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For seventy years ecologists have debated to what extent competition affects
the composition of ecological communities. At one extreme, species have been
proposed to assemble independently of each other, while at the other extreme,
competition and other interspecific interactions have been proposed to account almost
solely for the composition of communities. Although the debate bears broadly on
applied and basic ecology, it has been challenging to resolve.

The most practical approach toward resolving the debate has been null model
testing. The testing begins by assuming a null hypothesis that is reflective of an
absence of competitive effects, which is then used to make a statistical prediction
about the observed data. If observations are inconsistent with the prediction, then the
null hypothesis is rejected, and effects of competition are inferred.

Unfortunately, as I show here, all existing null model tests are biased or non-
robust. Although both qualities are problematic, the non-robustness is particularly
troubling, because it means that when assumptions of the tests cannot be verified — as
is usually the case — the tests will incorrectly indicate competitive effects unacceptably
often. Thus, the tests are unreliable.

To fix the problem, I derive robust tests. Letting i and j denote the ith and jth

colonists to arrive at a site, respectively, and W, the event that i and j belong to the



same “unit” (e.g., functional group, genus), I derive how partitions of colonists into

units will be distributed if for all i and j, W,

; 18 conditionally independent of whether i
and j share unit membership with the other colonists. Because the distribution can be
derived without parametric assumptions, it can be used to test robustly for competitive
effects.

I conclude by applying one of the tests to seven large data sets. In no cases
does this test suggest effects of competition, although it does sometimes suggest
effects of other interspecific interactions (e.g., facilitation). Overall, the predicted
distribution accounts for over 95% of the variation in frequencies of partitions.

Hence, the results suggest that although interspecific interactions may discernibly

affect the composition of communities, those effects are generally minor.
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— CHAPTER I —
NULL MODEL TESTS OF SPECIES CO-OCCURRENCE:
NULL HYPOTHESES AND BIOLOGICAL IMPLICATIONS

Abstract  Null model tests have been extensively used to draw inferences
from presence-absence data about effects of interspecific interactions on the
composition of ecological communities. All tests published prior to 1996 test the
same null hypothesis, that species occur independently. However, Gotelli and
Graves (1996, Null models in ecology, Smithsonian Institution Press) and Gotelli
(2000, Ecology, 81: 2606-2621) created several tests whose null hypothesis is less
clear. Here I derive mathematical criteria to check whether these tests allow
evaluation of the standard null hypothesis. I show that under many circumstances,
they do not — their null distributions are inconsistent with the null hypothesis.
However, the tests may allow evaluation of other null hypotheses relevant to

understanding the effects of interspecific interactions on community composition.

INTRODUCTION

Do interspecific interactions affect large-scale patterns of species co-
occurrence? The issue has proven contentious. Diamond (1975) suggested that they
do, arguing that competition best explains the non-overlapping distributions of many
bird species in the Bismarck Archipelago. However, Connor and Simberloff (1979)
contended that such non-overlapping distributions can be expected by chance, and that

interspecific interactions provide an unnecessarily complex explanation. Although



the debate remains unresolved (e.g., Stone et al 2000, Brown et al 2002), Connor and
Simberloff (1979) popularized an approach for addressing the matter, null model
testing.

The data used in Connor and Simberloff’s (1979) test consist of lists of species
present at sets of sites. These “presence-absence data” are widely available (e.g.,
Patterson 1999), and can be obtained relatively easily. To summarize the data, a
“presence-absence matrix” is constructed, in which rows and columns represent
species and sites, respectively. If a particular species was observed at a particular site,
a 1 is entered in the corresponding cell of the matrix; otherwise a 0 is entered. Connor
and Simberloff’s (1979) test begins by assuming that interspecific interactions did not
affect the co-occurrence pattern. This assumption is translated into a mathematical
statement, or null hypothesis, which, along with additional assumptions about
colonization, comprises the “null model.” The null model is then used to generate a
“null distribution” of presence-absence matrices, which is consistent with an absence
of interactive effects. If, as measured by a test statistic, the observed presence-absence
matrix falls in a tail of this distribution, then the null hypothesis is rejected, and
interspecific interactions are inferred to affect co-occurrence patterns.

Recently, Gotelli and Graves (1996) and Gotelli (2000) (hereafter referred to
as “Gotelli and Graves”) proposed four new null models [“SIM5” — “SIMS8” in Gotelli
(2000)] and corresponding tests. To simulate distributions of presence-absence
matrices, the models sequentially place species according to specified probabilities,
which vary depending on the placement of the preceding species (see below).
Superficially, these models are plausible — species are placed “randomly.”

Despite the plausibility of the models, their assumptions and null hypotheses
have never been stated explicitly. This lack of explicitness presents two problems.

First, like all statistical tests, Gotelli and Graves’s tests are vulnerable to two types of



errors: the null hypothesis can be rejected when it is true, or the null hypothesis can
be accepted when it is false. In order to measure the rates of these errors and hence to
assess the reliability of the tests, the assumptions and null hypothesis need to be
defined explicitly [Bradley 1968; incorrect rates are reported in Gotelli (2000)].
Second, in null model testing, biological inferences are drawn from rejecting the null
hypothesis. Thus, if the null hypothesis is unclear, any biological inferences will
likewise be unclear.

Here, I investigate the null hypotheses of Gotelli and Graves’s models. To do
so, I begin by considering the null hypotheses of other null model tests, which are of
two kinds. The first kind states that species are distributed independently of each
other (Connor and Simberloff 1983, p. 463; Stone and Roberts 1990, p. 76). This null
hypothesis is appropriate because interspecific interactions should cause species to
occur non-independently — for instance, with competition, species should be less likely
to occur when their competitors are present. The second null hypothesis states that
species assort “randomly.” In some cases, this null hypothesis has been employed to
address a different biological question, whether or not colonization is stochastic
(Connor & Simberloff 1978). In other cases, “randomness” and “independence” are
used synonymously, although they have different meanings (e.g., Gotelli and McCabe
2002; see Stone & Roberts 1990). Thus, the null hypothesis of randomness is either
inappropriate or equivalent to the null hypothesis of independence.

Herein I show that Gotelli and Graves’s tests do not allow testing of the null
hypothesis of independence. A priori, this finding is reasonable, because in the
models, given that a particular species occurs at a site, subsequent arrivals have
modified probabilities of belonging to the other species there. This finding clarifies

the tests’ biological implications and allows their error rates to be measured.



GOTELLI AND GRAVES’S MODELS

In the model SIMS8 (Gotelli and Graves 1996, Gotelli 2000), probabilities are
first assigned to each cell in the observed presence-absence matrix. The probabilities
are chosen to sum to 1, and are proportional to the corresponding row and column
totals (i.e., they are the product of the corresponding row and column totals, divided
by the square of the grand total). Based on these probabilities, the first colonist’s
identity and location are selected. The probabilities are then renormalized to exclude
the possibility of the second colonist belonging to the same species and occurring at
the same site.  That colonist is placed accordingly, and the process is repeated until
the simulated and observed numbers of species-occurrences are equal. Using the same
initial probabilities, many additional presence-absence matrices are then simulated, to
create the null distribution. SIM7 and SIM6 follow the same filling algorithm, but
have their initial probabilities set either (i) proportional to the row totals, but otherwise
equal or (ii) proportional to the column totals, but otherwise equal, respectively
(Gotelli 2000). In SIMS, columns (sites) are filled independently until the simulated
and observed species richnesses match at each site, with the initial probabilities within

each column set proportional to the corresponding row total (Gotelli 2000).

THE STANDARD NULL HYPOTHESIS

To check whether Gotelli and Grave’s models can test the null hypothesis of
independence, a key nuance of that null hypothesis requires explication. The nuance

is illustrated by the null model of Connor and Simberloff (1979), as modified by



Wilson (1987). In this model, the null distribution contains just the presence-absence
matrices having the observed row and column totals, each with equal probability

measure. Hence, if the following presence-absence matrix was observed,

0 10
1 0 1], (1)
0 10
then the null distribution would consist of five presence-absence matrices, each
equally likely:
0 1 0 0 1 0 1 00 0 0 1 0 1 0
P101:P110:P011:P110:P011:%.
0 1 0 0 0 1 010 0 1 0 1 00
()

Interestingly, examining this null distribution leads to an apparent contradiction: the
null hypothesis states that species are distributed independently, suggesting that the
first species should be equally likely to occur at the first site regardless of whether the
second species occurs there. However, in the above distribution, the first species
occurs with probability 0.5 when species 2 is absent, but probability 0 when it is
present. One might wonder then, how can this model allow testing of the null
hypothesis of independence?

The answer lies in the fact that the null distribution is conditioned on the

observed row and column totals. For convenience, let O, and O, be the events that
the first and second species occur at site 1, respectively, and let C be the event the
observed row and column totals occur. Hence, letting O, denote the complement of
0, , the model states that P{O, | O;,C} = 0.5 and P{O, |O,,C} =0. Under conditional

independence, these two terms would be equal. However, such independence differs

from unconditional independence, which states for example that



P{O,10;} =P{0O, |0,}. Both conditional and unconditional independence are

consistent with the verbal statement of the null hypothesis, and both could conceivably
be used to test for interspecific interactions [Connor and Simberloff’s (1979) model
does allow testing for the latter]. The distinction between conditional and

unconditional independence is important in evaluating Gotelli and Graves’s models.

EVALUATING GOTELLI AND GRAVES’S MODELS

Like Connor and Simberloff’s (1979) model, SIM5 — SIMS condition on
attributes of the sample. SIM6 — SIMS condition on the total number of species-
occurrences that were observed, and SIM5 conditions on the column totals of the
observed presence-absence matrix. As per the preceding example, a cursory
examination of null distributions generated by the models reveals that they cannot be
generally implemented to test for conditional independence. However, as in Connor
and Simberloff’s (1979) model, they still may allow testing for unconditional
independence.

In this section, I describe a method for checking this latter possibility, and in
the next sections I apply that method. Theorem 1 (Appendices A) shows that for a
model to be usable for testing for unconditional independence, its null distributions
must possess certain properties. The properties can be illustrated by an example:

Suppose that a model gives a null distribution, in which the following
presence-absence matrices occur with the following probabilities, conditional on

attributes of the observed presence-absence matrix:



11 1
PJ{1 1 01=0.05, (3)
1 00
111
P{1 1 0:=0.04, 4)
010
1 0 1
P11 15=0.01, (5)
1 00

and
1 01
P{1 1 1:=0.09. (6)
010

For convenience, denote these matrices M, through M, , respectively. The set

{M,, M,, M,, M, } possesses two useful characteristics: (i) M, and M, share their
first and second rows, as do M, and M, and (i) M, and M, share their third rows,
asdo M, and M,. Because of these characteristics, it can be shown that if species

occur unconditionally independently, then in the model’s null distribution:

P{M,} _ P{M,} -
PiM,}  P{M,j}

(Appendices A and B). Hence, because in this example,
PM,;}  0.05 S 0.01  P{M,} ()

PM,}  0.04 009 PM,}’
it follows that the model cannot be used to test the null hypothesis of unconditional

independence. Moreover, some (but not all) other quartets of presence-absence

matrices will have the same property under unconditional independence.



METHODS

By checking null distributions generated by SIMS5 — SIM8 for the properties
predicted by Theorem 1 (Appendix A), I addressed two questions: First, are the null
distributions consistent with unconditional independence? And second, when they are

inconsistent, what is the magnitude of that inconsistency?

Presence-Absence Matrices Examined

SIMS — SIM8 give different null distributions, dependent on the dimensions of
the observed presence-absence matrix and the observed row and column totals.
Hence, it was of interest to examine the consistency of the models with different

observed presence-absence matrices. Figure 1 gives the matrices that were used.

Existence of Inconsistency

For presence-absence matrices 1-5, I computed empirical distribution functions
(EDFs) using SIM6 - SIM8. Additionally, for presence-absence matrices 4-5, |

computed EDFs using SIMS.  For presence-absence matrices 1-3 and matrices 4-5,

each EDF was based on 2x10° and 3x10° simulated matrices, respectively. All
simulations were performed using EcoSim 7.70 Build 120404 (Gotelli & Entsminger
2001). This software is commonly used to implement Gotelli and Graves’s models,
and it simulates null distributions using Monte Carlo techniques.

To evaluate whether the EDFs were consistent with unconditional

independence, I checked whether the quartets of presence-absence matrices listed in



Figure 1. Presence-absence matrices that were used to evaluate Gotelli and
Graves’s models. Matrices 6-11 were selected from the literature using the
criteria of Gotelli and McCabe (2002) [respectively: Gotelli and Abele, Kodric-
Brown and Brown 1993, Reed 1980, Bolger et al 1991 (matrices 9 and 10), Culver
et al 1973]. All other matrices were created artificially. Matrices are listed in order
of presentation in the text.
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Figure 1 (Continued)
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Appendix B had equal probability ratios, as predicted by Theorem 1. The quartets
were chosen so that no presence-absence matrix occurred in more than one quartet.
To check the ratios, I applied a generalized likelihood ratio test (GLRT). Let the total

number of quartets under consideration be denoted by ¢, and let M, through M,

denote the presence-absence matrices in quartet i so that by Theorem 1,

PM,}  P{M,}
PM,} PM,}

©)

Moreover, for j=1,2,3,4,let f; denote the simulated frequency of M, and let N be

[j b
the total number of presence-absence matrices simulated. Then it can be shown that

the generalized likelihood ratio statistic 4 is

Z(fy +fi3)'(fij +fi4)+Z(fij +fz1)(fy +fi2)

AZH - N'(fil"‘fiz"'fiS"‘fm)

(10)

Moreover, if the equalities of Theorem 1 hold, then —2-1In(A) will be distributed

approximately y* with g degrees of freedom (Larsen & Marx 1986). For all tests, I

set a =0.003 to give an overall significance level of 0.05. If the null hypothesis was
rejected, I inferred that the corresponding EDF was inconsistent with unconditional
independence.

For presence-absence matrices 6-11, the GLRT was unusable, because well
over 10° presence-absence matrices needed to be simulated. However, for the null
distribution of SIMS5, numerical methods yielded exact probabilities (described in the
next section). For each presence-absence matrix, I used these probabilities to check

whether 100 quartets had equal probability ratios as predicted by Theorem 1.
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Magnitude of Inconsistency

The magnitude of inconsistency can be quantified by the proportion of quartets
violating the predictions of Theorem 1. One approach to measuring this proportion is
to use EDFs generated by EcoSim. However, this approach suffers from two
difficulties: Some quartets share presence-absence matrices, introducing non-
independence, and very large sample sizes (>>10°) are needed to ensure adequate
statistical power. An alternative approach, which I employ here, is to find exact null
distributions. For SIM6 — SIMS, the drawback of this approach is that it can be
applied only to small presence-absence matrices, because of the number of
calculations that become necessary.

Exact null distributions can be found as follows. Suppose that the following

presence-absence matrix is observed:

10 "
. (11)

Then according to SIMS, the probabilities for placing the first colonist are
(pll p12j5(2/9 1/9) (12)
P Pxn 4/ 9 2/ 9
(That is, the first colonist has probability p,, =2/9 of occurring at site 1 and

belonging to species 1, etc.) By the definition of SIMS, it follows that the exact null

distribution is as follows:

0 1 '
P{ }: > p P 02135 (13)
L 1) acimoon 1-p, 1-p, — P,
i,j,k distinct
1 0 A
1 1 i,/ kelll.21,22} 1-p, 1-p, -p,

i,j,k distinct
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1 1 D, P
P = ;- . k =0.0651 (15)
{O 1} i,j,ke{lzl,lz,22} l-p, 1-p,—p,
i,j,k distinct
I 1 P, p
P = D L. k =0.2135. (16)
{1 0} i,j,ki%m,zn l-p, 1-p, —Pp;
i,],k distinct

These arguments directly generalize to larger presence-absence matrices and other
models.

For presence-absence matrices 1-5 and 12-23 (Figure 1), I calculated exact null
distributions for SIM6 - SIMS8, and for matrices 4-5 and 20-23, I additionally
calculated exact null distributions using SIMS5. For each matrix-model combination, |
confirmed that the exact distributions agreed with EcoSim’s distributions by
simulating 25,000 presence-absence matrices, and performing goodness-of-fit testing.
Next, from each exact distribution, I randomly chose a quartet of presence-absence
matrices. If Theorem 1 made a prediction about the quartet, I checked the prediction
by consulting the exact distribution; otherwise I disregarded the quartet. I repeated the
process until 1000 prediction-making quartets had been considered for each matrix-
model combination. I used the observed fractions of theorem-violating quartets to
estimate the overall violation rates of the models, and calculated 95% confidence

intervals.

All procedures were implemented using custom-written Visual Basic 6.0
software. For all measurements, degenerate presence-absence matrices were omitted
(Gotelli 2000). However, it can be shown that if a model violates Theorem 1 with
omission of degenerate matrices, then it will also violate it without omission (Ladau,

unpublished results).
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RESULTS

Existence of Inconsistency

For each model, at least one of the presence-absence matrices 1-5 gave an EDF
inconsistent with independence (Table 1). For all matrices 6-11, SIM5 gave exact
null distributions inconsistent with independence. For matrices 6 and 8, every quartet
examined was inconsistent with independence, while for matrices 7, 9, 10, and 11; 84,
64, 30, and 99 quartets were inconsistent, respectively. (Non-random selection of

quartets precludes inferences about overall rates of inconsistency here.)

Magnitude of Inconsistency

For presence-absence matrices 1-5 and 12-24, there were no significant
differences between the exact distributions and the distributions given by EcoSim.
For at least one matrix, each model generated a null distribution that was consistent
with the property given by Theorem 1. However, for SIM6, SIM7, SIM8, and SIMS,
respectively, on average 34.1%, 0.8%, 50.3%, and 12.9% of the quartets were violated
per presence-absence matrix. Additionally, some presence-absence matrices gave
violation rates as high as 75.2%, 5.7%, 95.7%, and 39.1% for each model, respectively
(Table 2).
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DISCUSSION

For many, but not all, presence-absence matrices, my results show that SIM5 —
SIMS generate null distributions inconsistent with the null hypothesis of unconditional
independence. On theoretical grounds, such a result is expected. For instance, if all
row and column totals are equal, the null distributions can be proven consistent with
the null hypothesis. However, for most matrices, such consistency is not predicted,
and as per the results, it is not observed. Because of the inconsistency, it appears that
SIMS — SIMS cannot generally be applied to test the null hypothesis of independence.

Like other tests, the tests using SIMS — SIM8 map the null distribution of
presence-absence matrices onto a sampling distribution of statistics, from which the
critical region is determined (Gotelli 2000). This mapping is not one-to-one; that is,
different null distributions may result in the same sampling distributions. Hence, one
might object that it is irrelevant to show that the null distributions are inconsistent with
independence; what is really of concern is inconsistency of the sampling distributions
with independence. However, checking the sampling distributions for consistency
appears impractical — unlike the distributions of matrices, these distributions lack a
“fingerprint” of independence, or its absence. Moreover, the mapping appears
incapable of universally re-introducing independence (J. Ladau, unpublished data).
Hence, SIM5 — SIMS are indeed unusable for testing for independence.

Although rigorously testing for independence with SIMS — SIMS is
impossible, perhaps approximate testing is still possible. However, precise tests of
unconditional independence are readily implemented, so even if such testing is
possible, it is unneeded.

In light of these findings, it is appropriate to consider tests employing SIM5 —

SIMS not as tests of the standard null hypothesis of independence, but rather as tests
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of a biologically and mathematically different null hypothesis. If interspecific
interactions affect species co-occurrence patterns, then one potential consequence is
that at a given site, species occurrence probabilities will depend on which other
species are present — the consequence investigable with the standard null hypothesis.
However, interspecific interactions could have other consequences as well. For
instance, interspecific interactions might cause non-independence not in the arrival of
species per se, but in the arrival of individuals. The corresponding null hypothesis —
that individuals colonize independently — differs quantitatively from the standard null
hypothesis, and yields differing predictions. The null distributions generated by SIMS5
— SIMS can be shown to be consistent with this null hypothesis (Appendix C).

Testing the null hypothesis of individual independence could offer two
benefits. First, because it and the standard null hypothesis reflect different effects of
interspecific interactions, testing both null hypotheses could increase the likelihood of
detecting effects of interspecific interactions. Second, the Type I and II error rates
(i.e., reliability) of null model tests are intimately connected to the choice of null
hypothesis. Testing the null hypothesis of individual independence could reduce
these error rates, although this remains to be checked.

In sum, understanding what null hypothesis can be tested with SIM5 — SIMS is
a key step towards correctly and meaningfully applying these models. In null model
testing, it is the null hypothesis that articulates the biological process of interest into
the mathematics, and only with a detailed knowledge of that articulation can the

biological implications of the tests be fully appreciated and utilized.
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— CHAPTER II —
NULL MODEL TESTS OF SPECIES CO-OCCURRENCE:
ROBUSTNESS AND POWER

Abstract  An enduring question in ecology is whether interspecific
competition affects co-occurrence patterns of species. Testing null models constitutes
a popular approach to address the question, but until recently, all tests have proven
highly controversial, as it was unclear how prone they were to falsely suggesting
competition (a Type I error) or its absence (a Type Il error). However, recently
numerous investigators have begun citing procedures and error rates reported by
Gotelli (2000, Ecology, 81: 2606-2621) to justify the application of certain tests.

Here, I show that Gotelli’s (2000) procedures have several shortcomings that result in
underestimation of Type I error rates. I also show that even if they were correct,
Gotelli’s (2000) error rates would not have pertained to most of the testing situations
in which they have been cited. I also examine the error rates of 76 tests in addition to
those examined by Gotelli (2000). Overall, my results suggest that (1) without
detailed biological information, no existing null model tests may be applicable, and (2)
even with such information, tests perform inconsistently for different data sets, so

error rates should be assessed on a case-by-case basis.

INTRODUCTION

For seventy years ecologists have debated to what extent competition

structures ecological communities. At one extreme, the “Gleasonian” viewpoint

24
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posits that species assemble randomly, assorting by chance and abiotic factors
(Gleason 1926). At the other extreme, putative “assembly rules” suggest that
interspecific interactions are responsible for the assortment of species (Diamond
1975). Among the interactions, competition is often cited as key (Diamond 1975,
Gotelli and Graves 1996).

Differentiating between the two viewpoints has been challenging. At small
spatial scales, experiments can provide answers; for instance Connell (1961).
However, at the scale of communities, experimentation is often impractical and
unethical — extirpating or introducing species is difficult and disruptive to ecosystems.
Moreover, interspecific interactions may take hundreds of years to have measurable
effects (Connor and Simberloff 1986).

Testing null models constitutes a popular approach to compensate for the lack
of experimental evidence. The testing utilizes presence-absence data — lists of
species present at sets of sites. Such data are commonly summarized in a presence-
absence matrix, wherein each row represents a species, while each column represents
a site. If species i was observed at site j, the i,jth entry of the matrix is a 1; otherwise
itis a 0. The tests begin by specifying a null model, which consists of assumptions
about colonization, and a null hypothesis that is consistent with competition not
affecting community composition. The null model is then used to generate a
distribution of presence-absence matrices, from which the probability of seeing a
statistic summarizing the observed presence-absence matrix or one more extreme is
calculated. If the probability is sufficiently low, the null hypothesis is rejected, and an
effect of competition is inferred. Within this framework, tests employing different
null models and different statistics have been developed.

Like all statistical testing, null model testing is prone to two types of error. A

Type I error occurs if the null hypothesis is falsely rejected, here resulting in
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competitive effects being inferred when they are absent. A Type II error occurs if the
null hypothesis is falsely accepted, which will result here in competitive effects being
dismissed when they are present.

It is the susceptibility of null model tests to Type I and II errors that has
prolonged the debate over the effects of competition, as tests indicating competitive
effects or their absence have been criticized as vulnerable to Type I and II errors,
respectively (Gotelli 2000, Gotelli 2001). However, in a key work, Gotelli (2000)
systematically measured error rates of 36 null model tests, and suggested that some
could be applied generally, particularly a test employing the null model “SIM9”* and
statistic “C score” (see below).

Although the suggestions of Gotelli (2000) were circumspect, the error rates of
Gotelli (2000) have been widely used to justify applying certain tests. For instance,
Heino and Soininen (2005) state that they chose SIM9 to examine co-occurrence
patterns of diatoms because the model “is relatively robust to Type I and Type 11
errors, especially when used with the C-score (Gotelli 2000)” (p. 571). Numerous
other investigators similarly cite Gotelli (2000) to support their choice of tests (e.g.,
Mouillot et al 2005, pp. 450-451; Ribichich 2005, pp. 90-91; Chaves and Anez 2004,
p. 220; Feeley 2003, p. 107). Gotelli also cites Gotelli (2000). For example, to
analyze a myriad of different presence-absence matrices, Gotelli and McCabe (2002)
write that SIM9 with C score was chosen because it “has good Type I error properties
and does not reject the null hypothesis too frequently when tested with random
matrices (Gotelli 2000)” (p. 2093). Similar citations can be found in Gotelli and
Ellison (2002; p. 593), Sanders et al (2003; p. 2475), and Gotelli and Rohde (2002; p.
90).

Although the practice is widespread, it is unclear whether citing Gotelli’s

(2000) error rates is sound.  Gotelli (2000) uses non-standard techniques for
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measuring Type I and II error rates, and effectively makes measurements for only one
presence-absence matrix. Here, I show that these non-standard techniques give
incorrect error rates. Moreover, even if the rates were correct, I show that they would
not hold for other presence-absence matrices, as tests perform differently depending
on the presence-absence matrix being analyzed. Overall, in contrast to the de facto
conclusions of Gotelli (2000), I find that in many situations, no existing null model

tests have adequate Type I and II error rates.

