. As mentioned before, tuehwith 6 components
is the smallest model that we are willing to accept afteryngiFigure 5.6. Similar to
the case of IBM and Intel, the more complicated models withd &coomponents, re-
spectively, add components close to one of the four compgemeadelling points close
to an axis. Since both the likelihood ratio test at 1% and the &b not consider the
additional components as significant, we decided to work e simpler model with
6 components.

As in the case of IBM and Intel, the model of the spectral mezaallows us to cat-
egorize the points selected by the ranks method. The poimtsmponents 1 through 4
represent observations where only one the two stocks equed a extreme return. We
see from Table 5.11 that 128 of the 225 points belong to oneoset components, while
97, or 43.1% of all points, belong to either component 5 or 6m&aber that for the
spectral measure of IBM and Intel, we concluded that onlyZbo6the extreme obser-
vations were due to simultaneous extreme returns of botkstd his indicates that the
dependence between extreme events seems to be stronger VaraBibll Siemens than
itis for IBM and Intel. The spectral measure of BMW and Siemearisss concentrated
around the axes than the one of IBM and Intel. It is to a larggrekeconcentrated in
the first and third quadrant. This indicates, that if we havestreme observation, in
the sense that it gets selected by the ranks method, thetargea probability that both

stocks are affected than in the case for IBM and Intel.
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5.4 Log Returns of Foreign Currencies

5.4.1 Preliminary Analysis

The dataset contains the daily exchange rates of five fomigencies to the US $ from
June 1973 to May 1987. The currencies are the British Pound {B&Lanadian Dollar
(CD), the German Mark (DM), the Swiss Franc (SF), and the Jegmiven (JY). The
time frame is well before the rates of the currencies repldnethe Euro were irrevo-
cably fixed. The resulting dataset containing the log retwithe exchange rate had
3508 observations for each currency. We expect to see eliffelependence structures
for different pairs of the currencies. The DM, SF and BP areenaies of European
countries. We can expect a fairly close dependence amongtilms of these curren-
cies, since a lot of the underlying factors driving the exderates will be the same for
all three currencies. On the other hand, the dependenceéetiie CD and the JY will
probably be much weaker. The two countries are on separatseots and therefore
the factors underlying the exchange rates of the two curerare fairly different. We
will analyze the tail dependence of the five exchange ratestinyying their spectral
measure. We also take a closer look at selected pairs of ther&ncies. The estima-
tion and the analysis of the spectral measure of all five exghaates turned out to be
very difficult because of what we refer to as the "curse of digienality”. The spectral
measure is a measure that livesSin Even in polar coordinates it is a measure with a 4
dimensional domain. Fitting a parametric model to a sedeadf points is a formidable
task. We discuss the problems that arose and present gossibtions for this problem.
As in the previous sections, we started by estimating thét@éxes of the marginal
distributions. As before we used the Hill estimator and tiig €stimator. The estimates

of the tail indexes of the log returns of the daily exchangesaf the five exchange
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rates are listed in Table 5.12. The values in brackets reptedternate estimates that

are also justifiable from both the Hill plots and the QQ estonalt is important to

BP:

DM:

SF:

Table 5.12:The estimates of the tail indexes.
Right Tail: 3.4 (3.5) CD: RightTail: 3.1(3.4)

Left Tail: 3.8 (4) Left Tail: 3.0 (3)

Right Tail: 4.5(4) JY: RightTail: 4.2 (4.5)

Left Tail: 3.5 (4) Left Tail:  3.75 (4)

Right Tail:  4.75 (5)

Left Tail: 3.4 (3.5)

point out, that no single estimate for a tail index can be ictered the only correct one.

Other estimates of the tail indexes could also be justifieskan the Hill plots that

we studied. This is of importance, because tHai&i plots depend on the estimates of

the tail indices. For the bivariate distributions consatkm the previous datasets this

is only a moderate problem. We only have to estimate fouedfit tail indices. A

different choice for one or two of these estimates resulisnily small changes of the

Starica plots. For the foreign currencies we found that the rangeoes$ible estimates

for each tail index is larger than for the tail indexes of thecks. Additionally, we

now have to estimate 10 different tail indexes. For the \&juesented in Table 5.12,

the Shrica plots indicate that = 35 or maybe everk = 40 are acceptable choices.

The ranks method selects 287 pointsk i= 35 is used and 318 points, if = 40 was

used. However, for the alternative values of the tail indexgven in the brackets in

Table 5.12, we found that &tica plots indicate that = 15 and maybet = 20 are
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acceptable values. For the following analysis we chose tmobservative and decided
to usek = 20. This way, we felt safe that we would not introduce a bias engktimate
of the spectral measure by using too many observations. Wehroaever, have omitted
numerous observations that could have been included. Asudt # the final choice of
k = 20, 170 observations were chosen by the ranks method. As hefenefer to these
observations as extreme observations.

We saw in the analysis of the bivariate stock data in the pts/sections, that most
points representing the spectral measure were either ifirtteor the third quadrant.
That is, for most observations chosen by the ranks methdiagreboth returns were
positive or both returns were negative. We observed somgtery similar for the

points representing the spectral measure of the five exehanes.

e 49 points correspond to observations where the returnd t¥@lexchange rates

are positive.

¢ 44 points correspond to observations where the returnd bé@lexchange rates

are negative.

e 20 points correspond to observations where the return o€ihés negative and

the return of the other 4 exchange rates is positive.

e 20 points correspond to observations where the return o€iheés positive and

the return of the other 4 exchange rates is negative.

The remaining 37 points were spread out over various of therd@8 possible "quad-

rants”, that is, combinations of positive and negative metwof the different exchange
rates. The fact that the majority of the points represenéndagions where the returns
of all currencies are extreme is a first indication that thetail dependence among the

exchange rates of the five currencies.
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In a next step, we tried to separate points who corresponxtteree returns of only
one, two, three or four of the exchange rates. We used the pessedure as in the
identification of points near an axis in the data of IBM, IntablaApple, see Section
5.1. We are aware that this procedure is fairly crude. Nbedgts, it gives us important
insights in the structure of the tail dependence of the dfieexchange rates. We call
the return of an exchange rate extreme, if the corresporatisgrvation was primarily
selected because of the return of that particular exchatgeThat is, if a point is near
an axis associated with positive returns of the Swiss Frarccall the corresponding
return of the Swiss Franc extreme. If the data point is nemaitis spanned by the Swiss
Franc and the British Pound axes, we call the correspondtngiseof the Swiss Franc
and the British Pound extreme.

We found that 72 of the 170 points correspond to an extremerretf only one

exchange rate. They can be categorized as follows:

e 28 of those 72 points are due to extreme returns in the CD,

17 points are due to extreme movements of the JY,

11 points are due to extreme returns of the SF,

8 points are due to extreme returns of the BP,

7 points are due to extreme returns of the DM.

We observed only 15 points where two of the five exchange hates an extreme return.
10 of those points come from the pair (DM, SF). The pair (BP, @bhtributes 2 points,
while the pairs (BP, CD), (BP, SF) and (CD, SF) each contributepoiré.

We found 26 points for which three of the five exchange rates ha extreme return.

13 of those observations come from the triple (BP, DM, SF). $eolmtions come from
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the triple (DM, JY, SF). 2 points come from the two triples (BB, JY) and (CD, DM,
SF) respectively. Finally, the triples (BP, JY, SF) and (CD, SF) contribute on point
each.

41 points can be attributed to extreme returns in all but cwbange rate. For 20 of
those points, the CD is the exception, for 16 it is the JY, fdri4 the BP and for 1 it is
the SF. Finally, we observed 16 points were all 5 exchangs feve an extreme return.

Based on this analysis, it appears that the SF and the DM havstribngest tail
dependence among the five currencies. This is evident frerfattt 10 of the 15 points
that are due to extreme returns of two exchange rates aretfipair (DM, SF). More-
over, 23 of the 26 points for which three of the five exchangesradave returns that are
extreme, also contain the pair SF and DM. The exchange rétibe D and the JY
seem to have much less tail dependence with the exchangeofdtee other currencies.
An indication of this is that they are only responsible fonzadl number of the extreme
observations involving extreme returns of more than onescaly, compared to the SF,
DM or the BP. For example, there is not a single point with ereeturns of only two
exchange rates involving the JY, and only 2 such points umglthe CD. On the other
hand, in most cases where all but one of the five exchangewates=xtreme, they were

the exception.

5.4.2 The von Mises-Fisher Mixture Model and the Curse of Di-

mensionality

We attempted to fit a von Mises-Fisher mixture model to thentsoselected by the
ranks method. As was the case for the case of the IBM-Intelldppe observed that
a significant number of points were only selected becaudeeoéxtreme return of only

one of its marginal components. These points appear aedusibse to an axis. In
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the case of IBM Intel and Apple, this lead us to the conclusiat tve need a model
with at least 6 components. For the dataset of the excharigs, nae observed 10
clusters, one around each of the points representing tteecdtbe cartesian coordinate
system orS*. For this reason we cannot expect a model with less than 1paoents
to be an accurate description of the spectral measure. Wegded to increase the
number of components. However it soon became clear that & tauger number of

components is needed to obtain an adequate descriptior aptictral measure. The

Table 5.13:0verview of the model selection criteria.

# of components AIC BIC ICL-BIC P value LR test
10 -235.9677  -50.9555  -43.5588

11 -282.7970  -78.9701 -72.3036 0.0868
12 -331.1082 -108.4665 -100.1527 0.0992
13 -351.9816 -110.5252 -104.4242 0.0984
14 -404.4313 -144.1600 -136.2359 0.0801
15 -426.3127 -147.2267 -140.7077 0.0836

values of the criteria that we use to estimate the correctenmf components is given
in Table 5.13. Each entry represents the value of the caynelpg criteria for the best
model with the corresponding number of components. Ther@itndicate that the best
number of components is at least 15, because the criteriavactihe smallest value for
the model with 15 components. However, recall that we arg nsing 170 points for
our estimates. As for the previously studied datasets, assitled the points according
to what component they are associated with, using the postamobabilities (4.84).
Already for the model with only 12 components, we saw that 2gonents only had

6 and 5 points associated with them, respectively. For théeinwith 15 components,
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we saw that three of those components had less than 5 posdsiated with them. 4
more components had less than 10 points associated with thewur opinion, it is
senseless to try to estimate the mean direction and the cwatien parameter of a von
Mises-Fisher component, based on less than 10 points. Qotlibehand, based on our
preliminary analysis and the values in Table 5.13, we do rbéwe that a model with
even 12 components is an accurate description of the spewesure of the dataset.

This is what we referred to as the "curse of the dimensiopiahtthe introduction to
this section. The structure that the 4 dimensional dataesgmting the spectral measure
of all five currencies exhibits is very complicated. There several small clusters of
points scattered ofi*, especially around the points of the axes. A von Mises-Fishe
mixture model sees most of these clusters as significant tmolugées a component to
them. This results in a model with a large number of compa@)een is the sample
size is rather small.

As we saw, the problem is already very challenging for a @ataf5 different risk
factors. For datasets of even higher dimension, we expatptbhblem to be even worse.
We suggest two possible solutions to this problem.

On one hand we could work with a dataset with more observatidrhis can be
achieved by working with data of higher frequency. Instefidsing daily log returns,
we could use hourly or data of even higher frequency. Thislevdtamatically increase
the sample size and hence allow us to consider more obsersdbr the estimation
of the spectral measure. Since the daily log returns are gregation the hourly log
returns, the questions arises under what conditions thetrgpeeasures of the different

log returns are the same. The answer to that question is foufiduksson et al. (2001).
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They consider a high frequency procés,) € R? and an aggregated process

i+1)m—1

(
Y= ) X,

k=im

and prove the following result.

Theorem 5.4.1 Let (X;) be a stochastic process &f, such that allX;, have the same
distribution. Assume that the distribution is multivagatgular varying with tail index

«. Thatis, we assume that

_ PIIX| > tz, | X' X € A
lim
100 P[IIX]| > 1]

=2 %S, (A).
for a finite measures, onS?-1. Let(Y;) be as above. If the condition
lim P[||X;|| > r| [|X;|| > r] =0, fori # j (5.2)

is satisfied, therY; is multivariate regular varying with tail index and has the same

spectral measure aX;.

Hauksson et al. (2001) furthermore argue in an empiricalysthat the bi-hourly and
hourly returns of exchange rates of selected currencien sesatisfy condition (5.2).
Their study also indicates that 10 minutes and 30 minutesngprobably do not satisfy
(5.2). Nevertheless this indicates a possibility to usé@igrequency data to estimate
the spectral measure. This would increase the number ofgpawuailable for parameter
estimation of a von Mises-Fisher mixture model or a similadei.

A second possibility is to try to show that certain margirahponents of the dataset
are asymptotically independent of the other componentsardataset. Assume for ex-
ample that for the IBM-Intel-Apple dataset, we could havevamdhat the log returns
of Apple are independent of the log returns of IBM and InteltHat case the spectral

measure of the three stocks would be concentrated on thset, z) € S? : 2z €
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{-1,0,1}}. That is, the points of the spectral measure would be coratedton the
big circle of the equator = 0 and the north and south pole of the sphBte We
could then have fitted a lower dimensional model to the paletscribing the asymp-
totic dependence of IBM and Intel. In a dataset of higher dsian this approach could
prove very valuable. We could first identify the marginal gmments that are asymp-
totically independent of the other marginal componentsesehcomponents could then
be excluded from the dataset before attempting to estirhatsgectral measure. For
the dataset under consideration in this section, we carotshow that the JY or the
CD are asymptotically independent of the other three cuireendVe would then only
have to estimate the spectral measure of the dataset ofréw Buropean currencies.
This would greatly simplify the task of finding an adequatedelmf the spectral mea-
sure. Unfortunately, there are many problems that preveritam doing this. Most
importantly, there is to this date no statistical test fax &symptotic independence of
two random variable available. Furthermore, it is oftenc¢hse that there are no such
independent marginal components. In the next section, Weanrgue that returns of the
CD and the JY do not appear to be asymptotically independeheatturns of the other

three currencies.

5.4.3 Are the CD and the JY Asymptotically Independent ?

When investigating asymptotical dependence or indeperdafritie different marginal
components of a random vector, it is enough to consider jEerasymptotic indepen-

dence. The reason is the following proposition, found in R#sf1986).

Proposition 5.4.2 Suppos& has a multivariate regular varying distribution with expo-

nent measurg concentrating orf := [—o0, oo|\{—o0}. The following are equivalent:
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1. The components &, namelyX ™ ..., X are asymptotically independent ran-

dom variables.

2. The components & are pairwise asymptotically independent. For evérng

i< j<d, X% and X" are asymptotically independent random variables.

Proof: See Resnick (198GH

This allows us to check whether the JY and the CD are asymaligtindependent
of the other currencies by checking pairwise asymptotiad¢pendence of these curren-
cies. Thisisin contrast to checking "classical” indepaemmebetween random variables,
where pairwise independence does not imply independeryanieral. In order to estab-
lish that the JY and the CD are not asymptotically independgtite other currencies,
it is therefore enough to establish that they are not pagnasy/mptotically independent
of the other currencies.

