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A multivariate regular varying distribution can be characterized by its marginals and

a finite measure on the unit sphere. That measure is referred to as the spectral mea-

sure of the distribution. The spectral measure describes the structure of the dependence

between the marginal distributions. An important class of multivariate regular varying

distributions are multivariate extreme value distributions. Existing models for multivari-

ate regular varying distributions in general and multivariate extreme value distributions

in particular do not utilize the spectral measure. They focus on closed form equations

of the cumulative distribution function. The resulting models are not flexible enough to

give a realistic and adequate description of the dependencestructure of real life data.

We propose a new model for multivariate regular varying distributions, based on a

very flexible parametric model of the spectral measure. We use a finite mixture model

to obtain a model with as much flexibility as needed to accurately describe the spectral

measure of real life data.

Since the spectral measure is a measure on the unit sphere, wechose directional

distributions as the distributions of the components of themixture model. Directional

distributions provide models for the distribution of random variables on unit spheres. In

particular, we use the von Mises-Fisher distribution. Its properties allow it to be inter-



preted as an directional analogue of the well known normal distribution on a Euclidian

space.

We describe how to estimate the parameters of this new model from datasets. We

introduce a modified version of the likelihood ratio test to decide on how many compo-

nents are needed for an accurate model of the spectral measure.

We show how our model explains the structure of the spectral measure of several fi-

nancial time series. We develop a comprehensive model for a multivariate regular vary-

ing distribution that is based on our model of the spectral measure. As one particular

application of this new model we describe how it can be used for portfolio optimization.

We found that our model gives much more accurate results thantwo other well estab-

lished models. It significantly improves on the deficienciesof the two existing models.
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Chapter 1

Introduction
In the recent years significant attention has been paid to thedevelopment of models for

multivariate distributions. The main motivation was the lack of good models for the joint

distribution of returns of financial assets. The difficulty in creating reasonable models

is the often complex structure of the dependence between such assets. Increasingly, the

concept of copulas has been advertised as a versatile tool tocreate such distributions.

A copula is a multivariate distribution whose marginals have a uniform distribution on

[0,1]. It is used as a model of the dependence structure. Together with appropriate mod-

els for the marginal distributions they can be used as a modelfor the joint distribution

of the assets of interest. We refer to Joe (1997) and Embrechts et al. (2003) as excellent

references on copulas and multivariate distributions.

The most popular copulas are the ones based on elliptical distributions. Prominent

members of the family of elliptical distributions are the multivariate normal and the

multivariate t distributions. The dependence structure inan elliptical distribution can

be characterized by its correlation matrix. It is this simplicity that makes elliptical dis-

tributions appealing in practice. Unfortunately they are not a very realistic model of

the dependence structure between different financial assets. They main criticism of el-

liptical models is that the correlation is not an adequate description of the dependence

structure. Papers by Blyth (1996), Shaw (1997) and Embrechtset al. (1999) demon-

strate that models based on linear correlations can not accurately capture the non linear

dependence that is present in financial data. The main reasonis that they assume that

the dependence between extreme returns is the same as between moderate returns. This

assumption is wrong. We refer to the work of Longin and Solnik(1998), who show in

1
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an empirical study that the dependence between large negative returns is much closer

than suggested by the correlation coefficient of the entire data. They also found that the

dependence structure is not symmetric. This is, however, another feature of elliptical

distributions. They imply that the dependence structure between positive and negative

returns is the same.

In the light of the findings of Longin and Solnik (1998) the need for models that

specifically address the dependence structure in the tails of a distribution becomes evi-

dent. Multivariate extreme value theory provides us with a tool to develop models that

address this need. Several different models and methods have been introduced in the

last 20 years. These models are based on multivariate extreme value distributions or

multivariate regular varying distributions. A multivariate regular varying distribution

can be characterized by its marginals and a finite measure on the unit sphere. Most

commonly, the distribution of a random vectorX is called multivariate regular varying,

if there exists a constantα > 0 such that the following limit exists for allx > 0

P[‖X‖ > tx,X/‖X‖ ∈ ·]
P[‖X‖ > t]

−→ν
t→∞ x−αS(·), (1.1)

where−→ν denotes vague convergence onSd−1, the d dimensional unit sphere, andS

stands for the spectral measure.

The spectral measure describes the structure of the dependence in the tails between

the marginal distributions. An important class of multivariate regular varying distri-

butions are multivariate extreme value distributions. Existing models of multivariate

regular varying distributions in general and multivariateextreme value distributions in

particular do not describe the distribution via the spectral measure. Instead, they focus

on closed form equations of the cumulative distribution function. Examples of such

models can be found in Resnick (1986), Tawn (1988), Joe et al. (1992), de Haan and

Resnick (1993), Stărică (1999), Embrechts et al. (1997), Klueppelberg and May (1998),
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Embrechts (2000), Embrechts et al. (2003) and Breymann et al.(2003) and others.

However, so far none of these proposed models is flexible enough to give a real-

istic description of the dependence structure of the tails of a distribution. They usu-

ally use one or two parameters to describe the dependence structure between their

marginal components. As a consequence, their spectral measure, that can be calcu-

lated from the cumulative distribution function, has a verysimple structure. Typically

these spectral measures are therefore fairly simple. Consider in contrast the spec-
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Figure 1.1:Scatter plot of the absolute values of the log returns of the stocks of BMW

and Siemens (right) and estimate of the spectral measure of the corresponding distribu-

tion(left).

tral measure of the joint distribution of the absolute values of the log returns of the

stocks of BMW and Siemens. A scatter plot of these log returns is given in the right

hand side of Figure 1.1. Since the data is positive and bivariate, its, spectral mea-

sure is a measure that lives in the first quadrant of the unit circle S1, that is on the
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set{(x, y) ∈ S1 : x = cos θ, y = sin θ, θ ∈ [0, π/2]}. A non parametrical estimate of

the density of the spectral measure of the joint distribution is given in the left hand side

of Figure 1.1. We explain in detail how we obtain estimates ofthe spectral measure in

Chapter 2. We can clearly see that the density indicates that the dependence structure in

the tails is too complicated to be described by a single parameter.

This is the motivation for the research presented in this thesis. We propose a new

model for multivariate regular varying distributions. Instead of focusing on the joint

cumulative distribution function, we focus on the spectralmeasure. Since the spectral

measure is a measure on the unit sphere, we work with directional distributions. Direc-

tional distributions are distributions designed to model observations on the unit sphere.

The topology of the unit sphereSd−1 is different from the one of the Euclidian space

Rd. Directional distributions reflect this different topology. We decided to use the von

Mises-Fisher distributions onSd−1 as the corner stone of our models. The von Mises-

Fisher distributions form a parametric family. It is parameterized by the mean direction,

a point inSd−1, and a concentration parameter. It can be seen as an analogueof the

normal distribution onRd. Additionally, we make use of the concept of finite mixture

models. That is, we assume that the spectral measure has a density of the form

f(x) =
m∑

i=1

pifi(x);x ∈ S
d−1. (1.2)

The parameterspi are called the weights of the mixture and satisfypi > 0, i = 1, ...,m

and
∑m

i=1 pi = 1. The densitiesfi(x) are called the component densities. The concept

of a finite mixture model provides us with the flexibility needed to model complex de-

pendence structures. The number of components,m, is itself a parameter of the model.

The drawback is that the estimation of the parameters not a trivial task. We used the EM

algorithm to estimate the parameters of the model for a fixed number of components.

The EM algorithm is an algorithm specifically designed for the calculation of maximum
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likelihood estimates in finite mixture models. We refer to Dempster et al. (1977), Redner

and Walker (1984), Titterington et al. (1985) and McLachlanand Peel (2000) for refer-

ences on mixture models and the EM algorithm. Additionally,we have to decide on how

many components are needed to accurately describe the spectral measure. If we choose

a number that is too small, we will miss important features ofthe spectral measure. On

the other hand, having too many components renders the modeltoo complicated. Tra-

ditionally this kind of problem is addressed with a likelihood ratio test. Unfortunately,

the regularity conditions that guarantee the usual centralchi-square distribution of the

test statistic under the null-hypothesis do not hold in the framework of mixture models.

Instead, we were able to use results based on work of Vuong (1989), White (1982) and

Lo et al. (2001). They show that under certain conditions theasymptotical distribution

of the test statistic follows a weighted sum of central chi-square distributions. We found

that if the true spectral measure is not a finite mixture distribution of von Mises-Fisher

distribution, we can apply these results to our model. This enables us to determine the

number of components needed to accurately model the spectral measure, while avoid-

ing models with too many components. We sometimes also consulted other statistics to

decide on the number of components. These other statistics performed well in empirical

studies but lack a theoretical justification.

We found that our model gives an accurate description of the spectral measure of

bivariate and three dimensional datasets of financial assets. For higher dimensional data,

we did not have datasets of sufficient sample size to perform ameaningful statistical

analysis.

We develop a comprehensive model for a multivariate regularvarying distribution

that is based on our model of the spectral measure. This modelconsists of a part describ-

ing the tails of the distribution and a separate part describing the body of the distribution.
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The model of tails utilizes our model of the spectral measureto describe the dependence

between the marginal components. The model of the body consists of a simple multi-

variate normal distribution, although other choices are possible, without changing the

tail behavior of the resulting distribution.

As an application of our new model we consider the problem of portfolio optimiza-

tion. We concentrate on the bivariate case. We calculate theportfolios that minimize

the expected shortfall while having a certain expected return. We compare the resulting

portfolios with optimal portfolios based on two other models. The first is the bivariate

normal distribution model and the other is a model based on a tcopula.

While the optimal portfolios based on the normal model are fairly similar to the

ones based on our model, the normal model severely underestimates the risk of the

portfolio. The estimates and predictions based on our modelwere very accurate. The

portfolios based on the t copula model suffer from problems related to the estimation of

the parameters of that model. As a result, these portfolios do not achieve the expected

return they are designed to have. In addition, despite having a much smaller average

return than the portfolios based on our model and the normal model, they have am

expected shortfall that is comparable in size to the ones of the portfolios based on our

model and the normal model.

The thesis is organized as follows: in Chapter 2 we give an introduction to the ex-

treme value theory and its related topics. Chapter 3 providesan introduction into di-

rectional distributions and their properties. Chapter 4 explains finite mixture models in

general and finite mixtures of von Mises-Fisher models in particular. We also explain

the parameter estimation using the EM algorithm, the likelihood ratio test and the other

statistics used to decide on the number of components. In Chapter 5 we present the

results of modelling the spectral measure of several different financial assets. In Chap-
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ter 6 we develop our comprehensive model for a multivariate distribution, based on the

proposed mixture model of the spectral measure. Finally, Chapter 7 documents the re-

sults of the portfolio optimizations based on our model and the two selected alternative

models.



Chapter 2

Extreme Value Theory

2.1 Univariate Extreme Value Theory

2.1.1 Asymptotic Behavior of Maxima

Let (X1, ..., Xn) be i.i.d. random variables with some distributionF . Extreme Value

Theory describes the asymptotic behavior of the probability distribution of Mn :=

max(X1, ..., Xn). Of course, we have for anyn

P[Mn ≤ x] = P[X1 ≤ x, ....., Xn ≤ x] = F n(x). (2.1)

Let xF denotes the right endpoint of F, defined asxF := sup{x ∈ R : F (x) < 1}. One

can show that

Proposition 2.1.1

Mn −→ xF with probability 1, asn → ∞.

Proof: See Resnick (1986).¥

To illustrate the significance and use of extreme value theory, it is helpful to consider

the better known result of the Central Limit Theorem. Recall, that if (X1, ..., Xn) are

i.i.d. random variables following a distribution with finite meanµ and varianceσ2 < ∞

andn is sufficiently large, then the following approximation holds:

Z :=
Sn − nµ√

nσ
, is approximately distributed asN(0, 1), (2.2)

whereSn =
∑n

i=1 Xi. Consider this result for the case of exponentially distributed

random variablesXi, distributed asexp(λ). SinceXi ≥ 0, Sn =
∑n

i=1 Xi converges to

∞ with probability 1. The analogous statement in the context of extreme value theory

8
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is made in Proposition 2.1.1. In the light of the degenerate limit of Sn, the central limit

theorem quantifies the limit ofa−1
n (Sn− bn) with an =

√
nσ andbn = nµ. This result is

very useful in approximating the distribution ofSn for largen. In the same way, extreme

value theory describes the convergence ofc−1
n (Mn − dn) for appropriate sequencescn

anddn. The Fisher Tippet Theorem below is the basis of extreme value theory and its

applications discussed in this thesis. It can be seen as an the counterpart of the central

limit theorem in the field of extreme value theory.

Theorem 2.1.2 (Fisher-Tippet)

Let (Xn) be a sequence of i.i.d. random variables and letMn := max(X1, ..., Xn). If

there exist constantscn > 0 anddn ∈ R, such that for a non-degenerate distribution H

c−1
n (Mn − dn) =⇒ M , with distributionH(x), (2.3)

then H is one of the following types of distributions:

Fréchet : Φα(x) =





0 x ≤ 0

exp(−x−α) x > 0
α > 0

Weibull : Ψα(x) =





exp(−(−x)α) x ≤ 0

1 x > 0
α > 0

Gumbel : Λ(x) = exp(−e−x), x ∈ R

We call two distribution functions F and G of the same type, if,for all x ∈ R

F (x) = G(ax + b)

for two constants a and b.

Proof: See Resnick (1986).¥

The three distributionsΦα, Ψα andΛ are called Extreme Value Distributions, EVD.

If (2.3) holds for (Xi) with distributionF , we say thatF is in themaximum domain
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of attraction of Hand writeF ∈ MDA(H). The MDA’s for the three EVDs are well

understood. The extreme value distributions and the corresponding norming constants

are known for the most common distributions. In the following, we give a very brief

overview. A more detailed discussion can be found in Embrechts et al. (1997) or in

Resnick (1986).

2.1.2 Domains of Attractions forΦα, Ψα and Λ and the GEV

Fréchet

In order to characterize the domain of attraction of the Fréchet distribution, it is useful

to recall the definition of a regular varying function.

Definition 2.1.3

A measurable function g:R+ 7→ R+ is regular varying at∞ with indexα ∈ R, if for

anyx > 0 we have that

lim
t→∞

g(xt)

g(t)
= xα. (2.4)

In this case we use the notationg ∈ RVα.

The classical example of a function that is regular varying at ∞ with tail index α

is of courseg(x) = xα. We say that a random variable with distribution functionF is

regular varying with tail indexα, α > 0, if its tail functionF̄ := 1−F is regular varying

at∞ with index−α. If the distributionF is regular varying with indexα, then there is

a slowly varying functionL(x), such that

1 − F = x−αL(x), x > 0. (2.5)

A functionL(x) is called slowly varying with if

lim
t→∞

L(xt)

L(t)
= 1, x > 0.
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The relationship (2.5) expresses the fact that, asymptotically, the tail function behaves

like a power function. This is in contrast to the behavior of the Exponential or the

Normal distribution, whose tail functions approach zero atan exponential and superex-

ponential rate, respectively. Typical examples of regularvarying distributions are the

Cauchy and the Pareto distributions. It is not hard to show that the Fŕechet distribution

Φα is regular varying with tail indexα.

The following theorem says that all distributions with regular varying tail function

F belong to the maximum domain of attraction of the Fréchet distribution with the same

tail indexα.

Proposition 2.1.4

The distribution with cdf F belongs to the maximum domain of attraction ofΦα, if and

only if 1 − F ∈ RV−α, α > 0.

Proof: See Embrechts et al. (1997), p. 131f.¥

It follows for example, that the Cauchy distribution is inMDA(Φ1) and thatcn =

n/π, dn = 0, so thatπn−1Mn → Φ1. Other prominent members ofMDA(Φα) are

the stable distribution withα < 2 and the Pareto distribution. It is widely accepted that

the log returns of financial time series have marginal distributions with regular varying

tails. For this reason,MDA(Φα) has received more attention in research papers than

the other two EVDs. See Section 2.1.5 for more results onMDA(Φα).

Weibull

The most important fact aboutMDA(Ψα) is, that all its members have a finite right end-

point. Well known distributions inMDA(Ψα) are the Uniform and Beta distributions.

The following result gives a mathematical description similar to Proposition 2.1.4.
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Proposition 2.1.5

A distribution with cdf F belongs toMDA(Ψα) if and only ifxF < ∞ and1−F (xF −

x−1) = x−αL(x) for a slowly varying function L.

Proof: See Embrechts et al. (1997)¥

Consider for example the Uniform distribution. SincexF = 1 and1−F (1−x−1) =

x−1, the Uniform distribution is inMDA(Ψ1). One finds thatcn = n−1 anddn = 1.

Similarly, the Beta distribution with parametersa > 0 andb > 0, given by the density

f(x) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1 − x)b−1, 0 < x < 1, is in MDA(Ψb). We see that the parameter

α of the Weibull distribution indicates “how fast” the distribution F ∈ MDA(Ψα)

approaches its right endpoint.

Gumbel

The maximum domain of attraction of the Gumbel distributioncontains most distribu-

tions with an infinite right endpoint with light right tails.We say that a distribution has

a light right tail, if all positive momentsE[(X+)k] exist and are finite. This is in contrast

to the distributions inMDA(Φα), which only have finite moments up to orderα. The

Gumbel distribution itself has the property that

lim
x→∞

1 − Λ(x)

e−x
= 1.

Therefore, all distributions with an exponential or a “close to” exponential tail are in

MDA(Λ). In particular, the Exponential, Gamma, Normal and Log-normal distribu-

tions all belong to the domain attraction of the Gumbel distribution. For a more formal

discussion, see section 3.3.3 in Embrechts et al. (1997).
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The Generalized Extreme Value Distribution, GEV

It turns out that the three parametric familiesΦα, Ψα andΛ are related to one type of

distribution. The distribution is calledGeneralized Extreme Value Distributions, GEV.

We will differentiate between a standard GEV, which has one parameter, and the general

GEV. The general GEV has three parameters and can be used to represent the three

parametric familiesΦα, Ψα andΛ in one family.

Definition 2.1.6 (GEV)

Define the standard generalized extreme value distributionas the distribution with cdf

Hξ(x) =





exp
(
− (1 + ξ · x)−1/ξ

)
ξ 6= 0

exp (−exp (−x)) ξ = 0
(2.6)

where1 + ξ · x > 0.

Related to this distribution is a three parameter location-scale family, consisting of all

distributions that are of the same type as the standard generalized extreme value distri-

bution. We refer to such distributions as generalized extreme value distributions. The

cdf of such a distribution is given by

Hξ,µ,ψ(x) =





exp

(
−

(
1 + ξ x−µ

ψ

)−1/ξ
)

ξ 6= 0

exp
(
−exp

(
−x−µ

ψ

))
ξ = 0

(2.7)

for x such that1 + ξ x−µ
ψ

> 0 with ξ ∈ R, µ ∈ R andψ ∈ R+.

We will refer to bothHξ andHξ,µ,ψ as GEV.

Note thatHξ and Hξ,µ,ψ are of the same type if and only if they have the same

value for the parameterξ. The two additional parametersµ andψ in the location-scale

family Hξ,µ,ψ are called the location and scale parameter, respectively.The role of those

parameters is made clear in next section. The crucial parameter is the so calledshape

parameterξ:
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• ξ > 0: The Fŕechet distribution can be expressed as a distribution of thetype of

Hξ with ξ = 1/α. That is, we haveΦα = Hξ,µ,ψ for some constantsµ ∈ R and

ψ > 0 andξ = 1/α.

• ξ = 0: The Gumbel distribution can be expressed as a distributionof the type of

Hξ with ξ = 0.

• ξ < 0: The Weibull distribution can be expressed as a distribution of the type of

Hξ with ξ < 0.

This inclusion of the three extreme value distributions in one parametric family with

three parameters is important for the applications. Suppose, we would like to decide

whether the data comes from a distribution with heavy or rather light tails. We could fit

Hξ,µ,ψ(x) to maxima from that dataset and observe whetherξ is significantly different

from 0. For more details, see section 2.1.4

2.1.3 Maxima of Stationary Time Series

The results explained in the previous sections hold for i.i.d. data. A more reasonable

assumption for real life data, like the one considered in this thesis, is that the observa-

tions are not from an i.i.d. time series, but rather from a stationary one. We therefore

need to consider how the extreme value distribution of a stationary time series relates to

the one of i.i.d. data with the same marginal distribution. How far away from the i.i.d.

case can one go and still have the same distribution of the maximum ? The answer to

that question is discussed in detail in Leadbetter et al. (1983). In the following, we give

a brief summary:

Let X1, X2, ..., Xn be a strictly stationary time series andMn = max(X1, ..., Xn).

Let furthermoreX̃1, ..., X̃n be an i.i.d. series with the same marginal distribution as
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X1, X2, ..., Xn and letM̃n = max(X̃1, ..., X̃n). Finally, assume that

c−1
n (M̃n − dn) =⇒ M, distributed asHξ,µ,ψ. (2.8)

Define the sequence of functionsun(x) asun(x) = cnx + dn. Then (2.8) is equivalent

to

P[M̃n ≤ cnx + dn] = P[M̃n ≤ un(x)] −→ Hξ,µ,ψ(x).

The constantscn anddn of the linear functionsun(x) are determined by the distribution

of the strictly stationary sequenceX1, ..., Xn. If the distribution ofX1, ..., Xn satisfies

two technical conditions that can be expressed by means ofun(x), then we also have

P[Mn ≤ cnx + dn] = P[Mn ≤ un(x)] −→ Hξ,µ,ψ(x).

The two conditions are as follows:

Condition D(un): For any integers p,q and n

1 ≤ i1 < ... < ip < j1 < ... < jq ≤ n

such that forj1 − ip ≥ l we have that

∣∣∣∣P
(

max
i∈A1∪A2

Xi ≤ un

)
− P

(
max
i∈A1

Xi ≤ un

)
P

(
max
i∈A2

Xi ≤ un

)∣∣∣∣ ≤ αn,l,

whereA1 = {i1, ..., ip}, A2 = {j1, ..., jq} andαn,l → 0 asn → ∞ for some sequence

l = ln = o(n).

D(un) can be interpreted as stating that the sequence (Xi) should not have a too

strong serial dependence. For example, ifXi is a Gaussian process, it is known that

D(un) is satisfied if the auto-covariance functionγ(h) satisfiesγ(h) log(h) → 0, as

h → ∞. This conditions is very weak. It is satisfied by all ARIMA and even all

fractional ARIMA processes. The latter are examples of processes having long range

dependence in the sense that the sequenceγ(h) is not absolutely summable. We will
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assume, that the datasets considered in this thesis can be modelled by distributions for

whichD(un) is satisfied.

Condition D′(un): The relation

lim
k→∞

lim sup
n→∞

n

[n/k]∑

j=2

P (X1 > un, Xj > un) = 0.

D′(un) says that extreme observations ofXi do not occur in clusters, but are isolated

events. The distributions of the data under investigation in this thesis usually are not

assumed to satisfyD′(un). The reason is that the data exhibits behavior that makes the

usage of models satisfyingD′(un) unreasonable. We refer to Leadbetter et al. (1983)

and Embrechts et al. (1997) for more detailed discussions onthis subject.

Because we do not assume that the conditionD′(un) holds, we cannot assume that

the distribution ofMn converges to the same GEV distribution as the one ofM̃n. It

turns out that the limit distribution of the maximumMn can be expressed viaH, the

limit distribution ofM̃n and the extremal index of the time seriesX1, ..., Xn, if this one

exists. The extremal index is a measure of the amount of clustering in the tails. Before

giving the definition of the extremal index, we note that for an i.i.d. time series:

P[M̃n ≤ un] = Pn[X̃ ≤ un]

= exp[n · ln(1 − P[X̃ > un])]

≈ exp[−nF̄ (un)]

(2.9)

The last approximations follows from the Taylor Series extension approximation:ln(1−

x) ≈ −x for small x. Based on this motivation we state that for a givenτ ∈ [0,∞] and

a sequenceun of real numbers we have

nF̄ (un) → τ ⇐⇒ P[M̃n ≤ un] → e−τ . (2.10)

If D′(un) is violated, (2.9) usually does not hold. Instead, one may observe the follow-
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ing, for θ ∈ [0, 1]:

P[Mn ≤ un] ≈ Pθ[M̃n ≤ un]

= Pnθ[X̃ ≤ un]

= exp[θ · n · ln(1 − P[X̃ > un])]

≈ exp[−θ · nF̄ (un)]

(2.11)

If (2.11) holds we get from (2.10):

nF̄ (un) → τ ⇐⇒ P[Mn ≤ un] → exp[−θτ ]. (2.12)

Based on these observations we define:

Definition 2.1.7

Consider a stationary time series(Xk)k∈N with marginal distribution F and letMn =

max(X1, ..., Xn). We say that(Xk)k∈N has extremal indexθ ∈ [0, 1], if, for everyτ ,

there exists a sequence(un), such that

lim
n→∞

nF̄ (un) = τ

lim
n→∞

P[Mn ≤ un] = e−θτ (2.13)

We refer to Embrechts et al. (1997) as a reference on the extremal index. The ex-

tremal index can be interpreted as the reciprocal of the average cluster size. The effect of

clustering in the data is illustrated in Figure 2.1. The top plot shows 1000 realization of

an AR(1) processXn = α ·Xn−1 +Yn with Yn i.i.d. with a student’s t distribution with 2

degrees of freedom andα = .8. Such an AR(1) process has extremal index1 − α2=.36.

The bottom plot shows 1000 i.i.d. realizations with the samemarginal distribution as in

the top plot.

The influence of the extremal index on the limit distributionof the maxima is sum-

marized in the following Theorem.
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Figure 2.1:Effect of clustering in the tails for an AR(1) process (top) compared to an

i.i.d process (bottom).
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Theorem 2.1.8

Suppose that(Xn) is a stationary time series with extremal indexθ and defineMn =

max(X1, ..., Xn). Furthermore, let(X̃n) be an i.i.d. sequence of random variables with

the same distribution as(Xn) andM̃n = max(X̃1, ..., X̃n). Then

lim
n→∞

P[c−1
n (M̃n − dn) ≤ x] = H(x) (2.14)

for a GEVH, if and only if

lim
n→∞

P[c−1
n (Mn − dn) ≤ x] = Hθ(x). (2.15)

Proof: Embrechts et al. (1997)¥

In the light of the above equations it is important to note that if H is a GEV, so is

Hθ. This point is made precise by the following equations:

Hθ
ξ,µ,ψ(x) = Hξ,µ,ψ(ax + b), (2.16)

wherea = θ−ξ, b = (1 − θ−ξ)(u − ψ
ξ
) if ξ 6= 0 anda = 1, b = −ψlog(θ), if ξ = 0.

Moreover,

Hξ,µ,ψ(ax + b) = Hξ,µ̂,ψ̂(x), (2.17)

whereµ̂ = µ−b
a

, ψ̂ = ψa. Equations (2.16) and (2.17) mean that the adjustments for

the unknown extremal indexθ are incorporated in the model by the parametersµ and

ψ. Equation (2.17) also shows that the same is true for the norming constants. Equation

(2.17) gives us the justification for working with the block wise maxima when fitting

the GEV model to data. We do not have to scale the maxima with the norming constants

from Theorem 2.1.2. The two equations (2.16) and (2.17) showthat the generalized ex-

treme value distribution (2.7) with its three parameters isflexible enough to incorporate

these adjustments into the model by using the location and the scale parametersµ andψ.
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2.1.4 Fitting of a GEV Model to a Dataset

Maximum Likelihood Estimators

In order to fit a GEV to extremes of a dataset, we may proceed as follows. We divide

the data set into blocks of the same sample size. Within each block, we determine the

maximum. The set of the thus obtained block wise maxima is treated as an i.i.d. sample

from a GEV. The parameter estimates are now determined usinga maximum likelihood

estimation based on this sample of block wise maxima. The obvious question in this

context is: Into how many blocks are we to divide the data? Or in other words: How

many observations should make one block?

The answer to that question depends on the data. On the one hand, we have to make

sure that the blocks are large enough so that their maxima arenearly i.i.d. and their

distribution is close enough to a GEV. On the other hand, we want to keep the block size

as small as possible. If the chosen block size is too large, the number of blocks may not

be sufficient to produce a reliable estimator. On the other hand, if the block size is too

small, the distribution of the block wise maxima may not be close to a GEV and they

may not be independent. We usually tried several different block sizes and then checked

the quality of the fit do determine a good block size.

The three parameters are estimated using a maximum likelihood method. A numer-

ical procedure is needed to find the solutions to the complex log-likelihood equations.

We used EVIS 5.0, a software package on SPLUS, to carry out thecalculations. If

ξ > −.5, Smith (1985) shows that the MLEs are consistent and asymptotically efficient

estimators. That is, they are asymptotically normally distributed and their covariance

matrix is the inverse of the Fisher-Information matrix. Thegoodness of the fit may be

tested using QQ-plots and similar exploratory tools.
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2.1.5 Estimating the Shape Parameter inMDA(Φα)

If we assume that the distribution function has regular varying tails, we have additional

methods at hand for estimating the shape parameterξ or, equivalently, the tail index

α = 1/ξ. The most prominent such method is the Hill estimator. See Resnick (2002)

for a list of references.

Assume, thatX1, ..., Xn is a sample of non-negative, i.i.d. random variables with a

distribution with regular varying tails. LetX(i) be theith largest value,1 ≤ i ≤ n.

The Hill estimator

The Hill estimator of the tail indexα = ξ−1 is given byH−1
k,n, where

Hk,n =
1

k

k∑

i=1

log

[
X(i)

X(k+1)

]
. (2.18)

The Hill estimator is a consistent estimator ofα = ξ−1 and, under second order condi-

tions, asymptotically normally distributed:

√
k(H−1

k,n − α) ⇒ N(0, α2), provided thatn → ∞, k → ∞, k/n → 0

A summary of the consistency results for the Hill estimatorsas well as a good list of ref-

erences is provided in Embrechts et al. (1997) on p.336 ff. Resnick and St̆arică (1998)

proved consistency of the Hill estimator for certain classes of dependent data. The qual-

ity of the estimatorH−1
k,n depends on the choice of k. If k is chosen too large, the estima-

tor becomes biased, because data that is not sufficiently farenough in the tails is used.

On the other hand, if k is chosen too small, the estimator becomes unreliable due to the

small sample size used in the estimation and useful information is wasted. In practice, it

is customary to study what has become known as the ”Hill-plot” {k,H−1
k,n, 1 ≤ k ≤ n}.

One then looks for an area of k where the plot resembles a horizontal line. In some
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cases this works nicely, in other cases this may be very frustrating and difficult, as no

such area is easily identifiable. A more detailed discussionof the performance of the

Hill estimator in practice can be found in Embrechts et al. (1997).

The QQ-estimator

The QQ-estimator is sometimes a valuable alternative to theHill estimator. It is based

on the idea that if the distribution of the data is regular varying with tail indexα and

k is small compared to the sample size n, then the points of theset {− log(i/(k +

1)), log(X(i)), 1 ≤ i ≤ k} should form a straight line with slopeα−1. Hence, the slope

of a least squares line fitted to the set{− log(i/(k + 1)), log(X(i)), 1 ≤ i ≤ k} should

be a reasonable estimate ofα−1. Therefore, we define the QQ- estimator as

α̂−1
k,n := SL({− log(i/(k + 1)), log(X(i)), 1 ≤ i ≤ k}), (2.19)

where

SL({xi, yi}, i = 1, .., n}) =
1
n

∑n
i=1 xiyi − ( 1

n

∑n
i=1 xi)(

1
n

∑n
i=1 yi)

1
n

∑n
i=1 x2

i − ( 1
n

∑n
i=1 xi)2

is the slope of the line fitted to{xi, yi}, i = 1, .., n} by means of least squares. We have

that

α̂−1
k,n

P−→ α−1, provided thatk → ∞ andn/k → ∞.

However, one is faced with the same problems of choosing an appropriate value fork

as in the case of the Hill estimator. Similar to the case of theHill estimator, a plot of

{k, α̂k,n, 1 ≤ k ≤ n} is studied and one tries to identify an area of k, where the plot

resembles a horizontal line. These plots have a tendency to be easier to interpret than

the Hill plots and it may be easier to find an reasonable estimate ofα.

Other estimators have been proposed, see Embrechts et al. (1997), Section 6.4.
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2.1.6 Peaks over Threshold

We first give the definition of a distribution related to the GEV family

Definition 2.1.9

Define the standard Generalized Pareto distribution as the distribution with cdf

Gξ(x) =





1 − (1 + ξx)−1/ξ ξ 6= 0

1 − e−x ξ = 0
(2.20)

where

x ≥ 0 if ξ ≥ 0

0 ≤ x ≤ −1/ξ if ξ < 0.

As in the case of the GEV, there is a three parameter location scale family associated

with this distribution that is flexible enough to allow fits todatasets. It is constructed by

replacingx in (2.20) by(x − ν)/β:

Gξ,β,ν(x) =





1 −
(
1 + ξ x−ν

β

)−1/ξ

ξ 6= 0

1 − exp
(
−x−ν

β

)
ξ = 0

(2.21)

where1 + ξ x−u
β

≥ 0 and ξ ∈ R, µ ∈ R andβ ∈ R+. Note that all the members

of this parametric family are of the same type as the standardGPD. We refer to these

distributions as Generalized Pareto distributions, GPD. We will denote the special case

Gξ,β,0(x) by Gξ,β(x). Similar to the GEV, the crucial parameter is the shape parameter

ξ, while β andν are chosen to make the distribution flexible enough for fitting to a data

set.

Define the excess distribution function of a random variableX as

Fu(x) = P[X − u ≤ x|X > u].

Then we can write

F (x) = P[X ≤ x|X > u] · P[X > u] = Fu(x − u)(1 − F (u)).
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The connection with the results about the distribution of maxima is given by the follow-

ing equation, given in Embrechts et al. (1997). We have for all ξ ∈ R:

F ∈ MDA(Hξ) ⇐⇒ lim
u→xF

sup
0<x<xF

|Fu(x) − Gξ,β(u)(x)| = 0 (2.22)

for some positive functionβ(u). This result says that the GPDGξ,β appears as the

limit distribution of scaled excesses over high thresholdsof i.i.d. data in the domain of

attraction ofHξ. For high thresholdsu we may thus use the approximationFu(x) ≈

Gξ,β(x). This leads to the following approximation for high quantiles of F. We have for

x > u andu large enough:

F (x) = Fu(x−u)(1−F (u)) ≈ Gξ,β(x−u)(1−F (u)) = Gξ,β,u(x)(1−F (u)) (2.23)

For estimation purposes, one chooses a high thresholdu, setsν = u and then estimates

the parametersξ andβ, for example using maximum likelihood techniques. There is

no obvious preferred choice for the thresholdu. One faces similar problems as for the

estimation of the tail indexα or the parameters of a GEV. Ifu is chosen too high, only

very few observation remain above the threshold and the estimates ofξ andβ become

unreliable due to their large variability. On the other hand, if u is chosen too low, too

many points are above the threshold and one can no longer expect that a GPD is a good

approximation of the distribution of the excesses. Hence, one would introduce a bias in

the estimates ofξ andβ. We usually consulted QQ-plots and other exploratory toolsto

assess the quality of a fit and subsequently chose the lowest threshold that resulted in

good fits.

In this context, it is important to note that the class of GPDsis closed under changes

of the threshold as explained in the following. We have

Ḡξ,β,ν(w + u)

Ḡξ,β,ν(u)
= Ḡξ,β+ξ·u,u(w), (2.24)
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whereḠ = 1 − G. This equality is important, because both the left hand sideand the

right hand side can be seen as an approximation of

P[X > w + u|X > u] =
P[X > w + u]

P[X > u]
(2.25)

if u > ν is large enough. To see this for the left hand side, choose a thresholdν ≥ 0. If

we haveu > ν, we can use (2.23) as an approximation ofP[X > w + u] andP[x > u]

to get:

P[X > w + u] ≈ (1 − Gξ,β,ν(w + u))P[X > ν] =: Ḡξ,β,ν(w + u)P[X > ν] (2.26)

and similarly

P[X > u] ≈ (1 − Gξ,β,ν(u))P[x > ν] =: Ḡξ,β,ν(u)P[x > ν]. (2.27)

Hence we obtain the approximation

P[X > w + u|X > u] =
P[X > w + u]

P[X > u]
≈ Ḡξ,β,ν(w + u)

Ḡξ,β,ν(u)
. (2.28)

For the right hand side of (2.24), we consider the application of (2.23) when choosing

ν = u. We get similar to (2.26):

P[X > w + u] ≈ Ḡξ̃,β̃,u(w + u)P[X > u] (2.29)

for two parameters̃ξ andβ̃. This leads to the following approximation of (2.25):

P[X > w + u] ≈ Ḡξ̃,β̃,u(w + u) (2.30)

If the technique of approximating the distribution of high quantiles by means of a

GPD is to be consistent for different choices of the threshold, the two right hand sides

of (2.28) and (2.30) need to be the same. That is, we need to be able to express̃ξ and

with β̃ with ξ, β andu. This is exactly what (2.24) asserts us is true. It says thatξ̃ = ξ

and thatβ̃ = β + ξu.
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A nice discussion of the GPD and its properties, including the results in this section,

can be found in Embrechts et al. (1997). It also provides a much deeper introduction

into the Peaks over Threshold techniques. We used the EVIS 5.0 software for all our

statistical analysis involving Peaks over Threshold.

2.2 Multivariate Extreme Value Theory

In the univariate case, the Fisher-Tippet Theorem, Theorem2.1.2, describes the class of

limiting distributions for extremes. In the multivariate case, the class of possible limit

distributions for extremes is much wider, because of the dependence structure between

the marginal components. Usually, the limit distribution of multivariate extremes is

described by

• the marginal distributions, which are given by the Fisher-Tippet Theorem and

were discussed in the previous section;

• a finite measure on the unit sphere, referred to as the spectral or angular measure,

that describes the dependence structure between the different components.

We first describe the possible limit distributions of multivariate extremes. Then we

show how multivariate regular variation can be used to characterize the MDA’s. Finally,

we show how the spectral measure can be consistently estimated. Good references on

these topics were written by Resnick (1986), Resnick (2002), Stărică St̆arică (1999), and

Einmahl et al. (2001).

2.2.1 Limit Distributions for Multivariate Extremes

We first introduce the notation that we will use throughout this section. All operations

on vectors are understood componentwise. For example, we have for two vectorsx and
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y and two pointsa andb in Rd:

x ≤ y means x(i) ≤ y(i), i = 1, ..., d,

x < y means x(i) < y(i), i = 1, ..., d,

x + y means (x(1) + y(1), ..., x(d) + y(d)),

x · y means (x(1) · y(1), ..., x(d) · y(d)),

x
∨

y means (x(1)
∨

y(1), ..., x(d)
∨

y(d)),

(a,b) means (a(1), b(1)) × ... × (a(d), b(d)) ⊆ Rd, if a < b

Let {Xi}i∈N = {(X(1)
i , ..., X

(d)
i )}i∈N be i.i.d. random vectors inRd. We are considering

limit distributions forMn = (M
(1)
n , ..,M

(d)
n ) =

(∨n
i=1 X

(1)
i , ...,

∨n
i=1 X

(d)
i

)
. Denote the

joint cdf of X1 with F (x). Assume that there exist sequences of vectorsbn ∈ Rd and

an > 0, such that

P

[
Mn − bn

an

≤ x

]
= F n(anx + bn) −→ G(x), asn → ∞, (2.31)

whereG(x) has non-degenerate marginalsGi(x), i = 1, . . . , d. By the results from the

previous section, we know that each of theGi is a GEV. However, the marginals need

not be of the same type. To simplify the task of describing theclass of possible limits

distributions with non-degenerate marginals, it is helpful to standardize the marginals to

a specified distribution. We chose the unit Fréchet distributionΦ1, introduced in Section

2.1.1. That enables us to use results about multivariate regular variation. Different

standardizations could be and have been considered. They lead to similar results as the

one described in the following. The first result asserts thatthe standardization does not

create any changes in the convergence behavior.

Proposition 2.2.1 Define the random vectors{Xi}i∈N as above with joint distribution

functionF and marginal distribution functionsFi. Assume that (2.31) holds and that
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the marginals of the limit distribution are non-degenerate. Define fori = 1, .., d

ψi(x) = (1/(− log(Gi)))
←(x), x > 0 (2.32)

and

G∗(x) = G(ψ1(x
(1)), ..., ψd(x

(d))).

ThenG∗(x) hasΦ1 marginalsG∗i(x). If G is a multivariate extreme value distribution,

so isG∗.

DefineUi(xi) := 1/(1 − Fi(xi)), i = 1, .., d, and letF∗ be the distribution of
(
U1

(
X

(1)
1

)
, ..., Ud

(
X

(d)
1

))
. That is, let

F∗(x) = F (U←
1 (x(1)), .., U←

d (x(d))).

Then, ifF ∈ D(G), we have thatF∗ ∈ D(G∗) and

P

[
n∨

j=1

Ui(X
(i)
j )/n ≤ x(i), i = 1, .., d

]
= F n

∗ (nx) → G∗(x), asn → ∞. (2.33)

Conversely, if (2.33) holds and if fori = 1, .., d: F n
i (a

(i)
n x + b

(i)
n ) → Gi(x), non-

degenerate, we have thatF ∈ D(G) and that (2.31) holds.

Proof: See Resnick (1986).¥

The following theorem gives the exact description of the class of limit distributions

with Φ1 marginals. Proposition 2.2.1 asserts that this is sufficient for describing the class

of multivariate extreme value distributions, since for every extreme value distribution

G there exist a standardized extreme value distributionG∗, obtained fromG by the

transformation given by (2.32).

Theorem 2.2.2 The following are equivalent:

1. G∗ is a multivariate extreme value distribution withΦ1 marginals.
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2. There is a Radon measureµ∗ onE = [0,∞) \ {0} ⊆ Rd such that

G∗(x) = exp(−µ∗([0,x]c)), (2.34)

such that forr > 0 and a Borel setA ∈ Sd−1 = {y ∈ Rd : ‖y‖ = 1}

µ∗{y ∈ E : ‖y‖ > r, ‖y‖−1y ∈ A} = r−1S∗(A), (2.35)

whereS∗ is a finite measure onℵ = E ∩ Sd−1 satisfying the marginal conditions

∫

ℵ

x(i)S∗(dx) = 1, i = 1, ..., d. (2.36)

Proof: See Resnick (1986)¥

The finite measureS∗ in (2.35) is referred to as the spectral measure or angular

measure. The Radon measureµ∗ is referred to as the exponent measure. Both measures

completely describe the distribution functionG∗. S∗ can be interpreted as the description

of the dependence structure ofG∗ and hence it describes the dependence of the extremes

of X1. From the above two results we see that the extreme value distribution ofG(x) of

X1 can be described by

• the marginal distributionsGi,

• the spectral measureS∗ of the standardized extreme value distributionG∗.

In that sense, the spectral measure has a similar function asthe copula in describing the

dependence structure of the limit distribution. Recall thatthe copulaC of a distribution

functionF with marginalsFi, i = 1, ..., d is given by

F (x1, .., xd) = C(F1(x1), ..., Fd(xd)) ⇐⇒ C(u1, ..., ud) = F (F←
1 (u1), ..., F

←
d (ud)).

The copula, having standardized Uniform[0,1] marginals, describes the dependence

structure, to which the desired marginal distributions areattached.
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It is worthwhile to mention two specific cases of possible dependence structures de-

scribed byS∗, or equivalently byµ∗.

1. The exponent measure concentrates on
⋃

i{0 × ... × (0,∞) × ... × 0}. In that

case, the spectral measure is a discrete measure concentrating its mass on the axes

ei = {x : xj = 0, j 6= i}, i = 1, ..., d. In this case, ifX∗ is distributed asG∗, the

marginal componentsXi are independent. In the cased = 2 this means thatS∗

concentrates on the x and y axis. As a consequence of equation(2.36), in polar

coordinates,S∗ is a measure with mass 1 on the points 0 andπ/2.

2. µ∗ concentrates on{t1, t > 0} and henceS∗ concentrates on‖1‖−11. In that case

there is total dependence among the marginal componentsX
(i)
∗ of X∗. That is, we

haveP[X
(1)
∗ = ... = X

(d)
∗ ] = 1. In the cased = 2, this means thatS∗ puts all its

mass in the pointx ∈ S1 : x1 = x2. Expressed in polar coordinates,S∗ is a point

mass concentrated onπ/4.

2.2.2 Regular Variation and Domains of Attraction

The spectral measure can be used to identify and describe thedomains of attraction

of G∗, using regular variation. Regular variation of univariate random variables was

introduced in Definition 2.1.3. In the multivariate settinga functionf : C ⊂ Rd →

(0,∞), whereC is a cone, is calledregular varying with limit functionλ(x), if and only

if there exists a functionV : (0,∞) → (0,∞) such thatV ∈ RVα and for allx ∈ C we

have

lim
t→∞

f(tx)

V (t)
= λ(x).

The following theorem describes how the domains of attraction of a multivariate extreme

value distribution withΦ1 marginal distributions can be characterized.
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Theorem 2.2.3 LetF∗, G∗, µ∗ andS∗ be as in Proposition 2.2.1 and Theorem 2.2.2. Let

E = [0,∞) \ {0} andℵ = E ∩ Sd−1. The following are equivalent:

1) F∗ ∈ D(G∗)

2) 1 − F∗ is regular varying onE with

lim
t→∞

1 − F∗(tx)

1 − F∗(t1)
=

− log(G∗(x))

− log(G∗(1))
=

µ∗([0,x]c)

µ∗([0,1]c)
. (2.37)

3) LetM+(E) denote the space of Radon measures onE. SupposeX1 is distributed as

F∗. Then

tF∗(t·) = tP[
X1

t
∈ ·] ν−→ µ∗ in M+(E), ast → ∞. (2.38)

Here
ν−→ stand for vague convergence.

4) Define(R, Θ) := (‖X1‖, ‖X1‖−1X1). In M+((0,∞] × ℵ) we have that

tP[(
R

t
, Θ) ∈ ·] ν−→ r−2dr × S∗(dθ). (2.39)

5) LetX1, ...,Xn be i.i.d. random vectors with joint distribution functionF∗. For any

sequencek = k(n) → ∞ such thatn/k → ∞ andk(n) ∼ k(n + 1)

1

k

n∑

i=1

ǫ(Xi/
n
k
) ⇒ µ∗ (2.40)

in M+(E).

Proof: See Resnick (2002).¥

Remarks: The theorem shows that the extreme value distributionG∗ in whose do-

main of attractionF∗ is, can be found and described by the regular variation property

(2.37). The extreme value distributionG∗ is determined by the exponent measureµ∗. In

polar coordinates, this exponent measure appears as a product measure on(0,∞] × ℵ

of r−2dr and the spectral measureS∗(dθ). Both the spectral measure or the exponent

measure completely describeG∗.
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To identify the extreme value distributionG in whose domain of attractionF lies, pro-

ceed as follows:

1. Compute the marginalsFi and then find the univariate extreme value distribution

Gi such thatF n
i (a

(i)
n x + b

(i)
n ) → Gi(x).

2. ComputeF∗ and use Theorem 2.2.3 to findG∗, such thatF∗ ∈ D(G∗).

3. Calculate

G(x) = G(x(i), ..., x(d)) = G∗

(
ψ←

1 (x(1)), ..., ψ←
d (x(d))

)
.

In Theorem 2.2.3 we worked with the assumption that the all the marginal distribu-

tions areΦ1. This assumptions is clearly unrealistic as far as real datais concerned.

There is no reason why one should assume that the tail indexesof each marginal dis-

tribution should be the same, not to mention why they should be equal to one. We

therefore have to make different, more general, assumptions about the joint regular vari-

ation of the distribution ofX1 than the one given in the theorem above. We assume

that the distribution satisfies the two regular variation conditions given below, found in

Resnick (2002). As before, letE = [0,∞] \ {0}. Define the measuresµαi
on (0,∞] by

µαi
(x,∞] = x−αi , αi > 0 . Define the sequences{b(i)

n , n ≥ 1, 1 ≤ i ≤ d} such that

lim
n→∞

b(i)
n = ∞, i = 1, ..., d.