TESTS AND PROCEDURES

Description of the Tests Examined by Gotelli (2000)

To simulate the distributions of presence-absence matrices under the null
hypothesis, each test examined by Gotelli (2000) uses one of nine null models, or
“algorithms,” denoted “SIM1”-“SIM9.” In SIMI, probabilities are initially selected of
the first colonist belonging to each species and occurring at each site. That colonist is
placed accordingly, and then the probabilities are renormalized for the second colonist,
conditional on it belonging to a new species or occurring at a new site.  After it is
placed, the procedure is iterated until the total simulated and total observed species-
occurrences match. The entire procedure is repeated many times to generate the null
distribution. SIM6, SIM7, and SIMS8 follow identical procedures, but begin with
different probabilities. In SIM3 and SIMS, colonists are added to one column at a
time, rather than to the entire matrix, until the simulated and observed column totals
match. In SIM2 and SIM4, colonists are added to each row of the matrix until the

simulated and observed row totals are equal. Finally, for SIM9, both species-
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occurrences and species richnesses are held equal to the observed totals, with all
corresponding presence-absence matrices assumed equally likely. Additional details
of the models can be found in Gotelli (2000).

All of the models besides SIM9 can produce degenerate matrices. These
matrices are defined as matrices in which an entire row or column lacks species;
matrices in which at least one species occurs nowhere or one site lacks species
(Connor and Simberloff 1983, Gotelli 2000). Degenerate matrices are omitted from
null distributions in Gotelli (2000).

The different models entail different null hypotheses and assumptions. In
SIM1, SIM3, SIMS5, SIM6, SIM7, and SIMS, the null hypothesis states that at each
site, individuals arrive independently of those that are already present there. For
SIM2 and SIM4, the null hypothesis states that species occur independently of each
other, conditional on the number of times each is observed to occur. Last, for SIM9,
the null hypothesis asserts that species occur unconditionally independently. Although
these null hypotheses differ mathematically and biologically, all permit inferences
about competitive effects (Chapter I). As for assumptions, SIM1 — SIM8 assume a set
of probabilities used to place the first colonist. SIM9 assumes that all species are
equally likely to occur at all sites.

To implement its null model, each test maps the null distributions of presence-
absence matrices onto a sampling distribution of one of four statistics — the
checkerboard score, C score, number of unique species combinations, or } ratio
(respectively: Diamond 1975; Stone and Roberts 1990; Pielou and Pielou 1968;
Robson 1972, Schluter 1984). The statistics presumably respond to non-independent
colonization, with competition causing large values for the checkerboard and C score,

and small values for the number of species combinations and V ratio. The probability
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of seeing the observed matrix or one more extreme is determined from the sampling

distribution of the statistic.

Standard Procedures for Measuring Type I and Il Error Rates

Because the Type I and II error rates are of broad statistical interest, standard
procedures have been developed for measuring them.

Measuring the Type I error rate is simple when assumptions are valid: the rate
is equal to the significance level (). On the other hand, invalid assumptions may
cause the true Type I error rate to deviate from «, depending on the test being used,
value of «, sample size, and nature of the assumption violations (Bradley 1968). To
measure Type I error rates under the latter circumstances, a three-step process is
usually followed: First, a sampling distribution, or “nominal distribution,” is derived
assuming the validity of the null hypothesis and model assumptions, and a critical
region at the nominal significance level (&) is determined. Second, another sampling
distribution is created, assuming the null hypothesis and violated assumptions.

Taking the latter to be the true “state of nature,” the true significance level is found by
determining the proportion of statistics from the new distribution that fall in the old
critical region. Last, because many potential true states of nature usually exist,
additional “true distributions” are then often checked (Bradley 1968). If Type I error
rates consistently remain near the nominal significance level, a test is said to be
“robust” (Bradley 1968, Larsen and Marx 1986). Hence, robustness provides the
appropriate criterion for distinguishing tests using their Type I error rates.

Type II errors can only occur when the null hypothesis is false. The Type II
error rate depends on many factors, including the exact nature of the hypothesis

violation, nominal significance level, and sample size. Under a false null hypothesis,
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the error rate also depends on the validity of the model assumptions, but
measurements are usually nontrivial even with valid assumptions (Bradley 1968,
Larsen and Marx 1986). To measure Type Il error rates, initially a sampling
distribution and critical region are initially derived, under the null hypothesis and
model assumptions. A second distribution is then created, assuming an alternative
hypothesis, and the proportion of the statistics that fall in the initial critical region is
calculated. This gives the power, which equals 1 — Type II error rate. In most
situations, it is also necessary to check error rates using other relevant alternative
hypotheses (Bradley 1968).

Distinguishing tests based directly on their Type II error rates can be subjective
because the rates depend on the set of alternative hypotheses examined. An objective
criterion is provided by bias. A test is unbiased if it rejects alternative hypotheses at
least as often as it rejects the null hypothesis when assumptions are true (Knight

1999). Unbiased tests are highly preferable to biased ones.

Gotelli’s (2000) Procedures for Measuring Type I and Il Error Rates

Gotelli’s (2000) procedures for measuring Type I and II error rates differ from
the standard procedures. To measure Type I error rates, Gotelli (2000) uses the
following procedure:

1) Four sets of 100 “test matrices” are created, using SIM1, SIM2, SIM4, and
an algorithm in which rows are fixed and columns are proportional to the are of each
site. Figure 2 gives the marginal totals used in each case.

2) With the same marginal totals, four sets of 1000 matrices using each of
SIM1 — SIMO are created. One of the four aforementioned statistics are then applied

to each of the sets, creating sampling distributions of each statistic for each algorithm.
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Figure 2. Presence-absence matrix showing distribution of West Indian Finches. From Gotelli and Abele (1982).
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3) For each of the original test matrices, each of the four statistics are
calculated.

4) Using the sampling distributions found in step 2, the probability of
observing the statistic from each test matrix, or one more extreme is found. The
relative frequency with which the statistics fall in the upper and lower 5% tails of the
sampling distribution are recorded, as well as the mean values of the statistics.

5) Across all four sets of test matrices, the mean of the frequencies from step 4
are calculated.

6) If the mean relative frequency exceeds 0.1, the corresponding test is
concluded “susceptible” to Type I errors.

To measure Type II error rates, Gotelli (2000) uses the following procedure:

1) A 20x 20 presence-absence matrix is created (Figure 3).

2) In each row, two randomly selected entries are swapped, and the four
statistics are then calculated.

3) Each algorithm is run using the new marginal totals where appropriate. The
probability of observing the statistic from step 2, or a statistic more extreme is found —
where “extreme” is taken to mean “larger” for the checkerboard and C scores, and
“smaller” for the number of unique species combinations and ¥ ratio.

4) Steps 2 and 3 are iterated nine times, always swapping new entries.

5) Steps 1-4 are repeated four more times.

6) For each statistic and algorithm, the probabilities from step 4 are plotted
against the number of rows swapped (“noise level”). Means are used to summarize
the probabilities from the five runs (i.e., repetitions from steps 4 and 5).

7) The means are used to infer Type II error rates: For a given noise level,

larger means are taken to indicate greater susceptibility to errors.
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Figure 3. Hypothetical presence-absence matrix used by Gotelli to measure Type

II error rates.
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ERRORS IN MEASUREMENTS

Type I Error Rates

For the most part, Gotelli’s (2000) procedures parallel standard practice.
However, contrary to standard practice, Gotelli’s (2000) procedures derive each pair
of nominal and true distributions not by assuming the same null hypothesis, but by
employing systematically chosen pairs of null models. = The problem with this
approach is that some pairs of models entail different null hypotheses. For instance,
deriving nominal and true distributions using SIM1 and SIM4, respectively, means
varying the validity of both the assumptions and null hypotheses, and hence measuring
a probability unrelated to the Type I error rate. To measure Type I error rates, only
pairs of models with the same null hypotheses should be used.

In addition to the varying null hypotheses, also problematic is Gotelli’s (2000)
averaging of Type I error rates across four possible sets of assumption violations. This
averaging procedure is employed because “there is no a priori way to decide which of
the four kinds of random matrices... are most valid.” In other words, averaging is
used because it is impossible to know beforehand how the assumptions will be
violated.

However, the averaging approach conflicts with the notion of robustness.
Because Type I errors are sufficiently serious, robustness is usually defined to reflect
the worst-case behavior of a test, not the average (Bradley 1968). A similar situation
arises in testing compound null hypotheses: Compound null hypotheses usually
specify a range of parameter values, rather than a single value. Thus, it is often

impossible to define a critical region resulting in a single probability of falsely
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rejecting the null hypothesis — the probability varies with the actual parameter value,
and o cannot equal the probability of a Type I error. While one approach would be
to define the critical region so that o gives the mean probability, the maximum is
preferable (Knight 1999). The same reasoning applies here: For a given test, the
plausible assumption violations can result in any number of true Type I error rates.
Because it is the worst-case behavior that is of concern, it is the maximum error rate
that provides the appropriate criterion for distinguishing tests.

Needless to say, an infinite number of possible assumption violations would
need to be considered to find the maximum Type I error rates of most tests — a
daunting task. The most reasonable alternative is to examine instead a representative
or large sample of possible assumption violations. Towards that end, Gotelli (2000)
examines up to three valid violations (not eight, due to the problem with the null
hypotheses) per test. However, numerous qualitatively different violations can be
constructed, which could increase the maximum error rates of the tests. In the
empirical portion of this study, I show that the maximum Type I error rates do indeed

increase when additional assumption violations are considered.

Type II Error Rates

Key to measuring Type II error rates are alternative distributions and
alternative hypotheses. =~ However, Gotelli (2000) never explicitly refers to either,
instead substituting neologisms. Although a semantic matter, these neologisms must
be interpreted to demonstrate a more substantive mistake.

For alternative distributions, Gotelli (2000) writes that Type II error rates
should be estimated by “evaluating a nonrandom test matrix... A test that was

vulnerable to Type II error would fail to detect nonrandom patterns in such a
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b

structured matrix.” By “nonrandom test matrix” Gotelli (2000) appears to mean “a
presence-absence matrix chosen from a ‘nonrandom’ distribution.” But Gotelli (2000)
takes “random” to mean “conforming to the null hypothesis,” so “nonrandom test
matrix” means “matrix from an alternative distribution.” Gotelli (2000) then creates
ten types of nonrandom test matrices, corresponding to noise levels zero through nine,
so it is those nonrandom matrices’ distributions that comprise the alternative
distributions.

With regard to alternative hypotheses, Gotelli (2000) writes that to create each
alternative distribution, “one strategy would be to build a specific model of species
interactions.” Later on, he implies that “a mathematical model” could be used to
create alternative distributions. From the context, then, “models” denotes “alternative
hypotheses.”

That said, it is evident that Gotelli’s (2000) procedures fail to measure any
Type Il error rates, or powers. To calculate power, one should find the proportion of
statistics from each alternative distribution that falls in the critical region for each test
— or equivalently, the proportion of statistics that result in p-values less than some
preset . However, Gotelli (2000) instead finds the mean p-value. The mean is
undoubtedly an unreliable indicator of the Type II error rate — it is easy to construct

examples where higher means entail lower rates.

METHODS

The empirical component of this investigation addressed three questions:
First, for the presence-absence matrix analyzed by Gotelli (2000; Figure 2),

what are the correct Type I and II error rates of the tests? I addressed this question
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using the standard techniques for measuring error rates and a broad set of assumption
violations. I also examined bias.

Second, do the Type I and II error rates of the tests depend on the presence-
absence matrix being analyzed? As mentioned above, robustness and power are
usually sensitive to differences in sample size (Bradley 1968), so one might a priori
expect that they would be sensitive to the dimensions and marginal totals of the
matrices. Finding dependency would indicate that even had Gotelli’s (2000) error
rates been correct, employing them to justify broadly applying analyses would still
have been mistaken. To check for dependency, I examined error rates of Gotelli’s
(2000) tests for four additional presence-absence matrices.

Finally, what are the error rates of other tests? In addition to the 36 tests
examined in Gotelli (2000), over 76 tests have been proposed or follow immediately
from proposals, in the literature. 1 examined the error rates of these tests in an attempt

to assess the overall utility of existing tests.

Computation

All simulations and statistical tests were performed using custom-written

Visual Basic 6.0 software.

Presence-Absence Matrices

I considered the following published presence-absence matrices: plants in the
Windward and Leeward Islands (Beard 1948), myxomycetes in the high latitudes
(Stephenson et al. 2000), finches in the West Indies (Gotelli and Abele 1982), seabirds

near Vancouver Island (Hay 1992), and flies in the Hawaiian Islands (Hardy 1965;
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Figure 2 and Figure 4). Some matrices were abridged to allow simulations to be
completed within a finite timeframe. For convenience, I labeled the matrices I-V,

respectively.

Type I Error Rates of Gotelli’s (2000) Tests

For SIM1-SIMS, I considered only violations of the placement probabilities for
the first colonist. ~ Appendix D gives the assumption violations that were considered.
I grouped these violations into two sets: the “limited set,” consisting of just the
violations considered by Gotelli (2000), and the “full set,” consisting of Gotelli’s
(2000) violations and violations constructed here. For SIM9, I considered only
violations of the assumption that all species are equally likely to occur everywhere. I
again considered “limited” and “full” sets of assumption violations (Appendix D).

Excluding degenerate matrices, I next generated nominal distributions of 3000
statistics (i.e., 3000 iterations). Each distribution was generated using a unique
combination of test and presence-absence matrix, and almost all possible combinations
were used. The exceptions were for SIM9 with matrices I-1II, where despite extensive
attempts, computer algorithms could not be developed to generate efficiently “true
distributions.” For all models except SIM9, I generated nominal distributions using
EcoSim 7.0 (Gotelli and Entminger, 2001). For SIM9, I generated null distributions
using custom-written software.

It was impossible to create usable critical regions for every nominal
distribution. For instance, as Gotelli (2000) points out, } ratio cannot be used with
SIMO, because the resulting distribution contains only one value, allowing for « to be
set only at 1. Similar problems can arise with other distributions; for example, if a

distribution consists of only two statistics in equal frequency, « can be set only at 0.5



39

Figure 4. Presence-absence matrices used to measure Type I and II error rates.
(A) Windward and Leeward Island Vegetation (Matrix I), (B) High-latitude
Myxomycetes (Matrix II), (C) Seabirds near Vancouver Island (Matrix IV), and (D)
Hawaiian Flies (Matrix V). References listed in the text.
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and 1. Therefore, taking 0.05 to be maximum allowable nominal Type I error rate, I
excluded tests from further consideration if they allowed « to be set only at > 0.05.
If usable critical regions were possible, for distributions of / ratio and the
number of unique species combinations, I selected the statistic that gave an empirical
distribution function (EDF) of 0.05, or, if none existed, the pair of statistics that gave

the next smallest and largest values. Denoting these statistics Wy s, W_g05, and w_ s,
respectively, I defined the critical regions [0, w, 5], or [0,w_,,s] and [0,w_,,s], as

appropriate. For the distributions of C score and checkerboard score, I found the
statistic that gave an EDF of 0.95, or the two statistics that gave the closest bounds.
Denoting these statistics w, s, W_yos, and w_, s, I defined the critical regions
[Wpo5.), OF [W_g,s,%0) and [w_,4s,90), again as appropriate.

Again excluding degenerate presence-absence matrices, I next generated true
distributions of 1000 statistics each (i.e., 1000 iterations) using each assumption
violation given in Appendix D. To calculate true significance levels, I computed the
proportion of statistics from each true distribution that fell in the corresponding
a =0.05 critical region, or if no such region existed, the proportions that fell in the
bounding regions. In the latter case, I used linear interpolation to infer the

significance level at & = 0.05 (Zar 1999).

Type Il Error Rates of Gotelli’s (2000) Tests

To measure Type II error rates, I used the same nominal distributions and
critical regions as for Type I error rates. For SIM1, SIM3, and SIM 5 - SIM9, 1

examined the following alternative hypotheses:
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Let R and C denote the observed numbers of species and sites, respectively.

The first alternative hypothesis asserted that for all i =1,2,3,....; j < R/2,j odd, and
k=12,..,C, for SIM1, SIM3, and SIMS,

P{arrival i belong to species j at site k | species j —1 present at site k}

=09,
P{arrival i belong to speciesj at site k | species j —1 absent from site k}
(1)
while for SIM9,
P{species j occurs at site k | species j —1 present at site k} 0.9 @)

P{species j occurs at site k | species j —1 absent from site k} -

The second and third alternative hypotheses were identical, except the ratios were set
equal to 0.5 and 0.1. T also examined a second set of alternative hypotheses, wherein

forall i=1,2,3,....; j<R,jodd,and k=1,2,...,C, the ratios were set equal to 0.9,

0.5, and 0.1. All of the alternative hypotheses reflected asymmetric competitive
interactions between the species one and two, three and four, etc.

To measure Type II error rates, all assumptions of the models were maintained.
For each test and alternative hypothesis, I simulated alternative distributions of 1000
statistics. To calculate Type II error rates, for each alternative distribution, I found the
proportion of statistics falling outside the corresponding & = 0.05 critical region, or if
no such region existed, the proportion falling outside the corresponding bounding
regions. In the latter case, I used linear interpolation to infer the Type II error rate at
a =0.05 (Zar 1999). For each test and matrix, I assessed bias by determining

whether any Type II error rate exceeded 0.95.
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Assessment and Consistency of Critical Regions and Robustness

I used Cohen’s Kappa Statistic (Siegel 1988) to check whether tests
consistently gave usable critical regions for different presence-absence matrices. To
check whether robustness was consistent in different testing situations, for each
presence-absence matrix [ began by classifying tests with respect to robustness. To
make the classifications, I set the maximum tolerable Type I error rate at 0.1, higher
than most investigators would allow (Sokal and Rohlf 1995, Zar 1999). For each
matrix, the simplest approach would then have been to characterize tests as either
“robust” or “non-robust,” depending on whether their error rates ever exceeded 0.1.

However, such an approach would suffer from two problems: First, in this
study, only a few assumption violations were investigated. Hence, universal
robustness could not be inferred if rates failed to exceed 0.1, as unexamined violations
could still have produced intolerably high rates. On the other hand, if the rates
exceeded 0.1 for any violation, this would suffice to establish non-robustness. Hence,
it was appropriate to classify tests not as “robust” or “non-robust,” but as
“indeterminate” or “non-robust.” This distinction is important, because unlike other
tests, where robustness can be predicted analytically, robustness here is not expected.

The second problem would arise from differences between the observed Type I
error rates and the rates implicitly defined by the algorithms and assumption
violations, for even though an observed rate may have exceeded the specified level,
the pertinent, actual rate may still have fallen below it. Two sources of sampling error
could have contributed to these differences: error in the creation of the critical
regions, and error in creation of the true distributions. I assumed the first source of
error negligible, because of the large sample sizes used to approximate the nominal

distributions (n =3000). As for the second source of error, some terminology is
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helpful. Let a;, denote the actual Type I error rate for test i, assumption violation j,
and presence-absence matrix k. Likewise, let a;, denote the corresponding observed

rate. The normal approximation to the binomial distribution implies that

a; —0.1

Pla, <0.1} 21—
G =0 Jay - (1=a,)/1000

1Vi, ).k, 3)

where @ is the standard normal cumulative distribution function (Ross 1998).
Hence, by the independence of the true distributions, the probability of test i being
“indeterminate” for presence-absence matrix & and assumption violation set 4 (i.e., the

“limited” or “full” set) is

a, —0.1
P{max Oiyic <0.1' = Pal <0l = [l_q)[ ijk ]]
{ { jk}j A4 } g { ijk } g \/aljk(l—ayk)/l()()()
4)
It immediately follows that the probability of being found “non-robust” is:
a, —0.1
-] |- - 1. (5)
E (1= ay,) /1000

Mindful of these issues, I classified each test-matrix-violation set combination
as “non-robust” only if it could be guaranteed non-robust with at least 99% certainty.
I used Cohen’s Kappa Statistic (Siegel 1988) to check whether the same tests had
consistent robustness for different presence-absence matrices and sets of assumption

violations.

Assessment and Consistency of Bias

Because the nominal significance level was taken at 0.05, tests were
considered biased if they had a power of less than 0.05 (Knight 1999). As above,

because not all possible alternative hypotheses were considered, tests could only be
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concluded biased, not unbiased. I hence characterized tests as either “biased” or
“indeterminate.”  Also, as with the Type I error rates, the observed Type II error rates
were estimates of actual rates and suffered from the same sources of sampling error.
Here, I once again considered error from the nominal distributions negligible. To

take into account error from the alternative distributions, I let 5, denote the actual

Type II error rate for analysis 7, alternative hypothesis j, and presence-absence matrix

k. Likewise, I let b, denote the corresponding estimate. Because power will be less

than 0.05 only if the Type II error rate exceeds 0.95, by the arguments given above,
the probability of test i being found “biased” with presence-absence matrix k and

alternative hypothesis set B is

b, —0.95
=[] -of—= 1.
jeb by - (1=b,,) /1000

(6)

I classified each test-matrix combination as “biased” only if it could be guaranteed
biased with at least 99% certainty. I used Cohen’s Kappa statistic (Siegel 1988) to

check whether the same tests were biased for all presence-absence matrices.

Assessment of Utility

To assess whether any of Gotelli’s (2000) tests were usable for presence-
absence matrices I-V, I checked whether there existed a test having both indeterminate
robustness and bias under the full set of assumption violations

In addition to the 36 tests considered by Gotelli (2000), I also considered the
robustness and bias of 76 additional tests. All of these tests followed the framework
of the test proposed by Gilpin and Diamond (1982): Probabilities were first assigned
to each cell of the observed presence-absence matrix to give the likelihood of each

corresponding species occurring at each corresponding site. At least four methods
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for choosing the probabilities have been proposed or follow directly from the literature
(Figure 5 A; Gilpin and Diamond 1982, Gotelli 2000). Next, using the probabilities,
the null distribution of presence-absence matrices was simulated. The null
distribution was conditioned on one of five attributes of the observed presence-
absence matrix (Figure 5 B; Gilpin and Diamond 1982, Gotelli 2000, Connor and
Simberloff 1979). Finally, the null distribution was transformed into a sampling
distribution. One of the four aforementioned statistics was used to perform this
transformation (Gotelli 2000). Thus, within Gilpin and Diamond’s (1982) framework,
4x5x4 =80 tests were possible; four of these tests corresponded to Gotelli’s (2000)
tests employing SIM9.  All tests checked the null hypothesis that species occur
independently of each other.

To evaluate the robustness and bias of the 76 tests not examined in Gotelli
(2000), I used procedures similar to those outlined above, with the following changes:
different assumption violations were considered (Appendix E), and only the

alternative hypotheses given for SIM9 were considered.

RESULTS

Gotelli’s (2000) Tests: Error Rates and Consistency of Performance

For the matrix examined in Gotelli (2000; Matrix I1I), maximum Type I error
rates increased upon implementing standard procedures and additional assumption
violations. Six tests proved to be biased when standard procedures were used.

Table 3 and Table 4 give maximum Type I error rates, minimum power values, critical

region existence, and classifications of each test-matrix-assumption violation set
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Figure 5. Tests examined, in addition to those of Gotelli (2000). (A)
Probabilities assumed by the tests that the ith species occurs at the jth site. Each
cell of the table gives a set of possible probabilities. With respect to the rows and
columns, the probabilities can be set “equiprobable,” so that they are constant, or
“proportional,” so that they are proportional to the row or column totals. In the
“proportional rows-proportional columns” case, it is sometimes necessary to use an
ad hoc procedure to ensure that all values are less than one (Gilpin and Diamond
1982). Variables are defined as follows: N =total number of species-occurrences
observed; R =number of rows in the presence-absence matrix; C =number of

columns; S, =ith row total; 7, =/th column total (Gotelli 2000). (B) Marginal
constraints imposed by the tests. The null distribution can be conditioned on the

row or column totals. Ifit is conditioned on neither, then it may or may not be
conditioned on the total number of species-occurrences.
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combination. For Gotelli’s (2000) tests, robustness was inconsistent between
presence-absence matrices using both the limited and full sets of assumption violations
(K=0.234,-0.038; p=0.101,0.55; both respectively). For the 76 other tests,
robustness was consistent using the limited set of assumption violations, but not the
full set (K =0.425,-0.016; p=7.5x10",0.538; both respectively). Bias was

inconsistent between presence-absence matrices [Gotelli’s (2000) tests:

K =0.133, p =0.226; other tests: K =0.084, p =0.215 ], but the same tests
consistently resulted in unusable critical regions [Gotelli’s (2000) tests:

K =0.474, p =0.006 ; other tests: K =0.474, p =2.4x10°]. For all presence-absence
matrices, robustness was inconsistent between the limited and full sets of assumption
violations [for I-V respectively, Gotelli’s (2000) tests:

K =-0.34,-0.481,-0.306,-0.75,-0.613; p = 0.998, 1, 0.997, 1, 1; other tests:

K =-0.362,-0.178,-0.192,-0.581,-0.17; p = 1, 0.985, 0.985, 1, 0.966].

