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In addition to the twenty amino acids that are universally found as building blocks of 

proteins, nonprotein amino acids are also present in numerous plant species. One such 

nonprotein amino acid, meta-tyrosine, is abundant in the root exudates of Chewings 

fescue (Festuca rubra L. ssp. commutata). Consistent with the phytotoxic effects of m-

tyrosine, prior studies showed that Chewings fescue has superior weed-suppressive 

capacity in field trials involving dozens of turf grass varieties. Further research with 

m-tyrosine demonstrates that this compound is stored in a different compartment than 

the protein amino acids, and can be easily washed off fescue roots with aqueous 

solutions. Chewings fescue roots have enzymatic activity, likely from a cytochrome 

P450, for synthesizing m-tyrosine from phenylalanine. An EST library was 

constructed from roots of Chewings fescue and four candidate cytochrome P450 genes 

are identified and cloned.  

    When added to A. thaliana growth medium, m-tyrosine can be misincorporated 

into A. thaliana proteins. Several protein amino acids, in particular phenylalanine, 

partially rescue the toxicity of m-tyrosine. Correspondingly, a screen for m-tyrosine 

resistance in A. thaliana identified a mutant that over-accumulates free phenylalanine. 

Map-based cloning showed that the genetic basis of this phenotype is adt2-1D, a 



mutant allele of ADT2, which encodes arogenate dehydratase, the final enzyme of the 

phenylalanine biosynthesis pathway. Characterization of ADT2 and its mutant form 

revealed feed-back regulation of phenylalanine biosynthesis, which depends on a 

critical motif of the ADT2 protein. Overexpression of the feedback-insensitive adt2-

1D produces even higher levels of free phenylalanine and has pleiotropic 

physiological consequences, including abnormal leaf development, resistance to 5-

methyltryptophan, reduced growth of the generalist lepidopteran herbivore 

Trichoplusia ni (cabbage looper), and increased salt tolerance. Finally, several 

hypotheses for m-tyrosine modes of action were tested and discussed. 
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CHAPTER ONE:  

OVERVIEW OF NONPROTEIN AMINO ACIDS IN PLANTS 

 

Occurrence and biosynthesis of nonprotein amino acids 

Other than the 20 common amino acids used in the genetic code for protein 

biosynthesis, plants also produce other nonprotein amino acids (Bell 1976). Some of 

these are common and important intermediates in primary metabolism, such as 

ornithine, homoserine and S-adenosylmethionine which can be detected in most plant 

species and are well understood. There are also uncommon amino acids found as plant 

secondary metabolites whose occurrence is often limited to a small number of 

families. More than 250 amino acids of this kind have been identified, with seeds of 

various legumes being very common sources (Fowden 1981). Several comprehensive 

reviews already covered thorough surveys of these amino acids (Rosenthal 1982; 

Barrett 1985) and will not be repeated here.  

    However, compared to the long list of nonprotein amino acids described, the 

biosynthesis of these compounds are largely unknown. Studies of this subject by 

isotope labeling and enzyme purifications suggest that these uncommon nonprotein 

amino acids can have three different origins: direct modification of existing amino 

acids, deviation of biosynthetic pathways used for common amino acids and de novo 

biosynthesis by novel enzymes (Barrett 1985). Understanding of these pathways has a 

practical value: genetic engineering of nonprotein amino acid metabolism is often 

desired in many circumstances, either to increase the production of these amino acids 

for their medicinal values, or to decrease the production of them to avoid the toxic 

effects to human and animals (Bell 2003; Dixon and Sumner 2003). Unfortunately, 

without sufficient genomic information available for most of the species producing 

uncommon nonprotein amino acids, enzymes involved in nonprotein amino acid 
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biosynthesis could not be easily identified and cloned, especially for enzymes of rate-

limiting steps (Saito et al. 1997). Research of this field, however, could be accelerated 

with the rapid progresses of plant genome and RNA sequencing projects, thanks to the 

higher speed and lower cost brought to us by the next-generation sequencing 

techniques (Lister et al. 2009; Simon et al. 2009; Yonekura-Sakakibara and Saito 

2009). With powerful tools of bioinformatics, a sequence genome would allow better 

identification of candidate genes, which could then be used for hypothesis generation 

and functional tests. 

 

Functions of nonprotein amino acids in plant defense to insect attacks  

Chemical defense is one of the most important strategies when sessile plants have to 

protect themselves from numerous herbivores and competitors during the entire life 

cycle (Levin 1976; Swain 1977; Wittstock and Gershenzon 2002). Most of these 

chemical toxins, repellents or barriers are plant secondary metabolites such as 

alkaloids, glucosinolates, terpenoids and phenolics (Schoonhoven et al. 2005). Amino 

acids, especially nonprotein amino acids, were also found to play important roles in 

this process (Rosenthal and Berenbaum 1991). Here I list three representative 

examples with recent updates to review the functional diversity of nonprotein amino 

acids in plant – insect interactions. Figure 1.1 illustrates the structures of amino acids 

discussed in this section. 

 

Canavanine 
L-Canavanine (L-2-amino-4-guanidinooxybutyric acid) is probably the most studied 

nonprotein amino acid in plant defense against insects (Rosenthal 2001). Initially 

isolated from jack bean, Canavalia ensiformis (L.) DC, L-canavanine is a major  
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Arginine Canavanine

Phenylalanine DOPA

GABA BABA

Proline Azetidine-2-carboxylic acid

Tyrosine Mimosine

Tryptophan 5-hydroxytrptophan

 
  

Figure 1.1. Comparison of amino acid structures. Amino acids on the left 
are more commonly found, whereas their less popular analogs are on the right. 
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nitrogen storage compound in the seeds of many plants from the Leguminosae family 

and constitutes up to 13% of the dry weight of seeds (Rosenthal 1972). As an analog 

and antimetabolite of L-arginine, L-canavanine is highly toxic to a wide range of 

organisms including bacteria, fungi, yeast, algae, plants, insects, and mammals 

(Rosenthal 1977; Nakajima et al. 2001). The misincorporation of L-canavanine into 

proteins in place of L-arginine is considered the major mode of action of its toxicity 

(Nakajima, Hiradate and Fujii 2001; Igloi and Schiefermayr 2009). On the other side, 

two insect species that are specialized in feeding on L-canavanine-containing plants 

have developed different mechanisms of tolerance: The tobacco budworm Heliothis 

virescens (Noctuidae) detoxifies L-canavanine by a novel canavanine hydrolase which 

converts canavanine to homoserine and guanidine (Melangeli et al. 1997). The 

bruchild beetle Caryedes brasiliensis deals with canavanine in another way by 

converting it first to canaline and urea, and then from the equally toxic canaline to 

homoserine and ammonia (Rosenthal et al. 1977; Rosenthal et al. 1978). In addition, 

Caryedes brasiliensis seems to have a more accurate arginyl-tRNA synthetase that can 

discriminate canavanine from arginine, resulting in a much lower rate of 

misincorporation into proteins (Rosenthal et al. 1976). Interestingly, both of these  

mechanisms possessed by Caryedes brasiliensis are also present in some legumes that 

produce canavanine, and might form the basis to avoid self-toxicity in these plants 

(Rosenthal 1990; Igloi and Schiefermayr 2009).   

    The potent toxicity of canavanine results in strong selective pressure on insects 

that feed on canavanine-containing plants. Other than the very few species that are 

resistant to canavanine, as mentioned above, some insects sensitive to canavanine have 

developed the ability to recognize and avoid consumption of this toxic amino acid.  

Using Drosophila as an insect model, it was found that L-canavanine is recognized by 

flies followed by a behavioral avoidance response via a chemosensory mechanism 
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(Mitri et al. 2009). Further study revealed that L-canavanine is detected by the DmX 

receptor, a G-protein coupled receptor that is different from the family of gustatory 

receptors (Grs), the most common taste-receptive sensors in Drosophila (Mitri et al., 

2009). It is still unknown whether if this mechanism is conserved among different 

insect species. 

 

 γ - Aminobutyric Acid (GABA) 

GABA is a four carbon nonprotein amino acid present in free amino acid pools of 

most prokaryotic and eukaryotic organisms. In plants, GABA biosynthesis is catalyzed 

by glutamate decarboxylase (GAD). The activity of GAD is regulated in two ways 

depending on the pH range: at pH 7.0-7.5, GAD activity is stimulated by 

calcium/calmodulin; at acidic pH range, GAD activity is independent of 

calcium/calmodulin and is sensitive to pH with an optimum of 5.8 (Baum et al. 1993; 

Snedden et al. 1995). Correspondingly, insect attack causes increased plant GAD 

activity in two ways: Touch of insects induced Ca2+ influx whereas further damage by 

insects releases acidic solutions from vacuoles and decreases the pH in cytosol (Hall et 

al. 2004; Hilker and Meiners 2010). As a result, GABA level usually increases 

several-fold and rapidly in response to insect attacks (Wallace et al. 1984; Ramputh 

and Bown 1996; Bown et al. 2002). A recent review discussed the function of GABA 

as plant defense compound against insects (Bown et al. 2006). Several lines of 

evidence indicate that the increased level of GABA could be an effective mechanism 

of plant defense: Growth tests using GABA-containing artificial diet showed that 

physiological concentration of GABA in wounded plants reduces the growth and 

survival of insect larvae. Choice tests using GABA overproducing transgenic tobacco 

demonstrate that insects avoid feeding on high-GABA plants. The damage of GABA 

to insects could be a result of the inhibition of GABA-gated Cl-  channels that are 
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important in the peripheral nervous system in insects (Hosie et al. 1997). It should also 

be noted that rapid accumulation of GABA also occurs in response to other stresses 

such as flooding, cold, heat, drought, salt and other mechanical damages through the 

regulation of Ca2+ and pH (Kinnersley and Turano 2000). GABA also plays other 

roles in plant development and metabolism, including guidance for pollen tube growth 

and regulation for carbon/nitrogen metabolism in plants, or even a general signaling 

molecule mediating the communications between plants and other organisms (Shelp et 

al. 1999; Bouché et al. 2003; Bouché and Fromm 2004; Shelp et al. 2006; Fait et al. 

2008). 

 

 β-Aminobutyric Acid (BABA) 

Structurally related to GABA, BABA is however rare in nature. To date, it has only 

been reported in root exudates of tomato plants grown in solarized soils (Gamliel and 

Katan 1992). Interestingly, when applied exogenously to plants, BABA seems to play 

a broad role that increases plant defense against both biotic stresses such as invasion 

of various bacterial, viral and fungal pathogens, and abiotic stress such as drought, salt 

and heat shock (Cohen 2001; Jakab et al. 2001; Jakab et al. 2005; Zimmerli et al. 

2008). It appears that BABA acts by priming plants into a state that respond faster and 

stronger to the subsequent stresses via the interplay of several hormones including SA, 

ABA and ethylene (Ton et al. 2005). Recently, it was also found that similar 

application of BABA to plants also reduces the performance of several insect species 

including aphids and Lepidoptera (Hodge et al. 2006).  Despite its versatile function 

in stress response, the physiological significance of natural occurring BABA still 

needs further investigation. Table 1.1 summarizes these three representative 

nonprotein amino acids. 
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Table 1.1.: Comparisons of three representative nonprotein amino acids 

Compound L-Canavanine GABA BABA 

Occurrence Massive accumulation 

in limited number of 

families 

Readily detectable in 

almost every species 

Rarely found in 

nature 

Toxicity Direct Direct Indirect 

Mode of 

Action 

Compete with protein 

amino acid analogs 

Inhibits  

neurotransmission 

Enhances existing 

defense response 

Target Herbivore and 

competitor 

Herbivore with neural 

systems 

General biotic and 

abiotic stresses 

Inducibility No Yes Unknown 

Other 

functions 

Storage Development and 

metabolism 

Unknown 

 

Other Nonprotein Amino Acids and Their Common Themes 

Similar to canavanine, L-3,4-dihydroxyphenylalanine (L-DOPA), 5-

hydroxytryptophan, mimosine, and azetidine-2-carboxylic acid are other nonprotein 

amino acids found in large quantities in certain species, especially legume seeds 

(Fellows 1970; Ishaaya et al. 1991). These amino acids all inhibit the growth of tested 

insect species when blended into insect diets (Rehr et al. 1973; Birch et al. 1986; 

Adeyeye and Blum 1989). Their effects are not limited to insects only, since some of 

them are likely to target de novo protein biosynthesis, a fundamental processed 

conserved across different organisms (Rodgers et al. 2002; Ozawa et al. 2005; 

Bessonov et al. 2010). Furthermore, similar to GABA, L-DOPA and 5-

hydroxytryptophan are precursors of neurochemicals (dopamine and serotonin, 

respectively) that regulate neural systems in insects and mammals, and could therefore 
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have additional effects on toxicity to these species (Osborne 1996). 

    Compared to carbohydrates which plants produce from photosynthetic carbon, 

nitrogen is a more limited resource for plants in most environments. Using nonprotein 

amino acids, which are nitrogen dense compounds, as defensive agents could be a 

risky strategy and should be used in an efficient way. As we can find from the 

examples, three strategies were used to improve the efficiency of these nitrogen 

compounds: Firstly, some of these massively accumulated nonprotein amino acids 

have double duties and often serve as seed storage compounds. The relatively simple 

structure of nonprotein amino acids and their similarity to protein amino acids make 

these nitrogen and carbon resources acids easier to be reused and integrated into 

primary metabolism when needed. Plants have also evolved the corresponding 

changes at the genetic and molecular levels to prevent self-toxicity; Secondly, several 

nonprotein amino acids target the sensitive nervous systems of invertebrate and 

vertebrate and can therefore minimize the dosage needed to interfere with the growth 

and development of these herbivores. Since these neural receptors involved are usually 

not present in plants, self-toxicity can be largely avoided. Last but not the least, 

although not fully investigated yet, plants could also use nonprotein amino acids as 

signaling molecules to assist with systematic defense response – another example that 

these compounds can be used in a highly efficient way. We should also notice that the 

introduction of model organisms such as D. melanogaster and A. thaliana to the 

research on nonprotein amino acid function has made significant contributions to our 

understanding of the mechanisms at the molecular level that would be otherwise 

almost impossible to reach by traditional approaches. The rich resources and research 

tools available to model organisms should greatly facilitate bringing research on 

nonprotein amino acids to the next level where their functions can be better 

understood.  
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Studies of amino acid metabolism using nonprotein amino acids 

Most of the knowledge of amino acid biosynthesis pathways in plants was learned 

from bacteria and yeast, and verified in planta (Coruzzi and Last 2000).  However, 

other approaches have been developed to investigate amino acid metabolism directly 

in plants. As mentioned above, many nonprotein amino acids display toxicity to a 

wide spectrum of organisms, including other plant species. As a consequence, 

biochemical analysis using toxic amino acid analogs has become a very popular way 

to gain insights into plant amino acid metabolism (Lea and Norris 1976). In the post-

genomic era, genetic screens for plants resistant to toxic amino acids and the 

subsequent gene cloning has also been very fruitful. 

