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For seventy years ecologists have debated to what extent competition affects 

the composition of ecological communities.   At one extreme, species have been 

proposed to assemble independently of each other, while at the other extreme, 

competition and other interspecific interactions have been proposed to account almost 

solely for the composition of communities.  Although the debate bears broadly on 

applied and basic ecology, it has been challenging to resolve.   

The most practical approach toward resolving the debate has been null model 

testing.  The testing begins by assuming a null hypothesis that is reflective of an 

absence of competitive effects, which is then used to make a statistical prediction 

about the observed data.   If observations are inconsistent with the prediction, then the 

null hypothesis is rejected, and effects of competition are inferred.  

Unfortunately, as I show here, all existing null model tests are biased or non-

robust.  Although both qualities are problematic, the non-robustness is particularly 

troubling, because it means that when assumptions of the tests cannot be verified – as 

is usually the case – the tests will incorrectly indicate competitive effects unacceptably 

often.  Thus, the tests are unreliable.   

To fix the problem, I derive robust tests.  Letting i and j denote the ith and jth 

colonists to arrive at a site, respectively, and W  the event that i and j belong to the ij

 



same “unit” (e.g., functional group, genus), I derive how partitions of colonists into 

units will be distributed if for all i and j, W  is conditionally independent of whether i 

and j share unit membership with the other colonists.  Because the distribution can be 

derived without parametric assumptions, it can be used to test robustly for competitive 

effects.  

ij

 I conclude by applying one of the tests to seven large data sets.   In no cases 

does this test suggest effects of competition, although it does sometimes suggest 

effects of other interspecific interactions (e.g., facilitation).   Overall, the predicted 

distribution accounts for over 95% of the variation in frequencies of partitions.     

Hence, the results suggest that although interspecific interactions may discernibly 

affect the composition of communities, those effects are generally minor.
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— CHAPTER I — 

NULL MODEL TESTS OF SPECIES CO-OCCURRENCE:  

NULL HYPOTHESES AND BIOLOGICAL IMPLICATIONS 

 

Abstract     Null model tests have been extensively used to draw inferences 

from presence-absence data about effects of interspecific interactions on the 

composition of ecological communities.  All tests published prior to 1996 test the 

same null hypothesis, that species occur independently.    However, Gotelli and 

Graves (1996, Null models in ecology, Smithsonian Institution Press) and Gotelli 

(2000, Ecology, 81: 2606-2621) created several tests whose null hypothesis is less 

clear.   Here I derive mathematical criteria to check whether these tests allow 

evaluation of the standard null hypothesis.   I show that under many circumstances, 

they do not – their null distributions are inconsistent with the null hypothesis.   

However, the tests may allow evaluation of other null hypotheses relevant to 

understanding the effects of interspecific interactions on community composition. 

 

 

INTRODUCTION 

 

Do interspecific interactions affect large-scale patterns of species co-

occurrence?   The issue has proven contentious.   Diamond (1975) suggested that they 

do, arguing that competition best explains the non-overlapping distributions of many 

bird species in the Bismarck Archipelago.   However, Connor and Simberloff (1979) 

contended that such non-overlapping distributions can be expected by chance, and that 

interspecific interactions provide an unnecessarily complex explanation.   Although 

1 
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the debate remains unresolved (e.g., Stone et al 2000, Brown et al 2002), Connor and 

Simberloff (1979) popularized an approach for addressing the matter, null model 

testing. 

The data used in Connor and Simberloff’s (1979) test consist of lists of species 

present at sets of sites.   These “presence-absence data” are widely available (e.g., 

Patterson 1999), and can be obtained relatively easily.  To summarize the data, a 

“presence-absence matrix” is constructed, in which rows and columns represent 

species and sites, respectively.  If a particular species was observed at a particular site, 

a 1 is entered in the corresponding cell of the matrix; otherwise a 0 is entered.  Connor 

and Simberloff’s (1979) test begins by assuming that interspecific interactions did not 

affect the co-occurrence pattern.    This assumption is translated into a mathematical 

statement, or null hypothesis, which, along with additional assumptions about 

colonization, comprises the “null model.”    The null model is then used to generate a 

“null distribution” of presence-absence matrices, which is consistent with an absence 

of interactive effects.  If, as measured by a test statistic, the observed presence-absence 

matrix falls in a tail of this distribution, then the null hypothesis is rejected, and 

interspecific interactions are inferred to affect co-occurrence patterns. 

Recently, Gotelli and Graves (1996) and Gotelli (2000) (hereafter referred to 

as “Gotelli and Graves”) proposed four new null models [“SIM5” – “SIM8” in Gotelli 

(2000)] and corresponding tests. To simulate distributions of presence-absence 

matrices, the models sequentially place species according to specified probabilities, 

which vary depending on the placement of the preceding species (see below).  

Superficially, these models are plausible – species are placed “randomly.”   

Despite the plausibility of the models, their assumptions and null hypotheses 

have never been stated explicitly.  This lack of explicitness presents two problems.  

First, like all statistical tests, Gotelli and Graves’s tests are vulnerable to two types of 
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errors:  the null hypothesis can be rejected when it is true, or the null hypothesis can 

be accepted when it is false.  In order to measure the rates of these errors and hence to 

assess the reliability of the tests, the assumptions and null hypothesis need to be 

defined explicitly [Bradley 1968; incorrect rates are reported in Gotelli (2000)].   

Second, in null model testing, biological inferences are drawn from rejecting the null 

hypothesis.  Thus, if the null hypothesis is unclear, any biological inferences will 

likewise be unclear.   

Here, I investigate the null hypotheses of Gotelli and Graves’s models.    To do 

so, I begin by considering the null hypotheses of other null model tests, which are of 

two kinds.  The first kind states that species are distributed independently of each 

other (Connor and Simberloff 1983, p. 463; Stone and Roberts 1990, p. 76).  This null 

hypothesis is appropriate because interspecific interactions should cause species to 

occur non-independently – for instance, with competition, species should be less likely 

to occur when their competitors are present.  The second null hypothesis states that 

species assort “randomly.”   In some cases, this null hypothesis has been employed to 

address a different biological question, whether or not colonization is stochastic 

(Connor & Simberloff 1978).  In other cases, “randomness” and “independence” are 

used synonymously, although they have different meanings (e.g., Gotelli and McCabe 

2002; see Stone & Roberts 1990).  Thus, the null hypothesis of randomness is either 

inappropriate or equivalent to the null hypothesis of independence.    

 Herein I show that Gotelli and Graves’s tests do not allow testing of the null 

hypothesis of independence.  A  priori, this finding is reasonable, because in the 

models, given that a particular species occurs at a site, subsequent arrivals have 

modified probabilities of belonging to the other species there.  This finding clarifies 

the tests’ biological implications and allows their error rates to be measured. 
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GOTELLI AND GRAVES’S MODELS 

 

In the model SIM8 (Gotelli and Graves 1996, Gotelli 2000), probabilities are 

first assigned to each cell in the observed presence-absence matrix.  The probabilities 

are chosen to sum to 1, and are proportional to the corresponding row and column 

totals (i.e., they are the product of the corresponding row and column totals, divided 

by the square of the grand total).   Based on these probabilities, the first colonist’s 

identity and location are selected.  The probabilities are then renormalized to exclude 

the possibility of the second colonist belonging to the same species and occurring at 

the same site.     That colonist is placed accordingly, and the process is repeated until 

the simulated and observed numbers of species-occurrences are equal.  Using the same 

initial probabilities, many additional presence-absence matrices are then simulated, to 

create the null distribution.  SIM7 and SIM6 follow the same filling algorithm, but 

have their initial probabilities set either (i) proportional to the row totals, but otherwise 

equal or (ii) proportional to the column totals, but otherwise equal, respectively 

(Gotelli 2000).  In SIM5, columns (sites) are filled independently until the simulated 

and observed species richnesses match at each site, with the initial probabilities within 

each column set proportional to the corresponding row total (Gotelli 2000).   

 

 

THE STANDARD NULL HYPOTHESIS 

 

 To check whether Gotelli and Grave’s models can test the null hypothesis of 

independence, a key nuance of that null hypothesis requires explication.   The nuance 

is illustrated by the null model of Connor and Simberloff (1979), as modified by 
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Wilson (1987).  In this model, the null distribution contains just the presence-absence 

matrices having the observed row and column totals, each with equal probability 

measure.   Hence, if the following presence-absence matrix was observed,  

0 1 0
1 0 1
0 1 0

 


 
 


 , (1) 

then the null distribution would consist of five presence-absence matrices, each 

equally likely: 

    
0 1 0 0 1 0 1 0 0 0 0 1 0 1 0

11 0 1 1 1 0 0 1 1 1 1 0 0 1 1
5

0 1 0 0 0 1 0 1 0 0 1 0 1 0 0
P P P P P
         
         = = = = =         
         
         

.

  (2) 

Interestingly, examining this null distribution leads to an apparent contradiction:  the 

null hypothesis states that species are distributed independently, suggesting that the 

first species should be equally likely to occur at the first site regardless of whether the 

second species occurs there.   However, in the above distribution, the first species 

occurs with probability 0.5 when species 2 is absent, but probability 0 when it is 

present.  One might wonder then, how can this model allow testing of the null 

hypothesis of independence? 

 The answer lies in the fact that the null distribution is conditioned on the 

observed row and column totals.  For convenience, let O  and  be the events that 

the first and second species occur at site 1, respectively, and let  be the event the 

observed row and column totals occur.  Hence, letting O  denote the complement of 

, the model states that  and 

1

2
c

1 2{ | O

2O

C

}2O 1 2{ | , } 0.5cP O O C = ,P O C 0= .  Under conditional 

independence, these two terms would be equal.  However, such independence differs 

from unconditional independence, which states for example that 
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1 2 1 2{ | } { |cP O O P O O= }.   Both conditional and unconditional independence are 

consistent with the verbal statement of the null hypothesis, and both could conceivably 

be used to test for interspecific interactions [Connor and Simberloff’s (1979) model 

does allow testing for the latter].   The distinction between conditional and 

unconditional independence is important in evaluating Gotelli and Graves’s models. 

 

 

EVALUATING GOTELLI AND GRAVES’S MODELS 

 

Like Connor and Simberloff’s (1979) model, SIM5 – SIM8 condition on 

attributes of the sample.  SIM6 – SIM8 condition on the total number of species-

occurrences that were observed, and SIM5 conditions on the column totals of the 

observed presence-absence matrix.    As per the preceding example, a cursory 

examination of null distributions generated by the models reveals that they cannot be 

generally implemented to test for conditional independence.   However, as in Connor 

and Simberloff’s (1979) model, they still may allow testing for unconditional 

independence.   

In this section, I describe a method for checking this latter possibility, and in 

the next sections I apply that method.  Theorem 1 (Appendices A) shows that for a 

model to be usable for testing for unconditional independence, its null distributions 

must possess certain properties.  The properties can be illustrated by an example: 

Suppose that a model gives a null distribution, in which the following 

presence-absence matrices occur with the following probabilities, conditional on 

attributes of the observed presence-absence matrix: 



 7

1 1 1
1 1 0 0.05
1 0 0

P
 
  = 
 
 

, (3) 

1 1 1
1 1 0 0.04
0 1 0

P
 
  = 
 
 

, (4) 

1 0 1
1 1 1 0.01
1 0 0

P
 
  = 
 
 

, (5) 

and 

 . (6) 
1 0 1
1 1 1 0.09
0 1 0

P
 
  = 
 
 

For convenience, denote these matrices M , respectively.   The set 

possesses two useful characteristics:   (i)  and M  share their 

first and second rows, as do  and , and (ii)  and share their third rows, 

as do M  and .   Because of these characteristics, it can be shown that if species 

occur unconditionally independently, then in the model’s null distribution: 

1 through 

4 1M

4M

1 2 3 4{ , , , }M M M M

2 4M

1M

3

2

3M M M

 1

2 4

{ } { }
{ } { }

P P
P P

=
M M
M M

3  (7) 

(Appendices A and B).  Hence, because in this example,  

 1

2 4

{ } 0.05 0.01 { }
{ } 0.04 0.09 { }

P
P P

= ≠ =
M
M M

3P M , (8) 

it follows that the model cannot be used to test the null hypothesis of unconditional 

independence.  Moreover, some (but not all) other quartets of presence-absence 

matrices will have the same property under unconditional independence.     
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METHODS 

 

 By checking null distributions generated by SIM5 – SIM8 for the properties 

predicted by Theorem 1 (Appendix A), I addressed two questions:  First, are the null 

distributions consistent with unconditional independence?  And second, when they are 

inconsistent, what is the magnitude of that inconsistency? 

 

Presence-Absence Matrices Examined 

 

SIM5 – SIM8 give different null distributions, dependent on the dimensions of 

the observed presence-absence matrix and the observed row and column totals.    

Hence, it was of interest to examine the consistency of the models with different 

observed presence-absence matrices.  Figure 1 gives the matrices that were used.    

 

Existence of Inconsistency 

 

 For presence-absence matrices 1-5, I computed empirical distribution functions 

(EDFs) using SIM6 - SIM8.  Additionally, for presence-absence matrices 4-5, I 

computed EDFs using SIM5.    For presence-absence matrices 1-3 and matrices 4-5, 

each EDF was based on  and 3 1  simulated matrices, respectively.  All 

simulations were performed using EcoSim 7.70 Build 120404 (Gotelli & Entsminger 

2001).  This software is commonly used to implement Gotelli and Graves’s models, 

and it simulates null distributions using Monte Carlo techniques. 

62 10× 60×

 To evaluate whether the EDFs were consistent with unconditional 

independence, I checked whether the quartets of presence-absence matrices listed in 
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Figure 1.  Presence-absence matrices that were used to evaluate Gotelli and 
Graves’s models.    Matrices 6-11 were selected from the literature using the 

criteria of Gotelli and McCabe (2002) [respectively: Gotelli and Abele, Kodric-
Brown and Brown 1993, Reed 1980, Bolger et al 1991 (matrices 9 and 10), Culver 
et al 1973].  All other matrices were created artificially.  Matrices are listed in order 

of presentation in the text. 
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1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1 1 1 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 1

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1 1 1

0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0

1 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0

M
at

rix
 5

M
at

rix
 6

M
at

rix
 4

M
at

rix
 3

M
at

rix
 2

M
at

rix
 1
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1 0 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0

1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0

1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0

1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0

1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0

1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0

1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0

1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1

1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0

1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1

1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1

1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1

1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

M
at

rix
 9

M
at

rix
 7

   
 M

at
rix

 8

Fi
gu

re
 1

 (C
on

tin
ue

d)
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1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0 1 0

0 0 1 0 0 1 0 0 0 1

1 1 1 1 1 1 1 0 0 1

0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 0 0 1 1

1 0 1 0 1 1 1 1 0 1

0 1 1 0 1 1 0 0 1 1

0 0 1 1 0 1 0 0 0 1

1 1 0 1 1 1 1 1 1 1

0 1 1 0 1 1 0 0 0 1

0 0 1 1 0 0 0 0 0 1

0 0 1 1 0 0 1 1 1 1 0 0

1 1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 1 1 0 1 0 1 0 0

0 1 1 0 0 0 1 1 1 1 0 0

0 1 1 0 0 0 0 1 0 0 0 1

1 1 1 0 0 0 1 1 1 0 1 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 0 1 0 1

1 0 1 1 1

1 0 0 0 0

1 0 0 0 0

M
at

rix
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5
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at

rix
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9
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3
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Appendix B had equal probability ratios, as predicted by Theorem 1.   The quartets 

were chosen so that no presence-absence matrix occurred in more than one quartet.  

To check the ratios, I applied a generalized likelihood ratio test (GLRT).  Let the total 

number of quartets under consideration be denoted by q, and let 1 4 through i iM M  

denote the presence-absence matrices in quartet i so that by Theorem 1,  

1 3

2 4

{ } { }
{ } { }

i i

i i

P P
P P

=
M M
M M

. (9) 

Moreover, for 1, 2,3,4j = , let ijf denote the simulated frequency of ijM , and let N be 

the total number of presence-absence matrices simulated.  Then it can be shown that 

the generalized likelihood ratio statistic λ  is 

2 4

3 4 1 2
1 3

1 2 3 4

( ) ( ) ( ) ( )

( )

ij i ij i ij i ij i
j j

i i i i i

f f f f f f f f

N f f f f
λ = =

 
+ ⋅ + + + ⋅ + 

 =
 ⋅ + + +
 
 

∑ ∑
∏ . (10)

Moreover, if the equalities of Theorem 1 hold, then 2 ln( )λ− ⋅  will be distributed 

approximately 2χ  with q degrees of freedom (Larsen & Marx 1986).  For all tests, I 

set 0.003α =  to give an overall significance level of 0.05.  If the null hypothesis was 

rejected, I inferred that the corresponding EDF was inconsistent with unconditional 

independence.   

 For presence-absence matrices 6-11, the GLRT was unusable, because well 

over 610 presence-absence matrices needed to be simulated.   However, for the null 

distribution of SIM5, numerical methods yielded exact probabilities (described in the 

next section).   For each presence-absence matrix, I used these probabilities to check 

whether 100 quartets had equal probability ratios as predicted by Theorem 1. 
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Magnitude of Inconsistency 

 

 The magnitude of inconsistency can be quantified by the proportion of quartets 

violating the predictions of Theorem 1.   One approach to measuring this proportion is 

to use EDFs generated by EcoSim.    However, this approach suffers from two 

difficulties: Some quartets share presence-absence matrices, introducing non-

independence, and very large sample sizes ( 1  are needed to ensure adequate 

statistical power.  An alternative approach, which I employ here, is to find exact null 

distributions.   For SIM6 – SIM8, the drawback of this approach is that it can be 

applied only to small presence-absence matrices, because of the number of 

calculations that become necessary.     

60 )

Exact null distributions can be found as follows.  Suppose that the following 

presence-absence matrix is observed: 

1 0
1 1


 


 . (11) 

Then according to SIM8, the probabilities for placing the first colonist are 

11 12

21 22

2 9 1 9
4 9 2 9

p p
p p

   
≡  
  

 . (12) 

(That is, the first colonist has probability 11 2 9p =  of occurring at site 1 and 

belonging to species 1, etc.)  By the definition of SIM8, it follows that the exact null 

distribution is as follows: 

 
, , {12,21,22}

, ,  distinct

0 1
0.2135

1 1 1 1
j k

i
i j k i i j

i j k

p pP p
p p p∈

 
= ⋅ ⋅ =  − − − 

∑  (13) 

 
, , {11,21,22}

, ,  distinct

1 0
0.5079

1 1 1 1
j k

i
i j k i i j

i j k

p pP p
p p p∈

 
= ⋅ ⋅ = 

− − − 
∑  (14) 
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, , {11,12,22}

, ,  distinct

1 1
0.0651

0 1 1 1
j k

i
i j k i i j
i j k

p pP p
p p p∈

 
= ⋅ ⋅ = 

− − − 
∑  (15) 

 
, , {11,12,21}

, ,  distinct

1 1
0.2135

1 0 1 1
j k

i
i j k i i j
i j k

p pP p
p p p∈

 
= ⋅ ⋅ =  − − − 

∑ . (16) 

These arguments directly generalize to larger presence-absence matrices and other 

models. 

For presence-absence matrices 1-5 and 12-23 (Figure 1), I calculated exact null 

distributions for SIM6 - SIM8, and for matrices 4-5 and 20-23, I additionally 

calculated exact null distributions using SIM5.   For each matrix-model combination, I 

confirmed that the exact distributions agreed with EcoSim’s distributions by 

simulating 25,000 presence-absence matrices, and performing goodness-of-fit testing.   

Next, from each exact distribution, I randomly chose a quartet of presence-absence 

matrices.  If Theorem 1 made a prediction about the quartet, I checked the prediction 

by consulting the exact distribution; otherwise I disregarded the quartet.  I repeated the 

process until 1000 prediction-making quartets had been considered for each matrix-

model combination.    I used the observed fractions of theorem-violating quartets to 

estimate the overall violation rates of the models, and calculated 95% confidence 

intervals.   

 

All procedures were implemented using custom-written Visual Basic 6.0 

software.  For all measurements, degenerate presence-absence matrices were omitted 

(Gotelli 2000).  However, it can be shown that if a model violates Theorem 1 with 

omission of degenerate matrices, then it will also violate it without omission (Ladau, 

unpublished results).  
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RESULTS 

 

Existence of Inconsistency 

 

 For each model, at least one of the presence-absence matrices 1-5 gave an EDF 

inconsistent with independence (Table 1).   For all matrices 6-11, SIM5 gave exact 

null distributions inconsistent with independence.   For matrices 6 and 8, every quartet 

examined was inconsistent with independence, while for matrices 7, 9, 10, and 11; 84, 

64, 30, and 99 quartets were inconsistent, respectively.   (Non-random selection of 

quartets precludes inferences about overall rates of inconsistency here.)    

 

Magnitude of Inconsistency 

 

 For presence-absence matrices 1-5 and 12-24, there were no significant 

differences between the exact distributions and the distributions given by EcoSim.   

For at least one matrix, each model generated a null distribution that was consistent 

with the property given by Theorem 1.   However, for SIM6, SIM7, SIM8, and SIM5, 

respectively, on average 34.1%, 0.8%, 50.3%, and 12.9% of the quartets were violated 

per presence-absence matrix.   Additionally, some presence-absence matrices gave 

violation rates as high as 75.2%, 5.7%, 95.7%, and 39.1% for each model, respectively 

(Table 2). 
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DISCUSSION 

 

For many, but not all, presence-absence matrices, my results show that SIM5 – 

SIM8 generate null distributions inconsistent with the null hypothesis of unconditional 

independence.    On theoretical grounds, such a result is expected.  For instance, if all 

row and column totals are equal, the null distributions can be proven consistent with 

the null hypothesis.   However, for most matrices, such consistency is not predicted, 

and as per the results, it is not observed.  Because of the inconsistency, it appears that 

SIM5 – SIM8 cannot generally be applied to test the null hypothesis of independence. 

 Like other tests, the tests using SIM5 – SIM8 map the null distribution of 

presence-absence matrices onto a sampling distribution of statistics, from which the 

critical region is determined (Gotelli 2000).  This mapping is not one-to-one; that is, 

different null distributions may result in the same sampling distributions.  Hence, one 

might object that it is irrelevant to show that the null distributions are inconsistent with 

independence; what is really of concern is inconsistency of the sampling distributions 

with independence.  However, checking the sampling distributions for consistency 

appears impractical – unlike the distributions of matrices, these distributions lack a 

“fingerprint” of independence, or its absence.    Moreover, the mapping appears 

incapable of universally re-introducing independence (J. Ladau, unpublished data).  

Hence, SIM5 – SIM8 are indeed unusable for testing for independence.   

Although rigorously testing for independence with SIM5 – SIM8 is 

impossible, perhaps approximate testing is still possible.  However, precise tests of 

unconditional independence are readily implemented, so even if such testing is 

possible, it is unneeded. 

 In light of these findings, it is appropriate to consider tests employing SIM5 – 

SIM8 not as tests of the standard null hypothesis of independence, but rather as tests 
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of a biologically and mathematically different null hypothesis.  If interspecific 

interactions affect species co-occurrence patterns, then one potential consequence is 

that at a given site, species occurrence probabilities will depend on which other 

species are present – the consequence investigable with the standard null hypothesis.  

However, interspecific interactions could have other consequences as well.   For 

instance, interspecific interactions might cause non-independence not in the arrival of 

species per se, but in the arrival of individuals.  The corresponding null hypothesis – 

that individuals colonize independently – differs quantitatively from the standard null 

hypothesis, and yields differing predictions.  The null distributions generated by SIM5 

– SIM8 can be shown to be consistent with this null hypothesis (Appendix C). 

 Testing the null hypothesis of individual independence could offer two 

benefits.  First, because it and the standard null hypothesis reflect different effects of 

interspecific interactions, testing both null hypotheses could increase the likelihood of 

detecting effects of interspecific interactions.  Second, the Type I and II error rates 

(i.e., reliability) of null model tests are intimately connected to the choice of null 

hypothesis.    Testing the null hypothesis of individual independence could reduce 

these error rates, although this remains to be checked.  

 In sum, understanding what null hypothesis can be tested with SIM5 – SIM8 is 

a key step towards correctly and meaningfully applying these models.  In null model 

testing, it is the null hypothesis that articulates the biological process of interest into 

the mathematics, and only with a detailed knowledge of that articulation can the 

biological implications of the tests be fully appreciated and utilized. 
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— CHAPTER II — 

NULL MODEL TESTS OF SPECIES CO-OCCURRENCE: 

ROBUSTNESS AND POWER 

 

 Abstract     An enduring question in ecology is whether interspecific 

competition affects co-occurrence patterns of species.   Testing null models constitutes 

a popular approach to address the question, but until recently, all tests have proven 

highly controversial, as it was unclear how prone they were to falsely suggesting 

competition (a Type I error) or its absence (a Type II error).  However, recently 

numerous investigators have begun citing procedures and error rates reported by 

Gotelli (2000, Ecology, 81: 2606-2621) to justify the application of certain tests.   

Here, I show that Gotelli’s (2000) procedures have several shortcomings that result in 

underestimation of Type I error rates.   I also show that even if they were correct, 

Gotelli’s (2000) error rates would not have pertained to most of the testing situations 

in which they have been cited.  I also examine the error rates of 76 tests in addition to 

those examined by Gotelli (2000).   Overall, my results suggest that (1) without 

detailed biological information, no existing null model tests may be applicable, and (2) 

even with such information, tests perform inconsistently for different data sets, so 

error rates should be assessed on a case-by-case basis.    

 

 

INTRODUCTION 

  

For seventy years ecologists have debated to what extent competition 

structures ecological communities.   At one extreme, the “Gleasonian” viewpoint 

24 
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posits that species assemble randomly, assorting by chance and abiotic factors 

(Gleason 1926).  At the other extreme, putative “assembly rules” suggest that 

interspecific interactions are responsible for the assortment of species (Diamond 

1975).  Among the interactions, competition is often cited as key (Diamond 1975, 

Gotelli and Graves 1996). 

Differentiating between the two viewpoints has been challenging.  At small 

spatial scales, experiments can provide answers; for instance Connell (1961).  

However, at the scale of communities, experimentation is often impractical and 

unethical – extirpating or introducing species is difficult and disruptive to ecosystems.  

Moreover, interspecific interactions may take hundreds of years to have measurable 

effects (Connor and Simberloff 1986).    