Utility

Under the full set of assumption violations, for every presence-absence matrix
where Type I and II error rates were calculated, all tests were either biased, non-
robust, or without usable critical regions. The same did not hold under the limited set
of assumption violations. Moreover, under the limited set, for every presence-
absence matrix at least one test had a usable critical region and indeterminate

robustness and bias.
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DISCUSSION

Gotelli (2000) found that certain null model tests have low Type I and II error
rates when applied to an artificial presence-absence matrix (Figure 3) and a presence-
absence matrix summarizing the distribution of West Indian Finches. Based on these
findings, Gotelli (2000) has been widely cited to justify the application of certain null
model tests, particularly SIM9 with C score. However, my results show that citing
Gotelli (2000) to support using certain null model tests is not justified. Gotelli (2000)
employed incorrect procedures, causing underestimation of Type I error rates.
Moreover, even if the rates in Gotelli (2000) were correct, they would not have
pertained to other presence-absence matrices: my results show that robustness and bias
vary depending on the matrix being analyzed.

Although simply citing other error rates does not justify applying analyses,
such citation coupled with evidence limiting the set of potential assumption violations
may be valid. Under the full set of assumption violations, none of the 112 tests
considered here could be applied to any of the five presence-absence matrices.
However, under the limited set of assumption violations, usable tests existed for every
presence-absence matrix. Moreover, for the 76 tests not considered by Gotelli (2000),
under the limited set, robustness was consistent between presence-absence matrices.

Therefore, to apply existing null model analyses, it appears necessary to
restrict potential assumption violations. One tempting approach for making such
restrictions is to exploit the marginal totals. For instance, Gilpin and Diamond (1982)
and Gotelli and Graves (1996), set the placement probabilities proportional to the
marginal totals, as per contingency table analysis. However, doing so implicitly
assumes that for each individual, the probability of occurrence at each site is

independent of species (Zar 1999), an assumption that a priori cannot be favored.
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Also complicating matters, restrictions may be needed on the variability of the
placement probabilities through time, and the values of those probabilities for
unobserved species. The marginal totals appear uninformative in both regards.

What is evidently required for restrictions is supplemental information. The
necessity of supplemental information is not a new idea: As has been abundantly
argued, applying null model tests requires specific information on the dispersal
abilities, habitat affinities, and persistence power of each species (e.g., Connor and
Simberloff 1978, Simberloff and Connor 1981, Schoener and Adler 1991, Wilson
1995, Stone et al. 1996, Stone et al. 2000, Peres-Neto et al. 2001), as well as
information on the habitats, environment, and isolation of each site (e.g., Stone et al.
1996, Gotelli et al. 1997, Stone et al. 2000, Peres-Neto et al. 2001). Also, although
apparently unacknowledged, historical information is necessary to assess variation in
the probabilities for each arrival.

Of course in many situations, obtaining such supplemental information may be
difficult or impossible. Under such circumstances, the present results suggest that
Type I and II error rates should be independently measured for every presence-
absence matrix that is analyzed. Such measurements may indicate that all tests are
unusable, as was the case here. Moreover, to ensure that Type I error rates always
remain at sufficiently low levels, an infinite number of assumption violations will
often need to be considered. Hence, rigorously inferring robustness may be difficult.
Non-robustness can be inferred from observing high rates however, so measurements
will often shed more light on which analyses to avoid, rather than which ones to use.
The upshot is that correctly applying existing null model tests may often be
impractical.

As an aside, Gotelli (e.g., Gotelli and McCabe 2002) has recently treated null

model tests not as tests of the specific null hypothesis, but rather as tests of the entire
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null models. Under this rubric, if a significant result is found, the entire model is
rejected, rather than the null hypothesis per se. To choose tests for this application,
the Type I error rates of Gotelli (2000) have been cited. However, such citation is
inappropriate, for if the entire null model is being tested, then the model comprises the
de facto null hypothesis, and there are no additional assumptions that can be violated
(all of the additional assumptions have been “pushed” into the null hypothesis).
However, without additional assumptions, the Type I error rate will always be equal to
a . Hence, within Gotelli’s rubric, all tests will have the same Type I error rate — o —
and it is incorrect to state that some tests are superior because they have low error
rates: Robustness is only useful for distinguishing tests when tests require
assumptions.

The present results leave at least three issues uninvestigated. First, due to
limitations of computer algorithms, SIM9 could only be examined for one presence-
absence matrix. Although this instance indicates that SIM9 is no panacea, how the
algorithm behaves with other presence-absence matrices remains unclear. Second, I
considered a null hypothesis that could imply competitive interactions only. Testing a
double-sided null hypothesis — whose violation could also imply aggregative assembly
— may result in differing bias, robustness, and usability. Finally, other null model tests
have been developed besides the ones presented here (Gotelli and Graves 1996), and
although they appear to be non-robust, they may yet yield insight into how to create

improved techniques.
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— CHAPTER III —
NULL MODEL TESTS OF SPECIES CO-OCCURRENCE:
ROBUST METHODS'

Abstract A contentious issue in ecology is to what extent competition affects
the composition of ecological communities. To help resolve the matter, statistical
tests that do not depend on parametric assumptions are needed. Here, in a step
towards assumption-free tests, using random graph theoretic techniques, we derive
tests that require one parametric assumption. Letting i and j denote the ith and jth

colonists to arrive at a site, respectively, and W, the event that i and j belong to the

same “unit” (e.g., functional group, genus), we show how colonists will be partitioned

into units if for all 7 and j, W, is conditionally independent of whether i and j share

unit membership with the other colonists. Our distribution of partitions is useful for
inferring an absence of competitive effects, because they predict that for at least one i

and j, P(W,) will be less when i and j share unit membership than when they do not.

INTRODUCTION

Interspecific competition is well documented, for instance between
Chthalamus sp. and Balanus sp. barnacles in the intertidal zone (Connell 1961),
Plethodon spp. salamanders in the Appalachian Mountains (Hairston 1980), and

Galium spp. bedstraws in Britain (Tansley 1917, Begon et al 1996). However, it is

" Second author: Steven J. Schwager, Department of Computational Statistics and Computational
Biology, Cornell University.
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unclear whether competition affects large-scale spatial patterns of species co-
existence. At these scales, experimentation is often impossible, and the only available
information may be observational. In an influential work, Diamond (1975) argued
that competitive effects can be inferred by determining which pairs of species never
co-occur. However, Connor and Simberloff (1979) pointed out that such patterns
might arise by chance, and that they may be due to interactions with the physical
environment. Assessing the effects of competition has since proven challenging, and
has motivated the creation of numerous statistical tests (Gotelli and Graves 1996,
Gotelli 2000).

The most widely used tests employ presence-absence data, which consist of
lists of species recorded at sets of sites. These data offer the advantages of being
relatively easy to obtain, and widely available. Presence-absence data are usually
summarized in a presence-absence matrix, wherein rows represent species, while
columns represent sites. If species i is observed at site j, the i,jth entry is 1; otherwise
itis 0. Tests using presence-absence data begin by assuming a null hypothesis that is
inconsistent with an effect of competition — that species, or individuals of each
species, occur independently. The tests also assume probabilities that species or
individuals of each species occur at each site. Species are “placed” accordingly and
independently until the simulated and observed species richnesses match at each site,
or until the numbers of occurrences match for each species. The process is then
repeated many times to produce an empirical sampling distribution for the presence-
absence matrix. Because the null hypothesis is inconsistent with an effect of
competition, if a test statistic from the observed matrix falls in the tail of its sampling
distribution, a competitive effect can be inferred (Gotelli and Graves 1996, Gotelli

2000).
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Although an effect of competition predicts non-independent occurrences, it
makes no prediction about the probabilities of the occurrences per se. Hence, the
probabilities constitute assumptions — assumptions that in biological terms correspond
to the presumed effects of the physical environment on the viability of species or
individuals (Ladau, in preparation). All existing unbiased tests require that the
assumptions be true, because when they are not, the risk of falsely concluding
competition may be intolerably high, up to 100% (Ladau, in preparation). Hence,
existing tests are non-robust and provide unreliable conclusions.

As with other statistical tests, two options exist for mitigating the non-
robustness (Bradley 1968). First, assumptions can be verified. Here, that means
independently assessing the probability of each species occurring at each site, or the
probability of each colonizing individual belonging to each species at each site
(Ladau, in preparation). The second option is to develop tests that do not depend on
parametric assumptions, similar to the alternatives that non-parametric tests provide to
parametric tests. Here, the latter option appears most favorable, because assessing
occurrence probabilities is often controversial and logistically difficult or impossible
(Ladau, in preparation). In this paper we derive tests that rely on one extremely
general parametric assumption, which will be useful for constructing tests that are
completely free of parametric assumptions.

We begin by deducing a new null hypothesis. In null model testing, the null
hypothesis provides the articulation between the biological process of interest and the
mathematics of the model, and it consists of a mathematical prediction that will hold if
competitive effects are absent. Our null hypothesis will meet this criterion, but, unlike
existing null hypotheses, will not require parametric assumptions to be tested.

Competition can structure a community in four ways. At a given site, it can act

intrinsically, affecting the biota by occurring within the site, or extrinsically, by
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occurring in the regions that supply immigrants (Simberloff 1970). It can also act
evolutionarily, promoting the creation of ecologically dissimilar species, or
ecologically, eliminating ecologically similar species (Connell 1980; Begon et al
1996, pp. 269-270). Hence, competition can act in a total of 2x2=4 ways, all of which
can occur simultaneously. Regardless of how competition acts, it will reduce the co-
occurrence of ecologically similar species (Connor and Simberloff 1983).

One way to characterize the ecological similarity of species is by grouping
them: Pairs of species meeting a threshold for similarity are assigned to the same
group, while those failing to meet it are assigned to different groups. Such grouping
is equivalent to partitioning species functionally: Placing two species in the same
functional group or guild is equivalent to saying that they are similar enough to merit
the same classification (Root 2001). But such a notion can be generalized. “Subunits”
of organisms — for instance, genera, families, or orders — can be classified either
functionally or taxonomically into “units” — for instance, phyla — common
membership in which implies ecological similarity.

So long as subunits within units are more ecologically similar than those from
different units, competition will favor the co-existence of subunits from different units.
Competition acting intrinsically and ecologically will cause subunits to be less likely
to persist if they belong to already well-represented units, and all other actions will
make arrivals unlikely to belong to the well-represented units (Fox 1987, Fox 1989,

Wilson 1989). To formalize this idea, let i and j denote the ith and jth persistent

arrivals at a site, ¥, the event that i and j belong to the same unit, and 7] the event

that i/ and j belong to different units. Thus, for example, if three subunits are observed,

any action of competition predicts that
PWs [ W) < PW5 [ W), (D

PW, | W,) <PW,4 | W5), (2)



and

PW; [Wy) < P(Wyy | Wy).
When additional subunits are observed, competitive effects make additional
predictions; for instance,

PWoy | Wys) < PW3y | ),

Py, | Wy [ YWhy) < POWy, | W5 (W) s
and
P,y | Wy (W) < POV, | W5 (\W5) -

Thus, one possible null hypothesis states that for all i and j, WV is

g
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3)

(4)
©)

(6)

conditionally independent of the relationship between i and j and all other subunits.

However, this null hypothesis overlooks an important issue: some relationships
contain transitive information about others. For instance, W,
W, . Hence, if the null hypothesis stated that

P, | W, (YW,) = POV, | W, (\W,,)
and that

P, | W, (YWi) = POV, W (VW)

it would imply that

P¥,)=0.

and W, together imply

(7

®)

)

Clearly, such an implication is inappropriate. It follows then that the null hypothesis

should state conditional independence for W, only when no transitive information is

conveyed.



72

Another potentially complicating issue is the consistency of the condition.
Certain sets of events cannot occur; for instance, ¥, ﬂ W, ﬂ W, implies both W,
and W, , hence

POV, W, (W) =0, (10)
so P(W,, | W, ﬂ W, ﬂ W) is undefined. It follows then that if the null hypothesis
stated

POV, | W, (YW (VW) = POV, W (YW (Y0) (11)
it would imply the equality of an undefined and a defined term, a contradiction.
Therefore, the null hypothesis should posit equality only when conditions are
consistent.

Mindful of these issues, we present a null hypothesis in (12). Under this null

hypothesis, assuming that for all i and j, P(W,) > 0, we derive how subunits will be

distributed within units. We then show that under our assumption, this distribution
entails the null hypothesis. We conclude by showing how our distribution can be used

to test robustly for competition between subunits of the same unit.

DEFINITIONS AND NULL HYPOTHESIS

Let R be a set of observed subunits. Let the sample space be denoted S, i.e.,

S ={y 'y apartition of R}. For any partition y € S, let Eq, denote the
corresponding equivalence relation on R, and let |1//| denote the number of units in .
Let & be the total number of observed units. Forany r,r, eR,let W ={y 1y a

partition of R, (r,7;) € Eq,, }. Hence, W, is the event that /; and r, share the same
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unit. Denote the complement of W, by W, . Define a=P{W,}. Forany y €S,
let {i} be the event that v occurs. Let Q={w:w c R, w#}. Forany weQ, let

v, denote a partition of @, and Eq,, the corresponding equivalence relation. Let
.} =lvweS;Vnnen (rn)ekq, ifand only if (,r,) € Eq, }. Thus, {y}

is the event that y, occurs. Define the set ran(N) = {(nl,nz,...,n‘ R‘) : n; a non-negative

Rl
R|; Zini = |R| +. Define the random vector N : § — ran(N) so that
i=1

integer,i = 1,..,

forany y € §, N(v) =(n,,n, _— R‘) if and only if ¥ contains exactly », units with

R| . Define the random variable U : § — {1,2,...,

i subunits, i =1,2,..., R|} so that for

any w € S, U(y) =i ifand only if i contains exactly 7 units, i € {1,2,..., R|}.
For any graph G, let the ordered pair (V' (G), E(G)) represent the vertex set

V(G) and edge set E(G) of G. Denote the complement of G by G°. For any graph

G, let d(v)be the degree of vertex ve V' (G). Let 7(G) be the number of trees in G .
Let O, be a minimum vertex cover of G. For any Q,, define O, ={v:veQ, or
d(v)=0}. Forany w € Q, let K, be a complete graph with vertex set @ . For any
partition y, of @ with |z//w| 22, let K, be the complete multipartite graph with
partition y,,. Given any ¥ € S and spanning star forest ' of K, for convenience let

K. be the complete graph with vertex set Oj..

Null Hypothesis. H,: For any distinct 7,5, € R and X,Y € E(K,_, ), if

P, (YC) W) W)H1>0 and POFE (N () W[\ [] W;)]>0, then
{ {

i,jieX ti,jieY i,jieX ti,jieY

PO, 7, (AC) O[] 7))

{i,jreX {i,jie¥
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=P, |, (CO) NN 7Ol (12)

{i,jleX {i,jleY
This states that for all i and j, W, is conditionally independent of the relationship

between i and j and all other subunits, provided that there is consistency and that no

transitive information is present.

IMPLICATIONS OF THE NULL HYPOTHESIS

Lemma 1. Under H,, for any distinct #,7,,/; € R and X,Y c E(K,_, ), if

PIC() W) W)1>0, then

{i,jieX {i,jyeY
rmﬂ nhy |( ﬂ W/;/)ﬂ( n W
{i,jleX {i,jreY
. 1C() WHOCO) WOl-P,, 1 C() W )C) W1

{i,jleX {i,j1eY {i,jleX {i,j1eY

Proof: Given distinct #,7,,7; € R and X,Y < E(K,_, , ), assume H, and that

PIC () W) W)1>0. Because P[( (| W) )([) W;)1>0,by the

{i,j1eX {i,jreY {i.jyeX {i.jyeY

definition of conditional probability it will be sufficient to show that

P (W VO N #0012 )OO W)
{i,jteX {i,jrey {i,jleX {i,jtey
P, (YC) WHOCO) WO1-PI, (YC) WC) w1 (13)
{i,jleX {i,jleY {i,jleX {i,j}eY

The proof will follow by a case analysis on whether

PP, (1CY W[ 1> 0 and PIFL (Y[ W YC[) W1>0

{i,jteX {i,jtey {i,jyeX {i,jteY
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Case 1: P[W,, () () W) W;)]>0 and

{i,jreX {i,jyeY

P (YC) W[ W)1>0. By Hy,

{i,j}eX {i,jteY
P, 1W,.(NC) W) W)l
{i,jleX {i,jleY
_P[VVVI”z ‘ ’zrsﬂ( ﬂ lj)ﬂ( ﬂ VVU()] (14)
i, jteX {i,jyeY

Applying the definition of conditional probability,

P, (.. CO O wo1-Pws (N CO WO 7ol

li,jleX {i,jreY {i,jleX {i,jreY
- P[VV’lrzﬂ nh ﬂ( ﬂ )ﬂ( ﬂ W‘)]
i, jyeX i, jyey
HUS A GARA NSRRI (15)
{i,jyeX {i.jyeY

Also, the additivity axiom of probability gives

P YCOY W) 7,

{i,jieX {i,jreY
=PI () WpCO WO1-PW,, (C) W W] (16)
{i,jleX {i,j}eY {i,jleX {i,j}eY

and

P, (Vs CO) woNCO ot =P, (C() W) Wl

{i,jleX {i,j}eY {i,jleX {i,jteY
’lrzﬂ nr3 ﬂ( ﬂ )ﬂ( ﬂ W‘)] (17)
{i,jleX {i,jreY

Hence, by substituting the results of (16) and (17) into (15), (13) follows.

Case 2: P[W%ﬂ( N )ﬂ( () W;)1>0 and

{i,jteX {i,jteY
PO NN #)I=0. Because P () W) #i)1=0,
{i,jteX {i.jleY {i,jleX {i,j}eY

by the additivity axiom,
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Pl wp(YC wo1=Pw,,(C) W) Wl (18)
{i,j1eX {i,j}eY {i,j1eX {i,jleY

in addition,

P, (We.CO WO W1=0; (19)

{i,jyeX {i,jtey

and using (19) and the additivity axiom,

P, (C wHNCO) wol=Pw, (W, NC) W) W1. (20)

{i,jleX {i,j1eY {i,jleX {i,jeY
Then (13) follows by multiplying (18) and (20).
Case 3: PIW,, (N () W\ () W;)]1=0 and

{i.jeX {i.jtey

P, O NN w)1> 0. PO, OC NCN) #)1=0 implies

{i,jyeX {i,j}eY {i,jreX {i,jreY
that P, (\W,.[C () W) () W;)1=0. Thus,
{i,jreX {i,jtey
P, (V.. C wHC WO1-PIC() w(\C W,
i, jteX 1, jteY {i,jteX i, jteY
P, (\CO) OO wor-Pw, () w1 W 1)
{i,jreX i, jteY {i,jleX {i,jleY
Case 4: PIW,, (\( () W) () W;)1=0 and
{i,jreX {i,jreY

P (YC) W) W)H1=0. (13) follows by the arguments given in Case 3.

{i,jleX {i,jreY

Lemma 2. Under H,, for any distinct 7,7,,7, € R and X,Y E(KR_VI_,,2 ), if

PW.

1C) W) W10, then

{i,jleX {i,jteY

P, 1w, (1N )ﬂ(ﬂW?)] . 1C WO W,

{i,jleX {i,jleY {i,jleX {i,jleY
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Proof: Given distinct 7,7,/ € R and X,Y c E(K,_, _, ), assume H, and

that P[WV, ﬂ( ﬂ w, )ﬂ( ﬂ W;)]>0. The latter assumption and the definition of

{i,jleX {i,jey

conditional probability imply that

SUMBUM G ARARGARA)

P, |W,, w, W)= 3k h.jier
[ %‘ ’z’sﬂ({if}lx lj)m({i»JQGY U)] P[W;zr}ﬂ({AOXVV,‘/)ﬂ({_OyVV;;)]
L,Js€ L, Js€
PV, (W, 1C () W) W]
— {i,jjeX {i,A/}EY‘ ) (22)
PO, |C() W) )]
{i.jyeX {i.jyeY

It follows from P[W%ﬂ( ﬂ Wy.)ﬂ( ﬂ W;)1>0 that

{i,jreX {i,jreY

PIC () W)\ () W;)1>0, and so by Lemma I,

{i,jleX {i,jleY
POV, (YW, [C () W) 7))
{i,j1eX {i,j}eY
P, 1) W C) W)
i, jleX {i,jleY
P, 1C () Wp(YC) WOI- POV, 1C () W) )]
— i, jleX {i,j ey {i,jjeX {i,jreY
LUMISARAAEARA)
{i,jleX {i,jleY
=P, [C() W WDl .

{i,jleX {i.j}ey

Lemma 3. Forany X,Y € E(K,),and r,r, € R, 1, #1,,1f 3 r, € R such that

{r,n},{n,n}t € X, then

W, O W =C ) NN 7).

{i,jleX {i,j}eY {i,jleX {i,jeY
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Proof: Given X,Y € E(K;),and r,r, € R, 1, # 1,, assume 3 r; € R such that

{n,n},{n,ne X. Fix r;. Given y € §, assume that

weW, (C[) W) W;). Because by definition

{i,jleX {i,j}eY
w.CO WIOC WD =) W) W), (23)
{i,jleX {i,jreY {i,jleX {i,jteY
we( ﬂ VK/.)H( ﬂ W;). Now assume that y e ( ﬂ %)ﬂ( ﬂ W;). Thus,
jlex ey i.jleXx {i.j1ey

(11,1),(r,,13) € Eq,,, and transitively, (,7,) € Eq,, . It follows that y € W, , and that

v e, NCN W W) Hence, y e, () W) #y) ifand

{i.jyeX {i,jyeY n,jyeX {i.jye¥
only if y € ( ﬂ W;j)ﬂ( ﬂ wi). =
{i,jyeX {i.jteY

Lemma 4. Under H,, P(W,,)=a for all distinctr,r, eR.
Proof: Assume H,. Given distinctr,,r, e R, fix r, e R, r, # r;,r,. By Lemma 3
(with X = {5,735, 1,135, ¥ =0)

VV”l"z ﬂ VV”l"s ﬂVVrz”s = VV’]"} ﬂVVrz”s ? (24)

implying by Lemma 1 (with X,Y =) that

P

nn

(W, W,.)= POV, )PWV,,.). (25)

nn

By similar arguments,

PO, (YW, (VW) = POV, )POF,,) 26)
and
P(VVrlrz ﬂ VV’l’s ﬂ VV’z’s ) - P(VV"l’z )P(W/”z’z ) : (27)
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(25), (26), and (27) comprise a system of three independent equations with four

unknowns. By assumption, P(W, ), P(W,, ), P(W,, ) >0, implying

that P(W,, )=P(W, )=P(W,,). Therefore, inthe case r; =2,

P(VVI’IrZ):P(VVr]Z):P(VVrZZ)’ (28)
while in the case r, = 1,71, =2,
P(erz):P(VVlz)ZP(VVrzz)- (29)

Hence P(W,, )=P(W,)=a. [ |

Lemma S. Forany X,Y € E(K}), and distinctr,r, € R, if 3 r, € R such that

{n,r,} € X and {r,,r} €Y, then

e O WO W =C )Y w1 7).

{i,jleX {i,j}eY {i,jleX {i,j1eY
Proof: Given X,Y € E(K,), and distincts,r, € R, assume 3 r, € R such that

{n,r,}eX and {r,,n,} €Y. Fix r,. Given y € §, because by definition

e CO WO W= Y W) ), (30)

{i,jleX {i,jtey {i,jleX {i.j}ey

ity ew:, (YC) W) W;).thenwe( (] W) () W,;). Now assume
{ {

{i.j}eX i.jyey {i.j}eX i.jyeY

that w € ( ﬂ Wy)ﬂ( ﬂ W), implying that (r,r,) € Eq,, and (r,,r,) € Eq,, . It

{i,jleX {i.jyeY

follows that (7;,7,) ¢ Eq,, . Thus, y e W ﬂ( ﬂ %)ﬂ( ﬂ W;). Therefore, for

{i,j1eX {i.jteY

any y €S, weW,lCrzﬂ( ﬂ Wy)ﬂ( ﬂ W;) if and only if

{i.j}eX li.jteY

v e( ﬂ VVy)ﬂ( ﬂ ;). u

{i,jyeX {i,jteY
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Lemma 6. For any w € QO with |a)| > 2, integer t with2 <¢ < |a)

, and enumeration

BTy lysess Ty of w,

WL () m)=m. ) N W)

’xl'»j}EE(waq ) {i:(/’}GE(Kqu )UE(K{M;,{Q....,;-/;; )—{n.n}

Proof: Given w e Q) with |a)| > 2, integer t with2 <¢ < |a)

, enumeration 7,7, 4,...,7,,

of w,and y € R, assume that y e W, | ﬂ( ﬂ W;). Then
{iy]‘}EE(Kqu )UE(K(M;,QQ,...,,-,,I}} RURY
gl N wHew,NC N W 6D
U, JYEE (K oy YWE(K 1 iy )10} {i,j}eE(K, )

soyel,, ﬂ( ﬂ W;) . For the opposite direction, assume that

(i jyeE(K, )

weW, (1C () W)).ByLemmas, forany {n.r}e E(K, .. )= {Hn},

.....

(i j}eE(K, )
v.OC N =m0 N . (32)
{i,j}eE(Kyopy) {i,j}eE(K, )

Thus, y eW,, ﬂWWZ ﬂ( ﬂ W;). It follows that

{iJYeE(K, )

veC N N 0w

{i,_/}eE(KH,l 1At 1 )—{n.n} {iaf}EE(Kzu—q )

=W, N ;). (33)

{7 €E(K ) )E(K (1) gy~ 11512 )

Thus, w €W, (J( () W) ifand only if

lijyeE(K, )

v em, N\ N ). .