    When certain toxic nonprotein amino acids were used as for genetic screens, the 

resulting resistant mutants usually fell into two categories: mutants with defects in 

amino acid transporters or mutants overaccumulating amino acids that acts as 

antagonists to the toxic nonprotein amino acids.  Here are some examples from 

previous studies: 

    Ethionine is a toxic analog of methionine. A genetic screen for ethionine-resistant 

A. thaliana identified three different mutants.  Mutations in genes encoding 

cystathionine gamma synthase, threonine synthase and S-adenosyl-L-methionine 

synthetase 3 were identified to be responsible for the mto1, mto2, mto3 phenotypes, 

respectively. All three of these enzymes are directly involved in biosynthesis and 

metabolism of methionine in A. thaliana. Subsequent research with these mutants 

provided new insights into both the metabolic pathways and feedback regulation of 

free methionine in plants (Inaba et al. 1994; Bartlem et al. 2000; Shen et al. 2002). 

The semidominant mutation in the mto1 mutant also lead to the discovery of a novel 

mechanism controlling mRNA stability by amino acid intermediates (Chiba et al. 

1999). 
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    A comprehensive screen for D-alanine resistant A. thaliana mutants resulted in 

the identification of LHT1 transporter involved in plant uptake of amino acids 

(Svennerstam et al. 2007).  Another transporter, AAP1, was found to transport 

uncharged amino acids into roots in a mutant screen for phenylalanine-resistant plants 

(Voll et al. 2004; Lee et al. 2007). 

A dominant mutant of A. thaliana, amt-1, was previously selected for resistance to 

growth inhibition by the tryptophan analog α-methyltryptophan. This mutant had 

elevated tryptophan levels and exhibited higher anthranilate synthase (AS) activity 

that showed increased resistance to feedback inhibition by tryptophan.  Cloning of 

the mutant gene revealed a critical amino acid residue involved in the allosteric 

feedback inhibition of tryptophan biosynthesis (Kreps et al. 1996; Li and Last 1996).  

Overall, genetic screens for A. thaliana mutants resistant to toxic nonprotein amino 

acids has several advantages: the screen takes place in germination or seedling stages 

and can be done in a large scale; the phenotyping process is usually based on viability 

of seeds and does not require additional measurements or assays; the difference 

between mutant and wildtype plants is clear, which is critical for map-based cloning; 

and since most mutant genes are involved in amino acid metabolism, candidate genes 

can be apparent in the final stages of mapping, making the cloning of a mutant gene an 

easier process. 

 

meta-Tyrosine and this thesis 

meta-Tyrosine (m-tyrosine or m-tyr) is a nonprotein amino acid previously found in 

donkey-tail spurge (Euphorbia myrsinites) and recently identified in Chewings fescue 

(Festuca rubra L. ssp commutate) (Bertin 2005; Mothes et al. 1964). As an analog and 

likely antimetabolite of the protein amino acids phenylalanine and tyrosine, this 

uncommon nonprotein amino acid display toxicity to a wide array of plant species.  
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    The following three chapters investigate and explore m-tysosine from three 

different perspectives. In Chapter 2, the biosynthesis of this natural nonprotein amino 

acid is studied. In Chapter 3, m-tyrosine is used as a tool to study plant aromatic amino 

acid biosynthesis, which provides some interesting findings for phenylalanine 

biosynthesis and metabolism in A. thaliana. In Chapter 4, different hypotheses of the 

modes of action of m-tyrosine are tested and discussed. 
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CHAPTER TWO:  

META-TYROSINE IN FESTUCA RUBRA SSP. COMMUTATA (CHEWINGS 

FESCUE) IS SYNTHESIZED BY HYDROXYLATION OF PHENYLALANINE 

 

Introduction 

Similar to many other nonprotein amino acids reviewed in Chapter 1, meta-Tyrosine 

(m-tyrosine) is an analog of the common protein amino acid p-tyrosine (Figure 2.1a). 

It was identified in Chewings fescue (Festuca rubra L. ssp. commutata) and donkey-

tail spurge (Euphorbia myrsinites) (Bertin et al. 2007; Mothes et al. 1964). In vitro 

assays show that m-tyrosine is toxic to a wide variety of prokaryotic and eukaryotic 

species, including Bacillus species and cultured Chinese-hamster ovary cells (Aronson 

and Wermus 1965; Gurer-Orhan et al. 2006). In mammalian systems, 

misincorporation of this amino acid into proteins by phenylalanyl-tRNA synthases 

was found, (Gurer-Orhan et al. 2006; Klipcan et al. 2009), although the causal 

relationship between this misincorporation and its toxicity is not established. Recently, 

it is found that m-tyrosine also inhibits the growth of a wide array of plant species, 

making it an attractive candidates as an allelochemical (Bertin 2005). Although the 

exact role of m-tyrosine is not yet proven, the large amount of m-tyrosine in the roots 

of some fescue cultivars (> 1% of dry weight) suggests that this amino acid has an 

important function in the biology of these grasses.  

Precursor feeding experiments with E. myrsinitis showed that the m-tyrosine found 

in this plant is produced from the shikimate pathway via transamination of m-

hydroxyphenylpyruvate (Muller and Schutte 1967) (Figure 2.1b). In animal cells, m-

tyrosine accumulates during oxidative stress through non-enzymatic oxidation of 

phenylalanine (Fell et al. 1979; Ishimitsu et al. 1986). Abundance of m-tyrosine in  
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b 

Figure 2.1. Structure and biosynthesis of m-tyrosine. 
(a) Structures of m-tyrosine, tyrosine and phenylalanine. The common tyrosine 
refers to “p-tyrosine” and has the same chemical composition as m-tysoine. 
 (b) Biosynthetic pathways of m-tyrosine in different species. Dash line represents 
the proposed pathway in Euphorbia myrsinites. The alternative pathway is 
suggested by this study. 
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mammalian tissue has been used as an indicator of oxidative stress and the aging 

process (Matayatsuk et al. 2007; Wells-Knecht et al. 1993). In the present chapter, we 

study the biosynthesis of m-tysoine in Chewings fescue. 

  

Results and discussion 

Distribution of m-tyrosine in F. rubra roots  

Although m-tyrosine is also found in the seeds and leaves of F. rubra, it is most 

abundant in roots (Bertin et al., 2007). To determine the distribution more precisely, 

roots from one-week-old F. rubra cultivar “Intrigue” seedlings (~ 4 cm long) were 

dissected into four parts of equal length, with section 1 including the root tip and 

section 4 being closest to the seed. Analysis of free amino acids from these root 

sections showed a gradient of m-tyrosine distribution, with the highest concentration 

in the root tips (Figure 2.2a), suggesting that m-tyrosine is either actively synthesized 

in lower parts of the roots or transported there from other plant parts. 

    To confirm that m-tyrosine is secreted into the rhizosphere, F. rubra root extracts 

obtained by two different methods were compared. Extraction buffer was used to rinse 

either a 5 mm long root tip cut off from a seedling or an equal length of an undamaged 

root. HPLC chromatography shows that, whereas the extracts from damaged (cut off 

from seedlings) roots contain a mixture of different amino acids, the surface wash of 

undamaged roots is dominated by a single amino acid, m-tyrosine (Figure 2.2b). 

Therefore, it appears that m-tyrosine is located at the root surface and has a different 

distribution than the common protein amino acids.  
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a 

b 

Figure 2.2. Distribution of m-tyrosine. 
(a) Distribution of m-tyrosine in roots of Chewing’s fescue cultivar “Intrigue”. 
Section 1 – 4 refers to 4 root sections of equal length, with Section 1 containing 
the root tips and Section 4 closest to hypocotyl. Concentration of m-tyrosine is 
highest in lower parts of root and decreases when moved up. Mean ± S.E. n=3 
 (b) Amino acid profile of damaged roots (top) and undamaged root surface wash 
(bottom). Damaged root extract contains a mixture of different amino acids 
whereas undamaged surface wash has only m-tyrosine as the major amino acid. 
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Phenylalanine is a direct precursor for m-tyrosine biosynthesis 

Although the structural similarity between m-tyrosine, phenylalanine and tyrosine 

indicates that they could share similar metabolic origin from the shikimate pathway, 

there is more than one possible pathway for the biosynthesis of m-tyrosine (Figure 

2.1b). To identify possible metabolic precursors, six-day-old F. rubra seedlings were 

transferred to medium containing 100 µM shikimate, tyrosine, phenylalanine, or 

glucose. Measurement of m-tyrosine after two days showed that only feeding with 

phenylalanine significantly increases the concentration of m-tyrosine when compared 

to the control samples (Figure 2.3).  

 

 

 

 

Figure 2.3. Feeding of phenylalanine increase production of m-tyrosine. 
Supply of exogenous phenylalanine, but not glucose, shikimic acid or tyrosine, 
increased the concentration of m-tyrosine in fescue roots. * p < 0.05, Student’s t-
test. Mean ± S.E. n=3 
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To further investigate the conversion of phenylalanine to m-tyrosine, F. rubra roots 

were labeled with [U-13C9, 15N] phenylalanine. GC-MS analysis of extracted amino 

acids showed that approximately one third of the m-tyrosine was in the form of [U-
13C9, 15N] m-tyrosine (Figure 2.4). This provides evidence that m-tyrosine in F. rubra 

is produced through direct hydroxylation for phenylalanine, a pathway that is different 

from the one observed in E. myrsinitis (Muller and Schutte 1967) (Figure 2.1b) If m-

hydroxyphenlypyruvate were an intermediate in the biosynthesis of m-tyrosine, then 

the 15N label would have been lost during the biosynthesis. Other possible biosynthetic 

pathways (dash lines in Figure 2.1b) would result in the loss or one or more 13C atoms. 

 

 

 

 

  

Figure 2.4. Biosynthesis of m-tyrosine from phenylalanine. 
Major molecular fractions of 3TMS-m-tyrosine, the product of m-tyrosine 
derivatised with MSTFA used in GC-MS analysis in shown in center. In unlabeled 
samples, two major fractions (as indicated by eclipses) are of molecular mass 218 
and 280, respectively. If every carbon and nitrogen atom in m-tyrosine derives 
from [U-13C9, 15N] phenylalanine, the molecular mass of these two fractions 
should be 221 and 289, respectively. These two peaks are readily detected in mass 
spectrum analysis of m-tyrosine after feeding fescue roots with [U-13C9, 15N] 
phenylalanine, as shown in the background. 
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Conversion of phenylalanine to m-tyrosine is independent of fescue endophytes 

and is highest in the roots 

Fescue plants are often infected by fungal endophytes and it is therefore possible that 

m-tyrosine is produced by endophytes associated with Chewings fescue (Shelby and 

Dalrymple 1987). To test this hypothesis, we compared the concentrations of m-

tyrosine in infected and uninfected Chewings fescue (Bonos et al. 2005). Chewings 

fescue 3188-1 DL1 E+ (containing the Delaware 1 endophyte) has no significant 

differences in m-tyrosine concentration compared to its endophyte-free counterpart 

3188-1 E-. Similarly, m-tyrosine levels in Chewings fescue 1117 PA E+ (containing 

the Poa ampla endophyte) are not significantly different from the endophyte free 1117 

E-. Concentrations of m-tyrosine found in these cultivars are similar to those found in 

the Intrigue cultivar used for all other experiments (Figure 2.5). Therefore, the large 

amount of m-tyrosine observed in fescue roots is produced by the plants themselves 

rather than by fungal endophytes. 

 

 

 

 

 

 

     

 

 

 

 

 

Figure 2.5. m-Tyr is made in endophyte free fescue. 
m-Tyrosine biosynthesis in fescue is independent of endophytes. No significant 
difference is found in fescue with (E+) or without (E-) endophytes. Mean ± S.E. 
n=3. P > 0.05. 
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Although m-tyrosine is most abundant in roots, it could still be a result of transport 

rather than local synthesis. To test if fescue roots possess the enzymatic activity to 

synthesize m-tyrosine, fescue seedlings were dissected into three sections: leaves, 

midsections and roots. All sections were then floated on nutrient solution. After 

feeding with [U-13C9, 15N] phenylalanine individually, peak area of isotope labeled m/z 

221 fragments of m-tyrosine were quantified in all three sections. The results show 

that the fescue roots produced the most labeled m-tyrosine among all three sections 

(Figure 2.6). This could partly due to the higher substrate uptake efficiency from the 

roots but also confirms that roots of Chewings fescue contain the enzyme active in m-

tyrosine biosynthesis from phenylalanine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Fescue root is active in m-tyrosine biosyntheis. 
The root section of fescue synthesized most m-tyrosine from isotope labeled 
phenylalanine compared to other parts of seedlings. *P < 0.05, Student’s t-test. 
Mean ± SE n=4  
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Conversion of phenylalanine to m-tyrosine is reduced by cytochrome P450 

inhibitors 

The enzymatic hydoxylation of phenylalanine to m-tyrosine would require a 

monooxygenase. In plants, cytochrome P450s are the largest family of 

monooxygenases, with 273 known cytochrome P450 genes in A. thaliana and 489 in 

rice (Nelson 2009). To test the hypothesis that m-tyrosine is produced by a 

cytochrome P450, we measured the conversion of [U-13C9, 15N] phenylalanine into m-

tyrosine in the presence of two cytochrome P450 inhibitors, -cyclopropyl- -[p-

methoxyphenyl]-5-pyrimidine methyl alcohol (Ancymidol) and 1-aminobenzotriazole 

(ABT). Ancymidol is a plant growth regulator that inhibits some cytochrome P450s, 

including several important enzymes in gibberellin biosynthesis (Coolbaugh et al. 