Testing null models constitutes a popular approach to compensate for the lack 

of experimental evidence.   The testing utilizes presence-absence data – lists of 

species present at sets of sites.  Such data are commonly summarized in a presence-

absence matrix, wherein each row represents a species, while each column represents 

a site.  If species i was observed at site j, the i,jth entry of the matrix is a 1; otherwise 

it is a 0.  The tests begin by specifying a null model, which consists of assumptions 

about colonization, and a null hypothesis that is consistent with competition not 

affecting community composition. The null model is then used to generate a 

distribution of presence-absence matrices, from which the probability of seeing a 

statistic summarizing the observed presence-absence matrix or one more extreme is 

calculated.  If the probability is sufficiently low, the null hypothesis is rejected, and an 

effect of competition is inferred.   Within this framework, tests employing different 

null models and different statistics have been developed. 

Like all statistical testing, null model testing is prone to two types of error.  A 

Type I error occurs if the null hypothesis is falsely rejected, here resulting in 
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competitive effects being inferred when they are absent.  A Type II error occurs if the 

null hypothesis is falsely accepted, which will result here in competitive effects being 

dismissed when they are present.   

It is the susceptibility of null model tests to Type I and II errors that has 

prolonged the debate over the effects of competition, as tests indicating competitive 

effects or their absence have been criticized as vulnerable to Type I and II errors, 

respectively (Gotelli 2000, Gotelli 2001).   However, in a key work, Gotelli (2000) 

systematically measured error rates of 36 null model tests, and suggested that some 

could be applied generally, particularly a test employing the null model “SIM9” and 

statistic “C score” (see below).   

Although the suggestions of Gotelli (2000) were circumspect, the error rates of 

Gotelli (2000) have been widely used to justify applying certain tests.   For instance, 

Heino and Soininen (2005) state that they chose SIM9 to examine co-occurrence 

patterns of diatoms because the model “is relatively robust to Type I and Type II 

errors, especially when used with the C-score (Gotelli 2000)” (p. 571).    Numerous 

other investigators similarly cite Gotelli (2000) to support their choice of tests (e.g., 

Mouillot et al 2005, pp. 450-451; Ribichich 2005, pp. 90-91; Chaves and Anez 2004, 

p. 220; Feeley 2003, p. 107).   Gotelli also cites Gotelli (2000).    For example, to 

analyze a myriad of different presence-absence matrices, Gotelli and McCabe (2002) 

write that SIM9 with C score was chosen because it “has good Type I error properties 

and does not reject the null hypothesis too frequently when tested with random 

matrices (Gotelli 2000)” (p. 2093).   Similar citations can be found in Gotelli and 

Ellison (2002; p. 593), Sanders et al (2003; p. 2475), and Gotelli and Rohde (2002; p. 

90).   

Although the practice is widespread, it is unclear whether citing Gotelli’s 

(2000) error rates is sound.    Gotelli (2000) uses non-standard techniques for 
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measuring Type I and II error rates, and effectively makes measurements for only one 

presence-absence matrix.   Here, I show that these non-standard techniques give 

incorrect error rates.  Moreover, even if the rates were correct, I show that they would 

not hold for other presence-absence matrices, as tests perform differently depending 

on the presence-absence matrix being analyzed.  Overall, in contrast to the de facto 

conclusions of Gotelli (2000), I find that in many situations, no existing null model 

tests have adequate Type I and II error rates. 

 

 

TESTS AND PROCEDURES 

  

Description of the Tests Examined by Gotelli (2000) 

  

 To simulate the distributions of presence-absence matrices under the null 

hypothesis, each test examined by Gotelli (2000) uses one of nine null models, or 

“algorithms,” denoted “SIM1”-“SIM9.”  In SIM1, probabilities are initially selected of 

the first colonist belonging to each species and occurring at each site.  That colonist is 

placed accordingly, and then the probabilities are renormalized for the second colonist, 

conditional on it belonging to a new species or occurring at a new site.    After it is 

placed, the procedure is iterated until the total simulated and total observed species-

occurrences match.  The entire procedure is repeated many times to generate the null 

distribution.   SIM6, SIM7, and SIM8 follow identical procedures, but begin with 

different probabilities. In SIM3 and SIM5, colonists are added to one column at a 

time, rather than to the entire matrix, until the simulated and observed column totals 

match.   In SIM2 and SIM4, colonists are added to each row of the matrix until the 

simulated and observed row totals are equal.   Finally, for SIM9, both species-
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occurrences and species richnesses are held equal to the observed totals, with all 

corresponding presence-absence matrices assumed equally likely.   Additional details 

of the models can be found in Gotelli (2000). 

 All of the models besides SIM9 can produce degenerate matrices.   These 

matrices are defined as matrices in which an entire row or column lacks species; 

matrices in which at least one species occurs nowhere or one site lacks species 

(Connor and Simberloff 1983, Gotelli 2000).   Degenerate matrices are omitted from 

null distributions in Gotelli (2000). 

 The different models entail different null hypotheses and assumptions.   In 

SIM1, SIM3, SIM5, SIM6, SIM7, and SIM8, the null hypothesis states that at each 

site, individuals arrive independently of those that are already present there.   For 

SIM2 and SIM4, the null hypothesis states that species occur independently of each 

other, conditional on the number of times each is observed to occur.  Last, for SIM9, 

the null hypothesis asserts that species occur unconditionally independently.  Although 

these null hypotheses differ mathematically and biologically, all permit inferences 

about competitive effects (Chapter I). As for assumptions, SIM1 – SIM8 assume a set 

of probabilities used to place the first colonist.   SIM9 assumes that all species are 

equally likely to occur at all sites.    

 To implement its null model, each test maps the null distributions of presence-

absence matrices onto a sampling distribution of one of four statistics – the 

checkerboard score, C score, number of unique species combinations, or V ratio 

(respectively: Diamond 1975; Stone and Roberts 1990; Pielou and Pielou 1968; 

Robson 1972, Schluter 1984).  The statistics presumably respond to non-independent 

colonization, with competition causing large values for the checkerboard and C score, 

and small values for the number of species combinations and V ratio.   The probability 
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of seeing the observed matrix or one more extreme is determined from the sampling 

distribution of the statistic. 

 

Standard Procedures for Measuring Type I and II Error Rates 

  

 Because the Type I and II error rates are of broad statistical interest, standard 

procedures have been developed for measuring them. 

 Measuring the Type I error rate is simple when assumptions are valid: the rate 

is equal to the significance level (α ).  On the other hand, invalid assumptions may 

cause the true Type I error rate to deviate from α , depending on the test being used, 

value of α , sample size, and nature of the assumption violations (Bradley 1968).  To 

measure Type I error rates under the latter circumstances, a three-step process is 

usually followed:  First, a sampling distribution, or “nominal distribution,” is derived 

assuming the validity of the null hypothesis and model assumptions, and a critical 

region at the nominal significance level (α ) is determined.   Second, another sampling 

distribution is created, assuming the null hypothesis and violated assumptions.   

Taking the latter to be the true “state of nature,” the true significance level is found by 

determining the proportion of statistics from the new distribution that fall in the old 

critical region.   Last, because many potential true states of nature usually exist, 

additional “true distributions” are then often checked (Bradley 1968).  If Type I error 

rates consistently remain near the nominal significance level, a test is said to be 

“robust” (Bradley 1968, Larsen and Marx 1986).  Hence, robustness provides the 

appropriate criterion for distinguishing tests using their Type I error rates.   

 Type II errors can only occur when the null hypothesis is false.  The Type II 

error rate depends on many factors, including the exact nature of the hypothesis 

violation, nominal significance level, and sample size.  Under a false null hypothesis, 
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the error rate also depends on the validity of the model assumptions, but 

measurements are usually nontrivial even with valid assumptions (Bradley 1968, 

Larsen and Marx 1986).  To measure Type II error rates, initially a sampling 

distribution and critical region are initially derived, under the null hypothesis and 

model assumptions.  A second distribution is then created, assuming an alternative 

hypothesis, and the proportion of the statistics that fall in the initial critical region is 

calculated.  This gives the power, which equals 1 –  Type II error rate.  In most 

situations, it is also necessary to check error rates using other relevant alternative 

hypotheses (Bradley 1968).     

Distinguishing tests based directly on their Type II error rates can be subjective 

because the rates depend on the set of alternative hypotheses examined.   An objective 

criterion is provided by bias.   A test is unbiased if it rejects alternative hypotheses at 

least as often as it rejects the null hypothesis when assumptions are true (Knight 

1999).   Unbiased tests are highly preferable to biased ones.   

 

Gotelli’s (2000) Procedures for Measuring Type I and II Error Rates 

 

 Gotelli’s (2000) procedures for measuring Type I and II error rates differ from 

the standard procedures.    To measure Type I error rates, Gotelli (2000) uses the 

following procedure: 

 1) Four sets of 100 “test matrices” are created, using SIM1, SIM2, SIM4, and 

an algorithm in which rows are fixed and columns are proportional to the are of each 

site.  Figure 2 gives the marginal totals used in each case. 

 2) With the same marginal totals, four sets of 1000 matrices using each of 

SIM1 – SIM9 are created.  One of the four aforementioned statistics are then applied 

to each of the sets, creating sampling distributions of each statistic for each algorithm. 
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St. Thomas 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

St. Martin 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

MontSt.errat 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Barbuda 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

St. Kitts 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Grand Cayman 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

St. Croix 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Antigua 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Grenada 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

St. Vincent 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Barbados 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

St. Lucia 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0

Dominica 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

Martinique 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
Guadeloupe 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
Puerto Rico 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0

Jamaica 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

Hispaniola 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1

Cuba 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0
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 3) For each of the original test matrices, each of the four statistics are 

calculated. 

 4) Using the sampling distributions found in step 2, the probability of 

observing the statistic from each test matrix, or one more extreme is found.  The 

relative frequency with which the statistics fall in the upper and lower 5% tails of the 

sampling distribution are recorded, as well as the mean values of the statistics. 

 5) Across all four sets of test matrices, the mean of the frequencies from step 4 

are calculated.   

 6) If the mean relative frequency exceeds 0.1, the corresponding test is 

concluded “susceptible” to Type I errors. 

 To measure Type II error rates, Gotelli (2000) uses the following procedure: 

1) A  presence-absence matrix is created (Figure 3). 2020×

2) In each row, two randomly selected entries are swapped, and the four 

statistics are then calculated. 

3) Each algorithm is run using the new marginal totals where appropriate.  The 

probability of observing the statistic from step 2, or a statistic more extreme is found – 

where “extreme” is taken to mean “larger” for the checkerboard and C scores, and 

“smaller” for the number of unique species combinations and V ratio.     

4) Steps 2 and 3 are iterated nine times, always swapping new entries. 

5) Steps 1-4 are repeated four more times.               

 6) For each statistic and algorithm, the probabilities from step 4 are plotted 

against the number of rows swapped (“noise level”).   Means are used to summarize 

the probabilities from the five runs (i.e., repetitions from steps 4 and 5). 

 7) The means are used to infer Type II error rates:  For a given noise level, 

larger means are taken to indicate greater susceptibility to errors. 
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Row  
Sum

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10

Column 
Sum:

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 200

Sites

Sp
ec

ie
s

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 3.   Hypothetical presence-absence matrix used by Gotelli to measure Type 

II error rates. 
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ERRORS IN MEASUREMENTS 

  

Type I Error Rates 

  

 For the most part, Gotelli’s (2000) procedures parallel standard practice.  

However, contrary to standard practice, Gotelli’s (2000) procedures derive each pair 

of nominal and true distributions not by assuming the same null hypothesis, but by 

employing systematically chosen pairs of null models.   The problem with this 

approach is that some pairs of models entail different null hypotheses.   For instance, 

deriving nominal and true distributions using SIM1 and SIM4, respectively, means 

varying the validity of both the assumptions and null hypotheses, and hence measuring 

a probability unrelated to the Type I error rate.  To measure Type I error rates, only 

pairs of models with the same null hypotheses should be used.     

 In addition to the varying null hypotheses, also problematic is Gotelli’s (2000) 

averaging of Type I error rates across four possible sets of assumption violations.  This 

averaging procedure is employed because “there is no a priori way to decide which of 

the four kinds of random matrices… are most valid.”   In other words, averaging is 

used because it is impossible to know beforehand how the assumptions will be 

violated.    

 However, the averaging approach conflicts with the notion of robustness.  

Because Type I errors are sufficiently serious, robustness is usually defined to reflect 

the worst-case behavior of a test, not the average (Bradley 1968).  A similar situation 

arises in testing compound null hypotheses:  Compound null hypotheses usually 

specify a range of parameter values, rather than a single value.   Thus, it is often 

impossible to define a critical region resulting in a single probability of falsely 
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rejecting the null hypothesis – the probability varies with the actual parameter value, 

and α  cannot equal the probability of a Type I error.   While one approach would be 

to define the critical region so that α  gives the mean probability, the maximum is 

preferable (Knight 1999).  The same reasoning applies here: For a given test, the 

plausible assumption violations can result in any number of true Type I error rates.   

Because it is the worst-case behavior that is of concern, it is the maximum error rate 

that provides the appropriate criterion for distinguishing tests. 

 Needless to say, an infinite number of possible assumption violations would 

need to be considered to find the maximum Type I error rates of most tests – a 

daunting task.  The most reasonable alternative is to examine instead a representative 

or large sample of possible assumption violations.  Towards that end, Gotelli (2000) 

examines up to three valid violations (not eight, due to the problem with the null 

hypotheses) per test.  However, numerous qualitatively different violations can be 

constructed, which could increase the maximum error rates of the tests.   In the 

empirical portion of this study, I show that the maximum Type I error rates do indeed 

increase when additional assumption violations are considered.              

 

Type II Error Rates 

  

 Key to measuring Type II error rates are alternative distributions and 

alternative hypotheses.   However, Gotelli (2000) never explicitly refers to either, 

instead substituting neologisms.  Although a semantic matter, these neologisms must 

be interpreted to demonstrate a more substantive mistake. 

For alternative distributions, Gotelli (2000) writes that Type II error rates 

should be estimated by “evaluating a nonrandom test matrix… A test that was 

vulnerable to Type II error would fail to detect nonrandom patterns in such a 
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structured matrix.”  By “nonrandom test matrix” Gotelli (2000) appears to mean “a 

presence-absence matrix chosen from a ‘nonrandom’ distribution.”  But Gotelli (2000) 

takes “random” to mean “conforming to the null hypothesis,” so “nonrandom test 

matrix” means “matrix from an alternative distribution.” Gotelli (2000) then creates 

ten types of nonrandom test matrices, corresponding to noise levels zero through nine, 

so it is those nonrandom matrices’ distributions that comprise the alternative 

distributions.   

 With regard to alternative hypotheses, Gotelli (2000) writes that to create each 

alternative distribution, “one strategy would be to build a specific model of species 

interactions.”  Later on, he implies that “a mathematical model” could be used to 

create alternative distributions.   From the context, then, “models” denotes “alternative 

hypotheses.” 

 That said, it is evident that Gotelli’s (2000) procedures fail to measure any 

Type II error rates, or powers.   To calculate power, one should find the proportion of 

statistics from each alternative distribution that falls in the critical region for each test 

– or equivalently, the proportion of statistics that result in p-values less than some 

preset α .  However, Gotelli (2000) instead finds the mean p-value.   The mean is 

undoubtedly an unreliable indicator of the Type II error rate – it is easy to construct 

examples where higher means entail lower rates.    

 

 

METHODS 

  

The empirical component of this investigation addressed three questions: 

First, for the presence-absence matrix analyzed by Gotelli (2000; Figure 2), 

what are the correct Type I and II error rates of the tests?  I addressed this question 
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using the standard techniques for measuring error rates and a broad set of assumption 

violations.  I also examined bias. 

 Second, do the Type I and II error rates of the tests depend on the presence-

absence matrix being analyzed?  As mentioned above, robustness and power are 

usually sensitive to differences in sample size (Bradley 1968), so one might a priori 

expect that they would be sensitive to the dimensions and marginal totals of the 

matrices.  Finding dependency would indicate that even had Gotelli’s (2000) error 

rates been correct, employing them to justify broadly applying analyses would still 

have been mistaken.   To check for dependency, I examined error rates of Gotelli’s 

(2000) tests for four additional presence-absence matrices.    

Finally, what are the error rates of other tests?   In addition to the 36 tests 

examined in Gotelli (2000), over 76 tests have been proposed or follow immediately 

from proposals, in the literature.   I examined the error rates of these tests in an attempt 

to assess the overall utility of existing tests.       

 

Computation 

        

All simulations and statistical tests were performed using custom-written 

Visual Basic 6.0 software.    

 

Presence-Absence Matrices 

  

 I considered the following published presence-absence matrices:  plants in the 

Windward and Leeward Islands (Beard 1948), myxomycetes in the high latitudes 

(Stephenson et al. 2000), finches in the West Indies (Gotelli and Abele 1982), seabirds 

near Vancouver Island (Hay 1992), and flies in the Hawaiian Islands (Hardy 1965; 



 38

Figure 2 and Figure 4).   Some matrices were abridged to allow simulations to be 

completed within a finite timeframe. For convenience, I labeled the matrices I-V, 

respectively.     

 

Type I Error Rates of Gotelli’s (2000) Tests 

  

 For SIM1-SIM8, I considered only violations of the placement probabilities for 

the first colonist.     Appendix D gives the assumption violations that were considered.    

I grouped these violations into two sets:  the “limited set,” consisting of just the 

violations considered by Gotelli (2000), and the “full set,” consisting of Gotelli’s 

(2000) violations and violations constructed here.  For SIM9, I considered only 

violations of the assumption that all species are equally likely to occur everywhere.  I 

again considered “limited” and “full” sets of assumption violations (Appendix D). 

Excluding degenerate matrices, I next generated nominal distributions of 3000 

statistics (i.e., 3000 iterations).  Each distribution was generated using a unique 

combination of test and presence-absence matrix, and almost all possible combinations 

were used.  The exceptions were for SIM9 with matrices I-III, where despite extensive 

attempts, computer algorithms could not be developed to generate efficiently “true 

distributions.”  For all models except SIM9, I generated nominal distributions using 

EcoSim 7.0 (Gotelli and Entminger, 2001).   For SIM9, I generated null distributions 

using custom-written software.   

It was impossible to create usable critical regions for every nominal 

distribution.   For instance, as Gotelli (2000) points out, V ratio cannot be used with 

SIM9, because the resulting distribution contains only one value, allowing for α  to be 

set only at 1.   Similar problems can arise with other distributions; for example, if a 

distribution consists of only two statistics in equal frequency, α  can be set only at 0.5 
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Figure 4.   Presence-absence matrices used to measure Type I and II error rates.  
(A) Windward and Leeward Island Vegetation (Matrix I), (B) High-latitude 

Myxomycetes (Matrix II), (C) Seabirds near Vancouver Island (Matrix IV), and (D) 
Hawaiian Flies (Matrix V).  References listed in the text. 
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Zone 8 1 0 0 1 0 Kauai 1 0 1 0 0 1 2

Zone 7 1 0 0 1 0 Oahu 1 0 1 1 0 1 3

Zone 6 0 0 1 0 0 Lanai 1 0 1 0 0 0 5

Zone 5 0 1 0 1 0 Molokai 1 1 1 0 1 1 4

Zone 4 0 0 1 0 0 Maui 1 1 1 1 1 1 6

Zone 3 0 0 1 0 0 Hawaii 1 0 1 1 1 1 5

Zone 2 0 0 1 0 0
Zone 1 0 0 0 0 1

(C
) 

(D
)

0 0 0 1 0 0 1

0 0 0 1 0 0 1

0 0 0 1 1 0 0 0 1 0 0 1 1 3

Grenada 0 0 0 0 0 1 1 0 1 0 0 1 1 3

St. Vincent 1 0 0 1 1 1 1 1 1 1 1 1 1 6

St. Lucia 0 1 0 0 1 0 0 0 1 0 0 1 1 3

Martinique 1 1 0 1 0 1 1 1 0 1 1 1 1 5
Dominica 0 1 1 0 1 0 1 0 0 0 0 0 1 1

Guadeloupe 1 1 1 1 1 1 1 0 0 0 1 0 0 1
Montserrat 0 0 1 0 0 0 0 0 0 1 0 1 0 2

St. Kitts-Nevis 0 0 1 0 0 0 0 1 0 1 1 0 1 4

Puerto Rico 1 1 1 0 0 0 0 0 0 1 0 0 0 1
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and 1.   Therefore, taking 0.05 to be maximum allowable nominal Type I error rate, I 

excluded tests from further consideration if they allowed α  to be set only at .     05.0>

If usable critical regions were possible, for distributions of V ratio and the 

number of unique species combinations, I selected the statistic that gave an empirical 

distribution function (EDF) of 0.05, or, if none existed, the pair of statistics that gave 

the next smallest and largest values.  Denoting these statistics , , and , 

respectively, I defined the critical regions [ , or [  and [ , as 

appropriate.   For the distributions of C score and checkerboard score, I found the 

statistic that gave an EDF of 0.95, or the two statistics that gave the closest bounds.   

Denoting these statistics , , and , I defined the critical regions 

, or [  and [

05.0w

]05.

05.0<w

,0 w

05.0>w

],0 05.0w

95.0>w

,0 0<w ]05.0>

95.0w 95.0<w

,95.0),[ 95.0 ∞w ),05.0 ∞<w )∞>w , again as appropriate. 

Again excluding degenerate presence-absence matrices, I next generated true 

distributions of 1000 statistics each (i.e., 1000 iterations) using each assumption 

violation given in Appendix D.  To calculate true significance levels, I computed the 

proportion of statistics from each true distribution that fell in the corresponding 

05.0=α  critical region, or if no such region existed, the proportions that fell in the 

bounding regions.  In the latter case, I used linear interpolation to infer the 

significance level at 05.0=α  (Zar 1999). 

 

Type II Error Rates of Gotelli’s (2000) Tests 

  

To measure Type II error rates, I used the same nominal distributions and 

critical regions as for Type I error rates.  For SIM1, SIM3, and SIM 5 - SIM9, I 

examined the following alternative hypotheses:  
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Let R and C denote the observed numbers of species and sites, respectively.  

The first alternative hypothesis asserted that for all 1, 2,3,....i = ; 2j R< , j odd, and 

, for SIM1, SIM3, and SIM5, 1,2,...,k = C

      {arrival  belong to species  at site | species 1 present at site } 0.9
{arrival  belong to species  at site | species 1 absent from site }
P i j k j k

P i j k j k
−

=
−

, 

 (1) 

while for SIM9, 

 {species  occurs at site | species 1 present at site } 0.9
{species  occurs at site | species 1 absent from site }
P j k j k

P j k j k
−

=
−

. (2)  

The second and third alternative hypotheses were identical, except the ratios were set 

equal to 0.5 and 0.1.   I also examined a second set of alternative hypotheses, wherein 

for all i ; 1, 2,3,....= j R< , j odd, and 1,2,...,k C= , the ratios were set equal to 0.9, 

0.5, and 0.1.  All of the alternative hypotheses reflected asymmetric competitive 

interactions between the species one and two, three and four, etc. 

 To measure Type II error rates, all assumptions of the models were maintained.  

For each test and alternative hypothesis, I simulated alternative distributions of 1000 

statistics.  To calculate Type II error rates, for each alternative distribution, I found the 

proportion of statistics falling outside the corresponding 05.0=α  critical region, or if 

no such region existed, the proportion falling outside the corresponding bounding 

regions.  In the latter case, I used linear interpolation to infer the Type II error rate at 

05.0=α  (Zar 1999).  For each test and matrix, I assessed bias by determining 

whether any Type II error rate exceeded 0.95.       
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Assessment and Consistency of Critical Regions and Robustness 

  

 I used Cohen’s Kappa Statistic (Siegel 1988) to check whether tests 

consistently gave usable critical regions for different presence-absence matrices.  To 

check whether robustness was consistent in different testing situations, for each 

presence-absence matrix I began by classifying tests with respect to robustness.   To 

make the classifications, I set the maximum tolerable Type I error rate at 0.1, higher 

than most investigators would allow (Sokal and Rohlf 1995, Zar 1999).   For each 

matrix, the simplest approach would then have been to characterize tests as either 

“robust” or “non-robust,” depending on whether their error rates ever exceeded 0.1.   

However, such an approach would suffer from two problems:  First, in this 

study, only a few assumption violations were investigated.  Hence, universal 

robustness could not be inferred if rates failed to exceed 0.1, as unexamined violations 

could still have produced intolerably high rates.  On the other hand, if the rates 

exceeded 0.1 for any violation, this would suffice to establish non-robustness.  Hence, 

it was appropriate to classify tests not as “robust” or “non-robust,” but as 

“indeterminate” or “non-robust.”  This distinction is important, because unlike other 

tests, where robustness can be predicted analytically, robustness here is not expected.    

 The second problem would arise from differences between the observed Type I 

error rates and the rates implicitly defined by the algorithms and assumption 

violations, for even though an observed rate may have exceeded the specified level, 

the pertinent, actual rate may still have fallen below it.  Two sources of sampling error 

could have contributed to these differences:  error in the creation of the critical 

regions, and error in creation of the true distributions.  I assumed the first source of 

error negligible, because of the large sample sizes used to approximate the nominal 

distributions ( ).   As for the second source of error, some terminology is 3000=n
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helpful.  Let ijkα  denote the actual Type I error rate for test i, assumption violation j, 

and presence-absence matrix k.  Likewise, let a  denote the corresponding observed 

rate.  The normal approximation to the binomial distribution implies that  

ijk

ijk 1000/
≤α

ax{ .1}≤ ≅

1 [
j A

− −

   kji
aa

a
P

ijkijk

ijk ,,]
)1(

1.0
[1}1.0{ ∀

−⋅

−
Φ−≅ , (3) 

where  is the standard normal cumulative distribution function (Ross 1998).   

Hence, by the independence of the true distributions, the probability of test i being 

“indeterminate” for presence-absence matrix k and assumption violation set A (i.e., the 

“limited” or “full” set) is  

Φ

 
0.1

{m } 0.1} { 0 [1 [ ]]
(1 ) /1000

ijk
ijk j A ijk

j A j A ijk ijk

a
P P

a a
α α∈

∈ ∈

−
≤ = −Φ

⋅ −
∏ ∏ .  

  (4) 

It immediately follows that the probability of being found “non-robust” is: 

 
0.1

1 [
(1 ) /1000

ijk

ijk ijk

a
a a∈

−
Φ

⋅ −
∏ . (5) ]]

Mindful of these issues, I classified each test-matrix-violation set combination 

as “non-robust” only if it could be guaranteed non-robust with at least 99% certainty.  

I used Cohen’s Kappa Statistic (Siegel 1988) to check whether the same tests had 

consistent robustness for different presence-absence matrices and sets of assumption 

violations.   

  

Assessment and Consistency of Bias 

  

 Because the nominal significance level was taken at 0.05, tests were 

considered biased if they had a power of less than 0.05 (Knight 1999).   As above, 

because not all possible alternative hypotheses were considered, tests could only be 
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concluded biased, not unbiased.   I hence characterized tests as either “biased” or 

“indeterminate.”    Also, as with the Type I error rates, the observed Type II error rates 

were estimates of actual rates and suffered from the same sources of sampling error.   