{7 eE(K oy YWEK 1ty )17

Lemma 7. Under H, for all w € Q with |a)|¢R, new,and r, e w, if

P( () W;)>0,then

{i./}eE(K,)
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U AT
{i,/yeE(K,)

Proof: Assume H,. Given w € Q with |a)| #R, ne¢w,and r, € @, assume that

ﬂ W;)>0. The proof will follow by induction on |a)| f |a)| =1, then

{i,j}eE(K,)

E(K,)=%,and by Lemma 4,

P, | (| Wj))=PW,)=a. (34)

{i,J1eE(K,,)

Now assume that for some integer 1< ¢, the result holds for |a)| <t. Take

|a)|:t+1. Fixr, € o, r, # r,. By assumption P( ﬂ W;)>0,so
(i, /}eE(K,)

P( ﬂ W;)>0. Thus, by the induction hypothesis,

E(K,_
P, | (] W))=a (35)
E(K,ypy)
and
PW,,| () Wj)=a. (36)
E(K, )

From (35) and the multiplication rule for conditional probability,

PIW,.[( ﬂ 1=POV,, | ﬂ W) P( ﬂ “Y=a-P( ﬂ W) 0.

E(K,_ E(K,_ E(K,_ E(K,_
(37)
Thus, it follows from Lemma 2 that
P, W, [)( ﬂ =a. (38)
E(K,,.
By Lemma 6,
P, (W, (NC) wi=a=P0W, W, C (1 W1 G9)
E(K, 1) E(K,)—{rn.n}

Lemma 6 and (37) also imply that
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Pw,.(C () w)1>0. (40)
E(K,)—{ron}

Moreover, by definition

PIW,,, W5, ()( wl=PW,.| (1 W) (41)

E(Ky)—{r3} {i.j1€E(K,)

and by assumption P( wW:)>0,s0o H, gives
ij 0

{i,j}eE(K,)

P, W, NC (N wol=Pw, 1w, (\C () W)l (42)
E(K,)—{r.ni} E(K,)—{r.n5}
Therefore, by (39)
PN N W) =a. .

E(K,)—{r.r}

Lemma 8. Under H, for any @ € Q with |a)| > 2, enumeration #,7,,7,... Tl of w,

Jf PC () W;)>0, then

{i,j1eE(K

and integer ¢ with 2<¢ < |a)

o-n )

P(VKVI| ﬂ VV;/C):I_ t—2 :
YKy YOEK () 4y )= 401271} a( )

Proof: Given w € QQ with |a)| > 2, fix an enumeration of @, n,n,,7,... Ko - Assume

H, and that P( ﬂ W;)>0. The proof will follow by induction on ¢. For the

(i JYeE(K, )

case =2, because E(K,,, . .,)—{r.5} =9, Lemma 7 can be applied to obtain

POV, | N WH=PW,.| (] W)=a. (43)

{i,]‘}GE(waq )UE(KQM JAr et 1} )—{nsn ) {i»j}EE(KaH] )
For ¢ > 2, assume the result for # —1. The multiplication rule for conditional

probabilityand P( (]  W)>Oimply that

(i, /Y€ E(K )

pw,.\C () wol=Po,, | () W)-PC () W). (44)

lijyeE(K, ) {iJYeE (K, ) U JYeE(K, )
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By Lemma 7,
POV, | () WH-PC () W)H=a-PC (] W)>0. (45)
{i,/}eE(K, ) {i,jYeE(Kyopy) {i,j}eE(Kypy)
Thus,
P, (1C [ w)1>0. (46)

i jyeE(K, ,)

Moreover, by Lemma 6,

POV NC () 1= P07, [)( M Wl (47)
{i,jteE(Ky ) {73 eBE(Ky g ) E(K i1ty g )
SO
PIW,,,[)( N ,)1>0. (48)

{ivj}EE(Km—q )UE(K((VI;,{72,...,;-[,1;) )

Thus, by the multiplication rule for conditional probability:

P, N N ;)]
{i,f}EE(Kw—q )UE(KH,I}.{Q...J,,I}})
{i:(/}EE(Kqu )UE(K{{H}.W....,;-,,I;; RUBA {i,]'}GE(KaH] )UE(K“,l;,{Q,...,r,,m R UT/ES]
POV, | N ;) (49)
(e E(K g YWE(K 1yt yy)
and
P, ¢ N )l
U NEEK o )EK g4,y
= P( ﬂ VV;)'P(VVM | ﬂ VV:’;)
{i,j}EE(Kzu—q )UE(Ku,l;,{Q,...,r,,m R UT/ES] ’xi»(/’}EE(Kqu )UE(K{{M.{Q....,;-,,I;; R URE
PV, |VVrmﬂ( m i)l (50)
{, e E (K g YWEK 1y iy )10 )
It follows from (48) that all terms in both (49) and (50) are defined and nonzero.
Examining the second term on the right side in (49), by the induction hypothesis,
a I—a(t-2
POV | N W) =1- _lmat=2) sy
re ' l-a(t-3) 1-a(t-3)

{3 eE (K ) WEK 0y i) {00000}
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Examining the second term on the right side of (50), by the induction hypothesis,

. a
P(W,, | N W) = (52)
VK YOE K i1 )=} —a(t-3)
For the final term in (50), from Lemma 5,
W (W0 N ;)
{7 eE(K ooy )OE K 1t ey )~ 10101}
=1, N W, (53)

{i:(/}EE(Kqu )UE(K{{H;_{Q....,;-,,I;; R URE

which implies that

P, 17, N w)l=1. (54)

Uus|
{LJYEE(K oy )WE(K 11t g y)) =071

Hence, equating (49) and (50) gives

o 1—a(t-2
P( N W ). 1zalt=2)
U Y eE(K oy )EK 1,40y ooy 1)~ U111 ) 1- Cl(l - 3)
P, | N W)

U JYeE(K oo WEK 1ty o)

a

= P( N W) 1 (55)
U YCE Ky YOEK g1y ) =071} —a(t-3)
and thus,
PV, | N ;).
U, JYeE(K oy )WEK iy 0 yy) 000
C a
= PO, | M W)= .
L€ E(K oy WEK 1,0y 1 ny 1)) —a(t-2)

Lemma 9. Under H, for any @ € Q2 with |a)| >2 and ,ew, if

P( ﬂ W;)>0,then

i 1eE(K, )
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|eo]-1
PC ) W;)zna—ia).

{i,J1eE(K,,)

Proof: Given w € Q with |a)| >2 and 1, € ®, assume H, and that

P( ﬂ W;)>0. The proof will follow by induction on|a)| . For the case|a)| =2,

liJYeE(K, )
fix ,ew,r,#1. By Lemma 4,

P( () W)=POW;)=1-a. (56)

{i,j1eE(K,)

Assume now that for some integer 2 <¢ < |R , the result holds if2 < |a)| <t.

Assume that|a)| =t¢+1 and fix an enumeration of w =1#,r,,...,7,,. By assumption,

P( ﬂ W;) >0, so by the multiplication rule for conditional probability

i JVeE (K, )

PC () W) =P wi-pC () Wi (] ). 6D
)

lijyeE(K,) {iYeE(K ) Y EEK 0o lijyeE(K, ,

Examining the first term on the right side in (57), because|a) - r1| =t and

P( ﬂ W;) >0, the induction hypothesis can be applied. Thus,

lijyeE(K, )

P () W)= f[(1 _ia). (58)

lijYeE(K, )
As for the second term on the right side in (57), by the multiplication rule for

conditional probability and Lemma 8,

N w N

{7 eE(Kny.0-n3) {i,j eE(K, )

t+1

=[1r07; | A W)
1=2

{7 eE(K oy ) )YOE(K 1ty 10001}

t+1

— _ a =1 —
_g[l 1—a(l—2)] l1—ta. (59)



86

Hence,
t—1 13
P () wHE]Ja-ia)]-0-ta)=]](-ia) . (60)
{i,jyeE(K,) i=0 i=0
As |a)| —1=1t, the proof is complete. [ |

Lemma 10. Under H, for any w € Q with |a)| 22 and r,ew, if

P( W:)>0,then a < ——.
{i,j}eQKw,l) ' el -1

Proof: Givenw € Q with |a)| >2 and 7, € w, assume H, and that

P( ﬂ W;)>0. Fix an enumeration 7,,7,,7;,..., %, of @. Lemma 8 applies with
i JyeE (K, )

t= |a)| to give

a
Pw,, | )= (61)
[ TN ST S A B a(e|-2)
The expression on the right side of (61) is greater than 1 when | | " <a< | |1 %
|- | —
undefined when a = ; , and less than 0 when a > L . Because this
-2 ] -2
expression is a probability by (61), it follows that a < | | T ]
a) p—

Lemma 11. Under H, for any w e Q with |a)|2 2,1f P( ﬂ W;)=0, then

lijyeE(K,)
1 1 1

e}
a6{|w|—1’ o -2’ P
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Proof: Given weQ with |a)| >2,assume H and that P( ﬂ W;)=0. The

{i,j1eE(K,,)

proof will follow by a case analysis on whether 3 w'c @ with |a)'| > 2 so that

PC () w)>0.

{i,J1€E(K,,)

Case I: 3o'c w with |a)'|2 2 so that P( ﬂ W;)>0. Fix «'as the

{i,J}eE(K )

largest proper subset of @ so that P( ﬂ W;)>0,andfix , e ®—w'. By Lemma

i, J}EE(K )
9,

e
P( n W,;)=H(1—ia)=0. (62)

{1, YeE(K iy ) i=0

. . 1 1 1 '
This will hold only if a {|—',—'| 1,...,5,1}. Because |a)| < |a) , the result follows.
o' |o')|-

Case 2: -3 w'c o with |a)'| > 2 so that P( ﬂ W;)>0. Fix n,new,
li1eE(K )

implying that (W, ) =0. By Lemma 4, P(W, )=1-a,so

1 1 1
— = 1}.
|a)|_13 s 7} n

aZIE{ m,.. 5

Lemma 12. Under H, if for all @ € Qwith |a)| >2, P( ﬂ W;) >0, then

{i,j1eE(K,,)

1
ae (O,ﬁ) .

Proof: Assume H, and that for all w € Q with |a)| >2, P( ﬂ W;)>0. Then

{i,j}eE(K,)

takingw = R and fixingr, € R,

PC () wH>o. (63)

{ijyeE(Kpy)
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Hence, by Lemma 10, a < | | . Moreover, by Lemma 9,

L

PC ) W;)=H(1—ia). (64)

{i.j}€E(Kg)

Thus, if a = ; , then P( ﬂ W;) = 0, contradicting the assumption that for
|R| -1 (i, jyeE(Kg)

allw € Q with |a)| >2, P( ﬂ W;)>0. Therefore a < —— [

{i.J}€E(K,) | |_

1 1 1
>_51} .

1
Th 1. H
eorem 1. Under H,, a € (0, R| _1) ) {|R| ~ R| Ry

Proof: Assume H,. By definition, either (1) 3 @ e Q with |a)| > 2 so that

P( () Wy)=0,or (i) forall @eQ with 0| =2, P( [ W;)>0. If(i)is

{i.j}eE(K,) {i.jyeE(K,)
true, fix @w. By Lemma 11,

11 1 1
} i =1} (65)
IRI

ae{—— |_2,...2

]

If (i1) is true, then by Lemma 12,

ae(0,—— (66)

| —
1 1 1

1
Thus, a (0, R|—1) U{|R|— R|_2,...,§

NI [ |

Lemma 13. Under H, for any (i) ladder graph G with vertex sets o,,», e QU J,
(i1) o, € Q withw, and @, disjoint and w, > @, , (iii) 7 € (@, U ;)" , and (iv)

r, €W, —m,: if P( ﬂ W;)>0, then

(i JYeE(K,,)
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P, 1C () w10 ) W)l=a.

{i,j1€E(G) U JyeE(Kyy)

Proof: Given (i) to (iv), assume H jand that P( ﬂ W;)>0. The proof will

{iJVeE(K,yy)

follow by induction on |a)1| . Assume that|a)1| =0. Hence, E(G) =9 and by Lemma 7,

P, 1C () WO () wWl=PW,.| (] W)=a. (67)

{i.j}eE(G) i JVeE(K ) (i j}eE(K,, )
Now assume that for some integer 0 <¢, if |a)1| <t, then the result holds.

Assume

|a)1| =t+1 and fix an edge {r,7,} € E(G) with r, € @,. Because P( ﬂ w;)>0,

i, JYeE(K )
P( ﬂ W;)>0. Thus, by the induction hypothesis,
{i,YeE(K pypy)
P, IC () wlC [N W)l=a, (68)
i, /Y E(G)~{r3.13} i JYeE(K )
and
P, 1C () wNC () W)l=a. (69)
(i, /Y E(G) =314} i, JYE(K )
From (68), it follows that
Pw,.C (1 wNC (1 wH1>o.
i, Y E(G)~{rs.1s} Ui jYeE(K )
Hence, by Lemma 2, (68) and (69) imply that
P[VV’M | VV”z’a ﬂ( ﬂ I/Vl/ )n( n VVI/C )] =a. (70)
i, /Y E(G)~{rsn3} Ui JYeE(K )
Likewise,
P NC ) mNC ) wl=a. an
(i, Y E(G) =313} i JYeE(K )

(70) implies that
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PV

il ﬂVVrz"A ﬂ( m VV;j )ﬂ( ﬂ VV;; )] >0

i, J1eE(G)={r,n} U JYeE(K py—y)

so by Lemma 2 again, (70) and (71) imply that

P[VV’ﬂ’z | VVrz"a ﬂVVVﬂA ﬂ( m VV’/ )ﬂ( ﬂ I/Vl/c )] =a. (72)
i }eE(G)~{ry.n,)} (i J}eE(K sy
By Lemma 3,
w0 () wpne N w)
i JYeE(G)~{r.r4) i JYeE(K )
= VV"zr.z ﬂ VV’EQ ﬂ VVV}Q ﬂ ( ﬂ VVij )ﬂ ( m VV:]‘ )
(i, YeE(G)~{ry 3} liJYeE(K by )
= VV”Z"}ﬂVV”s’% ﬂ( ﬂ W/)ﬂ( ﬂ VKIC)’ (73)
i, JYeE(G)~ {113} (i JYeE (K yy )
and by definition,
VVVz"} ﬂ VV’%’% ﬂ ( ﬂ VVU )ﬂ( ﬂ VVUC)
{1, }€E(G)~{r .} (L JYEE(K )
=w,.C O wNC N . (74)
{i.j}eE(G) i JYEE(K )

Moreover, by Lemma 6,

wLOC ) WO () =m0 ) e () #D.

{i.j}eE(G) Y EE(K s ) {i.j}eE(G) i JYEE(K yy )~y 13}
(75)
Thus, (72), (74), and (75) imply that

P W, C () wp1C () #)l=a (76)

{i,j1€E(G) (. JY€E(K ) ={r.r3}

Finally, because P{ ﬂW;} > 0, by the multiplication rule for conditional

(i JYeE(K )

probability
PC NG N w=PC ) w1 () wH-PC () ).
{

i,j}€E(G) {i,JyeE(Kyy) {i,J}€E(G) {i,J}eE(K ) (i, JyeE(K )

(77)
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Moreover, it follows from the induction hypothesis that

PC () Wl () W)>0. (78)
{i,j}€E(G) {i,jyeE(K,,)
Hence,
PlC () wo)C ) wHiso, (79)
{i,j}eE(G) i,/ eE(K,,)

and H applies to yield

P, W, (1C ) wC () )

{i,j}eE(G) Ui JYeE (K yy )~{ry.15)
=rw, m,NCN NG N WL 60)
{i,j}eE(G) (i, JYCE (K 4y )1y 73}
The result follows directly from (76). [ |

Lemma 14. Under H, for any partition y of R, spanning star forest ' of K,
proper edge-induced subgraph F' of F',and{r,r,} € E(F')"ﬂE(F) with r, e V(F"),

it P( () W;)>0,then

{i.j}eE(K})

Pw, 1C () wo)C [ W)l=a.

{i,j}eE(F) {i,j eE(Ky)
Proof: Given partition y/, a spanning star forest /" of K, a proper edge-induced
subgraph F"' of F',and{r,r,} € E(F')"ﬂE(F) with r, e V(F"), assume H  and that

P( ﬂ W;)>0. It follows that 3 an edge in £(F") containing r,. Fix this edge

{i.j}eE(Kp)
as {r,,r;} . The proof will follow by induction on |E (F ')| —-7(F").
Assume |E (F ')| —7(F')=0. Then 3 aladder graph with edge set

E(F')—{r,n},and so by Lemma 13,
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P 1C () € ) W)l=a (81)
{i.JyeE(F)~{r.r} {i./}eE(Ky)
and
P, IC () wNC N Wl=a. (82)
(i, jYeE(F)~{r,, 1} {i,/}eE(Ky)
From (82),
L,OC ) mNC N w-o, (83)
G, JYeE(F )~{r.n} (i, jYeE(Ky)

and so by Lemma 2,

P IC () w10 ) w)l=a. (84)

{i,JyeE(F) i, JYeE(K})

Assume now that for some integer ¢ > 0, the result holds if |E (F ')| -7(F')<t.
Assume that |E (F ')| —7(F')=t+1. A case analysis is required on whether {r,,7;} is
the only edge in E(F") containing r,.

Case 1: {r,,r,} is the only edge in E(F") containing 7, .

Because|E(F')| —7(F")>1, 3 atleast one v € V' (F"') with degree of at least 2. Fix
this vertex as r, and an edge containing this vertex as {r,,r,} . By the case assumption,
1y, 1,1y, 7 must be distinct. Thus, for the edge-induced subgraph
V(F')=r,E(F")—{r,,1rs}) of F, the difference between the number of edges and
trees is

[E(F") = {r, | —t(V(F") =1, E(F) = {r,n, ) = |[E(F)| -1-7(F)=t.  (85)
Likewise, for the edge-induced subgraph (V' (F')—r, —r, =1, E(F') = {r,,rs} = {r,,15})
of F', the difference is

|E(F') —{r,r}— {1’2,1’3}| —t(V(F')—r—nr—r,E(F")—{r,,r}—{n,n})

=|E(F"|-2-[r(F)-1]=t. (86)



Therefore, by the induction hypothesis,

P, 1C () W€ () W)l=a,

(i, JYeE(F)~{ry.r5} {i.j}eE(Ky)

P, |( N waC () W)l=a,
{

{i, JYeE(F ) ={ry 15 }—{r .15} i,j}eE(Ky)
and

P, |( N wHC [ W)l=a

{i,JYeE(F)~{ry.r5} 1.1} {i.j}E(Kp)

It follows then that

PLIC ) wNC N #))

(LY eE(F )~{ryrs} {i./}eE(Ky)

TP, I N WO () 7o)

(Ve E(F )~{ry. 1} ~{r .13} {i.j}eE(Ky)

P, | ( N wHC () W)l

{i,JYeE(F )={ry.r5t—{r .1} {i,j}€E(Ky)

rw, C N W) ) Wl

{i.J}eE(F )={ry.13} {i,j}€E(Kr)

PC () mNC ) ol

(i, jYeE(F Y={r,n} {i,jYeE(Ky)

=P, 1C () wC ) wl

i, JYeE(F )={r, 15} {i,j}eE(Ky)
Turning to the edge induced subgraphs
(VF)YOn =r =1, E(F") O{n, 1) =i, 13} =7, 75}) and

V(F")—r,—r,—r, E(F")—{r,r}—1{r,n}) of F,by similar arguments,

P IC () W€ [ W)l=a.

(i, jYeE(F)~{ry.15} {i,j}<E(Kp)

By the definition of conditional probability, (90) implies that

PW,.C 1 wNC ) wH1>o.

{, /Y eE(F ) ~{n,nr} (i, j}eE(Ky)

Hence, applying Lemma 2 to (90) and (91) gives the result.

93

(87)

(88)

(89)

(90)

o1

92)
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Case 2: {r,,r,} is not the only edge in E(F") containing r,. For the edge-
induced subgraph (V/(F')—r,, E(F")—{r,,1r,}) of F,
[E(FY = {n,n}| =2V (F) =1, E(F) = {13 }) =1 . (93)

Thus, by the induction hypothesis,

P, IC (1 mNC N W)l=a (94)
(i, jYeE(F)~{ry.,13} {i./}eE(Ky)
and
P IC () wNC N wl=a. 95)
{i.JYeE(F)~{r.r5} {i.j}eE(Ky)

(94) implies that

rov,.C () wNC () w0, (96)
(LY eE(F ) ~{r.r5) i jieE(Kr)
so again the result follows by Lemma 2. [

QG|:1'

Lemma 15. For any star G,

Proof: Given a star G, by definition 3 a vertex v € V(G)adjacent to all others. Let v
be the covering vertex for the star, creating a vertex cover of size 1. Because a vertex

cover cannot be empty, the constructed cover must also be minimal and hence |QG| =1.

Lemma 16. Forany X,Y € E(K;), and r,,r, € R with 1, #r,,1f 3 r,r, € R such

that {r,,n},{r,7} € X and {r,7,} €Y, then

W, CO PN )= W 7).

{i,jleX {i,j}eY {i,jleX {i,jeY
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Proof: Given X,Y € E(K;),and 7,r, € R with 1, # r,, assume 3 7,7, € R such that

{n.n},{n,n}teX and {r,r,} €Y. Fix r, and r,. Given y €S, assume that

weW: () W) W;). Because by definition,

{i,jleX {i,j}eY
W COL O e w1 w5, ©7)
th.jlex ti.jley ti.jlex ti.jley

it follows that i € ( ﬂ W, )ﬂ( ﬂ W;). Now assume that
{

{i.jyeX i,j}eY

we( ﬂ Wi],)ﬂ( ﬂ W;). Thus, (r,1),(r,,7,) € Eq, and (r;,7,) € Eq,, . It follows

{i.jteX {i.jtey

that (r,r,) ¢ Eq,, , because otherwise, transitively (7;,7,) € Eq,, , a contradiction.
(r,1,) 2 Eq,, and (r,,r,) € Eq, imply by similar arguments that (r,,r,) ¢ Eq,, . Thus,

weW:, ,and y eW: ﬂ( ﬂ w, )ﬂ( ﬂ W;). Therefore,

{i.jyeX {i.jreY
e, (YC) W) W) ifandonlyif we( () WH(\([) W). =
{i,jleX {i,jreY {i,jleX {i,j ey

Lemma 17. For any partition  of R, X < E(K,),Y < E(K,), {1,n} € E(K,), and

spanning star forest /* of K,

wNC N NG N mH=C N mNC N w.

i, JyeE(F)uX {i.j}eE(K)UY {i,J}eE(F)uX {i.jYeE(Kp )oY
Proof: Given partition y, X < E(K,),Y < E(K)), {r,1,} € E(K ), and a spanning
star forest /' of K, , the proof will follow from a case analysis on whether 7,7, € Oj.
Case 1: 1,7, € Q5. By the definition of K., {r,r,} € E(K,). Hence,

{r,n,t € E(K,)UY , and the claim follows immediately.



96

Case 2: r, £ Oy and r, € Q. By Lemma 15, 3 a vertex cover of size 1 for
1 ’s star. Fix the vertex in this cover as 7,. Clearly, because 1, € Q,., 1, # ;.
Moreover, by definition 7 and r, are adjacent in 7 ’s star, and hence they are adjacent
in F. Thus, we have that {r;,r;} € E(F) € E(F) U X < E(K,,). Additionally,
because 7,,7, € Or, {r,,1,} € E(K;) C E(K,)UY E(K,). The hypotheses of
Lemma 5 are hence satisfied, and the claim follows.

Case 3: 1, € Q;, and r, ¢ Q... By symmetry, this case follows from the same

arguments as case 2.

Case 4: 1,,r, ¢ Q.. Because by definition {r;,7,} € E(K,), 1, and r, must be

elements of different stars in . By Lemma 15, 3 vertex covers each with a single

element for both 7 and 7, ’s stars. Fix the covering vertices as », and 7,
respectively. Asin case 2, {r,r},{r,,7,} € E(F)c E(F)U X c E(K)). Moreover,
because r; and r, are both covering vertices, {r;,r,} € E(K;) < E(K,)UY c E(K,),

as in case 1. Hence, the hypotheses of Lemma 16 are satisfied and the claim follows.

Lemma 18. For any partition  of R, X c E(K,),Y c E(K,), {1.nn} € E(K,), and

spanning star forest ' of K,

w0 ) wNC () wH=C (1 mpC 1 7).
{

{i,j}eE(F)uX {i,j}eE (K} )0 {i,j}eE(F)uX 1.j}eE(Kp )Y
. o . . .
Proof: Given partition ', X € E(K),Y c E(K ), {r,,} € E(K,), and a spanning

star forest /" of K, the proof will follow by a case analysis on whether 7,7, € ;.
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Case I: 1,1, € Q.. Note that because {r;,7,} € E(K,)), r, and r, must be
distinct vertices in the same star of * with d(r) 21 and d(r,) 21. But by Lemma
153 only one element of Q,. per star, implying a contradiction because Q, contains
only of vertices of degree zero and elements of Q,.. Therefore, 7 and r, cannot both
be elements of O, .

Case 2: r, £ Q. and r, € Q,. By definition, 7 and r, must be distinct vertices
in the same star. Also, by Lemma 15, 3 exactly one element of O, in 7 and r,’s star.
Because d(r,) # 0 and r, € O, this vertex must be 7, , implying that 7 and r, are
adjacent in /. Thus, we have that {r,,r,} € E(F) U X, implying the claim.

Case 3: 1, € Q. and r, Q.. By symmetry, the arguments from case 2 apply.