Marginal Condition For each i=1,...,d, we have inM+((0,∞])

nP

[
X

(i)
1

b
(i)
n

∈ ·
]

ν−→ µαi
. (2.41)

Global Condition There exists a measureµ on Borel subsets ofE, such that inM+(E)

nP

[
X1

(b
(1)
n , ..., b

(d)
n )

∈ ·
]

ν−→ µ. (2.42)
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We say that the random vectorX1 is jointly regular varying, if the both the Marginal

and the Global Condition are met. Equation (2.41) is equivalent to the definition of

regular variation for univariate random variables, given earlier. The marginal condition

therefore states that the marginal distributions have regular varying tails. The global

condition is a more general formulation of (2.38), given in Theorem 2.2.3 above. In that

case we may chooseb(i)
n = n, i = 1, ..., d and we haveαi = 1, i = 1, ..., d. The global

condition describes the dependence structure among the marginal components ofX1. It

is not hard to show that (2.41) and (2.42) are necessary and sufficient conditions for

P

[
n∨

j=1

Xj

bn

≤ x

]
→ G(x) = exp(−µ([0,x]c)) (2.43)

and the limit distributionG(x) has marginal distributionsΦαi
.

The following result states that this definition is consistent with results in Theorem

2.2.3, where we assumed that all marginal distributions areΦ1. It essentially rephrases

Proposition 2.2.1 in the language of regular variation.

Proposition 2.2.4 Assume thatX1 is a jointly regular varying non-negative random

vector. That is, assume that the Global and Marginal Conditions formulated above hold

for some sequencesbn, defined as above. LetF(i)(x) be the ith marginal distribution

function and define

U(i)(x) =
1

1 − F(i)(·)
(x), x > 1.

Then we have

1. Standard Global Convergence:

nF∗(n·) := nP

[(
U(i)(X

(i)
1 )

n
, i = 1, ..., n

)
∈ ·

]
ν−→ µ∗ in M+(E), (2.44)

where

µ∗(t·) = t−1µ∗(·) (2.45)
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on Borel subsets ofE.

2. Standard Marginal Convergence:

nP

[
U(i)(X

(i)
1 )

n
> x

]
→ x−1, x > 0. (2.46)

Proof: See Resnick (2002)¥

The Proposition essentially verifies that we can replace theconvergence condition

given in (2.31) with the regular variation conditions givenabove and still apply the

transformations described in Proposition 2.2.1. As a Corollary to Proposition 2.2.4, we

get the following important relationship between the exponent measuresµ andµ∗ from

(2.43) and (2.44)

Corollary 2.2.5 Letµ be as in (2.43) and letµ∗ be as in (2.44). Then

µ∗([0,x]c) = µ([0,x1/α]c). (2.47)

Proof: See Resnick (2002)¥

This relationship plays an important role in the estimationof the spectral measure,

discussed in the next section.

2.2.3 Estimation of the Exponent and Spectral Measure

The Ranks method

For references on the following results we refer to Resnick (2002). LetXi, i = 1, ..., n

be a sequence of i.i.d. positive random vectors as above. Define the (anti)-ranks for

i = 1, ..., d as

r
(i)
j =

n∑

l=1

1
[X

(i)
l

>X
(i)
j ]

andrj = (r
(1)
j , ..., r

(d)
j ) (2.48)
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to be the number ofith components bigger thanX(i)
j . Then we have, ask → ∞, n →

∞, k/n → 0,

1

k

n∑

j=1

ǫ(
k
rj

) ⇒ µ∗ in M+(E). (2.49)

Applying the transformation into polar coordinatesT (x) := (‖x‖, ‖x‖−1x) =: (R, θ)

we get withT ( k
rj

) =: (Rj,k, θj,k) and applying the continuous mapping theorem that

1

k

n∑

j=1

ǫ(Rj,k,θj,k) ⇒ cµ1 × S∗ in M+((0,∞] × ℵ)

for a constantc > 0. Therefore, if our sample sizen is large enough, we may use the

approximation

1

k

n∑

j=1

ǫ(Rj,k,θj,k)((1,∞] × A) ≈ cµ1(1,∞]) × S∗(A),

for a Borel setA ⊂ ℵ and a constantc > 0. This motivates the following estimator for

the spectral measure:

Ŝk,n(·) :=

∑n
j=1 1(Rj,k>1)ǫ(θj,k)(·)∑n

j=1 1(Rj,k>1)

⇒ S∗ (2.50)

This estimator depends on a good choice ofk. We used the Stărică plot to make a choice

of k, see below. The advantage of the ranks method is that we do nothave to estimate the

different tail indexesαi > 0, i = 1.., d. These estimations can be difficult, as explained

in the section about the Hill estimator. However, the ranks,the data used to estimateS∗

in (2.50), are not independent. For this reason, asymptoticproperties of the estimator

Ŝk,n are hard to come by. It is also an open question whether the ranks statistics (2.48)

is a sufficient statistic for the description of the exponentmeasure. Therefore, it may be

desirable to consider a second approach that avoids these problems. However, it forces

us to use the possibly unreliable estimates of the differenttail indexes.
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Direct approach adjusting the tail indexes

The following method for estimating the spectral measure isbased on the results found

in de Haan and Resnick (1993).

Recall from (2.40) that ifk → ∞, n/k → ∞, we have that

1

k

n∑

i=1

ǫ(Xi/
n
k
) ⇒ µ∗,

if the dataXn is i.i.d. with distributionF∗ as defined in Proposition 2.2.1. Similarly, if

Xi has a regular varying distributionFi with tail indexαi > 0, equation (2.42) implies

under the same conditions fork andn that

1

k

n∑

j=1

ǫ(Xj/b(n
k
)) ⇒ µ.

We adjust the tails for their respective and possibly different tail indexes. From (2.41)

we have that

nP

[(
X

(i)
1

b(i)(n
k
)

)αi

∈ ·
]

ν−→ µ1.

Remembering that operations are carried out componentwise,we obtain

1

k

n∑

j=1

ǫ
(Xj/b(n

k
))
α ⇒ µ∗. (2.51)

Suppose that we had consistent estimators ofα andb(n
k
), denoted byα̂ and b̂(n

k
).

de Haan and Resnick (1993) showed that using these estimates,we have that

µ̂∗ :=
1

k

n∑

j=1

ǫ
(Xj/b̂(n

k
))

α̂ . (2.52)

is a consistent estimator ofµ∗.

In practice we have to:

1. Choose an appropriatek. We use the Stărică plot, see next section below.
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2. Consistently estimateb(n/k). Since

b(i)(n/k)/X
(i)
(k+1)

P−→ 1,

see de Haan and Resnick (1993), we use the(k + 1)st order statistiĉb(i)(n/k) =

X
(i)
(k+1) as an estimator ofb(i)(n/k).

3. Consistently estimate the tail indexesαi. We use the Hill estimator, introduced in

section2.1.5 for that purpose.

Proceeding in a similar fashion as with the ranks method, we obtain an estimator of the

spectral measure by using a transformation into polar coordinates. Using the transfor-

mation to polar coordinates as above, namelyT (x) := (‖x‖, ‖x‖−1x) =: (R, θ) and

defining

(Rj,k, ψj,k) := T




(
Xj

b̂(n/k)

)α̂

 ,

we have that

Ŝk,n(·) :=

∑n
j=1 1(Rj,k>1)ǫ(ψj,k)(·)∑n

j=1 1Ri,k
((1,∞])

(2.53)

estimatesS∗(·) consistently, see de Haan and Resnick (1993). Essentially, apoint Xj

is considered extreme in the sense that it is used in the estimation ofS∗(·), if the corre-

spondingRj,k > 1.

Choosing k: The St̆arică Plot

Both methods of estimating the spectral measure described above depend on choosing a

k. The following idea, due to Stărică (1999), uses the scaling property of the exponent

measure

tµ∗(t·) = µ∗(·) (2.54)
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to make a choice fork. Suppose that we have an estimatorµ̂∗ := µ̂∗,k,n of µ∗. We use it

to plot {
tµ̂∗(tA)

µ̂∗(A)
, for t in a neighborhod of 1

}
,

whereA = {x ∈ E : ‖x‖ > 1}. If k was chosen appropriately,µ̂∗ will be a meaningful

estimator ofµ∗ and the plot should be close to a horizontal line at 1. Different choices

of k will result in different plots. We choose thek that results in a plot that most closely

resembles the horizontal line at 1. Using the ranks method toas an estimator forµ∗, we

obtain

tµ̂∗(tA)

µ̂∗(A)
=

t
∑n

j=1 ǫ( k
rj

)(tA)
∑n

j=1 ǫ( k
rj

)(A)
=

t
∑n

j=1 1(Rj,k>t)∑n
j=1 1(Rj,k>1)

, (2.55)

where{Rj,k, j = 1, ..., n} are the radial components of the polar coordinate representa-

tion of { k
rj

, j = 1, ..., n; }.

Alternatively, we could also use equation (2.52) as an estimator forµ∗. In that case

we plot

tµ̂∗(tA)

µ̂∗(A)
=

t
∑n

j=1 ǫ
(Xj/b̂(n

k
))

α̂(tA)
∑n

j=1 ǫ
(Xj/b̂(n

k
))

α̂(A)
=

t
∑n

j=1 1(R̄j,k>t)∑n
j=1 1(R̄j,k>1)

, (2.56)

where{R̄j,k, j = 1, ..., n} are the radial components of the polar coordinate represen-

tations of
(
Xj/b̂(n

k
)
)α̂

. We use the first(k + 1)st order statistics ofXj and the Hill

estimator for̂b(n
k
) andα̂ respectively, for reasons explained above.

2.2.4 The Spectral Measure for non-positive Data

So far, we have only considered tail dependence for positivedata. We explained how we

describe the tail dependence of positive random vectors, with rangeE = [0,∞] \ {0},

with the spectral measure. We also introduced two differentmethods for estimating the

spectral measure from data. However, in a number of applications one has to work with

data that contains positive as well as negative observations. It is one of the goals of
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this thesis to describe the tail dependence between the log-returns of different stocks.

It may be of interest to learn about the structure of the tail dependence of a bivariate

distribution in all four quadrants and not just the first quadrant only. We may for example

be interested in the tail dependence between large negativereturns between two stocks.

This poses the problem of how to define and estimate the spectral measure for data that

is not non-negative.

Assume that the random variablesX(1) andX(2) describe the log returns of two

stocks respectively. If it is our intention to only focus on the tail dependence between

large positive returns of the stocks, we do not need to consider the negative returns. We

consider only the observations for which both stocks have a non-negative return. This

way, we obtain a dataset of only non-negative observations.This allows us describe the

tail dependence with the spectral measure. Consequently, wecan use the techniques

explained earlier in this chapter.

To study, say, the dependence between large negative returns, we can proceed in a

similar way. We only consider observations for which both stocks have a non-positive

return. We hence discard all observations for which eitherX(1) or X(2) is positive. This

way we obtain a dataset consisting of only non-positive observations. By considering

the absolute values of these observations, we obtain a non-negative dataset. This way,

we can again make use of the concept of the spectral measure todescribe the tail depen-

dence. In a similar fashion, we can study the tail dependencebetweenX(1) and−X(2)

or −X(1) andX(2). Obviously, this solution is not limited to the two dimensional case

and an extension to higher dimensions is straight forward, even though the number of

different cases to be considered grows exponentially with the dimensiond.

However, this approach is not satisfying. We would like to beable to describe the en-

tire tail dependence of the considered random variables with the concept of the spectral
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measure. With the approach outlined above, we are only describing the tail dependence

in certain quadrants by separate spectral measures. We needto define the spectral mea-

sure of the entire distribution. The definition has to be consistent with the definition of

the spectral measure given earlier in this thesis. We then need to describe how we esti-

mate this spectral measure. The following definition introduces the notion of a spectral

measure for a distribution with both positive and negative observations.

Definition 2.2.6 The distribution of a random vectorX is called “multivariate regular

varying” with tail index α and spectral measure S, if the following limit exists for all

x > 0:

P[‖X‖ > tx,X/‖X‖ ∈ ·]
P[‖X‖ > t]

−→ν
t→∞ x−αS(·), (2.57)

where−→ν denotes vague convergence onSd−1, the d dimensional unit sphere.

The definition is consistent with the definition that we gave earlier for the spectral

measure of positive data. Recall that in Theorem 2.2.3 we had stated that

F∗ ∈ D(G∗) (2.58)

if and only if for (R, Θ) := (‖X1‖, ‖X1‖−1X1) we have that

tP[(
R

t
, Θ) ∈ ·] ν−→ r−2dr × S∗(dθ). (2.59)

In this framework, Definition 2.2.6 naturally extends the spectral measure as a tool to

describe the tail dependence onto the entire unit sphere.

However, (2.57) assumes that the tail indexes of all marginal distributions are the

same, namelyα. It also assumes that the tail indexes of the left and the right tail of

each marginal distribution are equal. Clearly, this is not a reasonable assumption. In the

context of Theorem 2.2.3, we did not assume that the actual distributionF of the data

satisfies the regular variation condition (2.59). Instead,we assume that the distribution
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of the data satisfied two conditions, called the “Marginal Condition” (2.41) and the

“Global Condition” (2.42). Proposition 2.2.4 states, that if (2.41) and (2.42) are met,

then there exists a transformation of the data, such that (2.57) holds for the transformed

data. We need to adapt these results for the case of data that is not non-negative.

Suppose, that we have a random vectorX = (X(1), ..., X(d)) ∈ Rd. Define the

random vectorZ ∈ R2d
+ as a functionT of the random vectorX, as follows:

Z = (Z(1), ..., Z(2d)) = T (X) = T ((X(1), ..., X(d))) ∈ R2d
+ ; where

Z(2i−1) = X
(i)
+ := max(X(i), 0), i = 1, ..., d and

Z(2i) = X
(i)
− := max(−X(i), 0), i = 1, ..., d.

(2.60)

The random vectorZ is a non-negative random vector. We can therefore apply the

results from Section 2.2.2. This motivates the following definition:

Definition 2.2.7 We say that a random vectorX ∈ Rd is jointly regular varying, if the

random vectorZ = T (X), defined by (2.60), satisfies the “Marginal Condition” (2.41)

and the “Global Condition” (2.42).

It follows from Proposition 2.2.4 thatZ has standard global convergence (2.44) and

standard marginal convergence (2.46). Therefore it has a spectral measure. Due to the

special nature of the random vectorZ, the spectral measure ofZ can be translated into

a spectral measure describing the tail dependence of the random vectorX.

Definition 2.2.8 The spectral measureSX of a jointly regular varying random vector

X ∈ Rd is defined as the map of the spectral measureSZ of Z = T (X) underT . That

is, we define

SX(·) = SZ(T (·)). (2.61)

To illustrate this definition, consider for simplicity the cased = 2. Assume, that we

wish to study the spectral measure of the random vectorX = (X(1), X(2)) ∈ R2. We
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have that

Z = (Z(1), ..., Z(4)) = ((X(1))+, (X(1))−, (X(2))+, (X(2))−).

The spectral measure ofZ is a measure on the 4 dimensional unit sphere. However, the

way we definedZ, we have that eitherZ(1) = 0 or Z(2) = 0. At the same time, we have

that eitherZ(3) = 0 or Z(4) = 0. In either case, at least two entries of the vectorZ equal

0. The distribution ofZ concentrates on 2 dimensional sub-planes ofR4. Each of those

planes corresponds to a quadrant inR2:

• If Z lies in the sub-planeZ(2) = 0 andZ(4) = 0, thenZ corresponds to the point

(X(1), X(2)) with bothX(1) ≥ 0 andX(2) ≥ 0.

• If Z lies in the sub-planeZ(1) = 0 andZ(4) = 0, thenZ corresponds to the point

(X(1), X(2)) with X(1) ≤ 0 andX(2) ≥ 0.

• If Z lies in the sub-planeZ(1) = 0 andZ(3) = 0, thenZ corresponds to the point

(X(1), X(2)) with bothX(1) ≤ 0 andX(2) ≤ 0.

• If Z lies in the sub-planeZ(2) = 0 andZ(3) = 0, thenZ corresponds to the point

(X(1), X(2)) with X(1) ≥ 0 andX(2) ≤ 0.

This way, the distribution ofZ has a one to one relationship with the distribution ofX.

The same relationship therefore also applies to the respective spectral measures. Since

the distribution ofZ is concentrated on 2 dimensional the sub-planes, the same istrue for

its spectral measure. The spectral measure in each sub-plane can hence be interpreted

as the spectral measure ofX in the corresponding quadrant. This idea is captured in

Definition 2.2.6.

The estimation of the spectral measure ofX, based on a sampleX1, ...,XN , follows

naturally from the above definition of the spectral measure of X. We obtain an estimate
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ŜZ of the spectral measure of the transformed sampleZi = T (Xi), i = 1, ..., N , using

the techniques described in Section 2.2.3. We then obtain the corresponding estimate of

ŜX from

ŜX(·) = ŜZ(T (·)). (2.62)



Chapter 3

Directional Distributions
Directional distributions model observations that are directions. The observations are

usually recorded as points on the unit sphere. In the following, we will first concentrate

on the relatively simple case of observations on the unit circle in R2, before describing

the general case of the d dimensional unit sphereSd−1 = {x ∈ Rd : ‖x‖ = 1}. The

problem of defining a distribution and its characteristics for distributions on a sphere

is different from the problem of defining a distribution in the Euclidian spaceRd. The

usual concepts of distributions inRd are not appropriate, because the sphere has a very

different topology. Consider the case of the unit circle inR2. If φ → (cos(φ), sin(φ))

is a parametrization of the unit circle, we know that the point (cos(0), sin(0)) is the

same point as (cos(2π), sin(2π)). This periodicity is not present in the regular Euclid-

ian space. This natural periodicity of the circle in particular and the sphere in general

should be reflected in the description of distributions on the circle and the sphere. In the

following, we will refer to distributions on the unit circleas circular distributions and

distributions on the sphereSd−1, d ≥ 3, as spherical distributions. The most common

references on directional distributions are Jupp and Mardia (2000) and Mardia (1972).

3.1 Circular Distributions

3.1.1 Definitions and Descriptive Measures

Throughout our work we use the following parameterizationsof the unit circle:S1 =

{(x, y) ∈ R2 : x = cos(φ), y = sin(φ), φ ∈ [0, 2π)}. For the discussion of certain

properties it is more convenient to consider the complex unit circle, rather than the real

44
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unit circle. This allows the representation of a circular random variableX asX = eiΦ,

Φ ∈ [0, 2π). LetX = eiΦ be a random variable with values on the unit circle inR2. In a

slight abuse of notation, we will refer to the random variableX = eiΦ with bothX and

Φ, depending on which notation is more convenient.

Definition 3.1.1 A function F with domainR is called circular cumulative distribution

function (cdf) of a circular random variableX = eiΦ, if the following equations hold:

1. F (ϕ) = P[0 ≤ Φ ≤ ϕ], 0 < ϕ ≤ 2π

2. F (ϕ + 2π) − F (ϕ) = 1, ∀ϕ ∈ R

The first property is similar to the definition of a cdf of a random variable on the

real line. It impliesF (0) = 0, unless there is a atom at 0, andF (2π) = 1. The second

property describes how to extend the domain ofF to the real line. In a similar fashion,

we can define the density of an absolute continuous random variable.

Definition 3.1.2 A non-negative function f with domainR is called probability density

function (pdf) ofX = eiΦ, if the following equation holds for a circular cdfF :

F (ϕ) =

∫ φ

0

f(φ)dφ, 0 < φ ≤ 2π

The two definitions imply the following properties for a density of a circular random

variable:

1. f(φ + 2π) = f(φ), 0 < φ ≤ 2π a.s.

2.
∫ 2π

0
f(φ)dφ = 1

Conversely, any positive functionf(φ) that satisfies the two properties above is a density

function for a circular distribution.
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We now give a definition of the characteristic function. We use the theory of Fourier

series for periodic function, that implies that, in order tocharacterize a distribution, it is

enough to consider integer values for p.

Definition 3.1.3 LetX = eiΦ be a circular random variable. Then the function

Ψp := Ψ(p) = E[Xp] = E[eipΦ] =

∫ 2π

0

eipφF (dφ), p ∈ Z (3.1)

is called the characteristic function (ch.f.) of X.

We write

Ψp = ap + ibp = ρpe
iα0

p , (3.2)

where

ap = E[cos(pΦ)] =

∫ 2π

0

cos(pφ)F (dφ) (3.3)

and

bp = E[sin(pΦ)] =

∫ 2π

0

sin(pφ)F (dφ). (3.4)

The sequencesap andbp are referred to as the trigonometric moments ofX = eiΦ. For

the special case p=1 we use the notationsρ1 = ρ andα0
1 = α0. The key property of the

ch.f. of circular distribution is that such distribution are determined by their ch.f., see

Jupp and Mardia (2000).

Definition 3.1.4 Ψ1 is called the resultant.α0 is called the mean direction ofX = eiΦ,

whileρ is called the resultant length.

The mean direction takes the role that the mean has for a distribution on the line.

One can show that the mean direction is the solution to the equations

E[sin(Φ − α0)] = 0, α0 ∈ [0, 2π) (3.5)

E[cos(Φ − α0)] > 0. (3.6)
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The resultant length is then given by

ρ = E[cos(Φ − α0)]. (3.7)

See Mardia (1972) for a reference. It is important to point out that the mean direction

is only well defined ifρ > 0. The Lattice distribution and the Uniform distribution are

examples of circular distributions for which resultant length is 0. The reason why we

are not considering the usual mean is illustrated in the following example.

Example 3.1.5 Let X = eiΦ be concentrated on two points,π/100 and 199/100π,

each attained with probability 0.5. The mean, as calculated for a distribution on the

line, would beπ. Note that both values ofΦ are close to 0. Obviously, a mean ofπ

is not what we expect intuitively in this case. On the other hand, we have thatΨ1 =

cos(π/100) ≈ 0.9995. Hence the resultant length isρ = cos(π/100) and the mean

direction isα0 = 0.

Now consider a change in the coordinate system, making the directionν = −π/50

the new zero direction. In the new coordinate systemΦ has values3/100π and1/100π.

Therefore the mean, as calculated for a distribution on the line is now1/50π. On the

other hand, we haveΨ
′

1 = cos(π/100)ei1/50π. The mean direction is therefore also

1/50π. We see that the new mean directionα′
0 satisfiesα

′

0 = α0 − ν. If we choose a

new zero direction, we cannot expect the direction of the meanas calculated on the line

to change by the angle between the new and old zero direction. For this reason, the new

definition of a mean direction is needed.

The resultant length is used to define the circular variance,a measure of dispersion.

Definition 3.1.6 Let X be a circular random variable with resultant lengthρ. The

circular variance ofX, V0, is defined asV0 = 1 − ρ = 1 − E[cos(Φ − α0)] ∈ [0, 1],

using (3.7).
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Note thatV0 is invariant under changes of the zero direction. This is nottrue for the

variance as calculated for a distribution on the line. This is illustrated by the following

example.

Example 3.1.7 Let X = eiΦ be as in Example 3.1.5. The variance as calculated on

the real line is 9.67. On the other hand,V0 is equal to 0.0005. Note that since the

distribution is concentrated on two points that are close together, the large value of the

variance as calculated on the real line is not meaningful.

Now consider again the change in the coordinate system, making the directionν =

−π/50 the new zero direction. In the new coordinate systemΦ has a different mean as

calculated on the line and hence also a new variance, which nowis 0.001. On the other

hand, the length of the resultant and therefore the circularvarianceV0 do not change.

For this reason the new definition of a variance is needed.

Let x1 = ejφ1 , . . . , xn = ejφn be an i.i.d. sample of a circular random variable

X = eiΦ. The sample trigonometric moments

Cp = 1
n

∑n
j=1 cos(pφj)

Sp = 1
n

∑n
j=1 sin(pφj)

are unbiased estimators of the trigonometric moments. Of particular interest areC1 =:

C andS1 =: S, as they are used to estimate the resultant length and the mean direction.

The resultant length is estimated by the mean resultant

R =
(
C

2
+ S

2
)1/2

.

The mean direction is estimated by the sample mean direction. The sample mean direc-

tion is the solutionα0 of the following system of equations, wheneverR > 0:

C = Rcos(α0)

S = Rsin(α0)
(3.8)
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The sample mean direction is a consistent estimator of the mean direction, see Jupp and

Mardia (2000). In general, it needs not be an unbiased estimator, but it is unbiased in

the case of a von Mises distribution, as we will see below. We want to point out that the

sample mean direction and the mean resultant length can alsobe expressed byx1, ..., xn

in cartesian coordinates. To that end, define thesample mean vectoras

x =
1

n

n∑

i=1

xi. (3.9)

Then we have

R = ‖x‖, andα0 = ‖x‖−1x. (3.10)

3.1.2 Important Circular Distributions

We now present several important circular models. Of particular interest are the Wrapped

Normal distribution and the von Mises distribution. They can be seen as the analogues

of the Normal distribution on the circle. Neither of them have all the important charac-

terizations that the Normal distribution on the line incorporates. Some of those charac-

terizations are held by the Wrapped Normal distribution, while others are held by the

von Mises distribution. It turns out that these two distributions can be seen as approxi-

mations of each other. We may therefore use either one of themas the circular analogue

of the Normal distribution on the line.

Point Distribution

X = eiΦ is said to have a point distribution, if there is anα ∈ [0, 2π), such that:

P[Φ = α] = 1

In that caseα is also the mean direction, the resultant length is 1, the circular variance

is 0 and the ch.f. is given byΨp = eipα.



50

Lattice Distribution

A lattice distribution is a discrete circular distributionconcentrating its mass on a count-

able number of equally spaced points. It has probability function

P

(
Φ = ν +

2πr

m
(mod 2π)

)
= pr, for r = 1, . . . ,m andν ∈ (0, 2π], (3.11)

wherepr > 0 are the probabilities of the points of support{ν + 2πr
m

, r = 1, ...,m} with
∑m

r=0 pr = 1. The points of support have equal distances from their neighbors on the

circle. They are the vertices of an m-sided regular polygon.A special case of the lattice

distribution is called the discrete uniform distribution with m points of support. It is the

lattice distribution withpr = 1/m for all r = 1, ...,m. The characteristic function of

this uniform distribution is given by

Ψp =





1, p = 0 (mod m)

0, otherwise.

In particular, we see from the ch.f. that, ifm ≥ 2, then the resultant length is 0. This

means that the mean direction is not defined.

Uniform Distribution

If X = eiΦ has pdf

f(φ) =
1

2π
, 0 < φ ≤ 2π,

we say thatX = eiΦ is uniformly distributed on the circle. Note that the resultant

length is 0. Therefore, the mean direction is not defined and the circular variance is 1.

The ch.f. isΨp = (eip2π − 1)/2πip, p 6= 0. Therefore we haveΨp = 1, if p = 0

andΨp = 0, if p 6= 0. The Uniform distribution appears as the limit distribution of

sums of i.i.d circular random variables. LetXj = eiΦj , (j ∈ N) be an i.i.d. sequence of

circular random variables. If the distribution ofX1 is not a lattice distribution, thenSn =
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∏n
j=1 Xj = ei

∑n
j=1 Φj converges weakly to a uniformly distributed random variable. The

summation of the random variablesΦj is understood modulo2π. See section 4.3.1 Jupp

and Mardia (2000) for a proof. In particular, ifX1 is itself uniformly distributed on the

unit circle, then the distribution ofSn is also the Uniform distribution, for alln ∈ N.

Wrapped Normal Distribution

A random variable whose distribution has the characteristic function given by

Ψp = eiα0p−p2σ2/2, (3.12)

is said to have a wrapped normal distribution,WN(α0, ρ). It’s trigonometric moments

are given by

ap = e−p2σ2/2 cos(pα0) andbp = e−p2σ2/2 sin(pα0). (3.13)

The distribution is unimodal and symmetric aboutα0. As ρ → 0, it tends to the Uni-

form distribution, while, asρ → 1, it tends to the Point distribution atα0. The pdf of

WN(α0, ρ) is given by

f(φ; α0, ρ) =
1

σ(ρ)
√

2π

∞∑

k=−∞

exp

[−(φ − α0 + 2kπ)2

2σ(ρ)2

]
. (3.14)

The distribution has its name because of the following property. LetX have a normal

distribution with meanµ and varianceσ2, N(µ, σ2), on the real line. Then the circular

random variableX = eiΦ with Φ = X(mod2π) has a wrapped normal distribution. Its

mean direction is given byα0 = u(mod 2π) and its resultant lengthρ has the following

relationship withσ:

σ(ρ)2 = −2log(ρ) ⇔ ρ(σ) = e−σ2/2.

We refer to Jupp and Mardia (2000) as a reference.

On the line, we have that the sum of independent normally distributed random vari-

ables has again a normal distribution. Not surprisingly, this property transfers to a
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similar property for the wrapped normal distribution. IfXj = eiΦj , j = 1, ..., n, are

independent andXj has aWN(αj, ρj) distribution, then we have that

n∏

j=1

Xj = exp

(
i

n∑

j=1

Φj

)
is distributed asWN

(
n∑

j=1

αj(mod 2π),
n∏

j=1

ρj

)
. (3.15)

Several other wrapped distributions have been considered.See Jupp and Mardia (2000)

for definitions of a wrapped Poisson and a wrapped Cauchy distribution.

Von Mises Distribution

X = eiΦ is said to have a von Mises distribution with parametersα andκ, M(α, κ), if

it has density

fM(φ; α, κ) =
1

2πI0(κ)
eκ cos(φ−α), 0 < φ ≤ 2π, κ > 0, 0 ≤ α < 2π. (3.16)

whereI0(κ) denotes the modified Bessel function of the first kind of order zero:

I0(κ) =
∞∑

n=0

1

(n!)2

(κ

2

)2n

=
1

2π

∫ 2π

0

eκ cos(t)dt. (3.17)

α is the mean direction, as we will see below, whileκ is a concentration parameter, but

not the resultant length.

Note that the density of the von Mises distribution can also be expressed in carte-

sian coordinates. If we defineµ = (µ1, µ2) := (cos(α), sin(α)) andx = (x1, x2) :=

(cos(φ), sin(φ)), then we can rewrite (3.16) as

fM(x; µ, κ) =
1

2πI0(κ)
eκ(µ1x1+µ2x2); µ,x ∈ S

1, κ > 0. (3.18)

For this reason, we sometimes also use the notationM(µ, κ) when referring to the von

Mises distribution.

The densityfM(φ; α, κ) is strictly positive for allφ ∈ [0, 2π], as long as the con-

centration parameterκ is finite. The distribution function of the von Mises distribution
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cannot be expressed in an easy closed form. We used numericalintegration with Matlab

to evaluateFM(ϕ; α, κ) =
∫ ϕ

0
fM(φ; α, κ)dφ. Alternatively, one could work with tables

of values ofFM(ϕ; 0, κ). Such tables can for example be found in Mardia (1972). The

distribution is unimodal and symmetric aboutα. If κ = 0, thenfM(φ; α, κ) = 1
2π

, the

pdf of the Uniform distribution. Asκ → ∞, P[Φ ∈ [α − ǫ, α + ǫ]] → 1, so that the dis-

tribution converges to the point distribution atα. Figure 3.1 shows a plot of the density

of the von Mises distribution. Note how the distribution is concentrated much closer

around the mean direction forκ = 10 than it is forκ =2 or 0.2.

0 1 2 3 4 5 6
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0.5
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1.5

φ

D
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κ=10 

κ=2 

κ=0.2 

Figure 3.1: The densityfM(φ; α, κ) of the von Mises distributions withα = 1 and

κ = 10, 2 and 0.2, respectively.
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The ch.f. is given by

Ψp = eipα Ip(κ)

I0(κ)
. (3.19)

Ip(κ) denotes the modified Bessel function of the first kind of orderp ∈ R+, which is

given by

Ip(κ) =
(z

2

)p
∞∑

j=0

(κ/2)2j

Γ(p + j + 1)Γ(j + 1)
, (3.20)

whereΓ(x) denotes the Gamma function. For the purpose of calculating the ch.f. it is

enough to considerIp(κ) only for integer values ofp. However, for other purposes that

we will discuss later in this thesis, we need to consider the functionIp(κ) for non integer

values ofp. The following equation including an integral will prove tobe helpful.

Ip(κ) =
(κ

2
)p

√
πΓ(p + 1

2
)

∫ 1

−1

(1 − t2)p− 1
2 eκtdt

=
(κ

2
)p

√
πΓ(p + 1

2
)

∫ 1

0

(1 − t2)p− 1
2

(
eκt + e−κt

)
dt (3.21)

In case ofp ∈ N, we also have the following equation:

Ip(κ) =
1

π

∫ π

0

eκ cos(φ)cos(pφ)dφ.

As a consequence of this last equation we see that the trigonometric moments of order

p ∈ N are

ap =
Ip(κ)

I0(κ)
cos(pα) andbp =

Ip(κ)

I0(κ)
sin(pα). (3.22)

In particular, we have for the resultant length that

ρ = A(κ) =
I1(κ)

I0(κ)
, (3.23)

and thatα is the mean direction. Hence the circular variance isV0 = 1 − A(κ).

The von Mises distribution can be related to other circular distributions. We already

discussed the relations to the Uniform and the Point distributions. For large values ofκ,

one can furthermore show that the von Mises distributionM(α, κ) can be approximated



55

by a Wrapped Normal distribution with resultant lengthρ = A(κ). A result due to Kent

(1978) states that

fM(φ; α, κ) − f(φ; α,A(κ)) = O(κ−1/2), (3.24)

wherefM(φ; α, κ) is the density of the von Mises distribution andf(φ; α,A(κ)) is the

density of the approximating Wrapped Normal distribution. This could for example

be used to obtain approximatelyM(α, κ) distributed samples. A more sophisticated

algorithm for simulating the von Mises distribution is given in Jupp and Mardia (2000).

While the sum of independent von Mises random variables is nota von Mises ran-

dom variable again, it can be approximated by a von Mises random variable. One can

show that as a consequence of the closeness of the von Mises and the Wrapped Normal

distribution and (3.15), we have the following approximation. Assume thatX1 = eiΦ1 is

distributed asM(α1, κ1) and thatX2 = eiΦ2 is distributed asM(α2, κ2). Then we have

thatΦ1+Φ2 is approximately distributed asM(α1+α2, κ3) with A(κ3) = A(κ1)A(κ2).

See again Mardia (2002) Jupp and Mardia (2000) for a proof.

The following two characterizations of the von Mises distribution are analogous to

those of the Normal distribution on the line. We refer to Juppand Mardia (2000) for a

more detailed discussion.

The first characterization is the Maximum Entropy Characterization. The entropy of

a distribution on the unit circle with pdff(φ) is the defined as−
∫ 2π

0
f(φ) log f(φ)dφ.

The von Mises distribution has the maximum entropy of all distributions with given

mean direction and circular variance. The Normal distribution maximizes the entropy

on the line for fixed mean and variance.

Let f(φ − α) be a pdf of a distribution on the circle belonging to a location family

with varying mean directionα. If the maximum likelihood estimator ofα is the sample

mean direction, thenf is the pdf of a von Mises distribution. Compare this to the
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situation on the real line: Iff(x − α0) is the pdf of a distribution on the line belonging

to a location family, thenf is pdf of the Normal distribution if and only if the maximum

likelihood estimator of the meanα0 is the sample mean.

Maximum Likelihood Estimation in a von Mises distribution Let X1, .., Xn be

i.i.d., distributed asM(α, κ). The corresponding log-likelihood function for the ob-

servationsx = (x1, ..., xn) of X1, .., Xn is

L(α, κ;x) = −n log(2π) − n log(I0(κ)) + κ
n∑

i=1

cos(xi − α). (3.25)

It turns out that the MLE of the mean directionα can be determined without any knowl-

edge aboutκ. We have

∂L

∂α
= κ

n∑

i=1

sin(xi − α) = κ

n∑

i=1

(sin(xi) cos(α) − sin(α) cos(xi))

= κ(S cos(α) − sin(α)C), (3.26)

whereC =
∑n

i=1 cos(xi) andS =
∑n

i=1 sin(xi). The second derivative of the log-

likelihood function is given by

∂2L

∂α2
= −κ(S sin(α) + C cos(α)). (3.27)

Let R =
√

(S2 + C2). Then by (3.26) and (3.27) the MLÊα of α must satisfy

C = R cos(α̂)

S = R sin(α̂)
(3.28)

The solution of (3.28) solves∂L
∂α

= 0 and ∂2L
∂α2 < 0, as long asR > 0. Therefore, by

comparing with (3.8), we see thatα̂ is just the mean direction.

Turning to the estimation ofκ, we have:

∂L

∂κ
= −n

I ′
0(κ)

I0(κ)
+

n∑

i=1

cos(xi − α), (3.29)
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whereI ′
0(κ) stands for the derivative of theI0(κ). Using the fact thatI ′

0(κ) = I1(κ) and

recalling thatA(κ) = I1(κ)
I0(κ)

, we therefore have:

∂L

∂κ
= −nA(κ) + cos(α)C + sin(α)S. (3.30)

Solving ∂L
∂κ

= 0 and replacingα with α̂, we obtain the equation

−nA(κ̂) +
C2 + S2

R
= 0 ⇔ nA(κ̂) = R ⇔ A(κ̂) = R ⇔ κ̂ = A−1(R). (3.31)

Thus the MLE ofκ is well defined and unique, if the equationA(κ̂) = R has a unique

solution for allR ∈ [0, 1). This is the case, if the functionA(z) has the following

properties:

• limz→0 A(z) = 0,

• limz→∞ A(z) = 1,

• A(z)is strictly monotone increasing.

In the following section, we will consider a extension of thevon Mises distribution to

higher dimensions. We will need that a family of functions similar to A(z) satisfies

the three properties above. We therefore show that these three properties are not only

satisfied byA(z), but rather by a larger family of functions, referred to asBd(z). Note

thatA(z) = B1(z).

Proposition 3.1.8 Letd > 1 be a real number. Define forz > 0

Bd(z) :=
Id(z)

Id−1(z)

ThenBd(z) has the following properties:

lim
z→0

Bd(z) = 0, (3.32)

lim
z→∞

Bd(z) = 1, (3.33)

Bd(z) is a continuous, strictly monotone increasing function. (3.34)
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Proof:

For the proof of (3.32) we make use of equation 9.6.7 in Abramowitz and Stegun (1972):

Ip(z) ∼ (1
2
z)p

Γ(p + 1)
, for fixed p and asz → 0.

Hence, we have immediately:

Bd(z) ∼ 1

2
z
Γ(d + 1)

Γ(d)
, asz → 0.

and thereforelimz→0 Bd(z) = 0.

For the proof of (3.33), recall from (3.21), that

Ip(z) =
( z

2
)p

√
πΓ(p + 1

2
)

∫ 1

0

(1 − t2)p− 1
2

(
ezt + e−zt

)
dt.

Hence we can write

Bd(z) =
( z

2
)dΓ(d − 1

2
)

( z
2
)d−1Γ(d + 1

2
)

∫ 1

0
(1 − t2)d− 1

2 (ezt + e−zt) dt
∫ 1

0
(1 − t2)d− 3

2 (ezt + e−zt) dt
.

Using thatΓ(d + 1
2
) = (d − 1

2
)Γ(d − 1

2
) this simplifies to

Bd(z) =
( z

2
)

(d − 1
2
)

∫ 1

0
(1 − t2)d− 1

2 (ezt + e−zt) dt
∫ 1

0
(1 − t2)d− 3

2 (ezt + e−zt) dt
.

We therefore need to show that, asz → ∞,

∫ 1

0
(1 − t2)d− 1

2 (ezt + e−zt) dt
∫ 1

0
(1 − t2)d− 3

2 (ezt + e−zt) dt
∼ 2(d − 1

2
)

z
. (3.35)

We have, asz → ∞, that

∫ 1

0
(1 − t2)d− 1

2 (ezt + e−zt) dt
∫ 1

0
(1 − t2)d− 3

2 (ezt + e−zt) dt
∼

∫ 1

0
(1 − t2)d− 1

2 eztdt
∫ 1

0
(1 − t2)d− 3

2 eztdt
.

Furthermore, we have that∀ǫ, ∃δ = δ(z, ǫ), such that

(1 − δ)

(∫ 1

0

(1 − t2)d− 1
2 eztdt

)
=

∫ 1

1−ǫ

(1 − t2)d− 1
2 eztdt. (3.36)
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As z → ∞, we have∀ǫ > 0 thatδ = δ(z, ǫ) → 0. Therefore, we get that
∫ 1

0
(1 − t2)d− 1

2 eztdt
∫ 1

0
(1 − t2)d− 3

2 eztdt
∼

∫ 1

1−ǫ
(1 − t2)d− 1

2 (ezt) dt
∫ 1

1−ǫ
(1 − t2)d− 3

2 (ezt) dt
.

asz → ∞. A Taylor series approximation gives us(1 − t2) ∼ 2(1 − t) , ast → 1.

Therefore, we get
∫ 1

1−ǫ
(1 − t2)d− 1

2 (ezt) dt
∫ 1

1−ǫ
(1 − t2)d− 3

2 (ezt) dt
∼

∫ 1

1−ǫ
2d− 1

2 (1 − t)d− 1
2 (ezt) dt

∫ 1

1−ǫ
2d− 3

2 (1 − t)d− 3
2 (ezt) dt

= 2

∫ 1

1−ǫ
(1 − t)d− 1

2 (ezt) dt
∫ 1

1−ǫ
(1 − t)d− 3

2 (ezt) dt
.

With an argument analogue to (3.36) we get

2

∫ 1

1−ǫ
(1 − t)d− 1

2 (ezt) dt
∫ 1

1−ǫ
(1 − t)d− 3

2 (ezt) dt
∼ 2

∫ 1

0
(1 − t)d− 1

2 (ezt) dt
∫ 1

0
(1 − t)d− 3

2 (ezt) dt
.

We multiply the integrand in both the numerator and the denominator by the constant

terme−z and then use the change of variablex = (1 − t) to get

2

∫ 1

0
(1 − t)d− 1

2 eztdt
∫ 1

0
(1 − t)d− 3

2 eztdt
= 2

∫ 1

0
(1 − t)d− 1

2 e−z(1−t)dt
∫ 1

0
(1 − t)d− 3

2 e−z(1−t)dt
= 2

∫ 1

0
xd− 1

2 e−zxdx
∫ 1

0
xd− 3

2 e−zxdx
.

A second change of variabley = xz gives us

2

∫ 1

0
xd− 1

2 e−zxdx
∫ 1

0
xd− 3

2 e−zxdx
= 2

∫ 1

0
(y

z
)d− 1

2 e−y 1
z
dy

∫ 1

0
(y

z
)d− 3

2 e−y 1
z
dy

=
2

z

∫ z

0
yd− 1

2 e−ydt
∫ z

0
yd− 3

2 e−ydy
.

Remembering that

Γ(x) =

∫ ∞

0

tx−1e−tdt,

we observe that

2

z

∫ z

0
yd− 1

2 e−ydt
∫ z

0
yd− 3

2 e−ydy
∼ 2

z

∫ ∞

0
yd− 1

2 e−ydt
∫ ∞

0
yd− 3

2 e−ydy
∼ 2

z

Γ(d + 1
2
)

Γ(d − 1
2
)

=
2

z

(
d − 1

2

)
.

Together we have therefore shown that, asz → ∞,
∫ 1

0
(1 − t2)d− 1

2 (ezt + e−zt) dt
∫ 1

0
(1 − t2)d− 3

2 (ezt + e−zt) dt
∼ 2

z

(
d − 1

2

)
.

This is exactly (3.35). This shows thatBd(z) → 1, asz → ∞.
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To show thatBd(z) is a strictly monotone increasing function, we first observethat

Bd(z) = c1 · z
∫ 1

−1
(1 − t2)d− 1

2 eztdt
∫ 1

−1
(1 − t2)d− 3

2 eztdt
,

wherec1 is a constant. Using integration by parts, we obtain for the integral in the

numerator:

(1 − t2)d− 1
2 ezt

∣∣1
−1 +

∫ 1

−1

(
d − 1

2

)
2t(1 − t2)d− 3

2 eztdt = c2 ·
∫ 1

−1

t(1 − t2)d− 3
2 eztdt,

wherec2 stand for a constant. Define

f(t) := (1 − t2)d− 3
2 .

We can now rewriteBd(z) as

Bd(z) = c3 · z
∫ 1

−1
tf(t)eztdt

∫ 1

−1
f(t)eztdt

for a constantc3. To show that the right hand side is strictly monotone increasing, we

note that ∫ 1

−1
(−1 + t + 1)f(t)eztdt

∫ 1

−1
f(t)eztdt

= −1 +

∫ 1

−1
(t + 1)f(t)eztdt
∫ 1

−1
f(t)eztdt

.

The fraction on the right hand side can be written as

∫ 1

−1
f(t)eztdt

∫ t

−1
dx

∫ 1

−1
f(t)eztdt

=

∫ 1

−1
dx

∫ 1

x
f(t)eztdt

∫ 1

−1
f(t)eztdt

.

Hence, we can writeBd(z) as

Bd(z) = c3 · z
(
−1 +

∫ 1

−1
dx

∫ 1

x
f(t)eztdt

∫ 1

−1
f(t)eztdt

)
.

In order to show thatBd(z) is strictly monotone increasing, it is enough to show that the

function

f2(z) =

∫ 1

x
f(t)eztdt

∫ 1

−1
f(t)eztdt
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is non-decreasing. We can split the integral in the denominator to obtain

f2(z) =

∫ 1

x
f(t)eztdt

∫ x

−1
f(t)eztdt +

∫ 1

x
f(t)eztdt

=

(∫ x

−1
f(t)eztdt

∫ 1

x
f(t)eztdt

+ 1

)−1

.

f2(z) is non-decreasing, if and only if

∫ x

−1
f(t)eztdt

∫ 1

x
f(t)eztdt

=

∫ x

−1
f(t)ez(t−x)dt

∫ 1

x
f(t)ez(t−x)dt

(3.37)

is non-increasing. Note that, for the integrand in the numerator, we havet ≤ x. There-

fore,ez(t−x) is a non-increasing function ofz, since(t − x) ≤ 0. As a consequence the

numerator is a decreasing function ofz. On the other hand, for the numerator, we have

t ≥ x and henceez(t−x) is an increasing function ofz. Therefore, the denominator is a

increasing function ofz. Hence, we see that the right hand side in (3.37) is a decreas-

ing function ofz. This is turn implies thatf2(z) is non-decreasing and henceBd(z) is

strictly monotone increasing. Finally, the fact thatId(z) is a continuous, positive func-

tion for z > 0 andd ≥ 0 implies thatBd(z) is a continuous function onz > 0. Equation

(3.32) proves continuity at 0.¥

Unfortunately, there is no explicit, closed form equation for the evaluation ofA−1(·).

We used a numerical procedure implemented in Matlab to evaluateA−1(·). Alterna-

tively, one could use tables or polynomial approximations to evaluateA−1(·). Suitable

approximations can for example be found in Jupp and Mardia (2000). Further approx-

imations could also be based on corresponding approximations forId(z) found in sec-

tions 9.7 and 9.8 in Abramowitz and Stegun (1972).

3.1.3 Distributions on(0, 2π/k)

There are instances where one needs a circular random variable whose range is only

a part of the unit circle. That is, we are interested in developing models for random
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variablesX∗ = eiΦ∗

with Φ∗ ∈ [0, 2π/l) for a real numberl. Typically l is an integer.

For example, if one is attempts to model the angle, with whichobjects like asteroids

enter the earth’s atmosphere, one would want to work with a random variableX∗ = eiΦ∗

with Φ∗ ∈ [0, π/2). Such random variables are derived from circular random variables

X = eiΦ, with Φ ∈ [0, 2π) by setting

Φ∗ = Φ/l ⇐⇒ X∗ = X1/l. (3.38)

This allows us to adapt any circular model to describe randomvariables whose angleΦ

only has values in([0, 2π/l). If X = eiΦ, Φ ∈ [0, 2π) has densityf(φ), then

f ∗(φ) = f(φ · l) · l, φ ∈ (0, 2π/l) (3.39)

is the density ofX∗ = eiΦ∗

. Following this idea, we may define the ch.f. ofX∗ = eiΦ∗

asΨp = E[eilpΦ∗

]. As a consequence, it seems natural to define the mean direction

of X∗ = eiΦ∗

asα∗
0 = α0/l, whereα0 is the mean direction ofX = eiΦ. It is not

easy to obtain an appropriate definition of the circular variance ofX∗ = eiΦ∗

from the

corresponding definition ofV0, the circular variance ofX = eiΦ. See Section 3.5.2

Mardia (1972) for a discussion. They suggest that the variance V ∗
0 of X∗ = eiΦ∗

be

defined as

V ∗
0 = 1 − (1 − V0)

1/l2 . (3.40)

3.2 Spherical Distributions

3.2.1 Definitions and Descriptive Measures

Let {Ω, (A), P} be a probability space. We say that the random variableX has a spher-

ical distribution, if

X(ω) ∈ S
d−1 = {x ∈ R

d : ‖x‖ = 1},∀ω ∈ Ω.
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Due to the special topology ofSd−1, the concept of a cdf is not widely used in the de-

scription of spherical distributions. It is customary to describe such distributions either

using density functions or probability functions, depending on whether the distribution

is absolute continuous or discrete. The definition of a pdf for a spherical distribution is

as follows.