Here, I once again considered error from the nominal distributions negligible.   To 

take into account error from the alternative distributions, I let ijkβ  denote the actual 

Type II error rate for analysis i, alternative hypothesis j, and presence-absence matrix 

k.  Likewise, I let ijkb  denote the corresponding estimate.   Because power will be less 

than 0.05 only if the Type II error rate exceeds 0.95, by the arguments given above, 

the probability of test i being found “biased” with presence-absence matrix k and 

alternative hypothesis set B is  

 
0.95

1 [1 [ ]]
(1 ) /1000
ijk

j B ijk ijk

b
b b∈

−
− −Φ

⋅ −
∏ . (6) 

I classified each test-matrix combination as “biased” only if it could be guaranteed 

biased with at least 99% certainty.   I used Cohen’s Kappa statistic (Siegel 1988) to 

check whether the same tests were biased for all presence-absence matrices.    

 

Assessment of Utility 

  

 To assess whether any of Gotelli’s (2000) tests were usable for presence-

absence matrices I-V, I checked whether there existed a test having both indeterminate 

robustness and bias under the full set of assumption violations    

 In addition to the 36 tests considered by Gotelli (2000), I also considered the 

robustness and bias of 76 additional tests.   All of these tests followed the framework 

of the test proposed by Gilpin and Diamond (1982): Probabilities were first assigned 

to each cell of the observed presence-absence matrix to give the likelihood of each 

corresponding species occurring at each corresponding site.    At least four methods 
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for choosing the probabilities have been proposed or follow directly from the literature 

(Figure 5 A; Gilpin and Diamond 1982, Gotelli 2000).    Next, using the probabilities, 

the null distribution of presence-absence matrices was simulated.    The null 

distribution was conditioned on one of five attributes of the observed presence-

absence matrix (Figure 5 B; Gilpin and Diamond 1982, Gotelli 2000, Connor and 

Simberloff 1979).  Finally, the null distribution was transformed into a sampling 

distribution.  One of the four aforementioned statistics was used to perform this 

transformation (Gotelli 2000).  Thus, within Gilpin and Diamond’s (1982) framework, 

 tests were possible; four of these tests corresponded to Gotelli’s (2000) 

tests employing SIM9.    All tests checked the null hypothesis that species occur 

independently of each other.      

4 5 4 80× × =

 To evaluate the robustness and bias of the 76 tests not examined in Gotelli 

(2000), I used procedures similar to those outlined above, with the following changes:  

different assumption violations were considered (Appendix E), and only the 

alternative hypotheses given for SIM9 were considered. 

 

 

RESULTS 

   

Gotelli’s (2000) Tests: Error Rates and Consistency of Performance 

  

 For the matrix examined in Gotelli (2000; Matrix III), maximum Type I error 

rates increased upon implementing standard procedures and additional assumption 

violations.   Six tests proved to be biased when standard procedures were used.    

Table 3 and Table 4 give maximum Type I error rates, minimum power values, critical 

region existence, and classifications of each test-matrix-assumption violation set 
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   Figure 5.   Tests examined, in addition to those of Gotelli (2000).  (A)  
Probabilities assumed by the tests that the ith species occurs at the jth site.  Each 

cell of the table gives a set of possible probabilities.  With respect to the rows and 
columns, the probabilities can be set “equiprobable,” so that they are constant, or 
“proportional,” so that they are proportional to the row or column totals.  In the 

“proportional rows-proportional columns” case, it is sometimes necessary to use an 
ad hoc procedure to ensure that all values are less than one (Gilpin and Diamond 
1982). Variables are defined as follows: N ≡ total number of species-occurrences 

observed; R ≡
iS ≡

number of rows in the presence-absence matrix; C number of 
columns; ith row total; T

≡
j ≡ jth column total (Gotelli 2000).  (B)  Marginal 

constraints imposed by the tests.    The null distribution can be conditioned on the 
row or column totals.   If it is conditioned on neither, then it may or may not be 

conditioned on the total number of species-occurrences. 
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combination.  For Gotelli’s (2000) tests, robustness was inconsistent between 

presence-absence matrices using both the limited and full sets of assumption violations 

; ; both respectively).    For the 76 other tests, 

robustness was consistent using the limited set of assumption violations, but not the 

full set ( ; ; both respectively).    Bias was 

inconsistent between presence-absence matrices [Gotelli’s (2000) tests: 

; other tests: 

( 0.234, 0.038Κ = −

0.425,Κ =

0.133, 0.226pΚ = =

0.101, 0.55p =

0.016 7.5p = ×− 810 , 0.538−

0.084, p 0.215Κ =

0.474, p

=

2.4 10

], but the same tests 

consistently resulted in unusable critical regions [Gotelli’s (2000) tests: 

; other tests: 0.474, 0.006pΚ = = 6−Κ =

.306, 0.75,− −

0.192, 0.581,− − −

=

0.613

0.17

× ].  For all presence-absence 

matrices, robustness was inconsistent between the limited and full sets of assumption 

violations [for I-V respectively, Gotelli’s (2000) tests: 

; p = 0.998, 1, 0.997, 1, 1; other tests: 

; p = 1, 0.985, 0.985, 1, 0.966]. 

0.34, 0.481,Κ = − − −

0.362, 0.178,Κ = − −

0

 

Utility 

   

 Under the full set of assumption violations, for every presence-absence matrix 

where Type I and II error rates were calculated, all tests were either biased, non-

robust, or without usable critical regions.   The same did not hold under the limited set 

of assumption violations.   Moreover, under the limited set, for every presence-

absence matrix at least one test had a usable critical region and indeterminate 

robustness and bias.    

 

 

 



 

 

59

DISCUSSION 

     

 Gotelli (2000) found that certain null model tests have low Type I and II error 

rates when applied to an artificial presence-absence matrix (Figure 3) and a presence-

absence matrix summarizing the distribution of West Indian Finches.   Based on these 

findings, Gotelli (2000) has been widely cited to justify the application of certain null 

model tests, particularly SIM9 with C score.  However, my results show that citing 

Gotelli (2000) to support using certain null model tests is not justified.  Gotelli (2000) 

employed incorrect procedures, causing underestimation of Type I error rates.    

Moreover, even if the rates in Gotelli (2000) were correct, they would not have 

pertained to other presence-absence matrices: my results show that robustness and bias 

vary depending on the matrix being analyzed. 

 Although simply citing other error rates does not justify applying analyses, 

such citation coupled with evidence limiting the set of potential assumption violations 

may be valid.   Under the full set of assumption violations, none of the 112 tests 

considered here could be applied to any of the five presence-absence matrices.  

However, under the limited set of assumption violations, usable tests existed for every 

presence-absence matrix.  Moreover, for the 76 tests not considered by Gotelli (2000), 

under the limited set, robustness was consistent between presence-absence matrices.  

 Therefore, to apply existing null model analyses, it appears necessary to 

restrict potential assumption violations.   One tempting approach for making such 

restrictions is to exploit the marginal totals.   For instance, Gilpin and Diamond (1982) 

and Gotelli and Graves (1996), set the placement probabilities proportional to the 

marginal totals, as per contingency table analysis.   However, doing so implicitly 

assumes that for each individual, the probability of occurrence at each site is 

independent of species (Zar 1999), an assumption that a priori cannot be favored.  
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Also complicating matters, restrictions may be needed on the variability of the 

placement probabilities through time, and the values of those probabilities for 

unobserved species.  The marginal totals appear uninformative in both regards. 

 What is evidently required for restrictions is supplemental information.  The 

necessity of supplemental information is not a new idea:  As has been abundantly 

argued, applying null model tests requires specific information on the dispersal 

abilities, habitat affinities, and persistence power of each species (e.g., Connor and 

Simberloff 1978, Simberloff and Connor 1981, Schoener and Adler 1991, Wilson 

1995, Stone et al. 1996, Stone et al. 2000, Peres-Neto et al. 2001), as well as 

information on the habitats, environment, and isolation of each site (e.g., Stone et al. 

1996, Gotelli et al. 1997, Stone et al. 2000, Peres-Neto et al. 2001).  Also, although 

apparently unacknowledged, historical information is necessary to assess variation in 

the probabilities for each arrival.   

 Of course in many situations, obtaining such supplemental information may be 

difficult or impossible.   Under such circumstances, the present results suggest that 

Type I and II error rates should be independently measured for every presence-

absence matrix that is analyzed.    Such measurements may indicate that all tests are 

unusable, as was the case here.   Moreover, to ensure that Type I error rates always 

remain at sufficiently low levels, an infinite number of assumption violations will 

often need to be considered.  Hence, rigorously inferring robustness may be difficult.  

Non-robustness can be inferred from observing high rates however, so measurements 

will often shed more light on which analyses to avoid, rather than which ones to use.  

The upshot is that correctly applying existing null model tests may often be 

impractical.    

 As an aside, Gotelli (e.g., Gotelli and McCabe 2002) has recently treated null 

model tests not as tests of the specific null hypothesis, but rather as tests of the entire 
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null models.  Under this rubric, if a significant result is found, the entire model is 

rejected, rather than the null hypothesis per se.  To choose tests for this application, 

the Type I error rates of Gotelli (2000) have been cited.  However, such citation is 

inappropriate, for if the entire null model is being tested, then the model comprises the 

de facto null hypothesis, and there are no additional assumptions that can be violated 

(all of the additional assumptions have been “pushed” into the null hypothesis).  

However, without additional assumptions, the Type I error rate will always be equal to 

α .  Hence, within Gotelli’s rubric, all tests will have the same Type I error rate – α – 

and it is incorrect to state that some tests are superior because they have low error 

rates:  Robustness is only useful for distinguishing tests when tests require 

assumptions.  

 The present results leave at least three issues uninvestigated.  First, due to 

limitations of computer algorithms, SIM9 could only be examined for one presence-

absence matrix.  Although this instance indicates that SIM9 is no panacea, how the 

algorithm behaves with other presence-absence matrices remains unclear.  Second, I 

considered a null hypothesis that could imply competitive interactions only.   Testing a 

double-sided null hypothesis – whose violation could also imply aggregative assembly 

– may result in differing bias, robustness, and usability.  Finally, other null model tests 

have been developed besides the ones presented here (Gotelli and Graves 1996), and 

although they appear to be non-robust, they may yet yield insight into how to create 

improved techniques. 

 

 

 



 

 

62

ACKNOWLEDGEMENTS 

  

 This work was funded by a NSF Graduate Research Fellowship.   Computing 

facilities were kindly provided by Cornell Information Technologies and the Sierra 

Nevada Aquatic Research Laboratory (University of California, Santa Barbara).  I 

thank S. J. Schwager and H. K. Reeve for helpful advice and comments.  R. Knapp 

kindly provided extensive help and suggestions with writing. 

 



 63

LITERATURE CITED 

  

Beard, J. S.  1948.  The natural vegetation of the Windward and Leeward Islands.  

Oxford Forestry Memoirs 21:1-192. 

Bradley, J. V.  1968.   Distribution-Free Statistical Tests.   Prentice-Hall, Englewood 

Cliffs, New Jersey. 

Chaves, L. F. and N. Anez.  2004.  Species co-occurrence and feeding behavior in 

sand fly transmission of American cutaneous leishmaniasis in western 

Venezuela.  Acta Tropica 92:219-224. 

Connell, J. H. 1961. The influence of interspecific competition and other factors on the 

distribution of the barnacle Chthamalus stellatus. Ecology 42:710-723. 

Connor, E. F., and D. Simberloff.  1978.  Species number and compositional similarity 

of the Galapagos flora and avifauna.  Ecological Monographs 48:219-248. 

Connor, E. F., and D. Simberloff.  1979.  The assembly of species communities: 

chance or competition?  Ecology 60:1132-1140. 

Connor, E. F., and D. Simberloff.   1983.  Interspecific competition and species co-

occurrence patterns on islands: null models and the evaluation of evidence.   Oikos 

41: 455-465. 

Connor, E. F., and D. Simberloff.  1986.  Competition, Scientific Method, and Null 

Models in Ecology.  American Scientist 74:155-162. 

Diamond, J. M.  1975.  Assembly of species communities.  In Ecology and Evolution 

of Communities, ed. M. L. Cody and J. M. Diamond, 342-344.  Harvard 

University Press, Cambridge. 

Feeley, K.  2003.  Analysis of avian communities in Lake Guri, Venezuela, using 

multiple assembly rule models.  Oecologia 137:104-113. 

 



 64

Gilpin, M. E., and J. M. Diamond.   1982.  Factors contributing to nonrandomness in 

species co-occurrence on islands.   Oecologia 52:75-84 

Gleason, H. A.  1926.  The individualistic concept of plant association.  Bulletin of the 

Torey Botanical Club 53:7-26. 

Gotelli, N. J.  2000.  Null model analysis of species co-occurrence patterns.  Ecology 

81:2606-2621. 

Gotelli, N. J.  2001.  Research frontiers in null model analysis.  Global Ecology and 

Biogeography 10:337-343. 

Gotelli, N. J., and L. G. Abele.   1982.  Statistical distributions of West Indian land 

bird families.   Journal of Biogeography 9:421-435. 

Gotelli, N. J., Buckley, N. J., and J. A. Wiens.  1997.  Co-occurrence of Australian 

land birds: Diamond’s assembly rules revisited.  Oikos 80:311-324. 

Gotelli, N. J., and A. M. Ellison. 2002.  Assembly rules for New England and 

assemblages.   Oikos 99:591-599. 

Gotelli, N.J. and G.L. Entsminger. 2001. EcoSim: Null models software for ecology. 

Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. 

http://homepages.together.net/~gentsmin/ecosim.htm. 

Gotelli, N. J., and G. R. Graves.  1996.  Null models in ecology.  Smithsonian 

Institution Press, Washington DC. 

Gotelli, N. J., and D. J. McCabe.  2002.  Species co-occurrence: a meta-analysis of J. 

M. Diamond’s assembly rules model.  Ecology 83:2091-2096. 

Gotelli, N. J., and K. Rohde.  2002.  Co-occurrence of ectoparasites of marine fishes: a 

null model analysis.   Ecology Letters 5:86-94. 

Hardy, D. E. 1965. Diptera: Cyclorrhapha.  In Insects of Hawaii, Volume 12, ed. E. C. 

Zimmerman, 1-10.  University of Hawaii Press, Honolulu. 

 



 65

Heino, J. and J. Soininen.  2005.  Assembly rules and community models for 

unicellular organisms: patterns in diatoms of boreal streams.   Freshwater Biology 

50:567-577. 

Hay, R. B.  1992.  The Oceanic Habitats of Seabirds: Their Zonal Distribution off 

Vancouver Island, British Columbia, Canada.  Journal of Biogeography 19:67-85. 

Knight, K.  1999.   Mathematical Statistics.  Chapman & Hall/CRC Press, Boca Raton, 

Florida. 

Larsen, R. J., and M. L. Marx.   1986.   An Introduction to Mathematical Statistics and 

its Applications.   Prentice-Hall, Englewood Cliffs, New Jersey. 

Mouillot, D., M. George-Nascimento, R. Poulin.   2005.  Richness, structure and 

functioning in metazoan parasite communities.   Oikos 109:447-460. 

Peres-Neto, P. R., J. D. Olden, and D. A. Jackson.  2001.  Environmentally 

constrained null models: site suitability as occupancy criterion.  Oikos 93:110-120. 

Pielou, D. P., and E. C. Pielou.   1968.  Association among species of infrequent 

occurrence: the insect and spider fauna of polyporus betulinus (Bulliard) Fries.  

Journal of Theoretical Biology 21:202-216. 

Ribichich, A. M.  2005.  From null community to non-randomly structured actual 

plant assemblages: parsimony analysis of species co-occurrences.   Ecography 

28:88-98. 

Robson, D. S.  1972.  Appendix: statistical tests of significance.   Journal of 

Theoretical Biology 34:350-352. 

Ross, S.  1998.  A First Course in Probability: Fifth Edition.  Prentice Hall, Upper 

Saddle River, New Jersey. 

Sanders, N. J., N. J. Gotelli, N. E. Heller, and D. M. Gordon.  2003.  Community 

disassembly by an invasive species.  Proceedings of the National Academy of 

Science USA 100:2474-2477. 

 



 

 

66

Schluter, D.  1984.  A variance test for detecting species associations, with some 

example applications.   Ecology  65:998-1005. 

Schoener, T. W., and G. H. Adler.  1991.  Greater resolution of distributional 

complementarities by controlling for habitat affinities: a study with Bahamian 

lizards and birds.  The American Naturalist 137:669-692. 

Siegel, S.  1988.  Nonparametric Statistics for the Behavioral Sciences: Second 

Edition.   McGraw-Hill, New York. 

Simberloff, D., and E. F. Connor.  1981.  Missing species combinations.  American 

Naturalist 118:215-239. 

Sokal, R. R., and F. J. Rohlf.  1995.  Biometry: Third Edition.  W. H. Freeman and 

Company, New York. 

Stephenson, S. L., Y. K. Novozhilov, and M. Schnittler.  2000.  Distribution and 

Ecology of Myxomycetes in High-Latitude Regions of the Northern Hemisphere.  

Journal of Biogeography 27:741-754. 

Stone, L., T. Dayan, and D. Simberloff.  1996.  Community-wide assembly patterns 

unmasked: the importance of species’ differing geographical ranges.   The 

American Naturalist 148:997-1015. 

Stone, L., T. Dayan, and D. Simberloff.   2000.  On Desert Rodents, Favored States, 

and Unresolved Issues: Scaling Up and Down Regional Assemblages and Local 

Communities.   The American Naturalist 156:322-328. 

Stone, L., and A. Roberts.  1990.  The checkerboard score and species distributions.   

Oecologia 85:74-79. 

Wilson, J. B. 1995.  Null models for assembly rules: The Jack Horner effect is more 

insidious than the Narcissus effect.   Oikos 72:139-144. 

Zar, J. H. 1999.  Biostatistical Analysis: Fourth Edition.   Prentice Hall, Upper Saddle 

River, New Jersey.  



— CHAPTER III — 

NULL MODEL TESTS OF SPECIES CO-OCCURRENCE: 

ROBUST METHODS1 

 
 Abstract     A contentious issue in ecology is to what extent competition affects 

the composition of ecological communities.  To help resolve the matter, statistical 

tests that do not depend on parametric assumptions are needed.  Here, in a step 

towards assumption-free tests, using random graph theoretic techniques, we derive 

tests that require one parametric assumption.   Letting i and j denote the ith and jth 

colonists to arrive at a site, respectively, and W  the event that i and j belong to the 

same “unit” (e.g., functional group, genus), we show how colonists will be partitioned 

into units if for all i and j, W  is conditionally independent of whether i and j share 

unit membership with the other colonists.  Our distribution of partitions is useful for 

inferring an absence of competitive effects, because they predict that for at least one i 

and j,  will be less when i and j share unit membership than when they do not.   

ij

ij

( ijP W )

                                                

 

 

INTRODUCTION 

 

 Interspecific competition is well documented, for instance between 

Chthalamus sp. and Balanus sp. barnacles in the intertidal zone (Connell 1961), 

Plethodon spp. salamanders in the Appalachian Mountains (Hairston 1980), and 

Galium spp. bedstraws in Britain (Tansley 1917, Begon et al 1996).   However, it is 

 
1 Second author:  Steven J. Schwager, Department of Computational Statistics and Computational 
Biology, Cornell University. 
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unclear whether competition affects large-scale spatial patterns of species co-

existence.   At these scales, experimentation is often impossible, and the only available 

information may be observational.  In an influential work, Diamond (1975) argued 

that competitive effects can be inferred by determining which pairs of species never 

co-occur.   However, Connor and Simberloff (1979) pointed out that such patterns 

might arise by chance, and that they may be due to interactions with the physical 

environment.  Assessing the effects of competition has since proven challenging, and 

has motivated the creation of numerous statistical tests (Gotelli and Graves 1996, 

Gotelli 2000).     

 The most widely used tests employ presence-absence data, which consist of 

lists of species recorded at sets of sites.  These data offer the advantages of being 

relatively easy to obtain, and widely available.  Presence-absence data are usually 

summarized in a presence-absence matrix, wherein rows represent species, while 

columns represent sites.   If species i is observed at site j, the i,jth entry is 1; otherwise 

it is 0.  Tests using presence-absence data begin by assuming a null hypothesis that is 

inconsistent with an effect of competition – that species, or individuals of each 

species, occur independently.    The tests also assume probabilities that species or 

individuals of each species occur at each site.    Species are “placed” accordingly and 

independently until the simulated and observed species richnesses match at each site, 

or until the numbers of occurrences match for each species.  The process is then 

repeated many times to produce an empirical sampling distribution for the presence-

absence matrix.  Because the null hypothesis is inconsistent with an effect of 

competition, if a test statistic from the observed matrix falls in the tail of its sampling 

distribution, a competitive effect can be inferred (Gotelli and Graves 1996, Gotelli 

2000).  
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Although an effect of competition predicts non-independent occurrences, it 

makes no prediction about the probabilities of the occurrences per se.   Hence, the 

probabilities constitute assumptions – assumptions that in biological terms correspond 

to the presumed effects of the physical environment on the viability of species or 

individuals (Ladau, in preparation).   All existing unbiased tests require that the 

assumptions be true, because when they are not, the risk of falsely concluding 

competition may be intolerably high, up to 100% (Ladau, in preparation).   Hence, 

existing tests are non-robust and provide unreliable conclusions. 

As with other statistical tests, two options exist for mitigating the non-

robustness (Bradley 1968).   First, assumptions can be verified.   Here, that means 

independently assessing the probability of each species occurring at each site, or the 

probability of each colonizing individual belonging to each species at each site 

(Ladau, in preparation).    The second option is to develop tests that do not depend on 

parametric assumptions, similar to the alternatives that non-parametric tests provide to 

parametric tests.   Here, the latter option appears most favorable, because assessing 

occurrence probabilities is often controversial and logistically difficult or impossible 

(Ladau, in preparation).   In this paper we derive tests that rely on one extremely 

general parametric assumption, which will be useful for constructing tests that are 

completely free of parametric assumptions. 

We begin by deducing a new null hypothesis.   In null model testing, the null 

hypothesis provides the articulation between the biological process of interest and the 

mathematics of the model, and it consists of a mathematical prediction that will hold if 

competitive effects are absent.  Our null hypothesis will meet this criterion, but, unlike 

existing null hypotheses, will not require parametric assumptions to be tested.   

 Competition can structure a community in four ways.  At a given site, it can act 

intrinsically, affecting the biota by occurring within the site, or extrinsically, by 
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occurring in the regions that supply immigrants (Simberloff 1970).  It can also act 

evolutionarily, promoting the creation of ecologically dissimilar species, or 

ecologically, eliminating ecologically similar species (Connell 1980; Begon et al 

1996, pp. 269-270).  Hence, competition can act in a total of 2×2=4 ways, all of which 

can occur simultaneously. Regardless of how competition acts, it will reduce the co-

occurrence of ecologically similar species (Connor and Simberloff 1983).      

 One way to characterize the ecological similarity of species is by grouping 

them:  Pairs of species meeting a threshold for similarity are assigned to the same 

group, while those failing to meet it are assigned to different groups.   Such grouping 

is equivalent to partitioning species functionally:  Placing two species in the same 

functional group or guild is equivalent to saying that they are similar enough to merit 

the same classification (Root 2001).  But such a notion can be generalized.  “Subunits” 

of organisms – for instance, genera, families, or orders – can be classified either 

functionally or taxonomically into “units” – for instance, phyla – common 

membership in which implies ecological similarity.      

So long as subunits within units are more ecologically similar than those from 

different units, competition will favor the co-existence of subunits from different units. 

Competition acting intrinsically and ecologically will cause subunits to be less likely 

to persist if they belong to already well-represented units, and all other actions will 

make arrivals unlikely to belong to the well-represented units (Fox 1987, Fox 1989, 

Wilson 1989).   To formalize this idea, let i and j denote the ith and jth persistent 

arrivals at a site, W  the event that i and j belong to the same unit, and W  the event 

that i and j belong to different units.  Thus, for example, if three subunits are observed, 

any action of competition predicts that  

ij
c

ij

13 12 13 12( | ) ( | cP W W P W W< )

)

, (1) 

23 12 23 12( | ) ( | cP W W P W W< , (2) 
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and 

13 23 13 23( | ) ( | cP W W P W W< )

)

)∩

)c∩

)∩

)c

. (3) 

When additional subunits are observed, competitive effects make additional 

predictions; for instance, 

 , (4) 34 23 34 23( | ) ( | cP W W P W W<

 , (5) 34 23 12 34 23 12( | ) ( | cP W W W P W W W<∩
and 

34 23 12 34 23 12( | ) ( |c cP W W W P W W W<∩ . (6) 

 Thus, one possible null hypothesis states that for all i and j, W  is 

conditionally independent of the relationship between i and j and all other subunits.  

However, this null hypothesis overlooks an important issue: some relationships 

contain transitive information about others.  For instance, W  and W  together imply 

.  Hence, if the null hypothesis stated that 

ij

jkij

ikW
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and that 

   ,   (8) ( | ) ( |c c
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it would imply that 

 . (9) ( ) 0ijP W =

Clearly, such an implication is inappropriate.  It follows then that the null hypothesis 

should state conditional independence for W  only when no transitive information is 

conveyed. 

ij
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 Another potentially complicating issue is the consistency of the condition.   

Certain sets of events cannot occur; for instance, W W  implies both W  

and W , hence 

c
ij jk ikW∩ ∩ c

ik

ik

 ( c
ij jk ikP W W W ) 0≡∩ ∩ , (10) 

so  is undefined.  It follows then that if the null hypothesis 

stated 

( | c
kl ij jk ikP W W W W∩ ∩ )

)c , (11) ( | ) ( |c c
kl ij jk ik kl ij jk ikP W W W W P W W W W=∩ ∩ ∩ ∩

it would imply the equality of an undefined and a defined term, a contradiction.    

Therefore, the null hypothesis should posit equality only when conditions are 

consistent. 

 Mindful of these issues, we present a null hypothesis in (12).  Under this null 

hypothesis, assuming that for all i and j, , we derive how subunits will be 

distributed within units.  We then show that under our assumption, this distribution 

entails the null hypothesis.  We conclude by showing how our distribution can be used 

to test robustly for competition between subunits of the same unit.   

( ) 0ijP W >

 

 

DEFINITIONS AND NULL HYPOTHESIS 

 

 Let R  be a set of observed subunits.  Let the sample space be denoted S, i.e., 

ψψ :{≡S  a partition of R}.  For any partition S∈ψ , let  denote the 

corresponding equivalence relation on 

ψEq

R , and let ψ denote the number of units in ψ .  