1978). ABT, on the other hand, has a stronger effect and a wide spectrum of inhibition 

by autocatalytic destruction of cytochrome P450s (De Montellano et al. 1984; 

Reichhart et al. 1982). Eight-day-old F. rubra seedlings growing in 100 µM [U-13C9, 
15N] phenylalanine solutions were treated with ABT, Ancymidol, or dimythylsulfoxide 

(DMSO, as a control) for 24 hours. In contrast to the control experiment, where 43% 

of m-tyrosine was labeled, only 31% of m-tyrosine was labeled in the presence of 

Ancymidol and more significantly, only 3% was labeled in the presence of ABT 

(Figure 2.7). Therefore, it is likely that the function of a cytochrome P450 is pivotal 

during the biosynthesis of m-tyrosine from phenylalanine.  

 

Identification of F. rubra cytrochrome P450 genes 

The above experiments strongly suggest that m-tyrosine is synthesized from 

phenylalanine by a cytochrome P450 enzyme in fescue roots. Therefore, we made an 

F. rubra cDNA library as a genomic resource for the exploration of such cytochrome 

P450s. RNA from the lower half of the roots was used for construction of a non-
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normalized cDNA library. Sequencing 2300 individual cDNA clones produced 1767 

high-quality EST sequences, with an average length of 672 bp after sequence cleaning 

and trimming. These sequences are deposited to Genbank (HO059988 – HO061754). 

Assembly of these sequences produced 1380 individual clusters (unigenes). Sequence 

annotation by BLAST identified five candidate cytochrome P450s: 

02D11(HO061371), 04C06 (HO060904), 22C02 (HO060621), 25H03(HO060459), 

and 29A06 (HO061625), all of which are single copy in the cDNA library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression of the candidate cytochrome P450 genes in leaves and root sections was 

studied using RT-PCR (Figure 2.8). Four of the genes (02D11, 22C02, 25H03 and 

29A06) are specifically expressed in the roots and have very low or virtually no 

expression in the leaves. In contrast, gene 04C06 has higher expression in the leaves 

and is thus less likely to be involved in m-tyrosine biosynthesis. 

Figure 2.7. m-Tyrosine biosynthesis from phenylalanine is inhibited by 
cytochrome P450 inhibitors. 
The root section of fescue synthesized most m-tyrosine from isotope labeled 
phenylalanine compared to other parts of seedlings. * p < 0.05, Student’s t-test. 
Mean ± Stdev. n=4  
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    Full-length cDNA sequences of the four candidate genes were obtained by RACE 

(Rapid Amplification of cDNA Ends) or by full-length sequencing of the library 

clones and are designated as CYP81A20 (02D11), CYP75A47 (22C02), CYP92A44 

(25H03) and CYP73A91 (29A06). To test the functions of these genes, three 

independent isolates of each gene were cloned into Agrobacterium tumefaciens for 

transient expression in Nicotiana benthamiana (Sequence of all clones are in 

Appendix of this thesis). Although expression of the F. rubra genes was detected by 

Figure 2.8. Expression of 5 candidate cytochrome P450s in different parts 
of Chewing’s fescue.  
RT-PCR analysis of gene expression in lower sector of root, upper section of 
root and leaf shows root specific or enriched expression of gene 02D11, 29A06, 
25H03 and 22C02. In contrast, gene 04C06 has higher expression in leaves.  
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RT-PCR, no m-tyrosine synthesis could be found in N. benthamiana. It is possible that 

this N. benthamiana transient expression system lacks sufficient enzymatic partners 

such as cytochrome P450 reductases that are required for the full function of these 

cytochrome P450s. A yeast strain WAT11 is engineered to express the Arabidopsis 

cytochrome P450 reductase ATR1 and could be useful for this study (Urban et al. 

1997). It could also be that the cloned sequences were mutated during PCR and lost 

the function. Alternatively, these four candidate genes might not be the right enzymes. 

 

Concluding remarks 

The biosynthesis of m-tyrosine in F. rubra has been of interest since the report of the 

presence and potential functions of this molecule (Duke 2007). Our study on the 

precise distribution of m-tyrosine supports its unique roles in plant-environment 

interactions.  The difference in biosynthetic pathways in F. rubra and E. myrsinites 

might reflect their independent history of emergence and evolution. Our EST 

collection from the root tissue of F. rubra L. ssp. commutata is the first F. rubra EST 

collection in GenBank and provides a useful resource not only for further exploration 

of these enzymes but also for diverse interests of the turf grass research community. 

This study also identified and cloned four root specific or enriched cytochrome P450 

enzymes that might play interesting roles, including m-tyrosine biosynthesis. 

 

Experimental 

Material and growth conditions  

Seeds of Chewings fescue cultivar “Intrigue” were purchased from Summit Seed 

(www.summitseed.com). Seed germination pouches (www.mega-international.com) 

were used to grow fescue seedlings in growth chamber at 23 °C, 180 μmols m-2s-1 

photosynthetic photon flux density, and a 16:8 h light-dark cycle. Seeds were 
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sterilized by shaking in 50% ethanol for 1 min and then in 50% bleach for 20 minutes, 

before being rinsed five times with sterile H20. Each germination pouch was filled by 

20 ml of H20 and placed on racks. 

    For stable isotope feeding experiments, one week old intact seedlings or sections 

of seedlings were removed from germination pouches and placed in respective 

solutions in Petri dishes until harvested for measurements. 

    [U-13C9, 15N] phenylalanine was purchased from Cambridge Isotope Laboratories 

(www.isotope.com), ABT from Acros Organics (www.acros.com) and ancymidol 

from Chem Service (www.chemservice.com). Other chemicals, if not specified, were 

purchased from Sigma-Aldrich (www.sigmaaldrich.com). 

 

Analysis of free amino acids by HPLC 

Extraction and HPLC analysis of free amino acids were performed as described (Joshi 

et al. 2006) with slight modifications, where 200 µl of extraction buffer were used for 

each sample. Data were normalized relative to the tissue fresh weight. 

 

Analysis of isotope-labeled free amino acids by GC-MS 

GC-MS samples were prepared and derivatized by MSTFA (N-Methyl-N-

(trimethylsilyl)trifluoroacetamide) according to (Lisec et al. 2006). One µl of 

derivatized sample was injected into a Varian FactorFour VF-17ms column in a 

Varian CP-3800 GC. Nitrogen gas flow was set to 1 ml/min. The column  

temperature gradient was: 70 °C for 5 minutes, ramped to 170 °C at a rate of 25 °C 

/min, increased to 205 °C at a rate of 5 °C/min, increased to 300 °C at a rate of 25 °C 

/min, and hold at 300 °C for 1 minute. Compounds after separation were detected by 

Varian 1200L mass spectrometer with electron impact ionization set -20 eV. 
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Fescue root cDNA library construction 

RNA was extracted using Qiagen RNeasy Plant Mini Kit from the lowest 1 cm of 

roots from 8-day-old Chewings fescue cultivar “Intrigue” grown in seed germination 

pouches. The cDNA library was made following the LD PCR protocol from the 

Creator SMART cDNA Library Construction Kit (Clontech, Mountain View, CA, 

USA). cDNA generated by reverse transcription was amplified, digested with Sfi 1A 

and Sfi 1B, and size fractionated. Double-stranded cDNA was directionally cloned into 

the pDNR-LIB plasmid vector, and transformed into DH10B competent cells 

(Invitrogen, Carlsbad, CA, USA).  

 

Sequence analysis 

Library aliquots were spread onto selective media and grown overnight at 37°C. 

Colonies were picked manually into 384 well plates (Genetix, New Milton, 

Hampshire, UK) containing selective media and grown overnight at 37°C. One μL of 

liquid culture was used as a template for colony PCR. Colony PCR products were 

analyzed by gel electrophoresis to confirm the presence of an insert. PCR products 

were purified using AMpure (Agencourt Biosciences, Beverly, MA, USA). 

Sequencing reactions were carried out using ABI PRISM BigDye technology, and 

sequences were analyzed on the ABI 3730XL automated multicapillary sequencer 

(Applied Biosystems, Foster City, CA, USA). 

Phred (Ewing et al. 1998) was used to make base calls from the sequence traces. 

Raw sequences were trimmed and cleaned to eliminate poly-A tails and vector 

sequences by programs Lucy (Chou and Holmes 2001) and Seqclean (Chen et al. 

2007). Sequences less than 100 bp were discarded. Processed sequences were 
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assembled to clusters using iAssembler 

(http://bioinfo.bti.cornell.edu/tool/iAssembler/) and annotated by Blast2GO (Conesa et 

al. 2005). 

 

RT-PCR  

RNA was prepared from leaves and both lower and upper halves of roots from 8-

day-old Chewings fescue cultivar “Intrigue” using Qiagen RNeasy Plant Mini Kit 

(Qiagen, Valencia, CA, USA) followed by reverse transcription by SMART MMLV 

RNA transcriptase. PCR was conducted with 1 µL of reverse transcriptase reaction 

product at 94°C for 30 s, 48°C for 40 s, and 72°C for 50 s, for a total of 34 cycles. The 

actin sequence from fescue was identified from our library and used as an internal 

control. The primer sequences used for each gene are: (From 5’ to 3’) 
02D11 F TCATCTTCCTGCTCCACCAC 
02D11 R GCTCGTGGCGATCATTGAG 
22C02 F ATGTCCCTCCTCACCGG 
22C02 R GTGCTCCGCCAGAAGCTT 
25H03 F ATGGAGTTTCCTCAGTGGGC 
25H03 R CCTCACCTCCTTCTCCAGGTA 
29A06 F ATGGACGTCAACCTCCTGGAG 
NbActin F ATGGCAGATGGAGAGGATATTC 
NbActin R CCTGCCCATCCGGTAGCTCAT 

 

 

Cloning and expression of candidate cytochrome P450 cDNAs 

Full length sequences of candidate genes were obtained by Clontech SMART RACE 

cDNA amplification kit and cloned into vector pMDC32 using Invitrogen Gateway 

technology. For each candidate gene, three independent clones were sequenced and 

transformed to Agrobacterium tumefaciens strain GV3101. Cultures of these 

transformed strains were infiltrated into young leaves of Nicotiana benthamiana 

http://en.wikipedia.org/wiki/Agrobacterium_tumefaciens�
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together with RNA silencing suppressor p19 (Voinnet et al. 1999) and 100 µM 

phenylalanine. 
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CHAPTER THREE:  

PLEIOTROPIC PHYSIOLOGICAL CONSEQUENCES OF FEEDBACK-

INSENSITIVE PHENYLALANINE BIOSYNTHESIS IN ARABIDOPSIS 

THALIANA*

 

 

Summary 

A large portion of plant carbon flow passes through the shikimate pathway to 

phenylalanine, which serves as a precursor for numerous secondary metabolites. To 

identify new regulatory mechanisms affecting phenylalanine metabolism, we isolated 

Arabidopsis thaliana mutants resistant to the phytotoxic amino acid m-tyrosine, a 

structural analog of phenylalanine. Map-based cloning identified adt2-1D, a dominant 

point mutation causing a predicted serine to alanine change in the regulatory domain 

of ADT2 (arogenate dehydratase 2). Relaxed feedback inhibition and increased 

expression of the mutant enzyme causes up to 160-fold higher accumulation of free 

phenylalanine in rosette leaves, as well as altered accumulation of several other 

primary and secondary metabolites. In particular, abundance of 2-

phenylethylglucosinolate, which is normally almost undetectable in leaves of the A. 

thaliana Columbia-0 accession, is increased more than thirty-fold. Other observed 

phenotypes of the adt2-1D mutant include abnormal leaf development, resistance to 5-

methyltryptophan, reduced growth of the generalist lepidopteran herbivore 

Trichoplusia ni (cabbage looper), and increased salt tolerance. 

 

 

 

                                                 
* Reproduced with permission from The Plant Journal, accepted for publication, DOI: 
10.1111/j.1365-313X.2010.04287.x 
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Introduction 

The aromatic amino acids, phenylalanine, tyrosine, and tryptophan, are produced via a 

branched pathway from chorismate in plants (Figure 3.1). As is observed in many 

other biosynthetic pathways, aromatic amino acid biosynthesis is subject to feedback 

regulation. Isoforms of the committing enzyme, chorismate mutase, are allosterically 

inhibited by phenylalanine and tyrosine, and stimulated by tryptophan. (Coruzzi and 

Last, 2000; Eberhard et al., 1996). Anthranilate synthase, the committing enzyme for 

tryptophan biosynthesis is inhibited by tryptophan (Belser et al., 1971). Similarly, 

arogenate dehydrogenase is feedback inhibited by tyrosine (Rippert and Matringe, 

2002). Expression of mutant enzymes with relaxed feedback inhibition often causes 

increased product accumulation. For instance, overexpression of a feedback-

insensitive anthranilate synthase α-subunit dramatically increased free tryptophan 

accumulation in rice (Tozawa et al., 2001; Wakasa et al., 2006). Research with both 

monocots and dicots has revealed activation of arogenate dehydratese by tyrosine and 

inhibition by phenylalanine (Jung et al., 1986; Siehl and Conn, 1988). 

Characterization of the rice mtr1mutant revealed that a mutation in the conserved 

ESRP peptide motif in the ACT regulatory domain of the arogenate dehydratase 2 

gene causes overaccumulation of free phenylalanine (Yamada et al., 2008). This 

suggests that, similar to the mechanism found in the bacterial P-protein, feedback 

inhibition in arogenate dehydratase depends upon the ESRP motif (Chipman and 

Shaanan, 2001; Pohnert et al., 1999). 

The relative importance of phenylpyruvate and arogenate as precursors for 

phenylalanine biosynthesis in plants has not been fully investigated. Biosynthesis of 

tyrosine by arogenate dehydrogenase has been demonstrated (Rippert and Matringe, 

2002), and arogenate dehydratases catalyzing the final phenylalanine biosynthesis step 
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a 

b 

Figure 3.1. Metabolic pathways of aromatic amino acid biosynthesis. 
(a) Known pathways and mechanisms of allosteric regulation are shown, 
inhibition with a line and a minus sign, activation with a plus sign. Also shown is 
a reaction catalyzed by overexpression of E. coli PheA*, which synthesizes 
phenylpyruvate from chorismate and leads to overaccumulation of phenylalanine 
in A. thaliana (Tzin et al., 2009). AS, anthranilate synthase; CM, chorismate 
mutase; ADT, arogenate dehydratase; ADH, arogenate dehydrogenase; PAL, 
phenylalanine ammonia lyase; PheA*, modified E. coli chorismate 
mutase/prephenate dehydratase. 
 (b) ADT catalyzes the reaction from arogenate to phenylalanine, the last step of 
phenylalanine biosynthesis in A. thaliana.  
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were identified in rice and A. thaliana (Cho et al., 2007). In vitro enzyme assays show 

a strong preference for arogenate over prephenate as the substrate for all six A. 

thaliana ADT enzymes, suggesting that the majority of prephenate is first converted to 

arogenate during phenylalanine biosynthesis in A. thaliana (Cho et al., 2007). 