Definition 3.2.1 A nonnegative functiong with domainSd−1 is called a probability den-

sity function, pdf, of a spherical distribution, if

∫

Sd−1

g(x)do(x) = 1, (3.41)

wheredo(x) denotes the surface measure onSd−1. That is,do(x) is the Lebesgue mea-

sure restricted toSd−1, satisfying

∫

Sd−1

do(x) =
2πd/2

Γ(d/2)
.

It is sometimes more convenient to express a pdf in sphericalcoordinates. The rep-

resentation of a pointx = (x1, ..., xd) ∈ Rd in spherical coordinates is as follows:

x1 = r cos(φ)
d−2∏

i=1

sin(θi), (3.42)

x2 = r sin(φ)
d−2∏

i=1

sin(θi), (3.43)

xj = r cos(θj−2)
d−2∏

i=j−1

sin(θi), for j = 3, . . . , d − 1, (3.44)

xd = r cos(θd−2), (3.45)

where

r = ‖x‖, cos(φ) = x1, sin(φ) = x2 and (3.46)

tan(θj) =

√∑j+1
i=1 x2

i

xj+2

, j = 1, . . . , d − 2. (3.47)
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Here, r > 0, φ ∈ [0, 2π) and θj ∈ [0, π) for j = 1, . . . , d − 2. Using this defini-

tion of spherical coordinates, we can reformulate the definition of a pdf of a spherical

distribution inRd.

Definition 3.2.2 A nonnegative functionf with domainD = [0, 2π)×[0, π)d−2 is called

a probability density function, pdf, of a spherical distribution in d dimensions, if

∫

D

f(φ, θ1, . . . , θd−2)dφdθ1, . . . , dθd−2 = 1.

The domain can be extended as follows

f(φ + 2π, θ1, . . . , θd−2) = f(φ, . . . , θd−2),∀φ ∈ [0, 2π),∀θi = [0, π), i = 1, . . . , d − 2.

The connection between a pdfg(x) in cartesian coordinates and the corresponding pdf

f(φ, θ1, . . . , θd−2) in spherical coordinates is given by the well known theorem describ-

ing the change of variables, see for example Billingsley (1995), p. 215ff or p. 225ff.

Noting that the Jacobian determinant of the transformationgiven by (3.42) - (3.45) is

|J(r, φ, θ1, . . . , θd−2)| = rd−1

d−2∏

i=1

(sin (θi))
i,

we get the following relationship

g(x1, . . . , xd) = f(φ, θ1, . . . , θd−2)

(
d−2∏

i=1

(sin (θi))
i

)−1

. (3.48)

We will work with densities in both cartesian and spherical coordinates, depending on

which notation is more useful.

The main characteristic of spherical distributions is, as for circular distributions,

the resultant. It is easier to define the resultant using cartesian coordinates rather than

spherical coordinates.
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Definition 3.2.3 LetX be a d dimensional spherical random vector whose distribution

is given by the pdfg(x), expressed in cartesian coordinates. Then the population mean

resultantρ of X is defined as

ρ =

(
d∑

i=1

(E[Xi])
2

) 1
2

=: (E[X]T E[X])
1
2 , (3.49)

where

E[Xi] =

∫

Sd−1

xig(x)do(x)), for i = 1, . . . , d.

The population mean direction is defined by

µ0 = ρ−1
E[X]. (3.50)

The definition of the resultant length and the population mean direction are higher

dimensional analogues of the respective definitions for circular distributions, given in

Definition 3.1.4. Also very similar to the circular case, we define for a sample of points

x1, . . . ,xn onSd−1 thesample mean vectoras

x =
1

n

n∑

i=1

xi. (3.51)

As in the circular case, we define themean resultant lengthR and thesample mean

directionx0 as

R = ‖x‖, andx0 = ‖x‖−1x. (3.52)

Another important measure of dispersion for spherical distributions, that we mention

for completeness, is thescatter matrixT about the origin, defined by

T =
1

n

n∑

i=1

xix
T
i .

It may be useful to note thatT can be thought of as the inertia tensor about the origin of

a group of particles with equal massn−1 located at positionsx1, . . . ,xn. The use and

interpretation ofT is given in Section 10.2 in Jupp and Mardia (2000).
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3.2.2 Important Spherical Distributions

In the following we present some of the most important spherical distributions. We

mostly concentrate on the von Mises-Fisher distribution, since it is our preferred choice

for modelling the distribution of directional data in the framework of finite mixture

models.

The Uniform Distribution, U(Sd−1)

This is the most basic distribution onSd−1. If X is distributed asU(Sd−1), the probability

P[X ∈ A] is proportional to the surface area ofA on Sd−1. Therefore, we have in

cartesian coordinates

g(x1, ..., xd) =
1

c(d)
=

Γ(d/2)

2πd/2
, (3.53)

where

c(d) =

∫

Sd−1

do(x) =
2πd/2

Γ(d/2)
(3.54)

denotes the surface area ofSd−1 and whereΓ(x) denotes the Gamma function. In spher-

ical coordinates we therefore get

f(φ, θ1, . . . , θd−1) =
1

c(d)

d−2∏

i=1

(sin (θi))
i =

Γ(d/2)

2πd/2

d−2∏

i=1

(sin (θi))
i. (3.55)

The population mean resultantρ of the Uniform distribution is 0, as in the circular case.

Therefore, the population mean direction is not defined.

The von Mises-Fisher distribution

The von Mises-Fisher distribution is the natural extensionof the circular von Mises

distribution into higher dimensions. Recall that the von Mises distribution has density

gM(x; µ, κ) =
1

2πI0(κ)
eκµT x =

1

2πI0(κ)
eκ(µ1x1+µ2x2) (3.56)
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expressed in cartesian coordinates. Based on this observation, we make the following

definition.

Definition 3.2.4 The von Mises-Fisher distribution onSd−1, denoted byM(µ, κ), is the

distribution whose density in cartesian coordinates is given by

gM(x; µ, κ) = cd(κ) exp(κ · µTx) = cd(κ) exp

(
κ

d∑

i=1

µixi

)
, (3.57)

with cd(κ) as given below,κ > 0, µ = (µ1, . . . , µd) ∈ Sd−1 the mean direction, ex-

pressed in cartesian coordinates andx ∈ Sd−1.

In their book, Jupp and Mardia (2000) give the following equation for cd(κ):

cd(κ) =
(κ/2)d/2−1

Γ(d/2)Id/2−1(κ)
,

whereIp(z) denotes the modified Bessel function of the first kind of order,given by

equation (3.20). Unfortunately, this is not the correct formula forcd(κ). The following

Lemma gives the correct equation for the constantcd(κ).

Lemma 3.2.5 We have

cd(κ) =
(κ/2)d/2−1

2πd/2Id/2−1(κ)
. (3.58)

Proof:

We need to show that

cd(κ)−1 =

∫

Sd−1

exp(κ · µTx)do(x)).

We expressµ andx in spherical coordinates, as explained in (3.42) - (3.45). We express

µ with the anglesα, β1, ..., βd−2 andx with φ, θ,..., θd−2. After applying a change of

coordinates, we may assume, without loss of generality, that βd−2 = 0. Through equa-

tions (3.42) - (3.45) we see that this meansµd = 1 and sinceµ ∈ Sd−1, this implies
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µ1 = ... = µd−1 = 0. The integrand therefore simplifies to

exp(κ · µTx) = exp(κ · µdxd) = exp(κ · cos(θd−2)).

Therefore, we have

cd(κ)−1 =

∫ 2π

0

∫ π

0

. . .

∫ π

0

eκ·cos(θd−2)

d−2∏

i=1

(sin (θi))
idθ1 . . . dθd−2dφ

= 2π

∫ π

0

. . .

∫ π

0

d−3∏

i=1

(sin (θi))
idθ1 . . . dθd−3

∫ π

0

eκ·cos(θd−2) sin (θd−2)
d−2dθd−2.

Note, that

2π

∫ π

0

. . .

∫ π

0

d−3∏

i=1

(sin (θi))
idθ1 . . . dθd−3 =

2π(d−1)/2

Γ((d − 1)/2)
.

because the left hand side equalsc(d − 1) =
∫

Sd−2 do(x), which equals the right hand

side by (3.54). Furthermore we have from equation 9.6.18 in Abramowitz and Stegun

(1972) that ∫ π

0

eκ cos(θ) sin(θ)2νdν =

√
πΓ(ν + 1/2)Iν(κ)

(κ/2)ν
.

Settingν = d/2 − 1 and combining the two equations, we get

cd(κ)−1 =
2πd/2Id/2−1(κ)

(κ/2)d/2−1
.

¥

In particular, we see that for d=2 and d=3 we have:

c2(κ) =
1

2πI0(κ)
(3.59)

c3(κ) =
k

4π sinh(κ)
, (3.60)

where we used thatI1/2(κ) = ( 2
κπ

)1/2 sinh(x) for (3.60). For d=3, we get the following

equation for the density of the von Mises-Fisher distribution, expressed in spherical

coordinates:

fM(φ, θ; (α, β), κ) =
k

4π sinh(κ)
eκ[cos β cos θ+sin β sin θ cos(φ−α)] sin(θ), (3.61)
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with 0 ≤ θ, β < π and 0 ≤ φ, α < 2π. For d > 3, the density is usually only

expressed in cartesian coordinates, as the expressions in spherical coordinates become

to complicated.
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Figure 3.2:The density of the von Mises-Fisher distribution with mean direction given

byα = π andβ = π/4 in spherical coordinates. The value ofκ is 20.

The density of the von Mises-Fisher distribution is unimodal with the mode atµ,

provided thatκ > 0. If κ = 0, the von Mises-Fisher distribution equals the Uniform

distribution onSd−1. The larger the value ofκ, the more the distribution is concentrated

aroundµ. One can show that the density is rotationally symmetric about the mean direc-

tion µ. In that sense, the von Mises-Fisher distribution is comparable to a multivariate
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Figure 3.3:The density of the von Mises-Fisher distribution withα = π andβ = 3π/4

in spherical coordinates. The value ofκ is 1.
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Figure 3.4:The density of the von Mises-Fisher distribution withα = π/4 andβ = π/2

in spherical coordinates. The value ofκ is 2.
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Figure 3.5:The density of the von Mises-Fisher distribution withα = π andβ = π in

spherical coordinates. The value ofκ is 5.
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Normal distribution with a diagonal Variance-Covariance matrix.

As mentioned before,µ is the population mean direction. The population resultant

lengthρ is given by

ρ = Ad(κ) :=
Id/2(κ)

Id/2−1(κ)
. (3.62)

Figures 3.2 - 3.5 exhibit the different shapes that the von-Mises Fisher distribution

M(µ, κ) on S2 can have. The figures show the density of von Mises-Fisher distri-

butions, given by (3.61) with various different choices ofα, β andκ. Notice how the

distribution is closely concentrated around the mean direction in Figure 3.2, whereκ is

fairly large, whereas in Figure 3.3 it is spread out over the entire unit sphere. Figure

3.4 clearly shows the periodicity of the density given by (3.61) in the first spherical co-

ordinate,φ. Figure 3.5 shows a von Mises Fisher distribution with a meandirection of

(0, 0, 1), expressed in cartesian coordinates. The distribution is concentrated around the

positive z-axis. Recall that the distribution has a rotational symmetry about the mean

direction. Since the mean direction in this case is the z-axis, the variableφ is uniformly

distributed, while the second variable,θ describes how concentrated the distribution is

around the mean direction.

Notice that, with the exception of the density in Figure 3.5,the densities do not

appear to be rotationally symmetric. This is due to distortions created by the change

of variables, given in (3.42) - (3.45). We would also like to note that the family of von

Mises-Fisher distributions is closed under orthogonal transformations. That is, ifU is a

orthogonal transformation, andX
d
= M(µ, κ), thenUX

d
= M(Uµ, κ).

Maximum Likelihood Estimation in a von Mises Fisher distributio n

Since the von Mises-Fisher distribution is an extension of the von Mises distribution, it

is not surprising that the maximum likelihood estimators ofthe mean directionµ and
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the concentration parameterκ are also analogues of their counterparts in the von Mises

case. Letx1, ..,xn be a realization of the i.i.d. sequence of random variablesX1, ..,Xn

distributed asM(µ, κ) on Sd−1. The log-likelihood function, expressed in cartesian

coordinates is

L(µ, κ;x1, ..,xn) = n log(cd(κ)) +
n∑

i=1

κµTxi

= n(
d

2
− 1) log

(κ

2

)
− n log(2πd/2)

−n log(Id/2−1(κ)) + κµT (
n∑

i=1

xi). (3.63)

Concerning the MLE of the mean directionµ, we note that we can maximize the term

involving µ, namelyκµT (
∑n

i=1 xi), independently of the value ofκ. This term is max-

imized by the vector inSd−1 with the same direction as(
∑n

i=1 xi). That vector is of

course the sample mean directionx0, as defined in (3.52). We conclude that the MLE

of the mean direction is

µ̂ = x0. (3.64)

In that case we have

κµ̂
T (

n∑

i=1

xi) = κx0
T (nx) = nκR,

wherex is the sample vector mean andR is the mean resultant length.

Concerning the MLE ofκ, we therefore need to maximize

L(κ) := (
d

2
− 1) log(κ) − log(Id/2−1(κ)) + κR

over the set{κ > 0}. The first derivative ofL with respect toκ is

∂L
∂κ

=
d
2
− 1

κ
−

I ′
d/2−1(κ)

Id/2−1(κ)
+ R,

whereI ′
d/2−1(κ) = ∂

∂κ
Id/2−1(κ). From Abramowitz and Stegun (1972) we know that

the following recurrence equation holds forν > 0:

I ′
ν(κ) = Iν+1(κ) +

ν

κ
Iν(κ). (3.65)
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Therefore, we obtain

∂L
∂κ

= 0 ⇐⇒
d
2
− 1

κ
− Id/2(κ) + d/2−1

κ
Id/2−1(κ)

Id/2−1(κ)
= −R.

Hence,̂κ solves the equation

Id/2(κ)

Id/2−1(κ)
= R.

If we define

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
, (3.66)

we see that the MLE ofκ, κ̂ satisfies

Ad(κ̂) = R. (3.67)

ComparingAd(z) with the functions considered in Proposition 3.1.8, we see thatAd(z) =

Bd/2(z). Proposition 3.1.8 hence implies thatAd(·) is a monotone strictly increas-

ing and continuous function and we havelimκ→0 Ad(κ) = 0. In addition, we have

limκ→∞ Ad(κ) = 1. Therefore,̂κ is unique and well defined, sinceR is by definition a

value in the interval[0, 1]. As forA(κ) = A2(κ), there is no explicit formula forA−1
d (·).

We again used a numerical procedure, implemented in Matlab,to evaluateA−1
d (·). It

should be noted that the maximum likelihood estimator is notunbiased, see Best and

Fisher (1981). Modified estimators have been proposed to make the estimator ofκ more

robust. See Fisher (1982) for a reference on the 3 dimensional case. However, both the

MLE for µ andκ are consistent and asymptotically efficient estimators. See Jupp and

Mardia (2000) for more properties of the estimators.

Generalizations of the von Mises-Fisher distribution

Recall from the definition of the von Mises-Fisher distribution that logarithm of the

density is linear inx. Generalizations of the von Mises-Fisher distribution typically add
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higher order polynomials to this linear term. The easiest case is given below, where

quadratic terms have been added.

TheFisher-Binghammodel (Mardia (1975)) has density

g(x; µ, κ,A) =
1

a(κ,A)
exp{κ · µT · x + xTAx}, (3.68)

whereA is a symmetricd× d matrix. The constraintxTx = 1 allows us to assume that

tr(A) = 0. Further models can be obtained by adding appropriate additional restrictions

on the parameters of the Fisher-Bingham distribution. A variety of such models are

listed in Section 9.3.3. of Jupp and Mardia (2000).

TheKent distributionhas the same density as the Fisher-Bingham distribution, but

with the additional constraintAµ = 0.

TheFisher Watson distributionis obtained from (3.68) by replacing the restriction

tr(A) = 0 with the assumption that A is a diagonal matrix of full rank:

g(x; µ,µ0, κ, κ0) =
1

a(κ,µ,µ0, κ0)
exp{κ0 · µT

0 · x + κ(µTx)2}. (3.69)

A rotationally symmetric spherical distribution with a modal ridge along a small circle,

instead of a mode at a single point, can be modelled by theBingham-Mardia distribu-

tion. This ’small circle’ distribution has density

g(x; µ, κ, ν) =
1

a(κ)
exp{κ(µTx − ν)2}. (3.70)

The main problem for all those models is that the evaluation of the norming con-

stants,a(κ,A), a(κ,µ,µ0, κ, κ0) and a(κ) respectively, is not easily done and may

pose significant practical difficulties. This makes parameter estimation, using for ex-

ample maximum likelihood methods, very difficult. This was the main reason that we

decided to work with the simpler von Mises-Fisher model.



Chapter 4

Mixture Models of von-Mises distributions

4.1 Definition and Characteristic Function

Definition 4.1.1 We define a finite mixture model of von Mises-Fisher distributions as

the distribution with the pdf

fmix(x; γ) =
m∑

i=1

pi · gM(x; µi, κi),x ∈ S
d−1, (4.1)

wheregM(x; µi, κi) is the density of the von Mises-Fisher distribution with meandi-

rectionµi ∈ Sd−1 and concentration parameterκi ≥ 0, and0 < pi < 1 are numbers

satisfying
∑m

i=1 pi = 1. Finally,

γ = {µ1, ..,µm, κ1, .., κm, p1, .., pm−1} (4.2)

denotes the parameter matrix of the mixture model.

The pi are referred to as the weights or mixing proportions. Note, that one of the

weights is redundant because of the linear constraint
∑m

i=1 pi = 1. We arbitrarily chose

to omit themth weightpm in the definition of the parameterγ. The von Mises-Fisher

densitiesgM(x; µi, κi) are called the component densities. In (4.1) it is assumed thatm,

the number of components, is fixed. In practice, the choice ofm is a part of the model

and typically not known. By considering the number of components as yet another

parameter of the model, the framework of finite mixture models (4.1) provides us with

a very flexible method of modelling directional data. By choosing an appropriately

large number of components, the density (4.1) can be made to provide an adequate fit

to almost any data set. However, one has to be careful not to overfit the data and then

end up with a meaningless model. For example, a seemingly perfect model for a data

77
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set(x1, ..,xN) of sample size N can be obtained with m components choosingκi = ∞,

µi = xi andpi = 1/m. However, such a model has no predictive power for future

observations and is obviously of little use. We will addressthe problem of choosing an

adequate number of components in subsection4.4.

Mixture models are especially useful in modelling heterogeneity in the data that

stems from factors. Consider a categorical random variableZ with a distribution given

by P[Z = i] = pi, i = 1, ..,m. Assume, that there is another random variableY that

has conditional densityfi(y), given{Z = i}. ThenY has unconditional densityf(x) =

∑m
i=1 pi · fi(x). In this way,Y can be thought of as being drawn fromm populations

with densitiesfi(y) and proportionspi. First, the categorical random variableZ chooses

the population and thenY is drawn from the chosen distribution. The same framework

also lets us interpret a mixture model as a case of incompletedata. We regardY as the

observable part of the random vectorX = (Z, Y ), with Y andZ as above. However,

we assume that the categorical random variableZ, thought of as the label ofY , has not

been recorded or is not observable. Thus, we don’t know whichpopulation generated

Y . This idea of attaching missing labels to the observations is very useful in maximum

likelihood estimation, as we will see in Section 4.2.2.

To calculate the characteristic function of a mixture of von-Mises distributions in the

special case ofd = 2, recall from (3.19) that ifX = eiΦ has a von Mises distribution,

M(α, κ), we have for its ch.f. that

Ψp = eipµ Ip(κ)

I0(κ)
.

Therefore, if a random variable has a density given by (4.1),it has ch.f.:

Ψp =

∫

S1

eipxfmix(x; γ)dx

=
m∑

j=1

pj

∫ 2π

0

eipϕfM(ϕ; αj, κj)dϕ =
m∑

j=1

pje
ipαj

Ip(κj)

I0(κj)
(4.3)
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Hence the trigonometric moments are:

ap = E[cos(pΦ)] =
m∑

j=1

pj cos(pµj)
Ip(κj)

I0(κj)
(4.4)

bp = E[sin(pΦ)] =
m∑

j=1

pj sin(pµj)
Ip(κj)

I0(κj)
(4.5)

Recall that for spherical distributions onSd−1, for d > 2 we did not define a charac-

teristic function or trigonometric moments. However we cangive the population mean

direction and the population resultant length. Recall from (3.62) that the resultant length

of a von Mises-Fisher distribution with concentration parameterκ is ρ = Ad(κ). Hence,

we have that ifX has aM(µ, κ) distribution, then

E[X] =

∫

Sd−1

xgM(x; µ, κ)do(x) = ρ · µ = Ad(κ)µ.

Therefore, we have for a finite mixture of von Mises-Fisher distributions (4.1)

E[X] =

∫

Sd−1

xfmix(x; γ)do(x)

=

∫

Sd−1

x

(
m∑

i=1

pi · gM(x; µi, κi)

)
do(x)

=
m∑

i=1

piAd(κi)µi. (4.6)

We see that the expectationE[X] is a linear combination of the mean directionsµi of

the components with coefficientspiAd(κi). As a consequence, we get for the resultant

length and the mean direction

ρ =

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

piAd(κi)µi

∣∣∣∣∣

∣∣∣∣∣ andµ0 =
m∑

i=1

piAd(κi)µi · ρ−1, (4.7)

unlessρ = 0.
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4.2 Parameter Estimation

4.2.1 Identifiability

Consider a parametric family represented by densitiesf(x; γ). Estimation of the param-

eterγ, based on a samplex = (x1, .., xN ) is only meaningful, if the parameterγ of the

densityf(x; γ) is identifiable.γ is called identifiable, iff(x; γ1) ≡ f(x; γ2),∀x im-

pliesγ1 = γ2. Put in words, this means that distinct parameter values result in distinct

densities. This is not true for finite mixture densities. A permutation of the compo-

nent densities leavesf(x; γ) invariant. Assume that the component densitiesfi(x; ξi),

i = 1, . . . ,m belong to parametric families. We have:

f(x; γ1) :=
m∑

j=1

pj · fj(x; ξj) =
m∑

j=1

pπ(j) · fπ(j)(x; ξπ(j)) =: f(x; γ2), (4.8)

whereπ is a permutation of the numbers1, ..,m andγ1 = (ξ1, ..., ξm, p1, ..., pm−1) and

γ2 = (ξπ(1), ..., ξπ(m), pπ(m), ..., pπ(m−1)) denote the parameter of the right hand side

and left hand side of (4.8), respectively. Then we have in general thatγ1 6= γ2, but,

neverthelessf(x; γ1) = f(x; γ2). For this reason, the parameter vectorγ of a finite

mixture is not identifiable.

Fortunately this problem does usually not pose problems in practice for maximum

likelihood estimation. The important exception to this statement is encountered when

one uses Bayesian techniques using reversible Jump Markov Chain Monte Carlo tech-

niques to determine the maximum likelihood estimators. Good references on that topic

include Green (1995) and Green and Richardson (1997).

In order to obtain an identifiable model, we may for example impose restrictions on

the parameters. In the von Mises-Fisher case with parameterγ given by (4.2), we might

for example impose the following conditions on the parameters µ1, ..,µm, κ1, .., κm,

andp1, .., pm−1:
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1. κ1 ≤ κ2 ≤ ... ≤ κm

2. In case of a tie, that is, in case for anyi, j κi = κj, we have, then we have

µi1 ≤ µj1.

3. In case this does not resolve the tie, that is, ifκi = κj, andµi1 = µj1, we have

µi2 ≤ µj2. If the tie is still not resolved, we compareµi3 ≤ µj3 and so forth.

These three conditions define a complete order on componentsof the mixture model,

unless two components are identical, that is unless we haveκi = κj, andµi = µj. If the

above restrictions are placed on the parameter spaceΓ, the parameter of a finite mixture

model becomes identifiable, provided that no two componentsare identical. We will

for the remainder of the thesis assume that the parameter space has been restricted by

a set of conditions like the one listed above in order to make the parameter identifiable

and that not two components are identical. However, we were able to carry out the

maximum likelihood estimation without this restrictions,using an EM algorithm, as we

will describe below.

The case of two identical components is more problematic. Itarises for example

from attempts of fitting a model with too many components. We may fit a mixture

model ofm + 1 components to data that stems from a mixture density withm compo-

nents by either

(i) setting one the weightspi = 0, or

(ii) splitting a component into identical components.

We encountered this phenomenon in practice. In particular,if we worked with data that

was simulated from a von Mises-Fisher mixture model withm components and tried

to fit a model withm + 1 components, the EM algorithm returned parameter estimates

with µi = µj, κi = κj, for two componentsi 6= j. While working with our implemen-
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tation of the EM algorithm we observed that it splits components when the model is not

identifiable because it has too many components.

However, suppose that we are working with the right number ofcomponents and add

constraints like the ones listed above to the parameters to avoid an unidentifiable model

due to permutations. In that case Titterington et al. (1985)shows that the parameters of

finite mixtures of a large class of continuous densities are identifiable. The identifiability

of the parameter of a finite mixture of von Mises distributionwas proved in Fraser et al.

(1981). The identifiability of a larger class of directionaldistributions, including the von

Mises-Fisher distribution follows from a result in Kent (1983).

4.2.2 The EM Algorithm for General Mixture Models

It turns out that explicit formulas for the parameter estimates for mixture models are

usually not available. The estimates of von Mises-Fisher mixture models in general

and von Mises mixture models in particular are no exception.There is a wide spec-

trum of literature listing a variety of methods that have been used to obtain parameter

estimates of various mixture models. They include Maximum Likelihood (ML) esti-

mation Redner and Walker (1984) Dempster et al. (1977) , Bayesian estimation Green

(1995), Green and Richardson (1997), Method of Moments Lindsay and Basak (1993),

Minimum Distance methods Chen and Kalbfleisch (1996) and graphical methods. For

a detailed overview of early work done on the estimation of finite mixture models we

recommend Redner and Walker (1984) and the book Titteringtonet al. (1985). For an

overview over later results, please consult McLachlan and Peel (2000).

We decided to use ML estimation. We employed the EM algorithmto iteratively

compute the ML estimates. The main reason for the use of ML estimation are Theorems

4.2.4 and 4.2.6 given below. They state that in the frameworkof finite mixture models,
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the maximum likelihood estimator is asymptotical efficientand that the EM algorithm,

started with proper starting values, converges to the MLE. In this section we describe

the EM algorithm in a general framework. We will consider thespecial case of von

Mises-Fisher distributions in Section 4.3.

Consider a finite mixture model involving parametric densitiesfi(x; ξi). We adopt

the interpretation of a mixture measure as a case of incomplete data, mentioned in Sec-

tion 4.1. LetY = X × {1, ..,m}, whereX is a measure space. Consider a sample of

realizationsy = (y1, .., yN) with yj = (xj, ij) ∈ Y, wherexj ∈ X are referred to as

the observations andij are the unobservable labels. Assume that the joint density of the

realizationsy, with respect to the product measure of the Lebesgue measureonX and

the counting measure on{1, ..,m}, is given by

fc(y; γ) =
N∏

j=1

f c((xj, ij); γ) =
N∏

j=1

pij · fij(xj; ξij). (4.9)

Hereγ = {ξ1, .., ξm, p1, .., pm−1, } ∈ Ω, whereΩ is the parameter space andpm =

1 − ∑m
j=1 pj. We assume thatΩ is a subset of the Euclidian spaceRm(q+1)−1. That is,

we assume thatξi ∈ Ω, with Ω ⊆ Rq. As explained in Section 4.1, a categorical random

variableZ chooses the population and then the observation is drawn from the chosen

distribution, independent ofZ. An alternative notation for this model makes use of a

matrix to label the observations. The matrix, denoted withz is defined by

zij = (z)ij =





1, if ij = i

0 otherwise
(4.10)

Then we can express the density introduced in (4.9) as

fc(x, z; γ) =
N∏

j=1

m∏

i=1

p
zij

i · fi(xj; ξi)
zij . (4.11)

This is referred to as the complete model, because we know foreach observation from

which densityfi(x; ξi) it was drawn. However, this is the information that we assume
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to be missing in the mixture model context. We do not know the labelij that belongs to

the observed valuexj, j = 1, . . . ,m. The recorded observationsx = (x1, .., xN ) thus

have the following joint density, induced by (4.9):

fmix(x; γ) =
N∏

j=1

fmix(xj; γ) =
N∏

j=1

[
m∑

i=1

pi · fi(xj; ξi)

]
. (4.12)

This is referred to as the incomplete model.

While we do not know from which population a specific observation originated,

we are able to make some inferences about the lost label. For an observationx ∈ X

defineY(x) = {y ∈ Y : y = (x, i), i ∈ {1, ..,m}}. The complete model (4.9) and

the incomplete model (4.12) induce a conditional density with respect to the counting

measure onY(x). We denote that counting measure in the following byc(dy). The

conditional density onY(x), givenx, induced by (4.9) and (4.12) can be given in the

notationf c(y; x, γ) = k(y; x, γ) · fmix(x; γ), where

k(y; x, γ) =
f c(y; x, γ)

fmix(x; γ)
=

pi · fi(x; ξi)

fmix(x; γ)
. (4.13)

k(y; x, γ) can be interpreted as the posteriori probability that the observationx origi-

nated from theith population. In a similar fashion, we define the spaceY(x) = {y ∈

YN : yj = (xj, ij), i ∈ {1, ..,m}, j = 1, .., N}. Assuming that the realizationsy are

i.i.d., we define

k(y;x,γ) =
fc(y;x,γ)

fmix(x; γ)
=

N∏

j=1

pij · fij(xj; ξij)

fmix(xj; γ)
(4.14)

as a density onY(x) with respect to the counting measure onY(x)N .

This provides the framework that we use to maximize the log-likelihood function of

the incomplete data:

LN(γ;x) = log((fmix(x; γ)) =
N∑

j=1

log(fmix(xj; γ)) (4.15)
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Consider a fixed parameter valueγ̃ of γ ∈ Ω. We express the log-likelihood function

as an expectation using the kernel density (4.14) with the fixed parameter̃γ. That is, we

write:

LN(γ;x) =

∫

Y(x)

log((fmix(x; γ))k(y;x, γ̃)c(dy)

=
N∑

j=1

∫

Y(xj)

log(fmix(xj; γ))k(y; xj, γ̃)c(dy)

=
N∑

j=1

m∑

i=1

log(fmix(xj; γ))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)
(4.16)

Using (4.13), we substitutelog(fmix(xj; γ)) with log(f c(yj; γ))− log(k(yj; xj,γ)) and

using that in the term

log(fmix(xj; γ))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)

yj stands for(xj, i), we get:

LN(γ;x) =
N∑

j=1

m∑

i=1

log(f c(yj; γ))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)

−
N∑

j=1

m∑

i=1

log(k(yj; xj,γ))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)

=
N∑

j=1

∫

Y(xj)

log(f c(yj; γ))k(y; xj, γ̃)c(dy)

−
N∑

j=1

∫

Y(xj)

log(k(yj; xj,γ))k(y; xj, γ̃)c(dy)

=
N∑

j=1

E[log(f c(yj; γ))|xj, γ̃] −
N∑

j=1

E[log(k(yj; xj,γ))|xj, γ̃]

= E[log(fc(y; γ))|x, γ̃] − E[log(k(y;x,γ))|x, γ̃]

=: Q(γ|γ̃) − H(γ|γ̃) (4.17)
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Consider the termH(γ|γ̃). By Jensen’s inequality, we have that for allγ ∈ Ω :

H(γ|γ̃) − H(γ̃|γ̃) = E

[
log

(
k(y|x,γ)

k(y|x, γ̃)

)
|x, γ̃

]
(4.18)

≤ log

(
E

[
k(y;x,γ)

k(y;x, γ̃)
|x, γ̃

])
(4.19)

= log

(∫

Y(x)

k(y;x,γ)c(dy)

)
= 0. (4.20)

The last equality follows from the fact thatk(y;x,γ) is a density onY(x) and hence its

integral overY(x) equals one. We conclude that for allγ, γ̃ ∈ Ω

H(γ|γ̃) ≤ H(γ̃|γ̃). (4.21)

Algorithm 4.2.1 (The general EM algorithm)

Given a current estimatẽγ, obtain the next approximationγ+ as follows:

1. E Step: DetermineQ(γ|γ̃)

2. M Step: Chooseγ+ = argmaxγ∈Ω Q(γ|γ̃)

Equation (4.21) suggests that in each step, in order to obtain the next approximation

to the MLE ofγ, it is enough to find a new estimate that maximizesQ(γ|γ̃). Any value

γ+ that maximizesQ(γ|γ̃) will reduce the value ofH(γ|γ̃). Therefore, we have that

(4.21) and the definition ofγ+ imply that

L(γ+;x) = Q(γ+|γ̃) − H(γ+|γ̃) ≥ Q(γ̃|γ̃) − H(γ̃|γ̃) = L(γ̃;x). (4.22)

In others words, if we search for the maximum likelihood estimator of γ by means

of the EM algorithm, the value of the likelihood increases with each iteration. It is

this monotonicity property that makes the EM algorithm veryattractive. It is also the

property behind the convergence theorems given below.

The practicability of the EM algorithm heavily depends on how easy the maximization



87

in the M-step is. We have

Q(γ|γ̃) =
N∑

j=1

m∑

i=1

log(f c(yj; γ))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)

=
m∑

i=1

log(pi)
N∑

j=1

p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)

+
m∑

i=1

N∑

j=1

log(fi(xj; ξi))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)
. (4.23)

This allows us to maximize the two terms separately. The maximization of the first term

will give the new approximationp+
i of the component weightpi, while the second term

will give the new approximationξ+
i of ξi. One can easily verify that the maximizer

γ+ = (p+
1 , .., p+

m, ξ+
1 , .., ξ+

m) satisfies

p+
i =

1

N

N∑

j=1

p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)
, (4.24)

ξ+
i = argmaxξi∈Ω

N∑

j=1

log(f(xj; ξi))
p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)
. (4.25)

The difficulty of solving equation (4.25) depends on the parametric familyf(x; γ) con-

sidered. It turns out that usually eachξi is easily and often uniquely and explicitly

determined by (4.25). This is the case for example for exponential families and also the

von Mises-Fisher distribution.

Note that

p̃i · fi(xj; ξ̃i)

fmix(xj; γ̃)

is the posterior probability thatxj was drawn from theith component population, based

on the current estimatẽγ. p+
i is just the sample mean of those posterior probabilities.

Stopping Criteria The easiest stopping criteria involve the size of the changein either

the parameter or the log-likelihoodLN(γ;x). According to such a criteria, we would

stop the algorithm as soon as the change in the value of theLN(γ;x) or the change
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of the parameters falls below a certain threshold. However,these are measures of lack

of progress and not measures of convergence. We often observed that for many itera-

tions of the EM algorithm the change inLN(γ;x) remained small only to consequently

grow to significant proportions again. This happened as the EM algorithm struggled

through a sequence of approximationsγ(k) of the parameterγ that brought little change

in L(γ(k);x) or γ(k) itself before finding significantly better estimates again.We ob-

served that the rate of convergence ofL(k) = L(γ(k);x) appeared to be very slow.

Unfortunately this is known as the biggest drawback of the EMalgorithm. See Redner

and Walker (1984), McLachlan and Peel (2000), Titteringtonet al. (1985) or Lindsay

and Basak (1993) for references on what they call ”linear“ convergence behavior of the

sequenceL(k). What they mean by ”linear“ is made precise in the following inequation

(4.26). In this situation a stopping criteria, called the Aitken stopping criteria (ASC)

is more adequate than the simple criteria mentioned in the beginning. Assume that the

sequenceL(k) converges to some valueL∗ as follows:

L(k+1) − L∗ ≈ a(L(k) − L∗) ⇐⇒ L(k+1) − L(k) ≈ (1 − a)(L∗ − L(k)). (4.26)

Even though the referenced authors refer to this convergence as linear, we feel more

comfortable characterizing this form of convergence as a geometric convergence. Under

(4.26), if a is close to one, a small differenceL(k+1) − L(k) does not imply thatL(k) is

close toL∗. We rather have that

L∗ ≈ L(k) +
1

1 − a
(L(k+1) − L(k)). (4.27)

Hence we obtain an estimate ofL∗, calledL
(k+1)
A , by replacinga in (4.27) with an

estimate, say

a(k) =
L(k+1) − L(k)

L(k) − L(k−1)
.
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We obtain better stopping criteria

|L(k+1)
A − L(k+1)| < ǫ or (4.28)

|L(k+1)
A − L

(k)
A | < ǫ, (4.29)

whereǫ > 0 is a chosen tolerance.

4.2.3 Properties of the MLE and the EM Algorithm in Finite Mix-

ture Models

The results in this section are taken from Redner and Walker (1984), who summarize

earlier results by Wald (1949) and Redner (1981). They address the consistency of the

MLE and the convergence of the EM algorithm under the regularity assumptions below.

In the following, we denote the true parameter vector byγ∗ and the MLE ofγ∗ based

on N observations bŷγN . For this section only, we writeγ = (ξ1, ..., ξν) with ξj ∈ R1.

ν denotes the dimension of the parameter vector.

Assumption 4.2.2 For all γ ∈ Ω, for almost allx ∈ Rd and for i, j, k = 1, ..., ν, the

partial derivatives∂g/∂ξi, ∂2g/∂ξi∂ξj, and∂3g/∂ξi∂ξj∂ξk, exist and satisfy

∣∣∣∣
∂fmix(x; γ)

∂ξi

∣∣∣∣ ≤ f i(x),

∣∣∣∣
∂2fmix(x; γ)

∂ξi∂ξj

∣∣∣∣ ≤ f ij(x),

∣∣∣∣
∂3fmix(x; γ)

∂ξi∂ξj∂ξk

∣∣∣∣ ≤ f ijk(x)

wheref i andf ij are integrable andf ijk satisfies

∫

Rd

f ijk(x)fmix(x; γ∗)dx < ∞

Assumption 4.2.3 The Fisher Information matrix

I(γ) =

∫

Rd

[∇γ log(fmix(x; γ))][∇γ log(fmix(x; γ))]T fmix(x; γ)dx

is well defined and positive definite atγ∗.
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Theorem 4.2.4 If Assumptions 4.2.2 and 4.2.3 are satisfied and any sufficiently small

neighborhood ofγ∗ in Ω is given, then with probability 1, there is for sufficiently large

sample size N a unique solution̂γN of the likelihood equations∇γLN(γ;x) = 0 in

that neighborhood, and this solution locally maximizes thelog-likelihood function. Fur-

thermore,
√

N(γ̂N − γ∗) is asymptotically normally distributed with mean zero and

covariance matrixI(γ∗)−1. Furthermore, ifH(γ) =
∑N

j=1 ∇γ∇T
γ log(fmix(xj; γ)) is

the Hessian of the log-likelihood function, with probability 1,

lim
N→∞

1

N
H(γ̂N) = −I(γ∗)

While assuring us that the MLÊγN is an asymptotically efficient estimator forγ, the

theorem still leaves two questions unresolved: Isγ̂N really the largest local maximum

of the log-likelihood function? Does a sequence of parameter estimatesγ(j) generated

by the EM algorithm converge tôγN? The answer is given in the next theorem. We

need Assumptions 3 and 4 given below. Forγ ∈ Ω and sufficiently smallr > 0, let

Nr(γ) denote the closed ball of radius r aboutγ in Ω and define

fmix(x; γ, r) = sup
γ̃∈Nr(γ)

fmix(x; γ̃)

and

f ∗(x; γ, r) = max{1, fmix(x; γ, r)}

Assumption 4.2.5 For eachγ ∈ Ω and sufficiently smallr > 0,

∫

Rd

f ∗(x; γ, r)fmix(x; γ∗)dx < ∞

Theorem 4.2.6 Suppose that Assumptions 4.2.2 through 4.2.5 hold inΩ, and letΩ′

be a compact subset ofΩ which containsγ∗ in its interior and such thatfmix(x; γ) =

fmix(x; γ∗) almost everywhere inx for γ ∈ Ω′ only if γ = γ∗. Suppose further that with



91

probability 1, the functionQ(γ|γ̃)) of the E-step of the EM algorithm is continuous inγ

andγ̃ in Ω′ and bothQ(γ|γ̃) and the log-likelihood functionLN(γ;x) are differentiable

in γ, for γ ∈ Ω′. Finally, for γ(0) in Ω′ denote by{γ(j)}j=0,1,2.. a sequence generated

by the EM algorithm inΩ′, i.e., a sequence inΩ′ satisfying

γ(j+1) = arg max
γ∈Ω′

Q(γ|γ(j)), j = 0, 1, 2, . . .

Then, with probability 1, wheneverN is sufficiently large, the unique strongly consistent

maximum-likelihood estimatêγN is well defined inΩ′ andγ̂N = limj→∞ γ(j) whenever

γ(0) is sufficiently near̂γN .

Theorems 4.2.4 and 4.2.6 assure of existence and uniquenessof a strongly consis-

tent maximum likelihood estimate that can be obtained as thesolution of the likelihood

equations. We can find that estimate using the EM algorithm, if we have a starting

point that is good enough. The two theorems provide the theoretical basis needed to jus-

tify the use of maximum likelihood estimation and the EM algorithm. However, many

practical problems remain. Typically, the log-likelihoodfunction will have many local

maxima and may even be unbounded asγ approaches the boundary of the parameter

spaceΩ. The likelihood equation may have solutions that are not local maxima of the

log-likelihood function. In addition, the EM algorithm exhibits a very slow convergence

behavior. It often takes several hundred iterations beforethe convergence criterion is

met. It is therefore crucial to have a good starting point forthe algorithm. We explain in

Section 4.3.1 how we obtain good starting values.

4.3 The EM Algorithm for Finite von Mises-Fisher Mixture Models

It is easy to see that Assumptions 4.2.2 through 4.2.5 of the previous section hold for

a finite mixture of von Mises-Fisher distributions, becausethe support of the densities
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is compact and each component density is inC∞(Sd−1). We will make this point more

precise below in Sections 4.4.1 and 4.4.2. In those sectionswe carefully check the

validity of a set assumption that include or guarantee the validity of Assumptions 4.2.2,

4.2.3, and 4.2.5. Therefore, we can apply the results of Theorems 4.2.4 and 4.2.6.

The M-step in a finite von Mises-Fisher mixture model In the execution of the EM

algorithm, let̃µi, κ̃i andp̃i be the current approximation to the MLE of the parameters of

theith component of the mixture model. Recall from (4.24) that the new approximation

p+ = (p+
1 , . . . , p+

m) of the weightsp = (p1, . . . , pm) is given by

p+
i =

1

N

N∑

j=1

p̃igM(xj; µ̃i, κ̃i)∑m
k=1 p̃kgM(xj; µ̃k, κ̃k)

=:
1

N

N∑

j=1

Pi(xj). (4.30)

To find the new approximation ofξi = (µi, κi), i = 1, . . . ,m, in the following denoted

by ξi
+ = (µi

+, κ+
i ), i = 1, . . . ,m, we need to solve equation (4.25). We need to find

the pairs(µi, κi), that maximize the equations

N∑

j=1

log(gM(xj; µi, κi))Pi(xj), i = 1, . . . ,m. (4.31)

Recalling the definition of the von Mises-Fisher densitygM(xj; µi, κi) from (3.57), we

have, after the simplifying and dropping the constant terms, that,

[(
d

2
− 1

)
log(κi) − log(Id/2−1(κi))

] N∑

j=1

Pi(xj) + κiµi
T

(
N∑

j=1

xjPi(xj)

)
. (4.32)

We see thatµi only appears in the second term. As in the case of the simple von Mises-

Fisher distribution, we can therefore calculate the new approximations ofκi and µi

separately. The second term, which needs to be maximized over µi ∈ Sd−1, is the inner

product of the two vectorsµi and(
∑N

j=1 xjPi(xj)). Therefore, we conclude that

µi
+ =

∣∣∣∣∣

∣∣∣∣∣
N∑

j=1

xjPi(xj)

∣∣∣∣∣

∣∣∣∣∣

−1 N∑

j=1

xjPi(xj). (4.33)
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Studying the first term of (4.32), we see that we can also obtain the new approximation

κ+
i for κi in a similar fashion as we obtained the MLE for the concentration parameter

of a single von Mises-Fisher distribution. We have with the above notation, using (3.65)

and (4.33):

∂

∂κi

(
N∑

j=1

log(M(xj; µi
+, κi))Pi(xj)

)
= 0 (4.34)

⇐⇒ ∂

∂κi

([
(
d

2
− 1) log(κi) − log(Id/2−1(κi))

] N∑

j=1

Pi(xj)

)
(4.35)

+
∂

∂κi

(
κiµi

+

[
N∑

j=1

xjPi(xj)

])
= 0

⇐⇒
[

d
2
− 1

κ+
i

−
I ′
d/2−1(κ

+
i )

Id/2−1(κ
+
i )

]
N∑

j=1

Pi(xj) + µi
+

N∑

j=1

xjPi(xj) = 0

⇐⇒ − Id/2(κ
+
i )

Id/2−1(κ
+
i )

N∑

j=1

Pi(xj) +

∣∣∣∣∣

∣∣∣∣∣
N∑

j=1

xjPi(xj)

∣∣∣∣∣

∣∣∣∣∣ = 0

⇐⇒ Ad(κ
+
i ) =

∣∣∣
∣∣∣
∑N

j=1 xjPi(xj)
∣∣∣
∣∣∣

∑N
j=1 Pi(xj)

(4.36)

⇐⇒ κ+
i = A−1

d




∣∣∣
∣∣∣
∑N

j=1 xjPi(xj)
∣∣∣
∣∣∣

∑N
j=1 Pi(xj)


 (4.37)

We already mentioned thatAd(κ) is a monotone strictly increasing function satisfying

limκ→0 Ad(κ) = 0 andlimκ→∞ Ad(κ) = 1. Therefore, (4.37) is meaningful, if

0 ≤

∣∣∣
∣∣∣
∑N

j=1 xjPi(xj)
∣∣∣
∣∣∣

∑N
j=1 Pi(xj)

≤ 1, (4.38)

for all samples{xj ∈ Sd−1, j = 1, . . . , N} and for all choices of parameters̃pi, µ̃i and

κ̃i that impactPi(xj). Indeed,
∑N

j=1 xjPi(xj) is a linear combination of the vectors

xj ∈ Sd−1 with parametersPi(xj). The length of the resulting vector is less or equal to
∑N

j=1 Pi(xj), with equality if and only if for allj all xj = x for somex ∈ Sd−1. Hence,

equation (4.38) is satisfied.
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Summarizing, we can write the EM-Algorithm for a finite mixture of von Mises-

Fisher distributions as follows:

Given the current values̃µ1, . . . µ̃m, κ̃1, . . . , κ̃m, p̃1, . . . , p̃m, we obtain the updated value

for pi via (4.30), get the new values forµi from (4.33) and the new values forκi from

(4.37),i = 1, . . . ,m, until the Aitken stopping criterium (4.28) is met.

We see that for each component carrying out an iteration of the EM algorithm is no

more difficult than obtaining the MLE for a single von Mises-Fisher distribution. Thus

the speed the algorithm depends on the number of components and the efficiency of

calculating the MLE of the parameters of a von Mises-Fisher distribution. Special care

should be devoted to program an efficient version of the inversion ofAd(κ).