Let k be the total number of observed units.  For any r Rr ∈2,1 , let ψψ :{
21
≡rr

2r

W  a 

partition of R, ( }.  Hence, W  is the event that r  and  share the same ψEq), 21 ∈rr
21rr 1
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unit.  Denote the complement of W  by W .   Define a
21rr

c
rr 21

}{ 12WP≡ .  For any S∈ψ , 

let { }ψ  be the event that ψ  occurs.   Let },:{ ∅≠⊆≡Ω ωωω R .   For any Ω∈ω , let 

ωψ  denote a partition of ω , and Eq
ωψ

 the corresponding equivalence relation.  Let 

}ω{ψ ,,;:{ 21 ωψψ ∈∀∈ rrS≡ ψEq( 1 ), 2 ∈rr  if and only if 
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 For any graph G, let the ordered pair (  represent the vertex set 

 and edge set  of G.  Denote the complement of G by G .  For any graph 

G, let be the degree of vertex .   Let  be the number of trees in G .  

Let Q  be a minimum vertex cover of G.  For any , define r 

.  For any , let  be a complete graph with vertex set .  For any 

partition  of  with , let  be the complete multipartite graph with 

partition .  Given any  and spanning star forest F of , for convenience let 

 be the complete graph with vertex set Q .    

 

Null Hypothesis.  :  For any distinct  and , if 

 and , then 
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This states that for all i and j, W  is conditionally independent of the relationship 

between i and j and all other subunits, provided that there is consistency and that no 

transitive information is present. 
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IMPLICATIONS OF THE NULL HYPOTHESIS 
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.   Because , by the 

definition of conditional probability it will be sufficient to show that  
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The proof will follow by a case analysis on whether 

 and . 
2 3

{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

P W W W
∈ ∈

>∩ ∩ ∩ ∩ 2 3
{ , } { , }

[ ( ) ( )]c c
r r ij ij

i j X i j Y

P W W W
∈ ∈

>∩ ∩ ∩ ∩
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 Case 1:  and 

.  By ,  

2 3
{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

P W W W
∈ ∈

>∩ ∩ ∩ ∩

{ , }

) ( )] 0c c
ij ij

i j Y

W W
∈ ∈

>∩ ∩ 0H

0

)]

)]

]cW

)]

)]

)]

)]

)]

0

2 3
{ , }

[ (r r
i j X

P W ∩ ∩

  
1 3 2 3

{ , } { , }

[ | ( ) ( c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

∩ ∩ ∩ ∩

                                             . (14) 
1 3 2 3

{ , } { , }

[ | ( ) (c c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

= ∩ ∩ ∩ ∩

Applying the definition of conditional probability, 

  
1 3 2 3 2 3

{ , } { , } { , } { , }

[ ( ) ( )] [ ( ) ( )c c
r r r r ij ij r r ij ij

i j X i j Y i j X i j Y

P W W W W P W W
∈ ∈ ∈ ∈

⋅∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩

                      
1 3 2 3

{ , } { , }

[ ( ) (c c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

= ∩ ∩ ∩ ∩ ∩

                                                ⋅ . (15) 
2 3

{ , } { , }

[ ( ) ( c
r r ij ij

i j X i j Y

P W W W
∈ ∈

∩ ∩ ∩ ∩

Also, the additivity axiom of probability gives 

  
2 3

{ , } { , }

[ ( ) (c c
r r ij ij

i j X i j Y

P W W W
∈ ∈

∩ ∩ ∩ ∩

                 (16) 
2 3

{ , } { , } { , } { , }

[( ) ( )] [ ( ) ( )]c c
ij ij r r ij ij

i j X i j Y i j X i j Y

P W W P W W W
∈ ∈ ∈ ∈

= −∩ ∩ ∩ ∩ ∩ ∩ ∩

and  

  
1 3 2 3

{ , } { , }

[ ( ) (c c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

∩ ∩ ∩ ∩ ∩ )]
1 3

{ , } { , }

[ ( ) ( c
r r ij ij

i j X i j Y

P W W W
∈ ∈

= ∩ ∩ ∩ ∩

                                              . (17) 
1 3 2 3

{ , } { , }

[ ( ) ( c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

− ∩ ∩ ∩ ∩ ∩

Hence, by substituting the results of (16) and (17) into (15), (13) follows. 

 Case 2: P W  and 
2 3

{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

W W
∈ ∈

>∩ ∩ ∩ ∩

{ , }

) ( )] 0c c
ij ij

i j Y

W W
∈ ∈

2 3
{ , }

[ (r r
i j X

P W =∩ ∩ ∩ ∩ rP W.  Because 
2 3

{ , } { , }

[ ( ) ( )]c c
r ij ij

i j X i j Y

W W
∈ ∈

0=∩ ∩ ∩ ∩ , 

by the additivity axiom,  
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 ; (18) 
2 3

{ , } { , } { , } { , }

[( ) ( )] [ ( ) ( )]c c
ij ij r r ij ij

i j X i j Y i j X i j Y

P W W P W W W
∈ ∈ ∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩ ∩

in addition,

 
1 3 2 3

{ , } { , }

[ ( ) (c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

)] 0c =∩ ∩ ∩ ∩ ∩ ; (19) 

and using (19) and the additivity axiom,  

       . (20)

Then (13) follows by multiplying (18) and (20). 

1 3 1 3 2 3
{ , } { , } { , } { , }

[ ( ) ( )] [ ( ) ( )c c
r r ij ij r r r r ij ij

i j X i j Y i j X i j Y

P W W W P W W W W
∈ ∈ ∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ]

0 Case 3: 
2 3

{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

P W W W
∈ ∈

=∩ ∩ ∩ ∩

{ , }

) ( )] 0c c
ij ij

i j Y

W W
∈ ∈

>∩ ∩ 2 3
{ , }

[ (r r
i j

P W ∩ ∩

2 3
{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

W W
∈ ∈

 and 

.   implies 

that 

2 3
{ , }

[ (r r
i j X

P W ∩ ∩

1 3r rP W W

{ , }

) ( )]c
ij ij

X i j Y

W W
∈ ∈

=∩ ∩

0

0

=∩ ∩ ∩ ∩ ∩ .  Thus, 

 
1 3 2 3

{ , } { , } { , } { , }

[ ( ) ( )] [( ) (c c
r r r r ij ij ij ij

i j X i j Y i j X i j Y

P W W W W P W W
∈ ∈ ∈ ∈

)] 0⋅ =∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩  

               . (21) 
1 3 2 3

{ , } { , } { , } { , }

[ ( ) ( )] [ ( ) ( )c c
r r ij ij r r ij ij

i j X i j Y i j X i j Y

P W W W P W W W
∈ ∈ ∈ ∈

= ⋅∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ]

0 Case 4: 
2 3

{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

P W W W
∈ ∈

=∩ ∩ ∩ ∩

{ , }

) ( )] 0c c
ij ij

i j Y

W W
∈ ∈

 and 

2 3
{ , }

[ (r r
i j X

P W =∩ ∩ ∩ ∩ .  (13) follows by the arguments given in Case 3. 

  ■ 

 

Lemma 2.  Under , for any distinct r0H Rrr ∈321 ,,

0

 and , if 

, then  

)(,
21 rrRKEYX −−⊆

2 3
{ , } { , }

[ ( ( )]c
r r i ij

i j X i j Y

P W W W
∈ ∈

>∩ ∩ ∩)j ∩

 . 
1 3 2 3

{ , } { , }

[ | ( ) ( )c
r r r r ij ij

i j X i j Y

P W W W W
∈ ∈

∩ ∩ ∩ ∩ ]
1 3

{ , } { , }

[ | ( ) ( )c
r r ij ij

i j X i j Y

P W W W
∈ ∈

= ∩ ∩ ∩ ]
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Proof:  Given distinct Rrrr ∈321 ,,

{ , }

) ( c
ij

i j Y

W
∈ ∈

∩ ∩

 and , assume  and 

that .  The latter assumption and the definition of 

conditional probability imply that 

)(,
21 rrRKEYX −−⊆

)] 0

0H

2 3
{ , }

[ (r r ij
i j X

P W W >∩ ∩

     
1 3 2 3

1 3 2 3

2 3

{ , } { , }

{ , } { , }
{ , } { , }

[ ( ) (
[ | ( ) ( )]

[ ( ) ( )]

c
r r r r ij ij

i j X i j Yc
r r r r ij ij c

i j X i j Y r r ij ij
i j X i j Y

P W W W W
P W W W W

P W W W
∈ ∈

∈ ∈
∈ ∈

=
∩ ∩ ∩ ∩ ∩

∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
)]

 

                                                   
1 3 2 3

2 3

{ , } { , }

{ , } { , }

[ | ( ) ( )

[ | ( ) ( )]

c
r r r r ij ij

i j X i j Y
c

r r ij ij
i j X i j Y

P W W W W

P W W W
∈ ∈

∈ ∈

=
∩ ∩ ∩ ∩

∩ ∩ ∩
]

0

. (22) 

It follows from  that 

, and so by Lemma 1,  

2 3
{ , } { , }

[ ( ) ( )]c
r r ij ij

i j X i j Y

P W W W
∈ ∈

>∩ ∩ ∩ ∩

{ , }

( )] 0c
ij

i j Y

W
∈ ∈

>∩
{ , }

[( )ij
i j X

P W∩ ∩

 
1 3 2 3

2 3

{ , } { , }

{ , } { , }

[ | ( ) ( )

[ | ( ) ( )]

c
r r r r ij ij

i j X i j Y
c

r r ij ij
i j X i j Y

P W W W W

P W W W
∈ ∈

∈ ∈

∩ ∩ ∩ ∩
∩ ∩ ∩

]
 

           
1 3 2 3

2 3

{ , } { , } { , } { , }

{ , } { , }

[ | ( ) ( )] [ | ( ) (

[ | ( ) ( )]

c c
r r ij ij r r ij ij

i j X i j Y i j X i j Y
c

r r ij ij
i j X i j Y

P W W W P W W W

P W W W
∈ ∈ ∈ ∈

∈ ∈

⋅∩ ∩ ∩ ∩ ∩ ∩
∩ ∩ ∩

)]

]

=  

                                                          . ■ 
1 3

{ , } { , }

[ | ( ) ( )c
r r ij ij

i j X i j Y

P W W W
∈ ∈

= ∩ ∩ ∩

 

Lemma 3.   For any , ( )RX Y E K∈ , and 2121 ,, rrRrr ≠∈ , if ∃  r R∈3  such that 

, then  Xrrrr ∈},{},,{ 3231

 . 
1 2

{ , } { , } { , } { , }

( ) ( ) ( ) ( )c c
r r ij ij ij ij

i j X i j Y i j X i j Y

W W W W
∈ ∈ ∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩ ∩ W
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Proof:  Given , ( )RX Y E K∈ , and 2121 ,, rrRrr ≠∈ , assume ∃  Rr ∈3  such that 

.   Fix .  Given X 3rrrrr ∈},{},,{ 3231 Sψ ∈ , assume that 

1 2
{ ,

r r
i j} { , }

( ) (ij
X i j Y

W W )W c
ijψ

∈ ∈
∩ ∩∈ ∩ ∩ .  Because by definition 

 , (23) 
1 2

{ , } { , } { , } { , }

( ) ( ) ( ) (c
r r ij ij ij ij

i j X i j Y i j X i j Y

W W W W
∈ ∈ ∈ ∈

⊆∩ ∩ ∩ ∩ ∩ ∩ ∩ )cW

)W
{ , } { , }

( ) ( c
ij ij

i j X i j Y

Wψ
∈ ∈

∈ ∩ ∩ ∩ .  Now assume that 
{ , } { , }

( ) ( c
ij ij

i j X i j Y

W )Wψ
∈ ∈

∈ ∩ ∩ ∩ .  Thus, 

1 3 2 3( , ), ( , ) Eqr r r r ψ∈ , and transitively, 1 2( , )r r Eqψ∈ .  It follows that 
1 2r rWψ ∈ , and that 

1 2
{ , } { , }

( )r r ij
i j X i j

W W ( c
ij

Y

)Wψ
∈ ∈

∈ ∩ ∩ ∩ ∩ .  Hence, 
1 2

{ , } { , }

( )r r ij
i j X i j Y

W W ( )c
ijWψ

∈ ∈

∈ ∩ ∩ ∩ ∩  if and 

only if 
{ , } { , }

( )ij
i j X i j

( )c
ij

Y

W Wψ
∈ ∈

∈ ∩ ∩ ∩ . ■ 

 

Lemma 4.  Under , 0H
1 2

( )r rP W a=  for all distinct Rrr ∈21, . 

Proof:  Assume .  Given distinct r0H Rr ∈21, , fix 2133 ,, rrrRr ≠∈ .   By Lemma 3 

(with )

 , (24) 

1 3 2 3{{ , , }},X r r r Y= =

1 2 2 3 1 3r r r r r rW W W W=

},{r

1 3r r∩ ∩

∅

2 3r rW∩

implying by Lemma 1 (with ∅=YX , )

1 3r rP W=

 that 

 . (25) 
1 2 1 3 2 3 2 3

( ) ( )r r r r r r r rP W W W P W∩ ∩ ( )

) ( )

( )

By similar arguments, 

  P W  (26) 
1 2 1 3 2 3 1 2 1 3

( ) (r r r r r r r r r rW W P W P W=∩ ∩

and 

 . (27) 
1 2 1 3 2 3 1 2 2 3

( ) ( )r r r r r r r r r rP W W W P W P W=∩ ∩
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(25), (26), and (27) comprise a system of three independent equations with four 

unknowns.   By assumption, , implying 

that .   Therefore, in the case 

1 2 1 3 2 3
( ), ( ), ( )r r r r r rP W P W P W >

2 3
)r r 3

0

1 2 1 3
( ) ( ) (r r r rP W P W P W= = 2=r , 

 , (28) 
1 2 1 22( ) ( ) (r r r rP W P W P W= = 2 )

2 2 )r

while in the case ,

 . (29) 

2 ,1 31 == rr

21 12( )r P W P W= =( ) (P W

Hence . ■ 
1 2 12( ) ( )r rP W P W a= =

 

Lemma 5.  For any , ( )RX Y E K∈ , and distinct r Rr ∈21, , if ∃  Rr ∈3  such that 

 and { , then Xrr ∈},{ 31 Yr ∈}3r ,2

 . 
1 2

{ , } { , } { , } { , }

( ) ( ) ( ) ( )c c
r r ij ij ij ij

i j X i j Y i j X i j Y

W W W W
∈ ∈ ∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩ ∩ cW

Proof:  Given , ( )RX Y E K∈ , and distinct Rrr ∈21, , assume ∃  r  such that 

 and { .  Fix .  Given 

R∈3

Xrr ∈},{ 31 Yrr ∈}, 32 3r Sψ ∈ , because by definition 

 , (30) 
1 2

{ , } { , } { , } { , }

( ) ( ) ( ) (c c
r r ij ij ij ij

i j X i j Y i j X i j Y

W W W W
∈ ∈ ∈ ∈

⊆∩ ∩ ∩ ∩ ∩ ∩ ∩ )cW

Wif 
1 2

{ , } { , }

( ) ( )c c
r r ij ij

i j X i j Y

W Wψ
∈ ∈

∈ ∩ ∩ ∩ ∩ , then 
{ , } { , }

( ) ( c
ij ij

i j X i j Y

W )Wψ
∈ ∈

∈ ∩ ∩ ∩ .  Now assume 

that 
{ , } { , }

( ) ( )c
ij ij

i j X i j Y

W Wψ
∈ ∈

∈ ∩ ∩ ∩ , implying that 1 3( , ) Eqr r ψ∈  and 2 3( ,r r ) Eqψ∉ .  It 

follows that ( ,1 2 ) Eqr r ψ∉ .  Thus, 
1 2r r

{ , } { , }

( ) (c c
ij ij

i j X i j Y

W W W )ψ
∈ ∈

∩ ∩ ∩ ∩∈

S

.  Therefore, for 

any ψ ∈
1 2

{ , }

( )r r ij
i j X

W W, 
{ , }

(
i j Y

)c c
ijWψ

∈ ∈
∩∈ ∩ ∩ ∩

{ , } { , }

( ) ( )c
ij ij

i j X i j Y

W W

 if and only if 

ψ
∈ ∈

∈ ∩ ∩ ∩ . ■ 
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Lemma 6.  For any Ω∈ω  with 2ω ≥ , integer t with 2 t ω≤ ≤ , and enumeration 

ωrrrr ,,...,, 321  of ω , 

 
1 2

1{ , } ( )

( )
r

c
r r ij

i j E K

W W
ω−∈

=∩ ∩ 1 2

{{ },{ ,... , }} 1 21 1 2{ , } ( ) ( ) { , }

( )
r r r rt

c
r r ij

i j E K E K r r

W W
ω−∈ ∪ −

∩ ∩ . 

Proof:  Given Ω∈ω  with 2ω ≥ , integer t with 2 t ω≤ ≤ , enumeration ωrrrr ,,...,, 321  

of ω , and Rψ ∈ , assume that 
1 2

{{ },{ ,... , }} 1 21 1 2 1{ , } ( ) ( ) { , }r r r rt

r r
i j E K E K r r

W W
ω

( )c
ijψ

− −
∈ ∪ −

∈ ∩ ∩ .  Then 

 , (31) 
1 2

{{ },{ ,... , }} 1 21 1 2{ , } ( ) ( ) { , }

(
r r r rt

c
r r ij

i j E K E K r r

W
ω−∈ ∪ −

∩ ∩ )W
1 2

1{ , } ( )

(
r

c
r r ij

i j E K

W
ω−∈

⊆ ∩ ∩ )W

)Wso 
1 2

1{ , } ( )

(
r

c
r r ij

i j E K

W
ω

ψ
−∈

∈ ∩ ∩

1 2

1{ , } ( )

(
r

c
r r ij

i j E K

W
ω

.  For the opposite direction, assume that 

)Wψ
−∈

∈ ∩ ∩ .  By Lemma 5, for any { ,
1 21 {{ },{ ,..., }} 1 2} ( ) { , }

ti r r rr r E K r r∈ − , 

 
1 2

1{ , } ( )

( )
r

c
r r ij

i j E K

W W
ω−∈

=∩ ∩ 1 1 2

1{ , } ( )

(
i

r

c
r r r r ij

i j E K

W W W
ω−∈

∩ ∩ ∩ )

)

. (32) 

Thus, 
1 1 2

1{ , } ( )

(
i

r

c
r r r r ij

i j E K

W W W
ω

ψ
−∈

∈ ∩ ∩ ∩ .  It follows that  

 
1 2

{{ },{ ,... , }} 1 21 2 1{ , } ( ) { , } { , } ( )

( ) (
r r r rt

c c
ij r r ij

i j E K r r i j E K

W W W
ω

)ψ
−∈ − ∈

∈ ∩ ∩ ∩ ∩  

                                                    . (33) 
1 2

{{ },{ ,... , }} 1 21 1 2{ , } ( ) ( ) { , }

( )
r r r rt

c
r r ij

i j E K E K r r

W W
ω−∈ ∪ −

= ∩ ∩

Thus, 
1 2

1{ , } ( )

(
r

c
r r ij

i j E K

W
ω

)Wψ
−∈

∈ ∩ ∩

1 2

{{ },{ ,... ,1 1 2{ , } ( ) (r r r t

r r
i j E K E Kω

 if and only if 

}} 1 21 ) { , }

( )
r

c
ij

r r

W Wψ
− −

∈ ∪
∩ ∩

−

∈ . ■ 

 

Lemma 7.  Under , for all 0H Ω∈ω  with Rω ≠ , ω∉1r , and ω∈2r , if 

, then 
{ , } ( )

( )c
ij

i j E K
P W

ω∈

>∩ 0
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1 2

{ , } ( )

( | )c
r r ij

i j E K

P W W a
ω∈

=∩ . 

Proof:  Assume .  Given 0H Ω∈ω  with Rω ≠ , ω∉1r , and ω∈2r , assume that 

.  The proof will follow by induction on 
{ , } ( )

( c
ij

i j E K

P
ω∈

∩ ) 0W > ω .  If 1=ω , then 

, and by Lemma 4, ∅=)( ωKE

 
1 2 1 2

{ , } ( )

( | ) ( )c
r r ij r r

i j E K

P W W P W a
ω∈

= =∩ . (34) 

 Now assume that for some integer t≤1 , the result holds for t≤ω .  Take 

1+= tω .  Fix 233 , rrr ≠∈ω .  By assumption , so 

.   Thus, by the induction hypothesis, 

{ , } ( )

( )c
ij

i j E K

P W
ω∈

>∩ 0

3

0
r

c

3( )

(
rE K

P
ω−

∩ ) 0>c
ijW

  (35) 
2 3

3( )

( | )
r

c
r r ij

E K

P W W a
ω−

=∩

and 

 . (36)

From (35) and the multiplication rule for conditional probability, 

1 2

3( )

( | )
r

c
r r ij

E K

P W W a
ω−

=∩

         
2 3 2 3

3 3 3( ) ( ) ( ) ( )

[ ( )] ( | ) ( ) ( )
r r r

c c c
r r ij r r ij ij ij

E K E K E K E K

P W W P W W P W a P W
ω ω ω ω− − − −

= ⋅ = ⋅ >∩ ∩ ∩ ∩ ∩ . 

  (37) 

Thus, it follows from Lemma 2 that 

 
1 2 2 3

3( )

[ | ( )]
r

c
r r r r ij

E K

P W W W a
ω−

=∩ ∩ . (38) 

By Lemma 6, 

1 2 2 3

3( )

[ | ( )]
r

c
r r r r ij

E K

P W W W a
ω−

= =∩ ∩ 1 2 2 3

2 3( ) { , }

[ | ( c
r r r r ij

E K r r

P W W W
ω −

∩ ∩ )] . (39) 

Lemma 6 and (37) also imply that 
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 . (40) 
2 3

2 3( ) { , }

[ ( )]c
r r ij

E K r r

P W W
ω −

>∩ ∩ 0

)c

)]c

Moreover, by definition 

  (41) 
1 2 2 3 1 2

2 3( ) { , } { , } ( )

[ | ( )] ( |c c
r r r r ij r r ij

E K r r i j E K

P W W W P W W
ω ω− ∈

=∩ ∩ ∩

and by assumption , so  gives

 . (42) 

{ , } ( )

( )c
ij

i j E K

P W
ω∈

>∩

2 3

2 3( ) { , }

(r ij
E K r r

W∩ ∩

0 0H

1 2
[ r rP W

1 2 2 3

2 3( ) { , }

[ | )] | (c c
r r r r r ij

E K r r

P W W W W
ω ω− −

= ∩ ∩

Therefore, by (39) 

 
1 2 2 3

2 3( ) { , }

[ | ( )c c
r r r r ij

E K r r

P W W W a
ω −

=∩ ∩ . ■ 

 

Lemma 8.  Under , for any 0H Ω∈ω  with 2≥ω , enumeration ωrrr ,,...,, 321r  of ω , 

and integer t with ω≤≤ t2 , if , then 
1( )

( )
r

c
ij

E K

W
ω−

>∩
{ , }i j

P
∈

0

 
1

{{ },{ ,... , }} 11 1 2{ , } ( ) ( ) { , }

( | )
1 ( 2t

r r r r tt

c
r r ij

i j E K E K r r

aP W W
a t

ω−∈ ∪ −

=
)− −∩ . 

Proof:  Given Ω∈ω  with 2≥ω , fix an enumeration of ω , ωrrr ,,...,, 321r .   Assume 

 and that .  The proof will follow by induction on t.  For the 

case , because 

0H
1 )r

c
ij

K

W
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By Lemma 7, 
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Moreover, by Lemma 6, 
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Thus, by the multiplication rule for conditional probability: 
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It follows from (48) that all terms in both (49) and (50) are defined and nonzero.   

Examining the second term on the right side in (49), by the induction hypothesis,  
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Examining the second term on the right side of (50), by the induction hypothesis, 
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For the final term in (50), from Lemma 5, 
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 which implies that  
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and thus, 
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Lemma 9.  Under , for any 0H Ω∈ω  with 2ω ≥  and ω∈1r , if 

, then 
1{ , } ( )
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r
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P
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1

0{ , } ( )
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ω

ω −

=∈

= −∏∩ )ia . 

Proof:  Given Ω∈ω  with 2ω ≥  and ω∈1r , assume  and that 

.   The proof will follow by induction on
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(
ri j E K

P
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ijW > ω .  For the case 2=ω , 

fix 1r22 , rr ≠∈ω .  By Lemma 4,  
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 Assume now that for some integer Rt <≤2 , the result holds if t≤≤ ω2 . 

Assume that 1+= tω  and fix an enumeration of 121 ,,..., +≡ trrrω .  By assumption, 
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Examining the first term on the right side in (57), because tr =− 1ω  and 
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As for the second term on the right side in (57), by the multiplication rule for 

conditional probability and Lemma 8, 
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Hence,  
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As t=−1ω , the proof is complete.  ■ 

 

Lemma 10.  Under , for any 0H Ω∈ω  with 2ω ≥  and ω∈1r , if 
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Proof:  Given Ω∈ω  with 2ω ≥  and ω∈1r , assume  and that 
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The expression on the right side of (61) is greater than 1 when 1 1
1 2

a
ω ω

< <
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Proof:  Given Ω∈ω  with 2ω ≥ , assume  and that .  The 

proof will follow by a case analysis on whether 
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Hence, by Lemma 10, 
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Lemma 13.  Under , for any (i) ladder graph G  with vertex sets 0H 1ω , 2ω ∈Ω∪∅ , 

(ii) 3ω ∈Ω with 3ω  and 1ω disjoint and 3 2ω ω⊃ , (iii) , and (iv) cr )( 311 ωω ∪∈
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Moreover, it follows from the induction hypothesis that 
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.   It follows that 

0H

* )FK{ , } (

( c
ij

i j E

P
∈
∩ ) 0W > ∃  an edge in  containing .  Fix this edge 

as { .  The proof will follow by induction on 

)'(E F 2r

}, 32 rr )'(FF τ)' −(E .    

 Assume 0)'()'( =− FF τE .  Then ∃  a ladder graph with edge set 

, and so by Lemma 13, },{)'( 32 rrFE −
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1 2

*
2 3{ , } ( ') { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W a
∈ − ∈

=∩ ∩ ∩  (81) 

and  

 
2 3

*
2 3{ , } ( ') { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W a
∈ − ∈

=∩ ∩ ∩ . (82) 

From (82),

 , (83) 
2 3

*
2 3{ , } ( ') { , } { , } ( )

[ ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W
∈ − ∈

>∩ ∩ ∩ ∩ 0

and so by Lemma 2, 

 
1 2

*{ , } ( ') { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F i j E K

P W W W a
∈ ∈

=∩ ∩ ∩ . (84) 

 Assume now that for some integer t , the result holds if 0≥ tFFE ≤− )'()'( τ .  