Case 4: r,,r, Q.. By Lemma 15, 3 exactly one element of Q,. in 7, and
r,’s star. Fix this vertex as r,. Because 7,r, € Oy, r, #1, and r, # r,. However, by
definition, both 7 and », must be adjacent to 7, , implying
that{r,r},{r,n} € E(F)c E(F)V X c E(K,). Hence, the hypotheses of Lemma 3

are satisfied and the claim follows. [ ]

Lemma 19. For any partition  of R, X < E(K,),Y < E(K ), and spanning star

forest F of K,;,
C ) wNC N wH=C N wpne N w).
{i,j}eE(KS) {i,j}eE(K,) {i,j}eE(F) {i,j}eE(Ky)

Proof: Given a partitions y and y'of R, X c E(K ), Y < E(K,), and a spanning

star forest /" of K/, assume that ' e ( ﬂ Wy)ﬂ( ﬂ W;). By definition,

{i.j}eE(K}) i, jyeE(K, )



98

ﬂ WU)W ﬂ wi)c( ﬂ W,,-)ﬂ( ﬂ W), (98)

{i,J}eE(K,) {i,j}eE(K,) {i,j}eE(F) {i,jYeE(K})

sop'e(C () W) () W,;). Now assume that

{i,j1eE(F) {i,j}eE(Ky)

v'e( () WO () Wy). Given {r,n}e E(K,)—E(F),by Lemma 18,

{i.jIeE(F) {i,jyeE(Ky)
w0 wpNC 1 wH=C (1 wpc N w). (©9)
{i,j1eE(F) (i eE(Ky) {i,jieE(F) {i,/1eE(Ky)
implying that
v, NCN WNC N (100)
{i,j}eE(F) {i,j eE(Ky)

Because (100) holds for any {r;,r,} € E(K,) — E(F), it follows that

O w)C () W) (101)

{i.jleE(Ky) {i,/}eE(Kp)

Likewise, for any {r;,7,} € E(K,) - E(K}.) , by Lemma 17,

v e 1C N wNC N . (102)
{i.jleE(Ky) {i,j}eE(Ky)
implying that
v'eC 1 WNC N ). (103)
{i.j}eE(K) {i.j}eE(K,)

Therefore, '€ ( ﬂ W;/)ﬂ( ﬂ W;) if and only if

{i,j}eE(K,) {i,j}eE(K, )
v'e( () WO () W) n
{i,j}eE(F) {i,j}€E(Ky)

Lemma 20. For any partition i of R,

wi=C (1 wNC N W)

i, jyeE(KS) {i.jyeE(K,)
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Proof: Given partitions i and ' of R, assume first that '€ {z}. For any

n.ry € R, Af {n,n} e E(K)), then(,r,) € Eq, . Hence,

Ve ﬂ Wij. (104)

(i, jyeE(KS)

Moreover, by definition, if {r;,r} € E(K,), then(r,r,) ¢ Eq,,, so

ve () W . (105)

i, j1eE(K, )

By assumption, '€ {y}, so w'=y, and by (104) and (105)
vet N WNC N ). (106)

{i,j}eE(K,) {i.J1eE(K, )

Now assume that ' e ( ﬂ W, )ﬂ( ﬂ W;). Thus, given distinct 7,7, € R,

i, j}eE(K) li,jyeE(K, )
y'eW, if{r,nteEK,),and y'eW,  if {r,n}e E(K, ). Because either
{n.n} e E(K,) or {r,nr,} € E(K,), it follows that '€ W, if and only if
{n.n} € E(K,). Moreover, y'eW, ifandonlyif (r,r,)€Eq,.
Thus, (1;,r,) € Eq,, if and only if {r;,r,} € E(K)). Finally, {r,r,} € E(K,) if and only
if (r,r,) € Eq,, , so(5,r,) € Eq,,. ifand only if (7;,r,) € Eq,, . Equivalence relations
“define” partitions and vice versa (Hrbacek and Jech, Chapter 2), so '=y , and

hence w'e {w}. Therefore, v'e {i} if and only if

v ) mNC N . .
{i,j}eE(K,) {i,j eE(K,)
Lemma 21. For any partition i of R and spanning star forest /' of K, , if

V(K7)|=1, then
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AC N wpNC N w1=a™.
{

i,jieE(F) {i.j}eE(Ky)

Proof: Given a partition y of R and spanning star forest /" of K, assume that

V(K| =1. Thus,

E(K})|=0,and

PIC () wp\C () won=prC () W,). (107)
{

{i,j}eE(F) i,j}eE(Ky) {i,J}eE(F)

Fix an enumeration #,7,,... of V(F), with {r} =V(K,). The remainder of the

vy

proof will follow by induction on |V'(F)|. \V(K;)

=1 implies by definition that '

contains exactly 1 tree, whose vertices are all of the subunits in R. Hence,

V(F)=3.

Assume that |V(F)| =3. By Lemma4, P(W,, ),P(W,,)=a,so by Lemma 2,

PV, |W,,)=POV,,). (108)
implying that
P, (W, )=a. (109)

Because any tree must have 1 fewer edges than vertices (Bogart 1983),

E(F)|=2and
the result follows.

Now assume that for the integer 3<¢, if |V(F )| <t, then the result holds.

Assume that |V(F )| =t+1. By the induction hypothesis,

P[] W)=d, (110)

{JYeE(F)={r.n}

P( N Wy=a', (111)

(L)Y eE(F) =1}
and

P( N W)y=a". (112)

i, jYeE(F)={n .5 b ={n 5}

Therefore,
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PC () W
P(VVM | ﬂ VV;) — i, jyeE(F)—{n,n_} —a (1 13)
P( N W)
(L JYeE(F)—{n,n}—{n.n} ij
(i, e E(F)={n.n}—{n.n}
and
PC () W)
P(VVWH | m VVU) — i,/ eE(F)~{r,1} =qa. (1 14)
P( N ;)
{7 eE(F)—{n,n {54} i

{i, jyeE(F)—~{n,n —{n.n0}

Thus, by Lemma 1, (112), (113), and (114) imply that

PC (N wp=Prw, (W, | N )

{i,J1eE(F) sy e E(F)={nsn i ={n.11 )

'P( ﬂ VVU) — a2 _at—l — at+1 ) -

{i.J}eE(F)={r.n}={nr 1}

Theorem 2. Under H, for any partition y of R,
-1
Py} =d"™V . TT-ia).
i=0
Proof: Given a partition y of R and a spanning star forest /' of K, assume H,. By

Lemma 19 and Lemma 20,

Plyy=PIC (] WO [ #)L (115)

{i,j}eE(F) {i,j}eE(Ky)

The remainder of the proof will follow by a case analysis on whether ‘V(K; )‘ >2 and

P{ (] Wwii=0.

{i,j}eE(Ky)

Case I: [V(K})|=2 andP( (| W;)=0. Itfollows that

{i.j}eE(K})

PIC () W)€ () W;)1=0 andhence by (115) that P{y} =0. Also, by

{i,j}eE(F) {i.j}eE(K})
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definition, V(K }) € Q, so because ‘V(K; )‘ >2, by Lemma 11

ae 1 , } ,...,l,l} . Moreover, by definition,
K| -1 k| -27 2
K| =l (116)

so the result follows by substitution.

Case I: ‘V(K;)‘ > 2 and P( ﬂ W;)>0. Because V(K,)eQ and

{i.jyeE(Kp)
‘V(K; )‘ >2, Lemma 9 implies that
‘V(K;)‘—l
P () wiy= [] (-ia). (117)
{i.j}eE(Ky) i=0

Fix an enumeration 77, of E(F'), with the first 7(F) elements being in different trees,

and denote the /th element in 7. as {i, j,} . It follows from Lemma 13 and Lemma 14

that for all 1</ <|E(F,)

b

P{VViLl'/ ’ ( ﬂVVU()ﬂ(ﬂ Wimjm ) - Wiu'1 } =da. (1 18)

{i,j}eE(K})

Thus, by the product rule,

EP)|

PC (YL (V3= TTP0, 1C (VW) =W (119)

{iL.JYeE(F)  {i,j}eE(K}) {i,j}eE(K}) m=1

Also, any forest G contains |V(G)|—z'(G) edges (Bogart 1983). Hence,

|E(F)|=|V(F)|—z(F). But by definition, , implying

V(F)|=|R| and 7(F)= \V(K;)

that

|E(F)| = |R|- [ (K})

. (120)

Therefore, (118), (119), and (120) imply that
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¢ R-\V(Kr)
P (W= (121)

{i.JYeE(F)  {i,j}eE(K})

It follows by (117), (121), and the product rule that

PlC () woNC () won=pr{ () WL () w1 () W)
{ {

i,j}eE(K,) {i,jleE(K,) {i,jYeE(Ky) i,jleE(F) {i.j1eE(K})
R-V (K> ‘V(K;)‘_l
VT a-ia). (122)
i=0
and by (115) that
RV (K} ‘V(K;)‘_l
Pyt =d" VT (-ia). (123)
i=0
The result follows from (116).
Case 3: [V(K;)|=1. By Lemma 21,
PC N N N wr=a™ (124)
{i.j}eE(F) {i.j}eE(Kr)
By (120) and the case assumption,
RV (K. ‘V(K;)‘_l
JEEN _ R s 1 (-ia). (125)
i=0
The result follows from (116). ]

Theorem 3. Under H, for any (nl,nz,...,n‘R‘) eran N,

‘(nl,nz,.“,n‘R‘ )‘l—l

R' ‘R‘—(nl,nz,.“,nR) .
P[N:(nl,nz,...,nR)]:L'a ‘ H"' H (I1-ia),

L

- =0
| I(z!)"‘-ni! ’
i=1

where

L

i
1 i—1

i=

(nl,nz,...,n‘R‘)
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Proof: Given (n,, Myses 1) R‘) eran N, assume /{,. Because partitions of R are

mutually exclusive,

PIN = (1,15, )1 = Ply € N7 (00,1 )] = > P{y}. (126)

y/eN’1 (ny,ny ..., nw)

By definition, forany w € S, v € N’l(nl,nz,...,n‘ R‘) if and only if ¥ contains exactly

n,blocks of size 7, i =1,2,...,

R|. Thus,

‘N‘l(n n ) |R|!
12752505 Mgy

(127)

R
[TG)" -n
i=1

gives the number of unique partitions of |R| objects into n, groups of

size i € {1,2,...,

R|} (Bogart 1983, p. 46)]. Moreover, for any y € §, if

V&S N*I(nl,nz,...,n‘R‘), then y has exactly ‘(nl,nz,...,n‘R‘) units. Thus, by Theorem 3,
1

forany v € N_l(nl,nz,...,n‘R‘) R

‘(nl Nyl )‘1 -1

Py} = a‘R‘_‘(n“nz""’n‘R‘ .y H (1-ia). (128)

i=0
Therefore, (126) and (127) imply that

‘(nl My seeesi g )‘l -1

R|! |R|=|(7y 1y seee ) .
P[N:(”n”z,---,n;g)]:L-a | H“- H (1-ia). m

L

. i=0
H(z D" -n,! l
i=1

Theorem 4. Under H, for any (nl,nz,...,n‘R‘) eran N, if (nl,nz,...,n‘R‘) =k
1

and P(U = k) >0, then,
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R
G :

(LT -n-S(RLA)

P[N = (nl,nz,...,n‘R‘) |U=k]=

where § (|R

, k) 1s a Stirling number of the second kind, given by

LSy f® NI
E-;(—l) -(l_j-(k—z) :

Proof: Given (nl,nz,...,n‘R‘) eran N, assume /1, that ‘(nl,nz,...,n‘R‘) =k, and that
1
P(U =k)>0. By the definition of conditional probability,
P[N =(n,n,,...,n )ﬂU =k]
PIN = (1, 1y,...m) U = k] = A . (129)

PWU =k)
Looking at the numerator of (129), because partitions of R are mutually exclusive,

PIN = (1,150, (U =kl=Ply e N_l(nl,nz,...,n‘R‘)ﬂU_l(k)]

= > Piy}. (130)

g//eNf1 (ny,ny e )ﬂ U (k)

By definition, forany w € S, v € N’l(nl,nz,...,n‘ R‘) if and only if ¥ contains exactly

n,blocks of size i, i =1,2,...,

R| . Also, v e U™'(k) if and only if y has exactly k

units. Thus, because ‘(nl,nz,...,n‘R‘) =k,forany y e S§,if i eN_l(nl,nz,...,n‘R‘),
1

theny e U (k). It follows that

N_l(nl,nz,...,n‘R‘) cU'(k), (131)
and that
Nty O\UT (R) = N7 () 1y (132)

Hence, by (130), Theorem 3 implies that
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PIN = (s (YU = k1= R e ). (133)

[T -n

i=1
Turning now to the denominator of (129), again because partitions of R are mutually

exclusive,

PU=k)=Ply U (K)]= >, Ply}. (134)

yeU (k)
‘U ‘l(k)‘ will be equal to the number of partitions of |R| objects into k groups — given

by a Stirling number of the second kind (Bogart 1983,, p. 48):

£ (k
S(|R,k>=%-2(—1>’(.)(k—i)R. (135)
- =1 1
Moreover, every i € U~ (k) must by definition have k units, so by Theorem 2,
k-1
Py =d"™ TT(~ia). (136)
i=0
Thus, by (134),
k-1
PU =k)= S(R|,k)-a"™* -TT(1~ia). (137)
i=0

As by assumption P(U =k) >0, (137) implies that

k-1
d"* - TTa-ia)> 0. (138)
i=0
Therefore, (129), (133), and (137) imply that
R|! kol
W | | gt -H(l —ia)

H (l-!)n, . ni ' i=0

PN = (nl,nz,...,n‘R‘) U =k] =-=L
S(R

k-1
k) -d"™ T ~ia)
i=0



107

_ R | .

L
[H(i!)”' -n1]-S(R|.k)

IMPLICATIONS OF THE DISTRIBUTION OF PARTITIONS

Lemma 22. For any w € Q with |a)| > 2 ; partition , of w; r,,r,ew;and y € §:
ify e{y,}, then (r,r,) € Eq, ifandonly if (,7,) € Eq, .

Proof: Given any w € Q with |a)| > 2 ; partition v, of w; r,,r,ew;and y €S,
assume that € {y,,}. Because 7,7, € @, by the definition of {y,}, (r,,) € Eq, if

and only if (#;,r,) € Eq, . Thus, the result follows. [

Lemma 23. For anyw € Q with|a)| >2; X,Y c E(K,); partition ¥, of @; and

vweS:ify,py'eiy,tand y e ( ﬂWij)ﬂ( ﬂW;) , then y'e ( ﬂWij)ﬂ( ﬂW;).

{i,jleX {i,j1eY {i,jleX {i,j1eY
Proof: Givenw e Q with |@|>2; X,Y c E(K ); partition v _of w;and y,p'e §S:
w)P Yo 214

assume that y,y'e {y }and v € ( ﬂWﬁ)ﬂ( ﬂW;) . The proof will follow by a

{i.jreX {i.jyeY
case analysis on whether X =Jand ¥ = .

Case l: X #QDand Y . Given {r,r,} € X and {r,,7,} €Y, because

we( ﬂWl.j)ﬂ( ﬂVKj"), (r,r,) € Eq, and (r,r,) € Eq,, . Also, because
{ {

i,jyeX i,jyeY

X, YcEKK,), r,n,1,1, €®. Hence, as y € {y,}, by Lemma 22, (rl,rz)eEqu and



108

(r5,r,) € Eq,, . Moreover, again by Lemma 22, because y'e {y,,}, (,,) € Eq,,. and

(r5,1,) € Eq,,. . It follows that, y'e qu and y'e ﬂW; .

{i.jeX i,/ eY

Case2: X #Qand Y = . Given {r,r,} € X, by the arguments in Case 1, it

follows that y'e qu . Hence, y'e ( ﬂWij)ﬂ( ﬂW;).

{i,jreX {i.jteX {i.jreY
Case3: X =CJand Y . Given{n,r,} €Y, by the arguments given in

case 1, y'e ﬂWUf’ . Hence, the result follows.

{i,jyey

Case4: X =D and Y = . The result follows immediately. [

Lemma 24. For any o,,o, € Q with o, € ®, and |a)1| > 2; partitions y,, and v, of
o, and w,, respectively; and y,y'e S:if y ely,, } and y,y'e{y,, }, then
y'ely, .
Proof: Given o,w, € Q with @, c @, and |a)1| > 2; partitions y,, and y,, of @ and
w,, respectively; and y,p'e S; assume that y e {y,, } and y,y'e{y,, }.

Given distinct 7,7, € , , assume that (7,7,) € EqM . Because y e{y,, }, it
follows from Lemma 22 that (r,r,) € Eq, . Moreover, o, c @, implies that
1.1, € @,. Thus, because y € {y,, }, by Lemma 22, (r,1,) € Eqwm . Applying
Lemma 22 again, because y'e {y,, }, (1,1,) € Eq,,.. Thus, forany r,r, € @, if
(r,1,) € Eq, ,then (1,1,) € Eq,,..

Now assume that (r;,7,) € Eq,.. Asabove, 1,7, € ®,. Because y'e{y, },by
Lemma 22, (1,r,) € qu/m2 . Moreover, because y € {y,, }, by Lemma 22,

(r,1,) € Eq,, . Finally, because y € {y,, }, by Lemma 22, (1,r,) € Equl . Thus, for
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any ”1,”2 € a)la lf (’/i’rz) € qu/' ’ then (”nrz) € qu/wl :
Therefore, for any 7,1, € @, (1,1,) € Eq,, ifand only if (,r,) e Eq, . The

result follows directly from the definition of {,, } . [

Lemma 25. For any o,,, € Q with |a)1| >2 and |a)2| —|a)1| =1,1 = o, — m,, partition

v, of o,and Z=1{y, 1y, apartitionof w,, {y, } < {y, }ﬂ(U Wl
U({Wa)l}ﬂVVl’ll)= U {Wa)z}'
e, Y SZ

Proof: Given o, ®, € Q with |a)1| >2 and |a)2|—|a)l| =1,r =, — w,, partition y, of

o,and Z={y, {y,}cly, }ﬂ (U W.)}, the proof will follow by showing that for

iew,

any w S, ye U({l//wl }ﬂWm) if and only if w € U {w,, ). Given y €S, assume

icm, Ve SZ

first that y € U({y/w1 }ﬂ W,). Thus, 3r, € w sothat y eW, . Fix r,. Also, by

definition, Ja partition v, of w, so that y e {y, }. Fix y, . Because y W,
v e {w;}, n €w,,and r, € ®,, Lemma 23 (with X ={{r;,,r,}} and ¥ =) implies
that for any y'e S, if w'e {y,, },then y'e W, . It follows that

., cW,, . (139)

Moreover, because y € U({t//w1 }ﬂ W), yvely,}. Asye {1//;2} and o, C o,, by

iew,

Lemma 24, for any y'e S, if y'e {l/l;z },then y'e{y, }. Thus,
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W, civ,}- (140)

(139) and (140) imply that {y } < {w,, }{ J({JW,,). and hence thaty, < Z.

icew

Because by definition y e {y, }, v € U ..}

Vo SZ

Now assume that € U {w,,}. Thus, Ja partition 1,//:)2 of w, so that

Ve SZ

wely, }and {y, }<{w, (U, ). Thisimplies that v {y,} and y | JW,,,

icw, icw,

so e JUw, (.- =

iew

Lemma 26. For any o,,0, € Q with |a)1| >2 and |a)2| _|0)1| =1,1 = w, — w,, partition

v, of @.and Z ={y,, 1y, apartition of w,, {y, } = i, ) 1(\W;)}
iew,
v = U .,
icay Vi, &2

Proof: Given w,,®, € Q with |a)1| >2 and |a)2|—|a)1| =1,r = w, — w,, partition y, of

w,and Z={y, {y,}lcly, }ﬂ (ﬂ W)} , the proof will follow similarly to the

iea

proof of Lemma 25. Given y € S, assume first that y € {y,, }ﬂ (ﬂ W,). Thus,

icm,

W e ﬂert . Also clearly, 3 a partition y,, of @, sothat y e{y, }. Fix y .

iew,

Therefore, by Lemma 23, for any y'e S, if y'e {l//z)z} , then y'e ﬂer‘l . Hence,

iew,

ot (W (141)

iew,

Moreover, by definition, y € {1,1/;2 },and o, c w,. Hence, as in Lemma 25,
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Wi, (142)

(141) and (142) imply that {y, } < {w,, }{ \((¥,.). and hence thaty, < Z.

iew,

Because by definition y e {y, }, v € U ..}

Vo SZ

Now assume that € U {w,,}. Thus, Ja partition 1,//:,2 of w, so that

Ve SZ

wely, }and {y, } = v, ) ([ V). Thisimplies that y e {y,,} and y (W,

iew, icw,

so ey, (W) .
iew,
1 1
L 27. If cy—1 for all
emma 27 ae(O’R|—1)U{|R|—1’R|—2’ ,2,}and orall w e S,

vi-1
Py} = a® v H (1-ia), then for any w € Q with |a)| > 2 and partition v, of o,

i=0

lvo|-1

Piy,} =d"" [ (1-ia).
i=0
Proof: Given v €S, we Q with |a)| > 2, and a partition y, of @, assume that

a € (0,

1 1 B lw|-1
1} and that Py} =d""" .T](t~ia). The

1 1
A1 R-riR-2

proof will follow by induction on |R| — |a)| . Assume that |R| — |a)| =0. Thus, ®=R,
and the result follows.

Now assume that for some integer 0 <¢ < |R| -2,if |R| - |a)| <t, then the result
holds. Assume that |R| - |a)| =t+1. Fix € R—w. For any partition ¥ € §, either

3 r, €w sothat (r,r,) € Eq,,, or =3 such anr,. Therefore,
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Uw U =s. (143)
implying that
ok =lUdw W 0lUJlv, (70 (144)

Looking at the first term on the right side of (144), let ®'=w U . By Lemma 25,

Udv (0= U Wt (145)

icw W, CZ

where Z ={y . 1y, apartitionof o', {y .} < {v, }n (U W.)}. Clearly, Z

icw
contains|1//w| unique values of y_,, each with |l//a)| units. Moreover, R —@'=t, so by

the induction hypothesis and fact that partitions of @' are mutually exclusive,

“Vw‘_l
P W)= 2 Plv,i=lp,|-d - T] (-ia). (146)
iew VoSZ i=0
Turning to the last term of (144), by Lemma 26,
v NV =U .t (147)
icay Yol

where Z'={y,, 1y, apartition of 0", {y,} < {y, }ﬂ(ﬂ W:)}. Z' contains

iew
exactly one element; the partition of @' wherein the subunits of @ are partitioned as
per v, ,and r isinits own unit. This partition contains |y/w| +1 units. Moreover,

again because R —@'=1t, by the induction hypothesis,

(‘l//m‘-#l)—l

Py (VW) = X Plw,d=d" " [T (-ia). (148)

iew V,cZ'

Putting (144), (146), and (148) together, and noting again that partitions of @' are

mutually exclusive,
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|vo| -1 (w,|+D-1
Py} =y, |- TT (=ia) +d™ " TT (1-ia) =
i=0 i=0

o[ -1 o[ -1
=a" VT (-ia)-lw,|-a+(=|w,|- @] =a™ " T 0-ia).  (149)
i=0 i=0

As |a)| = |R| —1, the proof is complete. [
1 1 1 1
Theorem 5. If a € (0, YU { , ,-.,—,1}, then
R-1" " |R-1|R-2"""2
lw|-1
Za‘R‘f"’" -H(l —ia)=1.
wes i=0
1 1 1 1 . .
Proof: Assume that a € (0, yu , ,v—s1}. Fix 1,1, € R with
R-1" |R-1|R-2"""2

r#r,andw e Q with @ ={r,,r,}. Givenany y € S, by definition 3 a partition

of @ so that y € {y,}. Thus, letting Z = {y, : v a partition of @},

s=Uw.}. (150)
Moreover, by definition, S = U{y/} , SO
Uwi=U .} (151)

wes Vo€Z
Because partitions of R are mutually exclusive (as are partitions of @), by the
additivity axiom,

S Pyi=Y Py, (152)

yes Vel

o ={n,r,} implies that Z contains two elements: {r,r,} and {1} {r,} . By Lemma 27,
P+ Pi{niinti=a+(1-a), (153)

implying that ZP{I//} =1. [

yeS
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Lemma 28. For any distinct 7,7, € R and X,Y c E(K_, ), if

1 1 1 1
j y e for all
P[({i’QXVK/)ﬂ(“QYVK/ )1>0, a<(0 R|—1)U{|R|—1’ K2 ,2,1},and ora
yes,

lvl-1
Py} =d"" [T -ia),
i=0
then

P, 1 COY W) W)l=a.

{i.jreX {i.jreY
Proof: Given distinct 7,7, € R and X,Y € E(K,_, ), assume that

1 1

c 1
PICY W) W]> 0. a e, A R R =

{i.jteX {i.jtey

...,%,1}, and that for

lw|-1
all w e S, Ply} = a® . H (I1-ia). Fix o = R —r,. It follows from Lemma 23 that

i=0

for any partition v, of w,if 3 w e{y,} sothat y € ( ﬂW;j )ﬂ( ﬂW;) , then for

{i.jteX {i.jyey

every y'ely, }, w'e ( ﬂW;)ﬂ( ﬂW;). Hence, 3 a set of partitions of @ (“Z”) so

i,/ eX {i.jtey

that

COmHNC) = U .- (154)
{

i.jleX {i.j}eY Vo<Z

Fix Z. 1t follows that

w.. COHOCO) =w, U w.h=U o7, Niw.h. (155

i,jyeX i,jreY v,€Z v,EZ
@ @

Clearly, given any value of y, € Z, 3 exactly one partition y of R so that

wew,, ﬂ {w,}: the partition wherein the elements of @ are partitioned as per v,



and 7 is in the same unit as 7,. This partition has

Ve

distribution of {y/},

w1
P, Nw,h=a"" ] 0-ia).