We first focus the on returns of the JY. A preliminary analysision parametrical
estimates of the spectral measures of the JY and the otlrencies revealed that the tail
dependence between the JY and the DM is weaker than the hdencies between
the JY and the other currencies. Therefore, we especiatlysfon the relationship
between the DM and the JY. If we find evidence against the lngsis that the two
currencies are not asymptotically independent, we alse baidence that the same is
true for the JY and the other currencies.

Using the tail index estimates of Table 5.12 for the DM andiewe consulted
Starica plots to decide on an acceptable valué ofVe concluded that = 60 was the
best choice. The ranks method selected 217 observatiotssstimation of the spectral
measure. We estimated the parameters of various von Misksffmixture models with
different numbers of components. The BIC suggested a modeBrdomponents while

the likelihood ratio test procedure suggests a model withriaponents, both for the 5%
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and the 1% significance level. We decided to trust the likeldhratio test procedure and
hence conclude that the model with the parameter estinraebie 5.14 is an adequate
description of the spectral measure. The mean directioivéengn polar coordinates
¢ € [0,27). The column “Points” indicates how may points are assodiatith each

component. The picture that emerges from studying the peteanestimates in Table

Table 5.14:Parameter estimates for the model with 7 components of therapenea-

sure of the log returns of DM and JY. See text for details.

Component Mean Direction x weight Points

1 0.0446 348.58 0.1271 30
2 1.5308 238.77 0.1780 40
3 3.1972 412.15 0.1568 36
4 4.6135 134.57 0.2075 46
5 0.2328 90.42 0.0918 18
6 1.0101 14.12 0.0953 19
7 3.8021 5.47 0.1425 28

5.14 is fairly similar to what we have previously seen fordviate data. We see four
components with mean directions clo&er/2, 7, 37/2 and very large concentration
parameters. These components describe the points closeaxisathat correspond to
observations where only one of the currencies experienegtt@me return. We also see
three more components, containing a total of 65 points. Copis 5 and 6 model the
dependence between observations were both the DM and thad¥xtreme positive

returns. Component 7 models the dependence between olisewate both currencies
had extreme negative return. Itis the presence of thesdisagt components that leads

us to reject the hypothesis that the DM and the JY are asyioaligtindependent.
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We now turn our attention to the CD. By proceeding analogue aoatialysis of
the JY, we argue against the independence of the return c@Ehby showing that its
returns are not independent of the BP. We chose to investigatpair of the CD and
the BP because this was the pair that seemed to have the ledspendence among all
pairs involving the CD. If we find that our mixture model regthe idea that the two
currencies have asymptotically independent returnsytbidd give us confidence that
the same is true for all the other pairs involving the CD as .well

Based on the tail index estimates in Table 5.12 we decidedphguiting Sarica
plots, thatt = 60 was a good choice. The ranks method selected 229 obsemvation
After fitting von Mises-Fisher mixture models with severdfetent number of compo-
nents, we consulted the usual criteria to choose the bedteéuoh components. Almost
all the criteria indicated that. = 6 is the best number of components. The only excep-
tion was the likelihood ratio test procedure with the 5% #gigance level. It indicated
7 components, as the p value of the test comparing the modiél$wind 7 components

was 4.13%. Table 5.15 shows the parameter estimates of ttiel mvith 6 components.

Table 5.15:Parameter estimates for the model with 6 components of therapenea-

sure of the log returns of BP and CD.

Component Mean Direction k weight Points

1 0.0635 123.3628 0.2262 52
2 1.5613 234.5120 0.1715 43
3 3.1957 188.3905 0.2268 53
4 4.7067 465.9547 0.1775 43
5 4.2586 4.1859 0.1024 20
6 1.1745 9.3842 0.0956 18
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As before, we see four components modelling extreme retwmse, but not the other
currency. We also see that there are two additional comgsnenwhich a total 38
points can be attributed. They describe the dependencedreihex simultaneous nega-
tive and positive returns of both currencies, respectivBiynilar to the case of the JY
and the DM, we see the fact that these components were deégmdttant as strong

evidence that the CD is not asymptotically independent fioeother currencies.



Chapter 6
From the Spectral Measure to a Bivariate

Distribution

In the previous chapter we discussed different exampleswfike use the von Mises-
Fisher mixture distribution as a model of the spectral memastivarious datasets from
finance. In this chapter, we present a model of the jointibigiion of random variables,
that is based on our model. We focus on modelling the depeedmtween the marginal
components. The model of the dependence consists of twoetepaodels, one that we
refer to as the “model of the body of the distribution” and tieo one that we refer to as
the “model for the tails of the distribution”. We will conceeate on the description of the
model for the tails, while we use a standard multivariaterradrdistribution as a model
of the body. Other possible choices for the model of the badybaiefly mentioned.
The model of the tails uses what we call the “raw model”. Thatel is based on
von Mises-Fisher mixture model of the spectral measure ord®e the tail dependence
between the marginal components. We then combine this ragdehwvath appropriate
marginal distributions. In that sense, the raw model sengdgke a copula. It focuses
on the description of the tail dependence structure in thgildution, to which desired
marginals can be attached. The chapter is organized as/follé/e first present the raw
model. Then we explain how the marginals of the raw model @ndnsformed to ob-
tain a model with desired marginals. We present our modéiefarginal distribution.
Finally we show how we combine the model for the tails and tloeleh for the body.
We only describe the bivariate case, but higher dimensiextansions of our approach
are straightforward. However, the notation would be muchemomplicated, which is

the main reason that we restrict the discussion to the twedsonal case.

185
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6.1 The Raw Model

The raw model is motivated by the following result, statedireorem 2.2.3 in Section
2.2.2. LetX; be distributed ad’,, whereF, is as in Section 2.2.2. LeR,0) :=

([1X1 ], [IX1]|7*X4). If we have that inM/, ((0, co] x R)

tP[(%, 0) € 1 % r2dr x S.(d), 6.1)

thenF, € D(G.), where

G.(x) = exp(—p.([0,x]%))

and

Ay €E |yl > |yl 'y € A} = r'5.(A).

In the light of (6.1), let
s0(@) = > pifar(¢; i, k:)

i=1

be the density of a finite von Mises-Fisher mixture model ia 2 dimensions withn

components. The densities of the components are

1
27'(']0(%1‘)

emcosmﬁ—avz)7 0<¢<2m,k>0,0<q <27

fM(¢;Oéi7/€i) =

Definition 6.1.1 The raw model is the distribution with ran@e = {x € R? : ||x|| >

1}, whose density, expressed in polar coordinates, is given by
ho(r,¢) = 7”7250(¢)1{r>1}(7’)- (6.2)

Figure 6.1 shows the density of a raw model. The spectral uneassed was the
6 component von Mises mixture model, fitted to the log retwinthe BMW-Siemens

dataset. See Table 5.11 for the parameters of the model.late the definition of the
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Figure 6.1:The density plot of an example of the raw model.

raw model with (6.1), note that X is distributed a%, then

nlP|

X

= n-((nr)"'So(A)) =r'Se(A),

whereS,(A) = [, so(¢)do. Therefore, we have analogue to (6.1), that the distributio
with density#, is in the domain of attraction of a extreme value distribaitio
Go(x) = exp(—po([0, x]))
with
poly €E: lyll > r llyll ™'y € A} = 771S5(A).

Using the well known theorem describing the change of véggbwve can express
in cartesian coordinates. Let= rcos ¢ andy = rsin ¢ and denote with,(x, y) the

density expressed in cartesian coordinates. Then, we have

ho(r, @) = 17%50(¢) 1oy (r) = rho(r cos ¢, 7sin ) = rho(, y).
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Therefore, we have

ho(w,y) = ho(rcosg,rsing) =r>so(¢)1,51(r)
= (2% +y?) " so(Alan(z, y)) a2 e (2, Y). (6.3)

In the above equation we denote wittun(z, y) the anglep such thatr = r cos(¢) and

y = rsin(¢). Let

x y
Ho(:lr,y):/ / ho(s,t)dsdt

be the bivariate distribution function connected to thesitgriy(z,y). Denote the

marginals distributions offy(x, y) by H,(z) andH,(y). That is, define

Hi(z) = lim Hy(z,y) andHy(y) = mh_{{.lo Ho(z,y).

Yy—00

We can express the cdf and the pdf of the marginal distribubg the spectral measure

densitys,(¢). For each marginal cdf we need to consider four differen¢sas

Proposition 6.1.2 Letho(x,y), Ho(z,y), Hi(z) and Hy(y) be as above. Let

3mw/2 /2
= / cos ¢so(¢)dp andcf = / cos ¢so(p)do. (6.4)
w/2 —7/2
Then we have
Hi(z) — % it »<—1 6.5)
371/2
Hi(z) = / (Cosd) A 1) so(@)do, if —1 <z <0 (6.6)
w/2 T
w/2
Hyz) = 1— / (Cow A 1> so(@)de, if 0 <z <1 (6.7)
—7/2 x
C+
Hi(z) = 1-— ?1, if 1< (6.8)

Define

2 ™
02_:/ sin ¢so(¢p)dep andc;:/o sin ¢so(p)de. (6.9)
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Then we have

Hyy) = 3 ity <—1 (6.10)
27 :
me) - [ (812¢A1) (@), it —1<y<0 (6.11)
Hy(y) = 1—/7( (Sin¢A1> so(@)de, if 0 <y <1 (6.12)
0 Yy
+
Hy(y) = 1—%2, if 1<y (6.13)

Proof:
We have that

= /m /OO ho(s,t)dsdt.
Recall from Definition 6.1.1 thad = {x € R? : ||x| > 1}. We make a change of
variables to polar coordinates and note thatdox —1 the set{(s,t) € D : s <
z} equals the sef(r,¢) : r > z(cos®)™,¢ € [5,2]}. Therefore, we have from

fsoo r~2dr = s~ that

3m/2 1 3m/2 c
/ / ¢)drde = / cos ¢pso(p)dp = -~
cos ¢ /2 z

The calculations for-1 < = < 0 are very similar. Fix a value aof € (—1,0]. Then we

have that the s€ft(s, ) € D : s < =} equals the sef(r,¢) : 7 > (z(cos )" ') V1,6 €

[Z,27]}. We therefore get for-1 < 2 < 0

- [ o [ (5201 s
|

cos

For the cas@ < z < 1, note that

zr)=1 —/ / ho(s,t)dsdt.

Since we havd(s,t) e D: s >z} = {(r,¢) : r > (z(cos )" ) V1,¢ € [-3, 2]}, we

L

get that

/2
@)drdp =1 — / (Cos‘b A 1) s0(6)de.

—7/2 T
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Finally, we have forr > 1 that

/2 [°S) /2
=1 [ [ oo =1 [7 (S22 oo 1= %
- Cos &

—7/2 i T

remembering the definition of from (6.4). The proof of the equations féf,(y) are
analogue.
Using the equations for the marginal distributions in Popon 6.1.2, we obtain the

density functions of the marginals by calculating the dies.

Proposition 6.1.3 Let hy(x, y), Ho(z,y), H1(x) and Hy(y) be as above. The densities

of the marginal distributions off,(z, y) are given by

hi(z) = —cjz o<1
—1 arccos(z) 3mr/2
ma) = | [ cosomi@dor [ cosos(o)ds) ,~1<a <0
/2 — arccos(x)
1 /2 — arccos(x)
ma) = 5| [ cosos(por | cos dso(@)ds| 0 <z <1
arccos(z) —m/2
hi(r) = cfa?1l<ux
and
ha(y) = -y y<-1
—1 — arcsin(y) ' 2m .
) = = | [ smos(@)dor [ sings@)do|,~1<y <0
T arcsin(y)

arcsin(y) ™
haly) = %[ [ smoseao+ | sin¢80<¢>d¢],o<y31

Y — arcsin(y)
ha(y) = jy " 1<y

Proof:
The equations foh,(z) for x > 1 andz < —1 follow immediately from the corre-

sponding equations (6.5) and (6.8) in Proposition 6.1.2efadf by taking derivatives.
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Consider now) < = < 1. We have from (6.7), that

Hi(z) = 1 —/w/2 (COW /\1) so(#)d¢

—7/2 i
arccos(z) w/2 COSQb
— - [ s 0(6)do
— arccos(x) arccos(z) L
— arccos() coS ¢
-/ sol6)do.
—7/2 T

Therefore, we have that

hi(z) = —H(x)

) —/arccos(x) o w/2 COS(b
- -2 so(@)do| — =— / s0(¢)do
Oz |/ - arccos(z) ] O [ arccos(z) T

[ — arccos(x)
S s ]
Using
9 arccos(z) = -
ox /A=)
we get
hi(z) = — |—so(arccos(z)) ! — so(— arccos(z)) 1
= i PO (1—a2) ST (1—a?)
= a2
_ x_21 (/amos(x) COISQSSO(Gb)dcb) + i - x50 (arccos(x)) — (11_ m?)]
[ — arccos(z)
B _$_21 (/ﬂ/z co;¢80(¢)d¢> + é - 280(— arccos(r)) (11_ :132)]
- (11_ o [so(arccos(z)) + so(— arccos(x))]
/2 — arccos(x)
_1_% / ()cos¢so(¢)dgz§+/_ B cos ¢50(¢)d¢]

1 x
— [ — {so(arccos(z)) + so(— arccos(ac))}]

/2 — arccos(x)
_ % [ / o SIS0+ /_ cos ¢so(¢)d¢] . (6.14)

w/2



192

The proof for the equations &f (z) for —1 < x < 0 and for the equations af,(y) are
analoguel

Figure 6.2 shows the marginal density of the raw model péctuin Figure 6.1. No-
tice that the density is proportional to2 for 1 < z andz < —1. On the interval

(—1, 1) the structure of the density is determined by the shape cffibetral measure.

0.8
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0.6

0.5

h(x)

0.4

0.3

0.2

0.1

Figure 6.2:The density:; (z) of the raw model pictured in Figure 6.1.

6.2 From the Raw Model to Correct Marginals

6.2.1 Adjusting the Marginals of the Raw Model

The marginal distributions of the raw model, given in the kection, is of course not
a reasonable choice for the marginal distributions for aehoditail dependence. The
purpose of the raw model is only to describe the tail depecelbrtween the marginals,

not the distribution of the marginals themselves or theithistion of the body. Suppose,
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that we wish the model to have marginal distributions regmésd by the cumulative
distribution functionsF; (z) and F»(y). We assume that they are absolute continuous
with densitiesf; (z) and f»(y). The following is the obvious procedure for obtaining a
model with these marginals starting from the raw model.

Recall from (6.3) that the density of the raw model is given by

ho(w,y) = (2% +y*) 7 2so(atan(z, y)) L2 1251y (2, ).