Assume that 1)'()'( +=− tFFE τ

)'(FE

.  A case analysis is required on whether {  is 

the only edge in  containing . 

}, 32 rr

2r

 Case 1: {  is the only edge in  containing .  

Because

}, 32 rr )'(FE 2r

1)'( ≥FE )'(− Fτ , ∃  at least one v )'F(V∈  with degree of at least 2.   Fix 

this vertex as and an edge containing this vertex as{ .   By the case assumption, 

 must be distinct.  Thus, for the edge-induced subgraph 

 of , the difference between the number of edges and 

trees is 

4r

5r

}),(, 55 rEr−

}, 54 rr

432 ,,, rrr

)'(( FV {)' 4rF − F

 tFFErrFErFVrrFE =−−=−−−− )'(1)'(}),{)'(,)'((},{)'( 54554 ττ . (85) 

Likewise, for the edge-induced subgraph }),{},{)'(,)'(( 3254532 rrrrFErrrFV −−−−−  

of , the difference  is F

 }),{},{)'(,)'((},{},{)'( 32545323254 rrrrFErrrFVrrrrFE −−−−−−−− τ  

                                                     tFFE =−−−= ]1)'([2)'( τ . (86) 
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Therefore, by the induction hypothesis, 

 
4 5

*
4 5{ , } ( ') { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W a
∈ − ∈

=∩ ∩ ∩ , (87) 

 
2 3

*
4 5 2 3{ , } ( ') { , } { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r r r i j E K

P W W W a
∈ − − ∈

=∩ ∩ ∩ , (88) 

and 

 
4 5

*
4 5 2 3{ , } ( ') { , } { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r r r i j E K

P W W W a
∈ − − ∈

=∩ ∩ ∩  (89) 

It follows then that 

 
4 5

*
4 5

4 5
*

4 5 2 3

{ , } ( ') { , } { , } ( )

{ , } ( ') { , } { , } { , } ( )

[ | ( ) ( )]

[ | ( ) (
F

F

c
r r ij ij

i j E F r r i j E K
c

r r ij ij
i j E F r r r r i j E K

P W W W
a

P W W W
∈ − ∈

∈ − − ∈

=
∩ ∩ ∩
∩ ∩ ∩ )]

)]

 

                    ⋅  
2 3

*
4 5 2 3{ , } ( ') { , } { , } { , } ( )

[ | ( ) (
F

c
r r ij ij

i j E F r r r r i j E K

P W W W
∈ − − ∈
∩ ∩ ∩

                            
2 3

*
2 3

*
2 3

{ , } ( ') { , } { , } ( )

{ , } ( ') { , } { , } ( )

[ ( ) (

[( ) ( )]
F

F

c
r r ij ij

i j E F r r i j E K
c

ij ij
i j E F r r i j E K

P W W W

P W W
∈ − ∈

∈ − ∈

=
∩ ∩ ∩ ∩
∩ ∩ ∩

)]

)]

 

                                              . (90) 
2 3

*
2 3{ , } ( ') { , } { , } ( )

[ | ( ) (
F

c
r r ij ij

i j E F r r i j E K

P W W W
∈ − ∈

= ∩ ∩ ∩

Turning to the edge induced subgraphs 

}),{},{},{)'(,)'(( 543221531 rrrrrrFErrrFV −−∪−−∪

}),{},{)'(,)'(( 3254532 rrrrFErrrFV

 and 

−−−−− F of , by similar arguments, 

 
1 2

*
2 3{ , } ( ') { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W a
∈ − ∈

=∩ ∩ ∩ . (91) 

By the definition of conditional probability, (90) implies that 

 . (92) 
2 3

*
2 3{ , } ( ') { , } { , } ( )

[ ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W
∈ − ∈

>∩ ∩ ∩ ∩ 0

Hence, applying Lemma 2 to (90) and (91) gives the result. 
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 Case 2: {  is not the only edge in  containing r .  For the edge-

induced subgraph (

}, 32 rr

(FV

)'(FE 2

}),{)'(,)' 323 rrFEr −−  of , F

 trrFErFVrrFE =−−−− }),{)'(,)'((},{)'( 32332 τ . (93) 

Thus, by the induction hypothesis,  

 
1 2

*
2 3{ , } ( ') { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W a
∈ − ∈

=∩ ∩ ∩  (94) 

and  

 
2 3

*
2 3{ , } ( ') { , } { , } ( )

[ | ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W a
∈ − ∈

=∩ ∩ ∩ . (95) 

(94) implies that 

 , (96) 
2 3

*
2 3{ , } ( ') { , } { , } ( )

[ ( ) ( )]
F

c
r r ij ij

i j E F r r i j E K

P W W W
∈ − ∈

>∩ ∩ ∩ ∩ 0

so again the result follows by Lemma 2. ■ 

 

Lemma 15.  For any star G, 1=GQ . 

Proof:  Given a star G, by definition ∃  a vertex )(GVv∈ adjacent to all others.  Let v 

be the covering vertex for the star, creating a vertex cover of size 1.   Because a vertex 

cover cannot be empty, the constructed cover must also be minimal and hence 1=GQ .

  ■ 

 

Lemma 16.  For any , ( )RX Y E K∈ , and 1 2,r r R∈  with r1 r2≠ , if  uch 

that {  and 

∃ Rrr ∈43,  s

Xrrrr ∈},{},, 4231 Yrr ∈}, 43{ , then  

 .  
1 2

{ , } { , } { , } { , }

( ) ( ) ( ) (c c
r r ij ij ij ij

i j X i j Y i j X i j Y

W W W W
∈ ∈ ∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩ ∩ )cW
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Proof:  Given , ( )RX Y E K∈ , and 1 2,r r R∈  with 1r r2≠ , assume ∃  r  such that 

 and 

Rr ∈43,

X rrrrrr ∈},{},,{ 4231 Y∈}, 43{ .  Fix  and .  Given 3r 4r Sψ ∈ , assume that 

1 2
{ ,

r r
i j} { , }

( ) (c
ij

X i j Y

W W )W c
ijψ

∈ ∈
∩ ∩∈ ∩ ∩ .  Because by definition, 

 , (97) 
1 2

{ , } { , } { , } { , }

( ) ( ) ( ) (c c
r r ij ij ij ij

i j X i j Y i j X i j Y

W W W W
∈ ∈ ∈ ∈

⊆∩ ∩ ∩ ∩ ∩ ∩ ∩ )cW

)Wit follows that 
{ , } { , }

( ) ( c
ij ij

i j X i j Y

Wψ
∈ ∈

∈ ∩ ∩ ∩

{ , }

( )c
ij

i j Y

W W

.   Now assume that 

{ , }

( )ij
i j X

ψ
∈ ∈
∩ ∩ ∩ 1 3)r r∈ .  Thus, ( , 2 4,( , ) Eqr r ψ∈  and 3 4( , ) Eqr r ψ∉ .  It follows 

that ( ,1 4 )r r Eqψ∉ , because otherwise, transitively 3 4( ,r r ) Eqψ∈ , a contradiction. 

1 4( , ) Eqr r ψ∉  and 2 4( , ) Eqr r ψ∈  imply by similar arguments that 1 2( , ) Er r qψ∉ .  Thus, 

1 2

c
r rWψ ∈ , and 

1 2
{ , } { , }

( )r r ij
i j X i j

W W ( )c c
ij

Y

Wψ
∈ ∈

∈ ∩ ∩ ∩

} { , }

( ) ( )c c
ij ij

X i j Y

W W W

∩ .  Therefore, 

1 2
{ ,

r r
i j

ψ
∈ ∈

∩ ∩∈ ∩ ∩  if and only if 
{ ,i j} X { , }

( ) (ij
i j Y

W )W c
ijψ

∈ ∈
∩ ∩ ∩∈ . ■ 

 

Lemma 17.  For any partition ψ  of R,  { , and 

spanning star forest  of , 

),(),( ψψ KEYKEX c ⊆⊆ )

)cW

(}, 21 ψKErr ∈

F cKψ

 . 
1 2

* *{ , } ( ) { , } ( ){ , } ( ) { , } ( )

( ) ( ) ( ) (
F F

c c
r r ij ij ij ij

i j E F X i j E F Xi j E K Y i j E K Y

W W W W
∈ ∪ ∈ ∪∈ ∪ ∈ ∪

=∩ ∩ ∩ ∩ ∩ ∩ ∩

Proof:  Given partition ψ , ),(),( ψψ KEYKEX c ⊆⊆ )(},{ 21 ψKErr ∈ , and a spanning 

star forest  of , the proof will follow from a case analysis on whether r  F cKψ
+∈ FQr21, .

 Case 1: ∈rr .   By the definition of , { .   Hence, 

, and the claim follows immediately. 

+
FQ21,

Y∪

*
FK )(}, *

21 FKErr ∈

KErr F∈ )(},{ *
21
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 Case 2: ∉r  and .  By Lemma 15, +
FQ1

+∈ FQr2 ∃  a vertex cover of size 1 for 

’s star.  Fix the vertex in this cover as .  Clearly, because , .  

Moreover, by definition  and  are adjacent in ’s star, and hence they are adjacent 

in .   Thus, we have that { .  Additionally, 

because r  { .  The hypotheses of 

Lemma 5 are hence satisfied, and the claim follows. 

1r 3r

) ⊆

(K

+∉ FQr1

)c
ψ

31 rr ≠

1r

}3r

3r

}, 31 rr ∈

)( *KE F

1r

∪

⊆

F ()(( KEFEFE ⊆

))*
ψKYE F ∪⊆∈

X

(E+
FQ, , ,2r∈r32

 Case 3:  and .  By symmetry, this case follows from the same 

arguments as case 2.   

+∈ FQr1
+∉ FQr2

 Case 4: rr , .   Because by definition{+∉ FQ21 )(}, 21 ψKErr ∈ ,  and  must be 

elements of different stars in .  By Lemma 15, 

1r 2r

F ∃  vertex covers each with a single 

element for both  and ’s stars.   Fix the covering vertices as  and , 

respectively.  As in case 2, { .   Moreover, 

because r  and  are both covering vertices, { , 

as in case 1.   Hence, the hypotheses of Lemma 16 are satisfied and the claim follows.

  ■ 

1r 2r

4r

3r

)( EXFE ⊆∪⊆

()(} *
4 EKEr F ⊆∈

4r

)

∪

(K

*KF

)(},{}, 423
cFErr ψ∈

)3r

,1 rr

3 )( ψKE, Y ⊆

 

Lemma 18.  For any partition ψ  of R,  { , and 

spanning star forest F of ,  

),(),( ψψ KEYKEX c ⊆⊆ )(}, 21
cKErr ψ∈

cKψ

 . 
1 2

* *{ , } ( ) { , } ( ){ , } ( ) { , } ( )

( ) ( ) ( ) (
F F

c c
r r ij ij ij ij

i j E F X i j E F Xi j E K Y i j E K Y

W W W W
∈ ∪ ∈ ∪∈ ∪ ∈ ∪

=∩ ∩ ∩ ∩ ∩ ∩ ∩ )W

Proof:  Given partition ψ ,  { , and a spanning 

star forest F of , the proof will follow by a case analysis on whether r .    

),(),( ψψ KEYKEX c ⊆⊆ )(}, 21
cKErr ψ∈

cKψ
+∈ FQr21,
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 Case 1: .   Note that because { ,  and  must be 

distinct vertices in the same star of  with d  and .   But by Lemma 

15∃  only one element of  per star, implying a contradiction because Q  contains 

only of vertices of degree zero and elements of Q .  Therefore,  and r  cannot both 

be elements of Q . 

+∈ FQrr 21,

+
F

)(}, 21
cKErr ψ∈

1)1 ≥r )( 2rd

F

1r

1≥

1r

2r

2

F (

FQ +
F

 Case 2: ∉r  and .  By definition, r  and  must be distinct vertices 

in the same star.  Also, by Lemma 15, 

+
FQ1

+∈ FQr2 1 2r

∃  exactly one element of Q in  and r ’s star.  

Because d and , this vertex must be , implying that  and  are 

adjacent in .   Thus, we have that 

F 1r

1

2

20≠)( 2r

F

+
FQ∈r2 2r

X

r r

FEr ∪r ∈ )(}1, 2{ , implying the claim. 

 Case 3:  and .  By symmetry, the arguments from case 2 apply. +∈ FQr1
+∉ FQr2

 Case 4: .  By Lemma 15, +∉ FQrr 21 , ∃  exactly one element of  in r  and 

’s star.   Fix this vertex as .  Because , 

FQ 1

2r 3r
+∉ FQr1,r2 31 rr ≠  and .  However, by 

definition, both  and  must be adjacent to , implying 

that{ .   Hence, the hypotheses of Lemma 3 

are satisfied and the claim follows. ■ 

32 rr ≠

1r 2r

)(}3 FE ⊆∈

3r

)(E),{},, 231 Xrrrr ⊆∪(FE cKψ

 

Lemma 19.  For any partition ψ  of R, ( ), ( )c ,X E K Y E Kψ⊆ ⊆ ψ

)W

 and spanning star 

forest F of ,  cKψ

 . 
*{ , } ( ) { , } ( ){ , } ( ) { , } ( )

( ) ( ) ( ) (
c

F

c c
ij ij ij ij

i j E K i j E Fi j E K i j E K

W W W
ψψ ∈ ∈∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩

Proof:  Given a partitions ψ  and 'ψ of R, ( ), ( )c ,X E K Y E Kψ⊆ ⊆

{ , } ( )( )

) ( )
c

c
ij ij

i j E KE K

W
ψψ

ψ

W

 and a spanning 

star forest F of , assume that cKψ
{ , }

' (
i j

ψ
∈∈

∩ ∩ ∩∈ .  By definition,  
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*{ , } ( ) { , } ( ){ , } ( ) { , } ( )

( ) ( ) ( ) ( )
c

F

c c
ij ij ij ij

i j E K i j E Fi j E K i j E K

W W W W
ψψ ∈ ∈∈ ∈

⊆∩ ∩ ∩ ∩ ∩ ∩ , (98) 

so 
*{ , } ( ) { , } ( )

' ( ) ( )
F

c
ij ij

i j E F i j E K

W Wψ
∈ ∈

∈ ∩ ∩ ∩ .  Now assume that 

*{ , } ( ) { , } ( )

' ( ) ( )
F

c
ij ij

i j E F i j E K

W Wψ
∈ ∈

∈ ∩ ∩ ∩ .  Given 1 2{ , } ( ) ( )cr r E K E Fψ∈ − , by Lemma 18, 

 
1 2

* *{ , } ( ) { , } ( ){ , } ( ) { , } ( )

( ) ( ) ( ) ( )
F F

c c
r r ij ij ij ij

i j E F i j E Fi j E K i j E K

W W W W W
∈ ∈∈ ∈

=∩ ∩ ∩ ∩ ∩ ∩ ∩ ,   (99) 

implying that 

 
1 2

*{ , } ( ) { , } ( )

' ( ) ( ).
F

c
r r ij ij

i j E F i j E K

W W Wψ
∈ ∈

∈ ∩ ∩ ∩ ∩  (100) 

Because (100) holds for any 1 2{ , } ( ) ( )cr r E K E Fψ∈ − , it follows that 

 
*{ , } ( ) { , } ( )

' ( ) ( ).
c

F

c
ij ij

i j E K i j E K

W W
ψ

ψ
∈ ∈

∈ ∩ ∩ ∩  (101) 

Likewise, for any 1 2{ , } ( ) ( )Fr r E K E Kψ
∗∈ − , by Lemma 17, 

 
1 2

*{ , } ( ) { , } ( )

' ( ) ( )
c

F

c c
r r ij ij

i j E K i j E K

W W W
ψ

ψ
∈ ∈

∈ ∩ ∩ ∩ ∩ , (102) 

implying that 

 
{ , } ( ){ , } ( )

' ( ) ( )
c

c
ij ij

i j E Ki j E K

W W
ψψ

ψ
∈∈

∈ ∩ ∩ ∩ . (103) 

Therefore, 
{ , } ( ){ , } ( )

' ( ) ( )
c

c
ij ij

i j E Ki j E K

W W
ψψ

ψ
∈∈

∈ ∩ ∩ ∩  if and only if 

*{ , } ( ) { , } ( )

' ( ) ( )
F

c
ij ij

i j E F i j E K

W Wψ
∈ ∈

∈ ∩ ∩ ∩ . ■ 

 

Lemma 20.  For any partition ψ  of R,  

 
{ , } ( ){ , } ( )

{ } ( ) ( )
c

c
ij ij

i j E Ki j E K

W W
ψψ

ψ
∈∈

= ∩ ∩ ∩ . 
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Proof:  Given partitions ψ  and 'ψ  of R, assume first that ' { }ψ ψ∈ .  For any 

, if { ,1 2,r r R∈ 1 2} ( )r r E cKψ∈ , then ( ,1 2 ) Eqr r ψ∈ .  Hence, 

 
{ , } ( )c

ij
i j E K

W
ψ

ψ
∈

∈ ∩ . (104) 

Moreover, by definition, if { ,1 2} ( )r r E Kψ∈ , then ( ,1 2 ) Eqr r ψ∉ , so 

 
{ , } ( )

c
ij

i j E K

W
ψ

ψ
∈

∈ ∩ . (105) 

By assumption, ' { }ψ ψ∈ , so 'ψ ψ= , and by (104) and (105) 

 
{ , } ( ){ , } ( )

' ( ) ( )
c

c
ij ij

i j E Ki j E K

W
ψψ

Wψ
∈∈

∈ ∩ ∩ ∩ . (106) 

Now assume that 
{ , } ( ){ , } ( )

' ( ) ( )
c

c
ij ij

i j E Ki j E K

W
ψψ

Wψ
∈∈

∈ ∩ ∩ ∩ .  Thus, given distinct 1 2,r r R∈ , 

1 2
' r rWψ ∈ if { ,1 2r r } ( )cE Kψ∈

1 2
' r rW, and ψ ∉ if { ,1 2}r r ( )E Kψ∈ .  Because either 

1 2{ , }r r ( )cKE ψ∈  or { ,1 2} ( )r r E Kψ∈ , it follows that 
1 2

' r rWψ ∈ if and only if 

1 2{ , }r r ( )cKE ψ∈ .  Moreover, 
1 2

' r rWψ ∈  if and only if '1 2( , )r r Eqψ∈ . 

Thus, '( ,1 2r r ) Eqψ∈ if and only if { ,1 2} ( )cr r E Kψ∈ .  Finally, { ,1 2}r r ( )cE Kψ∈  if and only 

if 1 2( , )r r Eqψ∈ , so '( ,1 2 ) Eqr r ψ∈ 1 2( , )r r if and only if Eqψ∈ . Equivalence relations 

“define” partitions and vice versa (Hrbacek and Jech, Chapter 2), so 'ψ ψ= , and 

hence ' { }ψ ψ∈ .  Therefore, ' { }ψ ψ∈  if and only if 

{ , } ( )

) ( )c
ij

i j E K

W W
ψ{ , }

' (
i j ( )c

ij
KψE

ψ
∈

∩ ∩ ∩
∈

∈ . ■ 

 

Lemma 21.  For any partition ψ  of R and spanning star forest F of , if cKψ

*( )FV K = 1, then 
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*

( )

{ , } ( ) { , } ( )

[( ) ( )]
F

E Fc
ij ij

i j E F i j E K

P W W a
∈ ∈

=∩ ∩ ∩ . 

Proof:  Given a partition ψ  of R and spanning star forest F of , assume that cKψ

*( )FV K = 1.  Thus, *( )F 0E K = , and  

 . (107) 
*{ , } ( ) { , } ( ){ , } ( )

[( ) ( )] ( )
F

c
ij ij ij

i j E F i j E Fi j E K

P W W P
∈ ∈∈

=∩ ∩ ∩ ∩ W

Fix an enumeration 1 2 ( ), ,..., V Fr r r  of V F , with { }( ) 1 ( )Fr V K ∗= .  The remainder of the 

proof will follow by induction on ( )V F .  *( ) 1FV K =  implies by definition that F 

contains exactly 1 tree, whose vertices are all of the subunits in R.  Hence, ( ) 3V F ≥ .  

Assume that ( ) 3V F = .  By Lemma 4, 
1 2

( )r r 1 3
, ( )r rP W aP W = , so by Lemma 2, 

 , (108) 
1 2 1 3 1 2

( | ) (r r r r r rP W W P W= )

implying that 

 . (109) 
1 2 1 3

2( )r r r rP W W a=∩
Because any tree must have 1 fewer edges than vertices (Bogart 1983), ( ) 2E F = and 

the result follows. 

 Now assume that for the integer 3 t≤ , if ( )V F t≤ , then the result holds.  

Assume that ( ) 1V F t= + .  By the induction hypothesis, 

 , (110) 
1{ , } ( ) { , }

(
t

t
ij

i j E F r r

P W
∈ −

=∩ ) a

) a 
1 1{ , } ( ) { , }

(
t

t
ij

i j E F r r

P W
−∈ −

=∩ , (111) 

and 

 
1 1 1

1

{ , } ( ) { , } { , }

(
t t

t
ij

i j E F r r r r

P W
−

) a −

∈ − −

=∩ . (112) 

Therefore, 
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 1 1

1

1 1 1

1 1 1

{ , } ( ) { , }

{ , } ( ) { , } { , }
{ , } ( ) { , } { , }

( )
( | )

( )
t

t

t t

t t

ij
i j E F r r

r r ij
i j E F r r r r ij

i j E F r r r r

P W
P W W a

P W
−

−

−

∈ −

∈ − −
∈ − −

= =
∩

∩ ∩  (113) 

and 

 1

1 1

1 1 1

1 1 1

{ , } ( ) { , }

{ , } ( ) { , } { , }
{ , } ( ) { , } { , }

( )
( | )

( )
t

t

t t

t t

ij
i j E F r r

r r ij
i j E F r r r r ij

i j E F r r r r

P W
P W W a

P W−

−

−

∈ −

∈ − −
∈ − −

= =
∩

∩ ∩ . (114) 

Thus, by Lemma 1, (112), (113), and (114) imply that 

  
{ , } ( )

( )ij
i j E F

P W
∈

=∩ 1 1 1

1 1 1{ , } ( ) { , } { , }

( |
t t

t t

r r r r ij
i j E F r r r r

P W W W
−

−∈ − −
∩ ∩ )

1                                        ⋅ . ■ 
1 1 1{ , } ( ) { , } { , }

( )
t t

ij
i j E F r r r r

P
−∈ − −

∩ W 2 1t ta a a− += ⋅ =

 

Theorem 2.   Under , for any partition 0H ψ  of R,   

 { }P ψ
1

0

(1 )R

i
a i

ψ
ψ

−
−

=

= ⋅ −∏ a . 

Proof:  Given a partition ψ  of R and a spanning star forest of , assume .  By 

Lemma 19 and Lemma 20, 

F cKψ 0H

 { }P ψ =
*{ , } ( ) { , } ( )

[( ) ( )]
F

c
ij ij

i j E F i j E K

P W W
∈ ∈
∩ ∩ ∩ . (115) 

The remainder of the proof will follow by a case analysis on whether *( )FV K ≥ 2

0

 and 

. 
*{ , } ( )

{ }
F

c
ij

i j E K

P W
∈

=∩

 Case 1: *( )FV K ≥ 2 ) 0 and
*{ , } ( )

(
F

c
ij

i j E K

P W
∈

=∩

0W

.  It follows that 

*{ , } ( )

(
Fi j E K∈{ , } ( )

[( ) )]c
ij ij

i j E F

P W
∈

=∩ ∩ ∩  and hence by (115) that { } 0P ψ = .  Also, by 
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definition, V K , so because *( )F ∈Ω *( )FV K ≥ 2 , by Lemma 11 

* *

1 1,
( ) 1 (F FV K

1{ ,..., ,1}
2) 2

a
V K

∈
− −

.  Moreover, by definition,  

*( )FV K ψ=

*( )FV K 2≥
{ ,i j

*( )FV K ≥ 2

*( ) 1

0

FV K

i

−

=

= ∏
*{ , } ( )

{ }
F

c
ij

i j E K

P W
∈
∩

Fη )(FE

Fη i

)

WWP
l

m
ji

c
ij mm

F =
∩∩

1)

(){
*

( *
ψFEl ≤≤

W
KEji

ji ll
∈
∩

(},{

(|

∩
FE

lKE

c
ij

F

PWP
)(

1)(

}{
* =

= ∏∩
jiFEji

ijW
},{)(},{

|
∈∈

)(GV −

)()( FF τ−)( VFE =

() VRF −=

 , (116) 

so the result follows by substitution. 

 Case 1:  and .   Because V K  and 
*} ( )

(
F

c
ij

E K

P W
∈

>∩ ) 0 *( )F ∈Ω

, Lemma 9 implies that 

 (1− )ia . (117) 

Fix an enumeration  of , with the first )(Fτ  elements being in different trees, 

and denote the lth element in  as { .  It follows from Lemma 13 and Lemma 14 

that for all 

}, ll j

1 ,  

 . (118) aW ji ll
=− })

Thus, by the product rule, 

 ∩∩∩
l

m
jiji

KEji

c
ijji llmm

F

ll
WWWW

1)(},{

})()(|{
* =∈

− . (119) 

Also, any forest G  contains )(Gτ  edges (Bogart 1983).  Hence, 

.  But by definition, RFV =)(  and )()( *
FKVF =τ , implying 

that 

 )( *
FKE . (120) 

Therefore, (118), (119), and (120) imply that 
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 }|{
)(},{)(},{ *

∩∩
FKEji

c
ij

FEji
ij WWP

∈∈

)( *
FKVRa −

= . (121) 

It follows by (117), (121), and the product rule that 

         
{ , } ( ){ , } ( )

[( ) ( )]
c

c
ij ij

i j E Ki j E K

P W W
ψψ ∈∈

∩ ∩ ∩
* *{ , } ( ){ , } ( ) { , } ( )

{ } { |
F F

c c
ij ij ij

i j E Fi j E K i j E K

P W P W
∈∈ ∈

= ⋅∩ ∩ ∩ }W

                                                                  
*

*
( ) 1

( )

0

(1 )
F

F

V K
R V K

i
a

−
−

=

= ⋅ ∏ ia− , (122) 

and by (115) that  

 { }P ψ
*

*
( ) 1

( )

0

(1 )
F

F

V K
R V K

i
a

−
−

=

= ⋅ ∏ ia− . (123) 

The result follows from (116). 