Moreover, by Lemma 27,

"//(u‘71

Ply,}=a" " T (-ia).
i=0
Because |R| = |a)| +1, (156) implies that

POV, (v, D=a Ply,}.

Hence, by the additivity axiom,

Py m, Nw.D1= > P, (v, =a- D Ply,}.

V,Z V,Z v,eZ
and by (155),
P, YCOY W) WDl =a- X Plw,}
{i,jeX {i,j}eY V,€Z

Also, by (154) and the additivity axiom,

PiC( wp\C W =P(Jw.h= D P}

i,jleX i,jleY eZ v,eZ
Js J Yo 2

Because P[( () W[ ([ W;)1>0, it follows from (160) that

li.jteX {i,jeY

> Ply,}>0.

Vo<Z

units, so by the assumed
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(156)

(157)

(158)

(159)

(160)

(161)

Therefore, by the definition of conditional probability, (159) and (160) imply that

PO, () 1) w7

PV,
{i,jleX i, jleY
{i,jleX i, jreY

w. WY = {i.jleX {i,j)eY
L LCOY N CN AR

=a.n
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Theorem 6. If a € (0,

1
R|—1)U{|R| ,5,1} and forall w €S,

w1
Py =d"M . TT0~ia),

then H is true.
Proof: Given distinct 7,r,,7; € R and X,Y < E(K,_, ), assume the aforementioned

distribution. Assume also that

P, (C W) WH1>0 (162)
{ijleX {i.j}eY
and that
P (NC) W) wH1>0. (163)
{i,jteX {i,jreY
Hence, by Lemma 28,
P, W (YCY W) W)l=a (164)
{i,jteX {i,jreY
and
P[VV”I"z VV”;zﬂ( ﬂ Vsz)ﬂ( ﬂ VV;)]:CI, (165)
{i,jleX {i,jleY
SO

”1"2 rz”zﬂ( ﬂ ’/)ﬂ( ﬂ l])] P nr |VVV;30( ﬂ W])ﬂ( ﬂ W,

{i,jleX {i,j}eY {i,jyeX {i,jreY
(166)

Therefore, for any 7,r,r; € R and X,Y < E(K,_, ), if (162) and (163) are hold, then

(166) will be true. This is precisely H . [
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DISCUSSION

Theorems 3 and 4 suggest two tests of the null hypothesis of (12). Suppose

that a set of sites ."is sampled. Forsite s €., let R, denote the set of species

observed at this site, 4 denote (R |, n, denote the value of N=(n,,...,n,) obtained

from R_, and

nS

, denote the L' —norm of n,. Moreover, define

(@ Z - . (@2
S =Esise S,

Rs|:h’

n | =k}, andlet M, be a multinomial random vector
giving the observed distribution of N conditional on exactly /4 subunits occurring. For
the first test, considering data only from the sites having /4 subunits, the maximum
likelihood estimator for a is found from Theorems 1 and 3 by maximizing
h k-1
C@=]] ] []0-ia)] (167)
i1

k=1 se

1
R-2"

1 e
over a € (0, ..,5,1} . Hence the distribution of M, can be

1 1
K1 m-r

found under H,,, permitting goodness-of-fit testing using either an exact likelithood

(’ 7
U “

1<k<h

ratio test or a chi-square test with —2 degrees of freedom. Importantly, the

results from these tests will pertain only to sites having 4 subunits; if s € .~ so that

. To obtain an

R N

# h, the tests will need to be repeated for each distinct value of

RS

overall p-value, an overall multinomial likelihood ratio statistic can be computed, and
tested exactly.
The second test fixes not just the number of subunits per site, but also the

number of units. Specifically, let M, , denote a multinomial random vector giving

the observed distribution of N conditional on both / subunits and k£ units occurring.
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The estimated expected value of M, , can be found directly from Theorem 4, and

goodness-of-fit testing follows immediately. Because the distribution of Theorem 4 is

parameter-free, there will be |.%, k‘ —1 degrees of freedom for the chi-square test. As

in the first test, multiple p-values will again result here if sites differ in their numbers
of subunits (or units). As above, an overall likelihood ratio statistic can be computed
and tested to obtain an overall result.

Except for a few cases (Ladau, unpublished results), the power of these tests
remains unknown. It depends on the number of sites sampled, numbers of subunits
and units at the sites, and the specific deviation from the null hypothesis. Moreover,
both tests will be inconsistent against alternatives involving deviations only in the

relative frequencies of partitions giving the same values of N. For example, in both

tests with |R| =4 and k =2, the frequencies of {{r,r,}{r;,r,}}, {{r,r}{r.r}}, and

{{r,,r,}{r,,r,}} are grouped in the event {N = (0,2,0,0)}, so the tests will have no

power against alternatives that entail deviations only in the relative frequencies of
these partitions. That said, Theorems 5 and 6 show that the tests are consistent against
alternatives that entail deviations in the relative frequencies of N.

Using just presence-absence data, can any universally consistent tests be
created? The answer appears to be no. For example, when |R| =3, suppose
thaty* = {{r}{r,,n}} €S. Forany y €S, letting P(y) and F,(y) denote the
actual and null probabilities of y respectively, for universal consistency, H, must be
rejected whenever P(y*) # P, (yv*). However, this condition can be met only if the

sample allows P(y*) to be specified, which is impossible with presence-absence data,

because no information is contained therein about the relative frequencies of

(i, (it rurt, and {{r} {57} } in the event {N = (1,1,0)}. Because



119

subunits are identified by their order of arrival, what is needed is information on the
arrival sequence of the subunits.
However, the tests proposed here are reasonable because they are based on

how N behaves under H,,. In other words, the tests are grouped data tests. Grouping

of observations into classes is a well-known approach in goodness-of-fit testing; for
instance, it is commonly employed when checking agreement with the Poisson
distribution and when testing normality by grouping observations into intervals.

It could be suggested that because of the consistency issue, the tests are more
appropriate for testing a null hypothesis both necessary and sufficient to derive the
distributions of N than for testing the null hypothesis of (12). This redefined null
hypothesis could consist of a subset of the equalities specified by (12). However, such
a redefined null hypothesis would also follow from an absence of competitive effects,
so the tests would give the same biological conclusions.

Importantly, the tests require that for all 7,7, e R, P(W,, )>0. Insome

testing situations, this assumption may be unjustifiable. However, for such cases, it
appears possible to construct assumption-free tests by extending the results derived
here (Ladau, unpublished results). The first test also requires that sites having exactly
the same number of subunits give independent values of N. Likewise, the second test
requires independence between sites having common numbers of subunits and units.
Thus, the tests do have an assumption of independent sampling. However, a “sample
assumption” of this kind is unavoidable; it differs qualitatively from the “population
assumptions” that must be overcome for robustness (Bradley 1968). Moreover, on
both ecological and statistical grounds, it is usually justifiable to treat sites as being
independent.

In ecological terms, what conclusions do the tests allow? Rejecting the null

hypothesis in both tests implies the existence of either negative or positive conditional
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non-independence. Hence, rejection does not imply competitive structuring, because
such structuring predicts only negative non-independence. Nonetheless, when power
is sufficient, failure to reject the null hypothesis does indicate a lack of competitive
structuring, because by definition, non-independence must occur whenever
competitive structuring occurs. In some communities, analysis of large data sets does
not lead to rejection of the null hypothesis (Chapter V).

A one-sided test, in which rejecting the null hypothesis implies negative non-
independence, would allow stronger conclusions about competitive structuring.

Developing such a test will be the focus of further work.

ACKNOWLEDGMENTS

This work was funded by a National Science Foundation Graduate Research

Fellowship. It benefited greatly from the advice of R. Knapp and H. K. Reeve.



121

LITERATURE CITED

Begon, M. L., L. Harper, and C. R. Townsend. 1996. Ecology: Third Edition,
Blackwell Science, Oxford.

Bogart, K. P. 1983. Introductory Combinatorics. Pitman Publishing Inc., London.

Bradley, J. V. 1968. Distribution-Free Statistical Tests. Prentice-Hall, Englewood
Cliffs, New Jersey.

Connell, J. H. 1961. The influence of interspecific competition and other factors on
the distribution of the barnacle Chthamalus stellatus. Ecology 42:710-723.

Connell, J. H. 1980. Diversity and the coevolution of competitors, or the ghost of
competition past. Oikos 35:131-138.

Connor, E. F. and D. Simberloff. 1979. The assembly of species communities:
chance or competition? Ecology 60:1132-1140.

Connor, E. F. and D. Simberloff. 1983. Interspecific competition and species co-
occurrence patterns on islands: null models and the evaluation of evidence.
Oikos 41:455-465.

Diamond, J. M. 1975. Assembly of species communities. Pages 342-344 in M. L.
Cody and J. M. Diamond, eds. Ecology and Evolution of Communities. Harvard
University Press, Cambridge.

Fox, B. J. 1987. Species assembly and the evolution of community structure.
Evolutionary Ecology 1:201-213.

Fox, B.J. 1989. Small-mammal community pattern in Australian heathland: a
taxonomically-based rule for species assembly. Pages 91-103 in D. W. Morris,
Z. Abramsky, B. J. Fox, and M. Willig, eds. Patterns in the structure of
mammalian communities. Special Publications of the Museum, Texas Tech.

University, no. 28, Lubbock.



122

Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology
81:2606-2621.

Gotelli, N. J., and G. R. Graves. 1996. Null models in ecology. Smithsonian Institution
Press, Washington DC.

Hairston, N. G. 1980. The exponential test of an analysis of field distributions:
competition in terrestrial salamanders. Ecology 61:817-826.

Hrbacek, K. and T. Jech. 1999. Introduction to Set Theory: 3 Edition (Monographs
and textbooks in pure and applied mathematics 220). Marcel Dekker, Inc., New
York.

Root, R. B. 2001. Guilds. Pages 295-302 in P. Kareiva and S. Levin, eds. Are there
expendable species? Princeton University Press, Princeton.

Simberloff, D. S. 1970. Taxonomic diversity of island biotas. Evolution 24:23-47.

Sokal, R. R. and E. J. Rohlf. 1995. Biometry: Third Edition. W. H. Freeman and
Company, New York.

Tansley, A. G. 1917. On competition between Galium sylvestre Poll. (G. aspermum
Schreb.) on different types of soil. Journal of Ecology 5:173-179.

Wilson, J. B. 1989. A null model of guild proportionality, applied to stratification of

a New Zealand temperate rain forest. Oecologia 80:263-267.



— CHAPTER IV —
NULL MODEL TESTS OF SPECIES CO-OCCURRENCE:
APPLICATION OF ROBUST METHODS

Abstract  An important question in ecology is to what extent competitive
interactions affect the composition of communities. Null model testing has been used
extensively to address this question, but its conclusions have been unreliable. Here,
using a new robust null model test, I analyze seven large data sets. I show that this
test gives consistent results in the absence of major biological fluctuations. For all of
the data sets analyzed, the test does not indicate effects of competitive interactions.
Although simplistic, the null model accounts remarkably well for much of the
variability in community composition (median R*> >0.99). Hence, in addition to
being useful for testing for the effects of competitive interactions, the model appears

to be a step towards providing a simple, general theory of community assembly.

INTRODUCTION

What influence do interspecific interactions have on the composition of
ecological communities? Gleason (1926) proposed that the influence of interactions
is minimal, with stochastic processes and the abiotic environment being the prime
determinants of community composition. By contrast, Diamond (1975), McNab
(1971), and others proposed that interspecific interactions — particularly competition —
play a much larger role. The matter remains unresolved, but bears broadly on basic

and applied ecology.
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The most widely applicable approach for assessing the effects of competition
has been null model testing. The applicability of null model testing derives from the
data that are employed: lists of species occurring at sets of sites. These data are
broadly available and easily collectible. Null model testing begins with the premise
that competition does not affect the composition of communities. This premise is
translated into a quantitative statement, or “null hypothesis,” which, together with
quantitative assumptions, comprise the “null model.” The model is then used to
generate a distribution of a statistic summarizing the lists of observed species. If the
observed statistic (or one more extreme) is sufficiently unlikely to have come from the
null model’s distribution, then the null hypothesis is rejected, and an effect of
competition is inferred. Null model testing has been applied to numerous
communities, for instance those of desert rodents (Fox and Brown 1993, Stone et al
1996), island birds (Connor and Simberloff 1979, Gotelli and Abele 1982, Feeley
2003), and fish parasites (Gotelli and Rohde 2002). It has also been applied to
understand the effects of exotic species introductions (Sanders et al 2003). The
findings of these applications have been mixed.

Unfortunately, the null model tests applied in these investigations suffer from
two critical flaws. Like all statistical tests, null model tests should be powerful and
robust. Power refers to the test’s sensitivity, with the most powerful tests rejecting
false null hypotheses most frequently. Robustness refers to the distortion of
significance levels when assumptions are violated, with robust tests only negligibly
affected by violations (Bradley 1968, Sokal and Rohlf 1995). Thus, null model tests
should be powerful and, if assumptions cannot be independently verified, robust.
Existing null model tests lack adequate power or robustness (Chapter II).

It is the issue of robustness that is particularly troubling. It means that when

assumptions cannot be verified — as is usually the case — tests will incorrectly indicate
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competitive effects unacceptably often. Thus, existing tests, and any inferences from
them are unreliable (Chapter II). However, to resolve the problem, a test free of
parametric assumptions has been recently proposed (Chapter III).

The proposed test is based on two premises: First, regardless of how
competition acts — evolutionarily or ecologically, and extrinsically or intrinsically — it
will reduce the co-occurrence of ecologically similar organisms. Second, ecological
similarity can be specified using a hierarchical classification system. “Subunits” of
organisms can be classified into “units,” with subunits in the same unit being more

ecologically similar to each other than those in different units. Hence, defining ¥, as

the event that the ith and jth subunit to arrive at a community belong to the same unit,

it follows that competitive effects predict that P(W,, |W,,) < P(W,; |W}3),
POV.5 | 1) < POV, [W5) s ox POy [ W[ W5) < PO,y | W15 for instance.

Therefore, an appropriate null hypothesis for testing for the absence of competitive
effects specifies equality between all relevant pairs of conditional probabilities. This
null hypothesis is sufficient to specify a distribution of the partition of subunits into
units (Chapter III), implying that to test robustly for the absence of competition, it is
sufficient to check whether the observed and predicted distributions of partitions
match.

Here, I apply a test a test similar to the parametric assumption-free test, which

for simplicity assumes that for all i and j, P(W) > 0 (Chapter III; hereafter referred to

as “Ladau and Schwager’s test””). Examining two plant and five animal communities,
I first assess the overall frequency with which the null hypothesis is rejected. I then
investigate whether rejections of the null hypothesis were due to (i) random
fluctuations, unreflective of biological processes, or (ii) effects of interspecific

competition, and I compare results to those of a parametric alternative. Last, I use the
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null model to assess the relative importance of interspecific interactions in composing

communities.

MATERIALS AND METHODS

Data Sets

The data that Ladau and Schwager’s test employ consist of lists of species

present at sets of sites. I obtained these lists from seven sources.

North American Breeding Bird Survey (BBS)

The North American Breeding Bird Survey began in 1966 and is ongoing.
Data are collected once per year in May or June along approximately 3000 “routes” —
randomly situated 24.5 mile segments of roadway in the United States and Canada.
Every 0.5 miles along each route, observers stop for 3 minutes and record abundance
data on all bird species that they observe within 0.25 miles. Each route is sampled
entirely in 1 day. Here, I considered data from 1997 and 2004 surveys — a total of
1,836,897 species-occurrences. I used data from 60,000 stops, randomly chosen from
the routes that were rated to be of high quality (Sauer et al 2004). For analyses, I took

individual stops as sites.

Barro Colorado Island (BCI) Vegetation
The 50 ha Barro Colorado Island Plot in Panama (UTM coordinates 625754,
1011569) has been censused 4 times since 1980. In each census, all trees at least 1 cm

in diameter at breast height were identified and mapped to the nearest 0.1 m, providing
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records for over 3.25x10° individual trees (Condit 1998, Hubbell et al 1999, Condit et
al 2005). Here, I used data from the 1982 and 1995 censuses, and I considered data
only from live trees. For sites, I divided the 50 ha plot into 2 m, 5 m, or 10 m

quadrats. [ analyzed each type of site separately.

Sherman Plot Vegetation

The Sherman Plot is located in Panama, near the Panama Canal (UTM
coordinates 612610, 1026067). The plot occupies 5.96 ha, with a 1 ha quadrat having
been recently cleared. All trees of at least 1 cm diameter at breast height were
identified and mapped to the nearest 0.1 m in censuses in 1996, 1997-1998, and 1999,
for a total of 24,454 distinct individuals (see Condit et al 2004). Here, I analyzed data
from the 1996 and 1999 censuses, considering only data from undisturbed portion of
the plot. As with the BCI plot, I divided the Sherman plot into 2 m, 5 m, and 10 m

quadrats, and analyzed each type of site separately.

Yosemite Zooplankton

This data set consists of zooplankton records from 279 randomly selected lakes
in Yosemite National Park. Selection of lakes was stratified by physical
characteristics of lakes and biological disturbance levels. All samples were collected
in 2000 and 2001 using a conical plankton net (diameter 29.5 cm and mesh size 64-
um). To collect samples, in lakes less than 1 m deep, tows were taken horizontally;
otherwise, vertical tows through the entire water column were collected from the
deepest part of lakes. All zooplankton in two 1 mL subsamples of each sample were
then identified to species. Over 101,000 individuals were identified (Knapp et al

2005). Here, I considered each lake a site.



128

John Muir Wilderness and Sequoia and Kings Canyon (JMW-SEKI) Zooplankton

This data set consists of zooplankton records from 357 randomly selected lakes
in the John Muir Wilderness and Sequoia and Kings Canyon National Parks. Data
were collected between 1995 and 1997 following the same protocols as for the
Yosemite zooplankton data set. Over 251,500 individuals were identified (Knapp et al

2001). I considered each lake a site.

Yosemite Benthic Insects

This data set was created by sampling benthic insects in 295 randomly selected
lakes in Yosemite National Park. As in the zooplankton sampling, lake selection was
stratified, and samples were collected during the summers of 2000-2001. From each
lake, 15 consecutive sweeps were collected over 1 m of littoral substrate using an
aquatic D-net with mesh size 0.5 mm. At each lake, habitats were sampled in rough
proportion to their relative abundances throughout the entire littoral area of the lake,
with sweeps being combined as the sample was collected. All specimens were sorted
from debris in the samples in the field, to be identified later, although when the
amount of debris was excessive, only a portion of the sample was sorted. Where
possible, I identified specimens to genus. A total of over 80,000 individuals were

identified (Knapp et al 2005). Sites were taken as lakes.

JMW-SEKI Benthic Insects

This data set was created following the same protocols as the Yosemite
Benthic Insect data set, but samples were collected from 314 randomly selected lakes
in JIMW-SEKI during the summers of 1995-1997. A total of over 15,000 individuals

were identified (Knapp et al 2001). Sites were again taken as lakes.
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Null Hypothesis Test

For each data set and each site, I first assembled a list of species or other taxa
present. I then defined “subunits” and “units” so that species within the same subunit
were more ecologically similar to each other than to those in different units. Hence,
for example, in some cases, I defined subunits as genera and units as orders. I used
only taxonomic groupings for subunit and unit definitions (Table 5), although other
groupings were possible (see Discussion). Given a particular definition of subunits

and units, I next considered the subset of sites having exactly a specified number of

subunits (“|R

). For each site, I defined the random vector N so that

N =(n,,n,,..., n‘R‘) if and only if », units had exactly 7 subunits, i =1,2,...,

R|. Thus, if
a site were observed to have a total of three subunits, with two sharing a unit and the
third in a different unit, then the observed value of N would be (1,1,0). Likewise, if a
site had four subunits all sharing the same unit, then N =(0,0,0,1).

I next assumed that for all i and j, P(W;) > 0. Under this assumption, the
aforementioned null hypothesis alone implied that within the set of sites having

exactly |R| subunits,

‘(nl My seees gl )‘l -1

R|! |R|=|(y 1y seve ) .
P[N:(”p”z,---’”R)]ZRL'a | H‘l, H (1-ia), (1)

. i=0
H(z D" -n,! l
i=1

2 P 1 1
1_;”1' and a e ’R|—1)u{|R|—1’R|—2"

1
where (nl,nz,...,n‘R‘) ..,5,1} (Chapter

IIT). Hence for example, among the sites having exactly three subunits, the fractions
of sites having N = (0,0,1), N =(1,1,0), and N = (3,0,0) were predicted to be a°,

3a(l-a), and (1-a)(1-2a), respectively. To test the null hypothesis, I compared
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P-Value
Full Reduced
Data Set Subunits/Units Data Reduced Data Set
Data Set
Set Overall
Breeding Bird Survey 2004 Families/Orders 0* 0*
Breeding Bird Survey 2004 Genera/Families 0* 0*
Breeding Bird Survey 2004 Genera/Orders 0* 0* <0.001*
Breeding Bird Survey 2004 Species/Families 0* 0*
Breeding Bird Survey 2004 Species/Genera 0* 0.019
Breeding Bird Survey 2004 Species/Orders 0* 0*
Barro Colorado Island 1995 2m Genera/Families 0* 0*
Barro Colorado Island 1995 2m | Species/Families 0* 0*
Barro Colorado Island 1995 2m Species/Genera 0.216 0.421
Barro Colorado Island 1995 5m Genera/Families 0* 0*
Barro Colorado Island 1995 5m | Species/Families 0* 0* <0.001*
Barro Colorado Island 1995 5m Species/Genera 0* 0.431
Barro Colorado Island 1995 10m| Genera/Families 0* 0.775
Barro Colorado Island 1995 10m| Species/Families 0* 0.495
Barro Colorado Island 1995 10m| Species/Genera 0* 1
Sherman 1999 2m Genera/Families 0.67 0.547
Sherman 1999 2m Species/Families 0.659 0.441
Sherman 1999 2m Species/Genera 0.895 0.694
Sherman 1999 5m Genera/Families 0.85 0.981
Sherman 1999 5m Species/Families 0* 0.085 0.567
Sherman 1999 5m Species/Genera 0.855 1
Sherman 1999 10m Genera/Families 0* 1
Sherman 1999 10m Species/Families 0* 0.364
Sherman 1999 10m Species/Genera 0.552 1
JMW -SEKI Zooplankton Families/Orders 0* 1
JMW-SEKI Zooplankton Genera/Families 0.073 1
JMW-SEKI Zooplankton Genera/Orders 0.013 0.002 0.015
JMW -SEKI Zooplankton Species/Families 0.572 1
JMW-SEKI Zooplankton Species/Genera 0.952 0.919
JMW-SEKI Zooplankton Species/Orders 0* 0.002
Y osemite Zooplankton Families/Orders 0* 0*
Yosemite Zooplankton Genera/Families 0* 1
Y osemite Zooplankton Genera/Orders 0* 0* <0.001*
Y osemite Zooplankton Species/Families 0.098 0.757
Yosemite Zooplankton Species/Genera 0* 1
Y osemite Zooplankton Species/Orders 0* 0*
JMW-SEKI Benthic Insects Families/Orders 0.654 0.612
JMW-SEKI Benthic Insects Genera/Families (0 0.343 0.979
JMW-SEKI Benthic Insects Genera/Orders 0* 0.575
Yosemite Benthic Insects Families/Orders 0.991 0.999
Yosemite Benthic Insects Genera/Families (0 0.041 0.818
Y osemite Benthic Insects Genera/Orders 0.047 0.557

'Results significant after correction for multiple comparisons are starred.
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the observed and predicted distributions of N.  If the distributions differed
significantly, then I rejected the null hypothesis.

Two issues complicated the comparisons. First, because they contain the
parameter a, the aforementioned fractions could not be used directly to find a
predicted distribution of N. I resolved this problem by using maximum likelithood
estimation for a. Second, the aforementioned distribution of N pertained only to the
set of sites having exactly three subunits. For sets of sites having different numbers of
subunits, (1) gives different distributions of N. For each of these sets of sites, |
estimated a, and computed the appropriate likelihood ratio statistic. The product of
the likelihood ratio statistics over all sets of sites gave an overall likelihood ratio
statistic, whose significance I checked using Monte Carlo simulations. 1000 statistics
were simulated per observed statistic.

For each data set, I repeated the test using different combinations of subunits
and unit definitions. For the BCI and Sherman data sets, I additionally repeated the
test using each definition of “sites;” i.e., 2 m, 5 m, and 10 m quadrats. Hence, a total
of 91 tests were performed, and I set the individual significance level at 0.0005 to give
an overall significance level of 0.05. To obtain an overall result for each data set, I
used a likelihood ratio test (Sokal and Rohlf 1995, p.794). Procedures were

implemented using custom-written Visual Basic 6.0 software.

Causes of Null Hypothesis Rejection

Assumption Violations

Here I used a test that assumes that P(W,) > 0 for all i and j. Hence,

assumption violations may have caused the true Type I error rate to exceed the

nominal rate of 0.05. To minimize this problem, I postulated that if two subunits i and
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J were observed to occur in the same unit somewhere, then P(W;) might reasonably

be supposed nonzero everywhere. Hence, for each data set and subunit/unit/quadrat-
size combination, | found the largest number of subunits to occur in the same unit
(“M”), and then constructed a “reduced” data set, which included only data from sites

having M or fewer subunits. With these data sets, P(W,) was likely to be nonzero for

most choices of i and j, and tests were likely to have Type I error rates close to 0.05.