However, pPheA*  transgenic A. thaliana plants, which express a truncated E. coli 

feedback-insensitive PheA gene (Tzin et al., 2009) and thereby overproduce 

phenylpyruvate (Figure 3.1), also accumulate elevated levels of phenylalanine.  

    Most of the phenylalanine produced in plants is not used for protein biosynthesis, 

but rather enters the phenylpropanoid pathway, leading to the production of secondary 

metabolites, including lignin, flavonoids, and many other small phenolic compounds 

(Coruzzi and Last, 2000). In A. thaliana and other crucifers, phenylalanine also serves 

as a precursor for the production of glucosinolates, a class of insect-defensive 

secondary metabolites (Graser et al., 2001). Phenylalanine ammonia-lyase, the 

committing enzyme for the pathway (Figure 3.1), converts phenylalanine to trans-

cinnamate and can account for more than 30% of the carbon flow in plants (Razal et 

al., 1996).   

    Previous research has demonstrated phytotoxic effects of non-protein amino acids, 

most of them synthetic compounds such as 5-methyltryptophan, α-methyltryptophan, 

ethionine, and D-alanine (Kreps and Town, 1992; Wakasa and Widholm, 1987; 

Widholm, 1972a; Widholm, 1976). Many of these amino acid analogs compete with 

their structurally similar common protein amino acids for an array of metabolic 

reactions. Toxic effects can often be rescued at least partially by exogenous 

supplementation or increased biosynthesis of the competing common amino acids. The 

latter effect has been utilized as a tool to study amino acid metabolism in planta, 

especially by means of genetic screens that have identified A. thaliana mutants with 

increased amino acid biosynthesis, deficiencies in amino acid transporters, and altered 
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regulatory mechanisms. Examples of such A. thaliana mutations that have led to new 

insights into plant metabolism include mto1, trp5-1, amt-1, and lht1 (Bartlem et al., 

2000; Inaba et al., 1994; Kreps et al., 1996; Li and Last, 1996; Shen et al., 2002; 

Svennerstam et al., 2007). 

m-Tyrosine, an analog of phenylalanine and an isomer of the common protein 

amino acid tyrosine (p-tyrosine), has been found in Euphorbia myrsinites (donkey tail 

spurge) and some fescue species (Bertin et al., 2007; Mothes et al., 1964). Despite its 

plant origin, m-tyrosine is phytotoxic to a broad spectrum of species (Bertin et al., 

2003). m-Tyrosine added to agar medium at a 2 µM concentration inhibits A. thaliana 

root growth by 50%, and at 50 µM concentration it completely prevents seed 

germination (Bertin et al., 2007). Higher concentrations of m-tyrosine also inhibit the 

growth of bacteria and mammalian cells (Aronson and Wermus, 1965; Gurer-Orhan et 

al., 2006). Recent studies suggest that m-tyrosine can be misincorporated into proteins 

in place of phenylalanine by eukaryotic phenylalanyl-tRNA synthetases (Gurer-Orhan 

et al., 2006; Klipcan et al., 2009). m-Tyrosine toxicity in A. thaliana can be partially 

rescued by exogenous supply of several amino acids, with phenylalanine being the 

most effective (Bertin et al., 2007). This suggested the possibility of gaining new 

insight into aromatic amino acid metabolism by isolating and cloning A. thaliana 

mutations that confer resistance to exogenously added m-tyrosine. 

 

Results 

Selection for A. thaliana mutants resistant to m-tyrosine 

Based on the observation that m-tyrosine inhibits root growth of A. thaliana accession 

Columbia-0 (Col-0) (Bertin et al., 2007), several mutant collections, including fast 

neutron mutated lines, T-DNA activation tagged lines and EMS (ethyl 
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methanesulfonate) mutated lines were screened for elevated m-tyrosine resistance. No 

fast neutron mutants showed heritable resistance to m-tyrosine. Three T-DNA 

activation tagged lines showed improved root growth in presence of 3 µM but not 40 

µM m-tyrosine (Figure 3.2a). One EMS mutant showed improved root growth on both 

3 and 40 µM m-tyrosine (Figure 3.2b, adt2-1D). Due to the stronger phenotype of the 

EMS mutant and because crosses showed that the three T-DNA insertions were not 

genetically linked to the respective mutant phenotypes, all subsequent research was 

focused on the m-tyrosine-resistant EMS mutant line. 

 

Identification of a point mutation in the ADT2 gene 

The genetic basis of m-tyrosine resistance was revealed by map-based cloning of the 

EMS-induced mutation. An F2 population from a cross to Landsberg erecta (Ler) 

showed a 366:127 resistant:sensitive segregation ratio, which is not significantly 

different from the 3:1 ratio expected for a single dominant mutation (Chi-squared test, 

95% confidence level). Map-based cloning using ~ 400 F2 lines identified a 260 kb 

interval containing 83 predicted genes between markers CER470676 and CER469707 

(Jander et al., 2002). Among these genes, ADT2 (arogenate dehydratase 2; 

AT3G07630) was of particular interest, because it is directly involved in 

phenylalanine biosynthesis and a mutation in ADT2 might cause a change in 

phenylalanine metabolism (Figure 3.1a) (Cho et al., 2007; Hruz et al., 2008; Yamada 

et al., 2008). Consistent with our agar plate-based mutant screen, ADT2 is the most 

highly expressed member of the ADT gene family in imbibed seeds and root tips of A. 

thaliana (Figure 3.3) (Hruz et al., 2008). Sequencing the coding region of ADT2 in the 

EMS mutant identified a single-nucleotide G959A mutation. This mutation is 

predicted to cause a S320A amino acid change in ESPR motif in the ACT regulatory 
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Figure 3.2. A. thaliana mutants resistant to m-tyrosine. 
(a) Three T-DNA activation tagged lines showed better root growth than wildtype 
plants when transferred from normal MS agar plates to plates containing 10 µM 
m-tyrosine. Root tips were aligned to the orange line when the seedlings were 
transferred and the picture was taken 2 days later.  
 (b) Root growth of Col-0, adt2-1D and padt2-1D grown at different 
concentrations of m-tyrosine. 
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domain of the ADT2 protein, which is thought to mediate feedback inhibition of 

enzyme activity (Chipman and Shaanan, 2001; Pohnert et al., 1999; Yamada et al., 

2008). The identified mutation has, therefore, been named adt2-1D. 

To confirm that the S320A change in ADT2 causes the observed dominant 

phenotype, genomic DNA encoding ADT2 and adt2-1D was cloned with the native 

promoter into vector pMDC123 (Curtis and Grossniklaus, 2003), and transformed into 

wildtype Col-0 A. thaliana. Several independent transgenic lines were collected and 

their resistance to m-tyrosine was analyzed. Only one homozygous transgenic line 

carrying the mutant gene, padt2-1D-1, was obtained. Three other lines, padt2-1D-2, 

padt2-1D-7, and padt2-1D-3, were only viable as heterozygotes. All of the lines 

carrying homozygous or heterozygous adt2-1D constructs show resistance to m-

tyrosine at a level comparable to the original adt2-1D mutant (Figure 3.2b). In contrast, 

plants transformed with ADT2 or the empty vector are as sensitive to m-tyrosine as 

wildtype Col-0. These results confirm that the G959A mutation in ADT2 confers m-

tyrosine resistance to A. thaliana.  

In addition to their m-tyrosine resistance, transgenic padt2-1D-1 plants have 

altered rosette leaf morphologies (Figure 3.4a). The leaves, especially when young, are 

narrower than wildtype leaves and show hyponastic growth, with the edges curled 

upward as opposed to downward. The serration of the edges is also more apparent than 

in wildtype leaves (Figure 3.4b). In the segregating populations of padt2-1D-3, three 

different categories of plants with different morphologies were observed: wildtype, 

similar to padt2-1D-1, and very dwarfed plants (Figure 3.4a, V-VII). Plants looking 

like padt2-1D-1 were heterozygous based on progeny tests. The dwarfed plants always 

died without setting seeds, which may explain why homozygous transgenic lines were 

never obtained. Two other heterozygous lines, padt2-1D-2 and padt2-1D-7, display  
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I II II
 

I
 

V V
 

VI
 

b 

a 

Figure 3.4. Phenotypes of mutant and transgenic lines.  
 (a) Rosette leaf morphology of 35 day old plants: Col (I) adt2-1D (II) pADT2  
(III) padt2-1D-1 (IV), and three different plants in a segregating population of  
padt2-1D-3 (V-VII). Compared to wildtype leaves, young rosette leaves of 
transgenic plants are smaller and narrower, with edges curved upwards. The 
presumably homozygous padt2-1D-3 plant is dwarf and dies before flowering.  
(b) Leaf development comparison of padt2-1D (top panel) and Col-0 (bottom 
panel). Leaves were arranged according to order of emergence.  Leaves of padt2-
1D display altered surface curvature and margin serration.  
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phenotypes stronger than padt2-1D-1 and weaker than padt2-1D-3. Hereafter, we 

studied padt2-1D-1 in more detail and use padt2-1D to designate this transgenic line 

in the text and figures, unless we are comparing it to padt2-1D-3.  

 

ADT2, but not adt2-1D, is feedback inhibited by phenylalanine 

Since the adt2-1D mutation, which confers resistance to m-tyrosine, is in the ADT2 

regulatory domain, we hypothesized that the observed phytotoxic effects could result 

from ADT2 inhibition by m-tyrosine. To test this, the coding sequence of adt2-1D was 

cloned into the pET43.1 vector, which has been used previously for expression of 

wildtype ADT2 as a his-tagged fusion protein (Cho et al., 2007). Both mutant and 

wildtype proteins were expressed in E. coli and purified using Ni-NTA (nickel-

nitrilotriacetic acid) agarose. Measurement of the initial rate of the reaction showed 

that ADT2 is inhibited by 100 μM phenylalanine, whereas adt2-1D is not (Figure 3.5). 

m-Tyrosine, even at 500 μM concentration, did not inhibit ADT2 activity in this in 

vitro assay. Therefore, the adt2-1D mutation apparently changes an ADT2 regulatory 

site that mediates enzyme inhibition by phenylalanine, but not m-tyrosine. 

    The free phenylalanine content of seeds, seedlings, young rosette leaves, flowers 

and developing siliques was analyzed in mutant and wildtype plants. Seedlings of the 

pPheA* phenylalanine-overproducing line (Tzin et al., 2009) were included for 

comparison in the right panel and are discussed later. The results show that, in both 

adt2-1D and padt2-1D lines, the phenylalanine level is increased in all tissues, with 

leaves displaying the greatest increase (Figure 3.6a). The transgenic padt2-1D line 

also has much higher free phenylalanine than the adt2-1D mutant in every tissue type 

analyzed. Other than phenylalanine, adt2-1D lines do not display changes in free 

amino acid content relative to wildtype leaves, whereas padt2-1D showed reduced 
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Figure 3.5. Phenylalanine inhibits the enzymatic activity of ADT2 but not 
adt2-1D. 
(a) In vitro enzyme assays show that the arogenate dehydratase activity of 
ADT2 is significantly inhibited by 100 µM phenylalanine (P < 0.01). m-
Tyrosine at 500 μM has no significant effect on enzymatic activities (P = 
0.74). (t-tests based on linear regression by the ordinary least squares method) 
(b) Activity of adtt2-1D is not significantly inhibited by 100 μM phenylalanine 
(P = 0.84) or 500 μM m-tyrosine (P = 0.90). (t-tests based on linear regression 
by the ordinary least squares method) 

b 
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Figure 3.6. Free amino acids of adt2-1D mutants and transgenics. 
(a) Free phenylalanine content in different tissues of wildtype Col-0, mutant, and 
transgenic plants. Concentration of phenylalanine in Col-0 has been set to 1 for 
each sample. pPheA* lines were only measured in seedling stage and together with 
the controls, were further dissected to two parts: shoot and root. Note the 
logarithmic scale of the Y axis. Mean + s.e. of n = 5 or 6, *P < 0.05 in two tailed 
Student’s t-test relative to wildtype Col-0. 
 (b) Amino acid changes in rosette leaves of wildtype, mutant and transgenic A. 
thaliana. Mean + s.e. of n = 5 or 6. *P < 0.05 in two tailed Student’s t-test relative 
to wildtype Col-0. 
 

a b 
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levels in glycine and increased levels of some other amino acids. (Figure 3.6b for 

amino acids with significant changes, Table 3.1 for all 17 amino acids measured in 

this assay). Transgenic padt2-1D-3 heterozygotes, which have normal rosette size but 

hyponastic leaves, have even higher phenylalanine levels than padt2-1D-1. 

Since padt2-1D transgenics display dramatic increases in free phenylalanine compared 

to the EMS mutant adt2-1D, we performed quantitative RT-PCR to compare gene 

expression levels in these lines. Due to the single nucleotide difference between the 

ADT2 and adt2-1D, the PCR primers did not differentiate between these two alleles, 

and all data represent combined expression levels. Homozygous plants were used for 

padt2-1D-1, whereas heterozygous plants were used for padt2-1D-3. Corresponding to 

their dramatic accumulation of free phenylalanine, transgenic lines show increased 

ADT2 gene expression in the leaves (Figure 3.7). Since the genes are expressed from 

their native promoters, expression differences are likely due to positional effects of the 

transgene insertion. This suggests that phenylalanine biosynthesis can be limited by 

the availability of ADT2 enzymes once feedback inhibition is relaxed.  

Interestingly, in padt2-1D plants that are just starting to flower, young rosette 

leaves accumulate more soluble phenylalanine than older ones. Correspondingly, the 

up-curled feature of young rosette leaves is also much more apparent than the older 

leaves. In Col-0 and adt2-1D, the level of free phenylalanine remains much lower than 

the young leaves of padt2-1D plants, and no up-curled leaves were found. 