4.3.1 Obtaining Good Starting Values: Method Of Moments

This approach to finding good starting values for the EM algorithm is based on results

for finite mixture models of univariate normal distributions. While it is easy to imple-

ment and fast, it suffers from the drawback that it can only beused for von Mises mix-

ture models. In other words, it is not useful in finding starting values for finite mixture

models in higher dimensions thanS1. It’s use is therefore limited in practice.

Suppose that we wish to run the algorithm to fit a mixture modelof von Mises

distribution with m components to a dataset on the unit circleS1. We have to find

starting values for

1) the concentration parameters,κ1, . . . , κm

2) the mean directionsµ1, . . . ,µm

3) the population weightsp1, . . . , pm such that
∑m

i=1 pi = 1.
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Estimation of the location parameters

In Lindsay and Basak (1993), a fast method of moments is introduced to obtain starting

values for the EM Algorithm in the case of finite mixtures of multivariate normal distri-

butions. The paper is based on results of moments matrices found in the Appendix II of

Uspensky (1937). His results describe how one can identify then points of support of

a discrete distribution and their weights. We adapt some of the results to the situation

of discrete distributions on the unit circle and then explain how they can be used to find

starting values for the location parameters.

Let as beforeZ = eiΘ be a circular random variable with distribution function

F (dφ). Let Ap bep × p matrix defined as

(Ap)i,j = Ψi+j−2 = E[Zi+j−2]

for 1 ≤ i, j,≤ p.

Finally let∆p = det(Ap), p ≥ 0. We setΨ0 = ∆0 = 1.

Assumption 4.3.1 We have

∆0 6= 0, ∆1 6= 0, . . . , ∆n 6= 0 (4.39)

except on a set of parameters{p1, . . . , ps−1, α1, . . . , αs} of Lebesgue measure 0 in

[0, 1]s−1 × [0, 2π)s.

Assume thatZ = eiΘ is a discrete circular random variable. Assumption 4.3.1

enables us to identify the points of supportµj = eiαj , j = 1, . . . , n and their weightspj

of Z. Since the distribution ofZ is discreet, it is entirely concentrated on the points of

support. These points of support appear as the atoms of the distribution functionF of Z

and the corresponding weights satisfy the linear constraint

s∑

j=1

pj = 1.
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Evaluating the first 2n-1 moments and the linear constraint on the weightspj yields the

following system of equations:

∑n
j=1 pj = 1

∑n
j=1 pjµ

p
j = Ψp, p = 1, . . . , 2n − 1

(4.40)

(4.40) can be replaced by the more general but equivalent requirement that

E[T (Z)] =

∫ 2π

0

T (eiφ)F (dφ) =
n∑

j=1

pjT (µj) for all functionsT. (4.41)

It is in particular true for all polynomials with with degT ≤ 2n − 1. Suppose that

such a polynomialT (x) can be factorized as follows:T (x) = a(x) · Q(x), where

Q(x) =
∏n

j=1(x − µj) =:
∑n

k=0 qkx
k anda(x) =

∑n−1
j=0 ajx

j is any polynomial of

degree no more thann − 1. Since the points of support ofF (dφ) are exactly the roots

of Q(x), we have

E[a(Z)Q(Z)] =

∫ 2π

0

a(eiφ)Q(eiφ)F (dφ) =
n∑

j=1

pja(µj)Q(µj) = 0.

On the other hand we have that

∫ 2π

0

a(eiφ)Q(eiφ)F (dφ) =

∫ 2π

0

n−1∑

j=0

n∑

k=0

ajqke
iφ(k+j)F (dφ)

=
n−1∑

j=0

aj

(
n∑

k=0

qkφk+j

)
= 0.

Since this must hold for arbitraryaj, we must have that
∑n

k=0 qkφk+j = 0 for all j =

0, . . . , n − 1. In matrix notation this is written as:



φ0 . . . φn−1 φn

...
...

...
...

φn−1 . . . φ2n−2 φ2n−1

0 . . . 0 1




︸ ︷︷ ︸
=:B




q0

...

qn−1

qn




=




0

...

0

c




, (4.42)
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by adding the additional conditionqn = c to makeB a possibly regular matrix, which

would guarantee uniqueness of the solution. If Assumption 4.3.1 holds, we have that

except on a set of parameters of Lebesgue measure 0,det(B) = ∆n−1 6= 0. Using

Cramer’s rule we express the unique solution as follows:

qj =

det




φ0 . . . φj−1 0 φj+1 . . . φn

...
...

...
...

...
...

...

φn−1 . . . φn+j−2 0 φn+j . . . φ2n−1

0 . . . 0 c 0 . . . 0




det(B)

=
(−1)j+nc

∆n−1

det




φ0 . . . φj−1 φj+1 . . . φn

...
...

...
...

...
...

φn−1 . . . φn+j−2 φn+j . . . φ2n−1




(4.43)

Therefore, we can writeQ(z) elegantly as the following determinant:

Q(z) =
(−1)nc

∆n−1

det




1 z . . . zn

φ0 φ1 . . . φn

...
...

...
...

φn−1 φn . . . φ2n−1




(4.44)

Note that if Assumption 4.3.1 holds,Q(z) is indeed a polynomial of degree n, since the

highest coefficient ofQ(z), qn = (−1)nc, is nonzero. We have proved the following

Proposition.

Proposition 4.3.2 Suppose thatZ = eiΘ is a discrete circular random variable with

n points of support, calledµj = eiαj , j = 1, . . . , n, such that Assumption 4.3.1 holds.

Let Ψp = E[Zp]. Then the points of support are the simple and distinct rootsof the

polynomial are given by (4.44).
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We apply this result to the problem of obtaining starting values for the mean direc-

tions of the von Mises mixture model. Assume for the moment that all the components

in the mixture have the same concentration parameter. We canwrite a random variable

Y = eiX with that distribution stochastically asY = ei(Θ+M). Z = eiΘ is a discrete

random variable with n points of supportµ1 = eiα1 , . . . , µn = eiαn andP[Z = µj] = pj

andM = eiM is a von Mises random variable with mean direction 0 and concentration

parameterκ, independent ofZ. Remembering that for a von Mises random variable we

have that

E[Mp] =
Ip(κ)

I0(κ)
,

we get

E[Y p] = E[eipΘeipM] = E[eipΘ]E[Mp] = Ψp ·
Ip(κ)

I0(κ)
=: Ψp(κ), (4.45)

whereΨp =
∑n

j=1 pje
ipαj . Given an estimatêκ of κ we can therefore estimateΨp by

Ψ̂p =
Ψ̂p(κ)I0(κ̂)

Ip(κ̂)
,

whereΨ̂p(κ) is an estimator forΨp(κ). We use the pth sample mean of the respective

data set. We usêΨp instead of the true and unknown momentsΨp in (4.44). We calculate

the roots of the resulting polynomialQ(x) and would like to use them as starting values

for the location parameters in the EM algorithm. However, the data does not really

follow a von Mises mixture with equal concentration parameters. Therefore, the roots

of Q(z) typically do not lie on the unit circle. However, we found that if µ̆j = rje
iα̂j , j =

1, . . . ,m are the roots of the polynomial, the valuesµ̂j = eiα̂j , j = 1, . . . ,m provide

good starting values.

If Assumption 4.3.1 is violated, we may in particular have thatdet(B) = ∆n−1 = 0.

In that case the matrixB is not regular and the coefficients of the polynomialQ(x)

cannot be determined from equation (4.42). In that case, equations (4.43) and (4.44) are
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meaningless because of the division bydet(B) = ∆n−1 = 0. However, this was a case

that we never experienced in our implementation of this method. Assumption 4.3.1 was

never contradicted by empirical evidence. This allowed us to obtain good starting values

by means of a method of moments.

Estimation of the concentration parameters

If we wish to apply the method of moments technique to find starting values for the

mean directions of the EM algorithm, we need to obtain a good estimate ofκ, the con-

centration parameter, that we assume to be equal for all components. The quality and

usefulness of the starting values for the mean directions, is expected to depend on how

good our estimate ofκ is. Since the results in the previous paragraph assume that all

κj, j = 1, . . . ,m have the same value, the quality of the starting values will also depend

on accurate that assumption is. If the actual concentrationparametersκj are close to

each other, we can expect to get fairly good starting values.However, if the true values

for κj are very different, we might get starting values for the meandirection that do not

lead the EM algorithm to the global maximum of the log-likelihood function, but rather

only to a local maximum. We therefore try to identify a singlevalueκ that is best used

as the starting value for allκj, j = 1, . . . , n. For a simple von Mises distribution, the

concentration parameterκ is a function of the resultant length. We therefore concluded

in (3.67) that the MLE ofκ is a function of the mean resultant length. In our situation

the situation is much trickier, since we have several components that influence the re-

sultant length. The resultant length might even be 0. This isfor example the case for

a two component model withκ1 = κ2 > 0, µ1 = µ2 + π and weightsp1 = p2 = .5.

This is however not a situation that we expect to see in practice. But we do expect that

different components of the mixture that have different mean direction will have a re-
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sultant length that is smaller than the resultant length of each component alone. There

is no easy and reliable way of separating the different components, before making some

assumptions about the components of the model.

The following approach is therefore not expected to result in a reliable estimator for

κ. It does, however, provide us with a reasonable starting value forκ, in the sense that

it resulted in reasonable starting values for the mean directions. We need to make a

number of simplifying assumptions about the nature of the mixture components. The

first assumption is that we assume that each of them components of the mixture is a

random variableZ ′
j = eiΘ′

, whereΘ′ has range[αj − 2π
m

, αj + 2π
m

] i = 1, . . . , n. Hereαj

stand for the mean direction of thejth component. To get an estimate ofκ we therefore

essentially consider a circular random variablesZ ′ = eiΘ′

with Θ′ ∈ [0, 2π
m

]. In Mardia

(1972) it is argued that a reasonable definition of the circular varianceV ′
0 of Θ′ could be

defined as:

V ′
0 = 1 − (1 − V0)

1/m2

,

whereV0 is the circular variance of the random variableΘ = m · Θ′ with range[0, 2π).

In Chapter 3, we saw definedV0 asV0 = 1 − ρ, whereρ is the resultant length. We

introduced the mean resultant lengthR as an estimator ofρ. Unfortunately there is no

easy way of estimating the resultant length ofΘ = m · Θ′ of each component. We

therefore make another simplifying assumption, namely that the mean resultantR of the

entire data can be used. We therefore use

V̂0

′
= 1 − (1 − V̂0)

1/m2

= 1 − R
1/m2

as an estimator ofV ′
0 , since we need to obtain an estimate ofV0 of a generic component.

Now recall that for a von Mises distribution, we have that thecircular variance is1 −

A(κ) = 1 − ρ, whereρ is the resultant length, estimated by the mean resultant length.
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Therefore an estimator of the concentration parameter ofZ = eiΘ is the solution of

A(κ̂) = 1 − V̂ ′
0 = R

1/m2

. (4.46)

We obtain the starting value for the concentration parameter κ of the von Mises mixture

model by using the mean resultant length of the entire dataset as our choice forR in

(4.46) and then solve for̂κ.

This is a similar equation as the one solved in the maximum likelihood estimation

of the concentration parameter of a single von Mises distribution. Of course we are well

aware that this method is fairly crude. As stated before it assumes that the concentration

parametersκj have the same values. The interpretation of each component as a random

variable on only a part of the circle is also only valid for large values ofκ. In that case the

corresponding random variable will be closely concentrated around its mean direction

and can therefore essentially be regarded as a random variable on only a part of the unit

circle. Clearly, this is not true ifκ is fairly small. In addition, our technique implies the

assumption that the resultant length of a mixture ofm components with equal resultant

lengthρ is given byρ1/m2
. This need not be the case as pointed out by the example

above with the two components placed on opposite places of the unit circle.

However, we only use this technique to obtain starting values and not actual estimates

of κj, j = 1, . . . , n.

Estimation of the weights

Given the starting values for the mean directions and the concentration parameter, we

need to obtain starting values of the component weights. Ideally, we would like to use

equations (4.40), replacingµj = eiαj with the starting values for the mean directions

described above. However, the data does not really follow a von Mises mixture with
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equal concentration parameters. Therefore the roots of theempirical versionQ(z) typ-

ically do not lie on the unit circle. Therefore the solutions(p1, . . . , pn) of (4.40) need

not be real. This would likely even be true if the true distribution were a von Mises

mixture model with equal concentration parameters, because of the noise in the data.

However, we may take the real parts of that solution and treatthem as starting values.

Unfortunately, sometimes we even found that not all real parts are positive.

As an alternative, we consider a maximum likelihood estimator approach to obtain

starting values ofp1, . . . , pm. We first obtain starting values forµ1 = eiα1 , . . . , µm =

eiαm andκ. We then find the valuesp1, . . . , pn that maximize the log likelihood function,

whereµ1, . . . , µm andκ1 = · · · = κm = κ are considered parameters and not variables.

That is, we treat the starting values for the location and concentration parameters as the

true values in the execution of the EM-Algorithm and only maximize the log-likelihood

function over the possible values of the component weights.Recall from (4.23) that in

the E-Step we calculate

Q(γ|γ̃) =
m∑

k=1

log(pk)
N∑

j=1

p̃k · f(xj; ξ̃k)

g(xj; γ̃)

+
m∑

k=1

N∑

j=1

log(f(xj; ξk))
p̃k · f(xj; ξ̃k)

g(xj; γ̃)
, (4.47)

where γ̃ = (µ̃1, . . . , µ̃m, κ̃1, . . . , κ̃m, p̃1, . . . , p̃m) denotes the current estimate. The

new estimate are found in the M-step in maximizingQ(γ|γ̃). Assuming thatµ1 =

µ̂1, . . . , µm = µ̂m, andκ1 = · · · = κm = κ̂ are fixed at the values that we obtained

by the methods described in the previous paragraphs, we onlymaximizeQ(γ|γ̃) over

p1, . . . , pm. Given our current estimatẽp1, . . . , p̃m, we find the new estimates according

to the M-Step as

p+
j =

1

N

N∑

k=1

p̃jfj(xk; µ̂j, κ̂)

f(xk; γ̂)
, (4.48)

whereγ̂ = (µ̂1, . . . , µ̂m, κ̂, . . . , κ̂, p̃1, . . . , p̃m). The value of the log likelihood function
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increases in each iteration. The algorithm stops when the Aitken convergence criterion

(4.28) is met. Since (4.48) provides an explicit formula forthe new estimates, the algo-

rithm usually is efficient and fast. The returned estimates(p̂1, . . . , p̂m) can subsequently

be used as starting values for the EM algorithm.

Performance in practice

In practice, the starting values,γ0, obtained by this method proved to be good if the

number of components of the fitted model was small, typicallynot larger than 5. The

value of the log-likelihood functionL(γ0;x) is reasonable close to the one at the MLE

γ̂, L(γ̂;x). The EM algorithm, started atγ0, usually converges to the largest of the

local maxima ofLN(γ;x) in a reasonable number of iterations.

However, if a model with a larger number of components was fitted, problems with

the starting values of the weights arose. The restricted EM algorithm used to obtain start-

ing values for the weightsp1, . . . , pm often converges to a vector̂pm, . . . , p̂m, with one or

more of the estimateŝpj very close to 0. This makes the corresponding component, and

hence its mean direction and concentration parameter, insignificant in its influence on

the value of the log likelihood function. In most of these cases the maximum likelihood

estimates of those weights were distinctively different from 0, indicating that the starting

values were very poor. It usually took the EM algorithm many iterations to recover from

the bad starting values of the weights, if it did so at all. Oftentimes, the real parts of the

solution(p1, . . . , pm) of (4.40) or even the crude estimatespj = 1
m

, j = 1 . . . m provided

better starting values. A possible reason for the poor performance of the method of mo-

ments with a relatively large number of components is that the differences between the

different concentration parameters leads to a significant bias in the estimates of the mean

direction. This in turn results in unreliable estimates of the weights. We often observed
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that for a small number of components the estimates for the concentration parameters

were in the same range. However, when more than 5 component models were fitted,

estimates for someκj were in the range of over 500-700, while others were well below

10.

Especially for models with a large number of components, theprocedure presented

in the next section proved superior to the method of moments,while the latter proved

very helpful for models with a small number of components. Even more important is the

fact that the procedure to be introduced below is applicablefor data of any dimension,

unlike the method of moments that we only implemented for thetwo dimensional case.

4.3.2 Starting Values Based on a Smaller Model

The need to fit a mixture model with a large number of components often arises because

a reduced model does not provide a satisfactory fit. One mightalso try to justify the cur-

rent model by fitting a model with an increased number of components and then showing

that the new model provided no significant improvement over the current model. In both

cases, the parameter estimates of the current model may already give us good informa-

tion about the parameter estimates of some of the componentsof the larger model. This

is especially true for models with a large number of components, because in that case the

current model usually already provides us with a moderatelygood fit of the data. There-

fore, we need not obtain starting values for all parameters using the method of moments

described in the previous subsection. Instead, we can use the maximum likelihood es-

timates of the parameters of the smaller model as starting values for the parameters of

the first components of the larger model. Assume that we already obtained a maximum

likelihood estimate of the parameters of a mixture model with m components. We wish

to fit a mixture model withm + 1 components. We assume that the MLE’s of the mean
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directions,µ̂1, . . . , µ̂m and concentration parameters,κ̂1, . . . , κ̂m of them components

provide adequate starting values for the firstm components of the larger model. We are

therefore left with the problem of finding starting values for the weightsp1, . . . , pm+1

and the parametersµm+1 andκm+1.

We choose the values that maximize the log likelihood function of the larger model,

whereµ1, . . . ,µm, κ1, . . . , κm have been fixed and are considered parameters and not

variables. We therefore consider the log-likelihood function only as a function inµm+1,

κm+1 and(p1, . . . , pm+1). That is, we attempt to maximize the following function

L(µm+1, κm+1, p1, . . . , pm+1;x1, . . . ,xN, µ̂1, . . . , µ̂mκ̂1, . . . , κ̂m) =
N∑

i=1

log

(
m∑

j=1

pj · M(xi; µ̂j, κ̂j) + pm+1M(xi; µm+1, κm+1)

)
, (4.49)

whereµ̂1, . . . , µ̂m andκ̂1, . . . , κ̂m are the maximum likelihood estimate of the respec-

tive parameters in the smaller model withm components.

To find the desired starting values, we run a restricted EM algorithm similar to the

case of determining the starting values of the weights in themethod of moments tech-

nique, described in the last subsection. In each step, we only update the estimates

of the values of the weightsp1, . . . , pm+1 and the parametersµm+1 and κm+1. Let

(p̃1, . . . , p̃m+1, µ̃m+1, κ̃m+1) denote the current approximations to the restricted MLE

of (p1, . . . , pm+1,µm+1, κm+1), let (µ̂1, . . . , µ̂m, κ̂1, . . . , κ̂m) denote the fixed MLE’s of

the parameters(µ1, . . . ,µm, κ1, . . . , κm) of the first m components, and finally define

γ̃ = (µ̂1, . . . , µ̂m, µ̃m+1, κ̂1, . . . , κ̂m, κ̃m+1, p̃1, . . . , p̃m+1). Then we obtain our new ap-

proximations as:

p+
k =

1

N

N∑

i=1

p̃kgM(xi; µ̃k, κ̃k)

fmix(xi; γ̃)
, for k=1,. . . ,m+1 (4.50)

µ+
m+1 =

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

xiPm+1(xi)

∣∣∣∣∣

∣∣∣∣∣

−1 N∑

i=1

xiPm+1(xi) (4.51)
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κ+
m+1 = A−1

d




∣∣∣
∣∣∣
∑N

i=1 xiPm+1(xi)
∣∣∣
∣∣∣

∑N
i=1 Pm+1(xi)


 (4.52)

wherePm+1(xi) is as in (4.31), using the current approximations to the parameters. It

is the calculation of the update of the concentration parameters that slows down the

EM algorithm for the von Mises-Fisher model. This algorithmusually converges in a

short time compared to the full fledged EM algorithm, since only the parameters of one

component and the weights have to be updated in each iteration. Even though many iter-

ations may be needed to find the desired starting values for(p1, . . . , pm+1,µm+1, κm+1)

the procedure proved to be very efficient in practice.

We usually started the algorithm with several different initial guesses for(p1, . . . ,

pm+1,µm+1, κm+1). Typically these different initial values resulted in several different

possible starting values for the EM algorithm. Among those possible starting values we

typically preferred the one with the largest log-likelihood value. We observed however

exceptions to this rule. Therefore, we usually ran the EM algorithm from all obtained

possible starting values.

This method proved very valuable in practice, especially for a larger number of

components when the method of moments estimates for the weights suffered from de-

ficiencies described above. In higher dimensions it was our only tool to obtain good

starting values.

4.4 Deciding on the Number of Components

The problem of determining the number of components in a finite mixture model has

proven to be surprisingly tricky. A commonly used tool to determine the dimensionality

of a model is the Likelihood Ratio (LR) test. Under certain regularity conditions, the test

statistics asymptotically has a centralχ2 distribution with a known number of degrees
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of freedom, see Shao (1998) for a reference. Unfortunately these regularity condition

are not met in the context of mixture models. Assume that we wish to test

H0: The data arises from a mixture distribution withm0 components.

H1: The data arises from a mixture distribution withm1 > m0 components.

Recall from Section 4.2.1 that we can fit a model withm0 components to data that stems

from a mixture density withm1 < m0 components by either setting one the weights

pi = 0, or splitting a component into identical components. This means that underH0

the parameters of theH1 model are not identifiable or may lie on the boundary of the

parameter space. It is not meaningful to estimate parameters that are not identifiable

since the maximum likelihood function does not have a globalmaximum. It is therefore

not meaningful to conduct likelihood ratio tests comparingthe two models. Further-

more, the fact that the parameter estimates of the model may lie on the boundaries of

the parameter space is a violation of the conditions necessary for the test statistic to

have a centralχ2 distribution. We refer to McLachlan and Peel (2000), who discuss the

problem of likelihood ratio testing in this framework in more detail. They note that the

distribution of the usual likelihood ratio test function depends on the unknown parame-

ter.

However, if we relax the assumptions about the true distribution, we can apply a

result by Lo et al. (2001), presented for normal mixture models, that is based on earlier

papers by White (1982) and Vuong (1989). This is our approach,which we explain

it in more detail in this section. We assume that the true and unknown distribution of

our observations is not part of our parametric model. To makethis point more precise:

We assume that the true distribution is not a finite mixture model of von Mises-Fisher

distributions.

Before we discuss this approach in more detail, we address another practical con-
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cern in deciding on the number of components of a von Mises-Fisher mixture. It is the

existence of spurious maxima of the log-likelihood function. These are local maxima

that occur as a consequence of a cluster of a few data points that are relatively close

together. These local maxima typically have at least one component with a very large

concentration parameterκ and a very small component weightp. The models associ-

ated with these local maxima may have a high log-likelihood and therefore appear as

a significant improvement over a reduced model in which the spurious component has

been omitted. However, they are of little practical use and do not have a meaningful real

world interpretation.

The following guidelines help identify spurious maxima andignore them, even

though they may seem as significant based on the model selection criteria explained

in this section. Typically, the spurious component is not well isolated from the other

components. It usually features a concentration parameterthat is much larger than the

ones from the other components and at the same time a weight that is much smaller,

compared with the other weights. We often seeκ > 200 andp < 0.01 for such a com-

ponent. On the other hand, if a component is well separated from the other components

it may have a meaningful real world interpretation, even though it shows a smallp and

a largeκ. In addition, the EM algorithm usually only converges to a spurious maximum

from a particular starting point. If even a moderately different starting point is chosen,

convergence to another local maxima is observed. Isolated components with a largeκ

and lowp do not have that property. This observation is useful in deciding on whether a

solution is spurious.
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4.4.1 MLE and Likelihood Ratio Testing in Misspecified Models

In this section we present a summary of the results about maximum likelihood estima-

tion and likelihood ratio testing in misspecified models. The results first explain prop-

erties of the maximum likelihood estimators of the parameters of parametric models, if

the true distribution of the observations is not included inthe parametric model consid-

ered. They then continue to explain how to compare differentsuch misspecified models

in order to determine which one is closer to the true distribution. What exactly “closer

to the true distribution” means will be made clear in the following. We will show later

how these results can be applied to finite von Mises-Fisher mixture models.

Consider two different parametric models for the distribution of a random variable

X. Following Vuong (1989), we assume thatX has values in a Polish spaceX .

Fγ = {F (x; γ),γ ∈ Γ} ⊂ R
n1 , (4.53)

and

Gδ = {G(x; δ), δ ∈ ∆} ⊂ R
n0 . (4.54)

We assume thatn0 < n1. During this general discussion, the two families may or

may not contain the true distributionH(x) with densityh(x) with respect to aσ finite

measureµX onX . It is convenient to think ofX as the d-dimensional Euclidian space

Rd and to assume thatµX is the Lebesgue measure.

It is our goal to decide which of the two parametric models is superior over the other

one as explained in the following, based on a statistical test. We make the assumptions

given below about the two competing families. The assumptions and results are stated

only in terms of members ofFγ , but it is assumed throughout that analogous statements

and results also hold for members ofGδ.
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Assumption 4.4.1

The random variablesX1, .., XN are independent and identically distributed with the

density functionh(x), which is strictly positive for almost allx ∈ X .

Assumption 4.4.2

(a) For everyγ in Γ, F (x; γ) has a densityf(x; γ) that is strictly positive for almost all

x ∈ X .

(b) The parameter spaceΓ is a compact subset ofRn1 andf(x; γ) is continuous inγ

for almost all x.

Assumption 4.4.3

(a) For almost all x,| log(f(x; γ))| is bounded above by a function of x, independent of

γ, integrable with respect to H.

(b) The functionEh[log(f(x; γ))] =
∫

log(f(x; γ))h(x)µX (dx) has a unique maximum

at γ∗ in Γ.

(c) Eh[log(h(x))] =
∫

log(h(x))h(x)µX (dx) is well defined and finite.

Definition 4.4.4 Define

I(h : f |γ) := Eh

[
log

(
h(X)

f(X; γ)

)]

=

∫ ∞

−∞

log(h(x))h(x)dx −
∫ ∞

−∞

log(f(x; γ))h(x)µX (dx). (4.55)

The functionI(h : f |γ) is called the Kullback-Leibler Information criterion (KLIC)

statistic.

We refer to Kullback and Leibler (1951) for a discussion of the of the KLIC and

its properties.I(h : f |γ) can be understood as a measure of the distance between the

modelF (x; γ) and the true distributionH(x), see Akaike (1973) and Akaike (1974).
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Assumptions 4.4.3 (a) and (c) assure that the KLIC is well defined. Defineγ∗ as the

valueγ ∈ Γ that minimizes the KLIC statistic over the parametric family Fγ . γ∗ is

called the quasi true value ofγ. Assumptions 4.4.3 (b) and (c) ensure thatγ∗ is globally

identifiable. Since we interpret the KLIC as a measure of the distance of the model from

the true distribution, we can use it to compare two competingmodels. We say thatFγ

is a better approximation toH thanGδ, if

I(h : f |γ∗) < I(h : g|δ∗). (4.56)

To use this idea in practice, we need to find a test statistics based on a sample. We

especially need to estimateγ∗ and δ∗. To that end, define the quasi log-likelihood

function of the sampleX = (X1, .., XN ) as

LN(γ;X) =
N∑

i=1

log(f(Xi; γ)) (4.57)

and define thequasi log-likelihood estimator̂γN (QMLE) as a parameter that solves

max
γ∈Γ

LN(γ;X). (4.58)

The reason that we refer tôγN as the QMLE, rather than the MLE, is that we do not

necessarily assume that the true distribution is a part of the parametric familyFγ . There-

fore, γ does not necessarily estimate the true parameter, since there may not be a true

parameter. But the QMLE is a natural estimator forγ∗. This is made clear by the result

below, addressing the consistency of the QMLE. Furthermore, if the true distribution is

indeed part of the parametric familyFγ , then the QMLE is just the MLE and the quasi

true valueγ∗ is of course the true value ofγ. That is the reason why we use the notation

γ̂N for both the QMLE and the MLE.
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Theorem 4.4.5 If Assumptions 4.4.1 through 4.4.3 hold, then for allN there exists a

measurable QMLÊγN and γ̂N → γ∗ holds with probability 1, asN → ∞. Further-

more, we have that with probability 1:

1

N
LN(X, γ̂N) → Eh[log(f(X; γ∗))] (4.59)

Proof: See Vuong (1989) or White (1982).¥

A direct consequence of Theorem 4.4.5 is that we have with probability 1

1

N
LRN :=

1

N

N∑

i=1

log

(
f(Xi; γ̂N)

g(Xi; δ̂N)

)
(4.60)

−→ Eh

[
log

(
f(X; γ∗)

g(X; δ∗)

)]
= I(h : g|δ∗) − I(h : f |γ∗) (4.61)

Therefore, the likelihood ratio test appears as the naturaltest statistic for testing the null

hypothesis that

I(h : f |γ∗) = I(h : g|δ∗) (4.62)

against the alternative hypothesis that

I(h : f |γ∗) < I(h : g|δ∗) (4.63)

We cannot expect that the asymptotic distribution of the LR test statistics will be the

usual centralχ2 distribution, since the true distribution may not be included in any of

the two parametric families. In order to get a more general result describing a non-

degenerate limit distribution, we need to make the following further assumptions. We

first introduce the following notation. Let

(
∂ log(f(x; γ))

∂γ

)
and

(
∂ log(f(x; γ))

∂γ

)T

be the vector with entries

(
∂ log(f(x; γ))

∂γ

)

j

=
∂ log(f(x; γ))

∂γj

, j = 1, ..., n1
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and its transposed, respectively. Let

(
∂2 log(f(x; γ))

(∂γ) · (∂γ)T

)

be the matrix containing the second derivatives

∂2 log(f(x; γ))

(∂γi) · (∂γj)
, i = 1, . . . , n1; j = 1, . . . , n1

of log(f(x; γ)).

Assumption 4.4.6

(a) For H almost all x,log(f(x; γ)) is twice continuously differentiable inγ.

(b) For H almost all x, the functions
∣∣∣∣∣

(
∂ log(f(x; γ))

∂γ

)T (
∂ log(f(x; γ))

∂γ

)∣∣∣∣∣
(i,j)

and ∣∣∣∣
(

∂2 log(f(x; γ))

(∂γ) · (∂γ)T

)∣∣∣∣
(i,j)

, i = 1, . . . , n1; j = 1, . . . , n1

are dominated by H-integrable functions that are independent ofγ.

Assumption 4.4.6 ensures the existence of the following matrices:

Af (γ) = Eh

[
∂2 log(f(X; γ))

(∂γ) · (∂γ)T

]
(4.64)

Bf (γ) = Eh

[(
∂ log(f(X; γ))

∂γ

)(
∂ log(f(X; γ))

∂γ

)T
]

(4.65)

Bfg(γ, δ) = Eh

[(
∂ log(f(X; γ))

∂γ

)(
∂ log(g(X; δ))

∂δ

)T
]

(4.66)

Note, that we haveBT
gf (δ,γ) = Bfg(γ, δ). If the true distribution is indeed in the

parametric familyF (x; γ), we have under certain regularity conditions that−Af (γ
∗) =

Bf (γ
∗) = I(γ∗), whereI(γ∗) denotes the Fisher Information matrix. This is made

precise in Corollary 4.4.9 below. Before stating the main result in this section, we need

to make one more assumption.
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Assumption 4.4.7

γ∗ is an interior point ofΓ and a regular point ofAf (γ), that is,Af (γ) has constant

rank in a neighborhood ofγ∗.

A result in White (1982) states that under Assumptions 4.4.1 -4.4.6, Assumption

4.4.7 implies thatAf (γ
∗) is negative definite and hence of full rank. We can now state

the main results of this section.

Proposition 4.4.8 Assume that the Assumptions 4.4.1 through 4.4.7 hold. Then we

have, asN → ∞:
√

N(γ̂N − γ∗) =⇒ N (0, Cf (γ
∗)) (4.67)

whereCf (γ
∗) = A−1

f (γ∗)Bf (γ
∗)A−1

f (γ∗)

Proof: White (1982).¥

In order to understand Proposition 4.4.8 it is helpful to consider its statement in the

case where the model is not misspecified. That is, consider the case where the true

distribution is part of the parametric familyF (x; γ).

Corollary 4.4.9 Given Assumptions 4.4.1 - 4.4.7 and ifh(x) = f(x; γ0), for some

γ0 ∈ Γ, we have that

γ∗ = γ0 andAf (γ0) = −Bf (γ0) so thatCf (γ0) = B−1
f (γ0) = −A−1

f (γ0). (4.68)

In that caseCf (γ0) is the Fisher Information matrix.

Proof: White (1982)¥

We see that the interpretation of the matrixCf (γ0) is analogue to that of the Fisher

Information matrix. Assumptions 4.4.1 - 4.4.7 can be seen asthe ’regular’ maximum
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likelihood conditions. However, unless the model is correctly specified, we cannot ex-

pect thatAf (γ0) = −Bf (γ0) and hence the asymptotic variance-covariance matrix may

not equal the Fisher Information matrix.

In the framework of testing whether the larger modelF (x; γ) is significantly better

than the smaller modelG(x; δ), we need to make an assumption of how the smaller

model can be seen as a special case of the larger model. This assumption is as follows:

Assumption 4.4.10

There exists a functionξ(·) from∆ to Γ such that, for almost all x,g(x; δ) = f(x; ξ(δ)),

for everyδ ∈ ∆.

Given Assumption 4.4.10, together with Assumptions 4.4.1 through 4.4.3, we have

that

Eh[log(f(X; γ∗))] = Eh[log(g(X; δ∗))] ⇐⇒ I(h : f |γ∗) = I(h : g|δ∗),

implies thatf(x; γ∗) ≡ g(x; δ∗) for almost allx.

The following definition introduces the distribution that appears as the limiting dis-

tribution of the LR test statistic (4.60).

Definition 4.4.11 LetZ1, ..., Zn be i.i.d. standard normal random variables. Letλ1, . . . ,

λn be real numbers. Then the distribution of the random variable
∑n

i=1 λiZ
2
i is called

weighted sum of chi-squared random variables with parametersn, λ. We use the nota-

tion: P[
∑n

i=1 λiZ
2
i ≤ x] = Mn(x; λ), x ∈ R.

The distribution functionMn(x; λ) is not available in closed form. We can however

write it as an integral:

Mn(x; λ) =
1

2
− 1

π

∫ ∞

0

sin(δ(u))

uρ(u)
du, (4.69)
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where

δ(u) =
1

2

n∑

i=1

arctan(λiu) − 1

2
xu, ρ(u) =

n∏

i=1

(1 + λ2
i u

2)1/4.

Theorem 4.4.12Assume that Assumptions 4.4.1-4.4.10 hold and that for almost all x

we havef(x; γ∗) = g(x; δ∗). Then 2LRN converges weakly to a weighted sum of chi-

squared random variables:

P[2LRN ≤ y] −→ Mn1+n0(y; λ), (4.70)

whereλ is the vector of eigenvalues of the matrix

W =




−Bf (γ
∗)A−1

f (γ∗) −Bfg(γ
∗, δ∗)

Bgf (δ
∗,γ∗) Bg(δ

∗)A−1
g (δ∗)


 . (4.71)

If on the other handEh[f(x; γ∗)] > Eh[g(x; δ∗)] then

2LRN −→ ∞ with probability 1. (4.72)

Proof: Lo et al. (2001), Vuong (1989).¥

In practice,λ has to be consistently estimated by the vector of the eigenvalues λ̂

of the matrixŴ , which is an estimate ofW , obtained by replacing the expectation in

the equations (4.64)-(4.66) by sample means and replacingγ∗, δ∗ by their respective

QMLE’s.

4.4.2 Testing the Number of Components in a von Mises-Fisher Mix-

ture Model

In order to use Theorem 4.4.12 we need to make sure that Assumptions 4.4.1 through

4.4.10 are satisfied. In the following, we assume specifically that Fγ is the family

of von Mises-Fisher mixtures withm components and thatGδ is the family of von
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Mises-Fisher mixtures withm − 1 components,m ≥ 2. It is useful and sometimes

even necessary during this section to work in spherical coordinates. We will especially

need to express the mean direction of the components in spherical coordinates, when

considering the derivatives mentioned in Assumptions 4.4.3 and 4.4.7. The reason is

when we are taking derivatives, we need to make sure that there are no hidden constraints

among the entries of the parameter vector. The mean directions of the components of

the mixture appear asd dimensional vectors when expressed in cartesian coordinates.

However the condition that they are vectors of unit sphere results in the fact that they

only haved − 1 degrees of freedom. If we were to take derivatives with respect to

the mean direction of a certain component, expressed in cartesian coordinates,µi =

(µ
(1)
1 , . . . , µ

(i)
i ), we would have to consider the constraint

d∑

j=1

(
µ

(j)
i

)2

= 1.

If we work in spherical coordinates and expressµi asµi = (αi, β
(1)
i , . . . , β

(d−2)
i ) ∈

[0, 2π) × [0, π](d−2) ⊂ Rd−1 we do not have constraints among the parameters compo-

nents. In the following we mostly think in spherical coordinates. We also implemented

the ratio likelihood ratio test described in this section inprograms that carry out the

calculations in spherical coordinates.

Concerning Assumption 4.4.1: We do not know what the true distribution of the data

is, therefore we do not know whether its density is strictly positive for allx ∈ Sd−1. We

will assume that this is true.

Concerning Assumption 4.4.2: The von Mises-Fisher density is strictly positive

on the unit sphere as long as the concentration parameterκ is finite. Therefore a

finite mixture of such densities is strictly positive, if at least one of the concentra-

tion parameters is finite. Below, we impose a finite upper boundon the concentra-

tion parameters to ensure compactness of the parameter space. Therefore, 4.4.2 a) is
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true. In order to address Assumption 4.4.2 b), we consider the mean directions in

spherical coordinates. That is we haveγ = {µ1, ..,µm, κ1, .., κm, p1, .., pm−1} with

µi = (αi, β
(1)
i , . . . , β

(d−2)
i ) ∈ [0, 2π) × [0, π]d−2, κi ≥ 0, and0 < pi < 1 are num-

bers satisfying
∑m

i=1 pi = 1. We need to impose certain restrictions on the values

of the parameters in order to obtain a compact parameter space. We start by mak-

ing the range ofαi compact, by restricting its parameter values to the closed interval

[0, 2π − ǫ], whereǫ > 0 is chosen small enough so that this restriction is not of practi-

cal importance. We further introduce a maximal admissible value for the concentration

parametersκj. This is necessary to obtain a compact parameter space. In practice, we

never saw an estimate of a concentration parameter that exceeded a value of a 1000.

We may therefore safely add a constraint of the form0 ≤ κi ≤ ǫ−1, i = 1, ..,m,

whereǫ is as above. Finally, we need to make the range of permissiblevalues ofpi,

i = 1, . . . ,m compact. We therefore demand that for alli pi ∈ [ǫ, 1 − ǫ]. Again ǫ is

chosen small enough so that the restriction is not of practical importance. In practice, we

never saw a parameter of the weights that was smaller than10−4, not even for spurious

components. Note with this restriction the space of permissible values of the weights

{p = (p1, . . . , pm) ∈ [ǫ, 1 − ǫ]m :
∑

i pi = 1} is compact. Together we have that the

space of possible values ofγ = {µ1, ..,µm, κ1, .., κm, p1, .., pm−1} is compact. In the

following, we denote this compact parameter space withΓc.

Finally, it is easy to see that the density of a von Mises-Fisher model is a continuous

function in each of the parameters.

Concerning Assumption 4.4.3: As we mentioned before,Sd−1 is a compact sub-

space inRd. Therefore the density of a finite von Mises-Fisher mixture distribution, is

a continuous function inx ∈ Sd−1 on a compact set. We just mentioned above that it is

also a continuous function in the parameterγ ∈ Γc, also a compact space. Therefore,
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the density is a continuous function in(x,γ) ∈ Sd−1 × Γc. As a continuous function

with a compact domain it is a bounded function. Combining thiswith the fact that the

density is strictly positive, we get that| log(fmix(x,γ))| is a bounded function and that

the bound is independent of the parameterγ.

In order to make theγ identifiable, we first impose the constraints introduced in Sec-

tion 4.2.1. We denote the parameter space obtained fromΓc by imposing the constraints

1. through 3. from Section 4.2.1 asΓ. However, if the true, unknown distribution

H is indeed a finite von Mises-Fisher mixture distribution, Assumption 4.4.3(b) is still

violated whenever the true distribution has less thanm components. In that caseγ is

not identifiable, as we mentioned earlier in Section 4.2.1. We therefore need to assume

that the true distribution of the data is either von Mises-Fisher mixture with at leastm

components or that it is not a finite von Mises-Fisher mixtureat all. We worked with

the second alternative. We assume that the true distribution is such that the parameter

of the von Mises-Fisher mixture distribution is globally identifiable in the sense that

Eh[log(fmix(x,γ)] has a unique maximum at a parameterγ∗ in the parameter space

Γ. We need to stress that this assumption is stronger than the assumption that the true

distribution is not a finite von Mises-Fisher model. There isno guarantee that the pa-

rameterγ of the mixture models is identifiable if we permit any distribution other than

finite von Mises-Fisher distributions as the true distribution. Since we do not know the

true distribution, how do we justify this assumption? We report in Section 4.2.1 how

our implementation of the EM Algorithm handles the attempt to estimate a non iden-

tifiable parameter. We attempted to fit a von Mises-Fisher model with m + 1 to data

that we simulated from a finite von Mises-Fisher mixture model with only m compo-

nents. As described before, the parameter of the mixture with m + 1 components is

not identifiable. We observed that in this situation, the EM Algorithm converges to a
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parameter estimate with two identical components. That is,it returns a parameter esti-

mateγ̂ = {µ̂1, .., µ̂m, κ̂1, .., κ̂m, p̂1, .., p̂m−1} with µ̂i = µ̂j, andκ̂i = κ̂j for i 6= j. If

we would observe the EM algorithm return such estimates for real life data, this would

indicate that the parameter we are trying to estimate is not identifiable. However, we

did not observe this phenomenon, when working with real lifedata. This gives us con-

fidence to work with the assumption that the underlying, truedistribution is such that

the parameters of the finite mixture models of von Mises-Fisher distributions is identi-

fiable, regardless of the number of components in the mixture. Furthermore, we have to

remember that the finite von Mises-Fisher mixture model is only a model. We cannot ex-

pect the data to originate precisely from any particular model we choose. Therefore the

assumption that the true distribution is not captured in ourmodel is not an unreasonable.

We maintain however, that a finite von Mises-Fisher mixture is a good approximation

to the true unknown distribution. The results in the previous section give the theoretical

background of using the EM algorithm to obtain maximum likelihood estimates of the

parameters under Assumption 4.4.3 b).

Finally, since we do not know the true distribution, we cannot verify whether As-

sumption 4.4.3 c) holds. Since we assume that the densityh is strictly positive on the

compact setSd−1, it is reasonable to assume that Assumption 4.4.3 c) holds.

Recall that based on these assumptions, Theorem 4.4.5 assures that the likelihood

ratio test statistic converges almost surely to the difference of the KLIC statistics for

two competing models.

Concerning Assumption 4.4.6: It is not hard to see that the function log(fmix(x,γ)

is twice continuously differentiable. An examination of the resulting first and second

derivatives reveals that they are all not only continuous functions ofx, but also of the

parameterγ. Therefore, we can repeat our argument from Assumption 4.4.3 to conclude
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that, as a continuous function on a compact set, the derivatives of| log(fmix(x,γ)| are

bounded by a constant and hence Assumption 4.4.6 b) holds.

Concerning Assumption 4.4.7: The quasi true parameterγ∗ ∈ Γ of the mixture

models considered is in the interior of the respective parameter space, as long as the

representation in spherical coordinates of the mean directions all have only angles that

are in the interior of their permissible ranges. That we needto have thatβ(j)∗
i ∈ (0, π)

for i = 1, . . . ,m andj = 1, . . . , d − 2 and thatα∗
i ∈ (0, 2π − ǫ) for i = 1, . . . ,m.

We can assume that this is true, otherwise we can apply a rotation of the coordinate

system. Since we have from Assumption 4.4.3 thatγ is identifiable, we have that all

weights satisfyp∗i ∈ (ǫ, 1 − ǫ) as long asǫ has been chosen small enough. Finally we

need to note that the conditionκ∗
i ∈ (0, ǫ−1) only excludes uniform components. We

can therefore safely assume that Assumption 4.4.7 a) is satisfied.

Checking thatγ∗ andδ∗ are regular points ofAf (γ) andAg(δ) respectively is not

possible without knowledge of the unknown true distribution H. In practice we consider

the corresponding estimates and check that they are indeed regular. We never encoun-

tered a instance, where one of those matrices was not regular.

Finally, assumption 4.4.10 is trivially satisfied.

After convincing ourselves that Assumptions 4.4.1-4.4.10hold, we can apply The-

orem 4.4.12 to perform likelihood ratio tests to compare finite mixture models with

different number of components. As a result of Theorem 4.4.12, the following statisti-

cal test has asymptotical significance levelα:

Likelihood ratio test for von Mises-Fisher mixture models:

Let f(x; γ) be the density of a von Mises-Fisher mixture withm1 components and let

g(x; δ) be the density of a von Mises-Fisher mixture withm0 components. Of course,
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we assume thatm0 < m1. The statistical test considers

H0 : Eh[log(f(x; γ∗))] = Eh[log(g(x; δ∗))] i.e the two models are equivalent, versus

H1 : Eh[log(f(x; γ∗))] > Eh[log(g(x; δ∗))], i.e. the larger model provides a significant

improvement.

We rejectH0, based on a data sampleX1, ..., XN , if

2LRN > M←
m (1 − α; λ), (4.73)

whereM←
m (·; λ) denotes the quantile function of the distributionMm(·|λ), andm is the

total number of parameters from both models.

We use this test as a tool in an algorithm to determine the number of components in

a von Mises-Fisher mixture. We proceeded as follows, starting with m=2:

Algorithm 4.4.13 (Determining the number of components)

1. Estimate the parameters of a von Mises-Fisher mixture modelwith m and m + 1

components.

2. Perform the likelihood ratio test (4.73) to compare the two models.

3. If the Null hypothesis is rejected, repeat steps 1. and 2. withm replaced bym + 1,

else accept m as an adequate number of components andg(x; δ̂) as the best fitted model.

This is an automated procedure to determine an adequate number of components.

Why then do we not compare a model with a certain number of components, saym with

all reduced models with2, 3, ..,m − 1 number of components? The reason is that some

of those tests would fail to reject the null hypothesis, while others would reject it. How

would we decide which model is the best?

For example, the model with 4 components could appear statistically significantly supe-

rior over the model having 2 components. At the same time, it may not appear signif-

icantly superior compared with the model having 3 components. That model in return
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may or may not be significantly superior compared to the modelwith 2 components.

Should we conclude that the model with 4 components is the most adequate model,

based on its superiority over the 2 component model? Or should we choose the 3 com-

ponent model, because it is statistically significantly superior over the 2 component

model, while not being significantly inferior to the 4 component model? Our approach

resolves these questions by only comparing each model only with a model that has either

one component more or one component less. The procedure is motivated and justified,

at least to some extend, by the following result, found in Cadez and Smyth (2000):

Proposition 4.4.14 Denote withfk the density of the mixture density

fk(x) =
k∑

i=1

p̂iM(xj; ûi, κ̂i)

Denote withLk the log-likelihood value of the mixture model with k components evalu-

ated at the maximum likelihood estimates(p̂i, ûi, κ̂i); i = 1, . . . , k. If for k1 andk2 we

have that

Lk1 − Lk2 = α

N∑

j=1

fk2 − fk1

fk1

(4.74)

for a constantα. Then we have that

Lk+1 − 2Lk + Lk−1 ≤ 0,

where

Lk =
N∑

j=1

log

(
k∑

i=1

p̂iM(xj; ûi, κ̂i)

)

stands for the log-likelihood value of the mixture model withk components evaluated at

the maximum likelihood estimates(p̂i, ûi, κ̂i); i = 1, . . . , k.