As before, let

z oy
Ho(m,y):/ / ho(s,t)dsdt

be the bivariate distribution function connected to thesitgrm,(x,y). Define for a

monotone nondecreasing functiéfz) on R the left continuous inverse as
H™(y) :=inf{s: H(s) > y}. (6.15)
Define the bivariate cdf'(z, y) as
F(a,y) == Ho(Hy (Fi(x)), Hy (F2(y)))- (6.16)
To check that’(x, y) indeed has marginals, (x) and F(y), note that

lim F(z,y) = lim Ho(Hy (Fi(2)), Hy (Fa(y))) = Hi(H{ (Fi(2))) = Fi(z).

Yy—oo

The last equality holds sincH, (z) is absolutely continuous with a densfty(z). Ob-
viously, the same argument also shows that the second rahdjgtribution is indeed
Fi(z).

For the calculation of the density &f(z, y) note that

OHy (Fi(z)) OH; (Fi(z)) OF(x) _ fi(x)
Ox OF(z) Ox 2 (H1(2)) o= (mi ()

fi(z)
W (B @) (6.17)



194

The second equality is a consequence of the inverse funtiieorem. We obtain,
with the help of (6.17) and by setting = z(x) = H; (Fi(z))) andzy = 25(y) =

Hi (Fy(y))) :
O*F (z,y)
0xdy

fi(z) fo(z)
hl (2’1) hg (2’2)

Recallinghy(z, y) in cartesian coordinates from (6.3), we finally get the fwiltg result.

flz,y) = (6.18)

= hy (21, 22)

Proposition 6.2.1 Let sy be the density of a finite von Mises mixture model of the spec-
tral measure. Lef/; and H, be given by (6.5)-(6.8) and let (6.10)- (6.13) be the distri-
bution functions of the raw model from Definition 6.1.1. keandh, be the densities of

H, and H,, given by Proposition 6.1.3. Let = H; (Fi(z))) andzy, = Hy (F»(y))).
Denote byf; and f, two arbitrary density functions oR. If we defineatan(zy, 25) is

as in 6.3, then the bivariate density

fTail(xa y) = (Z% + 25)73/2 50 (atan (217 22)) ’
has marginal distributions with densitigs and f>.

The distribution given by the densitft.;;(x, y) is determined by the spectral measure
and its two marginals. The spectral measure describes thendence between the

marginal components, which in turn have distributions gilsg the densitieg; (x) and

f2(v).

6.2.2 A Model of the Marginal Distribution using the GPD

The choice of the marginal distribution is a crucial part loé tmodel (6.19). The
marginal distribution needs to be a reasonable approxomati the features of the data.
Remember, that we are developing a model for the data thatheitails of the distri-

bution. We call an observation “in the tails”, if it is seledtby the ranks method. We
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hence work with the observations selected by the ranks rdeffieese observations will
therefore contain the extreme observations for each malrgomponent. Recall from

Section2.1.6 the definition of the Generalized Pareto distributionsegity

Gepo(r) = b <1+£x;%>1/£ §#0
o 1 —exp <—x—g”) £E=0,

where% >0,if ¢ >0andl + 5% >0, if £ < 0. We explained in Section.1.6
that the Generalized Pareto distribution approximatessseas over high thresholds. In
particular, ifv denotes a high threshold, we have for- v and a random variabl&

with distribution functionf’ € D(H;):
PX > z] = (1 — Gepo(2))P[X > v].

For this reason the GPD appears as the natural model for fthenie the right tail of
the marginal distributiong’; () and F5(y). The GPD describes the tails beyond the
thresholds—v;, < 0 andy, > 0. We additionally need a model for the body of the
marginal distributiond”; (x) and F»(y). We use a normal distribution. Other choices,
like a linear transformation of a Beta distribution also greasonable models of the
marginal distribution betweeny, < 0 andv, > 0. We use a mixture model to combine
the normal distribution of the body with the GPD of the tailge hence assume that the

marginal distributions have the following densitiés; 1, 2:

fix) = g€, 89 0D 4 p g (a5 €7, 67, 1Y)

+(1 = pt? = P 1, o), (6.20)
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where
1 T —v —e !
1 4
atwgs) = 5 (1+E0) T ) (6.22)
Y
B 1y0) = V%;Uexp(xx205):) (6.23)

The corresponding distribution functions are

Fi(z) = p"G(z;¢D, 89, 1D + pG(a; €7, 89, )

+(1 = p = py) (i o)), (6.24)

where
Go(x:6,8.v) = 1— (1 + et g ”)é 100 (2) (6.25)
Gi(z:€.8.v) = (1 +e 6_ ”) B 1 oo (@) + 1poo)(z)  (6.26)
O(x;p,0) = /_OO ;m exp <<t 2_0‘;)2> dt (6.27)

Estimation of the parameters

The estimation of the parameters of the marginal model wdth(§.20) and cdf (6.24)
is not very easy. We are using the observations selectecehwltiks method to estimate
these parameters, since that is the data whose distribwgare modelling. We found
that an algorithm that maximizes the log likelihood funaotimver all 10 parameters of
the model is not practical. We therefore first obtain estawatf the parameters of the
two GPD components and then estimate the parameters of theahoomponent and
the weightg; andp, in a separate maximum likelihood procedure.

The ranks method essentially uses two criteria to decidewbbservations are to

be selected for the estimation of the spectral measure. T$tadithe ranks of each
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coordinate and the second is a choice of the number of upger statistics, referred to

ask. As we explained before, if

is the vector of the ranks
N
() _
. Z 1[X§”>X§“]
=1
of the observatior(lXj(l), - X](d)), and if R, , is the norm of£, the ranks method selects
J

observationX, if and only if R;, > 1. In particular, in the bivariate case= 2, any

observation with a marginal componensuch that either
rj(l) < kor r](?) <k

will be selected. That is, if there is a marginal compone#t 1, 2 of observationX;,
such thatY " is among the k largest of the observati¢ng”, ..., X ), observatiorX
gets selected. We therefore found it natural to use the lesargrder statistics of each
marginal for the estimation of the GPD components.

Denote for the remainder of the section with= (7, .., Zy) the i marginal
component of the observatiods,, ..., Xy. That isZ is contains the observations
(X]@;j = 1,...,N) for which R;, > 1. Denote withZ, the order statistics of

Z:Zny < Zpg < ... < Zuy. Then the estimators for the parameterg := — W <0

andy, := u,@ > (0 are as follows:

vV, = Z(N—k) (628)

U= Zgg (6.29)

Based on (6.28) and (6.29), we obtain the maximum likelihostdreates offﬁi),ﬁﬁi),

based o Z(n_j+1), ---, Z(n)). Similarly, we find the maximum likelihood estimators of
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¢, 8" based o(—Zy, ..., —Z)). We use SPLUS, more specifically the EVIS 5.0
software package, to carry out the maximum likelihood estiom.
We then use the estimated parameters of the GPD in the estimodthe component
weights and the parameters of the normal distribution corapts. We find the restricted
() (4) (i

maximum likelihood estimatorg, o, p1, p2 Of ur = uy’,or == oy’ ,p1 = pl) and

ps == p$ by maximizing the likelihood function

L(MTagTaplap2;2> (630)

= 2108; (plgr(Zi;g”a B 0) + p201(Zis &, B, B1) + (1 — p1 — p2)&(Zis pr, UT))

=1

over (ur,or,p1,p2) € R x RY x {(p1,p2) € (0,1)2 : p1 + py < 1}. We refer to
the resulting estimates as restricted maximum likelihostthetes, rather than maxi-
mum likelihood estimates, because we obtain them by makigithe log likelihood
function only overur, o7, p1, andps, and not over all parameters. We find the values

(gur, o7, D1, P2) that maximize (6.30) using the optimization toolbox in Ndal

The marginal model in the case of IBM

To illustrate the shape and nature of the marginal modeabdiized in this section, we
consider the case of the parameters values that we obtasribd astimates for the IBM
dataset. We mentioned in Section 5.2 that we used the rant®odch&vith £ = 80,
resulting inn = 302 observations being chosen. For the right tail, we find that
0.0361 and as a consequence we have Enai 0.2175 andﬁr = 0.0130. Note that since
a > 0, the GPD model indicates, that the right tail of the margdistribution of IBM
is heavy tailed. The corresponding estimate of the taibindey, = 1/@ = 4.5977.
Recall that in Section 5.1 we estimated the tail index of tgbtriail of the distribution
of IBM with 3.5, based on Hill plots. The difference in the estites illustrates the

difficulty of estimating the tail indices of heavy tailed ttibutions.
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For the left tail, we obtain the following estimateg: = 0.0344, a = 0.4261 and
Bl = 0.0097. Similar to the model of the right tail, we have that the estienof¢;
corresponds to a heavy tailed distribution with a tail inéstimate ofa; = 1/@ =
2.3469. Recall that we obtained an estimatenof= 2.8 for the tail index of the left tail
in Section 5.1.

Based on these estimates for the parameters of the tail ca@nfmmwe obtain the

following estimates for the weights and the parametersehtirmal components:
pr = 0.0015, 07 = 0.0233, p; = 0.2458 andp, = 0.2613.

Figure 6.3 shows the density of the marginal model for thks @i IBM with these
parameters. The upper half of the figure shows a scatter plibieodata used in the
estimation of the parameters and a non-parametrical géstioidahe density. The lower
half of the figure shows the density of the marginal modeldittethe returns of IBM.
Note, that the density of the model seems to capture thetsteuof the data very well.
In particular the two spikes of the density, that are visélle, = 0.0361 and—7;, =
—0.0344 are also clearly visible in the data in the top plot in Figur8.6The reason
for the presence of those spikes becomes clear when we dtadscatter plot of the
observations that were selected by the ranks method. Tbaispliven in Figure 6.4.
We see that these observations seem to be located on théeootsi rectangle. A large
number of these observations are close to the borders ofabi@ngle. Therefore, the

marginal distribution appears to have two spikes, apprateéty atv, and—u7;.
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Scatterplot and nonparametrical density estimate
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Figure 6.3:The density of the marginal model (6.19) for IBM. See textétails.

Figure 6.4:Scatter plot of the points selected by the ranks methodAnwithg0.

6.3 Body and Tails Combined

Remember that the model presented so far is only a model fatatheegion of the

distribution. Also recall that the density of the raw modasIsupport

{(z,y) € R* : 2> + 4> > 1}.
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After adjusting the tails, the tail distribution densityshsupport
D = {(z,y) € R*: (H (Fi(2)))" + (H; (F3(x)))* > 1}.

In order to develop a model that describes the entire biteadastribution of two ran-
dom variables, and not just the distribution of the tail cggiwe need to introduce a
component describing the "body” of the distribution. Thatwe need a model for the
distribution inD¢. That model should be based on the observations that wergenot
lected by the ranks method. There are several differentekdor such a model. We
decided to use a bivariate normal distribution. We hencerasshat the distribution of

the body has the following density

v ) T—fie Y—H -y |
1 ()~ () + ()

ody T, Y) = exp | —
fB dy< y) 27T0'$0'y (1 — p2) p 2(1 - p2)

(6.31)
where ., and ., stand for the marginal expectations, and o, stand for the corre-
sponding standard deviations and finaglytands for the correlation between the two
marginal components.

More sophisticated models, for example models based onlaspcould be con-
sidered and they would probably be more accurate. Breymaah €003) propose
a number of dependence structures for high frequency ddtaance. They focus on
modelling the dependence structure of the entire distohutf the log returns of two
currency exchange rates. They considered the Gaussian,ttieeFrank, the Gumbel
and the Clayton copulas. They did not specify any marginaletsodnstead, they used
the empirical distributions to transform the data beforténfit the respective copula.
They found that for the dependence structure of the entita tthee t-copula gave the
best description among the considered models. Howeveralse found that different

copulas best describe the lower and upper tail dependenodelsibased on some of
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these copulas may be more realistic than the bivariate ntbdelve chose. However,
they would also be more challenging to implement. Also keemind that the normal

distribution is only serving us as an appropriate model eftibdy of the data and not
as a model of the entire distribution. We describe the tglletelence with great care
separately with the help of our mixture model of the spectrahsure. The results of
Breymann et al. (2003) may not apply to our case, since theypased on research
concentrated on the entire distribution and not just theybdeurthermore, our focus
in this thesis is concentrated on developing a realisticehotithe dependence in the
tails of the distribution. It is not our goal to develop aniogl model for the body of

the distribution. We are not aware of such research focusesh@delling the depen-
dence structure of only the body of a distributions reconulirena specific model. In

the absence of such research, we decided to use the most comoaie! for describing

multivariate data, the multivariate normal distribution.

In the following we describe how we combine the model of thdyband the model
of the tails to obtain a comprehensive model of the entir&ildigion. To unite the two
models,fz.ay(z,y), given in (6.31) andfr..(x, y), given by (6.19), we make again use
of the concept of a mixture model. That is, we assume the iateadistribution has

density
(@, y) = pfraa(®,y) + (1 = p) fBody (@, y).- (6.32)

An advantage of this approach is that our mixture model caiyelae combined with
any particular model of the body that a researcher may see fit.
The marginal distributions of model (6.32) are easily afedifrom the correspond-

ing marginal distributions ofr..(x, y) and fz.q,(z,y). The marginal densities are of
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the form
filw) = afgu(@: €0, 89 00) + oy (@ &, 57 1"
+ay) oz py, of)) + af dla uig o)), (6.33)
whereal” = p-p{”, of) = p-pi’, o) = p- (1 - p{’ = pl), andal’ = (1 -
D). Furthermore,ugf) and o-éf) denote the mean and standard deviation of the normal
components of the tail model, respectively. Finalﬁ? ando—g) stand for the mean and
standard deviation of the corresponding marginal compioniefy;q,, -

We estimate the parameters of the tail components; ¢, 3, v), g:(z; €, 5,v) and
¢(z; u, o) of the marginal distributions as mentioned above in Sedfidh2. Since
(6.31) is acting as the model for the distribution of the hodg only use the points
not selected by the ranks method for the estimation of tharpeters offp,q,(z, y).
We estimated the means, standard deviations and the d¢mneltyy the corresponding
sample means, sample standard deviations, and the sampdation, respectively.
Finally, we estimate the weightof the tail componentf,;;, by the percentage of the

points that were selected by the ranks method. Figure 6 Wwsshlot of the density

Figure 6.5:The density of the marginal model (6.33) fitted to the logrreswof IBM.

(6.33) with the parameters that we estimated from the lagmstof IBM. We obtained
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the following estimates of 5,4, (., y) for IBM:
lip = 1.95147*: 55 = 0.0138, p = 0.0836

Since the marginal densities of the tail compongnt;, showed two clear spikes at
and—u;, we also see the same spikes in the marginal distributidmeofdmbined model.
We furthermore see from Figure 6.5 that, for the parametaitses that we estimated
from the log-returns of IBM, the mixture of the normal distritons ¢(z; up, o) and
¢(z; pr, or) is unimodal. The estimated standard deviations are of the sader and
the means are very close to each other.