 

Metabolite analysis of adt2-1D plants  

Given the central role of phenylalanine in plant metabolism, it seemed likely that the 

overall metabolite profile of the padt2-1D line would be altered relative to wildtype 

Col-0. To test this hypothesis, primary and secondary metabolite profiling by  
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Table 3.1. Free amino acids in mutant and transgenic plants. Concentrations of 
amino acids from rosette leaves of adt2-1D, pADT2 and padt2-1D plants were 
compared to Col-0 by HPLC. Relative changes were shown using amino acids 
concentrations of Col-0 as 1. Mean ± s.e. of n = 6. 

 

  

Comparison of free amino acids in young rosette leaves 

  Col adt2-1D pADT2 padt2-1D 
Asp 1.00±0.05 1.05±0.03 1.18±0.09 1.22±0.04 
Ser 1.00±0.10 0.93±0.09 1.26±0.21 1.42±0.14 
Glu 1.00±0.04 1.09±0.05 1.15±0.08 1.12±0.03 
Gly 1.00±0.30 0.96±0.18 1.34±0.50 0.22±0.03 
His 1.00±0.18 1.04±0.09 1.21±0.23 1.50±0.10 
Arg 1.00±0.30 0.98±0.07 1.76±0.62 7.48±0.96 
Thr 1.00±0.07 1.07±0.03 1.25±0.13 0.91±0.04 
Ala 1.00±0.08 0.99±0.03 1.08±0.15 1.51±0.12 
Pro 1.00±0.15 0.83±0.07 1.17±0.28 0.78±0.07 
Tyr 1.00±0.13 1.24±0.08 1.21±0.17 3.04±0.27 
Val 1.00±0.04 1.10±0.03 1.00±0.05 2.15±0.18 
Met 1.00±0.08 1.08±0.07 1.09±0.11 1.13±0.12 
Lys 1.00±0.03 0.92±0.06 1.10±0.03 1.27±0.06 
Ile 1.00±0.03 0.99±0.04 1.05±0.06 1.00±0.05 
Leu 1.00±0.08 1.08±0.11 1.02±0.10 2.49±0.21 
Phe 1.00±0.10 5.85±0.37 1.97±0.41 168.09±15.51 
Trp 1.00±0.36 0.98±0.15 0.93±0.28 5.06±0.50 
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Figure 3.7. Expression of ADT2 and ADT2-1D in mutants and transgenics. 
Expression of ADT2 and ADT2-1D in rosette leaves of different genotypes. 
Mean ± s.e. of n = 6, *P < 0.05, two tailed Student’s t-test relative to 
wildtype Col-0. 
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Figure 3.8. Correlation of free phenylalanine levels and leaf shapes. All data 
were normalized, with the concentration of phenylalanine in old Col-0 leaves set as 
1. Free phenylalanine accumulation in young leaves of padt2-1D is much higher 
than in the rest of the leaves, which is correlated to their unique phenotype, as 
shown in Figure 3. Mean + s.e. of n=3. Note the logarithmic scale of the Y axis. 
Different letters on the bars indicate significant differences, P < 0.05, as 
determined by a two-tailed Student’s t-test. 
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GC-MS and LC-MS were performed to identify changes in transgenic lines expressing 

padt2-1D and, as a control, pADT2. GC-MS metabolite profiling confirmed the 

elevated phenylalanine in padt2-1D (Table 3.2). Ornithine, hydroxyproline, salicylic 

acid (SA) and 𝛶𝛶-aminobutyric acid were also higher in transgenic plants, trehalose is 

the only significantly decreased metabolite (Table 3.2), and other tested metabolites 

showed no significant changes (Table 3.3). 

Salicylic acid, which is derived from phenylalanine and chorismate in higher plants, is an 

important regulator of disease resistance (Feechan et al., 2005). PR1 (pathogenesis-related 

protein 1) gene expression is induced by SA and is widely used as a marker gene for plant 

systematic acquired resistance. In agreement with the increased level of free SA, PR1 

expression is dramatically up-regulated in padt2-1D (Figure 3.9), and therefore SA-dependent 

defense pathways might be constitutive activated in padt2-1D. 

 

      Table 3.2. Metabolites with significant changes in padt2-1D plants. 

 

Metabolitesa Fold Changeb St. Dev.c 

Phenylalanine 70.0 18.6 ** 
Tyrosine 9.8 2.5 ** 
Valine 2.0 0.3 ** 
Tryptophan 67.3 27.3 ** 
Hydroxyproline 2.0 0.4 ** 
Glyceric acid 2.4 0.6 ** 
Salicylic acid 4.7 2.3 ** 
Gulonic acid-1,4-lactone 2.6 1.2 * 
4-Amino-butyric acid 2.0 0.9 * 
Trehalose 0.6 0.3 * 
Glycerol 1.2 0.1 * 
Putrescine 1.9 0.8 * 
Ornithine 4.6 3.4 * 
Guanidine 3.4 2.5 * 
Urea 1.9 0.9 * 
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Table 3.2 (continuted)    
Kaempferol-3Glc-2"Rha-7Rha 2.8 0.6 * 
Quercetin-3Glc-7Rha 2.9 1.0 * 
2-Phenylethyl glucosinolate 30.1 6.3 ** 
Sinapoyl glucose 2.4 1.0 * 
Sinapoyl malate isomer 2.1 0.8 * 

 
a Compounds measured by GC-MS above the dashed line, by HPLC-MS below.  

bRelative changes, with metabolite concentrations of the Col-0 control as 1. cStandard 
deviation of 7 samples for GC-MS analysis and 4 samples for LC-MS analysis. *P < 
0.05; **P < 0.005, one tailed Student’s t-test comparing mutant and wildtype plants. 
 
 
 
 
   
Table 3.3. Metabolites in padt2-1D plants measured by GC-MS. Concentrations of 
metabolites from rosette leaves of padt2-1D plants were compared to the pADT2 
transgenic control by GC-MS. Relative changes were shown, using metabolite 
concentrations in the pADT2 control as 1. Results of two tailed Student’s t-test are also 
shown. 
 
 

Metabolite Mean ± s.e. P-value 
Phenylalanine 69.95 ± 7.01 < 0.001 
Tyrosine 9.83 ± 1.01 < 0.001 
Valine 2.04 ± 0.12 < 0.001 
Tryptophan 67.31 ± 11.08 < 0.001 
4-Hydroxy-proline 2.03 ± 0.17 < 0.001 
Glyceric acid 2.38 ± 0.25 < 0.001 
Salicylic acid 4.74 ± 0.90 < 0.002 
Gulonic acid-1,4-lactone 2.56 ± 0.49 0.01  
4-Amino-butyric acid 2.04 ± 0.32 0.01  
Trehalose 0.56 ± 0.10 0.02  
Glycerol 1.24 ± 0.05 0.02  
Putrescine 1.93 ± 0.32 0.02  
Ornithine 4.57 ± 1.33 0.03  
Guanidine 3.42 ± 0.98 0.04  
Urea 1.89 ± 0.37 0.05  
Alanine 2.38 ± 0.66 0.08  
Fructose 1.19 ± 0.06 0.09  
Isoleucine 1.20 ± 0.09 0.11  
Glucose 1.28 ± 0.09 0.11  
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Table 3.3 (continued)   
myo-Inositol 1.20 ± 0.11 0.12  
1,6-Anhydro-glucose 1.62 ± 0.40 0.16  
O-acetyl-serine 1.30 ± 0.17 0.17  
Glucose-6-phosphate 1.60 ± 0.39 0.18  
Threonine 0.75 ± 0.15 0.20  
Erythritol 1.42 ± 0.31 0.21  
Alanine 1.23 ± 0.16 0.22  
2-Methyl-malic acid 0.81 ± 0.04 0.22  
Phosphoric acid 1.30 ± 0.17 0.24  
Nicotinic acid 1.17 ± 0.11 0.25  
Maltose 0.82 ± 0.07 0.26  
Arginine 1.42 ± 0.25 0.28  
Melezitose 1.52 ± 0.33 0.28  
2-Ethyl-hexanoic acid 1.29 ± 0.11 0.41  
Proline 1.30 ± 0.33 0.41  
Malic acid 1.24 ± 0.25 0.48  
Asparagine 1.39 ± 0.52 0.50  
Succinic acid 0.82 ± 0.14 0.54  
Aspartic acid 1.13 ± 0.16 0.56  
Lactic acid 1.10 ± 0.09 0.59  
Glycine 1.54 ± 0.86 0.60  
Heptadecanoic acid 0.83 ± 0.18 0.62  
Tetradecanoic acid 0.88 ± 0.17 0.66  
Glutamine 0.91 ± 0.16 0.67  
Gluconic acid-1,5-lactone, 1.11 ± 0.14 0.71  
Uracil 1.05 ± 0.07 0.74  
Octadecanoic acid 0.93 ± 0.18 0.79  
Glutamic acid 1.04 ± 0.12 0.79  
Benzoic acid 1.04 ± 0.10 0.80  
Serine 0.98 ± 0.16 0.93  
Spermidine 1.01 ± 0.25 0.99  

 

 

 

    

     

 

 

Figure 3.9. Upregulation of PR1 expression in padt2-1D. Semi-quantitative RT-
PCR analysis shows induced expression of the PR1 gene in padt2-1D lines 
compared to Col-0 wildtype, adt2-1D and pADT2, using expression of the TIP41 
like gene as an internal control.  
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  Several categories of secondary metabolites, including flavonols, glucosinolates and 

phenylpropanoids were measured by LC-MS. Kaempferol-3Glc-2"Rha-7Rha, 

quercetin-3Glc-7Rha, sinapoyl glucose, and sinapoyl malate, were increased more 

than two-fold (Table 3.4). There was a trend toward increased accumulation among 

other phenylalanine-derived metabolites, but these effects were not significant (Table 

3.4). Therefore, although the availability of free phenylalanine affects downstream 

metabolites, the metabolic flux of phenylalanine catabolism is still under tight control, 

likely mediated by the feed-back regulation of phenylalanine ammonia lyase (Blount 

et al., 2000). 

 

Changes in glucosinolate content affect insect resistance 

A notable exception to the lack of substantial secondary metabolite changes was a 

compound with m/z [M-H]- 422, which was increased more than 30-fold in rosette 

leaves of padt2-1D lines. The m/z ratio suggested that this compound could be 2- 

phenylethylglucosinolate (2PE), which was previously reported to be increased in A. 

thaliana overproducing phenylalanine (Tzin et al., 2009). Therefore, we measured the 

glucosinolate content of wildtype Col-0, adt2-1D, pADT2, and padt2-1D plants using 

an independent assay, HPLC analysis of desulphoglucosinolates. This showed a novel 

peak corresponding to 2PE in padt2-1D (Figure 3.10). 2PE, which is normally 

abundant only in the seeds of A. thaliana Col-0 (Brown et al., 2003), is present at 

greatly elevated levels in both seedlings and mature leaves of padt2-1D lines. Much 

smaller increases are observed in the adt2-1D mutant (Figure 3.10). When compared 

to pADT2, padt2-1D transgenics also have smaller increases in 3-

methylsulfinylpropyl-, 4-methylthiobutyl-, and indol-3-ylmethylglucosinolates (Table 

3.5).  
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Table 3.4. Metabolites in padt2-1D plants measured by LC-MS. Concentrations of 
metabolites from rosette leaves of padt2-1D plants were compared to the pADT2 
transgenic control by LC-MS. Relative changes are shown, using metabolite 
concentrations of the control as 1. Results of one tailed Student’s t-test were also 
shown. 

 

Compound MW Mean ± s.e. P-value 
Kaempferol-3Glc-2"Rha-
7Rha 756 2.78 ± 0.30 0.01 
Quercetin-3Glc-2"Rha-7Rha 740 0.84 ± 0.12 0.35 
Quercetin-3Glc-7Rha 610 2.85 ± 0.48 0.01 
Kaempferol-3Glc-7Rha 594 1.48 ± 0.25 0.11 
Kaempferol-3Rha-7Rha 578 0.95 ± 0.13 0.45 
3-Indolylmethyl glucosinolate 448 1.40 ± 0.08 0.05 
Glucoraphanin 437 1.24 ± 0.11 0.28 
2-Phenylethyl glucosinolate 423 30.13 ± 3.15 < 0.001 
Glucohirsutin 493 1.48 ± 0.15 0.21 
Sinapoyl glucose 386 2.37 ± 0.49 0.04 
Sinapoyl malate 340 1.30 ± 0.11 0.07 
Sinapoyl malate isomer 340 2.14 ± 0.39 0.04 
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Table 3.5. Glucosinolate content in pADT2 and padt2-1D plants measured by 
HPLC.  
 
Concentrations of different glucosinolates from rosette leaves of padt2-1D plants were 
compared to the pADT2 transgenic control by HPLC. Results of two tailed Student’s t-
tests are also shown. Glucosinolate abbreviations: 3MSP, 3-methylsulfinylpropyl; 
4MSB, 4-methylsulfinylbutyl; 4MTB, 4-methylthiobutyl; 8MTO, 8-methylthiooctyl; 
I3M, indol-3-ylmethyl; 4MI3M, 4-methoxyindol-3-ylmethyl; 1MI3M, 1-
methoxyindol-3-ylmethyl; 2-PE 2-phenylethylglucosinolate(2PE). 
 