In other words, the log-likelihood function, evaluated at the corresponding MLE’s

is a concave function in the number of components used, undercertain technical con-

ditions. Cadez and Smyth (2000) note that if condition (4.74)holds approximately, the



124

log likelihood is approximately concave. We refer to Cadez and Smyth (2000) for a

more detailed discussion. As a consequence, the likelihoodratio test statistic2LRN is

approximately monotone decreasing in the number of components. This does not imply

that the p values of the corresponding likelihood ratio tests, described in this chapter,

will also be monotone decreasing. Remember that the distribution of the statistic de-

pends on the vector of parametersλ, defined as the vector of eigenvalues of the matrix

given in Theorem 4.4.12. This means that because of different values associated with

a likelihood ratio test, a test with a lower value of the test statistic than that of another

test may reject the null hypothesis, while the later does not. This is however not very

common.

We stop when the first likelihood ratio test comparing a mixture model withm − 1

components with a model withm components fails to reject the null hypothesis. Even

though there is no guarantee that a subsequential test comparing models withm and

m+1 components will not reject the null hypothesis, Proposition 4.4.14 tells us that the

value of the test statistic is monotone decreasing and hencethat future significant values

become fairly unlikely. In practice, we rarely saw this happening. When it happened, it

was due to components that appeared to be spurious.

4.4.3 Information Criteria

As an alternative to the likelihood ratio test we also considered a variety of so called

”information criteria”. They are based on the Kullback Leibler information criterion of

a parametric family with densityf(x; γ), introduced in (4.55):

I(h : f |γ) := Eh

[
log

(
h(X)

f(X; γ)

)]
=

∫
log(h(x))h(x)dx −

∫
log(f(x; γ))h(x)dx.
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As before,h(x) stands for the density of the true distribution that may or may not be

included in the parametric familyf(x; γ). If we had an estimator of the KLIC, we could

therefore pick the model that minimizes said estimator. We fit models with a different

number of components and choose the one that seems to minimize I(h : f |γ). Recall

that under certain regularity conditions, discussed in Section 4.4.1, we had in Theorem

4.4.5:

1

N
LN(X, γ̂N) =

1

N

N∑

i=1

log(f(Xi; γ̂N)) → Eh[log(f(X; γ∗))], asN → ∞.

Recall thatγ∗ stands for the quasi true value ofγ, while γ̂N stands for the QMLE, based

on a samplex = (x1, ..., xN) of X = (X1, ..., XN ) of sample sizeN . Hence we would

choose the model that maximizesLN(X, γ̂N). Unfortunately, the idea suffers from the

problem thatLN(X, γ̂N) is a monotone increasing function in the number of compo-

nents of the model, leading to over-parametrization. As a solution, we consider criteria

based on functions that subtract a penalty term fromLN(X, γ̂N). The motivation for

this approach is given by the fact, that even though we know that 1
N

LN(X, γ̂N) is a con-

sistent estimator forEh[log(f(X; γ∗))], it needs not be unbiased. Indeed, McLachlan

and Peel (2000) mention, that the log likelihood usually hasa positive bias. The bias is

given by

b(h) = Eh

[
1

N

N∑

i=1

log(f(Xi; γ̂N))

]
−

∫
log(f(x; γ))h(x)µX(dx).

This leads to the idea of estimatingEh[log(f(X; γ∗))] by a term of the form

1

N
LN(X, γ̂N) − b̂(h), (4.75)

where b̂(h) is an appropriate estimate of the biasb(h). In the framework of mixture

models, this motivates a new criterion for selecting the number of components of the

model. Since the value ofLN(X, γ̂N) is strictly monotone increasing in the number of
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components, we choose the model that maximizes a function ofthe form of equation

(4.75). In literature, such functions are referred to as information criteria, since they

aim to find the model that minimizes a modified version of the KLIC. They are typically

expressed in the following form:

−2LN(X, γ̂N) + 2C(γ̂N), (4.76)

where2C(γ̂N) represents an appropriate penalty term. After fitting models with differ-

ent numbers of components, we choose the model that minimizes a function of the form

(4.76).

Obviously, the choice ofC(γ̂N) is critical to the sensibility of the criterion. There-

fore, considerable effort has been devoted to an appropriate choice ofC(γ̂N). In the

following, we present some proposed penalty terms that we considered for our work.

Akaike’s Information Criterion

Akaike (1974) shows that, under certain regularity conditions, the bias termb(h) asymp-

totically tends tod, the total number of parameters in the model, asN , the sample size,

tends to∞. This motivates theAkaike’s Information Criterion, AIC:

AIC(X; γ̂N) = −2LN(X, γ̂N) + 2d. (4.77)

However, according to Titterington et al. (1985), the regularity conditions used by Akaike

and other authors to derive the AIC are the same as the ones needed for the classical like-

lihood ratio test. As mentioned in the beginning of Section 4.4 these conditions break

down in the framework of finite mixture models. However the AIC is still frequently

used in deciding the number of components in various mixturemodels. In an empirical

study we observed that the AIC tends to overestimate the truenumber of components,

see Section4.4.4. This is in line of what other researchers reported as well.
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Ishiguro et al. (1997) proposed using a bootstrap method to estimate the unknown

bias term. See also McLachlan and Peel (2000) for a brief discussion of the resulting

Efron Information Criterion, EIC.

Bayesian Information Criterion

The AIC and EIC are directly motivated by estimating the biasterm in (4.75). The

following criterion originated in the framework of Bayesiananalysis, but has a similar

form. Since it can be used in a non-Bayesian framework and is not harder to implement

than the AIC, we found it to be very useful. In a Bayesian framework, assume that

the prior distribution of the parameterγ is given by the densityfp(γ). The integrated

likelihood is then defined as

fI(x) =

∫
fp(γ)LN(x,γ)dγ.

Define the posterior modẽγN as the value ofγ that maximizeslog(fp(γ)LN(x,γ)). It

solves the equation

∂ log(fp(γ)LN(x,γ))

∂γ
= 0. (4.78)

Using a second order Taylor approximation about the posterior nodeγ̃N we can approx-

imate the integrated log likelihood with

log(fI(x)) = LN(x, γ̃N) + log(fp(γ̃N)) − 1

2
|I(h : f |γ̃N)| + 1

2
d log(2π). (4.79)

Schwarz (1978) essentially obtained hisBayesian Information Criterion, BIC

BIC(x; γ̂N) = −2LN(x, γ̃N) + d log(N) (4.80)

from (4.79) by ignoring the termslog(fp(γ̃N)) and 1
2
d log(2π) and using that|I(h :

f |γ̃N)| = O(d log N).
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Comparing with the AIC, we see that as soon aslog(N) > 2, the penalty factor

of the BIC is larger than the one of the AIC. Because of the larger penalty, the BIC

has a smaller risk of choosing a too complicated model than the AIC. In our simulation

study, presented in Section 4.4.4, we found that the BIC indeed performed better than

the AIC. Other researchers reported similar findings in the context of mixture models,

see McLachlan and Peel (2000), p. 209.

McLachlan and Peel (2000) mention however, that the regularity conditions needed

for the Taylor approximation, as well as other approximations leading to (4.80), are not

satisfied by mixture models. In particular, the approximation (4.79) requires that the

parameters of the model be identifiable. As for the AIC, there is hence no theoretical

justification for using the BIC in a mixture model context to decide on the number of

components. As explained in the introduction to Section 4.4, if the true distribution

is part of the considered mixture family, and we are considering a model with more

components than the true distribution, the parameters of the model are not identifiable.

However, Leroux (1992) has shown that asymptotically, for large sample sizes, both

the AIC and the BIC do not underestimate the true number of components. This is

reassuring. It means that when using the BIC and/or the AIC fordeciding on the number

of components in the model, we will likely not choose a model that is too simple and

therefore miss important information about the tail dependence in the distribution.

McLachlan and Peel (2000) mention two more complicated criteria that are based

on Bayesian methods, the Laplace Metropolis Criterion and theLaplace Empirical Cri-

terion. It should also be noted, that Green (1995) present a Bayesian approach to the

estimation of the parameters of a model that Green and Richardson (1997) applied to

finite mixtures. In that approach the number of components istreated just like another

parameter. With the help of a Monte Carlo method, discussed inGreen (1995), a pos-
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terior distribution on the number of components is derived.However the computational

requirements are significant, even for univariate data and would increase dramatically

for multivariate data.

Classification-Based Information Criterion

We introduce two criteria that are based on the idea that the true model should be able

to classify the observations using the different components of the model. It should be

possible, with the help of the model, to determine from whichcomponent a particular

observation originated. Recall, that the complete model, introduced in Section 4.2.2,

refers to the case where we know for each observation from which component it comes

from. Its density is given by equation (4.9):

fc(y; γ) =
N∏

j=1

f c((xj, ij); γ) =
N∏

j=1

pij · f(xj; ξij),

whereξi are the parameters of theith component density. To express the log likelihood

of the complete model,Lc
N , recall from (4.10) the definition of the matrix

zij =





1, if ij = i

0 otherwise

Then we have

Lc
N(x; z; γ) =

m∑

i=1

N∑

j=1

zij [log(pi) + log(f(xj; ξi))] . (4.81)

The connection betweenLc
N(x; z; γ) and the log-likelihood functionLN(x; γ) of

the incomplete model is given by the equation

Lc
N(x; z; γ) = LN(x; γ) + log(kN(x; z; γ)), (4.82)

where

log(kN(x; z; γ)) :=
m∑

i=1

N∑

j=1

zij log(τij),
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see McLachlan and Peel (2000), and

τij := E[zij|xj] =
pif(xj; ξi)∑m

k=1 pkf(xj; ξk)
(4.83)

is the posterior probability thatxj belongs to theith component of the mixture. We

would like to choose the model whose complete form has the largest log-likelihood

valueLc(x; γ). To estimate the complete log-likelihood function, we could use (4.82).

The termLN(x; γ) is estimated byLN(x; γ̂N). Since we do not know the matrixzij,

we approximatelog(kN(x; γ)) by its expectation, given by

E[log(kN(x; z; γ))|x] =
m∑

i=1

N∑

j=1

τij log(τij)

The posterior probabilitiesτij can be estimated using the MLÊγN of γ:

τ̂ij :=
p̂if(xj; ξ̂i)∑m

k=1 p̂kf(xj; ξ̂k)
. (4.84)

The model is able to clearly classify the observations according to their components, if

the posterior probabilities clearly indicate from which component each, or at least most,

observations originated.

Define

EN(τ̂ ) = −
m∑

i=1

N∑

j=1

τ̂ij log(τ̂ij). (4.85)

This motivates theclassification likelihood information criterion, CLC

CLC(x; γ̂N) := −2LN(x, γ̃N) + 2EN(τ̂ ). (4.86)

The size of the penalty factorEN(τ̂ ) depends on how well the model is able to classify

the observations. If, for a particular observationxj, the estimated posterior probabilities

τ̂ij are large for one particular component and close to zero for all other components, we

say that this observation has been clearly classified. Sincethe termŝτij log(τ̂ij) are close

to zero, if the corresponding values ofτ̂ij are close to zero or one. Therefore, if most
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observations can be clearly classified, the penalty factor will be small. If the number

of components in the model is either too small or accurate, most observations should

be clearly classified, as the components are clearly separated. We observed this in most

instances when applying the von Mises-Fisher model to directional data. However, if

the model has too many components, the observations cannot be clearly classified. The

posteriori probabilitieŝτij of a large number of observations may be significant for more

than one component. In that case, many of the termsτ̂ij log(τ̂ij) will not be close to zero

and the size of the penalty term can be considerable. The CLC states that an additional

component should only be added to the mixture model, if the decrease in the clarity

of the classification of the points is not greater than the increase in the log likelihood

function. One of the drawbacks of the CLC that we observed is that it is not even

monotone in the number of components. As a consequence, if the CLC of a model

with m + 1 components is larger than the one of the model withm components, there

is no guarantee that model that minimizes the CLC has more thanm + 1 components.

A study done by Biernacki et al. (1996) states that the CLC tendsto overestimate the

correct number of components. For these reasons, we usuallydid not consult the CLC

when deciding the number of components, but rather worked with an improved version,

called the ICL-BIC.

Integrated Classification Likelihood Criterion

The Integrated Classification Likelihood Criterion, ICL,attempts to improve the short-

comings of the CLC. In the following we give a brief outline of the motivation for the

ICL, essentially found in McLachlan and Peel (2000) and Biernacki and Govaert (2000).

Define the integrated classification likelihood as

ficl(x, z) =

∫
f c

N(x; z; γ)fp(γ)dγ,
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wheref c
N(x, z; γ) denotes the complete likelihood function given by

f c
N(x, z; γ) =

N∏

j=1

p
zij

i · fi(xj; ξi)
zij

andfp(γ) is a prior density on the model parameterγ. Assume that the prior density

can be factorized as

fp(γ) = fp1(p)fp2(ξ),

wherep = (p1, ..., pm) ∈ P denotes the vector of the component weights andξ =

(ξ1, ..., ξm) ∈ Ξ is the vector of the parameters of the component densities ina finite

mixture withm components.fp1 andfp2 denote the respective prior densities. In that

case the integrated likelihood functionficl(x, z) factorizes as

ficl(x, z) = ficl(x|z)ficl(z), (4.87)

where

ficl(x|z) =

∫

Ξ

f c
N(x, ξ|z)fp2(ξ)dξ,

with

f c
N(x, ξ|z) =

N∏

j=1

f(xj; ξi)
zij

and

ficl(z) =

∫

P

(
N∏

j=1

p
zij

i

)
fp1(p)dp.

Biernacki and Govaert (2000) assume that the prior distribution fp1(p) is the Dirichlet

distributionD(α1, ..., αm), given by density

fD(p) = Γ

(
m∑

i=1

αi − m

)
m∏

i=1

pαi−1
i Γ(αi)

−1.

with Γ(x) denoting the Gamma function. They work withα1 = ... = αm = α and show

that under these assumptions, we have that

log(ficl(z)) ≈ K(N1, ..., Nm). (4.88)
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In the above,Ni =
∑N

j=1 zij; i = 1, ...,m, are the number of observations in theith

component andK(N1, ..., Nm, α) is the function

K(N1, ..., Nm, α) =
m∑

i=1

log(Γ(Ni + α)) − log(Γ(N + m · α))

−m log(Γ(α)) + log(Γ(m · α)).

They also show that the following approximation holds forficl(x|z):

ficl(x|z) ≈ max
ξ

log(f c
N(x, ξ|z)) − d1

2
log(N), (4.89)

whered1 is the total number of the parameters exceptp̂i, i = 1, ...,m. McLachlan and

Peel (2000) note that if we estimate the unknown matrixz with τ̂ , we have that

max
ξ

log(f c
N(x, ξ|z)) = LN(x, γ̂N) − EN(τ̂ ) − N

m∑

i=1

p̂i log(p̂i), (4.90)

wherep̂i is the MLE for the weights of the components of the mixture model andEN(τ̂ )

is as in (4.85). Combining (4.88) to (4.90) we have from (4.87)that

log(ficl(x, z)) ≈ LN(x, γ̂N) − EN(τ̂ ) − N

m∑

i=1

p̂i log(p̂i)

−d1/2 log(N) + K(Np̂1, ..., Np̂m), (4.91)

wherep̂i is the MLE for the weights of the components of the mixture model, d1 is the

total number of the parameters exceptp̂i, i = 1, ...,m andEN(τ̂ ) is as in (4.85). This

motivates the following definition of theIntegrated Classification Likelihood Criterion,

ICL

ICL(x, γ̂N) := −2LN(x, γ̂N) + 2EN(τ̂ ) + 2N
m∑

i=1

p̂i log(p̂i)

+d1 log(N) − 2K(Np̂1, ..., Np̂m). (4.92)

We see that the ICL incorporates elements from the CLC as well asfrom the BIC.

Biernacki and Govaert (2000) derived the following approximation to (4.92), based on
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Stirling’s formula and therefore only valid, when the termsNp̂i are large. It is referred

to as theICL-BIC criterion:

ICL-BIC(x; γ̂n) := −2LN(x, γ̂N) + 2EN(τ̂ ) + d log(N), (4.93)

whered is the total number of parameters in the model. We see that theICL-BIC com-

bines the penalty terms from both the BIC and the CLC. Biernacki etal. (1996) report

that the performance of the ICL-BIC differs little from the ICL,even if the estimated

cluster sizesNp̂i are not large.

Even though the ICL-BIC is also not necessarily concave in the number of com-

ponents of the model, it performs much better than the CLC. We saw that the growth

of BIC term d log(N) outweighed the fluctuations of the CLC term,2EN(τ̂ ), as the

number of components increased. Therefore we observed thatfor most datasets consid-

ered, the ICL-BIC is a concave function in the number of components in the model. We

therefore worked with the easier ICL-BIC rather than the CLC.

McLachlan and Peel (2000) report an empirical study, comparing the performance

of the criteria introduced in this section. They used multivariate normal distributions

as the component distributions. The study concludes that only the ICL and the ICL-

BIC are able to correctly pick the right number of components for the three different

datasets they considered. The AIC, and to a lesser extend, theCLC as well as the BIC

overestimated the complexity of the model. However, our situation is very different

from the one considered in McLachlan and Peel (2000). Not only are we considering a

different class of distributions as component distributions, we also consider distributions

on a different space. McLachlan and Peel (2000) consider distributions inRd, we are

considering distributions onSd−1. Therefore the criteria may perform very different

than McLachlan and Peel (2000) reported and their results may not be valid. For these
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reasons, we conducted our own empirical study. We present our results and conclusions

in the following section.

4.4.4 Empirical Comparison of the LR Test and the Information

Criteria

In order to compare the different information criteria and the likelihood ratio test pro-

cedure, introduced in the last sections, we conducted an empirical study. We simulated

datasets from 6 different settings of dimension, number of components and sample size.

In all instances, data from a finite mixture of von Mises-Fisher distributions was gen-

erated. For each of the 6 choices we created 5 to 10 datasets. For each dataset, we

proceeded to calculate the maximum likelihood estimates via the EM algorithm. We

usually started by estimating the parameters of a 2 component model. We then pro-

ceeded to repeatedly increase the number of components in the fitted model by 1, until

the information criteria and the likelihood ratio procedure indicated that we had passed

the optimal number of components. Starting values for the EMalgorithm were usually

obtained by the method of adding a components, described in Section 4.3.2 or from ran-

domized starting points. The sample size was typically between 200 and 500, as those

were the sample sizes that we worked with for real life datasets.

Case 1: A 6 component mixture onS2

The true parameters of the model are given in Table 4.1. The left table shows the true

parameters of the model considered, while the right table gives an overview of the per-

formance of the criteria considered. The mean direction of each component is given

in spherical coordinates byα ∈ [0, 2π) andβ ∈ [0, π]. κ denotes the concentration

parameter of the component andp lists the weight of the components. Components
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Table 4.1:Overview of case 1 of the simulation study.

The true parameters of the model The number of components

α β κ p Dataset Number: 1 2 3 4 5

1) 0 7/10π 20 .15 AIC: 9 7 8 7 7

2) π/2 3/4π 60 .05 BIC: 6 6 5 6 6

3) 1 π/2 10 .30 ICL-BIC: 5 5 6 5 5

4) 4 2 24 .10 LR Test 5%: 9 7 6 7 7

5) 5 1 30 .15 LR Test 1%: 8 6 6 7 7

6) 4.5 π/2 10 .25

4 through 6 are not very well separated, whereas the first three components are fairy

well separated. This is made clear in Figure 4.1, which showsa plot of the density

f(φ, θ), φ ∈ [0, 2π); θ ∈ [0, π] of the distribution with parameters as in Table 4.1. We

created 5 different datasets, each with a sample size of 500.The number of components,

m, as estimated by the different criteria, for each dataset isgiven in the right portion of

Table 4.1. We see that the AIC overestimatesm in each dataset. The BIC estimatesm

correctly in 4 out of the 5 datasets, underestimating it by 1 only in the3rd dataset. The

ICL-BIC also performs fairly well, although its estimate ofm is correct only in dataset

3. But it only underestimatesm by 1 in all other datasets. The likelihood ratio test seems

to perform better than the AIC, but also has a tendency to overestimate the number of

components. Testing at the high significance level of1% improved the precision of the

estimates ofm, compared to testing at5%. It reduced the number of components chosen

by the likelihood ratio method by 1 component in both the firstand the second dataset.

The results are well in line with what other authors reportedas far as the AIC goes. We
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Figure 4.1:The density of the von Mises mixture distribution from which the datasets of

case 1 were created.

found the rather poor performance of the likelihood ratio test disappointing, since the

likelihood ratio test procedure was given theoretical justification in previous sections of

this chapter, whereas the AIC, the BIC and the ICL-BIC lack this justification and were

only considered because other authors mentioned in McLachlan and Peel (2000) had

commented on their usefulness.

Case 2: A 5 component mixture onS4

Dataset 2 had a higher dimension, but only 5 components. 5 datasets with a sample size

of 300 each, were created. This is less than for the previous datasets. An overview over

the true parameters of the distribution and the performanceof the criteria is given in

Table 4.2. The left side of the table shows the true parameters of the model considered,

while the right hand side table gives an overview of the performance of the criteria con-

sidered. The mean direction for each component is again given in spherical coordinates,
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represented by the anglesα ∈ [0, 2π) andβi ∈ [0, π], i = 1, ..., 3. It is nearly impossible

Table 4.2:Overview of case 2 of the simulation study.

The true parameters of the model The number of components

α β1 β2 β3 κ p Dataset Number: 1 2 3 4 5

1) 0 1.5 1.5 1.5 10 .30 AIC: 5 5 5 5 6

2) 1 1 1.5 2 50 .10 BIC: 5 5 5 5 5

3) 4 3 2 2 20 .25 ICL-BIC: 5 5 5 5 5

4) 5 2.5 1 1 10 .30 LR Test 5%: 5 5 5 5 6

5) 5 2 1.5 1.5 100 .05 LR Test 1%: 5 5 5 5 6

to get a good impression of the shape of the distribution, since even in spherical coordi-

nates, its density has a 4 dimensional domain. We studied 2 and 3 dimensional scatter

plots of the datasets. It appears from those plots that the first 3 components are fairly

well separated from each other, while the last two seemed to be closer together.

The performance of the different criteria is amazingly good. Both the ICL-BIC and

the BIC estimate the correct numberm = 5 in each dataset. The likelihood ratio test

and the AIC both overestimatem in the last dataset, but provide a correct estimate of the

number of components otherwise as well. A possible explanation is that the components

are sufficiently separated so that each of them is clearly recognizable in a sample of the

size considered here. Therefore, a model with less than 5 components will omit at least

one of those components, resulting in a much lower log likelihood value compared to

the 5 component model. This makes the 5 components model significant compared to

a model with a lesser number of components. On the other hand,since each of the

components is simulated from a von Mises-Fisher distribution, it is very hard to fit a

model with 6 components and a significantly higher log-likelihood value to the dataset.
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In order to succeed, we would need to fit two von Mises-Fisher components to a subset of

the data representing one component. Since that subset was simulated from a single von

Mises-Fisher distribution, this is unlikely to produce a large increase in the value of the

log-likelihood function. The criteria never saw such a 6 component model as significant

over the 5 component model, with the exception of the AIC and the likelihood ratio test

procedure in the last dataset.

Case 3: A 4 component mixture onS1

Dataset 3 is a mixture model with 4 components in only 2 dimension. We created 10

datasets, each with a sample size of 400. The reason we created 10 rather than 5 datasets

is that an earlier analysis of a similar model had not been conclusive enough based on

only 5 different datasets. The true parameters of the model are found in Table 4.3. The
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Figure 4.2:The density of the von Mises mixture distribution from which the dataset of

case 3 were created.
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Table 4.3:The true parameters used in case 3.

α κ p

1) 2 3 .35

2) 5 10 .35

3) 4 20 .10

4) 6 10 .20

Table 4.4:The number of components estimated in case 3.

Dataset Number: 1 2 3 4 5 6 7 8 9 10

AIC: 5 5 5 6 4 4 4 4 4 4

BIC: 4 4 4 2 2 4 3 3 2 3

ICL-BIC: 4 2 4 2 2 2 2 2 2 2

LR Test 5%: 5 5 4 3 3 4 4 4 3 4

LR Test 1%: 5 4 4 2 2 4 4 3 3 4
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density of the mixture is shown in Figure 4.2. We can see that the first component is

clearly separated from the other three components. These three other components are

not very well separated, but they are still clearly distinguishable.

The AIC is able to correctly estimate the number of components, m = 4, for 6 out

of the 10 datasets. In the other instances it overestimates the number of components, in

the case of the4th even by two components.

The BIC on the other hand shows a tendency to underestimate thenumber of com-

ponents. Only in 4 out of the 10 datasets is it able to correctly estimatem = 4. For 3

dataset it even settles for 2 components, not being able to distinguish components 2,3

and 4. In the other 3 cases it picked a model with 3 components,because it was not able

to clearly distinguish the last 3 components as well.

As the ICL-BIC has an ever greater penalty term, the underestimation ofm is is even

more severe. With the exception of two datasets, the ICL-BIC isnot able to see that

there are 4 rather than just 2 components.

The results for the likelihood ratio test are mixed. For boththe significance level of

5% and1%, we see instances wherem is overestimated and instances where it is un-

derestimated. The likelihood ratio procedure introduced in Algorithm 4.4.13 performs

better here when using the lower significance level of5%. For both the5% and the1%

significance level the likelihood ratio test estimatesm correctly for 5 of the 10 datasets.

But the underestimation for datasets 4 and 5 is again severe, as only significant 2 com-

ponents are identified. Overall, the AIC and the likelihood ratio test at5% seemed to

perform best here.
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Case 4: A 6 component mixture onS3

Case 4 is a mixture with 6 components in 4 dimension. We created5 datasets, each

with a sample size of 300. The true parameters are found in theleft hand side of Table

4.4, while the right hand side table gives an overview of the performance of the criteria

considered. Since the distribution is on the 4 dimensional unit sphere, it is hard to deter-

Table 4.5:Overview of case 4 of the simulation study.

The true parameters of the model The number of components

α β1 β2 κ p Dataset Number: 1 2 3 4 5

1) 2 2 2 6 .25 AIC: 7 5 5 5 5

2) 4 2 2 10 .15 BIC: 5 5 5 5 5

3) 5 1 1 20 .10 ICL-BIC: 5 5 5 5 5

4) 3 3 1 10 .20 LR Test 5%: 8 5 5 5 5

5) 6 3 1 5 .20 LR Test 1%: 7 5 5 5 5

6) 2 0.5 2 20 .01

mine to what degree the components are separated. However, looking at the parameter

values, it appears that components 4 and 5 might not be clearly separated. Because their

second spherical coordinate is close toπ, the difference in the first spherical coordinate

does not mean the points are far apart. In cartesian coordinates their mean direction are

given by(0.1140,−0.0332,−0.8330, 0.5403) and(−0.1176, 0.0168,−0.8330, 0.5403),

respectively. The other components are very different in atleast one coordinate. We

confirmed this idea by looking at 3 dimensional scatter plotsof the simulated datasets.

Looking at the results of the estimation ofm by the various criteria, we see that,

expect for the first dataset, all criteria considered incorrectly estimatem = 5. In the
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first dataset the AIC and the likelihood ratio tests clearly overestimatem, while the BIC

and the ICL-BIC still estimatem = 5. This is most likely due the fact that the criteria

were not able to separate components 4 and 5. The 3 dimensional scatter plots that

we considered also indicated that the choices of the concentration parameters,κ = 5

andκ = 10, respectively lead to fairly far spread out components. Additionally, as me

mentioned above, the mean directions are very similar.

Case 5: A 10 component mixture onS2

Case 5 was motivated by the study of the spectral measure of thelog returns of the

three stocks IBM, Intel and Apple, see Section 5.1. The parameter values in the right

table of Table 4.6 are the parameter of a 10 component von Mises-Fisher mixture model

fitted to the spectral measure of the distribution of the daily log returns of the three

stocks. See Section 5.1 for details. The right table gives anoverview of the performance

of the criteria considered. Notice that components 1, 4, 6, 7, 9 and 10 have a very

high concentration parameterκ. Those components are very closely concentrated about

their mean direction. Those mean directions turn out to be the axis directions. For

example, the mean direction of the first component in cartesian coordinate isµ1 =

(0.9999, 0.0072, 0.0098), which is almost the direction of the x-axis pointing in positive

direction. Similarly, components 4, 6, 7, 9 and 10 have mean directions that closely

follow one of the axis. Compared to those 6 components, the remaining components

2,3,5 and 8 are fairly spread out. We present a contourplot below in Figure 4.3. We

see that while the 6 highly concentrated components are verywell separated from each

other, components 1 and 2 and components 5 and 6 are not very well separated. The

components 3 and 8 appear isolated, but they are so far spreadout, that points from

those components might get mixed with points from other components.
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Table 4.6:Overview of case 5 of the simulation study.

The true parameters of the model The number of components

α β1 κ p Dataset Number: 1 2 3 4 5

1) 0.01 1.56 329.8 0.09 AIC: 11 10 10 11 11

2) 0.17 1.47 39.7 0.05 BIC: 10 10 10 10 10

3) 0.78 0.32 13.2 0.10 ICL-BIC: 9 10 10 8 9

4) 1.31 0.01 575.4 0.09 LR Test 5%: 11 10 10 11 10

5) 1.35 1.45 20.4 0.09 LR Test 1%: 10 10 10 11 10

6) 1.55 1.54 491.5 0.09

7) 3.20 1.61 188.5 0.10

8) 3.87 2.29 3.8 0.19

9) 4.07 3.09 477.3 0.09

10) 4.67 1.62 85.7 0.11
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Figure 4.3:A contour plot of the mixture discussed in case 5.

Overall, the criteria do a good job of estimatingm. The AIC overestimatesm in

three out of the five datasets by one component. The BIC is flawless and gets the correct

estimatem = 10 for every dataset. The ICL-BIC seems to be penalizing too harshly and

therefore underestimatesm in exactly those datasets where the AIC is overestimating

it. For the4th dataset it even claims that a 8 component mixture is the best model. The

likelihood ratio tests perform better than AIC, but they alsooverestimatem. Comparing

the model withm = 10 with the model withm = 11, the p value of the likelihood

ratio test statistic underH0 for the first dataset was1.58%. Therefore, at5%, the11th

component is significant, while at1% it is not.

Conclusions

None of the criteria that we considered performed flawless. We found that there is no

single criterion that outperforms the others and should therefore given clear preference.
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The BIC showed the most consistent performance, especially on the dataset onS2 and

in higher dimensions. It showed a tendency to underestimatethe number of components

in S1, as is made clear in case 3. Since ICL-BIC has a greater penalty than the BIC, it’s

tendency to underestimate the number of components was evenmore pronounced. As

for the BIC, the performance improved with the growing number of the dimension in

the dataset. While the AIC performed as well as the other criteria in case 3, it showed a

tendency to overestimate the number of components in higherdimensions. It was almost

always the criterion that selected the largest number of components in each mixture. The

algorithm 4.4.13, based on the likelihood ratio test had a fairly consistent performance in

case 3. However it showed a tendency to overestimate the number of components in the

higher dimensional cases. We conclude that the likelihood ratio test procedure should

rather be used with the significance level of1%, rather than the customary5%. This

helps reduce the danger of overestimating the complexity ofthe model. Based on our

observations, it seems reasonable to use the likelihood ratio test procedure for datasets

in S1. For the datasets of higher dimension we recommend considering the BIC as the

preferred choice for determining the number of components.

In the next chapter we describe the results of fitting mixturemodels to various fi-

nancial datasets. We see a much greater disagreement about the optimal number of

components in the model indicated by the various criteria. Based on the results of our

empirical study, we mostly consulted the BIC and the likelihood ratio test procedure

with 1% significance to decide on the complexity of the model. However we also con-

sidered other factors and aspect of the various models as explained in the next chapter.
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Analysis of Datasets
In this chapter we present the results of modelling the spectral measure of several dif-

ferent financial time series with finite von Mises-Fisher mixture models. In each case,

we first calculated the log returns of each of the time series.The log returns of a time

seriesX1, ..., Xn are defines as

Ri = log(Xi+1) − log(Xi); i = 1, ..., n − 1. (5.1)

We obtained a non-parametrical estimate of the spectral measure of the log returns by

means of the ranks method, introduced in Section 2.2.4. Recall from (2.50), that an

observation is chosen by the ranks method, if and only if

Rj,k > 1,

whereRj,k is the norm of k
rj

and rj = (r
(i)
j , i = 1, ..., d) is the vector of the ranks

of the observation(X(1)
j , ..., X

(d)
j ). The non-parametric estimate of the spectral measure

consists of the angular componentsθj,k of the pointsk
rj

chosen by the ranks method. We

determined the numberk, denoting the number of upper order statistics, with the help

of the St̆arică plot, explained in Section 2.2.3. We refer to observationsthat get selected

by the ranks method as extreme observations. These are the observations that we use in

the estimation of the parameters of a parametric model for the spectral measure. In this

chapter, we discuss the results of fitting a von Mises-Fishermixture model to the points

θj,k ∈ Sd−1. The number of components was determined with the help of thecriteria

introduced in Section 4.4.

147
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5.1 Log Returns of IBM, Intel and Apple

The dataset under consideration consists of the daily closing prices of the stocks of IBM,

Intel and Apple between 1/1/1986 and 10/6/2000. In our analysis we work with the time

series of the log returns of these prices. The resulting dataset contained 3612 daily log

returns for each of the three stocks.

5.1.1 Preliminary Analysis of the Spectral Measure

We started our analysis by estimating the tail indexes of thelog returns with the Hill es-

timator and the QQ-estimator. We obtained the estimates presented in Table 5.1. These

Table 5.1:The estimates of the tail indexes of the log returns of the three stocks consid-

ered in this section.

IBM: Right Tail 3.5 INTEL Right Tail 4.0 APPLE Right Tail 3.2

Left Tail 2.8 Left Tail 3.0 Left Tail 3.0

values are fairly typical for financial data. It is usually assumed that the tail indexes

for financial time series are between 2 and 4. Based on our estimates, we created and

studied St̆arică plots. We determined thatk = 80 is an acceptable choice for the purpose

of estimating the spectral measure. We used the ranks methodwith this value and found

that 424 observations were chosen for the estimation of the spectral measure. Figure

5.1 shows a scatter plot of the points that are selected by theranks method. The plot

shows the directional arguments of the selected points. That is, each point in Figure 5.1

gives the angular part(φj,k, θj,k) ∈ [0, 2π)× [0, π] of the spherical coordinates of a point

(Rj,k, (φj,k, θj,k)) with Rj,k > 1. This can be seen as a non-parametrical estimate of the

spectral measure. For 257 of the 424 points selected, the corresponding log returns all
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Figure 5.1:Estimate of the spectral measure of the joint distribution of the daily log

returns of the stock prices of IBM, Intel and Apple. See the text for more details.

had the same sign. This is a first indicator that there is dependence among the extreme

observations. A significant number of observations that areextreme, consist of returns

that are either all positive or all negative. We see an indication of this in Figure 5.1 by

the points in the areas(φ, θ) ∈ [0, π/2] × [0, π/2] and(φ, θ) ∈ [π, 3π/2] × [π/2, π].

The number in those areas is significantly larger than the number of points in the other

areas. The points in[0, π/2] × [0, π/2] represent observations where all three returns

were positive, while the points in[π, 3π/2] × [π/2, π] represent the observations with

negative returns.

We note that the a significant portion of the points is close toone of the following

points: (φ1, θ1) = (0, π/2), (φ2, θ2) = (π/2, π/2), (φ3, θ3) = (π, π/2), (φ4, θ4) =

(3π/2, π/2). We also see that two more clusters are grouped aroundθ5 = 0 and

θ6 = π. These six coordinates represent the axes of the cartesian coordinate system.
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(φ1, θ1) = (0, π/2) represents the point(1, 0, 0). Points that lie close to that point are

observations for which the log-return of IBM is extreme and positive, whereas the cor-

responding returns of Intel and Apple are comparatively moderate. Similarly, points

close to(φ2, θ2) = (π/2, π/2), which corresponds to the point(0, 1, 0), correspond to

observations for which the return of Intel is extreme and positive, while the returns for

IBM and Apple are moderate. The interpretation of the other 4 clusters is similar.

It also appears that a significant portion of the points are located near one of the

planes{(φ, θ) : φ ∈ {0, π}}, {(φ, θ) : φ ∈ {π/2, 3π/2}} andθ = π/2. These are

the planes that are spanned by either two of the axes of the cartesian coordinate system.

The points close to those planes correspond to observationswhere two of the three

stocks have a extreme return, while the third one only has a moderate one. The plane

represented byθ = π/2 is referred to as the ”IBM-Intel” plane, since it contains the

observations for which only the returns of IBM and Intel were extreme. Similarly, the

plane{(φ, θ) : φ ∈ {0, π}} is referred to as the ”IBM-Apple” plane and the plane

{(φ, θ) : φ ∈ {π/2, 3π/2}} is referred to as the Intel-Apple plane in Figure 5.1.

We created a program in an attempt to separate points close toan axis and points

close one of the planes mentioned above. First, observations that are closer to one of the

axes than a certain tolerance are filtered out. From among theremaining points we then

filter out the ones that are closer to one of the planes than a second tolerance. This gives

us a preliminary picture of the structure of the dependence.No choice of the tolerances

can be the only correct one. If they are chosen too small, not enough points will be

deemed as close to an axis or a plane. Clusters around the axes would still be visible

after removing the points selected as being close to the axes. If on the other hand, the

tolerance is too large, points that are not really close to anaxis will be included in that

category. We tried several different values and found that it was reasonable to consider
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a point as close to an axis, if, in cartesian coordinates, oneof his coordinate had a value

of greater than 0.99. We considered a point that was not closeto an axis, as close to a

plane, if, in cartesian coordinates, the absolute value of one of his three components was

not larger than 0.1.

We found that 216 observations were close to an axis and 118 additional points were

close to a plane. 90 points were of full dimension. Figure 5.2shows the separated

dataset.
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Figure 5.2:Top left: Scatter plot of the observations close to an axis. Top right: Scatter

plot of the observations close to a plane. Bottom left: Scatter plot of the points that are

neither close to a plane nor close to a plane. Bottom right: The full dataset representing

the spectral measure of the log returns of IBM, Intel and Apple. This is the same plot as

Figure 5.1.

Recall from Section 2.2 that the components of a random vectorare said to be

asymptotically independent, if the corresponding spectral measure concentrates on the

axes. For such a distribution, extreme observations do not happen in more than one co-
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ordinate at the time. For the dataset of this section we more than half of the points close

to an axis, but we see that there is also a significant number ofpoints far away from an

axis. These points correspond to observations where eithertwo or all three of the log

returns are extreme. From this preliminary analysis we havestrong evidence that the log

returns of IBM, Intel and Apple are not asymptotically independent.

Extreme changes in stock prices, positive and negative, areusually caused by some

type of shock in the economy. Examples of these shocks are news about the company,

the industry that the company operates in, or the economy of the US. Some shocks af-

fect a large number of stocks at the same time, while others affect only certain stocks at

a time. An increase or decrease in the federal interest rate or new numbers on the US

economy would however affect most stocks at the same time. Certain news might be

related to a certain industry, thus only affecting companies in that industry. IBM, Intel

and Apple are companies that operate in similar, but not the same industry. This helps to

explain some of the structure that we see in the spectral measure of the three stocks. As

explained before, points that are close to an axis refer to observations where only one

of the three stocks experienced a extreme return. These observations could have been

caused by events or news only concerning that particular company. Other observations

reflect shocks that affected more than one of those companies. If there are no shocks

that affect more than one company at the same time, they wouldbe asymptotically in-

dependent. The corresponding spectral measure would be concentrated on the axes. We

see that this does not seem to be the case.

In the following, we will make our claim that the three stocksare not asymptotically

independent, more precise by fitting a von Mises Fisher mixture model to the points

selected by the ranks method. If the log returns of IBM, Intel and Apple would be

asymptotically independent, a model with 6 components would provide an adequate fit.
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The 6 components would have mean directions that, expressedin cartesian coordinates,

approximately equal(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1).

They would also have fairly large concentration parameters. Such a mixture distribution

would be an approximation to a distribution onS2 that concentrates all its mass on the

axes. Since our preliminary analysis, based on Figures 5.1 and 5.2, indicates that is

not the case, we are not surprised that we need a more complex model to describe the

spectral measure.

5.1.2 A von Mises-Fisher Model of the Spectral Measure

Based on the preliminary analysis, we decided that a 6 component mixture model was

the simplest model that we fitted to the data. We then continued to consider more com-

plicated models. For each given number of components we determined the (quasi) max-

imum likelihood estimates. We checked that the estimates donot describe spurious

components. We compared the models of increasing complexity using the criteria ex-

plained in Section 4.4. We present an overview of the values of the criteria in Table 5.2.

Each entry represents the value of the corresponding criteria for the best model with the

corresponding number of components. The highlighted values indicate the estimate of

m by each criterion. We see that the criteria indicate that thenumber of components of

the model,m, is between 10 and 13. The ICL-BIC gives the smallest estimate,m = 10.

The values of the BIC indicate thatm equals 11. Note however, that value of the BIC

for the 11 component model, 887.09, is only slightly lower than the corresponding value

for the 10 component model, reported as 888.11. The BIC therefore states that the 11

component model is just barely more significant than the 10 component model. The

likelihood ratio test procedure and the AIC both indicate that we need 13 components.

In addition, we see that the value of the AIC for 13 componentsis just barely lower than
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Table 5.2:Overview of the model selection criteria.

# of components AIC BIC ICL-BIC P value LR test

6 1140.5 1233.6 1282.5 -

7 966.22 1075.6 1168.4 0.28%

8 799.73 925.27 1036.5 0.27%

9 778.24 919.98 1056.8 0.043%

10 730.17 888.11 1023.65 0.084%

11 711.95 887.09 1041.85 0.063%

12 701.49 891.83 1088.8 0.153%

13 684.09 890.63 1074.85 0.107%

14 684.45 907.18 1089.8 6.3689%

the one for 14 components. At the same time, the value for 12 components is signifi-

cantly higher. Similarly, the likelihood ratio test comparing the models with 12 and 13

components clearly rejects the null hypothesis that data has a mixture distribution with

only 12 components. The corresponding p-value is about 0.1%. The p-value of the test

comparing the models with 13 and 14 components is also just above the 5% threshold.

This indicates, that there is some evidence there may be evenmore than 13 components.

The results are in line with what we would expect from our empirical study in Sec-

tion 4.4.4. We had seen that the AIC and the likelihood ratio test tend to return larger

estimates for the number of components. However, the difference between the estimates

was less significant compared with what we observe here. Thisis due to the fact that, in

the empirical study, the data actually had a von Mises-Fisher mixture distribution. The

dataset under consideration here is real life data and we cannot expect that its distribu-

tion is a von Mises-Fisher mixture distribution.
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In the empirical study we had concluded that the BIC and the likelihood ratio test

procedure with a significance level of 1% are the most consistent criteria. For the IBM-

Intel-Apple dataset they pick two different models, the BIC chooses the one with 11

components and the likelihood ratio test the one with 13 components. We noted in the

empirical study, that if the dimension is higher than 2, the likelihood ratio test procedure

showed a tendency to overestimate the number of components.The BIC on the other

hand, showed a very consistent performance. We are therefore inclined to rely on the

BIC rather than on the likelihood ratio test. Before we make that decision, we want

to compare the two selected models. The parameter estimatesof the model with 11

components is given in Table 5.3. The mean direction is givenin spherical coordinates

(φ, θ) ∈ [0, 2π) × [0, π]. The column “Points” indicates how may points belong to each

component. The first six components of the model have mean directions that are very

close to the six axes points on the unit sphere. Each of these components also has a large

concentration parameter. These six components describe the clusters of points around

the axes, that we detected in the preliminary analysis. The remaining five components

describe the remainder of the data. With the exception of component 11, they have a

much smaller concentration parameterκ than the first six components. A closer look

at the components reveals that component 7 is fairly close tocomponent 3, component

9 is close to component 5 and that component 11 is close to component 6. Essentially,

these components are adding more structure to the modellingof the clusters around the

axes. The structure of those clusters seems to be too complicated to be described by a

single von Mises-Fisher component. Component 10 models the points that represent the

observations where all three log returns are positive. Component 8 models the points

representing the observations where all three log returns are negative. It is the presence

of these two components in both the models with 11 and 13 components, that allow us
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Table 5.3:Parameter estimates for the model with 11 components. See text for details.

Component Mean Direction κ weight Points

1 (1.3062, 0.0048) 575.51 0.08529 38

2 (4.6713, 1.6188) 85.80 0.10996 50

3 (0.0071, 1.5610) 329.49 0.09430 43

4 (4.0730, 3.0861) 478.07 0.08712 38

5 (1.5521, 1.5401) 492.37 0.08627 39

6 (3.1486, 1.5727) 699.51 0.05306 24

7 (0.1673, 1.4691) 39.91 0.05568 21

8 (3.9103, 2.3116) 3.82 0.18647 73

9 (1.3506, 1.4467) 20.32 0.08988 35

10 (0.7845, 0.3195) 13.21 0.09741 40

11 (3.2628, 1.6766) 144.40 0.05453 23
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to state that, based on our model, the log returns of the stocks are not asymptotically

independent.

Recall from the definition of the CLC and ICL-BIC criterion, that afinite mixture

model allows us to calculate the posterior probability thata particular point belongs to

a particular component. The posterior probabilities are given by (4.84). It turns out

that the points in this dataset can be clearly classified thisway. We found that for every

point, there is one component for which the posterior probability is greater than 0.5. We

use these probabilities to classify the points according tothe corresponding component.

The last column in Table 5.3 shows how many points can be associated this way with

each component. Figure 5.3 shows a scatter plot of the points, grouped by their respec-

tive component. All points belonging to the same component are pictured in the same

color and style. The number next to the group gives the numberof the corresponding

component in Table 5.3 We now turn our attention to the model selected by the likeli-

hood ratio tests and the AIC. The parameter estimates of the 13components are given in

Table 5.4. The mean direction is given in spherical coordinates(φ, θ) ∈ [0, 2π)× [0, π].

The column “Points” indicates how may points belong to each component. “Difference”

lists how many points each component has lost or gained compared to the 11 component

model. The 13 component model is essentially an extended version of the 11 compo-

nent model. The first 11 components are very similar to the components of the smaller

model. The most significant change of the parameter estimates occurs in the8th compo-

nent. We also note that this component now only has 30 points attributed to it. It used

to have 73 points associated with it in the model with 11 components. A scatter plot,

similar to Figure 5.3, reveals that the points that used to beassociated with component

8 are now associated with 3 different components in the 13 component model. A more

detailed analysis revealed the following passing of pointsbetween components:
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Table 5.4:Parameter estimates for the model with 13 components. See text for details.

Component Mean Direction κ weight Points Difference

1 (1.2975, 0.0048) 577.7734 0.0851 38

2 (4.6915, 1.5879) 349.9370 0.0642 32 -18

3 (0.0100, 1.5591) 339.9207 0.0932 43

4 (4.0438, 3.0880) 530.8783 0.0815 37 -1

5 (1.5519, 1.5393) 508.6555 0.0853 39

6 (3.1452, 1.5715) 700.6945 0.0513 23 -1

7 (0.1508, 1.4963) 27.4700 0.0606 22 +1

8 (4.2573, 2.8729) 14.2850 0.0763 30 -43

9 (1.3637, 1.4546) 19.4902 0.0920 36 +1

10 (0.7855, 0.3120) 13.1067 0.0979 40

11 (3.2644, 1.6313) 391.0939 0.0379 16 -7

12 (3.4617, 1.8748) 11.8493 0.0932 37 +37

13 (4.5716, 1.7170) 19.6770 0.0816 31 +31



159

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

φ 

θ 

1 

2 
3 

4 

5 6 
7 

3 
11 

8 

10 

9 

Figure 5.3:Classification of the points according to the posterior probabilities (4.84)

using the 11 components of the mixture model with parameters given in Table 5.3.

-The 12th component contains 29 points that were in the8th component and 8 points

that were in the11th component in the smaller model.

-The13th component has 13 points that were in the8th component and 18 points that

were in the2nd component in the smaller model.

-The11th component contains one point that was in the6th component, the7th and9th

components now each contain a point that was in the8th component, which in turn ac-

quires a point from the4th component.