Another important fact is that the two normal componentshaary little influence
over the tails of the marginal distribution. The two GPD caments of the marginal
distribution have much heavier tails than the two normal gonents. In addition, both
normal components have fairly small standard deviatiomss they are closely con-
centrated around their respective means. For the margistalbbdtion with parameter
values as estimated for the log returns of IBM, we observeddhewing: The two
normal components together only have 1.29% of their totadsvautside the interval
(—v,v,). Remember that the outside of that interval is the domain efttvo GPD
components. This means that the two normal components leaydittle to do with the
modelling of the tails of the log returns of IBM. We furtherredound that the fraction
of the mass of the two normal components that lies outside-8#,, 2v,.) is only about
8- 107°. At the same time the mass of the two GPD components havedihiiie mass
outside(—v, v,.) and still 11.26% of that mass outside(ef2v;, 2v,.). This means, that
the influence of the normal distributions in the tails, tisatéyond the points v, andv,,
is very small and that it is indeed the GPD components who ssergially describing

the tails. This was typical of what we saw for other fitted niaagdistributions as well.



Chapter 7

Portfolio Optimization

In this chapter we present an important application of thelehdeveloped in the last
chapter. We show how our model can be used to optimize pimsfof different finan-
cial instruments. We calculate, based on our comprehensadel, the portfolio that
minimizes a measure of risk for a given level of expected ktgm. There are many
different definitions of risk and measures thereof. We giteief overview over the dif-
ferent concepts of risk and motivate our particular chotedled the expected shortfall.
We discuss and interpret the results from our optimizatrmh@mpare the performance
of our model with the performance of two other, simpler msdeh order to keep the
computations feasible we concentrated on the case of aoporthat consists of two

financial instruments.

7.1 Measures of Risk

Assume thatX denotes the future log return over a certain time horizon firiancial
instrument. We assume th&tis a random variable on some probability speeeA, P).

In risk management, we are concerned with the estimationeodlistribution ofX. We

are specifically interested in measuring the risk of lossss@ated withX. Different
distributions of X lead to different risks. The risk is usually assessed by aafiect
risk measure. We will concentrate our attention on risk messsthat only depend on
the distribution ofX, and not onX itself. In this section we discuss some desirable
properties of risk measures followed by an overview over s@ommonly used risk

measures.

Definition 7.1.1 (Risk Measure) Let (€2, .4, P) be a probability space. Let V be a non-

205
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empty set oA measurable, real-valued random variables. A risk meassigerapping

p: V- RU{x} (7.1)

Xr— p(X)

This is a very general definition that allows for very diffeteneasures of risk. Artzner
et al. (1999) introduced the notion of coherent risk measuréhey postulated four

properties that a reasonable, or coherent, risk measuuddshave.

Definition 7.1.2 (Coherent Risk Measure) Let (2, A, P) be a probability space. Let V
be a non-empty set of measurable, real-valued random variables. A risk meaguse

called a coherent risk measure, if it satisfies the followirgperties:
1. Monotonicity: X, Y e V. X <Y = p(X) > p(Y)
2. Positive Homogeneity’A > 0,VX € V, such thathX € V : p(AX) = Ap(X)
3. Translation InvarianceX € V,a e R, X +a €V = p(X +a) =p(X) —a
4. Subadditivity: X, Y e V., X +Y €V = p(X +Y) < p(X) + p(Y)

The four conditions are easy to interpret. The property ‘@ldlitivity” represents the
reduction of risk associated with diversification. It sgatkat the risk of the portfolio
obtained by adding two positions of financial instrumentsasgreater than the sum of
the risk of the two positions.

We now introduce some examples of risk measures. They ak sha property that
they only depend on the distribution &f and not onX itself in the following sense: Let
X andY denote two random variables satisfyiBgX < t] = P[Y < ¢| for all t € R.

Then we have thai(X) = p(Y).
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Standard Deviation

The standard deviation of the portfolio log retuknis a risk measure. Of course the
standard deviation is not coherent, since it is not monotameés it translation invariant.

Nevertheless it is often used to measure the risk of a patfol

Value At Risk, VaR,,

Value at Risk is a very popular risk measure in the finance imgud-or a random

variable X with distribution functionf’, define thequantile of X at levela as

Go(X)=inf{z e R:PX <z] > a}=F(a) (7.2)

We call

VaRa(X) = qia(—X) (7.3)

the Value at Risk at confidence levelof X. Usually, « is close to zero. Typical
values fora area = 0.01 or @« = 0.05. Despite its popularity, Value at Risk is in
general not a coherent risk measure, since it is not subhaeldiixamples of violations of
subadditivity of the Value at Risk can for example be foundnmdtechts (2000), Tasche
(2002), Acerbi et al. (2001) and Artzner et al. (1999). YaRhowever a coherent risk
measure on certain sets V of random variables. For exanfipfepnly contains random
variables with elliptical distributions, Embrechts et@002) show that VaRis indeed
a coherent risk measure. We refer to Embrechts et al. (200p)€cise statement of the

result and a proof thereof.

Expected Shortfall, ES,, and related measures

Intuitively speaking, the Expected Shortfall with level ES,, is the average size of

the loss encountered, given that the loss is worse than tRg. \leor that reason it has
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also been referred to as “conditional value at risk” or “talue at risk”. It has been
advocated in several variants as a coherent improvemenMa¥®,. The ES, can be
understood as an improvement over WaBecause it describes how big your loss will
be, given that it is severe. Two different financial instrumsecan have the same VaR
but very different ES. Most definitions of ES lead to the same risk measure, depending
on setl” of random variables considered. If contains only random variables that
satisfyP[X = z] = 0, for all z € R most definitions of ES$ are indeed coherent risk
measures. However, if we expahdto include random variable¥ whose distribution
is not continuous, not all variants are coherent and theyddferent risk measures.
In the following we give the definition of a coherent variandamention some of the
alternatives. For a detailed discussion we refer to AcettiBasche (2002).

Assume throughout this paragraph tiaX —] < co. Then we call
TCE.(X) = ~E[X[X < ga(X)] (7.4)

thetail conditional expectation at level of X. It is an intuitive measure of the average
loss that can be expected, given that the loss is bigger bea¥aR,. However it is not
necessarily a subadditive risk measure, see example 5.4arbAand Tasche (2002).
The example is based on a distribution with discontinuities

To avoid a violation of the subadditivity of the risk measimecause of a lack of
strict monotonicity of the distribution function, the foWing alternative to 7.4 has been
adopted.

We define the¢ail mean at levek of X as
TMa(X) = o™t (E[X 1ixcqux)y] + ¢a(X)(a —P[X < qo(X)]))  (7.5)
We then define th&xpected Shortfall at level of X as

ESy(X) = —TMy(X). (7.6)
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The following proposition summarizes the most importawigerties of the ESand its

relation to the TUE.

Proposition 7.1.3 Let X be a real random variable on some probability spgeeA, IP)
with E[X | < oo and fixa € (0,1). Then the ES given by (7.6), is a coherent risk

measure. Furthermore, we have that
TCE,(X) < ESy(X). (7.7)

We havel'CE,(X) = ES,(X), ifand only ifP[X < ¢,(X)] = aor PIX < ¢.(X)] =
0.

Furthermore, the EShas the following representation

ES,(X) = —al/ q(X)dt. (7.8)
0
As a consequence, the mapping— ES,(X) is continuous on (0,1).

Proof. See Acerbi and Tasche (2002), Proposition 3.1, Ribpn 3.2, Corollary 3.3
and Corollary 5.31

An alternative version of the ESs the conditional value at risk, given by

(X —s)7]

CVaR,(X) = inf{ > _s:sER} (7.9)

As shown in Acerbi and Tasche (2002), the BSequal to the CAR, ifX is integrable.

Spectral Measures Of Risk

Spectral measures of risk are motivated the integral reptason of the ES given in

Proposition 7.1.3:

BS,(X) = —a”! [ g0t =—a [T P )iy
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This equation can be rewritten in the form

BS.(X) = = [ F-)cwip (7.10)
with
((p) = a "1y .ap3(p).

This motivates the following definition

Definition 7.1.4 A spectral measure of risk is a risk measure of the form

M(X) = —/0 F=(p)dC(p). (7.11)

The measuré(p) is referred theisk aversion measuréNot every choice of a risk aver-
sion measure results in a coherent risk measure. We haveptisercertain conditions
on the possible risk aversion measure. We call a risk aversieasure aadmissible

risk aversion measursdf it is of the kind

d¢(p) = c- dé{p} + C(p)dp, (7.12)

wheres is the Dirac delta measureg [0, 1] and((p) : [0, 1] — R satisfies:

C(p) > 0, (7.13)
pr<ps = (o) >C(p2) (7.14)
/OE(p)dp = l-c¢ (7.15)

Using this definition, we have

Proposition 7.1.5 Let
1
() =~ [ P o)
0
be a spectral measure of risk. Thef) is a coherent measure of risk if and onlyifs

an admissible risk aversion function.
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Proof: See Acerbi (20021

From the definition of spectral measures of risk it is cleat tthey only depend
on the distribution functior¥' of the random variableX and not onX itself. That
is, M:(X) depends only on the distributiofi of X. However, it is not true that all
risk measures that only depend on the distribution of thdeamvariables, and not the
random variable itself, are spectral measures of risk.

The risk aversion measure expresses the subjective riskianef the risk manager.
It expresses how much weight should be given to the quantite§). In that sense
they are a intuitive extension of the ESThe risk measure is coherent if it assigns
larger weights to larger negative quantiles. Larger negajuantiles represent worse
scenarios. The ESassigns weight /« to all scenarios that are worse than the YaR
and no weight to quantiles that are smaller than \aR

The Dirac delta measure part allows us to include a factah®worst case scenario

F~(0) = —esdnf{X}. We have for example that
ESy(X):=—Fx (0) = —esdnf{X}

is a spectral measure of risk with risk aversion measure

d¢(p) = dé{p} + C{(p)dp

with ¢ = 1, Z = 0. Hence,( is an admissible risk aversion measure and therefore
ESy(X) is a coherent risk measure.
7.2 Managing Risk, Optimizing Portfolios

Assume thaZ = (ZW, ..., Z) denotes the random vector of the log returns over a

certain time horizon off financial instrument¢zZ™ ...  Z(4). That is, if we denote
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with 2" ..., 2\Y N observations o), we have for = 1,..., N:

2t = log(2") — log(21"))

Wherezt(i) t=0,...,N, denote the observations of the random variahfe. We will
alsorefertq ZW, ..., Z¥) as the risk factors. Consider a linear portfolio, containing
units of the instrumenZ®. The log return of that portfolio is a linear combination of

the log returns of ZW, ..., Z(9):
d
X = X(w) = X(wi,.,wa) = »_w; Z¥.
=1

Different choices of the weights = (wy,...,w,) of the different instruments result
in different distributions of the random variablé. Given a risk measure, we can
compare different portfolios by comparing the expectedrietgrnsy = E[X (w)] =
S wE[Z®)], and the associated risk6X ) := p(X (w)), assuming that all the expec-
tationsE[Z )] exist and are finite. Typically, we seek to find a portfoliotthdnimizes
p(X(w)) compared to all possible portfolios with expected log netur= E[X (w)]
under certain constraints. That is, we attempt to solvedhewing minimization prob-

lem:

duin p(X (w)) (7.16)

S.LEX(w)] =pu

The domainWV reflects possible trade restrictions. A typical exampleudhsa trade

restriction is a limit on the value of short sales. It may aisfbect budget constraints,
such as the maximum cost associated with the portfolio.rAdtively, we might define

a certain level of riskk deemed admissible and then attempt to find a portiolie W

that maximizes the expected log return compared to all pesportfolios whose risk
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measure equals

max E[X (w)] (7.17)

5. tp(X(w)) = o
These two problems are usually referred to as the risk-tagmeptimization problem.

Definition 7.2.1 In the framework of the optimization problems (7.16) and{y with

domain)V we say that a portfolias; dominates a portfoliav,, if
E[X (w1)] > E[X (w2)] andp(X (w1)) < p(X (w>)) (7.18)

and at least one of the two inequalities is strict.
We say that a portfoliav is optimal, if there is no portfolio that dominates.

The geometrical set of all optimal portfolios is called tH&ogent frontier in the plane

(p(X(w)), E[X (w)])

In order to compare the risk and log returns of different fotids we need a model
of the joint distribution of the risk factor&Z"), ..., Z(?). Based on such a model, we
can then calculate the expected log return of the portfaboyell as its risk measure. In
practice, the difficulty of the calculation of the risk megesaf a portfolio depends on the
model of the joint distribution of Z(), ..., Z(9)). For simple models and risk measures,
such as the standard deviation, the corresponding catmulest fairly straightforward
and easy. However, we will see that for more sophisticatedatsothe calculation of
spectral measures of risk, such as,E&n be very time consuming and challenging.
This can make the task of finding optimal portfolios a verydhame.

In the special case where we do not have any constraints asuaidget constraints
or limitations on the short sales, we need to solve the op#tion problem only once,

provided that we are working with a coherent risk measuree dptimal portfolios
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for different levels of expected log returns all have the saroportions between the
positions of the different risk factors.

To see this, suppose that we have an optimal portfolio witbréam expected log
return and risk measure*. Denote the positions in the risk factors of the optimal
portfolio with the vector(wy, ..., w}). Assume that we wish to find the optimal portfolio
for a different expected log return that is, say. A candidate is the portfolio with
positionsAwy, ..., Awj. This portfolio has risk measute|p*, because of the positive
homogeneity of the coherent risk measure and the linedrityeoportfolio. This means
its risk and expected log return are linear functiong\of However, the same is true for
every other portfoligwy, ..., wy) With expected log returp and risk measure. After
inflating the positions by the factoy, we have a portfolio with expected log retukp
and risk measurg\|p. But the portfolio(wy, ..., w}) was the portfolio with the smallest
risk measure among all portfolios with expected log returnThat is, we have* <
p. Therefore we also havg\|p* < |\|p for the risk measuré\|p of any portfolio
(Aw1, ..., \wg). Therefore the optimal portfolio with expected log retum is indeed
(Aw7, ..., Aw¥). This shows that the proportions between the positiops.., w;; of the
optimal portfolio are the same for all expected level of legurns. The presence of
budget or short sale constraints oftentimes complicatec#theulation of the optimal
portfolios significantly. While the portfolidwy, ..., w}) may satisfy these constraints,
the same need not be true for the portfdlia, ..., \w}). Hence the optimal portfolio
with expected log returt\u is not (Awy, ..., A\w}). For certain levels of expected log
return, there may not even be a portfakoc 1V that achieves that level.