 Case 3: *( )FV K = 1.  By Lemma 21, 

 
*

( )

{ , } ( ) { , } ( )

[( ) ( )]
F

E Fc
ij ij

i j E F i j E K

P W W a
∈ ∈

=∩ ∩ ∩ . (124) 

By (120) and the case assumption, 

 ( )E Fa
*

*
( ) 1

( )

0

(1 )
F

F

V K
R V K

i
a

−
−

=

= ⋅ ∏ ia− . (125) 

The result follows from (116).  ■ 

 

Theorem 3.  Under  for any 0H 1 2, ,..., ) ran Rn n n( ∈ N , 

   
1 2 1

1 2
1

( , ,..., ) 1
( , ,..., )

1 2
0

1

!
[ ( , ,..., )] (1 )

( !) !

R
R

i

n n n
R n n n

R R
in

i
i

R
n n a i

i n

−
−

=

=

= = ⋅ ⋅

⋅
∏

∏
N ,P n  a−

where 

 ∑
=

=
R

i
iR nnnn

1121 ),,...,( . 
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Proof:  Given 1 2, ,..., ) ran Rn n n( ∈ N , assume .  Because partitions of R are 

mutually exclusive, 

0H

 
1

1 2

1
1 2 1 2

( , ,..., )

[ ( , ,..., )] [ ( , ,..., )] { }
R

R R
n n n

P n n n P n n n P
ψ

ψ ψ
−

−

∈

= = ∈ = ∑
N

N N . (126) 

By definition, for any Sψ ∈ , 1
1 2( , ,..., )Rn n nψ −∈N  if and only if ψ  contains exactly 

blocks of size i, in 1,2,...,i .  Thus, R=

  1
1 2( , ,..., )Rn n n−N

1

!

( !) !i

R
n

i
i

R

i n
=

=
⋅∏

.   (127) 

[

∏
=

⋅
R

i
i

n ni

R

i

1

!)!(

!
 gives the number of unique partitions of R  objects into  groups of 

size 

in

},...,2,1{ Ri∈  (Bogart 1983, p. 46)].   Moreover, for any Sψ ∈ , if 

1
1 2( , ,..., )Rn n nψ −∈N , then ψ  has exactly 1 2 1

( , ,..., )Rn n n  units. Thus, by Theorem 3, 

for any 1
1 2( , ,..., Rn n n )ψ −∈N , 

 
1 2 1

1 2 1

( , ,... , ) 1
( , ,... , )

0

{ } (1 )
R

R

n n n
R n n n

i
P a iψ

−
−

=

= ⋅ ∏ a− . (128) 

Therefore, (126) and (127) imply that 

 
1 2 1

1 2
1

( , ,... , ) 1
( , ,... , )

1 2
0

1

!
[ ( , ,..., )] (1 )

( !) !

R
R

i

n n n
R n n n

R R
in

i
i

R
P n n n a i

i n

−
−

=

=

= = ⋅ ⋅

⋅
∏

∏
N .a−  ■ 

 

Theorem 4. Under  for any 0H 1 2, ,..., ) ran Rn n n( ∈ N , if 1 2 1
( , ,..., )Rn n n k=  

and , then, ( ) 0P U k= >



 105

 1 2[ ( , ,..., ) | ]RP n n n U k= =N =

∏
=

⋅⋅
R

i
i

n kRSni

R

i

1

),(]!)!([

!
, 

where ),( kRS  is a Stirling number of the second kind, given by 

 R
k

i

i ik
i
k

k
)()1(

!
1

1
−⋅








⋅−⋅∑

=

. 

Proof:  Given 1 2, ,..., ) ran Rn n n( ∈ N , assume , that 0H 1 2 1
( , ,..., )Rn n n k= , and that 

.  By the definition of conditional probability, ( )P U k= > 0

 1 2[ ( , ,..., ) | ]RP n n n U= =N k 1 2[ ( , ,..., ) ]
( )

RP n n n U
P U k

k= =
=

=

N ∩ . (129) 

Looking at the numerator of (129), because partitions of R are mutually exclusive, 

 1 1
1 2 1 2[ ( , ,..., ) ] [ ( , ,..., ) ( )]R RP n n n U k P n n n U kψ − −= = = ∈N N∩ ∩  

                                                                    
1 1

1 2( , ,... , ) ( )

{ }
Rn n n U k

P
ψ

ψ
− −∈

= ∑
N ∩

. (130) 

By definition, for any Sψ ∈ , 1
1 2( , ,..., )Rn n nψ −∈N  if and only if ψ  contains exactly 

blocks of size i, in 1,2,...,i R .  Also, = 1( )U kψ −∈  if and only if ψ  has exactly k 

units.   Thus, because 1 2( , ,n n
1

..., )Rn k= , for any Sψ ∈ , if 1
1 2( , ,..., )Rn n nψ −N∈ , 

then 1( )U kψ −∈ . It follows that 

 1
1 2( , ,..., )Rn n n−N 1( )U k−⊆ ,  (131) 

and that 

 1 1 1
1 2 1 2( , ,..., ) ( ) ( , ,..., )Rn n n U k n n n− − −=N N∩ R . (132) 

Hence, by (130), Theorem 3 implies that 
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 1 2[ ( , ,..., ) ]RP n n n U k= =N ∩ =
1
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( !) !i

k
R k

R
in

i
i

R
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i n
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−

=

=
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∏
ia

}

. (133) 

Turning now to the denominator of (129), again because partitions of R are mutually 

exclusive, 

 
1

1

( )

( ) [ ( )] {
U k

P U k P U k P
ψ

ψ ψ
−

−

∈

= = ∈ = ∑ . (134) 

1( )U k−  will be equal to the number of partitions of R  objects into k groups – given 

by a Stirling number of the second kind (Bogart 1983,, p. 48): 
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i

i ik
i
k

k
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!
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=

. (135) 

Moreover, every 1( )U kψ −∈  must by definition have k units, so by Theorem 2, 

 
1

0
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k
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i
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−
−

=

= ⋅ −∏ a .   (136) 

Thus, by (134), 
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1

0
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k
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i
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−
−

=

⋅ ⋅ −∏ ) . (137) 

As by assumption , (137) implies that ( ) 0P U k= >
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Therefore, (129), (133), and (137) imply that  
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IMPLICATIONS OF THE DISTRIBUTION OF PARTITIONS 

 

Lemma 22.  For any Ω∈ω  with 2≥ω ; partition ωψ  of ω ; ω∈21, rr ; and S∈ψ :  

if }{ ωψψ ∈ , then (  if and only if 
ωψ,1r Eq)2 ∈r ψEq,( 21 )∈rr . 

Proof:  Given any Ω∈ω  with 2≥ω ; partition ωψ  of ω ; ω∈21, rr ; and S∈ψ , 

assume that }ω{ψψ ∈ .   Because ω∈21, rr , by the definition of { }ωψ ,  if 

and only if ( .   Thus, the result follows. ■ 

ωψ,( 1r Eq)2 ∈r

ψEq∈), 21 rr

 

Lemma 23.  For any Ω∈ω  with 2ω ≥ ; ; partition )(, ωKEYX ⊆ ωψ of ω ; and 

S∈',ψψ : if }ω{', ψψψ ∈ and ∈ψ ∩ ∩ )()
},{ Yji

c
ijij W

∈
∩(

},{ Xji

W
∈

, then ∈'ψ ∩ ∩ )((
},{ Yji

c
ij

X

WW
∈

∩
},{ ji ∈

)ij . 

Proof:  Given Ω∈ω  with 2ω ≥ ; ; partition )(, ωKEYX ⊆ ωψ of ω ; and S∈',ψψ : 

assume that }ω{', ψψψ ∈ and ∈ψ ∩ ∩∩ ()
},{},{ YjiXji

ij WW
∈∈

)c
ij(

X

.  The proof will follow by a 

case analysis on whether = ∅ and Y = ∅ . 

 Case 1: and YX ≠ ∅ ≠ ∅ .  Given Xrr ∈}, 21{  and { , because Yrr ∈}, 43

∈ψ ∩ ∩(
},{ Yji

c
ijW

∈
∩ ))(

},{ Xji
ijW

∈

, ( ψEq), 21 ∈rr  and ψEq),( 43 ∉rr .  Also, because 

, )( ωKE⊆,YX ω∈4r321 ,,, rrr .  Hence, as }{ ωψψ ∈ , by Lemma 22, and 
ωψEq), 2 ∈r( 1r



 108

ωψEq),( 43 ∉rr .  Moreover, again by Lemma 22, because }{' ωψψ ∈ , (  and 

. It follows that, 

'21 Eq), ψ∈rr

'43 Eq),( ψ∉rr ∈'ψ ∩
Xji

ijW
∈},{

 and ∈'ψ ∩
Yji ∈},{

c
ijW .   

= ∅ Xr ∈}2

ψ ∈'ψ ∩ ∩
}, Yj

W
∈

∩(
},{ ji

)c
ij()

{i

≠ ∅ Yr ∈}, 4

∈'ψ
ji,{

= ∅

Ω 1ω ⊆ 21 ≥ω
1ω

ψ ωψ

1ω 2ω S∈',ψψ }{
1ω

ψ }
2ω{', ψψψ ∈

}{'
1ω

ψψ ∈

1 2ω ω⊆ 21 ≥ 1ω
ψ

2ω
ψ 1ω

2ω S {ψ∈ }
2ω', ψψψ ∈

1ω 1ωψ), 21 rr }{
1ω

ψψ ∈

ψEq), 21 ∈rr 21 ωω ⊆

221, ω∈rr }{
2ωψ

2
Eq)2 ωψ∈r

}{
2ωψ∈ 'Eqψ1,( rr 121, ω∈r

1
Eq),( 21 ωψ∈rr 'Eqψ

2 ) 'Eqψ∈ 2ω∈ }{'
2ωψψ ∈

( 1r }
2

ψ ∈

 Case 2: and YX ≠ ∅ .  Given r ,1{ , by the arguments in Case 1, it 

follows that ∈' ∩
Xji

ijW
∈},{

.  Hence, 
X

ijW
∈

. 

 Case 3: and YX = ∅ .    Given r{ , by the arguments given in 

case 1, 

3

∩
} Y

c
ijW

∈

.  Hence, the result follows. 

 Case 4: and YX = ∅ .  The result follows immediately. ■ 

 

Lemma 24.  For any ∈21,ωω  with 2ω  and ; partitions and 
2
of 

 and , respectively; and : if ψ ∈  and , then 

. 

Proof:  Given Ω∈21,ωω  with  and ω ; partitions and of  and 

, respectively; and ∈',ψψ ; assume that }
1ω

ψ  and { .   

 Given distinct r r1 2, ∈  , assume that ( Eq∈ .  Because , it 

follows from Lemma 22 that ( .  Moreover,  implies that 

.  Thus, because ψ ∈ , by Lemma 22, ,( 1r .   Applying 

Lemma 22 again, because 'ψ , 2 )∈ .  Thus, for any r , if 

, then . 21 ), ∈rr(

 Now assume that 1,( rr .  As above, 21,rr .  Because , by 

Lemma 22, .  Moreover, because 
2ω

Eq), 2 ψ∈r { ωψ , by Lemma 22, 

.  Finally, because ψEq),( 21 ∈rr }
1ω

{ψψ ∈ , by Lemma 22, 
1

Eq)2 ωψ,( 1 ∈rr .  Thus, for 
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any 121, ω∈rr , if , then '21 Eq),( ψ∈rr
1

Eq),( 21 ωψ∈rr .

 Therefore, for any 121, ω∈rr , '21 Eq),( ψ∈rr

}
1ω

 if and only if ( .  The 

result follows directly from the definition of {

1
Eq), 21 ωψ∈rr

ψ . ■ 

Ω∈21,ωω 1 2ω ≥ 121 ωω −=

1ω 2 2
{ :  aω ωψ ψ

1 1

2

)r i
i Z

W
ωω ψ∈ ⊆

=∪ ∩

Ω∈21,

1

1

)}r i
i

Z W
ω∈

∩ ∪2ion of , {ω ψ

2

 partit

{ω ωψ ψ∪
1

({

ω 1ω ≥ 2 2 − ωω 1ω−

2 2
{ :{ } {Z ω ωψ ψ= ⊆

1

1

( )}r i
ω∈

S∈ψ ∪ ∩
1

11
}({

ω
ωψψ

∈
rW ψ ∈ S∈ψ

∪ ∩ 11
)}({ ωψψ ∈

i
irW 12 ω∈∃ r 2

∃ ∗
2ωψ }{

2

∗∈ ωψψ rW∈ψ

}{
2

∗
ωψ 21 ω 22 ω∈r X ∅=

Sψ {'
2

∗∈ ωψψ
21

' rrW∈ψ

21rrW

∪
1

({
ω

ψ

2
}{ ∗

ωψ

∩ 1
)ψ

∈

∈
i

irW {
1ω

ψψ ∈ }
2

∗
ω 1 ωω ⊆

S∈'ψ }
2

∗
ωψ 'ψ ∈

 

Lemma 25.  For any  with  and 112 =− ωω , r , partition 

1ω
ψ of , and , 

2 1
} { }ω ωψ= ⊆ (

 . } }

Proof:  Given ω  with  and 11 = , 21 ω=r , partition 
1ω

ψ of 

1ω , and , the proof will follow by showing that for 

any 

1
}

i
ωψ ∩ ∪W

, )∈
i

i  if and only if 
2

{ }ω

2 Zωψ

ψ
⊆
∪ .  Given , assume 

first that 
1ω∈

.   Thus,  so that 
21rrW∈ψ .  Fix r .  Also, by 

definition, a partition of 2ω  so that .  Fix ∗
2ωψ .  Because 

21r , 

∈ψ , ∈r , and , Lemma 23 (with }}, 21 rr{{=  and Y ) implies 

that for any ∈' , if } , then .  It follows that 

 . (139) ⊆

Moreover, because 
1
}ω , }.  As {∈ ψψ  and 2 , by 

Lemma 24, for any , if {'∈ ψ , then }
1ω

{ψ .  Thus, 
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  }{
2ωψ ∗ . (140)  

(139) and (140) imply that { , and hence that

}{
1ω

ψ⊆

∪∩
1

112
)(}{}

ω
ωω ψψ

∈

∗ ⊆
i

irW
2

Zωψ ∗ ⊆ .  

Because by definition }{
2

∗
ωψ∈ψ , 

2

2

{ }
Zω

ω
ψ

ψ ψ
⊆

∈ ∪ .    

 Now assume that 
2

2

{
Zω

ω
ψ

}ψ ψ
⊆

∈ ∪ .  Thus, ∃ a partition ∗
2ωψ of 2ω  so that 

}{
2

∗∈ ωψψ  and { .  This implies that ∪∩
1

11
)(}

ω
ωψ

∈i
irW

2
{}ωψ ∗ ⊆ }{

1ω
ψψ ∈  and , 

so 

∪
1

1
ω

ψ
∈

∈
i

irW

∪({ ωψ ∩ 11
)}

1ω

ψ
∈

∈
i

irW . ■ 

 

Lemma 26.  For any Ω∈21,ωω  with 1 2ω ≥  and 112 =− ωω , 121 ωω −=r , partition 

1ω
ψ of 1ω , and  

2 2
:  aω ωψ ψ

2 1
} { }ω ωψ ψ= ⊆

1

1

( )}c
r i

i

Z W
ω∈

∩ ∩2{  partition of , {ω

 . 
1 1

1 2

{ } ( ) {c
r i

i Z

W
ω

ω ω
ω ψ

ψ ψ
∈ ⊆

=∩ ∩ ∪ 2
}

Proof:  Given Ω∈21,ωω  with 1 2ω ≥  and 112 =− ωω , 121 ωω −=r , partition 
1ω

ψ of 

1ω , and , the proof will follow similarly to the 

proof of Lemma 25.  Given 

2 2
{ :{ }Z ω ωψ ψ= ⊆

1

1

{ } ( c
r i

i
ω

ω

ψ
∈

∩ ∩

S

1
)}W

∈ψ , assume first that )
1

(}{
1

1 ∩∩
ω

ωψψ
∈i

∈ c
irW .  Thus, 

∩
1ω

1
ψ

∈i

∈ c
irW .   Also clearly, ∃  a partition ∗

ω2
ψ  of 2ω  so that }{

2

∗∈ ωψψ .  Fix ∗
2ωψ .  

Therefore, by Lemma 23, for any S∈'ψ , if }{'
2

∗∈ ωψψ , then .  Hence,  ∩
1

'
ω

ψ
∈

∈
i

1

c
irW

 . (141) ∩
1

12
}{

ω
ωψ

∈

∗ ⊆
i

c
irW

Moreover, by definition, }{
2

∗∈ ωψψ , and 21 ωω ⊆ .  Hence, as in Lemma 25,  
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  }{
2ωψ ⊆∗ . (142) }{

1ω
ψ

 (141) and (142) imply that { , and hence that)(}{}
1

112 ∩∩
ω

ωω ψψ
∈

∗ ⊆
i

c
irW

2
Zωψ ∗ ⊆ .  

Because by definition }
2

∗
ωψ{∈ψ , 

2

2

{ }
Zω

ω
ψ

ψ ψ
⊆

∈ ∪ .    

 Now assume that 
2

2

{
Zω

ω
ψ

}ψ ψ
⊆

∈ ∪ .  Thus, ∃ a partition ∗
2ωψ of 2ω  so that 

}{
2

∗∈ ωψψ  and { .  This implies that )(}
1

11 ∩∩
ω

ωψ
∈i

c
irW{}

2ωψ ∗ ⊆ }{
1ω

ψψ ∈  and ∩
1

1
ω

ψ
∈

∈
i

c
irW , 

so )(
1

1∩
ω

}
1 ∩{ ωψψ

∈i

c
irW∈ . ■ 

 

Lemma 27.   If 1 1 1(0, ) { , ,..., ,1}
1 1 2

a
R R R

∈ ∪
− − −

1
2

 and for all S∈ψ , 

}{ψP
1

0

(1 )R

i
a

ψ
ψ

−
−

=

= ⋅ −∏ ia , then for any Ω∈ω  with 2≥ω and partition ωψ  of ω , 

 }{ ωψP
1

0

(1 )
i

a i
ω

ω

ψ
ω ψ

−
−

=

= ⋅ −∏ a . 

Proof:  Given S∈ψ , Ω∈ω  with 2≥ω , and a partition ωψ  of ω , assume that 

1 1{
R R

∈ ∪
− −

1(0, ) ,..., ,1}
2

a
R −

1
2

,
1 1

 and that }{ψP
1

0i

ψ −

=
∏ (1 )a i= ⋅ −R ψ− a .  The 

proof will follow by induction on ω−R .   Assume that 0=−R ω .  Thus, R=ω , 

and the result follows. 

 Now assume that for some integer 0 2t R≤ < − , if tR ≤− ω , then the result 

holds.  Assume that 1+=− tR ω .   Fix ω−∈Rr1 .  For any partition S∈ψ , either 

∃ ω∈2r  so that , or ψEq)2 ∈r,( 1r ¬∃  such an r .  Therefore, 2
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Looking at the first term on the right side of (144), let 1' rω ω= ∪ .  By Lemma 25,
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Turning to the last term of (144), by Lemma 26, 
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where .  '
1

1
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ψ ψ ω ψ ψ
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exactly one element; the partition of 'ω  wherein the subunits of ω  are partitioned as 

per ωψ , and  is in its own unit.   This partition contains 1r 1+ωψ

tR =− '

 units.  Moreover, 

again because ω , by the induction hypothesis, 
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Putting (144), (146), and (148) together, and noting again that partitions of 'ω  are 

mutually exclusive,  
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As 1−= Rω , the proof is complete. ■ 

 

Theorem 5.  If 1 1 1(0, ) { , ,..., ,1}
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Moreover, by definition, , so ∪
S

S
∈

=
ψ

ψ}{

 { } { }
S Zω

ω
ψ ψ

ψ ψ
∈ ∈

=∪ ∪ . (151) 

Because partitions of R are mutually exclusive (as are partitions of ω ), by the 

additivity axiom,  
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},{ 21 rr=ω  implies that Z contains two elements: {  and { .   By Lemma 27,  }, 21 rr }{} 21 rr
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Lemma 28.  For any distinct Rrr ∈21,
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Fix Z.   It follows that 
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and  is in the same unit as .  This partition has 1r 2r ωψ  units, so by the assumed 

distribution of { }ψ , 
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Moreover, by Lemma 27, 
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Also, by (154) and the additivity axiom, 
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DISCUSSION 

 

 Theorems 3 and 4 suggest two tests of the null hypothesis of (12).  Suppose 

that a set of sites S  is sampled.  For site s∈S , let sR  denote the set of species 

observed at this site, h denote sR , sn  denote the value of N ),...,( 1 hnn=  obtained 

from sR , and 
1sn  denote the norm1 −L  of sn .  Moreover, define 

, 1
{ : , , }h k s ss s R h k≡ ∈ = =nS S , and let hM  be a multinomial random vector 

giving the observed distribution of N conditional on exactly h subunits occurring.  For 

the first test, considering data only from the sites having h subunits, the maximum 

likelihood estimator for a  is found from Theorems 1 and 3 by maximizing 
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1 1
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h k
h h k

k s i
L a a ia

−
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= ∈ =
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over 1 1 1 1(0, ) { , ,..., ,1}
1 1 2 2

a
R R R

∈ ∪
− − −

.  Hence the distribution of hM  can be 

found under 0H , permitting goodness-of-fit testing using either an exact likelihood 

ratio test or a chi-square test with ,
1

2h k
k h≤ ≤

−∪ S  degrees of freedom.   Importantly, the 

results from these tests will pertain only to sites having h subunits; if s∃ ∈S so that 

hRs ≠ , the tests will need to be repeated for each distinct value of sR .  To obtain an 

overall p-value, an overall multinomial likelihood ratio statistic can be computed, and 

tested exactly. 

 The second test fixes not just the number of subunits per site, but also the 

number of units.  Specifically, let kh,M  denote a multinomial random vector giving 

the observed distribution of N conditional on both h subunits and k  units occurring.   
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The estimated expected value of kh,M  can be found directly from Theorem 4, and 

goodness-of-fit testing follows immediately.  Because the distribution of Theorem 4 is 

parameter-free, there will be , 1h k −S  degrees of freedom for the chi-square test.  As 

in the first test, multiple p-values will again result here if sites differ in their numbers 

of subunits (or units).  As above, an overall likelihood ratio statistic can be computed 

and tested to obtain an overall result. 

 Except for a few cases (Ladau, unpublished results), the power of these tests 

remains unknown.  It depends on the number of sites sampled, numbers of subunits 

and units at the sites, and the specific deviation from the null hypothesis.  Moreover, 

both tests will be inconsistent against alternatives involving deviations only in the 

relative frequencies of partitions giving the same values of N.  For example, in both 

tests with 4=R  and 2=k , the frequencies of }},}{,{{ 4321 rrrr , }},}{,{{ 4231 rrrr , and 

}},}{,{{ 3241 rrrr  are grouped in the event )}0,0,2,0({ =N , so the tests will have no 

power against alternatives that entail deviations only in the relative frequencies of 

these partitions.  That said, Theorems 5 and 6 show that the tests are consistent against 

alternatives that entail deviations in the relative frequencies of N.     

 Using just presence-absence data, can any universally consistent tests be 

created?   The answer appears to be no.   For example, when 3=R , suppose 

that 1 2 3* {{ }{ , }}r r r Sψ ≡ ∈ .   For any Sψ ∈ , letting ( )P ψ  and 0 ( )P ψ  denote the 

actual and null probabilities of ψ  respectively, for universal consistency, 0H  must be 

rejected whenever 0( *) ( *)P Pψ ψ≠ .   However, this condition can be met only if the 

sample allows ( *)P ψ  to be specified, which is impossible with presence-absence data, 

because no information is contained therein about the relative frequencies of 

}},}{{{ 321 rrr , }},}{{{ 312 rrr , and }},}{{{ 213 rrr  in the event )}0,1,1({ =N .   Because 
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subunits are identified by their order of arrival, what is needed is information on the 

arrival sequence of the subunits.   

 However, the tests proposed here are reasonable because they are based on 

how N behaves under 0H .  In other words, the tests are grouped data tests.  Grouping 

of observations into classes is a well-known approach in goodness-of-fit testing; for 

instance, it is commonly employed when checking agreement with the Poisson 

distribution and when testing normality by grouping observations into intervals. 

 It could be suggested that because of the consistency issue, the tests are more 

appropriate for testing a null hypothesis both necessary and sufficient to derive the 

distributions of N than for testing the null hypothesis of (12).  This redefined null 

hypothesis could consist of a subset of the equalities specified by (12).  However, such 

a redefined null hypothesis would also follow from an absence of competitive effects, 

so the tests would give the same biological conclusions. 

 Importantly, the tests require that for all 1 2,r r R∈ , 
1 2

( ) 0r rP W > .  In some 

testing situations, this assumption may be unjustifiable.  However, for such cases, it 

appears possible to construct assumption-free tests by extending the results derived 

here (Ladau, unpublished results).   The first test also requires that sites having exactly 

the same number of subunits give independent values of N.  Likewise, the second test 

requires independence between sites having common numbers of subunits and units.  

Thus, the tests do have an assumption of independent sampling.  However, a “sample 

assumption” of this kind is unavoidable; it differs qualitatively from the “population 

assumptions” that must be overcome for robustness (Bradley 1968).  Moreover, on 

both ecological and statistical grounds, it is usually justifiable to treat sites as being 

independent.    

 In ecological terms, what conclusions do the tests allow?  Rejecting the null 

hypothesis in both tests implies the existence of either negative or positive conditional 
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non-independence.  Hence, rejection does not imply competitive structuring, because 

such structuring predicts only negative non-independence.  Nonetheless, when power 

is sufficient, failure to reject the null hypothesis does indicate a lack of competitive 

structuring, because by definition, non-independence must occur whenever 

competitive structuring occurs.  In some communities, analysis of large data sets does 

not lead to rejection of the null hypothesis (Chapter IV).  

 A one-sided test, in which rejecting the null hypothesis implies negative non-

independence, would allow stronger conclusions about competitive structuring.  

Developing such a test will be the focus of further work. 
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— CHAPTER IV — 

NULL MODEL TESTS OF SPECIES CO-OCCURRENCE: 

APPLICATION OF ROBUST METHODS 

 

Abstract     An important question in ecology is to what extent competitive 

interactions affect the composition of communities.  Null model testing has been used 

extensively to address this question, but its conclusions have been unreliable.   Here, 

using a new robust null model test, I analyze seven large data sets.  I show that this 

test gives consistent results in the absence of major biological fluctuations.  For all of 

the data sets analyzed, the test does not indicate effects of competitive interactions.    

Although simplistic, the null model accounts remarkably well for much of the 

variability in community composition (median ).   Hence, in addition to 

being useful for testing for the effects of competitive interactions, the model appears 

to be a step towards providing a simple, general theory of community assembly. 