 

 
 
  

Compound MW Mean ± s.e. P-value 
Kaempferol-3Glc-2"Rha-
7Rha 756 2.78 ± 0.30 0.01 
Quercetin-3Glc-2"Rha-7Rha 740 0.84 ± 0.12 0.35 
Quercetin-3Glc-7Rha 610 2.85 ± 0.48 0.01 
Kaempferol-3Glc-7Rha 594 1.48 ± 0.25 0.11 
Kaempferol-3Rha-7Rha 578 0.95 ± 0.13 0.45 
3-Indolylmethyl glucosinolate 448 1.40 ± 0.08 0.05 
Glucoraphanin 437 1.24 ± 0.11 0.28 
2-Phenylethyl glucosinolate 423 30.13 ± 3.15 < 0.001 
Glucohirsutin 493 1.48 ± 0.15 0.21 
Sinapoyl glucose 386 2.37 ± 0.49 0.04 
Sinapoyl malate 340 1.30 ± 0.11 0.07 
Sinapoyl malate isomer 340 2.14 ± 0.39 0.04 
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Figure 3.10. Change of glucosinolate profile in adt2-1D and padt2-1D. 
Representative UV absorbance  (λ=229) chromatograms of  
desulfoglucosinolates from pADT2 (top), adt2-1D (middle) and padt2-1D 
(bottom) mature rosette leaves. Glucosinolate side chain abbreviations:  3MSP, 
3-methylsulfinylpropyl; 4MSB, 4-methylsulfinylbutyl; 4MTB, 4-
methylthiobutyl; 8MTO, 8-methylthiooctyl; I3M, indol-3-ylmethyl; 4MI3M, 4-
methoxyindol-3-ylmethyl; 1MI3M, 1-methoxyindol-3-ylmethyl; the arrow 
points to the novel peak resulting from 2-phenylethylglucosinolate (2PE) in the 
padt2-1D. Sinigrin was used as an internal standard (IS).  
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    To test the plant defense consequences of 2PE over-accumulation, we performed 

experiments using larvae of the cabbage looper (Trichoplusia ni), a generalist 

lepidopteran herbivore that is sensitive to alterations in glucosinolate content (Barth 

and Jander, 2006). When given a choice between rosette leaves of pADT2 and padt2-

1D, T. ni larvae showed a strong preference for feeding on pADT2 leaves, suggesting 

aversion to 2PE (Figure 3.11a,). In a second run of this experiment, T. ni larvae hardly 

consumed any adt2-1D leaf material (Figure 3.12). In no-choice experiments, T. ni 

larvae gained significantly less weight on plants with elevated 2PE (Figure 3.11b) than 

on controls. 
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Figure 3.11. Increased insect resistance in padt2-1D.  
(a) Leaf area consumed in T. ni feeding choice tests. T. ni consumes 
sigifincantly less leaves in padt2-1D. Mean ± s.e. of n = 16, P < 0.0001, 
Student’s t-test.  
(b) Caterpillar weight gain in a T. ni feeding no-choice test. Mean ± s.e. of n = 
14 to19. Growth of T. ni is significantly inhibited in padt2-1D. Different letters 
on the bars indicate significant differences, P < 0.05, as determined by a two-
tailed Student’s t-test. 
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Figure 3.12. When given a choice, T.ni prefers to feed from padt2-1D rather 
than pADT2 leaves. T. ni consumes significantly more leaf material of pADT2 
(left of each pair) than padt2-1D (right of each pair).  
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Although glucosinolate degradation products deter generalist insect feeding, some 

crucifer-specialist insects are resistant to these negative effects (Ratzka et al., 2002; 

Wittstock et al., 2004). Consistent with this, larval weight gain of the white cabbage 

butterfly (Pieris rapae), a crucifer-specialist herbivore, was not significantly affected 

when comparing pADT2 and padt2-1D plants to wildtype Col-0. When given a choice 

between rosette leaves of pADT2 and padt2-1D, P. rapae did not show a significant 

feeding preference. We also did not observe significant differences in diamondback 

moth (Plutella xylostella) oviposition when given a choice of pADT2 and padt2-1D 

plants, or Col-0 and adt2-1D plants. 

 

The adt2-1D mutation increases salt tolerance 

In response to osmotic stress, A. thaliana and other plants accumulate elevated 

amounts of free amino acids¸ including phenylalanine (Nambara et al., 1998). For 

instance, in dehydrated A. thaliana leaves, flowers, and siliques, free phenylalanine 

levels were increased 100-, 50-, and 30-fold, respectively (Joshi et al., 2010). The 

osmoprotective functions of proline during osmotic stress have been studied 

extensively (Verbruggen and Hermans, 2008). However, for most other amino acids, it 

is not known whether the elevated accumulation is merely a consequence of osmotic 

stress or part of a protective response. Previous studies showed that increased 

accumulation of branched-chain amino acids in the omr1-5 mutant of A. thaliana 

causes increased salinity tolerance during root elongation on agar plates (Joshi and 

Jander, 2009). Root growth of adt2-1D is similarly improved compared to wildtype 

Col-0 on agar with 100 mM NaCl (Figure 3.13). In control experiments without added 

NaCl, root growth of none of these three genotypes showed any significant differences 

between mutant and wildtype seedlings. 
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Resistance to 5-methyltryptophan 

5-Methyltryptophan (5MT), a toxic analog of tryptophan, has been used as a tool to 

study tryptophan metabolism (Widholm, 1972b). However, analysis of 5MT-resistant 

rice identified a dominant mutation in the rice ADT2 homolog (Yamada et al., 2008). 

The rice mutation changes an amino acid residue in the same position as the A. 

thaliana adt2-1D mutation. It was hypothesized that the over-accumulation of free 

phenylalanine in rice callus and seedlings is accompanied by a dramatic increase of 

free tryptophan (from 4- to 20-fold), thus providing 5MT resistance. However, 

although the A. thaliana adt2-1D and padt2-1D lines are also resistant to 5MT (Figure 
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Figure 3.13. Salinity tolerance assays. Root growth of Col-0, omr1-5, and adt2-
1D on MS agar with and without 100 mM NaCl. Mean ± s.e. of n = 10 to 13. 
Different letters on the bars indicate significant differences, P < 0.05, as 
determined by Student’s t-test. 
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3.14a), they only accumulate only about 50% more soluble tryptophan in the seedlings 

(Figure 3.14b).  

    The A. thaliana transcription factor mutants atr1D and atr1D atr2D increase 

5MT resistance to a level that is similar or higher than that observed with adt2-1D 

(Figure 3.14a; Bender and Fink, 1998; Smolen et al., 2002). This phenotype depends 

on increased transcription of the CYP79B2 and CYP79B3 genes in the mutant lines 

(Celenza et al., 2005).  CYP79B2 and CYP79B3 catalyze the conversion of 

tryptophan to indole-3-acetaldoxime (IAOx), a precursor of indole-3-acetic acid (IAA) 

and indole glucosinolates (Hull et al., 2000). The two enzymes might also oxidize 

5MT to a less toxic product by a similar reaction.  However, quantitative PCR 

showed that in adt2-1D and padt2-1D lines, there is no significantly increased 

expression of  CYP79B2, CYP79B3, or ATR1(MYB34) (Figure 3.14c). 

    Although pPheA* transgenics produce a high level of free phenylalanine in A. 

thaliana seedlings (through pathway indicated in Figure 3.1; Tzin et al., 2009), these 

plants are not resistant to 5MT or m-tyrosine added to agar medium. A further 

investigation revealed that, unlike the adt2-1D mutant, pPheA* seedlings accumulate 

most of their phenylalanine in the shoots rather than in the roots (Figure 3.6a). Since 

5MT and m-tyrosine in agar medium enter A. thaliana via the roots, the lack of 

phenylalanine overaccumulation in pPheA*  roots might explain why this line does 

not show increased resistance. Alternatively, since PheA* is a bifunctional enzyme 

that also encodes a feedback-insensitive chorismate mutase, the effect on tryptophan 

metabolism might be different from that in adt2-1D, thus producing a different 5MT 

resistance phenotype.  
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Gene Expression Analysis 

Figure 3.14. Resistance to 5-methyltryptophan. 
(a) Representative seedlings of Col-0, adt2-1D, atr1D, and atr1D atr2D grown on agar 
with different concentrations of 5-methyltryptophan (5MT) are shown.  
(b) Free tryptophan levels in seedling shoots and roots of different genotypes.  Mean 
+ s.e. of n = 6, *P < 0.05, two tailed Student’s t-test relative to wildtype Col-0. 
(c) Expression of ASA1, MYB34, CYP79B2 and CYP79B3 in rosette leaves of Col-0 
and adt2-1D.  In adt2-1D, there is no significant increase of gene expression in the 
set of genes that are responsible for 5MT resistance phenotype in the atr1D mutant. 
Mean ± s.e. of n = 6, *P < 0.05, two tailed Student’s t-test relative to wildtype Col-0. 
 

b c 
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Discussion 

Our EMS mutant screen for m-tyrosine resistance identified only a single mutation in 

the ESRP motif of the ACT regulatory domain in ADT2. Given that a different mutant 

screen in rice identified a mutation in exactly the same position (Wakasa and 

Widholm, 1987; Yamada et al., 2008), it is possible that this specific ADT2 serine 

residue plays a pivotal role in the regulation of plant phenylalanine biosynthesis. 

Although the ACT domain ESRP motif is also present in the other five A. thaliana 

ADT proteins (Cho et al., 2007), no mutations were discovered in our m-tyrosine 

resistance screen. This lack of mutations could occur by chance, and it would be 

interesting to determine whether similar ESRP mutations in the other A. thaliana 

ADTs result in phenylalanine over-accumulation in other plant developmental stages 

or specific tissues.          

    Given that we did not see enzyme inhibition by m-tyrosine in our in vitro ADT2 

activity assays (Figure 3.5), a direct effect of m-tyrosine on ADT2 is probably not the 

cause of phytotoxicity in vivo. Instead, m-tyrosine resistance is likely caused by the 

localized increase in phenylalanine, which reduces uptake of m-tyrosine and/or 

competes with m-tyrosine for access to other enzymes. It is also possible that elevated 

phenylalanine outcompetes m-tyrosine for incorporation into protein by phenylalanyl-

tRNA synthetases (Gurer-Orhan et al., 2006; Klipcan et al., 2009). If there are 

multiple mechanisms of m-tyrosine toxicity, this would explain why no target-site 

resistance was found in our mutant screen. The proposed allelopathic activity of m-

tyrosine that is released by fescue grasses may be mediated through similar effects on 

phenylalanine metabolism (Bertin et al., 2007). In the absence of isogenic plant lines 

that are resistant and sensitive to m-tyrosine, it has not been possible to confirm this 

likely subtle in vivo allelopathic activity (Kaur et al., 2009). However, the isolation of 

an m-tyrosine-resistant A. thaliana mutant may make it possible to perform such 
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ecological experiments. 

    Compared to the rice mtr1 mutant, in which soluble phenylalanine and 

tryptophan increase more than 50-fold in callus (Yamada et al., 2008), adt2-1D has 

much smaller increases (Figure 3.6a and 3.14b). This could be due either to inherent 

differences between A. thaliana and rice, or to unusual amino acid metabolism in 

callus, which is not a typical plant tissue. Recent studies involving suppression of 

ADT1 expression by RNA interference in petunia revealed decreased free 

phenylalanine coupled with decreased free tryptophan and shikimate (Maeda et al., 

2010). Despite the relatively modest increase in soluble tryptophan (Figure 3.14b), the 

adt2-1D mutant is as resistant to 5MT as atr1D, the strongest 5MT-resistant mutant 

reported previously (Smolen and Bender, 2002) (Figure 3.14a). Although up-

regulation of CYP79B2 and CYP79B3 was shown to be essential for 5MT resistance in 

the atr1D transcription factor mutant (Celenza et al., 2005), neither of these genes is 

up-regulated in adt2-1D. Together, these experiments with rice, petunia, and A. 

thaliana demonstrate that levels of free phenylalanine and free tryptophan are 

positively correlated in a manner that suggest additional, as yet uninvestigated 

regulation of the aromatic amino acid biosynthesis pathway (Figure 3.1a). Given the 

observed increases in both phenylalanine and tryptophan, the overall metabolic flux 

through the shikimate pathway to chorismate is likely to be increased in adt2-1D. 

Feedback inhibition of chorismate mutase by elevated phenylalanine could also 

increase tryptophan accumulation, but reduced chorismate mutase activity would be 

inconsistent with the large phenylalanine increase observed in adt2-1D. Therefore, 

although phenylalanine feedback inhibits both chorismate mutatse and ADT in 

plastids, our study suggests that feedback inhibition of ADT, rather than chorismate 

mutase, plays a more major role in maintaining phenylalanine homeostasis. An 

attractive hypothesis to explain the increased tryptophan accumulation is that 
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anthranilate synthase, or some other enzyme(s) of the tryptophan branch of the 

pathway are activated by increased phenylalanine or a downstream metabolite. 

Conversely, tryptophan biosynthesis might be inhibited by arogenate, which would 

presumably be less abundant in pADT2-1D.  

    Compared to adt2-1D, in which phenylalanine and tryptophan are the only two 

amino acids that are significantly increased, expression of the padt2-1D transgene 

affects a much larger array of plant metabolites (Table 3.2, Table 3.3). In response to a 

high level of external phenylalanine, A. thaliana has increased accumulation of most 

free amino acids (Voll et al., 2004). These effects allowed the selection of as yet 

unidentified mutations that provide resistance to toxic amounts of exogenous 

phenylalanine (Voll et al., 2004). It is possible that similar regulatory mechanisms 

occur due to endogenous overproduction, reaching lethal levels in the padt2-1D-3 line. 

Notably, overexpression of OASA1D, a feedback insensitive anthranilate synthase 

gene in rice also increased the overall free amino acid levels, in addition to the 

expected overaccumulation of tryptophan (Wakasa et al., 2006). Taken together, these 

data strongly suggest a co-regulated network of amino acid biosynthesis.  

    Increased 2PE is one of the more significant changes in the metabolite profile of 

padt2-1D leaves (Figure 3.10a). In Col-0 A. thaliana, substantial amounts of 2PE are 

only found in seeds and siliques (Brown et al., 2003). Therefore, the adt2-1D mutant 

line may provide new opportunities for finding currently unknown enzymes specific to 

2PE biosynthesis. In pPheA* lines, 2PE was increased in young seedlings (Tzin et al., 

2009), which could represent residual glucosinolate from germinating seeds. Here we 

show that 2PE is abundant in mature leaves, which provided an opportunity to test its 

defensive role in A. thaliana. Choice and no-choice tests using T. ni, which is sensitive 

to glucosinolates, revealed that padt2-1D is more resistant than pADT2 (Figure 3.14b, 

14c). However, due to the increase of several other glucosinolates in this line, further 
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experiments will need to be performed to confirm that 2PE accumulation contributes 

to the observed resistance effect. 

    Another interesting finding is the increased accumulation of free SA in padt2-

1D1 plants, which results in activation of PR1 gene expression. Since phenylalanine 

and chorismate are metabolic precursors of SA (Chong et al., 2001; Wildermuth et al., 

2001; Yalpani et al., 1993), increased accumulation of phenylalanine and/or 

chorismate in padt2-1D1 lines could contribute to the increased level of SA. 