The split of component the8th by adding two components in its neighborhood is

deemed significant by the AIC and the likelihood ratio test, but not by the BIC. To

answer the question of whether 11 or 13 components are neededto accurately model the

data, we need to decide whether the8th component of the smaller model is sufficient to
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Figure 5.4:Classification of the points using the 13 components of the mixture model

with parameters given in Table 5.4.

describe the dependence in the area representing extreme negative returns of all three

stocks. The criteria and our more careful analysis do not indicate a clear and objective

answer. We may note that in the area representing simultaneous extreme positive returns

of all three stocks, one component was sufficient. This can beseen as a motivation to

conclude that an 11 component mixture model with the parameters given in Table 5.3

is an adequate description of the spectral measure. However, the different clusters have

different structures. This may result in a more complex model for one cluster than for

another one, thus favoring the model with 13 components.

We want to stress that despite having a different number of components, the two

model are fairly similar in their description of the spectral measure. Both models ac-

knowledge the presence of clusters around the six axes. Both models acknowledge the

presence of dependence among extreme negative and extreme positive returns. They dif-
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fer in how to describe the dependence between extreme negative returns. In our opinion

both models offer a valid and insightful option to describe the tail dependence among

the log returns among the three stocks. Both models could be used to develop a holistic

model of the distribution of the three stocks that could for example be used in assessing

the risk of a portfolio of these stocks.

5.2 Log Returns of IBM and Intel

The dataset used in this analysis is the same as in the previous section. However, we con-

centrate on the daily log returns of the two stocks of IBM and Intel only, thus ignoring

the log returns of Apple.

Before we describe the results of our analysis of this data with the help of our von

Mises-Fisher mixture model, we want to consider the following question: How does the

spectral measure of the joint distribution of IBM, Intel and Apple compare to the one of

the distribution of IBM and Intel? Is there an easy way to obtain a consistent estimate

of the spectral measure of the returns of IBM and Intel from thecorresponding estimate

of the spectral measure of IBM, Intel and Apple?

Recall that we had chosen Apple to be the third coordinate in the previous section.

We could therefore just use the first angular componentφj,k of the points(Rj,k, (φj,k,

θj,k)), selected by the ranks method, as an estimate for the spectral measure of IBM and

Intel. However, in doing so, we would keep the points that correspond to observations

that were chosen only because of the extreme return of Apple.The same observations

would not be chosen when we’re using the ranks method on the two dimensional dataset

of the log returns of IBM and Intel. We would hence include too many observations

and obtain a biased estimate of the spectral measure. Only byestimating the spectral

measure using the ranks method (2.50) or the direct approach(2.53) from the dataset of
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IBM and Intel can we consistently estimate the spectral measure.

We used the tail index estimates listed in Table 5.1 in the creation of St̆arică plots.

These plots indicated thatk = 80 is an acceptable choice and the ranks method selected

302 points. Recall that for the three dimensional dataset in the last section we had also

usedk = 80, but obtained 424 points. This indicates that 122 points were selected

only because of the extreme return of Apple in these observations. These observations

naturally did not get selected by the ranks method run on the log returns of IBM and Intel

only. We present a scatter plot of the angular partφj,k ∈ [0, 2π) of the polar coordinates
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Figure 5.5:A scatter plot of the pointsφj,k, j = 1, ..., 302 selected by the ranks method

and a non parametric estimate of the spectral measure of IBM and Intel.

of the points(Rj,k, φj,k); j = 1, ..., 302 with Rj,k > 1 in Figure 5.5. We add a non -

parametrical estimate of the corresponding density.

It is not a surprise to see 4 significant clusters, concentrated at the coordinatesφ =

0(= 2π), π/2, π and3π/2. Points in these clusters correspond to observations where
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only one of the two stocks has a extreme return. We also noticethat there is a significant

number of points withφj,k ∈ (0, π) or φj,k ∈ (π, 3π/2). We will refer to the area

(0, π/2) as the first quadrant and to the area(π, 3π/2) as the third quadrant. Points in

these areas correspond to observations where both the returns of IBM and Intel’s stocks

were large. This shows that there is a good chance that extreme positive returns as

well as extreme negative returns of IBM and Intel occur at the same time. This is a

clear indication that the returns of the two stocks are not asymptotically independent.

Furthermore, we see that there are basically no points withφj,k ∈ (π/2, π) andφj,k ∈

(3π/2, 2π). These areas are referred as the second and fourth quadrant,respectively.

The fact that we see no points in these quadrants means that extreme negative returns

of IBM and extreme positive returns of Intel (and vice-versa)do not occur at the same

time.

Similar to our analysis in the previous section, we fitted a sequence of von Mises

mixture models with increasing complexity to the points selected by the ranks method.

An overview over the value of the criteria estimating the appropriate number of compo-

nents is given in Table 5.5. Each entry represents the value of the corresponding criteria

for the best model with the corresponding number of components. Highlighted are the

estimates ofm by each criterion. As usual, the ICL-BIC chooses the smallest number

of components. In this case it picks a 5 component model. Thatmodel captures the

4 clusters close to one of the axes as well the structure visible in the third quadrant.

However, the non-parametric density plot in Figure 5.5 indicates that a sixth compo-

nent modelling the data in the first quadrant is needed. The ICL-BIC showed a serious

tendency to underestimate the number of components of a von Mises mixture model of

similar sample size in the empirical study. We therefore dismiss the suggestion of the

ICL-BIC and concentrate on the other criteria. The BIC suggestsa 6 component mix-
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Table 5.5:Overview of the model selection criteria.

# of components AIC BIC ICL-BIC P value LR test

2 1073.6 1092.1 1194.8 -

3 838.68 868.37 929.96 0.38%

4 756.85 797.67 805.33 0.14%

5 669.94 721.88 783.10 0.14%

6 611.50 674.58 801.5 0.10%

7 606.19 680.40 850.59 0.29%

8 602.26 687.6 894.81 1.55%

9 603.14 699.61 935.60 6.37%

ture model whose parameter estimates are presented in Table5.6. The mean direction is

given in polar coordinatesφ ∈ [0, 2π). The column “Points” indicates how may points

are associated with each component. The model includes 4 components close to an axis

Table 5.6:Parameter estimates for the model with 6 components. See textfor details.

Component Mean Direction κ weight Points

1 0.0203 189.0630 0.1900 59

2 1.5263 194.1920 0.1974 63

3 3.1922 217.5353 0.1548 51

4 4.6760 216.1783 0.1527 49

5 0.8102 4.4682 0.1188 31

6 3.8834 3.7299 0.1863 49

and one component for the points representing the observations were both log returns

are positive and negative, respectively. It thus includes the component that we were
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missing in the 5 component model.

The likelihood ratio test procedure with the 1% significancelevel indicates a 7 com-

ponent model whose parameters are given in Table 5.7. The mean direction is given in

polar coordinatesφ ∈ [0, 2π). The column “Points” indicates how may points belong

to each component. The column “Difference” lists how many points each component

has lost or gained compared to the 6 component model. Comparedto the 6 component

Table 5.7:Parameter estimates for the model with 7 components. See textfor details.

Component Mean Direction κ weight Points Difference

1 0.0193 690.9928 0.1155 44 -15

2 1.5370 281.6753 0.1792 58 -5

3 3.1922 217.5969 0.1548 51 -

4 4.6760 215.9547 0.1528 49 -

5 1.1129 8.2541 0.1037 27 -4

6 3.8829 3.7424 0.1863 49 -

7 0.0755 39.7497 0.1076 24 +24

model, a new component, close to component 1, has been added.The posterior prob-

abilities indicate that 24 points are attributed to that newcomponent. Most of those

points belonged to component 1 before. This models implies that the structure of the

points with values ofφj,k close to0(= 2π) should not be modelled by a single von Mises

distribution. Instead, a second component is needed.

The AIC and the likelihood ratio test procedure with a 5% significance level indi-

cate a model with 8 components. Table 5.8 lists the corresponding parameter estimates.

While the model with 7 components added complexity to the modelling of the depen-

dence structure of extreme positive returns, the model with8 components adds to the
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Table 5.8:Parameter estimates for the model with 8 components. See textfor details.

Component Mean Direction κ weight Points Difference

1 0.0193 690.9928 0.1155 44 -

2 1.5371 283.0930 0.1790 58 -

3 3.1871 250.4561 0.1448 49 -2

4 4.6761 691.1801 0.0900 35 -14

5 1.1151 8.1819 0.1045 27 -

6 3.6220 6.8114 0.1488 38 -11

7 0.0753 39.7523 0.1077 24 -

8 4.6417 32.6825 0.1097 27 +27

complexity of the dependence for extreme negative returns.It adds a component very

close to component 4. It contains 27 points, most of which come from components 4

and 6. It has thus a similar role and interpretation as component 7 does.

As was the case for the models considered in the previous sections, there does not

appear to be a single correct model. All the three models with6, 7 or 8 components

are valid models for the spectral measure of the two log returns of the two stocks. We

recall from the empirical study in Section 4.4.4, that for bivariate data the BIC has a

tendency to underestimate the number of components. On the other hand, the study

indicated that the AIC and the likelihood ratio test with a 5%significance level tend to

overestimate the number of components. We are therefore tend to favor the proposition

of the likelihood ratio test with a 1% significance level thata model with 7 components

accurately describes the spectral measure of the log returns of IBM and Intel.

We can use the model of the spectral measure to show that the points selected by

the ranks method fall into two categories. The first categorycontains the points in
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components 1 through 4 in the model. If we work with a model that contains 7 or 8

components, the points in components 7 and 8 also fall into the first category. These

points correspond to observations where only one of the two stocks showed an extreme

return. If those were all the points selected by the ranks method, we would have strong

evidence to conclude that extreme returns of IBM and Intel do not occur at the same time

and that the stocks are therefore asymptotically independent. It is the presence of the

points in the second category that shows that there is indeedtail dependence between

the two stocks. These are the points in components 5 and 6. These two components

together contain 76 out of the total of 302 points, that is 25.6%. This means that about

one out of four extreme observations of the vector of the returns of IBM and Intel is

caused by simultaneous extreme returns of the two stocks. For the majority of the 302

observations considered extreme, only one of the stocks hadan extreme return. Never-

theless, the number of extreme observations were both stocks had a extreme return is

significant. All the three mixture models analyzed in this section recognize these points

by attributing two components to them. They therefore reject the notion that the two

stocks are asymptotically independent.

5.3 Log Returns of BMW and Siemens

This dataset is available with the EVIS package for the SPLUSsoftware. The software

package is available at http://www.math.ethz.ch/∼mcneil/software.html. It consists of

the daily closing prices for the stocks of BMW and Siemens fromJanuary 1973 to July

1996. The sample size of the dataset after calculating the log returns is 6146.

As for the previous dataset, we started our analysis by estimating the tail indexes

of the right and left tail of the marginal distributions. Theestimates of the tail index

are similar in size to the estimates obtained for the datasetof the stock prices of IBM,
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Intel and Apple. Based on these estimates, given Table 5.9, weproduced St̆arică plots

Table 5.9:The estimates of the tail indexes of the log returns of the daily closing prices

of BMW and Siemens.

BMW: Right Tail: 3.5 Siemens: Right Tail: 4.6

Left Tail: 3.4 Left Tail: 3.2

to decide on an optimal value ofk. We concluded thatk = 65 was the best choice. The

ranks method selected 225 observations in its estimation ofthe spectral measure. A plot

of the selected points in polar coordinates together with a non-parametrical estimate of

the corresponding density is given in Figure 5.6. Similar tothe IBM-Intel case, we see
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Figure 5.6:A scatter plot of the pointsφj,k, j = 1, ..., 225 selected by the ranks method

and a non parametric estimate of the spectral measure of BMW and Siemens.

that most of the pointsφj,k are concentrated in the first and third quadrant. Of the 225

points selected, 100 points were located in the first quadrant and 104 more were located
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in the third quadrant. Only 21 points were found in the secondand fourth quadrant,

mostly close to one of the axis pointsφ = 0, φ = π/2, φ = π andφ = 3π/2. We

also see that the points seem to form clusters around the axispoints. The clusters seem

to be less pronounced compared with the IBM-Intel case. This is an indication that the

dependence between extreme positive returns of both stocksor extreme negative returns

of both stocks is stronger than in the case of IBM and Intel.

We proceeded to fit a von Mises-Fisher mixture model to the points selected by the

ranks method. The values of the criteria considered for estimating the correct number

of components are given in Table 5.10. Each entry representsthe value of the corre-

sponding criteria for the best model with the correspondingnumber of components. We

highlighted the values indicating the optimal number of components chosen by the cor-

responding criterion. Based on the non-parametrical estimate of the spectral measure

Table 5.10:Overview of the model selection criteria.

# of components AIC BIC ICL-BIC P value LR test

2 734.2737 751.3542 768.9404 0

3 663.9369 691.2657 708.8292 0.1193

4 609.5200 647.0971 673.5731 0.0931

5 550.2912 598.1166648.2170 0.1032

6 530.6834 588.7571 671.6614 0.1259

7 525.7542 594.0762 688.8775 2.4840

8 526.5636 605.1339 708.43054.4340

9 529.4050 618.2236 722.5192 8.5537

in Figure 5.6, we do not think that a model with less than 6 component will adequately

describe the spectral measure. However, we wanted to confirmthis intuition. Therefore,
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we estimated the parameters of models with a smaller number of components. The es-

timates for the number of components that we thus obtained were very similar to the

case of IBM-Intel. Again, the ICL-BIC gives the smallest estimate. It indicates that 5

components are enough. The BIC and the likelihood ratio test procedure with the 1%

significance level both estimate that 6 components are needed. The estimate of the AIC

of the number of components is 7 and the likelihood ratio testwith a significance level of

5% even returns an estimates of 8 components. Since, as mentioned before, the BIC and

the likelihood ratio test procedure at 1% are the criteria wetrust most, we are inclined to

conclude that a mixture model with 6 components is the optimal choice. The parameter

estimates of the model with 6 components are given in Table 5.11. The mean direction is

given in polar coordinatesφ,∈ [0, 2π). The column “Points” indicates how may points

are associated with each component. As expected, there are four components, numbered

Table 5.11:Parameter estimates for the model with 6 components. See textfor details.

Component Mean Directionκ weight Points

1 0.0375 216.2548 0.1417 35

2 1.5404 693.8882 0.1264 31

3 3.2333 139.3197 0.1388 33

4 4.6104 125.9612 0.1179 29

5 0.8883 5.7989 0.2431 49

6 4.0226 9.2655 0.2321 48

1-4 in Table 5.11, whose mean directions are close to the axispointsφ = 0, φ = π/2,

φ = π andφ = 3π/2. Each of those components has a large concentration parameter,

indicating that the component is very narrowly concentrated around the mean direction.

Component 5 models the dependence in the first quadrant while component 6 models the
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dependence in the third quadrant. As mentioned before, the model with 6 components

is the smallest model that we are willing to accept after studying Figure 5.6. Similar to

the case of IBM and Intel, the more complicated models with 7 and 8 components, re-

spectively, add components close to one of the four components modelling points close

to an axis. Since both the likelihood ratio test at 1% and the BIC do not consider the

additional components as significant, we decided to work with the simpler model with

6 components.

As in the case of IBM and Intel, the model of the spectral measure allows us to cat-

egorize the points selected by the ranks method. The points in components 1 through 4

represent observations where only one the two stocks experienced a extreme return. We

see from Table 5.11 that 128 of the 225 points belong to one of those components, while

97, or 43.1% of all points, belong to either component 5 or 6. Remember that for the

spectral measure of IBM and Intel, we concluded that only 25.6% of the extreme obser-

vations were due to simultaneous extreme returns of both stocks. This indicates that the

dependence between extreme events seems to be stronger for BMW and Siemens than

it is for IBM and Intel. The spectral measure of BMW and Siemens is less concentrated

around the axes than the one of IBM and Intel. It is to a larger degree concentrated in

the first and third quadrant. This indicates, that if we have an extreme observation, in

the sense that it gets selected by the ranks method, there is alarger probability that both

stocks are affected than in the case for IBM and Intel.
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5.4 Log Returns of Foreign Currencies

5.4.1 Preliminary Analysis

The dataset contains the daily exchange rates of five foreigncurrencies to the US $ from

June 1973 to May 1987. The currencies are the British Pound (BP), the Canadian Dollar

(CD), the German Mark (DM), the Swiss Franc (SF), and the Japanese Yen (JY). The

time frame is well before the rates of the currencies replaced by the Euro were irrevo-

cably fixed. The resulting dataset containing the log returns of the exchange rate had

3508 observations for each currency. We expect to see different dependence structures

for different pairs of the currencies. The DM, SF and BP are currencies of European

countries. We can expect a fairly close dependence among thereturns of these curren-

cies, since a lot of the underlying factors driving the exchange rates will be the same for

all three currencies. On the other hand, the dependence between the CD and the JY will

probably be much weaker. The two countries are on separate continents and therefore

the factors underlying the exchange rates of the two currencies are fairly different. We

will analyze the tail dependence of the five exchange rates bystudying their spectral

measure. We also take a closer look at selected pairs of the 5 currencies. The estima-

tion and the analysis of the spectral measure of all five exchange rates turned out to be

very difficult because of what we refer to as the ”curse of dimensionality”. The spectral

measure is a measure that lives onS4. Even in polar coordinates it is a measure with a 4

dimensional domain. Fitting a parametric model to a selection of points is a formidable

task. We discuss the problems that arose and present possible solutions for this problem.

As in the previous sections, we started by estimating the tail indexes of the marginal

distributions. As before we used the Hill estimator and the QQ-estimator. The estimates

of the tail indexes of the log returns of the daily exchange rates of the five exchange
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rates are listed in Table 5.12. The values in brackets represent alternate estimates that

are also justifiable from both the Hill plots and the QQ estimator. It is important to

Table 5.12:The estimates of the tail indexes.

BP: Right Tail: 3.4 (3.5) CD: Right Tail: 3.1 (3.4)

Left Tail: 3.8 (4) Left Tail: 3.0 (3)

DM: Right Tail: 4.5 (4) JY: Right Tail: 4.2 (4.5)

Left Tail: 3.5 (4) Left Tail: 3.75 (4)

SF: Right Tail: 4.75 (5)

Left Tail: 3.4 (3.5)

point out, that no single estimate for a tail index can be considered the only correct one.

Other estimates of the tail indexes could also be justified based on the Hill plots that

we studied. This is of importance, because the Stărică plots depend on the estimates of

the tail indices. For the bivariate distributions considered in the previous datasets this

is only a moderate problem. We only have to estimate four different tail indices. A

different choice for one or two of these estimates results inonly small changes of the

St̆arică plots. For the foreign currencies we found that the range ofpossible estimates

for each tail index is larger than for the tail indexes of the stocks. Additionally, we

now have to estimate 10 different tail indexes. For the values presented in Table 5.12,

the St̆arică plots indicate thatk = 35 or maybe evenk = 40 are acceptable choices.

The ranks method selects 287 points, ifk = 35 is used and 318 points, ifk = 40 was

used. However, for the alternative values of the tail indexes, given in the brackets in

Table 5.12, we found that Stărică plots indicate thatk = 15 and maybek = 20 are
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acceptable values. For the following analysis we chose to beconservative and decided

to usek = 20. This way, we felt safe that we would not introduce a bias in the estimate

of the spectral measure by using too many observations. We may, however, have omitted

numerous observations that could have been included. As a result of the final choice of

k = 20, 170 observations were chosen by the ranks method. As before, we refer to these

observations as extreme observations.

We saw in the analysis of the bivariate stock data in the previous sections, that most

points representing the spectral measure were either in thefirst or the third quadrant.

That is, for most observations chosen by the ranks method, either both returns were

positive or both returns were negative. We observed something very similar for the

points representing the spectral measure of the five exchange rates.

• 49 points correspond to observations where the returns of all five exchange rates

are positive.

• 44 points correspond to observations where the returns of all five exchange rates

are negative.

• 20 points correspond to observations where the return of theCD is negative and

the return of the other 4 exchange rates is positive.

• 20 points correspond to observations where the return of theCD is positive and

the return of the other 4 exchange rates is negative.

The remaining 37 points were spread out over various of the other 28 possible ”quad-

rants”, that is, combinations of positive and negative returns of the different exchange

rates. The fact that the majority of the points represent observations where the returns

of all currencies are extreme is a first indication that thereis tail dependence among the

exchange rates of the five currencies.
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In a next step, we tried to separate points who correspond to extreme returns of only

one, two, three or four of the exchange rates. We used the sameprocedure as in the

identification of points near an axis in the data of IBM, Intel and Apple, see Section

5.1. We are aware that this procedure is fairly crude. Nevertheless, it gives us important

insights in the structure of the tail dependence of the different exchange rates. We call

the return of an exchange rate extreme, if the correspondingobservation was primarily

selected because of the return of that particular exchange rate. That is, if a point is near

an axis associated with positive returns of the Swiss Franc,we call the corresponding

return of the Swiss Franc extreme. If the data point is near the axis spanned by the Swiss

Franc and the British Pound axes, we call the corresponding returns of the Swiss Franc

and the British Pound extreme.

We found that 72 of the 170 points correspond to an extreme return of only one

exchange rate. They can be categorized as follows:

• 28 of those 72 points are due to extreme returns in the CD,

• 17 points are due to extreme movements of the JY,

• 11 points are due to extreme returns of the SF,

• 8 points are due to extreme returns of the BP,

• 7 points are due to extreme returns of the DM.

We observed only 15 points where two of the five exchange rateshave an extreme return.

10 of those points come from the pair (DM, SF). The pair (BP, DM)contributes 2 points,

while the pairs (BP, CD), (BP, SF) and (CD, SF) each contribute onepoint.

We found 26 points for which three of the five exchange rates have an extreme return.

13 of those observations come from the triple (BP, DM, SF). 8 observations come from



176

the triple (DM, JY, SF). 2 points come from the two triples (BP,CD, JY) and (CD, DM,

SF) respectively. Finally, the triples (BP, JY, SF) and (CD, JY, SF) contribute on point

each.

41 points can be attributed to extreme returns in all but one exchange rate. For 20 of

those points, the CD is the exception, for 16 it is the JY, for 4 it is the BP and for 1 it is

the SF. Finally, we observed 16 points were all 5 exchange rates have an extreme return.

Based on this analysis, it appears that the SF and the DM have the strongest tail

dependence among the five currencies. This is evident from the fact 10 of the 15 points

that are due to extreme returns of two exchange rates are fromthe pair (DM, SF). More-

over, 23 of the 26 points for which three of the five exchange rates have returns that are

extreme, also contain the pair SF and DM. The exchange rates of the CD and the JY

seem to have much less tail dependence with the exchange rates of the other currencies.

An indication of this is that they are only responsible for a small number of the extreme

observations involving extreme returns of more than one currency, compared to the SF,

DM or the BP. For example, there is not a single point with extreme returns of only two

exchange rates involving the JY, and only 2 such points involving the CD. On the other

hand, in most cases where all but one of the five exchange rateswere extreme, they were

the exception.

5.4.2 The von Mises-Fisher Mixture Model and the Curse of Di-

mensionality

We attempted to fit a von Mises-Fisher mixture model to the points selected by the

ranks method. As was the case for the case of the IBM-Intel-Apple, we observed that

a significant number of points were only selected because of the extreme return of only

one of its marginal components. These points appear as clusters close to an axis. In
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the case of IBM Intel and Apple, this lead us to the conclusion that we need a model

with at least 6 components. For the dataset of the exchange rates, we observed 10

clusters, one around each of the points representing the axes of the cartesian coordinate

system onS4. For this reason we cannot expect a model with less than 10 components

to be an accurate description of the spectral measure. We proceeded to increase the

number of components. However it soon became clear that a much larger number of

components is needed to obtain an adequate description of the spectral measure. The

Table 5.13:Overview of the model selection criteria.

# of components AIC BIC ICL-BIC P value LR test

10 -235.9677 -50.9555 -43.5588

11 -282.7970 -78.9701 -72.3036 0.0868

12 -331.1082 -108.4665 -100.1527 0.0992

13 -351.9816 -110.5252 -104.4242 0.0984

14 -404.4313 -144.1600 -136.2359 0.0801

15 -426.3127 -147.2267 -140.7077 0.0836

values of the criteria that we use to estimate the correct number of components is given

in Table 5.13. Each entry represents the value of the corresponding criteria for the best

model with the corresponding number of components. The criteria indicate that the best

number of components is at least 15, because the criteria achieve the smallest value for

the model with 15 components. However, recall that we are only using 170 points for

our estimates. As for the previously studied datasets, we classified the points according

to what component they are associated with, using the posterior probabilities (4.84).

Already for the model with only 12 components, we saw that 2 components only had

6 and 5 points associated with them, respectively. For the model with 15 components,
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we saw that three of those components had less than 5 points associated with them. 4

more components had less than 10 points associated with them. In our opinion, it is

senseless to try to estimate the mean direction and the concentration parameter of a von

Mises-Fisher component, based on less than 10 points. On theother hand, based on our

preliminary analysis and the values in Table 5.13, we do not believe that a model with

even 12 components is an accurate description of the spectral measure of the dataset.

This is what we referred to as the ”curse of the dimensionality” in the introduction to

this section. The structure that the 4 dimensional data representing the spectral measure

of all five currencies exhibits is very complicated. There are several small clusters of

points scattered onS4, especially around the points of the axes. A von Mises-Fisher

mixture model sees most of these clusters as significant and attributes a component to

them. This results in a model with a large number of components, even is the sample

size is rather small.

As we saw, the problem is already very challenging for a dataset of 5 different risk

factors. For datasets of even higher dimension, we expect that problem to be even worse.

We suggest two possible solutions to this problem.

On one hand we could work with a dataset with more observations. This can be

achieved by working with data of higher frequency. Instead of using daily log returns,

we could use hourly or data of even higher frequency. This would dramatically increase

the sample size and hence allow us to consider more observations for the estimation

of the spectral measure. Since the daily log returns are an aggregation the hourly log

returns, the questions arises under what conditions the spectral measures of the different

log returns are the same. The answer to that question is foundin Hauksson et al. (2001).
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They consider a high frequency process(Xk) ∈ Rd and an aggregated process

Yi =

(i+1)m−1∑

k=im

Xk

and prove the following result.

Theorem 5.4.1 Let (Xk) be a stochastic process inRd, such that allXk have the same

distribution. Assume that the distribution is multivariate regular varying with tail index

α. That is, we assume that

lim
t→∞

P[‖X‖ > tx, ‖X‖−1X ∈ A]

P[‖X‖ > t]
= x−αS∗(A).

for a finite measureS∗ onSd−1. Let(Yi) be as above. If the condition

lim
r→∞

P[‖Xi‖ > r| ‖Xj‖ > r] = 0, for i 6= j (5.2)

is satisfied, thenYi is multivariate regular varying with tail indexα and has the same

spectral measure asXk.

Hauksson et al. (2001) furthermore argue in an empirical study that the bi-hourly and

hourly returns of exchange rates of selected currencies seem to satisfy condition (5.2).

Their study also indicates that 10 minutes and 30 minutes returns probably do not satisfy

(5.2). Nevertheless this indicates a possibility to use higher frequency data to estimate

the spectral measure. This would increase the number of points available for parameter

estimation of a von Mises-Fisher mixture model or a similar model.

A second possibility is to try to show that certain marginal components of the dataset

are asymptotically independent of the other components in the dataset. Assume for ex-

ample that for the IBM-Intel-Apple dataset, we could have shown that the log returns

of Apple are independent of the log returns of IBM and Intel. Inthat case the spectral

measure of the three stocks would be concentrated on the set{(x, y, z) ∈ S2 : z ∈
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{−1, 0, 1}}. That is, the points of the spectral measure would be concentrated on the

big circle of the equatorz = 0 and the north and south pole of the sphereS2. We

could then have fitted a lower dimensional model to the pointsdescribing the asymp-

totic dependence of IBM and Intel. In a dataset of higher dimension, this approach could

prove very valuable. We could first identify the marginal components that are asymp-

totically independent of the other marginal components. These components could then

be excluded from the dataset before attempting to estimate the spectral measure. For

the dataset under consideration in this section, we can try to show that the JY or the

CD are asymptotically independent of the other three currencies. We would then only

have to estimate the spectral measure of the dataset of the three European currencies.

This would greatly simplify the task of finding an adequate model of the spectral mea-

sure. Unfortunately, there are many problems that prevent us from doing this. Most

importantly, there is to this date no statistical test for the asymptotic independence of

two random variable available. Furthermore, it is often thecase that there are no such

independent marginal components. In the next section, we will argue that returns of the

CD and the JY do not appear to be asymptotically independent ofthe returns of the other

three currencies.

5.4.3 Are the CD and the JY Asymptotically Independent ?

When investigating asymptotical dependence or independence of the different marginal

components of a random vector, it is enough to consider pairwise asymptotic indepen-

dence. The reason is the following proposition, found in Resnick (1986).

Proposition 5.4.2 SupposeX has a multivariate regular varying distribution with expo-

nent measureµ concentrating onE := [−∞,∞]\{−∞}. The following are equivalent:
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1. The components ofX, namelyX(1), . . . , X(d) are asymptotically independent ran-

dom variables.

2. The components ofX are pairwise asymptotically independent. For every1 ≤

i < j ≤ d, X(i) andX(j) are asymptotically independent random variables.

Proof: See Resnick (1986).¥

This allows us to check whether the JY and the CD are asymptotically independent

of the other currencies by checking pairwise asymptotical independence of these curren-

cies. This is in contrast to checking ”classical” independence between random variables,

where pairwise independence does not imply independence ingeneral. In order to estab-

lish that the JY and the CD are not asymptotically independentof the other currencies,

it is therefore enough to establish that they are not pairwise asymptotically independent

of the other currencies.

We first focus the on returns of the JY. A preliminary analysisof non parametrical

estimates of the spectral measures of the JY and the other currencies revealed that the tail

dependence between the JY and the DM is weaker than the tail dependencies between

the JY and the other currencies. Therefore, we especially focus on the relationship

between the DM and the JY. If we find evidence against the hypothesis that the two

currencies are not asymptotically independent, we also have evidence that the same is

true for the JY and the other currencies.

Using the tail index estimates of Table 5.12 for the DM and theJY, we consulted

St̆arică plots to decide on an acceptable value ofk. We concluded thatk = 60 was the

best choice. The ranks method selected 217 observations in its estimation of the spectral

measure. We estimated the parameters of various von Mises-Fisher mixture models with

different numbers of components. The BIC suggested a model with 6 components while

the likelihood ratio test procedure suggests a model with 7 components, both for the 5%
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and the 1% significance level. We decided to trust the likelihood ratio test procedure and

hence conclude that the model with the parameter estimates in Table 5.14 is an adequate

description of the spectral measure. The mean direction is given in polar coordinates

φ ∈ [0, 2π). The column “Points” indicates how may points are associated with each

component. The picture that emerges from studying the parameter estimates in Table

Table 5.14:Parameter estimates for the model with 7 components of the spectral mea-

sure of the log returns of DM and JY. See text for details.

Component Mean Direction κ weight Points

1 0.0446 348.58 0.1271 30

2 1.5308 238.77 0.1780 40

3 3.1972 412.15 0.1568 36

4 4.6135 134.57 0.2075 46

5 0.2328 90.42 0.0918 18

6 1.0101 14.12 0.0953 19

7 3.8021 5.47 0.1425 28

5.14 is fairly similar to what we have previously seen for bivariate data. We see four

components with mean directions close0, π/2, π, 3π/2 and very large concentration

parameters. These components describe the points close to an axis that correspond to

observations where only one of the currencies experienced aextreme return. We also see

three more components, containing a total of 65 points. Components 5 and 6 model the

dependence between observations were both the DM and the JY had extreme positive

returns. Component 7 models the dependence between observation were both currencies

had extreme negative return. It is the presence of these significant components that leads

us to reject the hypothesis that the DM and the JY are asymptotically independent.
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We now turn our attention to the CD. By proceeding analogue to the analysis of

the JY, we argue against the independence of the return of theCD by showing that its

returns are not independent of the BP. We chose to investigatethe pair of the CD and

the BP because this was the pair that seemed to have the least tail dependence among all

pairs involving the CD. If we find that our mixture model rejects the idea that the two

currencies have asymptotically independent returns, thiswould give us confidence that

the same is true for all the other pairs involving the CD as well.

Based on the tail index estimates in Table 5.12 we decided, by consulting St̆arică

plots, thatk = 60 was a good choice. The ranks method selected 229 observations.

After fitting von Mises-Fisher mixture models with several different number of compo-

nents, we consulted the usual criteria to choose the best number of components. Almost

all the criteria indicated thatm = 6 is the best number of components. The only excep-

tion was the likelihood ratio test procedure with the 5% significance level. It indicated

7 components, as the p value of the test comparing the models with 6 and 7 components

was 4.13%. Table 5.15 shows the parameter estimates of the model with 6 components.

Table 5.15:Parameter estimates for the model with 6 components of the spectral mea-

sure of the log returns of BP and CD.

Component Mean Direction κ weight Points

1 0.0635 123.3628 0.2262 52

2 1.5613 234.5120 0.1715 43

3 3.1957 188.3905 0.2268 53

4 4.7067 465.9547 0.1775 43

5 4.2586 4.1859 0.1024 20

6 1.1745 9.3842 0.0956 18
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As before, we see four components modelling extreme returnsby one, but not the other

currency. We also see that there are two additional components, to which a total 38

points can be attributed. They describe the dependence of extreme simultaneous nega-

tive and positive returns of both currencies, respectively. Similar to the case of the JY

and the DM, we see the fact that these components were deemed significant as strong

evidence that the CD is not asymptotically independent from the other currencies.



Chapter 6

From the Spectral Measure to a Bivariate

Distribution
In the previous chapter we discussed different examples of how we use the von Mises-

Fisher mixture distribution as a model of the spectral measure of various datasets from

finance. In this chapter, we present a model of the joint distribution of random variables,

that is based on our model. We focus on modelling the dependence between the marginal

components. The model of the dependence consists of two separate models, one that we

refer to as the “model of the body of the distribution” and another one that we refer to as

the “model for the tails of the distribution”. We will concentrate on the description of the

model for the tails, while we use a standard multivariate normal distribution as a model

of the body. Other possible choices for the model of the body are briefly mentioned.

The model of the tails uses what we call the “raw model”. That model is based on

von Mises-Fisher mixture model of the spectral measure to describe the tail dependence

between the marginal components. We then combine this raw model with appropriate

marginal distributions. In that sense, the raw model servesus like a copula. It focuses

on the description of the tail dependence structure in the distribution, to which desired

marginals can be attached. The chapter is organized as follows: We first present the raw

model. Then we explain how the marginals of the raw model can be transformed to ob-

tain a model with desired marginals. We present our model of the marginal distribution.

Finally we show how we combine the model for the tails and the model for the body.

We only describe the bivariate case, but higher dimensionalextensions of our approach

are straightforward. However, the notation would be much more complicated, which is

the main reason that we restrict the discussion to the two dimensional case.

185
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6.1 The Raw Model

The raw model is motivated by the following result, stated inTheorem 2.2.3 in Section

2.2.2. LetX1 be distributed asF∗, whereF∗ is as in Section 2.2.2. Let(R, Θ) :=

(‖X1‖, ‖X1‖−1X1). If we have that inM+((0,∞] × ℵ)

tP[(
R

t
, Θ) ∈ ·] ν−→ r−2dr × S∗(dθ), (6.1)

thenF∗ ∈ D(G∗), where

G∗(x) = exp(−µ∗([0,x]c))

and

µ∗{y ∈ E : ‖y‖ > r, ‖y‖−1y ∈ A} = r−1S∗(A).

In the light of (6.1), let

s0(φ) =
m∑

i=1

pifM(φ; αi, κi)

be the density of a finite von Mises-Fisher mixture model ind = 2 dimensions withm

components. The densities of the components are

fM(φ; αi, κi) =
1

2πI0(κi)
eκicos(φ−αi), 0 < φ ≤ 2π, κ > 0, 0 ≤ αi < 2π.

Definition 6.1.1 The raw model is the distribution with rangeD = {x ∈ R2 : ‖x‖ ≥

1}, whose density, expressed in polar coordinates, is given by

~0(r, φ) = r−2s0(φ)1{r>1}(r). (6.2)

Figure 6.1 shows the density of a raw model. The spectral measure used was the

6 component von Mises mixture model, fitted to the log returnsof the BMW-Siemens

dataset. See Table 5.11 for the parameters of the model. To relate the definition of the
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Figure 6.1:The density plot of an example of the raw model.

raw model with (6.1), note that ifX is distributed as~0, then

nP[
‖X‖
n

> r, ‖X‖−1X ∈ A] = nP[‖X‖ > rn, ‖X‖−1X ∈ A]

= n ·
(
(nr)−1S0(A)

)
= r−1S0(A),

whereS0(A) =
∫

A
s0(φ)dφ. Therefore, we have analogue to (6.1), that the distribution

with density~0 is in the domain of attraction of a extreme value distribution

G0(x) = exp(−µ0([0,x]c))

with

µ0{y ∈ E : ‖y‖ > r, ‖y‖−1y ∈ A} = r−1S0(A).

Using the well known theorem describing the change of variables, we can express~0

in cartesian coordinates. Letx = r cos φ andy = r sin φ and denote withh0(x, y) the

density expressed in cartesian coordinates. Then, we have

~0(r, φ) = r−2s0(φ)1{r>1}(r) = rh0(r cos φ, r sin φ) = rh0(x, y).
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Therefore, we have

h0(x, y) = h0(r cos φ, r sin φ) = r−3s0(φ)1r>1(r)

= (x2 + y2)−3/2s0(Alan(x, y))1(x2+y2>1)(x, y). (6.3)

In the above equation we denote withatan(x, y) the angleφ such thatx = r cos(φ) and

y = r sin(φ). Let

H0(x, y) =

∫ x

−∞

∫ y

−∞

h0(s, t)dsdt

be the bivariate distribution function connected to the density h0(x, y). Denote the

marginals distributions ofH0(x, y) by H1(x) andH2(y). That is, define

H1(x) = lim
y→∞

H0(x, y) andH2(y) = lim
x→∞

H0(x, y).

We can express the cdf and the pdf of the marginal distribution, by the spectral measure

densitys0(φ). For each marginal cdf we need to consider four different cases.

Proposition 6.1.2 Leth0(x, y), H0(x, y), H1(x) andH2(y) be as above. Let

c−1 =

∫ 3π/2

π/2

cos φs0(φ)dφ andc+
1 =

∫ π/2

−π/2

cos φs0(φ)dφ. (6.4)

Then we have

H1(x) =
c−1
x

, if x ≤ −1 (6.5)

H1(x) =

∫ 3π/2

π/2

(
cos φ

x
∧ 1

)
s0(φ)dφ, if − 1 < x ≤ 0 (6.6)

H1(x) = 1 −
∫ π/2

−π/2

(
cos φ

x
∧ 1

)
s0(φ)dφ, if 0 < x ≤ 1 (6.7)

H1(x) = 1 − c+
1

x
, if 1 < x (6.8)

Define

c−2 =

∫ 2π

π

sin φs0(φ)dφ andc+
2 =

∫ π

0

sin φs0(φ)dφ. (6.9)
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Then we have

H2(y) =
c−2
y

, if y ≤ −1 (6.10)

H2(y) =

∫ 2π

π

(
sin φ

y
∧ 1

)
s0(φ)dφ, if − 1 < y ≤ 0 (6.11)

H2(y) = 1 −
∫ π

0

(
sin φ

y
∧ 1

)
s0(φ)dφ, if 0 < y ≤ 1 (6.12)

H2(y) = 1 − c+
2

y
, if 1 < y (6.13)

Proof:

We have that

H1(x) =

∫ x

−∞

∫ ∞

−∞

h0(s, t)dsdt.

Recall from Definition 6.1.1 thatD = {x ∈ R2 : ‖x‖ ≥ 1}. We make a change of

variables to polar coordinates and note that forx < −1 the set{(s, t) ∈ D : s <

x} equals the set{(r, φ) : r > x(cos φ)−1, φ ∈ [π
2
, 3π

2
]}. Therefore, we have from

∫ ∞

s
r−2dr = s−1 that

H1(x) =

∫ 3π/2

π/2

∫ ∞

x
cos φ

r−2s0(φ)drdφ =
1

x

∫ 3π/2

π/2

cos φs0(φ)dφ =
c−1
x

.

The calculations for−1 < x ≤ 0 are very similar. Fix a value ofx ∈ (−1, 0]. Then we

have that the set{(s, t) ∈ D : s < x} equals the set{(r, φ) : r > (x(cos φ)−1) ∨ 1, φ ∈

[π
2
, 3π

2
]}. We therefore get for−1 < x ≤ 0

H1(x) =

∫ 3π/2

π/2

∫ ∞

x
cos φ

∨
1

r−2s0(φ)drdφ =

∫ 3π/2

π/2

(
cos φ

x
∧ 1

)
s0(φ)dφ.

For the case0 ≤ x < 1, note that

H1(x) = 1 −
∫ ∞

x

∫ ∞

−∞

h0(s, t)dsdt.

Since we have{(s, t) ∈ D : s > x} = {(r, φ) : r > (x(cos φ)−1) ∨ 1, φ ∈ [−π
2
, π

2
]}, we

get that

H1(x) = 1 −
∫ π/2

−π/2

∫ ∞

x
cos φ

∨
1

r−2s0(φ)drdφ = 1 −
∫ π/2

−π/2

(
cos φ

x
∧ 1

)
s0(φ)dφ.
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Finally, we have forx > 1 that

H1(x) = 1 −
∫ π/2

−π/2

∫ ∞

x
cos φ

r−2s0(φ)drdφ = 1 −
∫ π/2

−π/2

(
cos φ

x

)
s0(φ)dφ = 1 − c+

1

x
,

remembering the definition ofc+
1 from (6.4). The proof of the equations forH2(y) are

analogue.

Using the equations for the marginal distributions in Proposition 6.1.2, we obtain the

density functions of the marginals by calculating the derivatives.

Proposition 6.1.3 Let h0(x, y), H0(x, y), H1(x) andH2(y) be as above. The densities

of the marginal distributions ofH0(x, y) are given by

h1(x) = −c−1 x−2, x ≤ −1

h1(x) =
−1

x2

[∫ arccos(x)

π/2

cos φs0(φ)dφ +

∫ 3π/2

− arccos(x)

cos φs0(φ)dφ

]
,−1 < x ≤ 0

h1(x) =
1

x2

[∫ π/2

arccos(x)

cos φs0(φ)dφ +

∫ − arccos(x)

−π/2

cos φs0(φ)dφ

]
, 0 < x ≤ 1

h1(x) = c+
1 x−2, 1 < x

and

h2(y) = −c−2 y−2, y ≤ −1

h2(y) =
−1

y2

[∫ − arcsin(y)

π

sin φs0(φ)dφ +

∫ 2π

arcsin(y)

sin φs0(φ)dφ

]
,−1 < y ≤ 0

h2(y) =
1

y2

[∫ arcsin(y)

0

sin φs0(φ)dφ +

∫ π

− arcsin(y)

sin φs0(φ)dφ

]
, 0 < y ≤ 1

h2(y) = c+
2 y−2, 1 < y

Proof:

The equations forh1(x) for x > 1 andx ≤ −1 follow immediately from the corre-

sponding equations (6.5) and (6.8) in Proposition 6.1.2 of the cdf by taking derivatives.
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Consider now0 < x ≤ 1. We have from (6.7), that

H1(x) = 1 −
∫ π/2

−π/2

(
cos φ

x
∧ 1

)
s0(φ)dφ

= 1 −
∫ arccos(x)

− arccos(x)

s0(φ)dφ −
∫ π/2

arccos(x)

cos φ

x
s0(φ)dφ

−
∫ − arccos(x)

−π/2

cos φ

x
s0(φ)dφ.

Therefore, we have that

h1(x) =
∂

∂x
H1(x)

= − ∂

∂x

[∫ arccos(x)

− arccos(x)

s0(φ)dφ

]
− ∂

∂x

[∫ π/2

arccos(x)

cos φ

x
s0(φ)dφ

]

− ∂

∂x

[∫ − arccos(x)

−π/2

cos φ

x
s0(φ)dφ

]
.

Using

∂

∂x
arccos(x) =

−1√
(1 − x2)

,

we get

h1(x) = −
[
−s0(arccos(x))

1√
(1 − x2)

− s0(− arccos(x))
1√

(1 − x2)

]

−
[
−1

x2

(∫ π/2

arccos(x)

cos φ

x
s0(φ)dφ

)
+

1

x
· xs0(arccos(x))

1√
(1 − x2)

]

−
[
−1

x2

(∫ − arccos(x)

−π/2

cos φ

x
s0(φ)dφ

)
+

1

x
· xs0(− arccos(x))

1√
(1 − x2)

]

=
1√

(1 − x2)
[s0(arccos(x)) + s0(− arccos(x))]

+
1

x2

[∫ π/2

arccos(x)

cos φs0(φ)dφ +

∫ − arccos(x)

−π/2

cos φs0(φ)dφ

]

−1

x

[
x√

(1 − x2)
{s0(arccos(x)) + s0(− arccos(x))}

]

=
1

x2

[∫ π/2

arccos(x)

cos φs0(φ)dφ +

∫ − arccos(x)

−π/2

cos φs0(φ)dφ

]
. (6.14)
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The proof for the equations ofh1(x) for −1 < x ≤ 0 and for the equations ofh2(y) are

analogue.¥

Figure 6.2 shows the marginal density of the raw model pictured in Figure 6.1. No-

tice that the density is proportional tox−2 for 1 ≤ x andx < −1. On the interval

(−1, 1) the structure of the density is determined by the shape of thespectral measure.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

h(
x)

Figure 6.2:The densityh1(x) of the raw model pictured in Figure 6.1.

6.2 From the Raw Model to Correct Marginals

6.2.1 Adjusting the Marginals of the Raw Model

The marginal distributions of the raw model, given in the last section, is of course not

a reasonable choice for the marginal distributions for a model of tail dependence. The

purpose of the raw model is only to describe the tail dependence between the marginals,

not the distribution of the marginals themselves or the distribution of the body. Suppose,
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that we wish the model to have marginal distributions represented by the cumulative

distribution functionsF1(x) andF2(y). We assume that they are absolute continuous

with densitiesf1(x) andf2(y). The following is the obvious procedure for obtaining a

model with these marginals starting from the raw model.

Recall from (6.3) that the density of the raw model is given by

h0(x, y) = (x2 + y2)−3/2s0(atan(x, y))1{x2+y2>1}(x, y).

As before, let

H0(x, y) =

∫ x

−∞

∫ y

−∞

h0(s, t)dsdt

be the bivariate distribution function connected to the density h0(x, y). Define for a

monotone nondecreasing functionH(x) onR the left continuous inverse as

H←(y) := inf{s : H(s) ≥ y}. (6.15)

Define the bivariate cdfF (x, y) as

F (x, y) := H0(H
←
1 (F1(x)), H←

2 (F2(y))). (6.16)

To check thatF (x, y) indeed has marginalsF1(x) andF2(y), note that

lim
y→∞

F (x, y) = lim
y→∞

H0(H
←
1 (F1(x)), H←

2 (F2(y))) = H1(H
←
1 (F1(x))) = F1(x).

The last equality holds sinceH1(x) is absolutely continuous with a densityh1(x). Ob-

viously, the same argument also shows that the second marginal distribution is indeed

F1(x).

For the calculation of the density ofF (x, y) note that

∂H←
1 (F1(x))

∂x
=

∂H←
1 (F1(x))

∂F1(x)
· ∂F1(x)

∂x
=

f1(x)
∂
∂z

(H1(z))|z=H←

1 (F1(x))

=
f1(x)

h1(H←
1 (F1(x)))

. (6.17)
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The second equality is a consequence of the inverse functiontheorem. We obtain,

with the help of (6.17) and by settingz1 = z1(x) = H←
1 (F1(x))) andz2 = z2(y) =

H←
2 (F2(y))) :

f(x, y) =
∂2F (x, y)

∂x∂y
= h0 (z1, z2)

f1(x)

h1(z1)

f2(x)

h2(z2)
(6.18)

Recallingh0(x, y) in cartesian coordinates from (6.3), we finally get the following result.