2 0.99R >

 

 

INTRODUCTION 

 

What influence do interspecific interactions have on the composition of 

ecological communities?   Gleason (1926) proposed that the influence of interactions 

is minimal, with stochastic processes and the abiotic environment being the prime 

determinants of community composition.  By contrast, Diamond (1975), McNab 

(1971), and others proposed that interspecific interactions – particularly competition – 

play a much larger role.  The matter remains unresolved, but bears broadly on basic 

and applied ecology. 

123 



 124

 The most widely applicable approach for assessing the effects of competition 

has been null model testing.  The applicability of null model testing derives from the 

data that are employed: lists of species occurring at sets of sites.  These data are 

broadly available and easily collectible.   Null model testing begins with the premise 

that competition does not affect the composition of communities.  This premise is 

translated into a quantitative statement, or “null hypothesis,” which, together with 

quantitative assumptions, comprise the “null model.”  The model is then used to 

generate a distribution of a statistic summarizing the lists of observed species.   If the 

observed statistic (or one more extreme) is sufficiently unlikely to have come from the 

null model’s distribution, then the null hypothesis is rejected, and an effect of 

competition is inferred.   Null model testing has been applied to numerous 

communities, for instance those of desert rodents (Fox and Brown 1993, Stone et al 

1996), island birds (Connor and Simberloff 1979, Gotelli and Abele 1982, Feeley 

2003), and fish parasites (Gotelli and Rohde 2002).  It has also been applied to 

understand the effects of exotic species introductions (Sanders et al 2003).  The 

findings of these applications have been mixed.     

Unfortunately, the null model tests applied in these investigations suffer from 

two critical flaws.   Like all statistical tests, null model tests should be powerful and 

robust.  Power refers to the test’s sensitivity, with the most powerful tests rejecting 

false null hypotheses most frequently.  Robustness refers to the distortion of 

significance levels when assumptions are violated, with robust tests only negligibly 

affected by violations (Bradley 1968, Sokal and Rohlf 1995).  Thus, null model tests 

should be powerful and, if assumptions cannot be independently verified, robust.   

Existing null model tests lack adequate power or robustness (Chapter II).     

It is the issue of robustness that is particularly troubling.  It means that when 

assumptions cannot be verified – as is usually the case – tests will incorrectly indicate 
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competitive effects unacceptably often.  Thus, existing tests, and any inferences from 

them are unreliable (Chapter II).    However, to resolve the problem, a test free of 

parametric assumptions has been recently proposed (Chapter III).   

  The proposed test is based on two premises:  First, regardless of how 

competition acts – evolutionarily or ecologically, and extrinsically or intrinsically – it 

will reduce the co-occurrence of ecologically similar organisms.   Second, ecological 

similarity can be specified using a hierarchical classification system.  “Subunits” of 

organisms can be classified into “units,” with subunits in the same unit being more 

ecologically similar to each other than those in different units.   Hence, defining ijW  as 

the event that the ith and jth subunit to arrive at a community belong to the same unit, 

it follows that competitive effects predict that 13 12 13 12( | ) ( | )cP W W P W W< , 

23 12 23 12( | ) ( | )cP W W P W W< , or 34 23 13( | )cP W W W∩ 34 23 13( | )c cP W W W< ∩  for instance.  

Therefore, an appropriate null hypothesis for testing for the absence of competitive 

effects specifies equality between all relevant pairs of conditional probabilities.  This 

null hypothesis is sufficient to specify a distribution of the partition of subunits into 

units (Chapter III), implying that to test robustly for the absence of competition, it is 

sufficient to check whether the observed and predicted distributions of partitions 

match. 

 Here, I apply a test a test similar to the parametric assumption-free test, which 

for simplicity assumes that for all i and j, ( ) 0ijP W > (Chapter III; hereafter referred to 

as “Ladau and Schwager’s test”).  Examining two plant and five animal communities, 

I first assess the overall frequency with which the null hypothesis is rejected.   I then 

investigate whether rejections of the null hypothesis were due to (i) random 

fluctuations, unreflective of biological processes, or (ii) effects of interspecific 

competition, and I compare results to those of a parametric alternative.  Last, I use the 
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null model to assess the relative importance of interspecific interactions in composing 

communities. 

 

 

MATERIALS AND METHODS 

 

Data Sets 

 

 The data that Ladau and Schwager’s test employ consist of lists of species 

present at sets of sites.   I obtained these lists from seven sources. 

 

North American Breeding Bird Survey (BBS) 

 The North American Breeding Bird Survey began in 1966 and is ongoing.  

Data are collected once per year in May or June along approximately 3000 “routes” – 

randomly situated 24.5 mile segments of roadway in the United States and Canada.  

Every 0.5 miles along each route, observers stop for 3 minutes and record abundance 

data on all bird species that they observe within 0.25 miles.  Each route is sampled 

entirely in 1 day.   Here, I considered data from 1997 and 2004 surveys – a total of 

1,836,897 species-occurrences.  I used data from 60,000 stops, randomly chosen from 

the routes that were rated to be of high quality (Sauer et al 2004).  For analyses, I took 

individual stops as sites. 

 

Barro Colorado Island (BCI) Vegetation 

 The 50 ha Barro Colorado Island Plot in Panama (UTM coordinates 625754, 

1011569) has been censused 4 times since 1980. In each census, all trees at least 1 cm 

in diameter at breast height were identified and mapped to the nearest 0.1 m, providing 
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records for over  individual trees (Condit 1998, Hubbell et al 1999, Condit et 

al 2005).  Here, I used data from the 1982 and 1995 censuses, and I considered data 

only from live trees.  For sites, I divided the 50 ha plot into 2 m, 5 m, or 10 m 

quadrats.   I analyzed each type of site separately. 

63.25 10×

  

Sherman Plot Vegetation 

 The Sherman Plot is located in Panama, near the Panama Canal (UTM 

coordinates 612610, 1026067).  The plot occupies 5.96 ha, with a 1 ha quadrat having 

been recently cleared.   All trees of at least 1 cm diameter at breast height were 

identified and mapped to the nearest 0.1 m in censuses in 1996, 1997-1998, and 1999, 

for a total of 24,454 distinct individuals (see Condit et al 2004).   Here, I analyzed data 

from the 1996 and 1999 censuses, considering only data from undisturbed portion of 

the plot.  As with the BCI plot, I divided the Sherman plot into 2 m, 5 m, and 10 m 

quadrats, and analyzed each type of site separately. 

 

Yosemite Zooplankton 

This data set consists of zooplankton records from 279 randomly selected lakes 

in Yosemite National Park.   Selection of lakes was stratified by physical 

characteristics of lakes and biological disturbance levels.   All samples were collected 

in 2000 and 2001 using a conical plankton net (diameter 29.5 cm and mesh size 64-

µm).   To collect samples, in lakes less than 1 m deep, tows were taken horizontally; 

otherwise, vertical tows through the entire water column were collected from the 

deepest part of lakes.   All zooplankton in two 1 mL subsamples of each sample were 

then identified to species.    Over 101,000 individuals were identified (Knapp et al 

2005).  Here, I considered each lake a site. 
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John Muir Wilderness and Sequoia and Kings Canyon (JMW-SEKI) Zooplankton  

 This data set consists of zooplankton records from 357 randomly selected lakes 

in the John Muir Wilderness and Sequoia and Kings Canyon National Parks.   Data 

were collected between 1995 and 1997 following the same protocols as for the 

Yosemite zooplankton data set.  Over 251,500 individuals were identified (Knapp et al 

2001).  I considered each lake a site. 

 

Yosemite Benthic Insects 

 This data set was created by sampling benthic insects in 295 randomly selected 

lakes in Yosemite National Park.  As in the zooplankton sampling, lake selection was 

stratified, and samples were collected during the summers of 2000-2001.   From each 

lake, 15 consecutive sweeps were collected over 1 m of littoral substrate using an 

aquatic D-net with mesh size 0.5 mm.   At each lake, habitats were sampled in rough 

proportion to their relative abundances throughout the entire littoral area of the lake, 

with sweeps being combined as the sample was collected.   All specimens were sorted 

from debris in the samples in the field, to be identified later, although when the 

amount of debris was excessive, only a portion of the sample was sorted.   Where 

possible, I identified specimens to genus.  A total of over 80,000 individuals were 

identified (Knapp et al 2005).  Sites were taken as lakes. 

 

JMW-SEKI Benthic Insects  

 This data set was created following the same protocols as the Yosemite 

Benthic Insect data set, but samples were collected from 314 randomly selected lakes 

in JMW-SEKI during the summers of 1995-1997.  A total of over 15,000 individuals 

were identified (Knapp et al 2001).  Sites were again taken as lakes. 
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Null Hypothesis Test 

 

 For each data set and each site, I first assembled a list of species or other taxa 

present.  I then defined “subunits” and “units” so that species within the same subunit 

were more ecologically similar to each other than to those in different units.  Hence, 

for example, in some cases, I defined subunits as genera and units as orders.  I used 

only taxonomic groupings for subunit and unit definitions (Table 5), although other 

groupings were possible (see Discussion).  Given a particular definition of subunits 

and units, I next considered the subset of sites having exactly a specified number of 

subunits (“ R ”). For each site, I defined the random vector N so that 

1 2( , ,..., )Rn n n=N if and only if in units had exactly i subunits, 1, 2,...,i R= .  Thus, if 

a site were observed to have a total of three subunits, with two sharing a unit and the 

third in a different unit, then the observed value of N would be (1,1,0) .  Likewise, if a 

site had four subunits all sharing the same unit, then (0,0,0,1)=N .   

I next assumed that for all i and j, ( ) 0ijP W > .   Under this assumption, the 

aforementioned null hypothesis alone implied that within the set of sites having 

exactly R  subunits, 
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 (Chapter 

III).  Hence for example, among the sites having exactly three subunits, the fractions 

of sites having (0,0,1)=N , (1,1,0)=N , and (3,0,0)=N  were predicted to be 2a , 

3 (1 )a a− , and (1 )(1 2 )a a− − , respectively.   To test the null hypothesis, I compared 
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Data Set Subunits/Units
Full 
Data 
Set

Reduced 
Data Set

Reduced 
Data Set -
Overall

Breeding Bird Survey 2004 Families/Orders 0* 0*
Breeding Bird Survey 2004 Genera/Families 0* 0*
Breeding Bird Survey 2004 Genera/Orders 0* 0*
Breeding Bird Survey 2004 Species/Families 0* 0*
Breeding Bird Survey 2004 Species/Genera 0* 0.019
Breeding Bird Survey 2004 Species/Orders 0* 0*

Barro Colorado Island 1995 2m Genera/Families 0* 0*
Barro Colorado Island 1995 2m Species/Families 0* 0*
Barro Colorado Island 1995 2m Species/Genera 0.216 0.421
Barro Colorado Island 1995 5m Genera/Families 0* 0*
Barro Colorado Island 1995 5m Species/Families 0* 0*
Barro Colorado Island 1995 5m Species/Genera 0* 0.431
Barro Colorado Island 1995 10m Genera/Families 0* 0.775
Barro Colorado Island 1995 10m Species/Families 0* 0.495
Barro Colorado Island 1995 10m Species/Genera 0* 1

Sherman 1999 2m Genera/Families 0.67 0.547
Sherman 1999 2m Species/Families 0.659 0.441
Sherman 1999 2m Species/Genera 0.895 0.694
Sherman 1999 5m Genera/Families 0.85 0.981
Sherman 1999 5m Species/Families 0* 0.085
Sherman 1999 5m Species/Genera 0.855 1
Sherman 1999 10m Genera/Families 0* 1
Sherman 1999 10m Species/Families 0* 0.364
Sherman 1999 10m Species/Genera 0.552 1

JMW -SEKI Zooplankton Families/Orders 0* 1
JMW -SEKI Zooplankton Genera/Families 0.073 1
JMW -SEKI Zooplankton Genera/Orders 0.013 0.002
JMW -SEKI Zooplankton Species/Families 0.572 1
JMW -SEKI Zooplankton Species/Genera 0.952 0.919
JMW -SEKI Zooplankton Species/Orders 0* 0.002
Yosemite Zooplankton Families/Orders 0* 0*
Yosemite Zooplankton Genera/Families 0* 1
Yosemite Zooplankton Genera/Orders 0* 0*
Yosemite Zooplankton Species/Families 0.098 0.757
Yosemite Zooplankton Species/Genera 0* 1
Yosemite Zooplankton Species/Orders 0* 0*

JMW -SEKI Benthic Insects Families/Orders 0.654 0.612
JMW -SEKI Benthic Insects Genera/Families 0* 0.343
JMW -SEKI Benthic Insects Genera/Orders 0* 0.575
Yosemite Benthic Insects Families/Orders 0.991 0.999
Yosemite Benthic Insects Genera/Families 0* 0.041
Yosemite Benthic Insects Genera/Orders 0.047 0.557

<0.001*

<0.001*

0.567

P -Value

0.015

<0.001*

0.979

0.818

Table 5.  P-values1 for data set and subunit/unit/quadrat-size combinations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1Results significant after correction for multiple comparisons are starred. 
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the observed and predicted distributions of N.    If the distributions differed 

significantly, then I rejected the null hypothesis. 

Two issues complicated the comparisons.   First, because they contain the 

parameter a, the aforementioned fractions could not be used directly to find a 

predicted distribution of N.  I resolved this problem by using maximum likelihood 

estimation for a.  Second, the aforementioned distribution of N pertained only to the 

set of sites having exactly three subunits.  For sets of sites having different numbers of 

subunits, (1) gives different distributions of N.   For each of these sets of sites, I 

estimated a, and computed the appropriate likelihood ratio statistic.  The product of 

the likelihood ratio statistics over all sets of sites gave an overall likelihood ratio 

statistic, whose significance I checked using Monte Carlo simulations.   1000 statistics 

were simulated per observed statistic. 

For each data set, I repeated the test using different combinations of subunits 

and unit definitions.  For the BCI and Sherman data sets, I additionally repeated the 

test using each definition of “sites;” i.e., 2 m, 5 m, and 10 m quadrats.    Hence, a total 

of 91 tests were performed, and I set the individual significance level at 0.0005 to give 

an overall significance level of 0.05.     To obtain an overall result for each data set, I 

used a likelihood ratio test (Sokal and Rohlf 1995, p.794).  Procedures were 

implemented using custom-written Visual Basic 6.0 software. 

 

Causes of Null Hypothesis Rejection 

 

Assumption Violations 

 Here I used a test that assumes that for all i and j.  Hence, 

assumption violations may have caused the true Type I error rate to exceed the 

nominal rate of 0.05.  To minimize this problem, I postulated that if two subunits i and 

( ) 0ijP W >
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j were observed to occur in the same unit somewhere, then  might reasonably 

be supposed nonzero everywhere.  Hence, for each data set and subunit/unit/quadrat-

size combination, I found the largest number of subunits to occur in the same unit 

(“M”), and then constructed a “reduced” data set, which included only data from sites 

having M or fewer subunits.  With these data sets, was likely to be nonzero for 

most choices of i and j, and tests were likely to have Type I error rates close to 0.05.  

Except where otherwise noted, in analyses I used the reduced data sets. 

( )ijP W

)

23( | cW ∩

( )ijP W

13( |W W

) 34P W<

c

 

Random Fluctuations 

 Using the reduced data sets, the null hypothesis may have been rejected due to 

either random fluctuations or underlying biological processes.  If random fluctuations 

were the cause, then inconsistent results should have been obtained in the absence of 

major perturbations.   Between 1997 and 2004, 1982 and 1995, and 1996 and 1999, no 

drastic perturbations occurred in area surveyed in Breeding Bird Survey, the BCI plot, 

or the Sherman plot, respectively.  Hence, to check for effects of random fluctuations, 

I checked whether the null hypothesis was rejected for the same subunit/unit/quadrat-

size combinations in different years for these data sets.   I used a test of Cohen’s 

Kappa statistic to assess consistency (Siegel 1988). 

 

Non-Competitive Interactions 

 The test applied here is a two-tailed test; that is, for example, the null 

hypothesis might be false because , 

, and , or because 

, , or 

.  However, only the former is consistent with 
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competitive effects.  To check whether competitive effects were responsible for 

rejections of the null hypothesis, I considered that if they were the cause, then the 

frequency of rejections should be inversely proportional to the inclusiveness of the 

units.  Hence, for example, because species in the same genera should on average be 

less ecologically similar than those in the same families, competitive effects predict 

that the null hypothesis should be rejected less often when units are defined as families 

than when they are defined as genera.  I checked this possibility using a 2χ test for 

trend (Zar 1999, p. 565). 

 

Comparison to a Standard Parametric Test 

 

 Using the JMW-SEKI and Yosemite data, I compared the results of Ladau and 

Schwager’s test to those of a parametric test.  Because the sites in these data sets were 

small, I employed a parametric test that uses a C-score statistic and a fixed rows – 

equiprobable columns randomization algorithm (see Sanders et al 2003). For each data 

set, this parametric test gave a single result, so for comparison I used the overall result 

of Ladau and Schwager’s test (see “Null Hypothesis Test,” above). To perform 

parametric testing, I employed EcoSim Version 7.70, Build 120404 (Gotelli and 

Entsminger 2001). 

 

 Predictive Power of the Null Model 

 

 It was of interest to assess not just whether the null hypothesis was rejected, 

but the extent of deviations from it – to assess the relative importance of interspecific 

interactions in determining community composition.    To quantify the extent of 

deviations, I calculated the proportion of variation in frequencies of partitions that 
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could be accounted for by the null hypothesis ( 2R ).  Specifically, for a particular data 

set and subunit/unit/quadrat-size combination i, set of sites having exactly j subunits, 

and value n of N: let  and  denote the observed and predicted frequencies of n, 

and let 

ijy n ˆijy n

ijy i  denote mean frequency for the set of sites having j subunits. For data set 

and subunit/unit/quadrat-size combination i 
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 (2) 

(Kvalseth 1985).      In cases where the model performed extremely poorly, (2) gave 

negative values of 2R  – in effect, the mean predicted values of  better than the 

model.   In these cases, I set 

ijy n

2 0R = .  Thus, 2R could consistently be interpreted in 

terms of the amount of variation for which the model accounted.  I considered one 

potential predictor of 2R : the inclusiveness of the units.     I used a Pitman correlation 

test to check this possibility (Bradley 1968). 

 

 

RESULTS 

 

Null Hypothesis Tests 

 

 Using the full data sets, 27 of the 42 tests performed were significant, while 

using the reduced data sets, only 12 of 42 tests were significant (Table 5).  The 

parametric test gave non-significant results in all four cases examined (  in all 

cases), consistent with an absence of competitive effects.  Using the reduced data sets, 

Ladau and Schwager’s test gave a significant result in one case (significant: Yosemite 

1p =
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zooplankton; non-significant: Yosemite benthic insects, JMW-SEKI benthic insects, 

and JMW-SEKI zooplankton).  However, this significant result was likely due to non-

competitive effects, because the null hypothesis was rejected more often when orders, 

rather than genera or families, were used as units (Table 5).  

Using Ladau and Schwager’s test with the reduced data sets, results were 

consistent between years ( 0.909,K =  6.547, 0.001)z p= < , suggesting that random 

fluctuations were not influential in rejecting the null hypothesis.   As unit 

inclusiveness increased, the null hypothesis was rejected more frequently 

 d , an outcome inconsistent with competitive effects. 2( 5.437,X = f 1, p= = 0.021)

 

Predictive Power of the Null Model 

 

 Using the full data sets, and considering the values of 2R for each data set and 

subunit/unit/quadrat-size combination individually, the median 2R  was 0.942.    Using 

the reduced data sets, the median was 0.993 (Figure 6 and Figure 7).  Considering the 

overall 2R  values for each data set, the medians remained high (0.937 and 0.962 for 

the full and reduced data sets, respectively), but 2R was less than 0.5 for the BBS data, 

and 0.637 and 0.598 for the Yosemite zooplankton data with the full and reduced data 

sets, respectively.  ( 2R was greater than 0.8 for all other cases.)  In the BBS data, the 

lack of fit stemmed from cases where units were defined as orders ( using both 

the full and reduced BBS data sets).  Overall, there was a negative relationship 

between 

2 0R =

2R  and the inclusiveness of the definition of units (for the full and reduced 

data sets respectively, r , 0.467= − 0.001p = ; 0.454r = − , 0.001p < ).   However,  
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Figure 6.  Box plots of the observed distributions of .   42 values of  were 
used for both the reduced and full data sets – each corresponding to a data set and 

subunit/unit/quadrat-size combination.  Because results were similar between years, 
only the BBS, BCI, and Sherman data from 2004, 1995, and 1999 are plotted, 

respectively. 
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Figure 7.   Plots showing the observed and predicted distributions of N for the 2004 
Breeding Bird Survey data.   Subunits are defined as species, and units as families.  

Each plot gives the distributions for the subset of sites having exactly the listed 
number of species.  Some sites had more than 13 species, but for clarity and brevity 

such sites are omitted.   Although the observed and predicted distributions differ 
significantly ( , the null model accounts for a large portion of the 

variation in the frequencies of N . 
0.001)p <

2( 0.963)R =
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there were notable exceptions to this trend – for example, with the JMW-SEKI benthic 

insect data set, 2R  values were greater than 0.925 when units were taken as orders.  

 

 

DISCUSSION 

 

 Using the full data sets, the null hypothesis was rejected at a rate higher than 

the nominal significance level, 0.05.  Because assumptions may have been invalid for 

the full data sets, the high rate may have been partially due to a high Type I error rate.  

However, the Type I error rate was closer to 0.05 for the reduced data sets, where 

assumptions were better justified.  As the null hypothesis was still rejected at a rate 

exceeding 0.05 for these data sets, the null hypothesis was likely indeed violated in 

some cases.  Importantly, this conclusion is based on the premise that if two subunits 

have nonzero probability of occurring in the same unit somewhere, then they have 

nonzero probability of occurring in the same unit everywhere – a premise that may not 

always be true.  Nonetheless, preliminary analyses with the assumption-free test 

suggest that the null hypothesis was indeed often rejected correctly, particularly for the 

BBS data (Ladau, unpublished results). 

I investigated two factors that could have caused violations of the null 

hypothesis:  random fluctuations unrelated to interspecific interactions, and effects of 

interspecific competition.  Random fluctuations appear to have had little influence on 

null hypothesis rejection, because in stable communities, the null hypothesis was 

consistently rejected for the same subunit/unit/quadrat-size combinations.  Likewise, 

competitive effects appear to have been un-influential, as the frequency of null 

hypothesis rejection was negatively related to the inclusiveness of units.   
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Nonetheless, despite the lack of evidence, competitive effects may still have 

influenced community composition.  For subunits and units, I used the groupings of 

species, genera, families and orders.  However, for the test applied here to detect 

competitive effects, subunits within the same unit must be more ecologically similar 

than those in different units.  Ecological similarity may be better reflected by other 

taxonomic groupings, or by groupings based explicitly on ecological similarity – for 

instance, functional groups or guilds (Fox 1987).    Moreover, competitive effects may 

be manifest at different spatial scales than those examined here.  It is possible, for 

instance, that the effects are evident only in sites smaller than the ones used here. 

 In the four cases examined, the parametric test indicated a lack of effects of 

competitive interactions, like Ladau and Schwager’s test.  However, such a result 

cannot always be expected.  Although both tests check for effects of competitive 

interactions, those effects are non-equivalent; it is possible for one test’s null 

hypothesis to be true but not the other.   Moreover, the true Type I error rate of the 

parametric test will often exceed the nominal significance level, in which case the null 

hypothesis will be frequently rejected when it is true  (Chapter II).  So long as the 

assumption that for all i and j, is justified, Ladau and Schwager’s test will 

be immune to this problem (Bradley 1968). 

( ) 0ijP W >

 Overall, the null hypothesis could be rejected for the BBS, BCI, and Yosemite 

zooplankton communities, but not for the Sherman, JMW-SEKI zooplankton, JMW-

SEKI benthic insect, or Yosemite benthic insect communities.  This outcome may 

have been due to two factors.  First, a simple evolutionary birth process can invalidate 

the null hypothesis (Ladau, unpublished results), although why such a process would 

operate in just the former communities is unclear.  Second, facilitative interspecific 

interactions may be concentrated between ecologically dissimilar species (but see 

Stachowicz 2001, p.237), potentially accounting for the violations of the null 
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hypothesis.  Consistent with this explanation, facilitative interactions have been 

documented in bird (Kilham 1971, Daily et al 1993, Blendinger 1999, Pejchar and 

Jeffrey 2004, Schlatter and Vergara 2005) and zooplankton communities (Nandini and 

Sarma 2001, Nandini and Sarma 2002).  They are also widespread in plant 

communities (Stachowicz 2001), with the failure to reject the null hypothesis for 

Sherman plot perhaps because of small sample sizes relative to the BCI plot.  By 

contrast, aquatic insect communities may be structured primarily by interspecific 

predation (Merrit and Cummins 1996, p. 70), whose effects on the test’s outcome will 

be variable. 

 Overall, the null model predicted the composition of the communities almost 

exactly.   By one measure – the vector N with the reduced data sets – the model 

predicted a median of over 99% of the variation in community composition.   

Particularly remarkable was the null model’s ability to account for the “bumps” and 

irregularities in the observed frequency distributions (Figure 7).   Similar predictive 

power of a null model was found by Connor and Simberloff (1979), but later shown to 

be trivial, as the fitting procedures employed therein made it mathematically 

impossible to obtain low values of 2R  (Diamond and Gilpin 1982).  However, it can 

be shown analytically that poor fits are possible here (Ladau, unpublished results).  

Moreover, using both the full and reduced data sets, in three cases the model predicted 

~0% of the variation in community composition, and in six and three cases 

respectively, the model predicted less than 50% of the variation.  Thus, the nearly 

perfect overall agreement between observation and prediction was not a trivial result 

of the fitting procedure. 

 Although there were exceptions, 2R was highest (>0.95) when genera and 

families were used as units, and lowest when orders were used.   Hence, at least when 

units are defined as genera and families, the following model of community assembly 
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appears to apply:  By definition, the first type of subunit (“I”) to arrive and persist at a 

community must be in its own unit.  The second subunit (“II”) might then be in I’s 

unit, or belong to its own unit.   When the third subunit (“III”) arrives, it can belong to 

I’s unit, II’s unit, or be in its own unit.    According to the model, the probability of III 

belonging to II’s unit is the same regardless of whether II is in the same unit as I.  

Likewise, III is equally likely to belong to I’s unit regardless of whether I shares its 

unit with II.  Corresponding equalities then hold for subunits that arrive later.  This 

model – an informal description of the null hypothesis – is null to competitive effects 

inasmuch that, for instance, when competitive effects occur, III should be less likely to 

belong to II’s unit when it shares that unit with I than when it does not.   