This illustrates the main reason why we worked with lineatfpbos. However, lin-
ear portfolios are portfolios of log returns of financialtmsnents and not the log return

of the portfolio of the financial instruments itself. In riéalthe investor would be con-
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cerned with the return of a linear portfolio of the financiatrumentg 2™, ..., Z(@)
rather than a linear portfolio of the log returfigV), ..., Z(?). He would concentrate on
the log return of
d
X(w) =Y w2z
Therefore, he would consider the expected value and thewesksure of the random

variable

log(X (w)) = log (Z wiZ(i)) .

This is just one of many possible examples where the relstiiproetween the risk fac-
tors and the log returns of the instruments in the portfakasonlinear. This nonlinear
relationship complicates the calculation of the log rewifrthe portfolio from the model
of the joint distribution of the risk factors. This in turn kes the search for optimal
portfolios much more involved. Glasserman et al. (2002kdles methods for comput-
ing portfolio VaR, with heavy tailed risk factors and nonlinear relationsHyeswveen
risk factors and portfolios log returns.

We furthermore only considered the case of a portfolio csiimgy of two instru-
ments. The reason was that for portfolios with more than twtruments the minimiza-
tion problem (7.16) would become computationally too egiemto solve directly with
the numerical methods that we employed, even for linearfqars. To give the reader
a taste of the difficulties involved, we consider the caltafes involved for the case of
a portfolio consisting of two instruments.

We calculated the optimal portfolios with respect our magkhg the Matlab opti-
mization toolbox. The bottleneck in our computations wasdhlculation of the port-
folio quantiles. Remember that the EB a spectral measure of risk that is calculated

as

ESy(X)=—a™* /Oa F~(p)dp (7.19)
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whereF(p) is the quantile of the distribution. Both for our model as veslithe model
based on the t copula there are no explicit equations for igteiition function of
linear portfolio that could be easily evaluated. To caltaithe distribution function of

the linear portfolioX = w, ZM + w,Z?), given by
PIX < 5] = Plw ZW 4w, Z® < ],

from the joint densityf (x, 3) of Z(!) andZ®), we need to calculate integrals of the form
s—woy

Plw ZY +wpZ2® < 5] = / / - f(x,y)doxy, if w; >0 (7.20)
Plw ZY +wpZ® < 5] = / / f(z,y)doxy, if w; <0 (7.21)
oo J sy
w1

Since these integrals cannot be calculated analyticakbyhad to resort to numerical
methods, which turned out to be very time and resource coingurihlad we attempted
to calculate optimal portfolios for portfolios witth > 2 instruments, we would have
had to calculatel dimensional analogues of the double integrals (7.20). Wdnlex-
tension of our model to higher dimensional portfolios iggfhtforward, the numerical
calculations of the correspondimigdimensional integrals exceeded the capabilities our
resources. For every calculation of the B8a (7.19) we needed to calculate a large
number of quantiles of the corresponding portfolio disttibn in order to get a good
numerical approximation of the integral. The numericadgration was carried out with
the numerical integration tool provided in Matlab. Typlgait involved the calculation
of between 150 to 250 different quantiles. These in turn baoktcalculated from the
corresponding distribution function by numerically fingithe solution of equations of
the type

P[wlZ(l) +wyZ® < sl=p

We used a bisection algorithm to carry out the calculatiosevkral different quantiles

at the same time. The algorithm typically needed betweer 3Mtevaluations of the
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distribution functionP[w, 2" + w,Z() < 5] of the portfolio to find the correspond-
ing quantile. This means that in order to calculate thg,E# needed to numerically
calculate about 5,000 to 10,000 numerical double integrfatee form of (7.20). The
time it took to carry out these calculations on a PC with a iaentl processor averaged
around 15 to 25 minutes.

The algorithm that we used to find the optimal portfolio witltertain expected
log return usually needed 14 to 20 calculations of the, &S different positions in
the risk factors in order find the portfolio of minimal riskhiE means that it typically
took us somewhere between 3 and 8 hours to find an optimaloportbr both the
model based on the spectral measure and the model based ooinda, introduced
below. We conclude that while, from a theoretical point edwj there is no difference
describing the optimization problems (7.16) and (7.17)dor model and portfolios
containing many instruments, in practice the computatiogsources needed to solve
(7.16) and (7.17) forced us to work with portfolios with ortlyo instruments. This
clearly demonstrates the need for more efficient algorittiras the ones that we used
to calculate portfolio quantiles. It is also the motivation the development of Monte
Carlo methods and approximations used in Glasserman efaR)2

In the following sections we discuss the result of solving ploliticization problem
(7.16), using our model presented in Chapter 6 as the modéhéojoint distribution
of the log returns of the risk factors. We compare the reswitis two other, simpler
models. The first of the alternative models that we constties¢he easiest and most
popular model for the joint distribution of the risk factpoposed by the Isometrics
(http://www.riskmetrics.com/) group. It assumes that jiniat distribution of the log
returns of the risk factor¢Z(, ..., Z(9)) is a multivariate normal distribution. As a

consequence the log returns of the linear portfolio are mtésmally distributed. Rock-
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afellar and Uryasev (2000) considered the optimizatiorblgmm (7.16) based on that
model with respect to the ESthe VaR, and the standard deviation. They showed that
optimal portfolios for all three optimization problems dhe same. In other words the
portfolios, that, with a given expected log retdthX (w)|] = u, minimize the ES, the
VaR, and the standard deviation are in fact identical. This is far all significance
levelsa. In particular the optimal portfolios with respect to, sthe ESy, is the same
as the optimal portfolio with respect to the S This makes the task of finding op-
timal portfolios very easy. It is also what makes the mulis&e normal approach so
attractive. However, the model assumption is unrealistidWo reasons. Firstly, it is
widely accepted that the distribution of the log returns oéficial time series has reg-
ular varying tails. The normal distribution does not havgutar varying tails. We saw
in Chapter 5, that there is clear indication that the distrims of the datasets under
consideration in this thesis have regular varying tailscoBely, one can show that the
multivariate normal distribution has asymptotically ipg@dent marginals. See Chapter
5 of Resnick (1986) for a proof. We saw in Chapter 5 that we haearand convinc-
ing evidence against the asymptotical independence of #rginal components in the
datasets that we investigate.

Several new approaches and models have been proposeddoraegihese obvious
shortfalls of the simple multivariate normal model. Mostestly the concept of the
copula has received significant attention. The cogtilaf a distribution functionF’

with continuous marginals;,i = 1, ..., d is given by
F(z1,..,2q) = C(Fi(21), ..., Fy(2q)) <= C(uy,...,uq) = F(Fy (u1), ..., Fy (uq)).

The copula has standardized Uniform[0,1] marginals andrdess the dependence
structure of the distribution. A comprehensive overvieveroeopulas can be found

in Embrechts et al. (2003). As mentioned before, Breymanh €2@03) compare the
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quality of the fit of several copulas to certain bivariate ficial time series. They used
the empirical distributions as approximations for the wwn marginal distributions
of the times series under investigation. They found thabie description of the de-
pendence structure of the financial time series under cersidn appears to be the t
copula,C} (u). The t copula is the copula of the multivariate t distribati@hed di-
mensional t distribution withy degrees of freedom, mean vecgoand positive definite
and symmetric dispersion matrixis given by the density

r ()

I (%) /(mv)d[5]

v+d

(1+(X_“’>T2_1(X_“')> C xeR! (7.22)

v

f(x) =

As a consequence, the t copula is given by

T,,_l(ul) TV_I(Ud) r v+d TP_l _%d
C.p(w) =/ / ¢5) (1+X X) dx (7.23)
| - o T(5) V)P v

where P is the matrix with entries?;; = %;;/,/2;%;; andT,!(-) is the quantile of
the univariate Student’s t distribution withdegrees of freedom. For a reference, see
Embrechts et al. (2003) or Demarta and McNeil (2004). Rementia¢ the univariate

Student’s t distribution has density

BRGS) a2\~
t,(z) = ONC) (1+ V) (7.24)

and its cumulative distribution function is given by

In the bivariate case, (7.23) simplifies to

) T wa) 1 &2 —2pst + 12\ %
Ol 2) = / / (1 + sl ) dsdt,
)= L eis P v(1— p2)

(7.25)
see Embrechts et al. (2003). Heras the non diagonal element, referred to as the

correlation coefficient of. We should mention thatis not the linear correlation of the
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marginal components. The linear correlation coefficieqetels on the marginals that
are attached to the copula.

We decided to use the so called meta t distribution as oumskalbernative to the
model developed in Chapter 6. A meta t distribution is a digtron with a t copula
C} p(u), but its marginal distributions are not necessarily the To reflect the fact
that the marginal distributions have regular varying talle assume that the marginal

distributions have the following density:

_v+1

(1 + —<%)2) 2 (7.26)

14

L)

2

r (%) o/ (mv)

The distribution with density, , ,(z) is called a Pearson Type VII distribution. It is

typo(T) =

the distribution of a linearly transformed Student’s t dizited random variable with
degrees of freedom. If is a real random variable with a Pearson Type VII distributio
then we can writ8” = ¢ X + p, where X has Student’s t distribution. The additional
parameters: and o are referred to as the location and scale parameter, resggct
The distribution is symmetric and unimodal. The mode of tistridbution is atu. The
tails of the distribution function are regular varying witil index v, see for example
Embrechts et al. (1997). If > 1 the distribution has a finite first moment. In that case,
the expectation equals We denote the distribution function associated with thesdg
(7.26) withT,, , ().

We assume that the joint distribution of the financial instemts has the following

form:

F(xlu ) xd) = CIi,P(TVth,O'l (331)7 ) TdeMdzad (md)) (7-27)
If we denote with

o o (T ), T )
— 7CVP(U1,...,U(1) = — d
aul...aud ’ H t (T_l(ui)

Clt/,P (uh sy Ud)
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the density of the copul@’ p(us, ..., uq), we see that the joint distribution has the fol-

lowing density
d

f(xla e xd) = Czt/,P (TV17/L1701 (]}1>, B TVdaHdaO'd (xd)) H bui o (IZ) (7.28)

=1

We used maximum likelihood techniques in order to estinfageparameters of the
model. We first separately estimate the parameters of thgimamodels with the
maximum likelihood estimators of the parameters of the steailype VII distribution.
We employed a numerical procedure to find these estimatesis@that fact that if a
continuous random variablE has cumulative distribution functiofi, thenY = F(X)
has a Uniform[0,1] distribution. Assume that;:;, o are the estimates of the Pearson
Type VII distribution, obtained from the i.i.d. vector of sdrvationsx of the random
variable X. Denote

q="T555(x) (7.29)

If the Pearson Type VII distribution with parametetg: ando is a reasonable approx-
imation of the distribution ok, thenq is approximately uniformly distributed on the
interval [0,1]. We found that, for the data sets considerethis chapter, the Pearson
Type VIl distribution provided a reasonable fit of the datee iverefore used transfor-
mation (7.29) to transform the data into data with an appnaxe Uniform distribution
on [0,1]. We then used the transformed data to obtain pamnestimates for the t
copula, given by (7.25).

The problem of finding optimal portfolios based on this magied with respect to a
coherent risk measure, such as,EiS much more difficult than for the multivariate nor-
mal distribution. We found that the complexity of the prahlés similar to the one that
we faced when finding optimal portfolios for our model, basadhe spectral measure.

In contrast Rockafellar and Uryasev (2000) showed that fqndistimal portfolios

with respect to the ES working with no particular model for the data, but rather us
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ing historical data as an approximation for the true joistribbution of the risk factors,
can be achieved using linear programming methods. Theydfauseveral case stud-
ies, that finding optimal portfolios this way takes less tlome minute on an ordinary
PC, even for large portfolios of up to 1000 instruments angeaample sizes of up to
20000 observations. Their work was extended by Acerbi antbBetti (2002) to in-
clude portfolio optimization with respect to any spectraasure of risk. Our procedure
was much more time consuming compared to the algorithm graglby Rockafellar
and Uryasev (2000) because we worked with a particular moakbler than just histori-
cal observations. They used empirical quantiles as esinqédr the portfolio quantiles

in the calculation of
ES.(X)=-a”! [ P,
0

while we based our estimates on our numerical integrati@s®d on our model, as

described above.

7.3 Application to Datasets

In this section, we discuss the results of optimizing pdidfowith respect to the ES
using our model, based on the spectral measure, as well &vHreate normal distri-
bution and the meta t distribution model given by (7.27). \Wese the ESfor several
reasons. Itis a coherent and spectral risk measure. It lessdnvertised as the coherent
measure that should be used instead of the still popular Vakekier, all our calcula-
tions could also be carried out with respect to any othertspleeind coherent measure
of risk. We simply chose the E®ecause it has already received significant attention in

literature. We worked with a significance level of 5% and i amstance with 1%.
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7.3.1 Exchange Rates of the Deutsche Mark and the Swiss Franc

The dataset used in this section is part of the Foreign coyréataset studied in Section
5.4. Here, we consider the log returns of the exchange réatibe ®eutsche Mark and

the Swiss Franc to the US $ from June 1973 to May 1987. Figarshaws a scatter plot
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Swiss Franc
+

I
o
o
S
T
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-0.08 ! ! ! ! ! ! ]
—-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

Deutsche Mark

Figure 7.1:Scatter plot of the log returns of the Deutsche Mark and thesS®iianc.

of the log returns of the two currencies. A strong dependéeteeen the log returns

is visible. Based on &tica plots, we determined that k=50 is an appropriate number of
upper order statistics to be used in the estimation of thetsgdeneasure and the ranks
method selected 158 observation. With the help of the @itetroduced in Section
4.4 and previously used in Section 5, we decided that a 5 coamganixture model is

an adequate description of the spectral measure. An oveoxier the estimates of the
parameters of the model of the spectral measure is giverbile Tal. The mixture model
has two components in the first quadrant and three componmnettie third quadrant.