Except where otherwise noted, in analyses I used the reduced data sets.

Random Fluctuations

Using the reduced data sets, the null hypothesis may have been rejected due to
either random fluctuations or underlying biological processes. If random fluctuations
were the cause, then inconsistent results should have been obtained in the absence of
major perturbations. Between 1997 and 2004, 1982 and 1995, and 1996 and 1999, no
drastic perturbations occurred in area surveyed in Breeding Bird Survey, the BCI plot,
or the Sherman plot, respectively. Hence, to check for effects of random fluctuations,
I checked whether the null hypothesis was rejected for the same subunit/unit/quadrat-
size combinations in different years for these data sets. [ used a test of Cohen’s

Kappa statistic to assess consistency (Siegel 1988).

Non-Competitive Interactions
The test applied here is a two-tailed test; that is, for example, the null

hypothesis might be false because P(W,, |W,,) < P(W,; | W),
P(Way | W) < P(Wos | W5)  and PO, [Wos[ YW5) < POV, | W5 \W5) , or because
PWs |Wy) > PWs | W), PWy | W) > P(Wyy | W), or

PW,, | WBﬂWl;) >PW,, | WzgﬂWl;) . However, only the former is consistent with
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competitive effects. To check whether competitive effects were responsible for
rejections of the null hypothesis, I considered that if they were the cause, then the
frequency of rejections should be inversely proportional to the inclusiveness of the
units. Hence, for example, because species in the same genera should on average be
less ecologically similar than those in the same families, competitive effects predict

that the null hypothesis should be rejected less often when units are defined as families
than when they are defined as genera. I checked this possibility using a y test for

trend (Zar 1999, p. 565).

Comparison to a Standard Parametric Test

Using the IMW-SEKI and Yosemite data, I compared the results of Ladau and
Schwager’s test to those of a parametric test. Because the sites in these data sets were
small, I employed a parametric test that uses a C-score statistic and a fixed rows —
equiprobable columns randomization algorithm (see Sanders et al 2003). For each data
set, this parametric test gave a single result, so for comparison I used the overall result
of Ladau and Schwager’s test (see “Null Hypothesis Test,” above). To perform
parametric testing, I employed EcoSim Version 7.70, Build 120404 (Gotelli and
Entsminger 2001).

Predictive Power of the Null Model

It was of interest to assess not just whether the null hypothesis was rejected,
but the extent of deviations from it — to assess the relative importance of interspecific
interactions in determining community composition. To quantify the extent of

deviations, I calculated the proportion of variation in frequencies of partitions that
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could be accounted for by the null hypothesis (R*). Specifically, for a particular data
set and subunit/unit/quadrat-size combination i, set of sites having exactly j subunits,

and value n of N: let y,, and j,, denote the observed and predicted frequencies of n,
and let y,, denote mean frequency for the set of sites having j subunits. For data set

and subunit/unit/quadrat-size combination i

Z(yljn _J?ijn)z

R2 e [ —
- 2
Z(yzjn _yzjn)
j.n

)
(Kvalseth 1985).  In cases where the model performed extremely poorly, (2) gave

negative values of R* — in effect, the mean predicted values of Y, better than the

model. In these cases, I set R =0. Thus, R’ could consistently be interpreted in

terms of the amount of variation for which the model accounted. 1 considered one

potential predictor of R”: the inclusiveness of the units. I used a Pitman correlation

test to check this possibility (Bradley 1968).

RESULTS

Null Hypothesis Tests

Using the full data sets, 27 of the 42 tests performed were significant, while
using the reduced data sets, only 12 of 42 tests were significant (Table 5). The
parametric test gave non-significant results in all four cases examined ( p =1 in all
cases), consistent with an absence of competitive effects. Using the reduced data sets,

Ladau and Schwager’s test gave a significant result in one case (significant: Yosemite
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zooplankton; non-significant: Yosemite benthic insects, IMW-SEKI benthic insects,
and JIMW-SEKI zooplankton). However, this significant result was likely due to non-
competitive effects, because the null hypothesis was rejected more often when orders,
rather than genera or families, were used as units (Table 5).

Using Ladau and Schwager’s test with the reduced data sets, results were
consistent between years (K =0.909, z=6.547, p <0.001), suggesting that random
fluctuations were not influential in rejecting the null hypothesis. As unit

inclusiveness increased, the null hypothesis was rejected more frequently

(X* =5.437, df =1, p = 0.021), an outcome inconsistent with competitive effects.

Predictive Power of the Null Model

Using the full data sets, and considering the values of R’ for each data set and

subunit/unit/quadrat-size combination individually, the median R*> was 0.942. Using

the reduced data sets, the median was 0.993 (Figure 6 and Figure 7). Considering the
overall R* values for each data set, the medians remained high (0.937 and 0.962 for

the full and reduced data sets, respectively), but R*> was less than 0.5 for the BBS data,

and 0.637 and 0.598 for the Yosemite zooplankton data with the full and reduced data
sets, respectively. (R’ was greater than 0.8 for all other cases.) In the BBS data, the
lack of fit stemmed from cases where units were defined as orders ( R* = 0 using both
the full and reduced BBS data sets). Overall, there was a negative relationship
between R* and the inclusiveness of the definition of units (for the full and reduced

data sets respectively, » = -0.467, p =0.001; r =-0.454, p<0.001). However,
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Figure 6. Box plots of the observed distributions of R*. 42 values of R* were
used for both the reduced and full data sets — each corresponding to a data set and
subunit/unit/quadrat-size combination. Because results were similar between years,
only the BBS, BCI, and Sherman data from 2004, 1995, and 1999 are plotted,
respectively.
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Figure 7. Plots showing the observed and predicted distributions of N for the 2004
Breeding Bird Survey data. Subunits are defined as species, and units as families.
Each plot gives the distributions for the subset of sites having exactly the listed
number of species. Some sites had more than 13 species, but for clarity and brevity
such sites are omitted. Although the observed and predicted distributions differ
significantly (p < 0.001), the null model accounts for a large portion of the

variation in the frequencies of N (R* = 0.963).
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Figure 7 (Continued)
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there were notable exceptions to this trend — for example, with the IMW-SEKI benthic

insect data set, R* values were greater than 0.925 when units were taken as orders.

DISCUSSION

Using the full data sets, the null hypothesis was rejected at a rate higher than
the nominal significance level, 0.05. Because assumptions may have been invalid for
the full data sets, the high rate may have been partially due to a high Type I error rate.
However, the Type I error rate was closer to 0.05 for the reduced data sets, where
assumptions were better justified. As the null hypothesis was still rejected at a rate
exceeding 0.05 for these data sets, the null hypothesis was likely indeed violated in
some cases. Importantly, this conclusion is based on the premise that if two subunits
have nonzero probability of occurring in the same unit somewhere, then they have
nonzero probability of occurring in the same unit everywhere — a premise that may not
always be true. Nonetheless, preliminary analyses with the assumption-free test
suggest that the null hypothesis was indeed often rejected correctly, particularly for the
BBS data (Ladau, unpublished results).

I investigated two factors that could have caused violations of the null
hypothesis: random fluctuations unrelated to interspecific interactions, and effects of
interspecific competition. Random fluctuations appear to have had little influence on
null hypothesis rejection, because in stable communities, the null hypothesis was
consistently rejected for the same subunit/unit/quadrat-size combinations. Likewise,
competitive effects appear to have been un-influential, as the frequency of null

hypothesis rejection was negatively related to the inclusiveness of units.
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Nonetheless, despite the lack of evidence, competitive effects may still have
influenced community composition. For subunits and units, I used the groupings of
species, genera, families and orders. However, for the test applied here to detect
competitive effects, subunits within the same unit must be more ecologically similar
than those in different units. Ecological similarity may be better reflected by other
taxonomic groupings, or by groupings based explicitly on ecological similarity — for
instance, functional groups or guilds (Fox 1987). Moreover, competitive effects may
be manifest at different spatial scales than those examined here. It is possible, for
instance, that the effects are evident only in sites smaller than the ones used here.

In the four cases examined, the parametric test indicated a lack of effects of
competitive interactions, like Ladau and Schwager’s test. However, such a result
cannot always be expected. Although both tests check for effects of competitive
interactions, those effects are non-equivalent; it is possible for one test’s null
hypothesis to be true but not the other. Moreover, the true Type I error rate of the
parametric test will often exceed the nominal significance level, in which case the null
hypothesis will be frequently rejected when it is true (Chapter II). So long as the

assumption that for all i and j, P(W,) > 01is justified, Ladau and Schwager’s test will

be immune to this problem (Bradley 1968).

Overall, the null hypothesis could be rejected for the BBS, BCI, and Yosemite
zooplankton communities, but not for the Sherman, JIMW-SEKI zooplankton, IMW-
SEKI benthic insect, or Yosemite benthic insect communities. This outcome may
have been due to two factors. First, a simple evolutionary birth process can invalidate
the null hypothesis (Ladau, unpublished results), although why such a process would
operate in just the former communities is unclear. Second, facilitative interspecific
interactions may be concentrated between ecologically dissimilar species (but see

Stachowicz 2001, p.237), potentially accounting for the violations of the null
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hypothesis. Consistent with this explanation, facilitative interactions have been
documented in bird (Kilham 1971, Daily et al 1993, Blendinger 1999, Pejchar and
Jeffrey 2004, Schlatter and Vergara 2005) and zooplankton communities (Nandini and
Sarma 2001, Nandini and Sarma 2002). They are also widespread in plant
communities (Stachowicz 2001), with the failure to reject the null hypothesis for
Sherman plot perhaps because of small sample sizes relative to the BCI plot. By
contrast, aquatic insect communities may be structured primarily by interspecific
predation (Merrit and Cummins 1996, p. 70), whose effects on the test’s outcome will
be variable.

Overall, the null model predicted the composition of the communities almost
exactly. By one measure — the vector N with the reduced data sets — the model
predicted a median of over 99% of the variation in community composition.
Particularly remarkable was the null model’s ability to account for the “bumps” and
irregularities in the observed frequency distributions (Figure 7). Similar predictive
power of a null model was found by Connor and Simberloff (1979), but later shown to
be trivial, as the fitting procedures employed therein made it mathematically
impossible to obtain low values of R’ (Diamond and Gilpin 1982). However, it can
be shown analytically that poor fits are possible here (Ladau, unpublished results).
Moreover, using both the full and reduced data sets, in three cases the model predicted
~0% of the variation in community composition, and in six and three cases
respectively, the model predicted less than 50% of the variation. Thus, the nearly
perfect overall agreement between observation and prediction was not a trivial result
of the fitting procedure.

Although there were exceptions, R” was highest (>0.95) when genera and
families were used as units, and lowest when orders were used. Hence, at least when

units are defined as genera and families, the following model of community assembly
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appears to apply: By definition, the first type of subunit (“I”’) to arrive and persist at a
community must be in its own unit. The second subunit (“II”’) might then be in I’s
unit, or belong to its own unit. When the third subunit (“III”") arrives, it can belong to
I’s unit, II’s unit, or be in its own unit. According to the model, the probability of III
belonging to II’s unit is the same regardless of whether II is in the same unit as 1.
Likewise, III is equally likely to belong to I’s unit regardless of whether I shares its
unit with II. Corresponding equalities then hold for subunits that arrive later. This
model — an informal description of the null hypothesis — is null to competitive effects
inasmuch that, for instance, when competitive effects occur, Il should be less likely to

belong to II’s unit when it shares that unit with I than when it does not.

In cases where R*> was high and the null hypothesis could not be rejected, the

model potentially could account entirely for the observed compositions of the

communities as measured by N. Where R* was high and the null hypothesis was
rejected, the model could account a/most entirely. Thus, the tests using genera or
families as units suggested that interspecific interactions influence community
composition at most minimally. For the North American breeding bird communities,
the tests using orders as units suggested that this influence may be more substantial.
Recently, considerable interest has focused on developing simple theories to
account for broad and complex macroecological patterns (e.g., Harte et al 1999,
Hubbell 2001, Harte et al 2005). As put succinctly by Harte (2003), the aim is to
develop theories whose “seemingly preposterous assumption... yields amazingly

2

accurate predictions of a range of phenomena.” The strength of such theories lies
both in their predictive power and the inferences that can be drawn the failures of their
predictions. The results presented here suggest that the null model of Ladau and

Schwager constitutes a simple, but biologically relevant and highly predictive theory

of community composition.
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— APPENDIX A —
PROPERTIES USED TO CHECK FOR UNCONDITIONAL
INDEPENDENCE

DEFINITIONS

Let . be the set of sites sampled, and let the sample space S= {M : M a binary
matrix with |/ | columns}. Let R be a binary row vector with |7| columns. For
any R, define the event E,(R)={M:M € S, row i of M given by R }. Also, define

the event C so that M e C if and only if M meets arbitrary predefined criteria. The

following is an example of these definitions:

Suppose that two sites are sampled. Then |~|=2, and S is the set of all
11
) . . . 1 0)(0 O
binary matrices with 2 columns. For instance, o 1/lo of 1 1jeS. If
0 1

1 0 0 0
M= (0 J ,then M € E|[(1,0)] and M € E,[(0,1)], while if M = (0 0] , then
M € E[(0,0)] and M € E,[(0,0)]. If the criterion for event C is that all row and
1 0 (1 0
column totals are nonzero, then o 1 e C, while | o ¢ C.

By definition, E,(R)1is the event that species i has the distribution given by R.

For example, if four sites are sampled and £,[(1,0,0,1)] occurs, then species 1 is found

150



151

only at the first and fourth sites. Therefore, Null Hypothesis 1 (below) is a

formalization of the null hypothesis of unconditional independence.

RESULTS

Null Hypothesis 1. H: forany p c{l,2,...} and set of binary row vectors

{R, :i € p, R, with || columns},
P[ﬂEI(Rz)] = HP[Ei(Ri)] (D

Theorem 1. Under H , for any arbitrary predefined criteria for M,
disjoint p,, p,, p, = {1,2,...} with p, # and p, # D ( p, possibly empty), and
unique sets of binary row vectors {R, :R; with |(/| columns, i € {1,2,...}} and

{R':R'" with |/| columns, i € {1,2,...}}, if:

P[C| [ﬂ E(R, ”W,Q E,(R, ”W,Q ER)]]=1, )
PIC| [ﬂ E, (RJ]ﬂ[Q E®R)IN [ﬂ E®R)]=1, 3)
P[C| [ﬂ E,(R 'i)]ﬂ[ig ER)] [ﬂ E,R)]I=1, )
PIC| [ﬂ E,(R, )]ﬂ[g E,R')D] [ﬂ E,R)]]=1, (5)

then

P E®RDINI E RN E®R)IIC]

iepy icp, ieps

PIIAOE®RDIN E®R)NINE®R)IIC]

iep, iep, iep
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P[[ﬂE RN ERDI) E®R)IIC]

iep, i€p;

[ﬂE (R, )]ﬂ[ﬂE (R, )]ﬂ[ﬂE (R)]IC]

Proof: Assume H,. Given arbitrary predefined criteria for M,
disjoint p,, p,, p, = {1,2,...} with p,, p, # ( p, possibly empty), and the sets of row

vectors listed above, assume the aforementioned conditions. By (4), (5), and the

definition of conditional probability,

ﬂE(R')]ﬂ[ﬂE(R )]ﬂ[ﬂE(R 1> (6)
ﬂE(R')]ﬂ[ﬂE(R')]ﬂ[ﬂE(R )1>0, (7)
and
P(C)>0. (8)
By H,,
ﬂE(R' ﬂ[ﬂE(R)]ﬂ[ﬂE(R)]
=P[()E(R")] P[ﬂE(R)]PﬂE(R)] ©
and | 2
ﬂE(R' NN E®RDIN E R
= PI[VE,(R)]-PI[ ) E,(R')]- PI[ ] E,(R))] (10)
Hence,

ﬂE(R)] PI[)E,(R)]- ﬂE(R)]/P(C)

iep,

P[ﬂE(R' )] P[ﬂE(R )1-PI[ ) E (R, )]/P(C)

ieps
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P[ﬂE (R)]-P[[ ) E(R")]- P[ﬂE (R, )]/P(C)

icp,

“ANE®T ANE®RD): P[_ﬂE,(R,)]/P(C)'

iepy

(11)

Alsoby H,,
P[ﬂE(R )]- P[ﬂE(R )]- P[ﬂE(R )]
ﬂE (R )]ﬂ[ﬂE (R, )]ﬂ[ﬂE (R)]]

(12)

implying by (2) and the definition of conditional probability that

P[ﬂE(R )]- P[ﬂE(R )]- P[ﬂE(R )]
= P[Cﬂ[ﬂ E (R, )]ﬂ[ﬂ E®R)ININE R

iep;

(13)

Thus, by the definition of conditional probability,

P[ﬂE(R )] P[ﬂE(R )]- P[ﬂE(R )1/ P(C)
ﬂE (R )]ﬂ[ﬂE (R, )]ﬂ[ﬂE (R)]ICI.

(14)

By similar arguments with (3) — (5), it follows that

PI[)E,(R)]- PI[ ) E,(R')]- P[] E,(R)]/ P(C)

(15)
= P E RO E R DN ER)IIC]

P[ﬂE(R')] P[ﬂE(R NE P[ﬂE(R )1/ P(C)
ﬂE(R' ﬂ[ﬂE(R)]ﬂ[ﬂE(R)]IC]

(16)

and
P[ﬂE(R')] P[ﬂE(R')] P ﬂE(R )1/ P(C)
ﬂE(R' ﬂ[ﬂE(R' NN E®R)IIC

icp;

(17)

The result follows directly from applying (14)-(17) to (11). [ |



— APPENDIX B —
QUARTETS OF MATRICES EXAMINED

Following the definitions from Appendix A, for certain predefined criteria for

M, it may be possible to choose {R, : R, a binary row vector with |/| columns,

i€{l,2,..}} and {R',:R", a binary row vector with || columns, i € {1,2,...}} so
that
N ﬂE(R )]ﬂ[DE(R )]ﬂ[ﬂE(R )] =1, (1)
Cﬂ[DE(R N ﬂE(R' H[QEI-(R,-)] =1, (2)
Cﬂ[QE(R')]ﬂ[ﬂE(R)H[QEI-(R,-)] =1, (3)
and
Cﬂ[g E, (R',-)]ﬂ[g E(R z-)]ﬂ[g ER)]=1. )
Under these circumstances, fixing
M, e(ﬂ[@E(R )]ﬂ[ﬂE(R )]ﬂ[ﬂE(R), (5)
M, e C( [ ﬂE(R')Jﬂ[QE(R')}ﬂ[QE(R), (6)
M, eCﬂ[ﬂE(R')]ﬂ[ﬂE(R )]D[QE(R), (7
and
M, e Cﬂ[g E, (Ri)]ﬂ[lg E(R ',-)]ﬂ[g E(R)), (®)
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by Theorem 1, under /4,

PM, |C) P(M,|C)
P(M,|C) P(M,|C)’

)

In Chapter I, I investigate whether (9) holds for various{M, :i =1,2,3,4}. Table 6

lists the {M, :i =1,2,3,4} that I use.
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Table 6. Quartets of matrices used to evaluate Gotelli’s and Graves’s models.



M,

M,

M3

M,

Matrix 1

Equiprobable Rows, Proportional Columns

001,010,110
001,110,010
010,101,001
100,001,011
100,010,101

Proportional Rows, E

001,010,110
001,110,001
010,100,101
011,100,010

010,001,101
110,001,100
101,010,100
001,100,110
010,100,011

010,001,101
010,101,100
100,010,011
110,001,100

010,001,110
110,001,010
101,010,001
001,100,011
010,100,101

010,001,110
010,101,001
100,010,101
110,001,010

001,010,101
001,110,100
010,101,100
100,001,110
100,010,011

quiprobable Columns

001,010,101
001,110,100
010,100,011
011,100,100

Proportional Rows, Proportional Columns

010,001,110
100,001,011
001,100,011
011,100,100
001,101,010

001,010,101
101,100,010
010,011,100
010,001,101
010,110,001

001,001,110
100,100,011
010,100,011
011,001,100
001,110,010

010,010,101
101,001,010
001,011,100
010,100,101
010,101,001

Matrix 2

Equiprobable Rows, Proportional Columns

110,111,100
011,110,101
111,100,011
011,001,111
110,110,011

Proportional Rows, E

001,111,011
011,011,101
011,101,011
011,110,011
011,111,001

111,011,001
100,011,111
110,001,111
111,100,110
001,011,111

101,101,110
111,010,110
110,011,110
111,001,101
101,111,010

111,011,100
100,110,111
111,001,011
111,001,110
110,011,011

101,101,011
111,010,101
110,011,011
111,001,011
101,111,001

110,111,001
011,011,101
110,100,111
011,100,111
001,110,111

quiprobable Columns

001,111,110
011,011,110
011,101,110
011,110,101
011,111,010

Proportional Rows, Proportional Columns

001,011,111
111,010,110
010,110,111
101,011,011
100,011,111

011,110,110
001,111,011
011,011,101
101,110,110
111,110,010

001,110,111
111,010,011
010,011,111
101,011,110
111,011,010

011,011,110
001,111,110
011,110,101
101,110,011
100,110,111

Matrix3

Equiprobable Rows, Proportional Columns

110,110,111
011,011,111

101,111,011
111,110,110

Proportional Rows, E

011,111,011
101,111,110
111,110,011

111,011,101
110,111,011
111,101,101

101,110,111
111,011,110

111,011,011
110,111,110
111,101,011

110,111,011
011,110,111

quiprobable Columns

011,111,101
101,111,011
111,110,101

Proportional Rows, Proportional Columns

011,111,011
101,111,110
011,011,111
111,011,110

111,110,110
111,101,101
111,110,101
110,111,011

111,110,011
101,111,101
111,011,101

111,011,011

011,111,110
111,101,110
011,110,111
110,111,110

'Commas delimit rows of matrices.
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Table 6 (Continued)

M,

M

M,

M,

Matrix 4

Eq
100,111,001,001
001,100,110,011
010,101,100,110
110,100,001,110
110,011,010,010

uiprobable Rows, Proportional Columns

001,110,011,100
100,101,001,011
001,011,101,001
101,001,001,011
011,101,001,001

Proportional Rows, E

100,010,101,011
010,100,011,011
110,100,101,001
101,100,110,010
101,010,011,100

Proportional Rows, Proportional Columns

001,011,011,100
001,110,010,011
011,001,110,010
001,001,111,001
101,001,011,001

010,001,011,101
001,010,001,111
001,010,101,011
100,001,011,011
011,110,001,001

101,011,100,010
110,101,001,001
001,101,010,011
001,110,010,011
010,011,010,101

011,010,010,101
101,100,011,010
001,010,111,001
100,011,110,010
011,100,110,010

100,110,011,100
100,100,110,011
010,101,101,001
101,001,001,110
110,011,001,001
quiprobable Colum
100,011,101,010
010,101,011,001
001,100,101,011
001,100,110,011
101,011,010,100

001,010,011,101
001,100,011,011
011,001,110,001
001,001,111,010
101,001,011,010

Proportional Rows, Fixed Columns

001,011,001,110
011,001,010,101
011,001,110,001
110,011,001,001
001,100,011,011

001,001,011,110
001,001,010,111
001,001,110,011
110,001,001,011
001,110,011,001

001,111,001,001
001,101,001,011
001,011,100,110
110,100,001,011
011,101,010,010
ns
101,010,100,011
110,100,001,011
110,101,010,001
101,110,010,010
010,010,011,101

011,011,010,100
101,110,010,010
001,010,111,010
100,011,110,001
011,100,110,001

010,011,001,101
011,010,001,101
011,010,101,001
100,011,011,001
011,100,001,011

Matrix 5

Eq
100,011,100,101
110,001,010,110
001,101,011,010
100,101,010,110
001,011,001,101

uiprobable Rows, Proportional Colum

011,100,110,100
001,101,011,100
110,101,001,001
011,100,011,100
010,001,101,011

Proportional Rows, E

100,100,011,101
010,010,101,101
100,100,110,101
011,101,010,001
001,011,110,100

100,010,011,110
100,010,011,101
001,100,110,011
100,100,110,101
100,001,011,110

001,001,110,110
101,010,010,101
001,110,110,001
001,110,010,101

101,001,110,010

101,101,010,100
110,011,001,100
101,110,010,100
001,100,101,011
110,010,100,101

110,011,010,100
011,011,001,100
110,110,010,001
011,101,010,100
110,011,100,100

100,011,110,100
110,001,011,100
110,101,001,010
100,100,011,110
010,011,001,101
quiprobable Colum
101,100,011,100
110,010,101,100
101,100,110,100
011,100,101,001
001,010,110,101

Proportional Rows, Proportional Columns

100,011,010,110
100,011,011,100
110,100,110,001
100,101,010,101
110,001,011,100

Proportional Rows, Fixed Columns

010,010,101,101
110,001,001,110
010,101,101,010
010,101,001,110

010,001,101,110
110,010,001,101
010,110,101,001
010,110,001,101

110,010,101,001

ns
011,100,100,101
001,101,010,110
001,101,011,001
011,101,010,100
001,001,101,011

ns
100,101,010,101
010,011,001,101
100,110,010,101
001,101,010,011
110,011,100,100

110,010,011,100
011,010,001,101
001,110,010,011
011,100,110,100
100,011,100,110

001,010,110,101
101,001,010,110
001,101,110,010
001,101,010,110

101,010,101,010

110,001,110,001
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— APPENDIX C —
GOTELLI AND GRAVES’S MODELS RECAST IN TERMS

OF INDIVIDUALS

In the following, let ¢ denote the matrix of probabilities used to place the first

species in Gotelli and Graves’s models.