In cases where 2R  was high and the null hypothesis could not be rejected, the 

model potentially could account entirely for the observed compositions of the 

communities as measured by N.  Where 2R  was high and the null hypothesis was 

rejected, the model could account almost entirely.  Thus, the tests using genera or 

families as units suggested that interspecific interactions influence community 

composition at most minimally.  For the North American breeding bird communities, 

the tests using orders as units suggested that this influence may be more substantial. 

 Recently, considerable interest has focused on developing simple theories to 

account for broad and complex macroecological patterns (e.g., Harte et al 1999, 

Hubbell 2001, Harte et al 2005).   As put succinctly by Harte (2003), the aim is to 

develop theories whose “seemingly preposterous assumption… yields amazingly 

accurate predictions of a range of phenomena.”   The strength of such theories lies 

both in their predictive power and the inferences that can be drawn the failures of their 

predictions.   The results presented here suggest that the null model of Ladau and 

Schwager constitutes a simple, but biologically relevant and highly predictive theory 

of community composition.  
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— APPENDIX A — 

PROPERTIES USED TO CHECK FOR UNCONDITIONAL 

INDEPENDENCE 

 

 

DEFINITIONS 

 

Let S  be the set of sites sampled, and let the sample space S { :≡ M M a binary 

matrix with S  columns}.  Let R  be a binary row vector with S  columns.   For 

any R, define the event ( ) { : ,iE S= ∈R M M row i of M given by R }.  Also, define 

the event C so that C∈M  if and only if M meets arbitrary predefined criteria.   The 

following is an example of these definitions: 

Suppose that two sites are sampled.  Then 2=S , and S is the set of all 

binary matrices with 2 columns.  For instance, 
1 1

1 0 0 0
, , 1 1

0 1 0 0
0 1

 
     ∈          

 

S.  If 

1 0
0 1
 

=  
 

M , then 1[(1,0)]E∈M  and 2[(0,1)]E∈M , while if 
0 0
0 0
 

=  
 

M , then 

1[(0,0)]E∈M  and 2[(0,0)]E∈M .  If the criterion for event C is that all row and 

column totals are nonzero, then 
1 0
0 1

C 
∈ 

 
, while 

1 0
1 0

C 
∉ 

 
. 

 By definition, ( )iE R is the event that species i has the distribution given by R.  

For example, if four sites are sampled and 1[(1,0,0,1)]E  occurs, then species 1 is found 
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only at the first and fourth sites.  Therefore, Null Hypothesis 1 (below) is a 

formalization of the null hypothesis of unconditional independence.  

 

 

RESULTS 

 

Null Hypothesis 1.  0H : for any {1,2,...}ρ ⊆  and set of binary row vectors 

{ : ,i ii ρ∈R R with S  columns}, 

 [ ( )] [ ( )]i i i i
ii

P E P E
ρρ ∈∈

=∏R R∩  (1) 

 

Theorem 1.  Under 0H , for any arbitrary predefined criteria for M, 

disjoint 1 2 3, , {1,2,...}ρ ρ ρ ⊆  with 1ρ ≠ ∅  and 2ρ ≠ ∅  ( 3ρ  possibly empty), and 

unique sets of binary row vectors { :i iR R  with S  columns, {1,2,...}}i∈  and 

{ ' : 'i iR R  with S  columns, {1,2,...}}i∈ , if: 

1 2 3

[ | [ ( )] [ ( )] [ ( )]] 1i i i i i i
i i i

P C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ , (2) 

1 2 3

[ | [ ( )] [ ( ' )] [ ( )]] 1i i i i i i
i i i

P C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ , (3) 

1 2 3

[ | [ ( ' )] [ ( )] [ ( )]] 1i i i i i i
i i i

P C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ , (4) 

1 2 3

[ | [ ( ' )] [ ( ' )] [ ( )]] 1i i i i i i
i i i

P C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ ,  (5) 

then 

 1 2 3

1 2 3

[[ ( )] [ ( )] [ ( )] | ]

[[ ( ' )] [ ( )] [ ( )] | ]

i i i i i i
i i i

i i i i i i
i i i

P E E E C

P E E E C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

R R R

R R R

∩ ∩ ∩ ∩ ∩
∩ ∩ ∩ ∩ ∩
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1 2 3

1 2 3

[[ ( )] [ ( ' )] [ ( )] | ]

[[ ( ' )] [ ( ' )] [ ( )] | ]

i i i i i i
i i i

i i i i i i
i i i

P E E E C

P E E E C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

=

R R R

R R R

∩ ∩ ∩ ∩ ∩
∩ ∩ ∩ ∩ ∩

. 

Proof:  Assume 0H .  Given arbitrary predefined criteria for M, 

disjoint 1 2 3, , {1,2,...}ρ ρ ρ ⊆  with 1 2,ρ ρ ≠ ∅  ( 3ρ  possibly empty), and the sets of row 

vectors listed above, assume the aforementioned conditions.   By (4), (5), and the 

definition of conditional probability,

 
1 2 3

[[ ( ' )] [ ( )] [ ( )]] 0i i i i i i
i i i

P E E E
ρ ρ ρ∈ ∈ ∈

>R R R∩ ∩ ∩ ∩ ∩ , (6) 

 
1 2 3

[[ ( ' )] [ ( ' )] [ ( )]] 0i i i i i i
i i i

P E E E
ρ ρ ρ∈ ∈ ∈

>R R R∩ ∩ ∩ ∩ ∩ , (7) 

and 

 ( ) 0P C > . (8) 

By 0H , 

 
1 2 3

[[ ( ' )] [ ( )] [ ( )]]i i i i i i
i i i

P E E E
ρ ρ ρ∈ ∈ ∈

R R R∩ ∩ ∩ ∩ ∩  

                                          
1 2 3

[ ( ' )] [ ( )] [ ( )]i i i i i i
i i i

P E P E P E
ρ ρ ρ∈ ∈ ∈

= ⋅ ⋅R R R∩ ∩ ∩  (9) 

and 
  
 

1 2 3

[[ ( ' )] [ ( ' )] [ ( )]]i i i i i i
i i i

P E E E
ρ ρ ρ∈ ∈ ∈

R R R∩ ∩ ∩ ∩ ∩  

                                         
1 2 3

[ ( ' )] [ ( ' )] [ ( )]i i i i i i
i i i

P E P E P E
ρ ρ ρ∈ ∈ ∈

= ⋅ ⋅R R R∩ ∩ ∩  (10) 

Hence, 

 1 2 3

1 2 3

[ ( )] [ ( )] [ ( )] ( )

[ ( ' )] [ ( )] [ ( )] ( )

i i i i i i
i i i

i i i i i i
i i i

P E P E P E P C

P E P E P E P C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

⋅ ⋅

R R R

R R R

∩ ∩ ∩
∩ ∩ ∩
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                     1 2 3

1 2 3

[ ( )] [ ( ' )] [ ( )] ( )
.

[ ( ' )] [ ( ' )] [ ( )] ( )

i i i i i i
i i i

i i i i i i
i i i

P E P E P E P C

P E P E P E P C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=
⋅ ⋅

R R R

R R R

∩ ∩ ∩
∩ ∩ ∩

 (11) 

Also by 0H ,  

 1 2 3

1 2 3

[ ( )] [ ( )] [ ( )]

[[ ( )] [ ( )] [ ( )]]

i i i i i i
i i i

i i i i i i
i i i

P E P E P E

P E E E
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=

R R R

R R R

∩ ∩ ∩

∩ ∩ ∩ ∩ ∩                               
 (12) 

implying by (2) and the definition of conditional probability that 

 1 2 3

1 2 3

[ ( )] [ ( )] [ ( )]

[ [ ( )] [ ( )] [ ( )]].

i i i i i i
i i i

i i i i i i
i i i

P E P E P E

P C E E E
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=

R R R

R R R

∩ ∩ ∩

∩ ∩ ∩ ∩ ∩ ∩                               
 (13) 

Thus, by the definition of conditional probability, 

 1 2 3

1 2 3

[ ( )] [ ( )] [ ( )] / ( )

[[ ( )] [ ( )] [ ( )] | ].

i i i i i i
i i i

i i i i i i
i i i

P E P E P E P C

P E E E C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=

R R R

R R R

∩ ∩ ∩

∩ ∩ ∩ ∩ ∩                               
 (14) 

By similar arguments with (3) – (5), it follows that 

 1 2 3

1 2 3

[ ( )] [ ( ' )] [ ( )] / ( )

[[ ( )] [ ( ' )] [ ( )] | ],

i i i i i i
i i i

i i i i i i
i i i

P E P E P E P C

P E E E C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=

R R R

R R R

∩ ∩ ∩

∩ ∩ ∩ ∩ ∩                               
 (15) 

 1 2 3

1 2 3

[ ( ' )] [ ( )] [ ( )] / ( )

[[ ( ' )] [ ( )] [ ( )] | ],

i i i i i i
i i i

i i i i i i
i i i

P E P E P E P C

P E E E C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=

R R R

R R R

∩ ∩ ∩

∩ ∩ ∩ ∩ ∩                               
 (16) 

and  

 1 2 3

1 2 3

[ ( ' )] [ ( ' )] [ ( )] / ( )

[[ ( ' )] [ ( ' )] [ ( )] | ].

i i i i i i
i i i

i i i i i i
i i i

P E P E P E P C

P E E E C
ρ ρ ρ

ρ ρ ρ

∈ ∈ ∈

∈ ∈ ∈

⋅ ⋅

=

R R R

R R R

∩ ∩ ∩

∩ ∩ ∩ ∩ ∩                               
 (17) 

The result follows directly from applying (14)-(17) to (11). ■  
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— APPENDIX B — 

QUARTETS OF MATRICES EXAMINED 

 

 Following the definitions from Appendix A, for certain predefined criteria for 

M, it may be possible to choose{ :i iR R  a binary row vector with S  columns, 

{1,2,...}}i∈  and { ' : 'i iR R  a binary row vector with S  columns, {1,2,...}}i∈  so 

that  

 
1 2 3

[ ( )] [ ( )] [ ( )] 1i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ ∩ , (1) 

1 2 3

[ ( )] [ ( ' )] [ ( )] 1i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ ∩ , (2) 

1 2 3

[ ( ' )] [ ( )] [ ( )] 1i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ ∩ , (3) 

and 

 
1 2 3

[ ( ' )] [ ( ' )] [ ( )] 1i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

=R R R∩ ∩ ∩ ∩ ∩ ∩ . (4) 

Under these circumstances, fixing  

 
1 2 3

1 [ ( )] [ ( )] [ ( )]i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

∈M R R R∩ ∩ ∩ ∩ ∩ ∩ , (5) 

 
1 2 3

2 [ ( ' )] [ ( ' )] [ ( )i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

∈M R R R∩ ∩ ∩ ∩ ∩ ∩ , (6) 

 
1 2 3

3 [ ( ' )] [ ( )] [ ( )i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

∈M R R R∩ ∩ ∩ ∩ ∩ ∩ , (7) 

and 

 
1 2 3

4 [ ( )] [ ( ' )] [ ( )i i i i i i
i i i

C E E E
ρ ρ ρ∈ ∈ ∈

∈M R R R∩ ∩ ∩ ∩ ∩ ∩ , (8) 



 

 

155

by Theorem 1, under 0H , 

 1 4

3 2

( | ) ( | )
( | ) ( | )

P C P C
P C P C

=
M M
M M

. (9) 

In Chapter I, I investigate whether (9) holds for various{ : 1,2,3,4}i i =M .  Table 6 

lists the{ : 1,2,3,4}i i =M  that I use. 
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Table 6.   Quartets of matrices used to evaluate Gotelli’s and Graves’s models. 
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M1
1 M2 M3 M4

001,010,110 010,001,101 010,001,110 001,010,101
001,110,010 110,001,100 110,001,010 001,110,100
010,101,001 101,010,100 101,010,001 010,101,100
100,001,011 001,100,110 001,100,011 100,001,110
100,010,101 010,100,011 010,100,101 100,010,011

001,010,110 010,001,101 010,001,110 001,010,101
001,110,001 010,101,100 010,101,001 001,110,100
010,100,101 100,010,011 100,010,101 010,100,011
011,100,010 110,001,100 110,001,010 011,100,100

010,001,110 001,010,101 001,001,110 010,010,101
100,001,011 101,100,010 100,100,011 101,001,010
001,100,011 010,011,100 010,100,011 001,011,100
011,100,100 010,001,101 011,001,100 010,100,101
001,101,010 010,110,001 001,110,010 010,101,001

110,111,100 111,011,001 111,011,100 110,111,001
011,110,101 100,011,111 100,110,111 011,011,101
111,100,011 110,001,111 111,001,011 110,100,111
011,001,111 111,100,110 111,001,110 011,100,111
110,110,011 001,011,111 110,011,011 001,110,111

001,111,011 101,101,110 101,101,011 001,111,110
011,011,101 111,010,110 111,010,101 011,011,110
011,101,011 110,011,110 110,011,011 011,101,110
011,110,011 111,001,101 111,001,011 011,110,101
011,111,001 101,111,010 101,111,001 011,111,010

001,011,111 011,110,110 001,110,111 011,011,110
111,010,110 001,111,011 111,010,011 001,111,110
010,110,111 011,011,101 010,011,111 011,110,101
101,011,011 101,110,110 101,011,110 101,110,011
100,011,111 111,110,010 111,011,010 100,110,111

110,110,111 101,111,011 101,110,111 110,111,011
011,011,111 111,110,110 111,011,110 011,110,111

011,111,011 111,011,101 111,011,011 011,111,101
101,111,110 110,111,011 110,111,110 101,111,011
111,110,011 111,101,101 111,101,011 111,110,101

011,111,011 111,110,110 111,110,011 011,111,110
101,111,110 111,101,101 101,111,101 111,101,110
011,011,111 111,110,101 111,011,101 011,110,111
111,011,110 110,111,011 111,011,011 110,111,110

Equiprobable Rows, Proportional Columns

Proportional Rows, Equiprobable Columns

Proportional Rows, Proportional Columns

Equiprobable Rows, Proportional Columns

1Commas delimit rows of matrices.

Proportional Rows, Proportional Columns

M
at

rix
 1

M
at

rix
 2

M
at

rix
3

Proportional Rows, Equiprobable Columns

Proportional Rows, Proportional Columns

Equiprobable Rows, Proportional Columns

Proportional Rows, Equiprobable Columns

 



158 

 

M1 M2 M3 M4

100,111,001,001 001,110,011,100 100,110,011,100 001,111,001,001
001,100,110,011 100,101,001,011 100,100,110,011 001,101,001,011
010,101,100,110 001,011,101,001 010,101,101,001 001,011,100,110
110,100,001,110 101,001,001,011 101,001,001,110 110,100,001,011
110,011,010,010 011,101,001,001 110,011,001,001 011,101,010,010

100,010,101,011 101,011,100,010 100,011,101,010 101,010,100,011
010,100,011,011 110,101,001,001 010,101,011,001 110,100,001,011
110,100,101,001 001,101,010,011 001,100,101,011 110,101,010,001
101,100,110,010 001,110,010,011 001,100,110,011 101,110,010,010
101,010,011,100 010,011,010,101 101,011,010,100 010,010,011,101

001,011,011,100 011,010,010,101 001,010,011,101 011,011,010,100
001,110,010,011 101,100,011,010 001,100,011,011 101,110,010,010
011,001,110,010 001,010,111,001 011,001,110,001 001,010,111,010
001,001,111,001 100,011,110,010 001,001,111,010 100,011,110,001
101,001,011,001 011,100,110,010 101,001,011,010 011,100,110,001

010,001,011,101 001,011,001,110 001,001,011,110 010,011,001,101
001,010,001,111 011,001,010,101 001,001,010,111 011,010,001,101
001,010,101,011 011,001,110,001 001,001,110,011 011,010,101,001
100,001,011,011 110,011,001,001 110,001,001,011 100,011,011,001
011,110,001,001 001,100,011,011 001,110,011,001 011,100,001,011

100,011,100,101 011,100,110,100 100,011,110,100 011,100,100,101
110,001,010,110 001,101,011,100 110,001,011,100 001,101,010,110
001,101,011,010 110,101,001,001 110,101,001,010 001,101,011,001
100,101,010,110 011,100,011,100 100,100,011,110 011,101,010,100
001,011,001,101 010,001,101,011 010,011,001,101 001,001,101,011

100,100,011,101 101,101,010,100 101,100,011,100 100,101,010,101
010,010,101,101 110,011,001,100 110,010,101,100 010,011,001,101
100,100,110,101 101,110,010,100 101,100,110,100 100,110,010,101
011,101,010,001 001,100,101,011 011,100,101,001 001,101,010,011
001,011,110,100 110,010,100,101 001,010,110,101 110,011,100,100

100,010,011,110 110,011,010,100 100,011,010,110 110,010,011,100
100,010,011,101 011,011,001,100 100,011,011,100 011,010,001,101
001,100,110,011 110,110,010,001 110,100,110,001 001,110,010,011
100,100,110,101 011,101,010,100 100,101,010,101 011,100,110,100
100,001,011,110 110,011,100,100 110,001,011,100 100,011,100,110

001,001,110,110 010,010,101,101 010,001,101,110 001,010,110,101
101,010,010,101 110,001,001,110 110,010,001,101 101,001,010,110
001,110,110,001 010,101,101,010 010,110,101,001 001,101,110,010
001,110,010,101 010,101,001,110 010,110,001,101 001,101,010,110
101,001,110,010 110,010,101,001 101,010,101,010 110,001,110,001

Equiprobable Rows, Proportional Columns

Proportional Rows, Equiprobable Columns

M
at

rix
 5

Proportional Rows, Proportional Columns

Proportional Rows, Fixed Columns

Equiprobable Rows, Proportional Columns

M
at

rix
 4

Proportional Rows, Equiprobable Columns

Proportional Rows, Fixed Columns

Proportional Rows, Proportional Columns

Table 6 (Continued) 



 

— APPENDIX C — 

GOTELLI AND GRAVES’S MODELS RECAST IN TERMS 

OF INDIVIDUALS 

 

 In the following, let φ  denote the matrix of probabilities used to place the first 

species in Gotelli and Graves’s models. 

 

Proposition 1.  The following algorithm is equivalent to SIM6:  

1.  The first individual is placed according to . φ

2.  Additional individuals are placed independently and according to , until 

the simulated and observed numbers of total species-occurrences match. 

φ

Justification:  Rather than provide a rigorous proof, I will outline arguments with an 

example, from which generalizations follow.   Let  

 
11 12 13

21 22 23

31 32 33

p p p
p p p
p p p

 
≡ 
 
 

φ 
  (10) 

where each  is a probability less than 1, and ijp ∑ =
ji

ijp
,

1 , for 3,2,1=i  and . 3,2,1=j

SIM6 implies that for the presence-absence matrix 

 , (11) 
0 1 0
1 0 0
0 0 1

 
≡ 
 
 

M 


 
( , , )

{ }
1 1

y z
x

x y z S x x

p pP p
yp p p∈

= ⋅ ⋅
− − −∑M  (12) 
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where }};33,21,12{,,:),,{( zyxzyxzyxS ≠≠∈≡ .   Moreover, the proposed 

algorithm indicates that the probability of observing an arrival sequence of (i) species 

1 at site 2, then (ii) species 2 at site 1, and finally (iii) species 3 at site 3 is given by 

 12 12 21 12 21 33
0 0

( ) [ ( ) ]n

n n

np p p p p p
∞ ∞

= =

⋅ ⋅ ⋅ + ⋅∑ ∑  (13) 

Importantly, (13) will hold only if individuals arrive independently of each other, and 

all according to .   Under the same conditions, the proposed algorithm implies that φ

 
( , , ) 0 0

{ } [ ( ) ( ( ) ) ]n
x x y x y

x y z S n n
P p p p p p

∞ ∞

∈ = =

n
zp= ⋅ ⋅ ⋅ + ⋅∑ ∑ ∑M  (14) 

Moreover, because for any geometric sequence  

 
0

1
1

n

n
a

a

∞

=

=
−∑ , (15) 

 
0

1
1

n
x

n x

p
p

∞

=

=
−∑  (16) 

and 

 
0

1( )
1

n
x y

n x y

p p
p p

∞

=

+ =
− −∑ , (17) 

implying that the right hand sides of (12) and (14) must be equal.   Generalizing, it can 

be shown that equality holds regardless of the initial probabilities and presence-

absence matrix.  Hence, the proposition follows.   ■ 

 

Proposition 2.  The following algorithm is equivalent to SIM5: 

1.  The first individual in each column is placed according to φ . 

2.  Additional individuals are placed independently and according to , until 

the simulated numbers of species in each column match the marginal totals. 

φ
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Justification:  The arguments from Proposition 1 can immediately be extended, by 

treating each column as a separate presence-absence matrix, into which individuals are 

placed until the number of species matches the corresponding marginal total.    ■ 

 

 



 

— APPENDIX D — 

ASSUMPTION VIOLATIONS FOR GOTELLI’S (2000) 

MODELS 

 

 

 This appendix lists the assumption violations that I considered for each of 

Gotelli's (2000) models.  The assumptions are divided into two sets: the “limited” set, 

consisting of violations suggested by the models (Table 7), and the “full” set, 

including additional violations constructed here (Table 8). 
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Model
SIM1 T j /NR S i /NC S i T j /N

2

SIM2 T j /N

SIM3 S i /N
SIM4 1/C
SIM5 1/R
SIM6 1/RC S i /NC S i T j /N

2

SIM7 1/RC T j /NR S i T j /N
2

SIM8 1/RC T j /NR S i /NC

SIM9 T j /N S i /N ~S i T j /N

Assumption Violations1

 
 
 
 
 
 

 
 
 
 
 
 

Table 7.   Assumption violations belonging to the "limited set” for Gotelli’s (2000) 
models. 

 
 

 
 
 
 
 

 

 
 
 
 

1Variables defined in Figure 5. 
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Table 8.   Assumption violations belonging only to the “full set” for Gotelli’s 
(2000) models. 
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— APPENDIX E — 

ASSUMPTION VIOLATIONS FOR THE MODELS NOT 

CONSIDERED BY GOTELLI (2000) 

 

 

 This appendix lists the assumption violations that I considered for each of the 

models not considered in Gotelli (2000).  As in Appendix D, the assumptions are 

divided into “limited” (Table 9) and “full” sets (Table 10). 
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T j /N S i /N ~S iT j /N
N /RC S i /N ~S iT j /N
N /RC T j /N ~S iT j /N
N /RC T j /N S i /NProportional Rows, Proportional Columns

Nominal Probabilities Assumption Violations1

Equiprobable Rows, Equiprobable Columns
Equiprobable Rows, Proportional Columns
Proportional Rows, Equiprobable Columns

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9.  Assumption violations belonging to the “limited set” for the models other 
than those of Gotelli (2000). 

 
 
 
 
 

 
 
 
 

1Variables defined in Figure 5. 
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Table 10.   Assumption violations belonging only to the “full set” for the models 
other than those of Gotelli (2000). 
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— SUMMARY1 — 

  

For seventy years ecologists have debated to what extent competition affects 

the composition of ecological communities.   At one extreme, the “Gleasonian” 

viewpoint posits that species assemble randomly, assorting by chance and abiotic 

factors (Gleason 1926).  At the other extreme, putative “assembly rules” suggest that 

competition almost entirely determines the composition of communities (e.g., 

Diamond 1975).  Differentiating between the two viewpoints has been challenging, as 

experimentation is often impractical and unethical at the spatial scale of communities 

(Connor and Simberloff 1986).   

To compensate for the lack of experimental evidence, the most promising 

approach has been null model testing.  The testing asks what pattern would have been 

observed in the absence of competitive effects.  If the observed pattern differs from the 

prediction, then the effects are inferred.  Central to null model testing is the species 

“presence-absence matrix,” in which each row represents a species while each column 

represents a site.  If species i was observed at site j, then the i,jth entry is a one; 

otherwise it is a zero.   To perform a test, one begins by assuming a null hypothesis 

reflective of an absence of competitive effects.  The null hypothesis is then used to 

simulate a distribution of presence-absence matrices.   If the observed presence-

absence matrix (or one more extreme) is sufficiently unlikely to have come from the 

simulated distribution of matrices, then the null hypothesis is rejected and an effect of 

competition is inferred.   Null model testing is a form of statistical hypothesis testing 

(Gotelli and Graves 1996). 

In Chapters I and II, I show that existing null model tests suffer from two 

critical flaws.  Like all statistical tests, null model tests should be powerful and robust.  

                                                 
1 This summary is an expansion of the abstract.  It also contains elements of chapter introductions.  
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Power refers to the sensitivity of the test, with the most powerful tests rejecting false 

null hypotheses most frequently.  Robustness refers to the distortion of significance 

levels when assumptions are violated, with robust tests only negligibly affected by 

violations.  Thus, null model tests should be powerful and, if assumptions cannot be 

independently verified, robust.  Chapters I and II show that all existing null model 

analyses lack adequate power or robustness.     

It is the issue of robustness that is particularly troubling.  It means that when 

assumptions cannot be verified – as is usually the case – existing tests will incorrectly 

indicate competitive effects unacceptably often.  Thus, the tests are unreliable.   To 

resolve the problem, in Chapter III, I develop robust, assumption-free tests.    

  The tests that I develop are based on two premises:  First, regardless of how 

competition acts – evolutionarily or ecologically, and extrinsically or intrinsically – it 

will reduce the co-occurrence of ecologically similar organisms.  Second, ecological 

similarity can be specified using a hierarchical classification system.  “Subunits” of 

organisms can be classified into “units,” with subunits in the same unit being more 

ecologically similar to each other than those in different units.  Hence, defining the W  

as the event that the ith and jth subunit to arrive at a community belong to the same 

unit, it follows that competitive effects predict that , 

, or , for instance.  

Thus, an appropriate null hypothesis for testing for the absence of competitive effects 

specifies equality between all relevant pairs of conditional probabilities.  Using 

random graph theoretic techniques, in Chapter III, I show that this null hypothesis is 

sufficient to specify a distribution of the partition of subunits into units.  Hence, to test 

robustly for the absence of competitive effects, it is sufficient to check whether the 

observed and predicted distributions of partitions match. 

ij

13 12 13 12( | ) ( | cP W W P W W<

34 23 12( | )c cP W W W∩

)

)23 12 23 12( | ) ( | cP W W P W W< 34 23 12( | cP W W W∩ ) <
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In Chapter IV, I apply a test from Chapter III, which for simplicity relies on 

one assumption.  For the seven communities that I examine, competitive effects are 

not indicated, although effects of other interspecific interactions (e.g., facilitation) 

sometimes are.   Overall, the predictions of the null model account for over 95% of the 

variation in observed frequencies of partitions.   Hence, these applications suggest that 

although interspecific interactions may discernibly affect the composition of 

communities, those effects are minor. 
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