Almost all its mass is concentrated in the either the firsherthird quadrant, reflecting
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Table 7.1: Parameters of the Spectral Measure of the Deutsche Mark hadstiss

Franc
Mean Direction k weight
0.6646 7.11 0.4235
1.4942 494.84 0.0638
3.3562 58.20 0.1405
3.9860 11.82 0.2640
4.6044 110.53 0.1081

the tight dependence between the log returns of two cumenci

The parameters of the marginal distribution of the tailsoduced in Chapter 6 is

given in Table 7.2. Concerning the parameters of the GPD mddethe tails, we see

Table 7.2: Parameters of the marginal model of the tails for the log metuof the

Deutsche Mark and the Swiss Franc

Deutsche Mark: v,
0.0182
Kr
8.0810~*

Swiss Franc: vy
0.0213

Hr
-0.0019

57' ﬁr 1% gl ﬁl
0.0498 0.0054 0.0162 0.4347 0.0035

or D1 D2

0.0186 0.2350 0.2371

& By iz & B
-0.0332 0.0066 0.0185 0.4118 0.0044

or D1 D2

0.0219 0.2556 0.2246

that for both currencies the thresholdsndv, are approximately of the same size. The

estimates of the shape parametgref the left tails indicate regular varying tails with
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tail indexes of 2.3 for the Deutsche Mark and 2.4 in case ofWwess Franc. On the
other hand, it is surprising to see that the estimates offthpesparameters of the right
tails indicate that the tails are not very heavy. For the DM, see that the estimate
is & =0.0498, which corresponds to a tail index estimate of abOutFdr the SF, the
estimate of the shape parameter of the left §a#,-0.0332, is even negative, indicating a
distribution with a finite endpoint! It is however importantkeep in mind that the GPD
is described by all three parameters and not just the shapmpter. The right endpoint
of the GPD with the parameter values of the right tail of thasSwrranc log returns is
approximately 0.221. This is well outside of the data ramgethe largest log return of
the Swiss Franc is approximately 0.053. In Table 5.12 wenedéd the tail index of
the right the of the Swiss Franc as somewhere between 4.75 and the tail index of
the right tail of the Deutsche Mark between 4 and 4.5. TheSmates where mostly
based on the results of the QQ-estimator. Based on the Hill gdtimates as high as 6
are justifiable for both tail indexes. This also indicatest tihe tails are not very heavy.
These differences between the estimates of the tail indes=d on the parametric GPD
model and the non parametric estimates of the tail indexesdoan the Hill plot and the
QQ-estimator indicate the difficulty in accurately assegshe heaviness of the tails.
Finally, the parameters of the model of the body of the distion are listed in Table
7.3. We see that the tight dependence is also evident in tidelnob the body given in
Table 7.3, as our estimates for the parameters of the bigan@mal model indicate a
high correlation coefficient of 0.85349. Overall, the estied expected log return of the
log returns of the Deutsche Mark, implied by the parameteémeses of our model is
1.130810~%. For the Swiss Franc, the corresponding value is 2.0617, considerably
larger. The Vaky, of the log returns of the Deutsche Mark is 0.0103. In otherdsor

our model predicts that 5% of all daily log returns of the Behe Mark are losses that
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Table 7.3:Parameters of the body of the Deutsche Mark and the Swiss Franc
DM SF

Mean 8.360~° 2.0210~*
Std. Dev. 0.0056 0.0065
Correlation 0.85349

Weight of the body  0.9550

are more severe than -0.0103. Theg£8f the Deutsche Mark is 0.0156. Recall that,
given that the distribution is continuous, thes$s the expected value of the worst 5%
of all observations. The numbers for the Swiss Franc ardaimihe VaRy, of the
Swiss Franc is 0.0117 and the Ss 0.0184. We see that, while the Swiss Franc has
a larger expected log return, it is also riskier. The & 8f the Swiss Franc exceeds that
of the Deutsche Mark by about 18%.

We proceeded to find solutions to the optimization problevemgiby (7.16). We
fixed several levels of the expected log return and detewitine portfolios whose ex-
pected log return matches these levels, while at the saneenimimize the E$, among
all such portfolios. We mentioned earlier that theorelycale would only need to calcu-
late the optimal portfolio for one level of expected log retulhe risk and the positions
in each risk factor are linear functions of the expectedllevdog return. The rea-
son why we calculated several different optimal portfoimshat we used a numerical
approximation to the double integral of the model densitgriaer to calculate the dis-
tribution function of the portfolio. These approximatiangyht result in small mistakes.
By calculating several optimal portfolios for different &8 of expected log return, we
can assess the severity of the mistake and get a better tsbfithe optimal portfolios.

Table 7.4 gives an overview over two of the optimized poit®l Remember that the
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proportion between the number of Deutsche Mark and the nuaifl@wiss Francs is the

same for all levels of the expected log return. The first colgives the expected level

Table 7.4:Optimized portfolios of the Deutsche Mark and the Swiss Ffandifferent

levels of expected log returns.
Expected Return Units of DM  Units of SF  Portfolio kS

1. 1.1308107* -0.4018 0.7688 0.009601

2. 2.06171074 -0.6878 1.3772 0.017480

of log return of the portfolio. The expected log returnsdishere are the expected log
returns of the Deutsche Mark and the Swiss Franc, respgctiVee second and third
column give the positions in the Deutsche Mark and the Swiaad=in the portfolio,
respectively. The last column lists the estimate of the/&8 the portfolio, based on our
model. We decided to quantify the riskiness of the optimatfpto by the parameter

0o in the following equation:

Expected Shortfall at 5%= 3, - (Expected Retumn (7.30)

By comparing the different values of the coefficight for different models, we can
compare the risk measures in the optimal portfolios basetethree different models.
A higher coefficient indicates higher estimates of the riskhe optimal portfolio for

same levels of expected log return. In a similar fashion se gluantify the positions
in the optimal portfolio in each of the financial instrumen&ince the positions also

depend linearly on the expected log return of the portfelie,can write

Number of Shares of Risk Factor &= /3, - (Expected Return (7.31)

Number of Shares of Risk Factor 2= /3, - (Expected Returm

From the optimal portfolios listed in Table 7.4 we estimatiedse parameters for

each level of expected log return. For the coefficiénive obtained values between



228

84.37 and 85.29, based on the 11 levels of expected log eetioah we considered. We
see that the variance in these estimates induced by mistakiee numerical approxi-
mations is small. We observed a similarly small variancdadstimates of; and3,.
We used a least squares estimator to obtain the followinglesestimates for the three

coefficients from the results in Table 7.4:

Expected Shortfall at 5% = 84.59 - (Expected Return
Number of Deutsch Marks= —3291.5 - (Expected Return (7.32)

Number of Swiss Francs = 6655.5 - (Expected Return

With the help of these coefficients, we can calculate thenwgdtiportfolio with any
desired expected log return and its Expected Shortfall at 5%

We see that in the optimal portfolios we short the Deutschekiad long the Swiss
Franc. For every Deutsche Mark that we sell, we have to byproegmately, two Swiss
Francs in order to minimize the risk of the portfolio.

We noted earlier that there is a close dependence betwedngheturns of the
two currencies. A portfolio with a short position in one amcy and a long position
in the other currency attempts to reduce the variability loe portfolio. Assume for
example that the Swiss Franc experiences a large negagjretiarn. Almost certainly,
the Deutsche Mark will also experience a large negativeétgrn. The impact of such
a large negative log return of the Swiss Franc on the poaotfoly return will therefore
be softened by the positive log return of the shorted Deet8tark position.

An important and interesting question is how much influeteermodel of the tails,
based on the spectral measure and the GPD model for the ralaagls, has in deciding
the allocation of the funds in the optimal portfolios. Howehunfluence does the simple
model of the body have? We compare the optimal portfoliogtas our model with

the ones based on the bivariate normal model. The parantdtdre bivariate models
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are estimated by the sample mean, sample standard de\aatiosample correlation of

the dataset. We obtained the estimates of the parameted irs Table 7.5. We see

Table 7.5:Parameters of the bivariate normal model of the Deutschaddad the Swiss

Franc
fpv =1.17-100* &Gpy =0.00714

fsr =2.14107* &g =0.00821

Correlation:p=0.867

that the estimates of the expected log returns are veryasitalthe estimates based on
our model. The estimated &S of the Deutsche Mark, based on the normal model is
0.0146. The corresponding value for the Swiss Franc is (0.0A8 we observed for the
estimates based on our model, the Swiss Franc appears te bskiler asset, but it also
seems to be the one with the larger expected log return. Hetigeates of the £ are
about 10% smaller than the ones that we obtained based onaul@élm

Based on these numbers the portfolios minimizing the EBe VaR, and the vari-
ance of the portfolio were calculated for the same 11 expdeteels of log return that
we used in the calculations using our mixture model of thespkmeasure. Based on
these 11 optimal portfolios, we calculated the least squesemators of the coefficients

(o, 41 and3,. We obtained the following results:

Expected Shortfall at 5% = 70.05 - (Expected Return
Number of Deutsch Marks= —4233.1 - (Expected Return (7.33)
Number of Swiss Francs = 6968.9 - (Expected Return
Comparing with the results based on our model, we see thatdti®lps are fairly
similar to the ones that we obtained using our model. Howtwey are not the same

portfolios. The ratio between the units of the Deutsche Mant the Swiss Franc in the
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portfolios is -0.60743. That means that in an optimal pdidfior every Swiss Franc that
we buy, we sell 0.6 Deutsche Marks. Remember that the comegppratio was about -
.504 for the optimal portfolios based on our model. The déffees between the optimal
portfolios according to our model and the optimal portfsl@ccording to the normal
model is due to the different model of the joint distributionthe tails. Our refined
model, based on the spectral measure models joint largetagns differently than the
bivariate normal model and therefore implies differencethe optimal portfolios.

We also see that the estimates of the expected shortfasgamécantly smaller than
the ones we obtained based on our model. This is evident bp&ong the respective
coefficientsf, in (7.32) and (7.33). Based on our model, we estimaigd= 84.59,
while based on the normal model, we obtgin= 70.05. As we explain below in more
detail, we found that the empirical estimates of the, B®re much closer to the ones
predicted by our model than the ones based on the normal mbiislis not surprising,
since we had seen clear evidence that the left tails of b&t#utsche Mark and the
Swiss Franc are heavy tailed. Therefore the bivariate maagérestimates the size of
large losses, since it assumes that the tails are muchiijtate they truly are.

We present the results of the optimal portfolios whose etguElog returns are equal

to the ones used in 7.6.

Table 7.6:Optimized portfolios of the Deutsche Mark and the Swiss Ffandifferent

levels of expected log returns using a bivariate normal rhode
Expected Return Units of DM  Units of SF  Portfolio kS

1. 1.130810°4 -0.4786 0.7880 0.007921

2. 2.0617107* -0.8727 1.4368 0.014443

Compare these results with the portfolios in Table 7.4. Welsstghe short position
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in the Deutsche Mark as well as the long position in the Swiasaé&are somewhat larger
than in the portfolios based on our model. Also note that gtemates of the Esp, of
the portfolios is about 18% smaller than the ones that wemddebased on our model.
Turning to the meta t-distribution model, we first obtain thaximum likelihood
estimates of the parameters of the marginal Pearson Typeiattibution. We obtained

the parameter estimates listed in Table 7.7. Recall thatabeeds of freedom of a Pear-

Table 7.7: Parameters of the meta t distribution of the Deutsche Mar#t e Swiss

Franc
Upy = 3.37 Jipy = —2.49-107° Gpyr = 0.00483

Usp = 3.45  Jigr = 7.29-107° osr = 0.00561
Degrees of freedom of copula: ve = 4.2594

Correlation coefficient of P: p = 0.889

son Type VIl distribution are equal to the tail index of theresponding distribution.
We see that the corresponding estimates are well in line witht we expect from a
reasonable model. However, it is striking that the MLE of kbe@ation parameten for
the Deutsche Mark is negative. Recall that the location patenof a Pearson Type VI
distribution is equal to its expectation. Since the sampdamof the Deutsche Mark is
1.17-1074, this is disturbing and certainly not very realistic. We doaoted a simulation
study to investigate the quality and variability of the nmarim likelihood estimates of
the parameters of the Pearson Type VII distribution. Wetered000 datasets, each
with the same sample size as the dataset of the log returhe @f¢utsch Mark and the
Swiss Franc. Each dataset consisted of i.i.d realizatiotitsasPearson Type VII distri-
bution with the parameters equal to the estimates of thedohatMark, given in Table

7.7. We found that the distribution of the estimates of tleatmn parametexr can well
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be approximated by a normal distribution. The mean and atamkviation of the 1000
estimates of the location parameter are -2.62° and 1.010~%, respectively. The mean
is very close to the true value of -2.49-5. While this shows that the maximum likeli-
hood estimator is not a bad estimation in general for therpatars of a Pearson Type
VII distribution, it is not practical in our case. The estimaof the location parameter
needs to be very precise, especially because the true egpaeian seems to be so close
to 0. We see that the standard deviation is much larger tlealibolute value of the true
parameter. This means that the estimates afe not reliable for our purpose. Indeed,
we found in our simulation study that 40% of the estimateg bfave a positive sign,
despite the negative sign of the true value. In the light eSéresults it seems that the
negative estimate of the location parameter of the Deutbtdm is the result of a an
estimator that is not precise enough, given the near zeus vlthe parameter.

The estimated Eg, of the Deutsche Mark, based on the parameters in Table 7.7 is
0.017184. The Swiss Franc has an estimateg, % 0.01953. Both estimates a are a
little larger than the estimates based on our model.

Despite the dubious nature of the parameter estimate obttegibn parameter of
the marginal distribution we proceeded to use these estsnatcalculate the estimates
of the parameters of the copula (7.25). The parameter gstsnodthe copula are given
in Table 7.7. The parameters reflect the close dependenbte idataset. We see that
the estimate of the degree of freedom of the copula is sigmifig different from the
estimates of the degree of freedom of the marginals. Thisates that a simple mul-
tivariate t distribution is indeed not an adequate desonpaf the data and that a more
complicated model, like the one that we used, is indeed sacgs

We calculated optimal portfolios with respect to thesg $or the same 11 different

levels of expected log return that we used for our model aachttrmal model. Based
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on these results we obtained the following estimates foctiefficientss,, 5, and5s:

Expected Shortfall at 5% = 89.18 - (Expected Return
Number of Deutsch Marks= —9998.4 - (Expected Retum (7.34)

Number of Swiss Francs = 10862 - (Expected Return

As a result of the negative expected value of the Deutsché&,Mhe portfolios that
minimize the expected shortfall are fairly different fronetone that we obtained using
our model or the bivariate normal model. The optimal poitfdiolds a short position
of about 1.08 DM for every Swiss Franc held long. The fact thathold a large short
position in the Deutsche Mark is due to the negative expdotereturn of the Deutsche
Mark and the close dependence between the log return of theuwencies. By holding
a short position in the Deutsche Mark we are holding, acogrth the meta t distribution
model, a position with a positive expected log return. Initoid it reduces the risk
of large negative log returns, since large negative logrmstof the Swiss Franc are
offset by large positive log return of the short position Ire tDeutsche Mark. The
corresponding estimates of the JzSare approximately the same the ones obtained with
our model, since the estimate of the coefficighptis fairly close to the one that we
obtained based on our model.

The portfolios that minimize the E§ for the same levels of expected log return as

in Table 7.6 are given in Table 7.8.

Table 7.8:0Optimized portfolios of the Deutsche Mark and the Swiss Ftesiitg a meta

t distribution.
Expected Return Units of DM  Units of SF  Portfolio kS

1. 1.13081071 -1.2290 1.1304 0.01011

2. 2.0617107* -2.2358 2.0626 0.01838
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In order to compare the three models empirically, we contp#ne optimal port-
folios with an expected log return of 4.1238-4, twice the expected log return of the
Swiss Franc, from each of the three models. It is customaryhi® purpose of com-
paring the performance of different models to split the sketan a so called building
sample and a validation sample. The parameters of the moglelstimated based on
the data in the building sample only, while the performanfdi® competing models is
evaluated using the data in the evaluation sample. We cantparperformance of the
three models this way in Section 7.4. For the dataset comsida Sections 7.3.1 and
7.3.2, we found that the sample size was not sufficient toval®to split the dataset and
obtain two datasets of sufficient sample size. Remember thabed a dataset of a large
sample size to obtain a sufficient number of extreme obsensthat can then be used
to estimate the parameters of the mixture model. We therefealuate the competing
models using the same dataset was used to estimate the peraofehe models. We
found the results to be consistent with the results in Sedtid.