Proposition 6.2.1 Lets0 be the density of a finite von Mises mixture model of the spec-

tral measure. LetH1 andH2 be given by (6.5)-(6.8) and let (6.10)- (6.13) be the distri-

bution functions of the raw model from Definition 6.1.1. Leth1 andh2 be the densities of

H1 andH2, given by Proposition 6.1.3. Letz1 = H←
1 (F1(x))) andz2 = H←

2 (F2(y))).

Denote byf1 andf2 two arbitrary density functions onR. If we defineatan(z1, z2) is

as in 6.3, then the bivariate density

fTail(x, y) = (z2
1 + z2

2)
−3/2 · s0 (atan (z1, z2)) ·

f1(x)

h1(z1)

f2(x)

h2(z2)
1D(z1, z2), (6.19)

has marginal distributions with densitiesf1 andf2.

The distribution given by the densityfTail(x, y) is determined by the spectral measure

and its two marginals. The spectral measure describes the dependence between the

marginal components, which in turn have distributions given by the densitiesf1(x) and

f2(y).

6.2.2 A Model of the Marginal Distribution using the GPD

The choice of the marginal distribution is a crucial part of the model (6.19). The

marginal distribution needs to be a reasonable approximation of the features of the data.

Remember, that we are developing a model for the data that is inthe tails of the distri-

bution. We call an observation “in the tails”, if it is selected by the ranks method. We
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hence work with the observations selected by the ranks method. These observations will

therefore contain the extreme observations for each marginal component. Recall from

Section2.1.6 the definition of the Generalized Pareto distributions, given by

Gξ,β,ν(x) =





1 −
(
1 + ξ x−ν

β

)−1/ξ

ξ 6= 0

1 − exp
(
−x−ν

β

)
ξ = 0,

where x−ν
β

≥ 0, if ξ ≥ 0 and1 + ξ x−ν
β

> 0, if ξ < 0. We explained in Section2.1.6

that the Generalized Pareto distribution approximates excesses over high thresholds. In

particular, ifν denotes a high threshold, we have forx > ν and a random variableX

with distribution functionF ∈ D(Hξ):

P[X > x] ≈ (1 − Gξ,β,ν(x))P[X > ν].

For this reason the GPD appears as the natural model for the left and the right tail of

the marginal distributionsF1(x) andF2(y). The GPD describes the tails beyond the

thresholds−νl < 0 andνr > 0. We additionally need a model for the body of the

marginal distributionsF1(x) andF2(y). We use a normal distribution. Other choices,

like a linear transformation of a Beta distribution also givereasonable models of the

marginal distribution between−νl < 0 andνr > 0. We use a mixture model to combine

the normal distribution of the body with the GPD of the tails.We hence assume that the

marginal distributions have the following densities,i = 1, 2:

fi(x) = p
(i)
1 gr(x; ξ(i)

r , β(i)
r , ν(i)

r ) + p
(i)
2 gl(x; ξ

(i)
l , β

(i)
l , ν

(i)
l )

+(1 − p
(i)
1 − p

(i)
2 )φ(x; µ

(i)
T , σ

(i)
T ), (6.20)
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where

gr(x; ξ, β, ν) =
1

β

(
1 + ξ

x − ν

β

)− 1
ξ
−1

1[ν,∞)(x) (6.21)

gl(x; ξ, β, ν) =
1

β

(
1 + ξ

−x − ν

β

)− 1
ξ
−1

1(−∞,−ν)(x) (6.22)

φ(x; µ, σ) =
1√
2πσ

exp

(
(x − µ)2

2σ2

)
(6.23)

The corresponding distribution functions are

Fi(x) = p
(i)
1 Gr(x; ξ(i)

r , β(i)
r , ν(i)

r ) + p
(i)
2 Gl(x; ξ

(i)
l , β

(i)
l , ν

(i)
l )

+(1 − p
(i)
1 − p

(i)
2 )Φ(x; µ

(i)
T , σ

(i)
T ), (6.24)

where

Gr(x; ξ, β, ν) = 1 −
(

1 + ξ
x − ν

β

)− 1
ξ

1[ν,∞)(x) (6.25)

Gl(x; ξ, β, ν) =

(
1 + ξ

−x − ν

β

)− 1
ξ

1(−∞,−ν)(x) + 1[−ν,∞)(x) (6.26)

Φ(x; µ, σ) =

∫ x

−∞

1√
2πσ

exp

(
(t − µ)2

2σ2

)
dt (6.27)

Estimation of the parameters

The estimation of the parameters of the marginal model with pdf (6.20) and cdf (6.24)

is not very easy. We are using the observations selected by the ranks method to estimate

these parameters, since that is the data whose distributionwe are modelling. We found

that an algorithm that maximizes the log likelihood function over all 10 parameters of

the model is not practical. We therefore first obtain estimates of the parameters of the

two GPD components and then estimate the parameters of the normal component and

the weightsp1 andp2 in a separate maximum likelihood procedure.

The ranks method essentially uses two criteria to decide which observations are to

be selected for the estimation of the spectral measure. The first is the ranks of each
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coordinate and the second is a choice of the number of upper order statistics, referred to

ask. As we explained before, if

rj = (r
(i)
j , i = 1, ..., d)

is the vector of the ranks

r
(i)
j =

N∑

l=1

1
[X

(i)
l

>X
(i)
j ]

of the observation(X(1)
j , ..., X

(d)
j ), and ifRj,k is the norm ofk

rj
, the ranks method selects

observationXj, if and only if Rj,k > 1. In particular, in the bivariate cased = 2, any

observation with a marginal componenti, such that either

r
(1)
j < k or r

(2)
j < k

will be selected. That is, if there is a marginal componenti = 1, 2 of observationXj,

such thatX(i)
j is among the k largest of the observations(X

(i)
1 , ..., X

(i)
N ), observationXj

gets selected. We therefore found it natural to use the k largest order statistics of each

marginal for the estimation of the GPD components.

Denote for the remainder of the section withZ = (Z1, .., ZN ) the ith marginal

component of the observationsX1, ...,XN . That is Z is contains the observations

(X
(i)
j ; j = 1, ..., N) for which Rj,k > 1. Denote withZ(k) the order statistics of

Z : Z(1) < Z(2) < ... < Z(N). Then the estimators for the parameters−νl := −ν
(i)
l < 0

andνr := ν
(i)
r > 0 are as follows:

ν̂r = Z(N−k) (6.28)

ν̂l = Z(k+1) (6.29)

Based on (6.28) and (6.29), we obtain the maximum likelihood estimates ofξ(i)
r , β

(i)
r ,

based on(Z(N−k+1), ..., Z(N)). Similarly, we find the maximum likelihood estimators of
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ξ
(i)
l , β

(i)
l based on(−Z(1), ...,−Z(k)). We use SPLUS, more specifically the EVIS 5.0

software package, to carry out the maximum likelihood estimation.

We then use the estimated parameters of the GPD in the estimation of the component

weights and the parameters of the normal distribution components. We find the restricted

maximum likelihood estimatorŝµ, σ̂, p̂1, p̂2 of µT := µ
(i)
T , σT := σ

(i)
T , p1 := p

(i)
1 and

p2 := p
(i)
2 by maximizing the likelihood function

L(µT , σT , p1, p2;Z) (6.30)

=
n∑

i=1

log
(
p1gr(Zi; ξ̂r, β̂r, ν̂r) + p2gl(Zi; ξ̂l, β̂l, ν̂l) + (1 − p1 − p2)φ(Zi; µT , σT )

)

over (µT , σT , p1, p2) ∈ R × R+ × {(p1, p2) ∈ (0, 1)2 : p1 + p2 < 1}. We refer to

the resulting estimates as restricted maximum likelihood estimates, rather than maxi-

mum likelihood estimates, because we obtain them by maximizing the log likelihood

function only overµT , σT , p1, andp2, and not over all parameters. We find the values

(µ̂T , σ̂T , p̂1, p̂2) that maximize (6.30) using the optimization toolbox in Matlab.

The marginal model in the case of IBM

To illustrate the shape and nature of the marginal model introduced in this section, we

consider the case of the parameters values that we obtained as the estimates for the IBM

dataset. We mentioned in Section 5.2 that we used the ranks method with k = 80,

resulting inn = 302 observations being chosen. For the right tail, we find thatν̂r =

0.0361 and as a consequence we have thatξ̂r = 0.2175 andβ̂r = 0.0130. Note that since

ξ̂r > 0, the GPD model indicates, that the right tail of the marginaldistribution of IBM

is heavy tailed. The corresponding estimate of the tail index is α̂r = 1/ξ̂r = 4.5977.

Recall that in Section 5.1 we estimated the tail index of the right tail of the distribution

of IBM with 3.5, based on Hill plots. The difference in the estimates illustrates the

difficulty of estimating the tail indices of heavy tailed distributions.
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For the left tail, we obtain the following estimates:ν̂l = 0.0344, ξ̂l = 0.4261 and

β̂l = 0.0097. Similar to the model of the right tail, we have that the estimate of ξl

corresponds to a heavy tailed distribution with a tail indexestimate ofα̂l = 1/ξ̂l =

2.3469. Recall that we obtained an estimate ofα̂ = 2.8 for the tail index of the left tail

in Section 5.1.

Based on these estimates for the parameters of the tail components, we obtain the

following estimates for the weights and the parameters of the normal components:

µ̂T = 0.0015, σ̂T = 0.0233, p̂1 = 0.2458 andp̂2 = 0.2613.

Figure 6.3 shows the density of the marginal model for the tails of IBM with these

parameters. The upper half of the figure shows a scatter plot of the data used in the

estimation of the parameters and a non-parametrical estimate of the density. The lower

half of the figure shows the density of the marginal model fitted to the returns of IBM.

Note, that the density of the model seems to capture the structure of the data very well.

In particular the two spikes of the density, that are visibleat ν̂r = 0.0361 and−ν̂l =

−0.0344 are also clearly visible in the data in the top plot in Figure 6.3. The reason

for the presence of those spikes becomes clear when we study the scatter plot of the

observations that were selected by the ranks method. That plot is given in Figure 6.4.

We see that these observations seem to be located on the outside of a rectangle. A large

number of these observations are close to the borders of thatrectangle. Therefore, the

marginal distribution appears to have two spikes, approximately atν̂r and−ν̂l.
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Figure 6.3:The density of the marginal model (6.19) for IBM. See text fordetails.
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Figure 6.4:Scatter plot of the points selected by the ranks method withk = 80.

6.3 Body and Tails Combined

Remember that the model presented so far is only a model for thetail region of the

distribution. Also recall that the density of the raw model has support

{(x, y) ∈ R
2 : x2 + y2 > 1}.
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After adjusting the tails, the tail distribution density has support

D = {(x, y) ∈ R
2 : (H←

1 (F1(x)))2 + (H←
2 (F2(x)))2 > 1}.

In order to develop a model that describes the entire bivariate distribution of two ran-

dom variables, and not just the distribution of the tail region, we need to introduce a

component describing the ”body” of the distribution. That is, we need a model for the

distribution inDc. That model should be based on the observations that were notse-

lected by the ranks method. There are several different choices for such a model. We

decided to use a bivariate normal distribution. We hence assume that the distribution of

the body has the following density

fBody(x, y) =
1

2πσxσy

√
(1 − ρ2)

exp


−

(
x−µx

σx

)2

− 2ρ
(

x−µx

σx

y−µy

σy

)
+

(
y−µy

σy

)2

2(1 − ρ2)




(6.31)

whereµx andµy stand for the marginal expectations,σx andσy stand for the corre-

sponding standard deviations and finallyρ stands for the correlation between the two

marginal components.

More sophisticated models, for example models based on copulas, could be con-

sidered and they would probably be more accurate. Breymann etal. (2003) propose

a number of dependence structures for high frequency data infinance. They focus on

modelling the dependence structure of the entire distribution of the log returns of two

currency exchange rates. They considered the Gaussian, thet, the Frank, the Gumbel

and the Clayton copulas. They did not specify any marginal models. Instead, they used

the empirical distributions to transform the data before fitting the respective copula.

They found that for the dependence structure of the entire data the t-copula gave the

best description among the considered models. However, they also found that different

copulas best describe the lower and upper tail dependence. Models based on some of
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these copulas may be more realistic than the bivariate modelthat we chose. However,

they would also be more challenging to implement. Also keep in mind that the normal

distribution is only serving us as an appropriate model of the body of the data and not

as a model of the entire distribution. We describe the tail dependence with great care

separately with the help of our mixture model of the spectralmeasure. The results of

Breymann et al. (2003) may not apply to our case, since they arebased on research

concentrated on the entire distribution and not just the body. Furthermore, our focus

in this thesis is concentrated on developing a realistic model of the dependence in the

tails of the distribution. It is not our goal to develop an optimal model for the body of

the distribution. We are not aware of such research focused on modelling the depen-

dence structure of only the body of a distributions recommending a specific model. In

the absence of such research, we decided to use the most common model for describing

multivariate data, the multivariate normal distribution.

In the following we describe how we combine the model of the body and the model

of the tails to obtain a comprehensive model of the entire distribution. To unite the two

models,fBody(x, y), given in (6.31) andfTail(x, y), given by (6.19), we make again use

of the concept of a mixture model. That is, we assume the bivariate distribution has

density

f(x, y) = pfTail(x, y) + (1 − p)fBody(x, y). (6.32)

An advantage of this approach is that our mixture model can easily be combined with

any particular model of the body that a researcher may see fit.

The marginal distributions of model (6.32) are easily obtained from the correspond-

ing marginal distributions offTail(x, y) andfBody(x, y). The marginal densities are of
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the form

fi(x) = α
(i)
1 gr(x; ξ(i)

r , β(i)
r , ν(i)

r ) + α
(i)
2 gl(x; ξ

(i)
l , β

(i)
l , ν

(i)
l )

+α
(i)
3 φ(x; µ

(i)
T , σ

(i)
T ) + α

(i)
4 φ(x; µ

(i)
B , σ

(i)
B ), (6.33)

whereα
(i)
1 = p · p

(i)
1 , α

(i)
2 = p · p

(i)
2 , α

(i)
3 = p · (1 − p

(i)
1 − p

(i)
2 ), andα

(i)
4 = (1 −

p). Furthermore,µ(i)
T andσ

(i)
T denote the mean and standard deviation of the normal

components of the tail model, respectively. Finallyµ
(i)
B andσ

(i)
B stand for the mean and

standard deviation of the corresponding marginal component of fBody.

We estimate the parameters of the tail componentsgr(x; ξ, β, ν), gl(x; ξ, β, ν) and

φ(x; µ, σ) of the marginal distributions as mentioned above in Section6.2.2. Since

(6.31) is acting as the model for the distribution of the body, we only use the points

not selected by the ranks method for the estimation of the parameters offBody(x, y).

We estimated the means, standard deviations and the correlation by the corresponding

sample means, sample standard deviations, and the sample correlation, respectively.

Finally, we estimate the weightp of the tail component,fTail, by the percentage of the

points that were selected by the ranks method. Figure 6.5 shows a plot of the density
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Figure 6.5:The density of the marginal model (6.33) fitted to the log returns of IBM.

(6.33) with the parameters that we estimated from the log returns of IBM. We obtained
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the following estimates offBody(x, y) for IBM:

µ̂B = 1.9514−4; σ̂B = 0.0138, p̂ = 0.0836

Since the marginal densities of the tail componentfTail showed two clear spikes at̂νr

and−ν̂l, we also see the same spikes in the marginal distribution of the combined model.

We furthermore see from Figure 6.5 that, for the parameters values that we estimated

from the log-returns of IBM, the mixture of the normal distributionsφ(x; µB, σB) and

φ(x; µT , σT ) is unimodal. The estimated standard deviations are of the same order and

the means are very close to each other.

Another important fact is that the two normal components have very little influence

over the tails of the marginal distribution. The two GPD components of the marginal

distribution have much heavier tails than the two normal components. In addition, both

normal components have fairly small standard deviations, thus they are closely con-

centrated around their respective means. For the marginal distribution with parameter

values as estimated for the log returns of IBM, we observed thefollowing: The two

normal components together only have 1.29% of their total mass outside the interval

(−νl, νr). Remember that the outside of that interval is the domain of the two GPD

components. This means that the two normal components have very little to do with the

modelling of the tails of the log returns of IBM. We furthermore found that the fraction

of the mass of the two normal components that lies outside of(−2νl, 2νr) is only about

8 · 10−6. At the same time the mass of the two GPD components have theirentire mass

outside(−νl, νr) and still 11.26% of that mass outside of(−2νl, 2νr). This means, that

the influence of the normal distributions in the tails, that is beyond the points−νl andνr,

is very small and that it is indeed the GPD components who are essentially describing

the tails. This was typical of what we saw for other fitted marginal distributions as well.



Chapter 7

Portfolio Optimization
In this chapter we present an important application of the model developed in the last

chapter. We show how our model can be used to optimize portfolios of different finan-

cial instruments. We calculate, based on our comprehensivemodel, the portfolio that

minimizes a measure of risk for a given level of expected log return. There are many

different definitions of risk and measures thereof. We give abrief overview over the dif-

ferent concepts of risk and motivate our particular choice,called the expected shortfall.

We discuss and interpret the results from our optimization and compare the performance

of our model with the performance of two other, simpler models. In order to keep the

computations feasible we concentrated on the case of a portfolio that consists of two

financial instruments.

7.1 Measures of Risk

Assume thatX denotes the future log return over a certain time horizon of afinancial

instrument. We assume thatX is a random variable on some probability space(Ω,A, P).

In risk management, we are concerned with the estimation of the distribution ofX. We

are specifically interested in measuring the risk of losses associated withX. Different

distributions ofX lead to different risks. The risk is usually assessed by a so called

risk measure. We will concentrate our attention on risk measures that only depend on

the distribution ofX, and not onX itself. In this section we discuss some desirable

properties of risk measures followed by an overview over some commonly used risk

measures.

Definition 7.1.1 (Risk Measure) Let (Ω,A, P) be a probability space. Let V be a non-

205
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empty set ofA measurable, real-valued random variables. A risk measure is a mapping

ρ : V → R ∪ {∞} (7.1)

X 7−→ ρ(X)

This is a very general definition that allows for very different measures of risk. Artzner

et al. (1999) introduced the notion of coherent risk measures. They postulated four

properties that a reasonable, or coherent, risk measure should have.

Definition 7.1.2 (Coherent Risk Measure) Let (Ω,A, P) be a probability space. Let V

be a non-empty set ofA measurable, real-valued random variables. A risk measureρ is

called a coherent risk measure, if it satisfies the following properties:

1. Monotonicity:X,Y ∈ V,X ≤ Y ⇒ ρ(X) ≥ ρ(Y )

2. Positive Homogeneity:∀λ ≥ 0,∀X ∈ V , such thatλX ∈ V : ρ(λX) = λρ(X)

3. Translation Invariance:X ∈ V, a ∈ R, X + a ∈ V ⇒ ρ(X + a) = ρ(X) − a

4. Subadditivity:X,Y ∈ V,X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

The four conditions are easy to interpret. The property “Subadditivity” represents the

reduction of risk associated with diversification. It states that the risk of the portfolio

obtained by adding two positions of financial instruments isnot greater than the sum of

the risk of the two positions.

We now introduce some examples of risk measures. They all share the property that

they only depend on the distribution ofX and not onX itself in the following sense: Let

X andY denote two random variables satisfyingP[X ≤ t] = P[Y ≤ t] for all t ∈ R.

Then we have thatρ(X) = ρ(Y ).
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Standard Deviation

The standard deviation of the portfolio log returnX is a risk measure. Of course the

standard deviation is not coherent, since it is not monotonenor is it translation invariant.

Nevertheless it is often used to measure the risk of a portfolio.

Value At Risk, VaRα

Value at Risk is a very popular risk measure in the finance industry. For a random

variableX with distribution functionF , define thequantile ofX at levelα as

qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α} = F←(α) (7.2)

We call

V aRα(X) = q1−α(−X) (7.3)

the Value at Risk at confidence levelα of X. Usually, α is close to zero. Typical

values forα areα = 0.01 or α = 0.05. Despite its popularity, Value at Risk is in

general not a coherent risk measure, since it is not subadditive. Examples of violations of

subadditivity of the Value at Risk can for example be found in Embrechts (2000), Tasche

(2002), Acerbi et al. (2001) and Artzner et al. (1999). VaRα is however a coherent risk

measure on certain sets V of random variables. For example, if V only contains random

variables with elliptical distributions, Embrechts et al.(2002) show that VaRα is indeed

a coherent risk measure. We refer to Embrechts et al. (2002) for precise statement of the

result and a proof thereof.

Expected Shortfall, ESα, and related measures

Intuitively speaking, the Expected Shortfall with levelα, ESα, is the average size of

the loss encountered, given that the loss is worse than the VaRα. For that reason it has



208

also been referred to as “conditional value at risk” or “tailvalue at risk”. It has been

advocated in several variants as a coherent improvement over VaRα. The ESα can be

understood as an improvement over VaRα, because it describes how big your loss will

be, given that it is severe. Two different financial instruments can have the same VaRα,

but very different ESα. Most definitions of ESα lead to the same risk measure, depending

on setV of random variables considered. IfV contains only random variablesX that

satisfyP[X = x] = 0, for all x ∈ R most definitions of ESα are indeed coherent risk

measures. However, if we expandV to include random variablesX whose distribution

is not continuous, not all variants are coherent and they aredifferent risk measures.

In the following we give the definition of a coherent variant and mention some of the

alternatives. For a detailed discussion we refer to Acerbi and Tasche (2002).

Assume throughout this paragraph thatE[X−] < ∞. Then we call

TCEα(X) = −E[X|X ≤ qα(X)] (7.4)

thetail conditional expectation at levelα of X. It is an intuitive measure of the average

loss that can be expected, given that the loss is bigger than the VaRα. However it is not

necessarily a subadditive risk measure, see example 5.4 in Acerbi and Tasche (2002).

The example is based on a distribution with discontinuities.

To avoid a violation of the subadditivity of the risk measurebecause of a lack of

strict monotonicity of the distribution function, the following alternative to 7.4 has been

adopted.

We define thetail mean at levelα of X as

TMα(X) = α−1
(
E[X1{X<qα(X)}] + qα(X)(α − P[X < qα(X)])

)
(7.5)

We then define theExpected Shortfall at levelα of X as

ESα(X) = −TMα(X). (7.6)
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The following proposition summarizes the most important properties of the ESα and its

relation to the TUE.

Proposition 7.1.3 Let X be a real random variable on some probability space(Ω,A, P)

with E[X−] < ∞ and fixα ∈ (0, 1). Then the ESα, given by (7.6), is a coherent risk

measure. Furthermore, we have that

TCEα(X) ≤ ESα(X). (7.7)

We haveTCEα(X) = ESα(X), if and only ifP[X ≤ qα(X)] = α or P[X < qα(X)] =

0.

Furthermore, the ESα has the following representation

ESα(X) = −α−1

∫ α

0

qt(X)dt. (7.8)

As a consequence, the mappingα 7−→ ESα(X) is continuous on (0,1).

Proof: See Acerbi and Tasche (2002), Proposition 3.1, Proposition 3.2, Corollary 3.3

and Corollary 5.3.¥

An alternative version of the ESα is the conditional value at risk, given by

CV aRα(X) = inf{E[(X − s)−]

α
− s : s ∈ R} (7.9)

As shown in Acerbi and Tasche (2002), the ESα is equal to the CAR, ifX is integrable.

Spectral Measures Of Risk

Spectral measures of risk are motivated the integral representation of the ESα given in

Proposition 7.1.3:

ESα(X) = −α−1

∫ α

0

qp(X)dp = −α−1

∫ α

0

F←(p)dp
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This equation can be rewritten in the form

ESα(X) = −
∫ 1

0

F←(p)ζ(p)dp. (7.10)

with

ζ(p) = α−11{[0,α]}(p).

This motivates the following definition

Definition 7.1.4 A spectral measure of risk is a risk measure of the form

Mζ(X) = −
∫ 1

0

F←(p)dζ(p). (7.11)

The measureζ(p) is referred therisk aversion measure. Not every choice of a risk aver-

sion measure results in a coherent risk measure. We have to impose certain conditions

on the possible risk aversion measure. We call a risk aversion measure anadmissible

risk aversion measure, if it is of the kind

dζ(p) = c · dδ{p} + ζ̃(p)dp, (7.12)

whereδ is the Dirac delta measure,c ∈ [0, 1] andζ̃(p) : [0, 1] → R satisfies:

ζ̃(p) ≥ 0,∀p (7.13)

p1 < p2 ⇒ ζ̃(p1) ≥ ζ̃(p2) (7.14)
∫ 1

0

ζ̃(p)dp = 1 − c (7.15)

Using this definition, we have

Proposition 7.1.5 Let

Mζ(X) = −
∫ 1

0

F←(p)dζ(p).

be a spectral measure of risk. ThenMζ is a coherent measure of risk if and only ifζ is

an admissible risk aversion function.
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Proof: See Acerbi (2002).¥

From the definition of spectral measures of risk it is clear that they only depend

on the distribution functionF of the random variableX and not onX itself. That

is, Mζ(X) depends only on the distributionF of X. However, it is not true that all

risk measures that only depend on the distribution of the random variables, and not the

random variable itself, are spectral measures of risk.

The risk aversion measure expresses the subjective risk aversion of the risk manager.

It expresses how much weight should be given to the quantilesF←(p). In that sense

they are a intuitive extension of the ESα. The risk measure is coherent if it assigns

larger weights to larger negative quantiles. Larger negative quantiles represent worse

scenarios. The ESα assigns weight1/α to all scenarios that are worse than the VaRα

and no weight to quantiles that are smaller than VaRα.

The Dirac delta measure part allows us to include a factor forthe worst case scenario

F←(0) = −essinf{X}. We have for example that

ES0(X) := −F←
X (0) = −essinf{X}

is a spectral measure of risk with risk aversion measure

dζ(p) = dδ{p} + ζ̃(p)dp

with c = 1, ζ̃ = 0. Hence,ζ is an admissible risk aversion measure and therefore

ES0(X) is a coherent risk measure.

7.2 Managing Risk, Optimizing Portfolios

Assume thatZ = (Z(1), ..., Z(d)) denotes the random vector of the log returns over a

certain time horizon ofd financial instruments(Z(1), ...,Z(d)). That is, if we denote
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with z
(i)
1 , . . . , z

(i)
N N observations ofZ(i), we have fort = 1, . . . , N :

z
(i)
t = log(z

(i)
t ) − log(z

(i)
t−1)

wherez
(i)
t , t = 0, . . . , N , denote the observations of the random variableZ(i). We will

also refer to(Z(1), ..., Z(d)) as the risk factors. Consider a linear portfolio, containingωi

units of the instrumentZ(i). The log return of that portfolio is a linear combination of

the log returns of
(
Z(1), ..., Z(d)

)
:

X := X(ω) = X(ω1, ..., ωd) =
d∑

i=1

ωiZ
(i).

Different choices of the weightsω = (ω1, ..., ωd) of the different instruments result

in different distributions of the random variableX. Given a risk measure, we can

compare different portfolios by comparing the expected logreturnsµ = E[X(ω)] =

∑d
i=1 ωiE[Z(i)], and the associated risksρ(X) := ρ(X(ω)), assuming that all the expec-

tationsE[Z(i)] exist and are finite. Typically, we seek to find a portfolio that minimizes

ρ(X(ω)) compared to all possible portfolios with expected log return µ = E[X(ω)]

under certain constraints. That is, we attempt to solve the following minimization prob-

lem:

min
ω∈W

ρ(X(ω)) (7.16)

s. t.E[X(ω)] = µ

The domainW reflects possible trade restrictions. A typical example of such a trade

restriction is a limit on the value of short sales. It may alsoreflect budget constraints,

such as the maximum cost associated with the portfolio. Alternatively, we might define

a certain level of risk̺ deemed admissible and then attempt to find a portfolioω ∈ W

that maximizes the expected log return compared to all possible portfolios whose risk
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measure equals̺:

max
ω∈W

E[X(ω)] (7.17)

s. t.ρ(X(ω)) = ̺

These two problems are usually referred to as the risk-log return optimization problem.

Definition 7.2.1 In the framework of the optimization problems (7.16) and (7.17) with

domainW we say that a portfolioω1 dominates a portfolioω2, if

E[X(ω1)] ≥ E[X(ω2)] andρ(X(ω1)) ≤ ρ(X(ω2)) (7.18)

and at least one of the two inequalities is strict.

We say that a portfolioω is optimal, if there is no portfolio that dominatesω.

The geometrical set of all optimal portfolios is called the efficient frontier in the plane

(ρ(X(ω)), E[X(ω)])

In order to compare the risk and log returns of different portfolios we need a model

of the joint distribution of the risk factors(Z(1), ..., Z(d)). Based on such a model, we

can then calculate the expected log return of the portfolio,as well as its risk measure. In

practice, the difficulty of the calculation of the risk measure of a portfolio depends on the

model of the joint distribution of(Z(1), ..., Z(d)). For simple models and risk measures,

such as the standard deviation, the corresponding calculation is fairly straightforward

and easy. However, we will see that for more sophisticated models the calculation of

spectral measures of risk, such as ESα, can be very time consuming and challenging.

This can make the task of finding optimal portfolios a very hard one.

In the special case where we do not have any constraints, suchas budget constraints

or limitations on the short sales, we need to solve the optimization problem only once,

provided that we are working with a coherent risk measure. The optimal portfolios
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for different levels of expected log returns all have the same proportions between the

positions of the different risk factors.

To see this, suppose that we have an optimal portfolio with a certain expected log

returnµ and risk measureρ∗. Denote the positions in the risk factors of the optimal

portfolio with the vector(ω∗
1, ..., ω

∗
d). Assume that we wish to find the optimal portfolio

for a different expected log return that is, sayλµ. A candidate is the portfolio with

positionsλω∗
1, ..., λω∗

d. This portfolio has risk measure|λ|ρ∗, because of the positive

homogeneity of the coherent risk measure and the linearity of the portfolio. This means

its risk and expected log return are linear functions of|λ|. However, the same is true for

every other portfolio(ω1, ..., ωd) with expected log returnµ and risk measureρ. After

inflating the positions by the factorλ, we have a portfolio with expected log returnλµ

and risk measure|λ|ρ. But the portfolio(ω∗
1, ..., ω

∗
d) was the portfolio with the smallest

risk measure among all portfolios with expected log returnµ. That is, we haveρ∗ ≤

ρ. Therefore we also have|λ|ρ∗ ≤ |λ|ρ for the risk measure|λ|ρ of any portfolio

(λω1, ..., λω2). Therefore the optimal portfolio with expected log returnλµ is indeed

(λω∗
1, ..., λω∗

d). This shows that the proportions between the positionsω∗
1, ..., ω

∗
d of the

optimal portfolio are the same for all expected level of log returns. The presence of

budget or short sale constraints oftentimes complicate thecalculation of the optimal

portfolios significantly. While the portfolio(ω∗
1, ..., ω

∗
d) may satisfy these constraints,

the same need not be true for the portfolio(λω∗
1, ..., λω∗

d). Hence the optimal portfolio

with expected log returnλµ is not (λω∗
1, ..., λω∗

d). For certain levels of expected log

return, there may not even be a portfolioω ∈ W that achieves that level.

This illustrates the main reason why we worked with linear portfolios. However, lin-

ear portfolios are portfolios of log returns of financial instruments and not the log return

of the portfolio of the financial instruments itself. In reality the investor would be con-
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cerned with the return of a linear portfolio of the financial instruments(Z(1), ...,Z(d))

rather than a linear portfolio of the log returns(Z(1), ..., Z(d)). He would concentrate on

the log return of

X (ω) =
d∑

i

ωiZ(i).

Therefore, he would consider the expected value and the riskmeasure of the random

variable

log(X (ω)) = log

(
d∑

i

ωiZ(i)

)
.

This is just one of many possible examples where the relationship between the risk fac-

tors and the log returns of the instruments in the portfoliosis nonlinear. This nonlinear

relationship complicates the calculation of the log returnof the portfolio from the model

of the joint distribution of the risk factors. This in turn makes the search for optimal

portfolios much more involved. Glasserman et al. (2002) describe methods for comput-

ing portfolio VaRα with heavy tailed risk factors and nonlinear relationshipsbetween

risk factors and portfolios log returns.

We furthermore only considered the case of a portfolio consisting of two instru-

ments. The reason was that for portfolios with more than two instruments the minimiza-

tion problem (7.16) would become computationally too extensive to solve directly with

the numerical methods that we employed, even for linear portfolios. To give the reader

a taste of the difficulties involved, we consider the calculations involved for the case of

a portfolio consisting of two instruments.

We calculated the optimal portfolios with respect our modelusing the Matlab opti-

mization toolbox. The bottleneck in our computations was the calculation of the port-

folio quantiles. Remember that the ESα is a spectral measure of risk that is calculated

as

ESα(X) = −α−1

∫ α

0

F←(p)dp (7.19)
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whereF←(p) is the quantile of the distribution. Both for our model as wellas the model

based on the t copula there are no explicit equations for the distribution function of

linear portfolio that could be easily evaluated. To calculate the distribution function of

the linear portfolioX = ω1Z
(1) + ω2Z

(2), given by

P[X ≤ s] = P[ω1Z
(1) + ω2Z

(2) ≤ s],

from the joint densityf(x, y) of Z(1) andZ(2), we need to calculate integrals of the form

P[ω1Z
(1) + ω2Z

(2) ≤ s] =

∫ ∞

−∞

∫ s−ω2y

ω1

−∞

f(x, y)doxy, if ω1 > 0 (7.20)

P[ω1Z
(1) + ω2Z

(2) ≤ s] =

∫ ∞

−∞

∫ ∞

s−ω2y

ω1

f(x, y)doxy, if ω1 < 0 (7.21)

Since these integrals cannot be calculated analytically, we had to resort to numerical

methods, which turned out to be very time and resource consuming. Had we attempted

to calculate optimal portfolios for portfolios withd > 2 instruments, we would have

had to calculated dimensional analogues of the double integrals (7.20). Whilean ex-

tension of our model to higher dimensional portfolios is straightforward, the numerical

calculations of the correspondingd dimensional integrals exceeded the capabilities our

resources. For every calculation of the ESα via (7.19) we needed to calculate a large

number of quantiles of the corresponding portfolio distribution in order to get a good

numerical approximation of the integral. The numerical integration was carried out with

the numerical integration tool provided in Matlab. Typically, it involved the calculation

of between 150 to 250 different quantiles. These in turn had to be calculated from the

corresponding distribution function by numerically finding the solution of equations of

the type

P[ω1Z
(1) + ω2Z

(2) ≤ s] = p

We used a bisection algorithm to carry out the calculation ofseveral different quantiles

at the same time. The algorithm typically needed between 30 to 40 evaluations of the
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distribution functionP[ω1Z
(1) + ω2Z

(2) ≤ s] of the portfolio to find the correspond-

ing quantile. This means that in order to calculate the ESα, we needed to numerically

calculate about 5,000 to 10,000 numerical double integralsof the form of (7.20). The

time it took to carry out these calculations on a PC with a Pentium II processor averaged

around 15 to 25 minutes.

The algorithm that we used to find the optimal portfolio with acertain expected

log return usually needed 14 to 20 calculations of the ESα for different positions in

the risk factors in order find the portfolio of minimal risk. This means that it typically

took us somewhere between 3 and 8 hours to find an optimal portfolio for both the

model based on the spectral measure and the model based on thet copula, introduced

below. We conclude that while, from a theoretical point of view, there is no difference

describing the optimization problems (7.16) and (7.17) forour model and portfolios

containing many instruments, in practice the computational resources needed to solve

(7.16) and (7.17) forced us to work with portfolios with onlytwo instruments. This

clearly demonstrates the need for more efficient algorithmsthan the ones that we used

to calculate portfolio quantiles. It is also the motivationfor the development of Monte

Carlo methods and approximations used in Glasserman et al. (2002).

In the following sections we discuss the result of solving the politicization problem

(7.16), using our model presented in Chapter 6 as the model forthe joint distribution

of the log returns of the risk factors. We compare the resultswith two other, simpler

models. The first of the alternative models that we considered is the easiest and most

popular model for the joint distribution of the risk factors, proposed by the Isometrics

(http://www.riskmetrics.com/) group. It assumes that thejoint distribution of the log

returns of the risk factors(Z(1), ..., Z(d)) is a multivariate normal distribution. As a

consequence the log returns of the linear portfolio are alsonormally distributed. Rock-



218

afellar and Uryasev (2000) considered the optimization problem (7.16) based on that

model with respect to the ESα, the VaRα and the standard deviation. They showed that

optimal portfolios for all three optimization problems arethe same. In other words the

portfolios, that, with a given expected log returnE[X(ω)] = µ, minimize the ESα, the

VaRα and the standard deviation are in fact identical. This is true for all significance

levelsα. In particular the optimal portfolios with respect to, say,the ES5% is the same

as the optimal portfolio with respect to the ES1%. This makes the task of finding op-

timal portfolios very easy. It is also what makes the multivariate normal approach so

attractive. However, the model assumption is unrealistic for two reasons. Firstly, it is

widely accepted that the distribution of the log returns of financial time series has reg-

ular varying tails. The normal distribution does not have regular varying tails. We saw

in Chapter 5, that there is clear indication that the distributions of the datasets under

consideration in this thesis have regular varying tails. Secondly, one can show that the

multivariate normal distribution has asymptotically independent marginals. See Chapter

5 of Resnick (1986) for a proof. We saw in Chapter 5 that we have clear and convinc-

ing evidence against the asymptotical independence of the marginal components in the

datasets that we investigate.

Several new approaches and models have been proposed to overcome these obvious

shortfalls of the simple multivariate normal model. Most recently the concept of the

copula has received significant attention. The copulaC of a distribution functionF

with continuous marginalsFi, i = 1, ..., d is given by

F (x1, .., xd) = C(F1(x1), ..., Fd(xd)) ⇐⇒ C(u1, ..., ud) = F (F←
1 (u1), ..., F

←
d (ud)).

The copula has standardized Uniform[0,1] marginals and describes the dependence

structure of the distribution. A comprehensive overview over copulas can be found

in Embrechts et al. (2003). As mentioned before, Breymann et al. (2003) compare the
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quality of the fit of several copulas to certain bivariate financial time series. They used

the empirical distributions as approximations for the unknown marginal distributions

of the times series under investigation. They found that thebest description of the de-

pendence structure of the financial time series under consideration appears to be the t

copula,Ct
ν,P (u). The t copula is the copula of the multivariate t distribution. Thed di-

mensional t distribution withν degrees of freedom, mean vectorµ and positive definite

and symmetric dispersion matrixΣ is given by the density

f(x) =
Γ

(
ν+d

2

)

Γ
(

ν
2

) √
(πν)d|Σ|

(
1 +

(x − µ)T Σ−1(x − µ)

ν

)− ν+d
2

,x ∈ R
d (7.22)

As a consequence, the t copula is given by

Ct
ν,P (u) =

∫ T−1
ν (u1)

−∞

. . .

∫ T−1
ν (ud)

−∞

Γ
(

ν+d
2

)

Γ
(

ν
2

) √
(πν)d|P |

(
1 +

xT P−1x

ν

)− ν+d
2

dx (7.23)

whereP is the matrix with entriesPij = Σij/
√

ΣiiΣjj andT−1
ν (·) is the quantile of

the univariate Student’s t distribution withν degrees of freedom. For a reference, see

Embrechts et al. (2003) or Demarta and McNeil (2004). Remember that the univariate

Student’s t distribution has density

tν(x) =
Γ

(
ν+1
2

)

Γ
(

ν
2

) √
(πν)

(
1 +

x2

ν

)− ν+1
2

(7.24)

and its cumulative distribution function is given by

Tν(x) =

∫ x

−∞

tν(s)ds.

In the bivariate case, (7.23) simplifies to

Ct
ν,ρ(u1, u2) =

∫ T−1
ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1

2π
√

1 − ρ2

(
1 +

s2 − 2ρst + t2

ν(1 − ρ2)

)− ν+2
2

dsdt,

(7.25)

see Embrechts et al. (2003). Hereρ is the non diagonal element, referred to as the

correlation coefficient ofP . We should mention thatρ is not the linear correlation of the
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marginal components. The linear correlation coefficient depends on the marginals that

are attached to the copula.

We decided to use the so called meta t distribution as our second alternative to the

model developed in Chapter 6. A meta t distribution is a distribution with a t copula

Ct
ν,P (u), but its marginal distributions are not necessarily thetν . To reflect the fact

that the marginal distributions have regular varying tails, we assume that the marginal

distributions have the following density:

tν,µ,σ(x) =
Γ

(
ν+1
2

)

Γ
(

ν
2

)
σ
√

(πν)

(
1 +

(x−µ
σ

)2

ν

)− ν+1
2

(7.26)

The distribution with densitytν,µ,σ(x) is called a Pearson Type VII distribution. It is

the distribution of a linearly transformed Student’s t distributed random variable withν

degrees of freedom. IfY is a real random variable with a Pearson Type VII distribution,

then we can writeY = σX + µ, where X has Student’s t distribution. The additional

parametersµ andσ are referred to as the location and scale parameter, respectively.

The distribution is symmetric and unimodal. The mode of the distribution is atµ. The

tails of the distribution function are regular varying withtail indexν, see for example

Embrechts et al. (1997). Ifν > 1 the distribution has a finite first moment. In that case,

the expectation equalsµ. We denote the distribution function associated with the density

(7.26) withTν,µ,σ(x).

We assume that the joint distribution of the financial instruments has the following

form:

F (x1, ..., xd) = Ct
ν,P (Tν1,µ1,σ1(x1), ..., Tνd,µd,σd

(xd)). (7.27)

If we denote with

ct
ν,P (u1, ..., ud) =

∂d

∂u1...∂ud

Ct
ν,P (u1, ..., ud) =

ttν,P (T−1
ν (u1), ..., T

−1
ν (ud))∏d

i=1 tν(T−1
ν (ui)
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the density of the copulaCt
ν,P (u1, ..., ud), we see that the joint distribution has the fol-

lowing density

f(x1, ..., xd) = ct
ν,P (Tν1,µ1,σ1(x1), ..., Tνd,µd,σd

(xd))
d∏

i=1

tνi,µi,σi
(xi) (7.28)

We used maximum likelihood techniques in order to estimate the parameters of the

model. We first separately estimate the parameters of the marginal models with the

maximum likelihood estimators of the parameters of the Pearson Type VII distribution.

We employed a numerical procedure to find these estimates. Weused that fact that if a

continuous random variableX has cumulative distribution functionF , thenY = F (X)

has a Uniform[0,1] distribution. Assume thatν̂, µ̂, σ̂ are the estimates of the Pearson

Type VII distribution, obtained from the i.i.d. vector of observationsx of the random

variableX. Denote

q = Tν̂,µ̂,σ̂(x) (7.29)

If the Pearson Type VII distribution with parametersν̂, µ̂ andσ̂ is a reasonable approx-

imation of the distribution ofx, thenq is approximately uniformly distributed on the

interval [0,1]. We found that, for the data sets considered in this chapter, the Pearson

Type VII distribution provided a reasonable fit of the data. We therefore used transfor-

mation (7.29) to transform the data into data with an approximate Uniform distribution

on [0,1]. We then used the transformed data to obtain parameter estimates for the t

copula, given by (7.25).

The problem of finding optimal portfolios based on this modeland with respect to a

coherent risk measure, such as ESα, is much more difficult than for the multivariate nor-

mal distribution. We found that the complexity of the problem is similar to the one that

we faced when finding optimal portfolios for our model, basedon the spectral measure.

In contrast Rockafellar and Uryasev (2000) showed that finding optimal portfolios

with respect to the ESα, working with no particular model for the data, but rather us-
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ing historical data as an approximation for the true joint distribution of the risk factors,

can be achieved using linear programming methods. They found in several case stud-

ies, that finding optimal portfolios this way takes less thanone minute on an ordinary

PC, even for large portfolios of up to 1000 instruments and large sample sizes of up to

20000 observations. Their work was extended by Acerbi and Simonetti (2002) to in-

clude portfolio optimization with respect to any spectral measure of risk. Our procedure

was much more time consuming compared to the algorithm employed by Rockafellar

and Uryasev (2000) because we worked with a particular model, rather than just histori-

cal observations. They used empirical quantiles as estimators for the portfolio quantiles

in the calculation of

ESα(X) = −α−1

∫ α

0

F←(p)dp,

while we based our estimates on our numerical integrations based on our model, as

described above.

7.3 Application to Datasets

In this section, we discuss the results of optimizing portfolios with respect to the ESα

using our model, based on the spectral measure, as well as thebivariate normal distri-

bution and the meta t distribution model given by (7.27). We chose the ESα for several

reasons. It is a coherent and spectral risk measure. It has been advertised as the coherent

measure that should be used instead of the still popular VaR. However, all our calcula-

tions could also be carried out with respect to any other spectral and coherent measure

of risk. We simply chose the ESα because it has already received significant attention in

literature. We worked with a significance level of 5% and in one instance with 1%.
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7.3.1 Exchange Rates of the Deutsche Mark and the Swiss Franc

The dataset used in this section is part of the Foreign currency dataset studied in Section

5.4. Here, we consider the log returns of the exchange rates of the Deutsche Mark and

the Swiss Franc to the US $ from June 1973 to May 1987. Figure 7.1 shows a scatter plot
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Figure 7.1:Scatter plot of the log returns of the Deutsche Mark and the Swiss Franc.

of the log returns of the two currencies. A strong dependencebetween the log returns

is visible. Based on Stărică plots, we determined that k=50 is an appropriate number of

upper order statistics to be used in the estimation of the spectral measure and the ranks

method selected 158 observation. With the help of the criteria introduced in Section

4.4 and previously used in Section 5, we decided that a 5 component mixture model is

an adequate description of the spectral measure. An overview over the estimates of the

parameters of the model of the spectral measure is given in Table 7.1. The mixture model

has two components in the first quadrant and three componentsin the third quadrant.

Almost all its mass is concentrated in the either the first or the third quadrant, reflecting
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Table 7.1: Parameters of the Spectral Measure of the Deutsche Mark and the Swiss

Franc

Mean Direction κ weight

0.6646 7.11 0.4235

1.4942 494.84 0.0638

3.3562 58.20 0.1405

3.9860 11.82 0.2640

4.6044 110.53 0.1081

the tight dependence between the log returns of two currencies.

The parameters of the marginal distribution of the tails, introduced in Chapter 6 is

given in Table 7.2. Concerning the parameters of the GPD models for the tails, we see

Table 7.2: Parameters of the marginal model of the tails for the log returns of the

Deutsche Mark and the Swiss Franc

Deutsche Mark: νr ξr βr νl ξl βl

0.0182 0.0498 0.0054 0.0162 0.4347 0.0035

µT σT p1 p2

8.0810−4 0.0186 0.2350 0.2371

Swiss Franc: νr ξr βr νl ξl βl

0.0213 -0.0332 0.0066 0.0185 0.4118 0.0044

µT σT p1 p2

-0.0019 0.0219 0.2556 0.2246

that for both currencies the thresholdsνl andνr are approximately of the same size. The

estimates of the shape parametersξl of the left tails indicate regular varying tails with
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tail indexes of 2.3 for the Deutsche Mark and 2.4 in case of theSwiss Franc. On the

other hand, it is surprising to see that the estimates of the shape parameters of the right

tails indicate that the tails are not very heavy. For the DM, we see that the estimate

is ξr =0.0498, which corresponds to a tail index estimate of about 20. For the SF, the

estimate of the shape parameter of the left tail,ξr= -0.0332, is even negative, indicating a

distribution with a finite endpoint! It is however importantto keep in mind that the GPD

is described by all three parameters and not just the shape parameter. The right endpoint

of the GPD with the parameter values of the right tail of the Swiss Franc log returns is

approximately 0.221. This is well outside of the data range,as the largest log return of

the Swiss Franc is approximately 0.053. In Table 5.12 we estimated the tail index of

the right the of the Swiss Franc as somewhere between 4.75 and5 and the tail index of

the right tail of the Deutsche Mark between 4 and 4.5. These estimates where mostly

based on the results of the QQ-estimator. Based on the Hill plot, estimates as high as 6

are justifiable for both tail indexes. This also indicates that the tails are not very heavy.

These differences between the estimates of the tail indexesbased on the parametric GPD

model and the non parametric estimates of the tail indexes based on the Hill plot and the

QQ-estimator indicate the difficulty in accurately assessing the heaviness of the tails.