Proposition 1. The following algorithm is equivalent to SIM6:

1. The first individual is placed according to ¢ .

2. Additional individuals are placed independently and according to ¢, until

the simulated and observed numbers of total species-occurrences match.

Justification: Rather than provide a rigorous proof, I will outline arguments with an

example, from which generalizations follow. Let

Pn P P
O=| Py Pn Px (10)
Py Pxn P

where each p, is a probability less than 1, and Z p;=1,fori=123and j=123.
ij

SIM6 implies that for the presence-absence matrix

01 0
M=(1 0 0], (1T)
00 1
P .
pmy= Y p oL (12)
comes  1=p, 1=p.—p,
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where S ={(x,y,2):x,y,ze€{12,21,33}; x # y # z}. Moreover, the proposed
algorithm indicates that the probability of observing an arrival sequence of (i) species

1 at site 2, then (ii) species 2 at site 1, and finally (iii) species 3 at site 3 is given by
P2 '(zpfz)'pzl '[Z(pu +p2)"'] Py (13)
n=0 n=0

Importantly, (13) will hold only if individuals arrive independently of each other, and

all according to ¢ . Under the same conditions, the proposed algorithm implies that

PMy= > [p-Q.p)p,-Q(p.+p)) p.] (14)
(x,y,z)eS n=0 n=0
Moreover, because for any geometric sequence
< 1
da=—o, (15)
n=0 1 —a
- n 1
QP —— (16)
n=0 1- P
and
00 ; 1
2(p +p) =, (17)
=0 l-p.—p,

implying that the right hand sides of (12) and (14) must be equal. Generalizing, it can
be shown that equality holds regardless of the initial probabilities and presence-

absence matrix. Hence, the proposition follows. ]

Proposition 2. The following algorithm is equivalent to SIMS:

1. The first individual in each column is placed according to ¢ .
2. Additional individuals are placed independently and according to ¢, until

the simulated numbers of species in each column match the marginal totals.
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Justification: The arguments from Proposition 1 can immediately be extended, by
treating each column as a separate presence-absence matrix, into which individuals are

placed until the number of species matches the corresponding marginal total. u



— APPENDIX D —
ASSUMPTION VIOLATIONS FOR GOTELLI’S (2000)
MODELS

This appendix lists the assumption violations that I considered for each of
Gotelli's (2000) models. The assumptions are divided into two sets: the “limited” set,
consisting of violations suggested by the models (Table 7), and the “full” set,

including additional violations constructed here (Table 8).
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Table 7. Assumption violations belonging to the "limited set” for Gotelli’s (2000)
models.

Model

Assumption Violations'

SIM1
SIM2

SIM3

SiM4
SIM5

SIM6
SIM7
SIM8
SIM9

T;INR
T;IN
S IN
1/C
1/R

1/RC
1/RC
1/RC
T;IN

S,INC

S,INC
T,INR
T,INR
SN

S,T;IN?

S;T;IN?
S;T;IN?
SiINC
~S;T,IN

"Variables defined in Figure 5.
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Table 8. Assumption violations belonging only to the “full set” for Gotelli’s
(2000) models.
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¥0-3v
0-3v
y0-3v
y0-3v

1100

1100

1100

1100
0-3v
y0-3v
y0-3v
¥0-3v
y0-3v
¥0-3v
¥0-3v
y0-3v

¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v

1100

1100

1100

1100
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
v0-3v

¥0-3y
¥0-3ay
¥0-3ay
y0-3ay
¥0-3ay

1100

1100

1100

1100
¥0-3ay
y0-3ay
¥0-3ay
¥0-3y
¥0-3y
¥0-3y
¥0-3v
y0-3v

¥0-3av
¥0-3ay
¥0-3ay
y0-3ay
y0-3ay

1100

1100

1100

1100
¥0-3ay
y0-3ay
y0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av
y0-3v.

¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v

1100

1100

1100

1100
¥0-3v
¥0-3v
¥0-3v
y0-3v

¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v

1100

1100

1100

1100
¥0-3v
¥0-3v
¥0-3v
y0-3v

¥0-3ay
¥0-3ay
¥0-3y
¥0-3ay
¥0-3ay
¥0-3av
¥0-3v
¥0-3ay
¥0-3y

1100

1100

1100

1100
¥0-3v
¥0-3ay
¥0-3y
y0-3v

¥0-3av
¥0-3av
¥0-3ay
y0-3ay
0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av

1100

1100

1100

1100
¥0-3av
¥0-3av
¥0-3av
y0-3v.

¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v

1100

1100

1100

1100

¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v

1100

1100

1100

1100

¥0-3ay
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3av
¥0-3av
¥0-3y
¥0-3y
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3av

1100

1100

1100

1100

¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3y|
¥0-3y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3y|
¥0-3y|
¥0-3Y|

1100

1100

1100

1100

8IS
‘LNIS
‘9IS
‘LINIS

uonejoIn

(ponunuo)) g dqeL.

Model(s)

Matrix



170

¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v

1100

1100

1100

¥0-3y
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3av
¥0-3ay
¥0-3y
¥0-3y
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3av
¥0-3v

1100

1100

1100

¥0-3av
¥0-3ay
¥0-3ay
y0-3ay
y0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av
¥0-3ay
y0-ay
y0-3ay
¥0-3av
¥0-3av

1100

1100

1100

¥0-3v
0-3v
0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v
y0-3v

1100

1100

1100

¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v

1100

1100

1100

¥0-3y
¥0-3y
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3v
¥0-3v
¥0-3y
¥0-3y
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3v
¥0-3v

1100

1100

1100

¥0-3av
¥0-3ay
¥0-3ay
y0-3ay
y0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av
¥0-3av
y0-3ay
y0-3ay
¥0-3av
¥0-3av

1100

1100

1100

¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v
y0-3v
¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v
y0-3v

1100

1100

1100

¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
1100
1100
1100
1100
1100
1100
1100

1100
1100
1100
y0-3ay
¥0-3ay
¥0-3y
¥0-3y
¥0-3y
¥0-3v
¥0-3ay
y0-3ay
¥0-3ay
¥0-3y
¥0-3y
1100
1100
1100

1100
1100
1100
y0-3ay
y0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av
¥0-3ay
y0-3ay
y0-3ay
¥0-3av
¥0-3av
1100
1100
1100

¥0-3v
¥0-3v
0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
1100
1100
1100
1100
1100
1100
1100

1100

1100

1100
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
y0-3v

1100

1100

1100
¥0-3ay
¥0-3ay
¥0-3av
¥0-3v
¥0-3ay
¥0-3y
¥0-3y
¥0-3ay
¥0-3ay
¥0-3av
¥0-3v
¥0-3ay
¥0-3y
y0-3v

1100

1100

1100
y0-3ay
0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av
¥0-3ay
y0-3ay
0-3ay
¥0-3av
¥0-3av
¥0-3av
¥0-3av
y0-3v.

¥0-3v
¥0-3v
0-3v
1100
1100
1100
1100
1100
1100
1100
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
y0-3v

¥0-3v
¥0-3v
¥0-3v
1100
1100
1100
1100
1100
1100
1100
y0-3v
y0-3v
¥0-3v
¥0-3v
¥0-3v
¥0-3v
V=14

¥0-3ay
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3ay
¥0-3av
¥0-3av
¥0-3y
¥0-3y
¥0-3ay
1100
1100
1100
1100
1100
1100
1100

1100

1100

1100
¥0-3y|
¥0-3y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3y|
¥0-3y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
¥0-3Y|
0-3,
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¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 9L0°0
$0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 v0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 9100
$0-39 ¥0-39 ¥0-39 v0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 v0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 9L0°0
$0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 v0-39 9100 9L00 9100
$0-39 $0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 v0-39 ¥0-39 +0-39 9100
¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 9100
9100 9100 9100 9100 9L0°0 9L00 9L00 9100 9L00 9L00 9L00 9L00 9100 9L00 9L00 9L00 ¥0-39 ¥0-39 +0-39
¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 9100 9L00 9100 .w_\_v_,___w
v0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-I9 ¥0-39 Y0-39 ¥0-39 ¥0-I9 Y0-39 ¥0-39 YOI Y0-I9 Y0-39 ¥0-39 ¥0-F9 9L00f.g o |1
9L0°0 9100 9L0°0 9100 9L0'0 9L00 9L00 9100 9L00 9L0'0 9L00 9L00 9L00 9L00 9L00 9L00 ¥0-39 Y039 +0-39| s
$0-39 $0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 v0-39 ¥0-39 +0-39 9L0°0
$0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 v0-39 ¥0-39 +0-39 9L0°0
¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 9100
¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 9100
¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 9L0°0
¥0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +0-39 ¥0-39 ¥0-39 ¥0-39 ¥0-39 +¥0-39 9100
$0-39 $0-39 $0-39 ¥0-39 $0-39 +0-39 $0-39 +0-39 ¥0-39 #0-39 +0-39 #0-39 +0-39 ¥0-39 $0-39 ¥0-39 $0-39 +0-39 9100
@ | x
uone[oIA e m
2

(ponunuo)) g dqeL.
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¥0-3S
¥0-3G
¥0-3G
¥0-3S
¥0-39
¥0-3S
€100
¥0-3S
¥0-3S
€100
¥0-3S
¥0-39
¥0-3S
¥0-3S
¥0-3S
¥0-3S
y0-3G

€100
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G

€100
¥0-3G
¥0-3G
¥0-3S
¥0-3S
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3S
¥0-3S
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3G
€100
¥0-3G
¥0-35
¥0-35
¥0-3S
€100
¥0-3G
¥0-3G
€100
¥0-35
¥0-35
¥0-3S
¥0-3S
¥0-3G
¥0-3G
y0-3G

¥0-3S
€100
¥0-3G
¥0-39
¥0-39
¥0-3S
€100
¥0-3S
¥0-3S
€100
¥0-3S
¥0-39
¥0-3S
¥0-3S
¥0-3S
¥0-3S
y0-3G

¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3G
¥0-3G
€100
¥0-3S
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3S
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3G
¥0-3G
¥0-3G
€100
€100
¥0-3S
€100
¥0-3G
¥0-3G
€100
y0-3G
y0-3S
¥0-3S
¥0-3S
¥0-3G
¥0-3G
y0-3G

¥0-3S
¥0-39
¥0-39
€100
€100
¥0-3S
€100
¥0-3S
¥0-3S
€100
¥0-3S
¥0-3S
¥0-3S
¥0-3S
¥0-3S
¥0-3S
y0-3G

¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
€100
€100
€100
¥0-3G
€100
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
€100
€100
€100
¥0-3G
€100
¥0-3G
¥0-3S
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3S
¥0-3G
¥0-3G
¥0-35
¥0-3S
¥0-3S
€100
¥0-3S
€100
€100
€100
¥0-3S
¥0-3S
¥0-3S
¥0-3S
¥0-3S
y0-3G

¥0-3S
¥0-39
¥0-39
¥0-3S
¥0-39
¥0-3S
€100
¥0-3S
€100
€100
€100
¥0-39
¥0-3S
¥0-3S
¥0-3S
¥0-3S
y0-3G

¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3G
€100
€100
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3S
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3G
€100
€100
¥0-3G
¥0-3G
¥0-3G
¥0-3G

¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-3S
¥0-3S
€100
¥0-3G
¥0-3G
€100
¥0-3G
¥0-3S
¥0-3S
€100
€100
¥0-3G
y0-3G

¥0-3S
¥0-39
¥0-39
¥0-3S
¥0-3S
¥0-3S
€100
¥0-3S
¥0-3S
€100
¥0-3S
¥0-3S
¥0-3S
€100
€100
¥0-3S
¥0-3G

¥0-3G
¥0-3G
¥0-3G
¥0-3G
¥0-35
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3G
¥0-35
¥0-3G
¥0-3G
¥0-3G
€100
€100

¥0-3G
¥0-3G
¥0-3G
¥0-3S
¥0-3S
¥0-3G
€100
¥0-3G
¥0-3G
€100
¥0-3S
¥0-3S
¥0-3G
¥0-3G
¥0-3G
€100
€100
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1210 120 1ZL0 120 LZk0 LZL’0 LZk0 1ZL0 LZk'0 LZL'0 ¥000 ¥000 000 ¥000 ¥00'0 Y000 ¥000 +00°0 %000
1210 LZL'0 1ZL0 120 LZL0 LZL’0 LZL0 LZL0 120 LZL'0 ¥000 ¥000 000 ¥000 ¥000 Y000 ¥000 +00°0 %000
120 LZL'0 1ZL0 120 LZL0 LZL’0 LZL0 LZL0 120 LZL'0 ¥000 ¥000 000 ¥000 ¥000 Y000 ¥000 +00°0 %000
121’0 120 LZL0 120 LZL0 LZL0 120 LZL0 120 LZL'0 v000 ¥000 000 ¥000 ¥000 ¥000 ¥000 +00°0 000
LZL'0 LZL'0 LZL0 120 LZL0 LZL0 LZL0 LZL0 120 LZL'0 ¥000 ¥000 000 ¥000 ¥000 Y000 ¥000 +00°0 000
120 12’0 1ZL0 120 LZk0 LZL’0 120 1ZL0 12’0 LZL0 ¥000 ¥00'0 000 ¥000 ¥000 Y000 ¥00'0 000 ¥00°0
120 12’0 1ZL0 120 LZk0 LZL’0 120 1ZL0 LZi'0 LZL0 ¥000 ¥00'0 000 ¥000 ¥000 Y000 ¥000 +00°0 ¥00°0
1210 120 1zh0 1210 120 1zh0 120 120 1Zk0 120 ¥000 $00'0 000 Y000 H00'0 000 Y000 H00'0 000|. .
000 ¥000 Y000 Y000 Y000 ¥000 Y000 YOO Y000 000 80L'O 80L'O 80L'0 8OL'O 0L'O 80L'O 80LO 80L'O 80LOfepic 1
$00'0 ¥000 %000 Y000 ¥000 +000 Y000 ¥000 Y000 ¥00'0 80L'0 80L'0 8OL'O 80L'0 80L'0 80L'0 80L'O 8OL'O 80L'O
$000 ¥000 ¥000 ¥000 ¥000 +000 ¥000 #000 +¥00'0 ¥00'0 80L'0 80L'0 80L'O 80L'0 80L'0O 80L'0 80L'O 80L'O 80L'O
$000 ¥000 ¥000 ¥000 %000 +000 ¥000 #000 +¥00'0 ¥00'0 80L'0 80L'0 8OL'O 80L'0 80L'0 80L'0 80L'O 80L'O 80L'O
¥000 ¥000 ¥000 ¥000 ¥000 000 ¥000 ¥000 000 ¥00'0 80L'0 80L'0 80L'O 80L'0 80L'0 80L'0 80L'0 80L'O 80L'0
¥000 ¥000 ¥000 ¥000 ¥000 000 ¥000 ¥000 000 ¥00'0 80L'0 80L'0 80L'O 80L'0 80L'0 80L'0O 80L'0 80L'O 80L'0
¥000 ¥000 ¥000 Y000 ¥000 +00'0 ¥000 ¥000 Y000 %000 80L'0 80L'0 80L'O 80L'0 80L'0 80L'0O 80L'0 80L'O 80L'0O
¥000 ¥000 ¥000 Y000 ¥000 000 ¥000 ¥000 Y000 %000 80L'0 80L'0 80L'O 80L'0 80L'0 80L'0 80L'0 8OL'O 80L'0O
$00'0  ¥00'0 ¥00°0 ¥00°0 #00'0 +00°0 ¥00°0 #00°0 000 #00'0 80L'0 80L°'0 80L'0 80L°0 80L'0 80L'0 80L'0 80L'0 80L°0
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(ponunuo)) g dqeL.




174

120 120 1ZL0 120 L2k LZL’0 LZb0 LZL0 LZk'0 LZh0 LZh'0 LZk0 1Zb'0 LZLl'0 LZk0 LZl’0 LZL0 000 %000
120 LZL'0 1ZL0 120 LZL0 LZL0 LZL0 LZL0 LZLk'0 LZL'0 LZL0 LZL0 LZL'0 LZLl'0 LZL0 120 LZL'0 000 %000
1210 LZL'0 1ZL0 120 LZL0 LZL0 LZL0 LZL0 LZL'0 LZL'0 LZL0 LZL0 LZL'0 LZLk'0 LZL0 LZL0 LZL'0 000 000
121’0 12’0 LZL0 120 LZL0 LZL0 LZL0 LZL0 120 LZL'0 LZL0 LZL0 LZL'0 LZk0 LZL'0 120 LZL'0 000 000
121’0 LZL'0 LZL0 120 LZL0 LZL0 LZL0 LZL0 120 LZL'0 LZL0 LZL0 LZL'0 120 LZL0 LZL0 LZL'0 000 000
120 12’0 1ZL0 120 LZk0 LZL’0 LZk0 1ZL0 LZLi'0 LZh0 12’0 LZk0 1ZL'0 LZLl'0 1ZL0 LZl’0 LZL0 000 %000
120 12’0 1ZL0 120 LZk0 LZL’0 LZk0 1ZL0 LZ'0 LZk0 LZh’0 LZk0 1ZL'0 LZL’0 1Zb0 LZl’0 LZL0 000 000
1210 120 1zh0 1210 120 1zh0 120 120 1Zk0 120 1Zl0 1Zk0 120 1zl0 1Zh0 120 1zh0 $000 000| .
000 ¥000 Y000 Y000 Y000 ¥000 Y000 Y000 Y000 000 Y000 YOO Y000 000 Y000 Y000 Y000 80L'O 80LOfepie |1
$000 ¥000 ¥000 Y000 ¥000 +000 ¥000 ¥000 000 ¥000 +000 Y000 ¥000 000 ¥000 +00'0 Y000 80L'O 80L'0
$000 ¥000 ¥000 ¥000 ¥000 +000 ¥000 #000 000 ¥000 +000 ¥000 ¥000 000 ¥000 +000 ¥00'0 80L'0 80L'0
$000 ¥000 ¥000 ¥000 ¥000 +000 ¥000 #000 000 ¥000 +000 ¥000 ¥000 +00'0 ¥000 +00°0 ¥00'0 80L'0 80L'0
¥000 ¥000 ¥000 ¥000 ¥000 000 ¥000 ¥000 000 ¥000 +000 ¥00'0 ¥000 000 ¥00'0 +00'0 Y000 80L'O 80L°0
¥000 ¥000 ¥000 ¥000 ¥000 000 ¥000 ¥000 000 ¥000 +000 ¥00'0 ¥000 000 ¥00'0 +00'0 Y000 80L'O 80L'0
¥000 ¥000 ¥000 Y000 ¥000 000 ¥000 ¥000 000 ¥000 +000 Y000 ¥000 000 %000 +00'0 Y000 80L'O 80L'0
¥000 ¥000 ¥000 Y000 ¥000 +00'0 ¥000 ¥000 000 ¥000 +000 ¥00'0 ¥000 000 %000 +00'0 Y000 80L'O 80L'0
$00'0  ¥00'0 ¥00°0 ¥00°0 #00'0 +00°0 ¥00°0 #00°0 000 #00'0 +00°0 ¥00°'0 #00°0 000 #00'0 +00°0 ¥00'0 80L'0 80L°0
@ | x
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— APPENDIX E —
ASSUMPTION VIOLATIONS FOR THE MODELS NOT
CONSIDERED BY GOTELLI (2000)

This appendix lists the assumption violations that I considered for each of the
models not considered in Gotelli (2000). As in Appendix D, the assumptions are

divided into “limited” (Table 9) and “full” sets (Table 10).
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Table 9. Assumption violations belonging to the “limited set” for the models other
than those of Gotelli (2000).

Nominal Probabilities Assumption Violations'
Equiprobable Rows, Equiprobable Columns | T;/N | Si/N |~S;T;/IN
Equiprobable Rows, Proportional Columns | N/RC | S;/N |~S;T;/N
Proportional Rows, Equiprobable Columns | N/RC | T;/N |~S;T;/IN
Proportional Rows, Proportional Columns NIRC | T;/N SilN

"Variables defined in Figure 5.
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Table 10. Assumption violations belonging only to the “full set” for the models
other than those of Gotelli (2000).
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— SUMMARY' —

For seventy years ecologists have debated to what extent competition affects
the composition of ecological communities. At one extreme, the “Gleasonian”
viewpoint posits that species assemble randomly, assorting by chance and abiotic
factors (Gleason 1926). At the other extreme, putative “assembly rules” suggest that
competition almost entirely determines the composition of communities (e.g.,
Diamond 1975). Differentiating between the two viewpoints has been challenging, as
experimentation is often impractical and unethical at the spatial scale of communities
(Connor and Simberloff 1986).

To compensate for the lack of experimental evidence, the most promising
approach has been null model testing. The testing asks what pattern would have been
observed in the absence of competitive effects. If the observed pattern differs from the
prediction, then the effects are inferred. Central to null model testing is the species
“presence-absence matrix,” in which each row represents a species while each column
represents a site. If species i was observed at site j, then the i,jth entry is a one;
otherwise it is a zero. To perform a test, one begins by assuming a null hypothesis
reflective of an absence of competitive effects. The null hypothesis is then used to
simulate a distribution of presence-absence matrices. If the observed presence-
absence matrix (or one more extreme) is sufficiently unlikely to have come from the
simulated distribution of matrices, then the null hypothesis is rejected and an effect of
competition is inferred. Null model testing is a form of statistical hypothesis testing
(Gotelli and Graves 1996).

In Chapters I and II, I show that existing null model tests suffer from two

critical flaws. Like all statistical tests, null model tests should be powerful and robust.

' This summary is an expansion of the abstract. It also contains elements of chapter introductions.

202



203

Power refers to the sensitivity of the test, with the most powerful tests rejecting false
null hypotheses most frequently. Robustness refers to the distortion of significance
levels when assumptions are violated, with robust tests only negligibly affected by
violations. Thus, null model tests should be powerful and, if assumptions cannot be
independently verified, robust. Chapters I and II show that all existing null model
analyses lack adequate power or robustness.

It is the issue of robustness that is particularly troubling. It means that when
assumptions cannot be verified — as is usually the case — existing tests will incorrectly
indicate competitive effects unacceptably often. Thus, the tests are unreliable. To
resolve the problem, in Chapter III, I develop robust, assumption-free tests.

The tests that I develop are based on two premises: First, regardless of how
competition acts — evolutionarily or ecologically, and extrinsically or intrinsically — it
will reduce the co-occurrence of ecologically similar organisms. Second, ecological
similarity can be specified using a hierarchical classification system. “Subunits” of
organisms can be classified into “units,” with subunits in the same unit being more

ecologically similar to each other than those in different units. Hence, defining the W,

as the event that the ith and jth subunit to arrive at a community belong to the same

unit, it follows that competitive effects predict that P(W,, | W,,) < P(W,; | W}3),
POV.s | W) < POV | W5 or P(Tay | W V) < POV [ W[ V), for instance.

Thus, an appropriate null hypothesis for testing for the absence of competitive effects
specifies equality between all relevant pairs of conditional probabilities. Using
random graph theoretic techniques, in Chapter III, I show that this null hypothesis is
sufficient to specify a distribution of the partition of subunits into units. Hence, to test
robustly for the absence of competitive effects, it is sufficient to check whether the

observed and predicted distributions of partitions match.
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In Chapter IV, I apply a test from Chapter III, which for simplicity relies on
one assumption. For the seven communities that I examine, competitive effects are
not indicated, although effects of other interspecific interactions (e.g., facilitation)
sometimes are. Overall, the predictions of the null model account for over 95% of the
variation in observed frequencies of partitions. Hence, these applications suggest that
although interspecific interactions may discernibly affect the composition of

communities, those effects are minor.



205

LITERATURE CITED

Connor, E. F., and D. Simberloff. 1986. Competition, Scientific Method, and Null
Models in Ecology. American Scientist 74:155-162.

Diamond, J. M. 1975. Assembly of species communities. Pages 342-344 in M. L.
Cody and J. M. Diamond, eds. Ecology and Evolution of Communities. Harvard
University Press, Cambridge.

Gleason, H. A. 1926. The individualistic concept of plant association. Bulletin of the
Torey Botanical Club 53:7-26.

Gotelli, N. J., and G. R. Graves. 1996. Null models in ecology. Smithsonian Institution

Press, Washington DC.



	CHAPTER I
	CHAPTER II
	CHAPTER IV
	CHAPTER I

	Chapter I.pdf
	GOTELLI AND GRAVES’S MODELS
	THE STANDARD NULL HYPOTHESIS
	EVALUATING GOTELLI AND GRAVES’S MODELS
	METHODS
	Magnitude of Inconsistency

	RESULTS
	Magnitude of Inconsistency

	DISCUSSION

	Chapter III.pdf
	IMPLICATIONS OF THE NULL HYPOTHESIS
	DISCUSSION
	ACKNOWLEDGMENTS

	Chapter IV.pdf
	MATERIALS AND METHODS
	Data Sets
	The data that Ladau and Schwager’s test employ co
	North American Breeding Bird Survey (BBS)
	Barro Colorado Island (BCI) Vegetation
	Sherman Plot Vegetation
	Yosemite Zooplankton

	John Muir Wilderness and Sequoia and Kings Canyon (JMW-SEKI) Zooplankton
	
	Null Hypothesis Test

	For each data set and each site, I first assemble
	I next assumed that for all i and j, �.   Under this assumption, the aforementioned null hypothesis alone implied that within the set of sites having exactly � subunits,




	Appendices.pdf
	DEFINITIONS