Since the optimal portfolio according to our model, basedhenspectral measure,
and the normal model are very similar, their performancelss &ery similar. The
optimal portfolio based on our model had an average logmeafi#.2910~*, while the
optimal portfolio based on the normal model had an averagedturn of 4.1210~4.
The empirical estimate of the Egfor the portfolio based on our model is 0.0339. Our
model had given us an estimated of 0.034793. The portfobetb@n the normal model
has an empirical Eg, of 0.0326, while the corresponding estimate based on thaador
model was 0.028887. We see that the normal model seems toestidete the true
risk, while the estimate from our model is very close to thekgital estimate.

In contrast to these numbers, the corresponding optiméfigliorbased on the meta

t distribution had an average log return of only 319" and an empirical Eg, of
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0.0398, compared with an estimated value of 0.036757 basdédgeometa t model. Its

average log return is significantly lower than predictedtmy tnodel and the other two

portfolios. In addition it also has a much higher risk, as soead by the empirical E&.

7.3.2 The Log Returns of IBM and Intel

While the log returns of the Deutsche Mark and the Swiss Frahiog a very tight

overall dependence, the dataset of the log returns of IBM aiadidloes not show such a

tight dependence. This is evident from the scatter plot®fadly returns, given in Figure

7.2. The same statement can be made about the dependenedaitsthThe parameters
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Figure 7.2:Scatter plot of the log returns of the stocks of IBM and Intel.

of the mixture model of the spectral measure of the log retwfithe Deutsche Mark

and the Swiss Franc indicate a tighter dependence than thesponding parameters

for the model of the log returns of IBM and Intel.

We already discussed in a Section 5.2 how we determined thelrfar the spectral
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measure of the joint distribution of the log returns of thecktprices of IBM and Intel.

Table 7.9 lists the parameters of that model.

Table 7.9:Parameters of the Spectral Measure of IBM and Intel

Mean Direction k weight

0.02 690.99 0.1155
0.08 39.75 0.1075
1.11 8.25 0.1037
1.54 281.68 0.1792
3.19 217.60 0.1548
3.88 3.74 0.1862
4.68 215.95 0.1528

The parameters of the marginal distribution of the taile,gven in Table 7.10. We

Table 7.10:Parameters of the Marginal Model of the tails for the log meisi of IBM

and Intel

IBM

Intel:

Vy ’Sr 67" 14 fl Bl
0.0360 0.2175 0.0129 0.0344 0.4261 0.0097

ur or y41 D2
0.0015 0.0233 0.2458 0.2613

Vy 57" 67" 14/ gl ﬁl
0.0513 0.1211 0.0155 0.0523 0.3008 0.0163

M or P D2

-0.0097 0.0483 0.2215 0.1483

see from the values in Table 7.10 that the GPD models for thgina tails indicate
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that for both stocks the left and the right tails are reguyng. The left tails appear
to be heavier than the right tails. The estimates of tailxedeof the left tail, based on
the shape parameters of the GPD models, are 2.3 for IBM anaBIBtél.

Finally, the parameters of the model of the body of the distion are listed in

Table 7.11. We see that the linear correlation between tkerghtions in the body of

Table 7.11:Parameters of the body of the Deutsche Mark and the Swiss Franc
IBM Intel

Mean 1.95107% 1.3910°3
Std. Dev. 0.013807 0.02118
Correlation 0.34775

Weight of the body 0.9572

the joint distribution of IBM and Intel is much smaller tharetborresponding value for
the Deutsche Mark and the Swiss Franc in the last section.

The estimate of the E§ of the log returns of IBM, based on our model is 0.0401
and the corresponding estimate for the log returns of Iist€l.0609. Also, based on
our model, the expected log return of the log returns of IBM.3320~* and the cor-
responding value for Intel is 1.10% 3. We see that while Intel is riskier it also has a
larger expected log return.

As we did in the last section with the Deutsche Mark and thesS\Wranc, we cal-
culated the optimal portfolios for different levels of thepected log return. We then
use a least squares estimator to estimate the coefficiemisdrethe expected log return

and the risk measure and the positions of the two stocks ipdhéolio. We obtain the
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following estimates:

Expected Shortfall at 5% = 54.318 - (Expected Return
Number of shares fo IBM = —244.75 - (Expected Retun (7.35)
Number of shares of Intel= 949.33 - (Expected Return

An overview over the optimal portfolios, whose expectedretyirns equal the expected

log returns of the two stocks, is given in Table 7.12. We segttie optimal portfolio

Table 7.12:0ptimized portfolios of IBM and Intel based on our model.

Expected Return Units of IBM Units of Intel Portfolio Esp
1. 2.03461074 -0.0509 0.1933 0.0111

2. 1.105810°3 -0.2656 1.0489 0.0601

is achieved by short selling a small amount of IBM stock shod buying the stock of
Intel. For every stock of IBM that we sell, we have to buy, apiorately, four stocks of
Intel, in order to minimize the risk of the portfolio. Sindeetexpected log return of the
stock of Intel is about 5 times as large as the expected lagrretf the stock of IBM,
it seems that the optimal portfolio is achieved by buyinguttibe amount of shares of
Intel necessary to achieve the desired expected log returrealuce the risk buy selling
a small fraction of IBM’s stock short. Even though the tail degence between the two
stocks is not as tight as the dependence between the twanciasan the last section,
large negative log returns of Intel tend to happen at the daneeas large negative log
returns of IBM. Therefore, a short position in IBM reduces theesity of the negative
log returns of the portfolio caused by the large negativeréigrns of Intel.

We compare these results with the optimal portfolios basethe bivariate normal
model. We obtained the estimates of the parameters of tlheidie normal distribution

that we present in Table 7.13. Comparing these estimateghéatharameter estimates
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Table 7.13:Parameters of the bivariate normal model of IBM and Intel.
Orpm =2.19-107% Gy =0.01888

ﬁ]ntel :107410_3 alntel =0.02729

Correlation:p=0.373

that we obtained for the distribution of the log returns of eutsche Mark and the
Swiss Franc, we see that the linear correlation coefficeemiLich smaller. This indicates
that the dependence between the log returns of the two siscala as strong as the
dependence between the two currencies. We also see thatpgleted log return of
Intel is almost 5 times as large as the expected log returBif. IAt the same time
the standard deviation of Intel is only about 50% larger tthenstandard deviation of
IBM. The estimates of the E& based on the normal model are 0.0387 for the log
return of IBM and 0.0552 for the log returns of Intel. Both numgbare very similar to
the estimates that we obtained based on our model. Based parttmeters in Table
7.13 we calculated the portfolio that minimizes the E& given levels of expected log

return. The resulting estimates of the coefficientss; andgj; are:

Expected Shortfall at 5% = 51.235 - (Expected Return
Number of shares fo IBM= —120.26 - (Expected Return (7.36)

Number of shares of Intel= 955.8 - (Expected Return

The optimal portfolios whose expected log return is equiiécexpected log returns
of the two stocks are given in Table 7.14. The results aréyfaimilar to the results
based on our model. We short about one share of IBM for evely sigares of Intel
that we buy. The reasons appears to be to be the same as footheasitions of IBM
in the optimal portfolios based on our model. Similar to tasecof the Deutsche Mark

and the Swiss Franc, the estimates of thg B&he optimal portfolios are smaller than



240

Table 7.14:Optimized portfolios of IBM and Intel based on a bivariatemal model.

Expected Return  Units of IBM Units of Intel Portfolio B
1. 2.03461074 -0.0245 0.1945 0.0104

2. 1.10581073 -0.1330 1.0569 0.0567

the estimates that we obtained with our model. This is agaétd the lighter tails of
the bivariate normal model. However, the coefficiensire very close to each other, so
that the corresponding estimates of the risk measure bast#tedwo different models
are very close.

For the meta t distribution we obtained the parameter estsrgiven in Table 7.15.

Table 7.15:Parameters of the meta t distribution of IBM and Intel
/V\IBM =3.92 ﬁIBM =3.36-107° (/T\IB]W = 0.01302

Ulntel = 5.26  Jipter = 1.2731 - 1073 Grnter = 0.021304
Degrees of freedom of copula: ve = 7.6499

Correlation coefficient of P: p = 0.408

We see that the expected log return of Intel is much larger tha one of IBM. We
also see that the degrees of freedom of the distribution tef Ia considerably larger
than the one of IBM. This means that the Pearson Type VIl digtion indicates that
the tails of Intel are much lighter than the tails of IBM. Thanéirms our findings based
on the estimates of the shape parameters of the GPD model®vidn the estimates of
the tail index are very different. We mentioned before thatttil indexes that the GPD
fits to the left tail of IBM and Intel implied are 2.3 and 3.3 respively. These estimates
are significantly smaller than the tail index estimategtish Table 7.15.

Since the left tail of Intel seems to have the lighter tailading to the Pearson
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Type VII model, it is a little surprising to see that the 3f IBM is actually smaller.
It's value is 0.0421, compared with the fSof Intel, which is 0.0586. Both estimates
are about of the same size as the estimates that we obtaised ba our model and
the normal model. As for the parameter estimates of the epfndth the degrees of
freedom and the correlation coefficient indicate, that thpeshdence is not as close as
the dependence of the two currencies considered in thedessbs.

Based on these parameters we calculated the portfolios thahize the ESy, for
different levels of expected log return. Based on these @#, we obtained the fol-

lowing estimates for the coefficients, 5, andj, as befores,, 5, andj3, are:

Expected Shortfall at 5% = 42.649 - (Expected Return
Number of shares fo IBM= —438 - (Expected Retum (7.37)
Number of shares of Intel=796.98 - (Expected Return

We again give the two optimal portfolios, whose expected&igrn equals the expected

log return of the two stocks in Table 7.16. As for the portislibased on our model

Table 7.16:Optimized portfolios of IBM and Intel for different levels expected log

return based on the meta t model.
Expected Return Units of IBM  Units of Intel Portfolio Esp

1. 2.03461074 -0.0891 0.1622 0.0087

2. 1.105810°3 -0.4847 0.8813 0.0472

and the bivariate normal distribution, we short the stockBdfl and long Intel’s stock.
However, the ratio of the two positions is different from girevious two cases. We only
long about 2 shares of Intel for every share of IBM that we shfgossible explanation
comes again from the fact that the expected log return of IBMush smaller than the

one of Intel, while its risk measure is only moderately serallt is therefore the best
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strategy to short the stock of IBM in an attempt to reduce thgaich of the negative
large log returns of the stock of Intel on the log return of ploetfolio.

We again compared the resulting portfolios empirically $hene we compared the
corresponding portfolios of the Deutsch Mark and the Swiss€& The optimal port-
folio with an expected log return of 3.31753, based on our model, has an empirical
ES;y, of 0.1848. The corresponding estimatedsgSbased on our model, is 0.1802.
The average log return of the portfolio is 3.208% 3. The optimal portfolio based on
the normal model has a slightly larger empirical;E®f 0.1910 and an average log
return of 3.31710~3. The estimated Eg based on the normal model for that portfolio
is however only 0.16997. Finally the optimal portfolio bds® the meta t model has
a smaller empirical Eg, of 0.15027. Its estimated E% based on the meta t model is
0.14149. The average log return is however also much smabenely 2.52030-3.
The portfolios based on our model and the bivariate modebdppeoximately equiva-
lent. The optimal portfolio based on the normal model, havekas an empirical risk
measure that is 12% larger than predicted by the normal mdtielmodel based on the
meta t distribution suffers from the fact that it does notiaeh the desired expected log
return. This is again a consequence of the unprecise estirfiaitthe location parame-
ter. We observed these shortcomings of the normal modelrenohéta t model already

in the previous section for the Deutsche Mark and the Swiasdzr

7.4 Comparison of the Models Using BMW and Siemens Stock Re-

turns

In order to better compare the three different models, wd treeBMW-Siemens dataset

to conduct an empirical study by splitting the dataset. Weneded the parameters
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of the three models using the first 70% of the observations. référ to this dataset
with a sample size of 4302 as the “model building sample”. \Alewated the optimal
portfolios based on these models. We then evaluated therpehce of these portfolios
using the remaining 30% of the observations in the dataset dataset containing these
observations is referred to as the “validation sample”. \lewdated the portfolios that
minimize the E$y. In addition, we also calculated the portfolios that mirdenthe

ES,, and compared the performance of these portfolios as well.

7.4.1 Parameter Estimation and Calculation of the Optimal Portfo-
lios

We first determined the appropriate model for the spectralsmes of the joint distribu-
tion. Based on a &tica plot, we determined the number of upper order statistied irs
the estimation of the spectral measure. We foundthat60 was the best choice. The
ranks method selected 207 data points. We chose a mixturelmati 7 components,
based on the results from the Likelihood Ratio test with aigance level of 1%. The
parameters estimates of the model are given in Table 7.1& BT@ suggested a model
with 6 components, while the LR test with a significance lefed% and the AIC sug-
gested 8 components. We see that there are 5 componentseraahih3,4,5 and 7 in
Table 7.17, modelling the clusters of the points found neadirections of the four axis
of the cartesian coordinate system. Components 5 and 7 nieeluster located at the
negative y axis. We have two components, numbered 2 and 6lingdee dependence
in the first and third quadrant, respectively.

The parameter estimates of the marginal models of the taipoment of the model
are listed in Table 7.18. The estimates of tail indexes oteftdail, based on the GPD

models, are 5.4 for BMW and 3.1 for Siemens. The right tail of BM&b appears to
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Table 7.17:Parameters of the Spectral Measure of BMW and Siemens

Mean Direction k  weight
1. 0.0539 217.60 0.1755
2. 0.9680 5.49 0.1892
3. 1.5408 600.21 0.1425
4. 3.2584 82.66 0.1638
5. 4.6739 697.24 0.0839
6. 4.0272 10.80 0.1778
7. 4.5089 427.19 0.0673

Table 7.18:Parameters of the Marginal Model of the tails of BMW and Siesne

BMW:

Siemens:

Uy fr ﬁr Y fl Bl
0.0394 0.2048 0.0113 0.0386 0.1852 0.0112

Hr or P1 P2
-0.0045 0.0345 0.2335 0.2041

Vp fr 67" 14 fl ﬁl
0.0285 -0.0156 0.0087 0.0284 0.3159 0.0086

Hr or y41 D2
-0.0043 0.0264 0.2376 0.2029
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be regular varying. The corresponding tail index estimatged on the GPD model is
about 4.9. On the other hand, the estimate of the shape ptrafoethe right tail of
Siemens is negative. This indicates, that the tail has afirght endpoint. The finite
right endpoint of the GPD with parameters= 0.0285, &, = —0.0156 andj3,. = 0.0087
is 0.5848. This is well outside of the range of the data, adattgest log return for the
stock of Siemens in the model building dataset is 0.0730. sito@tion is thus similar
to the case of the right tail of the Swiss Franc, discusse@atié 7.3.1.