Finally, the parameters of the model of the body of the distribution are listed in Table

7.3. We see that the tight dependence is also evident in the model of the body given in

Table 7.3, as our estimates for the parameters of the bivariate normal model indicate a

high correlation coefficient of 0.85349. Overall, the estimated expected log return of the

log returns of the Deutsche Mark, implied by the parameter estimates of our model is

1.1308·10−4. For the Swiss Franc, the corresponding value is 2.0617·10−4, considerably

larger. The VaR5% of the log returns of the Deutsche Mark is 0.0103. In other words,

our model predicts that 5% of all daily log returns of the Deutsche Mark are losses that



226

Table 7.3:Parameters of the body of the Deutsche Mark and the Swiss Franc

DM SF

Mean 8.3610−5 2.0210−4

Std. Dev. 0.0056 0.0065

Correlation 0.85349

Weight of the body 0.9550

are more severe than -0.0103. The ES5% of the Deutsche Mark is 0.0156. Recall that,

given that the distribution is continuous, the ES5% is the expected value of the worst 5%

of all observations. The numbers for the Swiss Franc are similar. The VaR5% of the

Swiss Franc is 0.0117 and the ES5% is 0.0184. We see that, while the Swiss Franc has

a larger expected log return, it is also riskier. The ES5% of the Swiss Franc exceeds that

of the Deutsche Mark by about 18%.

We proceeded to find solutions to the optimization problem given by (7.16). We

fixed several levels of the expected log return and determined the portfolios whose ex-

pected log return matches these levels, while at the same time minimize the ES5% among

all such portfolios. We mentioned earlier that theoretically, we would only need to calcu-

late the optimal portfolio for one level of expected log return. The risk and the positions

in each risk factor are linear functions of the expected level of log return. The rea-

son why we calculated several different optimal portfoliosis that we used a numerical

approximation to the double integral of the model density inorder to calculate the dis-

tribution function of the portfolio. These approximationsmight result in small mistakes.

By calculating several optimal portfolios for different levels of expected log return, we

can assess the severity of the mistake and get a better estimate of the optimal portfolios.

Table 7.4 gives an overview over two of the optimized portfolios. Remember that the
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proportion between the number of Deutsche Mark and the number of Swiss Francs is the

same for all levels of the expected log return. The first column gives the expected level

Table 7.4:Optimized portfolios of the Deutsche Mark and the Swiss Francfor different

levels of expected log returns.

Expected Return Units of DM Units of SF Portfolio ES5%

1. 1.1308·10−4 -0.4018 0.7688 0.009601

2. 2.0617·10−4 -0.6878 1.3772 0.017480

of log return of the portfolio. The expected log returns listed here are the expected log

returns of the Deutsche Mark and the Swiss Franc, respectively. The second and third

column give the positions in the Deutsche Mark and the Swiss Franc in the portfolio,

respectively. The last column lists the estimate of the ES5% of the portfolio, based on our

model. We decided to quantify the riskiness of the optimal portfolio by the parameter

β0 in the following equation:

Expected Shortfall at 5%= β0 · (Expected Return) (7.30)

By comparing the different values of the coefficientβ0 for different models, we can

compare the risk measures in the optimal portfolios based onthe three different models.

A higher coefficient indicates higher estimates of the risk of the optimal portfolio for

same levels of expected log return. In a similar fashion we also quantify the positions

in the optimal portfolio in each of the financial instruments. Since the positions also

depend linearly on the expected log return of the portfolio,we can write

Number of Shares of Risk Factor 1= β1 · (Expected Return)

Number of Shares of Risk Factor 2= β2 · (Expected Return)
(7.31)

From the optimal portfolios listed in Table 7.4 we estimatedthese parameters for

each level of expected log return. For the coefficientβ0 we obtained values between
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84.37 and 85.29, based on the 11 levels of expected log returns that we considered. We

see that the variance in these estimates induced by mistakesof the numerical approxi-

mations is small. We observed a similarly small variance in the estimates ofβ1 andβ2.

We used a least squares estimator to obtain the following single estimates for the three

coefficients from the results in Table 7.4:

Expected Shortfall at 5% = 84.59 · (Expected Return)

Number of Deutsch Marks= −3291.5 · (Expected Return)

Number of Swiss Francs = 6655.5 · (Expected Return)

(7.32)

With the help of these coefficients, we can calculate the optimal portfolio with any

desired expected log return and its Expected Shortfall at 5%.

We see that in the optimal portfolios we short the Deutsche Mark and long the Swiss

Franc. For every Deutsche Mark that we sell, we have to buy, approximately, two Swiss

Francs in order to minimize the risk of the portfolio.

We noted earlier that there is a close dependence between thelog returns of the

two currencies. A portfolio with a short position in one currency and a long position

in the other currency attempts to reduce the variability on the portfolio. Assume for

example that the Swiss Franc experiences a large negative log return. Almost certainly,

the Deutsche Mark will also experience a large negative log return. The impact of such

a large negative log return of the Swiss Franc on the portfolio log return will therefore

be softened by the positive log return of the shorted Deutsche Mark position.

An important and interesting question is how much influence the model of the tails,

based on the spectral measure and the GPD model for the marginal tails, has in deciding

the allocation of the funds in the optimal portfolios. How much influence does the simple

model of the body have? We compare the optimal portfolios based on our model with

the ones based on the bivariate normal model. The parametersof the bivariate models
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are estimated by the sample mean, sample standard deviationand sample correlation of

the dataset. We obtained the estimates of the parameters listed in Table 7.5. We see

Table 7.5:Parameters of the bivariate normal model of the Deutsche Mark and the Swiss

Franc

µ̂DM =1.17·10−4 σ̂DM =0.00714

µ̂SF =2.14·10−4 σ̂SF =0.00821

Correlation:ρ̂=0.867

that the estimates of the expected log returns are very similar to the estimates based on

our model. The estimated ES5% of the Deutsche Mark, based on the normal model is

0.0146. The corresponding value for the Swiss Franc is 0.0167. As we observed for the

estimates based on our model, the Swiss Franc appears to be the riskier asset, but it also

seems to be the one with the larger expected log return. Theseestimates of the ES5% are

about 10% smaller than the ones that we obtained based on our model.

Based on these numbers the portfolios minimizing the ESα, the VaRα and the vari-

ance of the portfolio were calculated for the same 11 expected levels of log return that

we used in the calculations using our mixture model of the spectral measure. Based on

these 11 optimal portfolios, we calculated the least squares estimators of the coefficients

β0, β1 andβ2. We obtained the following results:

Expected Shortfall at 5% = 70.05 · (Expected Return)

Number of Deutsch Marks= −4233.1 · (Expected Return)

Number of Swiss Francs = 6968.9 · (Expected Return)

(7.33)

Comparing with the results based on our model, we see that the portfolios are fairly

similar to the ones that we obtained using our model. Howeverthey are not the same

portfolios. The ratio between the units of the Deutsche Markand the Swiss Franc in the
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portfolios is -0.60743. That means that in an optimal portfolio for every Swiss Franc that

we buy, we sell 0.6 Deutsche Marks. Remember that the corresponding ratio was about -

.504 for the optimal portfolios based on our model. The differences between the optimal

portfolios according to our model and the optimal portfolios according to the normal

model is due to the different model of the joint distributionin the tails. Our refined

model, based on the spectral measure models joint large log returns differently than the

bivariate normal model and therefore implies differences in the optimal portfolios.

We also see that the estimates of the expected shortfalls aresignificantly smaller than

the ones we obtained based on our model. This is evident by comparing the respective

coefficientsβ0 in (7.32) and (7.33). Based on our model, we estimatedβ0 = 84.59,

while based on the normal model, we obtainβ0 = 70.05. As we explain below in more

detail, we found that the empirical estimates of the ESα were much closer to the ones

predicted by our model than the ones based on the normal model. This is not surprising,

since we had seen clear evidence that the left tails of both the Deutsche Mark and the

Swiss Franc are heavy tailed. Therefore the bivariate modelunderestimates the size of

large losses, since it assumes that the tails are much lighter than they truly are.

We present the results of the optimal portfolios whose expected log returns are equal

to the ones used in 7.6.

Table 7.6:Optimized portfolios of the Deutsche Mark and the Swiss Francfor different

levels of expected log returns using a bivariate normal model.

Expected Return Units of DM Units of SF Portfolio ES5%

1. 1.1308·10−4 -0.4786 0.7880 0.007921

2. 2.0617·10−4 -0.8727 1.4368 0.014443

Compare these results with the portfolios in Table 7.4. We seethat the short position
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in the Deutsche Mark as well as the long position in the Swiss Franc are somewhat larger

than in the portfolios based on our model. Also note that the estimates of the ES5% of

the portfolios is about 18% smaller than the ones that we obtained based on our model.

Turning to the meta t-distribution model, we first obtain themaximum likelihood

estimates of the parameters of the marginal Pearson Type VIIdistribution. We obtained

the parameter estimates listed in Table 7.7. Recall that the degrees of freedom of a Pear-

Table 7.7:Parameters of the meta t distribution of the Deutsche Mark and the Swiss

Franc

ν̂DM = 3.37 µ̂DM = −2.49 · 10−5 σ̂DM = 0.00483

ν̂SF = 3.45 µ̂SF = 7.29 · 10−5 σ̂SF = 0.00561

Degrees of freedom of copula: νC = 4.2594

Correlation coefficient of P: ρ = 0.889

son Type VII distribution are equal to the tail index of the corresponding distribution.

We see that the corresponding estimates are well in line withwhat we expect from a

reasonable model. However, it is striking that the MLE of thelocation parameterµ for

the Deutsche Mark is negative. Recall that the location parameter of a Pearson Type VII

distribution is equal to its expectation. Since the sample mean of the Deutsche Mark is

1.17 ·10−4, this is disturbing and certainly not very realistic. We conducted a simulation

study to investigate the quality and variability of the maximum likelihood estimates of

the parameters of the Pearson Type VII distribution. We created 1000 datasets, each

with the same sample size as the dataset of the log returns of the Deutsch Mark and the

Swiss Franc. Each dataset consisted of i.i.d realizations with a Pearson Type VII distri-

bution with the parameters equal to the estimates of the Deutsche Mark, given in Table

7.7. We found that the distribution of the estimates of the location parameterµ can well
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be approximated by a normal distribution. The mean and standard deviation of the 1000

estimates of the location parameter are -2.62·10−5 and 1.0·10−4, respectively. The mean

is very close to the true value of -2.49·10−5. While this shows that the maximum likeli-

hood estimator is not a bad estimation in general for the parameters of a Pearson Type

VII distribution, it is not practical in our case. The estimator of the location parameter

needs to be very precise, especially because the true expected mean seems to be so close

to 0. We see that the standard deviation is much larger than the absolute value of the true

parameter. This means that the estimates ofµ are not reliable for our purpose. Indeed,

we found in our simulation study that 40% of the estimates ofµ have a positive sign,

despite the negative sign of the true value. In the light of these results it seems that the

negative estimate of the location parameter of the DeutscheMark is the result of a an

estimator that is not precise enough, given the near zero value of the parameter.

The estimated ES5% of the Deutsche Mark, based on the parameters in Table 7.7 is

0.017184. The Swiss Franc has an estimated ES5% of 0.01953. Both estimates a are a

little larger than the estimates based on our model.

Despite the dubious nature of the parameter estimate of the location parameter of

the marginal distribution we proceeded to use these estimates to calculate the estimates

of the parameters of the copula (7.25). The parameter estimates of the copula are given

in Table 7.7. The parameters reflect the close dependence in the dataset. We see that

the estimate of the degree of freedom of the copula is significantly different from the

estimates of the degree of freedom of the marginals. This indicates that a simple mul-

tivariate t distribution is indeed not an adequate description of the data and that a more

complicated model, like the one that we used, is indeed necessary.

We calculated optimal portfolios with respect to the ES5% for the same 11 different

levels of expected log return that we used for our model and the normal model. Based
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on these results we obtained the following estimates for thecoefficientsβ0, β1 andβ2:

Expected Shortfall at 5% = 89.18 · (Expected Return)

Number of Deutsch Marks= −9998.4 · (Expected Return)

Number of Swiss Francs = 10862 · (Expected Return)

(7.34)

As a result of the negative expected value of the Deutsche Mark, the portfolios that

minimize the expected shortfall are fairly different from the one that we obtained using

our model or the bivariate normal model. The optimal portfolio holds a short position

of about 1.08 DM for every Swiss Franc held long. The fact thatwe hold a large short

position in the Deutsche Mark is due to the negative expectedlog return of the Deutsche

Mark and the close dependence between the log return of the two currencies. By holding

a short position in the Deutsche Mark we are holding, according to the meta t distribution

model, a position with a positive expected log return. In addition it reduces the risk

of large negative log returns, since large negative log returns of the Swiss Franc are

offset by large positive log return of the short position in the Deutsche Mark. The

corresponding estimates of the ES5% are approximately the same the ones obtained with

our model, since the estimate of the coefficientβ0 is fairly close to the one that we

obtained based on our model.

The portfolios that minimize the ES5% for the same levels of expected log return as

in Table 7.6 are given in Table 7.8.

Table 7.8:Optimized portfolios of the Deutsche Mark and the Swiss Francusing a meta

t distribution.

Expected Return Units of DM Units of SF Portfolio ES5%

1. 1.1308·10−4 -1.2290 1.1304 0.01011

2. 2.0617·10−4 -2.2358 2.0626 0.01838
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In order to compare the three models empirically, we compared the optimal port-

folios with an expected log return of 4.1235·10−4, twice the expected log return of the

Swiss Franc, from each of the three models. It is customary for the purpose of com-

paring the performance of different models to split the dataset in a so called building

sample and a validation sample. The parameters of the model are estimated based on

the data in the building sample only, while the performance of the competing models is

evaluated using the data in the evaluation sample. We compare the performance of the

three models this way in Section 7.4. For the dataset considered in Sections 7.3.1 and

7.3.2, we found that the sample size was not sufficient to allow us to split the dataset and

obtain two datasets of sufficient sample size. Remember that we need a dataset of a large

sample size to obtain a sufficient number of extreme observations that can then be used

to estimate the parameters of the mixture model. We therefore evaluate the competing

models using the same dataset was used to estimate the parameters of the models. We

found the results to be consistent with the results in Section 7.4.

Since the optimal portfolio according to our model, based onthe spectral measure,

and the normal model are very similar, their performance is also very similar. The

optimal portfolio based on our model had an average log return of 4.29·10−4, while the

optimal portfolio based on the normal model had an average log return of 4.12·10−4.

The empirical estimate of the ES5% for the portfolio based on our model is 0.0339. Our

model had given us an estimated of 0.034793. The portfolio based on the normal model

has an empirical ES5% of 0.0326, while the corresponding estimate based on the normal

model was 0.028887. We see that the normal model seems to underestimate the true

risk, while the estimate from our model is very close to the empirical estimate.

In contrast to these numbers, the corresponding optimal portfolio based on the meta

t distribution had an average log return of only 3.59·10−4 and an empirical ES5% of
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0.0398, compared with an estimated value of 0.036757 based on the meta t model. Its

average log return is significantly lower than predicted by the model and the other two

portfolios. In addition it also has a much higher risk, as measured by the empirical ES5%.

7.3.2 The Log Returns of IBM and Intel

While the log returns of the Deutsche Mark and the Swiss Franc exhibit a very tight

overall dependence, the dataset of the log returns of IBM and Intel does not show such a

tight dependence. This is evident from the scatter plot of the log returns, given in Figure

7.2. The same statement can be made about the dependence in the tails. The parameters
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Figure 7.2:Scatter plot of the log returns of the stocks of IBM and Intel.

of the mixture model of the spectral measure of the log returns of the Deutsche Mark

and the Swiss Franc indicate a tighter dependence than the corresponding parameters

for the model of the log returns of IBM and Intel.

We already discussed in a Section 5.2 how we determined the model for the spectral
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measure of the joint distribution of the log returns of the stock prices of IBM and Intel.

Table 7.9 lists the parameters of that model.

Table 7.9:Parameters of the Spectral Measure of IBM and Intel

Mean Direction κ weight

0.02 690.99 0.1155

0.08 39.75 0.1075

1.11 8.25 0.1037

1.54 281.68 0.1792

3.19 217.60 0.1548

3.88 3.74 0.1862

4.68 215.95 0.1528

The parameters of the marginal distribution of the tails, are given in Table 7.10. We

Table 7.10:Parameters of the Marginal Model of the tails for the log returns of IBM

and Intel

IBM νr ξr βr νl ξl βl

0.0360 0.2175 0.0129 0.0344 0.4261 0.0097

µT σT p1 p2

0.0015 0.0233 0.2458 0.2613

Intel: νr ξr βr νl ξl βl

0.0513 0.1211 0.0155 0.0523 0.3008 0.0163

µT σT p1 p2

-0.0097 0.0483 0.2215 0.1483

see from the values in Table 7.10 that the GPD models for the marginal tails indicate
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that for both stocks the left and the right tails are regular varying. The left tails appear

to be heavier than the right tails. The estimates of tail indexes of the left tail, based on

the shape parameters of the GPD models, are 2.3 for IBM and 3.3 for Intel.

Finally, the parameters of the model of the body of the distribution are listed in

Table 7.11. We see that the linear correlation between the observations in the body of

Table 7.11:Parameters of the body of the Deutsche Mark and the Swiss Franc

IBM Intel

Mean 1.95·10−4 1.39·10−3

Std. Dev. 0.013807 0.02118

Correlation 0.34775

Weight of the body 0.9572

the joint distribution of IBM and Intel is much smaller than the corresponding value for

the Deutsche Mark and the Swiss Franc in the last section.

The estimate of the ES5% of the log returns of IBM, based on our model is 0.0401

and the corresponding estimate for the log returns of Intel is 0.0609. Also, based on

our model, the expected log return of the log returns of IBM is 2.03·10−4 and the cor-

responding value for Intel is 1.105·10−3. We see that while Intel is riskier it also has a

larger expected log return.

As we did in the last section with the Deutsche Mark and the Swiss Franc, we cal-

culated the optimal portfolios for different levels of the expected log return. We then

use a least squares estimator to estimate the coefficients between the expected log return

and the risk measure and the positions of the two stocks in theportfolio. We obtain the
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following estimates:

Expected Shortfall at 5% = 54.318 · (Expected Return)

Number of shares fo IBM = −244.75 · (Expected Return)

Number of shares of Intel= 949.33 · (Expected Return)

(7.35)

An overview over the optimal portfolios, whose expected logreturns equal the expected

log returns of the two stocks, is given in Table 7.12. We see that the optimal portfolio

Table 7.12:Optimized portfolios of IBM and Intel based on our model.

Expected Return Units of IBM Units of Intel Portfolio ES5%

1. 2.0346·10−4 -0.0509 0.1933 0.0111

2. 1.1058·10−3 -0.2656 1.0489 0.0601

is achieved by short selling a small amount of IBM stock short and buying the stock of

Intel. For every stock of IBM that we sell, we have to buy, approximately, four stocks of

Intel, in order to minimize the risk of the portfolio. Since the expected log return of the

stock of Intel is about 5 times as large as the expected log return of the stock of IBM,

it seems that the optimal portfolio is achieved by buying about the amount of shares of

Intel necessary to achieve the desired expected log return and reduce the risk buy selling

a small fraction of IBM’s stock short. Even though the tail dependence between the two

stocks is not as tight as the dependence between the two currencies in the last section,

large negative log returns of Intel tend to happen at the sametime as large negative log

returns of IBM. Therefore, a short position in IBM reduces the severity of the negative

log returns of the portfolio caused by the large negative logreturns of Intel.

We compare these results with the optimal portfolios based on the bivariate normal

model. We obtained the estimates of the parameters of the bivariate normal distribution

that we present in Table 7.13. Comparing these estimates withthe parameter estimates
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Table 7.13:Parameters of the bivariate normal model of IBM and Intel.

µ̂IBM =2.19·10−4 σ̂IBM =0.01888

µ̂Intel =1.074·10−3 σ̂Intel =0.02729

Correlation:ρ̂=0.373

that we obtained for the distribution of the log returns of the Deutsche Mark and the

Swiss Franc, we see that the linear correlation coefficient is much smaller. This indicates

that the dependence between the log returns of the two stocksis not as strong as the

dependence between the two currencies. We also see that the expected log return of

Intel is almost 5 times as large as the expected log return of IBM. At the same time

the standard deviation of Intel is only about 50% larger thanthe standard deviation of

IBM. The estimates of the ES5% based on the normal model are 0.0387 for the log

return of IBM and 0.0552 for the log returns of Intel. Both numbers are very similar to

the estimates that we obtained based on our model. Based on theparameters in Table

7.13 we calculated the portfolio that minimizes the ESα for given levels of expected log

return. The resulting estimates of the coefficientsβ0, β1 andβ2 are:

Expected Shortfall at 5% = 51.235 · (Expected Return)

Number of shares fo IBM = −120.26 · (Expected Return)

Number of shares of Intel= 955.8 · (Expected Return)

(7.36)

The optimal portfolios whose expected log return is equal tothe expected log returns

of the two stocks are given in Table 7.14. The results are fairly similar to the results

based on our model. We short about one share of IBM for every eight shares of Intel

that we buy. The reasons appears to be to be the same as for the short positions of IBM

in the optimal portfolios based on our model. Similar to the case of the Deutsche Mark

and the Swiss Franc, the estimates of the ESα of the optimal portfolios are smaller than
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Table 7.14:Optimized portfolios of IBM and Intel based on a bivariate normal model.

Expected Return Units of IBM Units of Intel Portfolio ES5%

1. 2.0346·10−4 -0.0245 0.1945 0.0104

2. 1.1058·10−3 -0.1330 1.0569 0.0567

the estimates that we obtained with our model. This is again due to the lighter tails of

the bivariate normal model. However, the coefficientsβ0 are very close to each other, so

that the corresponding estimates of the risk measure based on the two different models

are very close.

For the meta t distribution we obtained the parameter estimates given in Table 7.15.

Table 7.15:Parameters of the meta t distribution of IBM and Intel

ν̂IBM = 3.92 µ̂IBM = 3.36 · 10−5 σ̂IBM = 0.01302

ν̂Intel = 5.26 µ̂Intel = 1.2731 · 10−3 σ̂Intel = 0.021304

Degrees of freedom of copula: νC = 7.6499

Correlation coefficient of P: ρ = 0.408

We see that the expected log return of Intel is much larger than the one of IBM. We

also see that the degrees of freedom of the distribution of Intel is considerably larger

than the one of IBM. This means that the Pearson Type VII distribution indicates that

the tails of Intel are much lighter than the tails of IBM. This confirms our findings based

on the estimates of the shape parameters of the GPD models. However, the estimates of

the tail index are very different. We mentioned before that the tail indexes that the GPD

fits to the left tail of IBM and Intel implied are 2.3 and 3.3 respectively. These estimates

are significantly smaller than the tail index estimates listed in Table 7.15.

Since the left tail of Intel seems to have the lighter tail according to the Pearson
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Type VII model, it is a little surprising to see that the ES5% of IBM is actually smaller.

It’s value is 0.0421, compared with the ES5% of Intel, which is 0.0586. Both estimates

are about of the same size as the estimates that we obtained based on our model and

the normal model. As for the parameter estimates of the copula, both the degrees of

freedom and the correlation coefficient indicate, that the dependence is not as close as

the dependence of the two currencies considered in the last section.

Based on these parameters we calculated the portfolios that minimize the ES5% for

different levels of expected log return. Based on these portfolios, we obtained the fol-

lowing estimates for the coefficientsβ0, β1 andβ2 as before:β0, β1 andβ2 are:

Expected Shortfall at 5% = 42.649 · (Expected Return)

Number of shares fo IBM = −438 · (Expected Return)

Number of shares of Intel= 796.98 · (Expected Return)

(7.37)

We again give the two optimal portfolios, whose expected logreturn equals the expected

log return of the two stocks in Table 7.16. As for the portfolios based on our model

Table 7.16:Optimized portfolios of IBM and Intel for different levels of expected log

return based on the meta t model.

Expected Return Units of IBM Units of Intel Portfolio ES5%

1. 2.0346·10−4 -0.0891 0.1622 0.0087

2. 1.1058·10−3 -0.4847 0.8813 0.0472

and the bivariate normal distribution, we short the stock ofIBM and long Intel’s stock.

However, the ratio of the two positions is different from theprevious two cases. We only

long about 2 shares of Intel for every share of IBM that we short. A possible explanation

comes again from the fact that the expected log return of IBM ismuch smaller than the

one of Intel, while its risk measure is only moderately smaller. It is therefore the best
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strategy to short the stock of IBM in an attempt to reduce the impact of the negative

large log returns of the stock of Intel on the log return of theportfolio.

We again compared the resulting portfolios empirically thesame we compared the

corresponding portfolios of the Deutsch Mark and the Swiss Franc. The optimal port-

folio with an expected log return of 3.3175·10−3, based on our model, has an empirical

ES5% of 0.1848. The corresponding estimated ES5%, based on our model, is 0.1802.

The average log return of the portfolio is 3.2034·10−3. The optimal portfolio based on

the normal model has a slightly larger empirical ES5% of 0.1910 and an average log

return of 3.317·10−3. The estimated ES5% based on the normal model for that portfolio

is however only 0.16997. Finally the optimal portfolio based on the meta t model has

a smaller empirical ES5% of 0.15027. Its estimated ES5% based on the meta t model is

0.14149. The average log return is however also much smaller, namely 2.5203·10−3.

The portfolios based on our model and the bivariate model areapproximately equiva-

lent. The optimal portfolio based on the normal model, however, has an empirical risk

measure that is 12% larger than predicted by the normal model. The model based on the

meta t distribution suffers from the fact that it does not achieve the desired expected log

return. This is again a consequence of the unprecise estimator for the location parame-

ter. We observed these shortcomings of the normal model and the meta t model already

in the previous section for the Deutsche Mark and the Swiss Franc.

7.4 Comparison of the Models Using BMW and Siemens Stock Re-

turns

In order to better compare the three different models, we used the BMW-Siemens dataset

to conduct an empirical study by splitting the dataset. We estimated the parameters
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of the three models using the first 70% of the observations. Werefer to this dataset

with a sample size of 4302 as the “model building sample”. We calculated the optimal

portfolios based on these models. We then evaluated the performance of these portfolios

using the remaining 30% of the observations in the dataset. The dataset containing these

observations is referred to as the “validation sample”. We calculated the portfolios that

minimize the ES5%. In addition, we also calculated the portfolios that minimize the

ES1% and compared the performance of these portfolios as well.

7.4.1 Parameter Estimation and Calculation of the Optimal Portfo-

lios

We first determined the appropriate model for the spectral measure of the joint distribu-

tion. Based on a Stărică plot, we determined the number of upper order statistics used in

the estimation of the spectral measure. We found thatk = 60 was the best choice. The

ranks method selected 207 data points. We chose a mixture model with 7 components,

based on the results from the Likelihood Ratio test with a significance level of 1%. The

parameters estimates of the model are given in Table 7.17. The BIC suggested a model

with 6 components, while the LR test with a significance levelof 5% and the AIC sug-

gested 8 components. We see that there are 5 components, numbered 1,3,4,5 and 7 in

Table 7.17, modelling the clusters of the points found near the directions of the four axis

of the cartesian coordinate system. Components 5 and 7 model the cluster located at the

negative y axis. We have two components, numbered 2 and 6 modelling the dependence

in the first and third quadrant, respectively.

The parameter estimates of the marginal models of the tail component of the model

are listed in Table 7.18. The estimates of tail indexes of theleft tail, based on the GPD

models, are 5.4 for BMW and 3.1 for Siemens. The right tail of BMWalso appears to
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Table 7.17:Parameters of the Spectral Measure of BMW and Siemens

Mean Direction κ weight

1. 0.0539 217.60 0.1755

2. 0.9680 5.49 0.1892

3. 1.5408 600.21 0.1425

4. 3.2584 82.66 0.1638

5. 4.6739 697.24 0.0839

6. 4.0272 10.80 0.1778

7. 4.5089 427.19 0.0673

Table 7.18:Parameters of the Marginal Model of the tails of BMW and Siemens

BMW: νr ξr βr νl ξl βl

0.0394 0.2048 0.0113 0.0386 0.1852 0.0112

µT σT p1 p2

-0.0045 0.0345 0.2335 0.2041

Siemens: νr ξr βr νl ξl βl

0.0285 -0.0156 0.0087 0.0284 0.3159 0.0086

µT σT p1 p2

-0.0043 0.0264 0.2376 0.2029
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be regular varying. The corresponding tail index estimate based on the GPD model is

about 4.9. On the other hand, the estimate of the shape parameter for the right tail of

Siemens is negative. This indicates, that the tail has a finite right endpoint. The finite

right endpoint of the GPD with parametersνr = 0.0285, ξr = −0.0156 andβr = 0.0087

is 0.5848. This is well outside of the range of the data, as thelargest log return for the

stock of Siemens in the model building dataset is 0.0730. Thesituation is thus similar

to the case of the right tail of the Swiss Franc, discussed in Section 7.3.1.

Finally, the parameters of the model of the body of the distribution are listed in Table

7.19. The numbers are similar to the ones we observed in the case of the log returns of

Table 7.19:Parameters of the body of the Deutsche Mark and the Swiss Franc

BMW Siemens

Mean 4.18·10−4 3.41·10−4

Std. Dev. 0.0117 0.0090

Correlation 0.5527

Weight of the body 0.9519

IBM and Intel.

Based on our model, the stock of BMW has an expected log return of3.64·10−4. The

expected log return of the stock of Siemens is 2.31·10−4. The ES5% of the log returns of

BMW is 0.0337. The corresponding estimate for the ES1% is 0.0577. For Siemens, the

corresponding estimates are 0.0260 for the ES5% and 0.0450 for the ES1%. The stock of

BMW is riskier, but also has a larger expected log return than the stock Siemens.

Based on this model, we determined the optimal portfolios forseveral different levels

of expected log returns. Based on these results, we found the following relationships

between the expected log return of the portfolio and the positions in the optimal portfolio
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and the corresponding risk measure.

Expected Shortfall at 5% Level= 90.1216 · (Expected Return)

Number of Shares of BMW = 2088.5 · (Expected Return)

Number of shares of Siemens = 1028.8 · (Expected Return)

(7.38)

The optimal portfolios therefore contain 2.0298 shares of BMW for every share of

Siemens. Table 7.20 gives an overview over the optimal portfolios whose expected

log returns are equal to the ones of the two stocks, based on our model. The expected

log return of the first portfolio is equal to the expected log return of Siemens and the

second has the same expected log return as BMW.

Table 7.20:Optimized portfolios of BMW and Siemens for different levels of expected

log return based on our model.

Expected Return Shares of BMW Shares of Siemens Portfolio ES5%

1. 2.31·10−4 0.4835 0.2381 0.02086

2. 3.64·10−4 0.8350 0.3752 0.03287

Expected Return Shares of BMW Shares of Siemens Portfolio ES1%

1. 2.31·10−4 0.4820 0.2404 0.03657

2. 3.64·10−4 0.7595 0.3788 0.05763

For the portfolios that minimize the ES1%, we obtained the following estimates of

the coefficients between the expected level of log return andthe risk and the number of

shares of each stock in the optimal portfolios.

Expected Shortfall at 1% Level= 158.01 · (Expected Return)

Number of Shares of BMW = 2082.3 · (Expected Return)

Number of shares of Siemens = 1038.6 · (Expected Return)

(7.39)
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This means that for every share of Siemens we have to include 2.0049 shares of BMW in

a optimal portfolio. We see that the optimal portfolios withrespect to the ES5% and the

ES1% are very similar. Table 7.20 again provides an overview overthe optimal portfolios

whose expected log returns are equal to the expected log returns of the two stocks. We

see that for the portfolios whose expected log returns matchthe expected log return of

Siemens, the risk is only about 80% of the risk of the stock of Siemens, both for the

ES5% and the ES1%. On the other hand, the portfolios whose expected log returnequals

the expected log return of BMW, the risk has only been very slightly reduced.

For the bivariate normal model, we obtained the parameter estimates given in Table

7.21. Based on these numbers we estimate that the ES5% of the log returns of BMW is

Table 7.21:Parameters of the bivariate normal model of BMW and Siemens.

µ̂BMW = 3.54·10−4 σ̂BMW =0.01501

µ̂Siemens = 2.38·10−4 σ̂Siemens =0.01138

Correlation:ρ̂=0.60077

0.0306 and that the ES1% is 0.0396. The corresponding numbers of the log returns of

Siemens are 0.023226 for the ES5% and 0.03008 for the ES1%. While the estimates of

the ES5% are fairly close to the ones that we obtained based on our model, the estimates

of the ES1% are much smaller. This is due to the fact that our model has regular varying

left tails, while the tails of the normal model are much lighter.

As for our model, BMW is the riskier position but also has a greater expected log

return. The correlation between the log returns of the two stocks is larger than what we

observed for IBM and Intel, but still smaller than the one between the Deutsche Mark

and the Swiss Frank.

We obtained the following estimates of the relationships between the expected log
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return of the portfolio and the positions in the optimal portfolio and the corresponding

risk measure.

Expected Shortfall at 5% Level= 81.25 · (Expected Return)

Number of Shares of BMW = 1832.2 · (Expected Return)

Number of shares of Siemens = 1472.5 · (Expected Return)

(7.40)

We see that the proportion between the number of shares of BMW and the number

of shares of Siemens is fairly different from the one we saw in(7.38) for the optimal

portfolios based on our model with respect to the ES5%. The optimal portfolio contains

1.24 shares of BMW for every share of Siemens. The estimated ES5% is also consistently

lower than the estimates based on our model, because our model has heavier tails than

the normal model. As we mentioned before, the proportion of the number of shares is

the same in the portfolio minimizing the ES1% as it is in the portfolio minimizing the

ES5%. The relationship between the ES1% and the expected log return is given by the

following equation.

Expected Shortfall at 1% Level= 105.28 · (Expected Return) (7.41)

As for the ES5%, the estimates of the ES1% based on our model are larger than the ones

based on the normal model. For the ES5%, the estimates of the risk based on our model

are approximately 10% larger than the ones based on the normal model. For the ES1%

the estimates based on our model are even 50% larger than the ones based on the normal

model. We illustrate this again in Table 7.22 by listing the optimal portfolios based on

the normal model with the same expected log return as the onesin Table7.20.

For the meta t distribution model, we obtained the parameters estimates presented in

Table 7.23. Both marginal distributions have a similar tail index close to 3. We see that

the location parameter of the model of Siemens is larger thanthe one of BMW. Contrary
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Table 7.22:Optimized portfolios based on the normal model.

Expected Return Shares of BMW Shares of Siemens Portfolio ES5%

1. 2.31·10−4 0.4241 0.34086 0.018808

2. 3.64·10−4 0.6683 0.53713 0.029638

Expected Return Shares of BMW Shares of Siemens Portfolio ES1%

1. 2.31·10−4 0.4241 0.34086 0.024371

2. 3.64·10−4 0.6683 0.53713 0.038404

Table 7.23:Parameters of the meta t distribution of BMW and Siemens

ν̂BMW = 2.84 µ̂BMW = 9.61 · 10−5 σ̂BMW = 0.00935

ν̂Siemens = 3.033 µ̂Siemens = 3.176 · 10−4 σ̂Siemens = 0.00727

Degrees of freedom of copula: νC = 4.9437

Correlation coefficient of P: ρ = 0.63188
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to the other models, the meta t distribution model hence claims that Siemens has a larger

expected log return than BMW. Based on the model for the marginal distributions the

ES5% of BMW is 0.0375 and the ES1% is 0.0694. Siemens has an estimated ES5% of

0.0276 and the ES5% is estimated as 0.0499. All these numbers are comparable with the

numbers we obtained based on our model. The major differencecompared to the other

two models is again found in the estimates of the expected logreturn.

Based on the parameter estimates of Table 7.23, we calculatedthe optimal portfolios

for several different levels of expected log return. From these we obtained the following

estimates of the relationships between the expected log return of the portfolio and the

positions in the optimal portfolio and the corresponding risk measure, based on the meta

t model.

Expected Shortfall at 5% Level= 77.22 · (Expected Return)

Number of Shares of BMW = −1232 · (Expected Return)

Number of shares of Siemens = 3521.6 · (Expected Return)

(7.42)

For the portfolios that are optimal with respect to the ES1%, the corresponding equations

are

Expected Shortfall at 5% Level= 139.19 · (Expected Return)

Number of Shares of BMW = −1268.2 · (Expected Return)

Number of shares of Siemens = 3532.5 · (Expected Return)

(7.43)

These numbers are very different than the ones based on our model and the normal

model. The stock of BMW has a smaller log return and a larger risk compared to the

stock of Siemens. It is therefore not surprising to see that both for the ES5% and the

ES1% the optimal portfolios are achieved by holding a short position in the stock of

BMW and a long position in the stock of Siemens. The proportions between the number

of shares held in an optimal portfolio are very similar in both cases. For every share



251

that we sell short in a portfolio that is optimal with respectto the ES5%, we buy about

2.85 shares of the stock of Siemens. For the portfolios that are optimal with respect

to the ES1%, the corresponding ratio is 2.25. The coefficient between the expected log

return and the risk of the optimal portfolio for the ES1% is larger than for the normal

model. Surprisingly, the same is not true for the coefficientfor the ES5%, which is

smaller than its counterpart based on the normal model. Both coefficients are smaller

than the corresponding coefficients based on our model. As wementioned before, this

means that the ESα estimates based on the meta t distribution model are smallerthan

the ones based on our model, but the ES1% estimates are larger than the ones based on

the normal distribution model. This point is illustrated inTable 7.24, which lists the

optimal portfolios and the corresponding estimates of the risk measures, based on the

meta t distribution model, for the same expected log returnsas in Table 7.20 and 7.22.

Table 7.24:Optimized portfolios based on the meta t model.

Expected Return Shares of BMW Shares of Siemens Portfolio ES5%

1. 2.31·10−4 -0.2851 0.8152 0.017875

2. 3.64·10−4 -0.4494 1.2846 0.028168

Expected Return Shares of BMW Shares of Siemens Portfolio ES1%

1. 2.31·10−4 -0.29357 0.81772 0.032221

2. 3.64·10−4 -0.46261 1.2886 0.050773
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7.4.2 Moment of Truth: Comparison of the Performance of the

Models

We now compare the performance of the different portfolios based on their performance

using the validation sample. It consists of the last 1844 observations of the entire dataset.

Remember that these observation were not included in the model building sample. Fig-

ure 7.3 shows a scatter plot of the model building and the validation sample. We see that
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Figure 7.3:Scatter plot of the “model building” and the “validation” sample of BMW

and Siemens

the dependence in the tails seems to be more pronounced in thevalidation sample than

in the model building sample. An indication are the joint large positive and negative log

returns visible in the right hand plot of Figure 7.3.

For each of the optimal portfolios that we found in the last chapter, we calculated

the empirical mean and the corresponding empirical estimate of the risk measure based
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on the observations in the validation sample. Since the sample size of the validation

sample is 1844, the empirical estimates of the ES5% are based on the 92 largest negative

log returns of the corresponding portfolios. This is a sample size that gives us confidence

about the validity of the corresponding estimates. On the other hand, the ES1% is only

based on 18 observations. Since we did not regard this samplesize as sufficient to

obtain reliable estimates of the ES, we additionally estimated both risk measures based

on a parametric model. We based these estimate on a GPD fit of the left tail of the

log returns of the portfolio. We found that GPD fits based on the 100 largest negative

observations provided fits to the tail distributions.

Since the portfolios and the resulting risk measures dependlinearly on the expected

log return, the specific level expected log return used in theanalysis is irrelevant. We

decided to use an expected log return of 3.64·10−3. That is 10 times the estimated ex-

pected log return of the log return of BMW, based on our model. Table 7.25 gives an

overview over the performance of the different optimal portfolios in the validation sam-

ple. We see that none of the three portfolios reaches the expected log return, 3.64·10−3,

Table 7.25:Performance of the optimal portfolios with respect to the ES5%

Average Return Emp. ES5% GPD ES5% Predicted ES5%

Our Model 2.9317·10−3 0.31981 0.32063 0.3287

Bivariate Normal 2.8937·10−3 0.32852 0.32918 0.2960

Meta t 0.6024·10−3 0.2506 0.25164 0.2817

that was predicted by the respective models. The average logreturns of the portfolios

based on our model and the normal model are fairly close, while the portfolio based on

the meta t distribution has a much smaller average log return. We see that the empirical

estimates of the ES5% and the estimates of the ES5% based on the GPD models are very
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similar. This indicates that the estimates are indeed reliable and accurate. The differ-

ences between the estimates for the different portfolios are of a larger magnitude than

the differences between the empirical estimates and the GPDbased estimates. The op-

timal portfolio based on our model has a larger average log return and at the same time

a smaller ES5% than the optimal portfolio based on the normal model. Even though the

differences are not dramatic, it shows that the portfolio based on our model outperforms

the one based on the normal model. As for the portfolio based on the meta t model,

its ES5% is about 23% smaller than the ES5% of the other two portfolios. But at the

same time, its expected log return is only about 20% of the corresponding log returns

of the other two portfolios. It is also striking that only ourmodel was able to accurately

predict the ES5%, based on the model building sample. The corresponding numbers,

that we have already mentioned above, are again listed in thelast column of Table 7.25.

While the normal model has an ES5% that is about 11% larger than predicted, the portfo-

lio based on the meta t model overestimates the ES5%. The estimates of the ES5% based

on the validation sample is only about 89% of the predicted ES5% based on the model

building sample.

Table 7.26 gives an overview over the performance in the validation sample of the

different portfolios that were optimized with respect to the ES1%. The picture is very

Table 7.26:Performance of the optimal portfolios with respect to the ES1%

Average Return Emp. ES1% GPD ES1% Predicted ES1%

Our Model 2.9302·10−3 0.55821 0.57654 0.57638

Bivariate Normal 2.8937·10−3 0.57687 0.59411 0.38404

Meta t 0.5678·10−3 0.41589 0.4281642 0.50773

similar for the portfolios that were optimized with respectto the ES1%. The differences
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between the models became much more accentuated. The only model that accurately

predicted the ES1% based on the model building sample is our model. The difference

between the predicted ES1% and the estimates of the ES1% based on the validation are

very small.

The normal model now severely underestimates the risk. Thisdue to the fact that the

normal model underestimates the heaviness of the tails. It assumes, that the portfolio

distribution has a normal distribution. In reality the lefttail is regular varying. Based on

our GPD fits, we found that all portfolios have a regular varying left tail with tail indexes

between 2.5 and 3. As a consequence the estimates of ES1% based on the validation

sample is about 55% larger than predicted by the normal model.

The meta t model severely overestimates the risk of the corresponding optimal port-

folio. As we saw for the result with respect to the ES5%, the portfolio based on the meta

t model has an average log return that is not even close to the expected log return that

was predicted my the meta t model. We already mentioned that the estimation of the

expected log return is very unreliable in the case of the metat model. This is the reason

for the poor performance of the portfolio based on the meta t model.

In conclusion, we see that our model based on the spectral measure performs much

better than the other two models. While the optimal portfolios based on the normal

model are fairly similar to the ones based on our model, they seem to have a slightly

higher risk. The main deficit of the normal model is that it severely underestimates the

risk of the portfolio, because the tails of the model are muchlighter than the actual

tails of the data. The meta t model is not a valid choice in the present form, since the

estimated expected log returns of the marginal components are unreliable. This leads

to portfolios that do not achieve the expected log return they are designed to have. In

addition, despite having a much smaller average log return,they have a risk that is
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comparable in size to the risk of the portfolios based on our model and the normal

model.
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P. EMBRECHTS, C. KLÜPPELBERGand T. MIKOSCH (1997): Modelling Extremal

Events for Insurance and Finance. Springer Verlag, Berlin.

P. EMBRECHTS, F. LINDSKOG and A. MCNEIL (2003): Modelling Dependence with

Copulas and Applications to Risk Management.In: Handbook of Heavy Tailed Dis-

tributions in Finance, ed. S. Rachev:Chapter 8: 329–384.

P. EMBRECHTS, P. MCNEIL and D. STRAUMANN (1999): Correlation: Pitfalls and

alternatives.RISK MagazineMay:69–71.

P. EMBRECHTS, P. MCNEIL and D. STRAUMANN (2002): Correlation and Dependence

in Risk Management: Pitfalls and alternatives.In: Risk Management: Value at Risk

and Beyond, ed. M.A.H. Dempster Cambridge University Press,Cambridge:176–

223.

N. FISHER (1982): Robust Estimation of the Concentration Parameter of Fisher’s Dis-

tribution on the Sphere.Applied Statistics31:152–154.

M. FRASER, Y. HSU and J. WALKER (1981): Identifiability of Finite Mixtures of von

Mises Distributions.Annals of Statistics9:1130–1131.



260

P. GLASSERMAN, P. HEIDELBERGER and P. SHAHABUDDIN (2002): Value-at-Risk

with Heavy-Tailed Risk Factors.Mathematical Finance12:239–269.

P. GREEN (1995): Reversible Markov Chain Monte Carlo Computation and Bayesian

Model Determination.Biometrika82:711–732.

P. GREEN and S. RICHARDSON (1997): On Bayesian Analysis of Mixtures with an

Unknown Number of Components.Journal of Royal Statistical Society B59:731–

792.

H. HAUKSSON, M. DACOROGNA, T. DOMENIG, U. MULLER and G. SAMORODNIT-

SKY (2001): Multivariate extremes, aggregation and risk estimation. Quantitative

Finance1:79–95.

M. I SHIGURO, Y. SAKAMOTO and G. KITAGAWA (1997): Bootstrapping Log-

Likelihood and EIC, an Extension of AIC.Annals of the Institute of Spastical Math-

ematics49:411–434.

H. JOE (1997): Multivariate Models and Dependence Concepts. Chapman and Hall,

London.

H. JOE, R. SMITH and I. WEISSMAN (1992): Bivariate Threshold Methods for Ex-

tremes.Journal of the Royal Statistical Society, Series B54:171–183.

P. JUPPand K. MARDIA (2000):Directional Statistics. Wiley Series in Probability and

Statistics, New York.

J. KENT (1978): Limiting Behavior of the von Mises-Fisher Distribution. Math. Proc.

Cambridge Phil. Soc.84:531–536.



261

J. KENT (1983): Identifiability of Finite Mixtures for DirectionalData.Annals of Statis-

tics 11:984–988.

C. KLUEPPELBERGand A. MAY (1998): The dependence function for bivariate ex-

treme value distributions - a systematic approach. Technical Report 6, available at

http://www-lit.ma.tum.de/veroeff/quel/989.60009.pdf.

S. KULLBACK and R. A. LEIBLER (1951): On Information and Sufficiency.Annals of

Mathematical Statistics22:79–86.

M. L EADBETTER, G. LINDGERN and H. ROOTZÉN (1983): Extremes and related

properties of random sequences and processes. Springer, Berlin.

B. LEROUX (1992): Consistent Estimation of a Mixing Distribution.Annals of Statistics

20:1350–1360.

B. L INDSAY and P. BASAK (1993): Multivariate Normal Mixture: A fast consistent

Method of Moments.Journal of the American Statistical Association88:468–476.

Y. L O, N. MENDELL and D. RUBIN (2001): Testing the number of components in a

normal mixture.Biometrica88:767–778.

F. LONGIN and B. SOLNIK (1998): Correlation Structure of International Equity Mar-

kets During Extremely Volatile Periods. Tech Report 646 of HEC Paris, available at

http://ideas.repec.org/p/ebg/heccah/0646.html.

K. M ARDIA (1972): Statistics of Directional Distributional Data. Academic Press,

London and New York.

K. M ARDIA (1975): Statistics of Directional Data (with discussion).Journal of the

Royal Statistical Society Series B37:349–393.



262

G. MCLACHLAN and D. PEEL (2000):Finite Mixture Models. Wiley, New York.

R. REDNER (1981): Note on the consistency of the maximum likelihood estimate for

nonidentifiable distributions.The Annals of Statistics9:225–228.

R. REDNER and H. WALKER (1984): Mixture Densities, Maximum Likelihood And

The EM Algorithm.SIAM Review26:195–238.

S. RESNICK (1986): Point processes, regular variation, and weak convergence..

Springer, New York.

S. RESNICK (2002): On the Foundations of Multivariate Heavy Tail Analysis. Technical

Report of the School OR&IE at Cornell University.
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