Alternatively, increased SA could be the result of a stress response caused by the 

unusually high level of soluble phenylalanine in the transgenic plants. Exogenous SA 

application caused increased 2PE accumulation in oilseed rape (Brassica napus L.) 

leaves (Kiddle et al., 1994), a regulatory mechanism that could also contribute to the 

observed 2PE increase in padt2-1D A. thaliana.  

    Previous research with pPheA* transgenic A. thaliana showed very limited 

alteration of primary metabolites and transcription (Tzin et al., 2009). Our current 

study showed somewhat different results. Three possible causes of this difference are: 

(i) Our padt2-1D lines produce considerably higher levels of free phenylalanine; (ii) 

we characterized our plant material at the rosette stage as opposed to the seedling 

stage, which might identify differences that are not apparent in younger plants; and 

(iii) although both studies revealed an increase in free phenylalanine, differences in the 

genes and promoters used may explain the observed phenotypic differences.  

    Given the role of phenylalanine as a precursor for numerous secondary 

metabolites, there are potential practical applications in upregulating this biosynthetic 

pathway. Similar effects observed in rice, petunia, and A. thaliana suggest that ADT 

activity may be a key regulated step in phenylalanine biosynthesis. Our study 

underscores the importance of phenylalanine regulation by ADT2 and reveals the far-

reaching physiological consequences of phenylalanine overaccumulation, including 
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changes in leaf development, resistance to phytotoxic amino acids, decreased feeding 

by a generalist herbivore, and increased salt tolerance. 

 

Experimental procedures 

Plant Material and Growth Conditions 

A. thaliana Col-0, Ler, and CS21995, a T-DNA activation tagged line collection in the 

Col-0 genetic background, were obtained from the Arabidopsis Biological Resource 

Center (http://www.arabidopsis.org/abrc/). M2 EMS and fast neutron mutated Col-0 

seeds were purchased from Lehle Seeds (http://www.arabidopsis.com/).  

10,000 seeds representing 8600 independent T-DNA activation tagged lines, 

100,000 seeds representing 12,500 independent fast neutron deletion lines, and 

267,000 M2 seeds representing 33,400 independent EMS mutation lines were 

screened for elevated m-tyrosine resistance. Plants were grown in soil as described 

previously (Joshi et al., 2006). To screen for strong m-tyrosine-resistant A. thaliana 

mutants, surface-sterilized seeds (Weigel and Glazebrook, 2002) were mixed in 0.5x 

MS medium (Sigma-Aldrich, http://www.sigmaaldrich.com/) with 1% sucrose, 0.3% 

Phytagar (Invitrogen, http://www.invitrogen.com/), and 40 μM m-Tyr (Sigma-Aldrich), 

and were plated in Petri dishes. Germination was scored after one week. To screen for 

weaker m-tyrosine-resistant mutants, sterilized seeds were plated in square Petri dishes 

with 0.5x MS medium, 1% sucrose, 1.5% Phytagar, and 3 μM m-tyrosine. Square Petri 

dishes were placed vertically in growth chambers and root length was measured after 

10 days. To test 5MT resistance, 15 μM 5MT (Sigma-Aldrich) was added into 0.5x 

MS (Murashige and Skoog) medium, 1% sucrose and 1.5% Phytagar, and A. thaliana 

seeds were plated after sterilization. To test salt tolerance, A. thaliana seeds were 

grown on 1x MS medium, 1% sucrose, 1.5% Phytagar with 100 mM NaCl. 
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Positional Cloning and Transgenic Plants 

The adt2-1D mutant was crossed to wildtype Ler A. thaliana, and an F2 population 

was used for positional cloning. The resistance phenotype was scored by measuring 

the root length of seedlings grown on MS agar plates with 3 μM m-tyrosine. For all 

plants that showed a short root phenotype and were thus sensitive to m-tyrosine, DNA 

was extracted using the CTAB (cetyltrimethylammonium bromide) method (Weigel 

and Glazebrook, 2002).  

DNA from 50 m-tyrosine-sensitive plants was extracted, pooled, and genotyped 

with a set of 25 insertion/deletion markers (Table 3.6). This showed genetic linkage to 

chromosome 3. DNA from 400 m-tyrosine sensitive F2 plants was extracted and tested 

with additional markers. The results confirmed the linkage with markers CER470676 

and CER469707 on the top half of the chromosome 3. PCR primers used for 

genotyping are listed in Table 3.7. 

Table 3.6. PCR primers used for map-based cloning. 
                                        First Pass Mapping Primers 

InDel name Forward primer Reverse primer Chr. Genome location 

CER450763 CGTAAGCTGGAAGAAGAGACGTTG TGATCGCTCAATCCTTTCGACCT 1 3243901 

481865 CAGCCAGATCAAGCCACTGAACTA GCAGCTAGTGAAGACATGAAACAGC 1 5722101 

CER450309 GCCCAGTCTAGGATTGAACATAGG CCATACTGCAAAGAATGGAAGGGC 1 10131301 

CER452606 GTCATGTGACCACCACACTCACTT CGTAAGACAATGCATGACAGCACG 1 13464201 

CER449068 ATCGACTCCGGTACCACTCTAACT AGACACATCTTCAGACACTGCCAC 1 24095201 

CER464729 CCAAAGCTAAAGCTGAAGCGGAAG TGTATTCAAGGGCTACACCAACA 1 30394601 

CER458312 CTTGGCTCAGACGATTTGTCCAAC CCGGAGTAAGCGGCCATAACTAAA 2 6148901 

CER452492 AGCAGGTCTCGCGATTTATTAGGG GTGAGTGACTCTCAGTTTCCACATC 2 9025301 

CER450199 GAGTCTCTTCCATGACAAGATTTAACG TCGTGTCCAAACTAACCGTGAAC 2 14740601 

CER448839 TCACTCCTCTTGGTTTCAGTAGTGG ATCCCTGAACTTCACATCTGCTGC 2 16473101 

CER457693 TCCGTAAAGAGAAAGCCCAAGCTC CACATCCAGAGTCAAGTAGCCCAA 3 7442001 

CER464872 GGTCAACCCAATTTCGGTCTCCTA TCACCGTGGAAGGAGAAACATCT 3 9550701 

F18P9 AACAGATACCAACTCCACAGGGACAA TCAATGGCAGCAAAGTCCATTAAATC 3 14950000 

469961 CTCGCAAGCGAAACTTGACTGTTC GAACGAGCTTTGGAAGACGAGAGT 3 18995301 

T20O10 CGATCATGCGTTTACCATACATCTAA TCATTTACGCTGTAGCAAACGTGGTA 3 23290000 
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Table 3.6 (continued) 
CER458426 CGAGATCGACAGCCGAGATGATTA GAATATGATCGCAAGGGAGGAAGT 4 6017401 

CER466221 TCAAACGCCAACTGAATCAATCAA TACGTACCTGGTGTTGTGTGTGGA 4 8007901 

CER450255 AGGAATGGCTTCATCTATACGCGG TTCTCCGCCTTCACCTTCTTCTTC 4 10872001 

CER449044 TCGGTAAACCCTAGACACGAAAGC TCTCAGTGGTGTTCGTCAATGGAG 4 12849001 

CER452101 TTGGATGTAACGTTGGGTGTCG GGCAAAGATACTATGCGTTCCACA 4 15294301 

T16L1 GGCAATGTATTTTACACATACTTGATT TTTCACTACTTCCAGCACCAG 4 16200000 

477141 GCATGAGGGACCAATCTGGTCTAA GAGCCAAACCAGAACTGACAACGA 5 3184101 

CER457559 ACGACTCAACAAGTCACAACG CTTTGAGACGCATAGCCATTTCGC 5 8453301 

CER451893 AAAGGCGCGTGGATTTGGATAC GCCTTTGGACATTAATCGATGGAGC 5 9445401 

469672 GTTTGGTCTCTAGCGTATGTTTGGG CGGTTTGCCCACGATTGTTTGT 5 9936001 

Second Pass Mapping Primers (Chromosome 3) 

Marker  Forward primer  Reverse primer Location on genome 

CER455914 TTCACGAATGGCCCTTTAAT TGGCATCACGAGGAGATACA 7585501 

ATDMC1.1 GCAACTGAATTTGTTTTCGTTTG TTGATTAGTGGATCCGCAAACAA 8100601 

CER456238 GTGGACGAACTTGTAGTACACATGAC TCGCTATTACTTTCTTCCCACCGC 8403901 

CER457822 AACCTCACCGGTTGTCTCTG CCTTTGAACCAGGTGGAAGA 8579401 

CER456071 ATGTTGGTCTCGCGGATGAGTATC GATAATCCAATGAGCGCATGCCAG 9160901 

CER464872 GGTCAACCCAATTTCGGTCTCCTA TCACCGTGGAAGGAGAAACATCT 9550701 

CIW1.1 CCCCGAGTTGAGGTATT GAAGAAATTCCTAAAGCATTC 9775545 

456227 TTAGACCCGAGTTCCCAAAG ACAAACGAACATTGCCAACA 9829901 

CER464957 GGTCGGAAAATCAAAGCTGA TTTGCTTGGGTCAAAACTTG 115201 

473863 AGGACCCACTTCACACCAAC TGGTAACACCCTCTTTCTCCA 1583000 

CER464947 TGCAAATTGTTTTTGGTTGC TCGGTGGTAAAGGTTTAGGC 3108900 

CER460222 GCCGAATGCTAAAAAGCAAG GTGTATCGTACGCCCCACTC 5599201 

CER455523 GGGAGAAGAGTCAGGCAAAA TGATCAAAAATCACATGCAAGA 6117101 

469491 TTCAACGGCGGAGATAGTTC ATTTTTAATTGGGCCGGTTC 1780101 

469977 CAAGCTCTCCAACTCGTCTTC ATCAACGCTGGAATTTGGAC 1959201 

470676 CTTTTTATGGCCCAAATCCA CACGCTGTGTCGTTTTTCTG 2299601 

470456 CGGAATCCACTGCTCAGTTT GAAGGAGGAACGAAGAGCAA 2451701 

469707 CCTGCCGCCTATATGTGACT TGCGTAGAGATATGGCTGATG 2563301 

470259 CTGCCGAGTTTCCTTGTTG TTCCCGGAAACGTAACACTC 2851101 

469729 ACGAAATCCGCCTCTTCTTC TTTTGGCTTTAATTTGCTCCA 2223301 

470461 AAAAATTCCGCAAAAAGAAACA TACTCACGACGCGCAGTAAC 2492001 

 
 
 
 



 

   
74 

 

 
        Table 3.7. Other PCR primers used in this study. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To transform the adt2-1D gene into A. thaliana, the entire gene, including the 

promoter and the 5' and 3' untranslated regions, was amplified from genomic DNA of 

the adt2-1D mutant using the primers gADT2F and gADT2R (see Table 3.7) and 

cloned into the pCR8/GW-TOPO vector (Invitrogen) and subsequently into pMDC123 

(Curtis and Grossniklaus, 2003). The rest of the procedure was as described previously 

(Joshi et al., 2006). 

  

gADT2 F  ACCTTTTCCATTCTAATTCCTATTCCATTA 
gADT2 R GCTTATTGCACAAGAAGCGATTATTG 
ADT2 f446 CACAAATTATGGGCCTTAGGATTGG 
ADT2 r1294 GAACAAAGCAAGACTAATGGCAACCA 
ADT2 Q-PCR 2 F GAAGATCTTTGAAGACTCGCCTC 
ADT2 Q-PCR 2 R TGATTCGCTGTATGCACCTC 
TIP4 1-like F GCGATTTTGGCTGAGAGTTGAT 
TIP4 1-like R GGATACCCTTTCGCAGATAGAGAC 
CYP79B2 Q-PCR F CATTAAGGAGCTTGTAATGGCGGC 
CYP79B2 Q-PCR R TCCCGACGACTCTGTCGATCT 
CYP79B3 Q-PCR F CCATTAAGGAACTTGTAATGGCGGC 
CYP79B3 Q-PCR R GCTTTGTGGAGGATCTCCGGT 
MYB34 Q-PCR F AAGGGTAACAAGTGGGCCGC 
MYB34 Q-PCR R TGCCTTTTTGCTTCAACCGCT 
ASA1 Q-PCR F TCAAAGGCCCCTGAGGATGA 
ASA1 Q-PCR R TGCCTTTTCGTAAGGAAGGCTCC 
UBQ10 Q-PCR F TTGGAGGATGGCAGAACTCTTGCT 
UBQ10 Q-PCR R AGTTTTCCCAGTCAACGTCTTAACGAAA 
PR-1 Semi-Q RT PCR F ACTGGCTATTCTCGATTTTTAATCGTC 
PR-2 Semi-Q RT PCR R CGTTCACATAATTCCCACGAGGA 
TIP41-like Semi-Q RT-PCR F GAAATTCAGGAGCAAGCCGT 
TIP41-like Semi-Q RT-PCR R GGAAGCCTCTGACTGATGGA 

mailto:ADT@%20Genomic%20F%20Primer�
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Metabolite Analysis 

AccQ Tag (Waters, http://www.waters.com/) amino acid analysis followed a method 

described previously (Joshi et al., 2006), using 10-50 mg plant tissue. For PITC 

(phenyl isothiocyanate) derivatization and amino acid measurement, amino acids were 

extracted as above and 100µL of the extract was dried using a Savant Speedvac 

(Thermo scientific, www.thermo.com). Ten µL of TEA (triethylamine) buffer (1:1:1 

of MeOH:H2O:TEA) was added and each sample was dried again. Twenty µL PITC 

buffer (7:1:1:1 of MeOH:H2O:TEA:PITC) was added and dried. Ten µL of another 

TEA buffer (2:1:1 of MeOH:H2O:TEA) was added and dried. Finally, 150 µL of a 1:1 

HPLC solvent A:solvent B mixture was added to dissolve the sample. Solvent A was 

140 mM sodium acetate, with 0.05% TEA and final pH adjusted to 6.33 with acetic 

acid. Solvent B was 60% acetonitrile.  Thirty µL of sample was injected into a 

Waters Symmetry C18 5 µm 2.1x150mm column. The gradient used was as follows: 0 

to 10 min, 99% A; 10 to 35 min, linear gradient to 65% A; 35 to 40 min, 65% A; 40 to 

42 min, linear gradient to 100% B; 42 to 44 min, 100% B. 