Finally, the parameters of the model of the body of the distron are listed in Table

7.19. The numbers are similar to the ones we observed in #eafahe log returns of

Table 7.19:Parameters of the body of the Deutsche Mark and the Swiss Franc
BMW Siemens

Mean 4.1810~* 3.41107*
Std. Dev. 0.0117 0.0090
Correlation 0.5527

Weight of the body 0.9519

IBM and Intel.

Based on our model, the stock of BMW has an expected log retl8164fl0—*. The
expected log return of the stock of Siemens is 2.81*. The ESy, of the log returns of
BMW is 0.0337. The corresponding estimate for thgJEB 0.0577. For Siemens, the
corresponding estimates are 0.0260 for the,E&81d 0.0450 for the E. The stock of
BMW is riskier, but also has a larger expected log return tharstock Siemens.

Based on this model, we determined the optimal portfolioséweral different levels
of expected log returns. Based on these results, we founctiogving relationships

between the expected log return of the portfolio and thetjoosi in the optimal portfolio
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and the corresponding risk measure.

Expected Shortfall at 5% Level= 90.1216 - (Expected Return)

Number of Shares of BMW = 2088.5 - (Expected Return) (7.38)

Number of shares of Siemens = 1028.8 - (Expected Return)
The optimal portfolios therefore contain 2.0298 shares ofVBNbr every share of
Siemens. Table 7.20 gives an overview over the optimal playf whose expected
log returns are equal to the ones of the two stocks, based romadel. The expected
log return of the first portfolio is equal to the expected leturn of Siemens and the

second has the same expected log return as BMW.

Table 7.20:Optimized portfolios of BMW and Siemens for different lewdlexpected

log return based on our model.

Expected Return Shares of BMW Shares of Siemens Portfolig ES
1. 2.3:1074 0.4835 0.2381 0.02086

2. 3.6410™ 0.8350 0.3752 0.03287

Expected Return Shares of BMW Shares of Siemens Portfolig ES
1. 2.311074 0.4820 0.2404 0.03657

2. 3.6410™ 0.7595 0.3788 0.05763

For the portfolios that minimize the Eg, we obtained the following estimates of
the coefficients between the expected level of log returnthadisk and the number of

shares of each stock in the optimal portfolios.

Expected Shortfall at 1% Level= 158.01 - (Expected Return)
Number of Shares of BMW = 2082.3 - (Expected Return) (7.39)

Number of shares of Siemens = 1038.6 - (Expected Return)
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This means that for every share of Siemens we have to incl0@42 shares of BMW in
a optimal portfolio. We see that the optimal portfolios wilspect to the E and the
ES,y are very similar. Table 7.20 again provides an overview tveoptimal portfolios
whose expected log returns are equal to the expected lognsebfithe two stocks. We
see that for the portfolios whose expected log returns mielexpected log return of
Siemens, the risk is only about 80% of the risk of the stockiefriens, both for the
ES,, and the E$;. On the other hand, the portfolios whose expected log retquals
the expected log return of BMW, the risk has only been venhdlygeduced.

For the bivariate normal model, we obtained the parametanates given in Table

7.21. Based on these numbers we estimate that thg &She log returns of BMW is

Table 7.21:Parameters of the bivariate normal model of BMW and Siemens.
//IBMW =3.54.10~* aBMW =0.01501

Osiemens =2.38:107*%  Ggiemens =0.01138

Correlation:p=0.60077

0.0306 and that the E& is 0.0396. The corresponding numbers of the log returns of
Siemens are 0.023226 for the gSand 0.03008 for the E&. While the estimates of
the ESy, are fairly close to the ones that we obtained based on ourIptbdesstimates
of the ESy, are much smaller. This is due to the fact that our model hadaegarying
left tails, while the tails of the normal model are much light

As for our model, BMW is the riskier position but also has a tgeaxpected log
return. The correlation between the log returns of the twolks is larger than what we
observed for IBM and Intel, but still smaller than the one letw the Deutsche Mark
and the Swiss Frank.

We obtained the following estimates of the relationshipsveen the expected log
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return of the portfolio and the positions in the optimal paid and the corresponding

risk measure.

Expected Shortfall at 5% Level= 81.25 - (Expected Return)
Number of Shares of BMW = 1832.2 - (Expected Return) (7.40)

Number of shares of Siemens = 1472.5 - (Expected Return)

We see that the proportion between the number of shares of BiMd\ttee number
of shares of Siemens is fairly different from the one we saWriB8) for the optimal
portfolios based on our model with respect to thed=SThe optimal portfolio contains
1.24 shares of BMW for every share of Siemens. The estimategg iE&lso consistently
lower than the estimates based on our model, because oult halkeavier tails than
the normal model. As we mentioned before, the proportiorhefrtumber of shares is
the same in the portfolio minimizing the BSas it is in the portfolio minimizing the
ES»,. The relationship between the ESand the expected log return is given by the

following equation.

Expected Shortfall at 1% Level= 105.28 - (Expected Return) (7.41)

As for the EQy, the estimates of the Eg based on our model are larger than the ones
based on the normal model. For theskSthe estimates of the risk based on our model
are approximately 10% larger than the ones based on the horauel. For the E§;
the estimates based on our model are even 50% larger thandbdased on the normal
model. We illustrate this again in Table 7.22 by listing tiptimal portfolios based on
the normal model with the same expected log return as theioAeble7.20.

For the meta t distribution model, we obtained the paramaetstimates presented in
Table 7.23. Both marginal distributions have a similar tadax close to 3. We see that

the location parameter of the model of Siemens is largertth@one of BMW. Contrary
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Table 7.22:0Optimized portfolios based on the normal model.

Expected Return Shares of BMW Shares of Siemens Portfolig ES
2.3110 0.4241 0.34086 0.018808

3.6410* 0.6683 0.53713 0.029638

Expected Return Shares of BMW Shares of Siemens Portfolig ES
2.3210~* 0.4241 0.34086 0.024371

3.6410* 0.6683 0.53713 0.038404

Table 7.23:Parameters of the meta t distribution of BMW and Siemens

ﬁSiemens = 3.033 ﬁSiemens = 3.176 - 1074 a-\Siemens = 0.00727
Degrees of freedom of copula: vo = 4.9437

Correlation coefficient of P: p=10.63188
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to the other models, the meta t distribution model hencenddhat Siemens has a larger
expected log return than BMW. Based on the model for the mdrdistibutions the
ES;», of BMW is 0.0375 and the Eg is 0.0694. Siemens has an estimated.E&f
0.0276 and the B is estimated as 0.0499. All these numbers are comparalildivat
numbers we obtained based on our model. The major differercgared to the other
two models is again found in the estimates of the expectedeingn.

Based on the parameter estimates of Table 7.23, we calctteg@gtimal portfolios
for several different levels of expected log return. Froestihwe obtained the following
estimates of the relationships between the expected lagref the portfolio and the
positions in the optimal portfolio and the correspondirslf measure, based on the meta

t model.

Expected Shortfall at 5% Level= 77.22 - (Expected Return)
Number of Shares of BMW = —1232- (Expected Return) (7.42)

Number of shares of Siemens = 3521.6 - (Expected Return)

For the portfolios that are optimal with respect to thgd3he corresponding equations

are

Expected Shortfall at 5% Level= 139.19 - (Expected Return)
Number of Shares of BMW = —1268.2 - (Expected Return) (7.43)

Number of shares of Siemens = 3532.5 - (Expected Return)

These numbers are very different than the ones based on aielrand the normal
model. The stock of BMW has a smaller log return and a larg&ra@npared to the
stock of Siemens. It is therefore not surprising to see tb#t or the EQy, and the
ES, the optimal portfolios are achieved by holding a short pasiin the stock of
BMW and a long position in the stock of Siemens. The propostisetween the number

of shares held in an optimal portfolio are very similar inlbotises. For every share



251

that we sell short in a portfolio that is optimal with respexthe ESy,, we buy about
2.85 shares of the stock of Siemens. For the portfolios treabptimal with respect
to the ESy, the corresponding ratio is 2.25. The coefficient betweerettpected log
return and the risk of the optimal portfolio for the ESis larger than for the normal
model. Surprisingly, the same is not true for the coefficintthe ESy, which is
smaller than its counterpart based on the normal model. Bmficients are smaller
than the corresponding coefficients based on our model. Am@rgioned before, this
means that the ESestimates based on the meta t distribution model are snibhder
the ones based on our model, but thg £8stimates are larger than the ones based on
the normal distribution model. This point is illustratedTable 7.24, which lists the
optimal portfolios and the corresponding estimates of tble measures, based on the

meta t distribution model, for the same expected log retasis Table 7.20 and 7.22.

Table 7.24:0Optimized portfolios based on the meta t model.

Expected Return Shares of BMW Shares of Siemens Portfolig ES
1. 23110 -0.2851 0.8152 0.017875

2. 3.6410* -0.4494 1.2846 0.028168

Expected Return Shares of BMW Shares of Siemens Portfolig ES
1. 2.321074 -0.29357 0.81772 0.032221

2. 3.6410™ -0.46261 1.2886 0.050773
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7.4.2 Moment of Truth: Comparison of the Performance of the

Models

We now compare the performance of the different portfol@asdal on their performance
using the validation sample. It consists of the last 1844nplagions of the entire dataset.
Remember that these observation were not included in thelrbadéing sample. Fig-

ure 7.3 shows a scatter plot of the model building and thelaiabn sample. We see that

Model building sample Validation sample
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05+ ++
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log return of Intel
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Figure 7.3:Scatter plot of the “model building” and the “validation” saple of BMW

and Siemens

the dependence in the tails seems to be more pronouncedvalttiation sample than
in the model building sample. An indication are the joingpositive and negative log
returns visible in the right hand plot of Figure 7.3.

For each of the optimal portfolios that we found in the lasijtier, we calculated

the empirical mean and the corresponding empirical estimoithe risk measure based
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on the observations in the validation sample. Since the kasipe of the validation
sample is 1844, the empirical estimates of the/E&e based on the 92 largest negative
log returns of the corresponding portfolios. This is a sangjte that gives us confidence
about the validity of the corresponding estimates. On therohand, the ES, is only
based on 18 observations. Since we did not regard this sasiggdeas sufficient to
obtain reliable estimates of the ES, we additionally esttidoth risk measures based
on a parametric model. We based these estimate on a GPD fie d¢éfthtail of the
log returns of the portfolio. We found that GPD fits based @100 largest negative
observations provided fits to the tail distributions.

Since the portfolios and the resulting risk measures depeaarly on the expected
log return, the specific level expected log return used inateysis is irrelevant. We
decided to use an expected log return of 3L64%. That is 10 times the estimated ex-
pected log return of the log return of BMW, based on our modabl|§ 7.25 gives an
overview over the performance of the different optimal foibs in the validation sam-

ple. We see that none of the three portfolios reaches thecteghtog return, 3.6403,

Table 7.25:Performance of the optimal portfolios with respect to theES
Average Return Emp. Eg GPDESy Predicted ES;

Our Model 2.93171073 0.31981 0.32063 0.3287
Bivariate Normal 2.8937073 0.32852 0.32918 0.2960

Meta t 0.602410~3 0.2506 0.25164 0.2817

that was predicted by the respective models. The averagestagns of the portfolios
based on our model and the normal model are fairly close evthé portfolio based on
the meta t distribution has a much smaller average log reWesee that the empirical

estimates of the E& and the estimates of the ESbased on the GPD models are very
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similar. This indicates that the estimates are indeedbieliand accurate. The differ-
ences between the estimates for the different portfoliesoéi larger magnitude than
the differences between the empirical estimates and the &8Bd estimates. The op-
timal portfolio based on our model has a larger average lhgnend at the same time
a smaller Eg; than the optimal portfolio based on the normal model. Eveadh the
differences are not dramatic, it shows that the portfoliedabon our model outperforms
the one based on the normal model. As for the portfolio basethe meta t model,
its ESy¢;, is about 23% smaller than the ESof the other two portfolios. But at the
same time, its expected log return is only about 20% of theesponding log returns
of the other two portfolios. It is also striking that only amodel was able to accurately
predict the ESy, based on the model building sample. The corresponding atsnb
that we have already mentioned above, are again listed liasheolumn of Table 7.25.
While the normal model has an ESthat is about 11% larger than predicted, the portfo-
lio based on the meta t model overestimates thg,E¥he estimates of the Eg based
on the validation sample is only about 89% of the predicteg/H#sed on the model
building sample.

Table 7.26 gives an overview over the performance in thelaabn sample of the

different portfolios that were optimized with respect te t8S+,. The picture is very

Table 7.26:Performance of the optimal portfolios with respect to theES
Average Return Emp. E§ GPDESy Predicted Eg;

Our Model 2.9302003 0.55821 0.57654 0.57638
Bivariate Normal 2.89370° 0.57687 0.59411 0.38404

Meta t 0.5678103 0.41589 0.4281642 0.50773

similar for the portfolios that were optimized with respaxthe ESy,. The differences
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between the models became much more accentuated. The odbl that accurately
predicted the E, based on the model building sample is our model. The diffexen
between the predicted B and the estimates of the ESbased on the validation are
very small.

The normal model now severely underestimates the risk. diedo the fact that the
normal model underestimates the heaviness of the tailsssliraes, that the portfolio
distribution has a normal distribution. In reality the I&fil is regular varying. Based on
our GPD fits, we found that all portfolios have a regular vagyleft tail with tail indexes
between 2.5 and 3. As a consequence the estimates @f EE&ed on the validation
sample is about 55% larger than predicted by the normal model

The meta t model severely overestimates the risk of the spporeding optimal port-
folio. As we saw for the result with respect to thesgSthe portfolio based on the meta
t model has an average log return that is not even close taxfiexted log return that
was predicted my the meta t model. We already mentioned lieag¢stimation of the
expected log return is very unreliable in the case of the inetadel. This is the reason
for the poor performance of the portfolio based on the metadeh

In conclusion, we see that our model based on the spectraureperforms much
better than the other two models. While the optimal portolmsed on the normal
model are fairly similar to the ones based on our model, tleeyrsto have a slightly
higher risk. The main deficit of the normal model is that itesely underestimates the
risk of the portfolio, because the tails of the model are miighter than the actual
tails of the data. The meta t model is not a valid choice in tlesgnt form, since the
estimated expected log returns of the marginal componeatsraeliable. This leads
to portfolios that do not achieve the expected log retury tire designed to have. In

addition, despite having a much smaller average log retimey have a risk that is
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comparable in size to the risk of the portfolios based on oadeh and the normal

model.
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