    GC-MS analysis was carried out as described previously (Lisec et al., 2006). 

Data were analyzed using TagFinder (Luedemann et al., 2008) by comparison to 

libraries of chemical standards (Kopka et al., 2005). LC-MS profiling was carried out 

as described (Tohge and Fernie, 2010). Glucosinolate assays were carried out as 

described previously (De Vos and Jander, 2009). 

 

Heterologous Expression and Enzyme Assays 

Cloning and expression of transgenes was similar to a previeous study (Cho et al., 

2007), with minor modifications. A construct with wildtype ADT2 in the pET43.1 

vector was provided by N. Lewis (Cho et al., 2007). E. coli cells expressing the target 
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protein were disrupted by sonication and the target protein was purified by NTA-

agarose (Qiagen, http://www.qiagen.com/) according to the manufacturer's 

instructions. 

    Arogenate, the substrate for the enzymatic reaction, was purified from a 

Neurospora crassa mutant (ATCC 36373) as described previously (Yamada et al., 

2008; Zamir et al., 1980), without the last step of HPLC purification. Arogenate was 

quantified by its conversion to phenylalanine in the presence of HCl. For enzyme 

assays, each reaction consisted of 50 µL KH2PO4-K2HPO4 pH 7.0 buffer, 150 µL 

partially purified arogenate, norleucine as internal standard, and 50 µL protein. The 

reaction was kept at 37oC for the desired amount of time and frozen immediately. For 

phenylalanine feedback inhibition assays, 100 µM of phenylalanine was added before 

the reaction. The reaction product was analyzed by HPLC after AccQ-Tag 

derivatization. Data analysis was conducted using SAS software (www.sas.com). 

 

RNA Extraction, Quantitative RT-PCR and Semi Quantitative PCR Analysis 

RNA was extracted using the SV Total RNA Isolation SystemTM (Promega, 

http://www.promega.com/) and digested with Turbo DNaseTM (Ambion, 

http://www.ambion.com/) according to the manufacturer's instructions. PCR reactions 

with primers ADT2 f442 and ADT2 r1294, designed to span intron sequences 

of ADT2, were used to check for genomic DNA contamination. Subsequently, DNA-

free total RNA was converted into cDNA using oligo-dT20 primers, 10 mM dNTPs, 

and Clontech SMARTTM MMLV Reverse Transcriptase (Clontech, 

http://www.clontech.com/) according to the manufacturer's instructions. Efficiency of 

cDNA synthesis was assessed by Q-RT-PCR using primers that amplify the 

constitutively expressed genes UBI10 or TIP41-like (At4g05320 and At4g34270). 
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Gene-specific primers were designed using Primer3 v. 0.4.0. (Rozen and Skaletsky, 

2000). Q-RT-PCR analysis was done in optical 384 well clear optical reaction plates 

and optical adhesive covers (Applied Biosystems, http://www.appliedbiosystems.com/) 

with an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems), using 

SYBR Green to monitor double-stranded  DNA synthesis. Each reaction contained 

0.75 µL of cDNA solution, 0.5 µL of each of the two gene-specific primers (10 pmol 

µL−1), and 5 µL of 2× SYBR Green PCR mix reagent (Applied Biosystems) in a final 

volume of 10 µL. The following PCR program was used for all PCR reactions: 95 ºC 

for 2 min, followed by 45 cycles of 95ºC for 15 s and 60 ºC for 60 s. When primers 

were used for the first time, the program was followed by a dissociation curve to 

determine if only one product was formed. Threshold cycle (Ct) values were 

calculated using Applied Biosystems Software (SDS version 2.3, for Windows XP). 

Subsequently, Ct values were normalized for differences in dsDNA synthesis using 

the UBI10 or TIP41-like Ct values. Normalized transcript levels of all genes were 

compared with those of the mock-treated controls and the fold change in expression 

level was calculated based on the ΔΔCt. 

    Semi-quantitative PCR was conducted using a C1000 Thermal Cycler (Bio-rad, 

http://www.bio-rad.com/) with the following program: 95 ºC for 2min, followed by 30 

ºC (for control TIP41-like primers) or 32 cycles (for PR1 primers) of 95 ºC for 60 s, 51 

ºC for 30 s and 72 ºC for 50 s. Cycle numbers were determined after optimization.  

    Sequences of all primers are provided in Table 3.7. 

 

Insect Bioassays 

T. ni and P. xylostella eggs were obtained from Benzon Research 

(http://www.benzonresearch.com/). P. rapae were from a colony maintained by the 



 

   
78 

 

Jander lab, which is descended from insects collected in the wild on the Cornell 

University campus in July, 2008. P. rapae larvae were confined on the leaves of 3-

week-old plants with mesh-covered cups and allowed to feed on plants for 7 days (P. 

rapae) or 9 days (T. ni) before being harvested and lyophilized (Labconco, 

http://www.labconco.com/). Larval dry weight was determined using a precision 

balance (Sartorius, http://www.sartorius.com/).  

    For insect choice experiments, leaves were harvested from similarly-sized 2-

week-old plants growing together in the same tray. Mutant and wildtype leaves were 

placed about 5 mm apart on moist paper towels in 55 mm diameter Petri plates. Single 

2-day-old T. ni or 4-day-old P. xylostella larvae raised on artificial diet (Southland 

Products, www.tecinfo.com/~southland/) prior to being placed lengthwise between 

each pair of leaves. After 48 h, the remaining leaf material was scanned and the area 

eaten was calculated with ImageJ (available at http://rsb.info.nih.gov/ij).  

    For whole plant oviposition assays, 60 adult P. xylostella (~50% females) were 

allowed to oviposit on 32 paired mutant and wildtype plants, in complete darkness in a 

30 × 60 cm nursery flat under a dome cover. After 24 h P. xylostella eggs were 

counted. 
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CHAPTER FOUR:  

INVESTIGATION OF M-TYROSINE TOXICITY TO PLANTS*

 

 

Introduction 

Allelopathy refers to the growth interference among neighboring plants mediated by 

chemical compounds. In most cases, the functional chemicals, named allelochemicals, 

are secreted from roots or leached from decomposing leaves into the rhizosphere.   

In a recent study evaluating the allelopathy potential of fine leaf fescues, m-tyrosine, a 

structural isomer of the common p-tyrosine, was discovered to be present in a massive 

amount in the roots of Chewings fescue Festuca rubra L. ssp commutata, and can act as 

a broad spectrum phytotoxin in very low concentrations (Bertin 2005). This, together 

with the observation that Chewings fescue has great weed suppressive ability, indicated 

that Chewings fescue might have allelopathy potential (Belz and Hurle 2004). A. 

thaliana, the model plant species, is also among the plants that show great sensitivity to 

synthetic m-tyrosine in laboratory assays. The hypothesis was then proposed that, by 

exuding m-tyrosine from their roots, certain species of fine leaf fescues are able to 

inhibit the growth of neighboring plants. However, the physiological aspects of this 

allelopathic interaction are not clear. 

    Research on the physiological mode of action is not only an essential part of 

allelopathy, but can also provide new ideas for herbicide design (Macias et al. 2007).  

Hypotheses were often tested based on the structure of allelochemicals and their toxic 

effects at the cellular and biochemical level. Although A. thaliana has been the leading 

subject for all kinds of plant research in the past decade, it is just beginning to join the 

cast of allelopathy research. A recent study has taken advantage of the A. thaliana 

                                                 
* Part of this chapter is modified from an article with permission from PNAS, 
published in October 2007, DOI: 10.1073/pnas.0707198104 
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genomics resources by using microarray experiments to examine the gene expression 

profile upon treatment by a potential allelochemical catechin (Bais et al. 2003). In the 

present study, we investigate the mode of actions of m-tyrosine toxicity using A. 

thaliana as the model species. 

 

Results and discussion 

Toxicity of m-tyrosine to A. thaliana can be alleviated by supplementation of 

other amino acids 

Given the chemical structure of m-tyrosine, it seemed possible that this compound 

would interfere with plant amino acid metabolism. Indeed, using agar plate growth 

test, the toxicity of 3 μM DL-m-tyrosine for A. thaliana root growth was counteracted 

to some extent by the addition of 14 of the 20 protein amino acids at 40 μM 

concentrations (Figure 4.1). Addition of charged amino acids caused little or no 

improvement in root growth, which may indicate that aromatic and neutral amino 

acids compete with m-tyrosine for uptake or transport within the roots. In control 

experiments, the protein amino acids by themselves did not significantly improve root 

growth at these concentrations. 

    This broad range of rescue by amino acids could be results of competition for 

root uptake via various amino acid transporters located in A. thaliana roots. Amino 

acid permease 1 (AAP1, At1g58360) is such a transporter whose substrates are similar 

to the pattern of amino acids that rescue the toxicity of m-tyrosine (Fischer et al. 1995; 

Lee et al. 2007). However, our results showed that two putative A. thaliana Columbia 

aap1 mutants (SAIL_95_B01 and SAIL_508_H11) did not show elevated resistance 

to m-tyrosine, although they are resistant to 6 mM of phenylalanine, a typical 

phenotype of aap1 mutants. Lysine histidine transporter 1 (LHT1, At5g40780) is 

another high-affinity transporter for cellular amino acid uptake in the root epidermis 
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(Chen and Bush 1997; Hirner et al. 2006; Svennerstam et al. 2007). We obtained two 

T-DNA insertion lines SALK_026389 and SALK_034566 with predicted T-DNA 

insertions in the genomic region of AT5g40780. Although both of these lines were 

resistant to D-alanine, a characteristic of loss of function of LHT1, neither of them 

displayed enhanced tolerance to m-tyrosine. The A. thaliana genome encodes a large 

number of predicted and proven amino acid transporters, and it is possible that other 

such proteins play redundant roles in the uptake or within-plant movement of m-

tyrosine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Auxin does not play a significant role in m-tyrosine toxicity 

Our observations that low concentrations of m-tyrosine inhibit the primary root and 

promote lateral root elongation in A. thaliana and some lettuce isolates (data not 

shown) suggested that interference with plant growth hormones, in particular auxin 

(indole-3-acetic acid), could be a mechanism of m-tyrosine toxicity. Generally, high 

Figure 4.1. Rescue of 3 μM m-tyrosine toxicity by 40 uM or individual amino 
acids or NH4NO3.  
Root length after one week of growth on MS agar with 3 μM m-tyrosine and 40 
μM of other amino acids. Mean +/- s.d. of N = 16 to 23. *P < 0.01, t-test, relative 
to 3 μM m-tyrosine only treatment. 
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concentrations of auxin inhibit root growth, whereas very low concentrations stimulate 

root development (Taiz and Zeiger 2002). However, when tested, expression of an 

auxin-responsive DR5:GUS fusion (Ulmasov et al. 1997) was unaffected by m-

tyrosine treatment (Figure 4.2). Furthermore, six A. thaliana auxin-response mutants 

including ilr1-1, aux1-7, tir1-1, axr1-3, axr2-1, and axr3-1 (Leyser 2002) did not 

show altered sensitivity to m-tyrosine. Lastly, NPA and TIBA, two auxin transport 

inhibitors (Estelle 2001), failed to rescue m-tyrosine. Taken together, these results 

suggest that m-tyrosine does not interfere directly with auxin metabolism or activity.   

 

 

 

 

 

 

 

 

 

 

 

 

m-Tyrosine can be incorporated into proteins of A. thaliana 

m-Tyrosine is incorporated into proteins in place of phenylalanine in bacteria 

(Aronson and Wermus 1965) and mammalian cells (Gurer-Orhan et al. 2006), where it 

is associated with increased protein turnover (Rodgers et al. 2002). Vigna radiata 

(mung bean) phenylalanine t-RNA synthase accepts m-tyrosine with 25% of the 

efficiency of phenylalanine (Smith and Fowden 1968), suggesting that m-tyrosine 

Figure 4.2. DR5:GUS expression is not changed by m-tyrosine.  
Five day old seedlings of Arabidopsis DR5:GUS transgenic plants grown with 10 
μM m-tyrsoine (right) or without m-tysoine (left) were stained to show GUS 
activity.  
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might also be miss-incorporated into plant proteins. Two days after transfer of A. 

thaliana seedlings to agar plates with 10 μM m-tyrosine, the roots contained low but 

measurable amounts of incorporated m-tyrosine, representing less than 1% of the total 

phenylalanine in the protein fraction (Figure 4.3) (0.88% +/- 0.006%; mean +/- s.d. of 

N = 3). Protein samples were filtered so that no m-tyrosine could be detected before 

acid hydrolysis. This misincorporation of m-tyrosine into plant proteins could cause 

structural disruptions, or might interfere with what are normally p-tyrosine-specific 

functions such as the formation of tyrosine cross-links in cell walls (Held et al. 2004) 

or regulation of protein function by tyrosine phosphorylation (Luan 2002). However, 

since significant growth inhibition is observed at more than 100-fold lower 

concentrations in A. thaliana than in Bacillus subtilis (Aronson and Wermus 1965) or 

Chinese hamster ovary cells (Gurer-Orhan et al., 2006), plant proteins would have to 

be uniquely sensitive to m-tyrosine incorporation.  
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Figure 4.3. Incorporation of m-tyrosine into A. thaliana root proteins. 
Amino acid analysis after protein hydrolysis showed incorporation of m-tyrosine 
in treated sample (red), but not in untreated sample (blue) or sample before 
hydrolysis (green and black)  
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Test of A. thaliana ADT2 sensitivity to m-tyrosine in a yeast model 

The identification of adt2-1D mutation in an A. thaliana m-tyrosine resistant mutant 

suggested that ADT2 enzyme might be a critical target site for m-tyrosine (Chapter 2, 

Huang et al). Although in vitro enzyme assay showed that m-tyrosine does not inhibit 

the enzymatic activity, in vivo tests would help to confirm this conclusion. In the 

search for a suitable in vivo system, yeast seems to be an ideal choice due to its small 

genome and resourceful collection of mutants in biochemical pathways.  In yeast, the 

biosynthesis of phenylalanine depends on PHA2, a bifunctional enzyme of chorismate 

mutase / prephenate dehydratase (Ma et al. 2007). A yeast PHA2 knockout mutant is a 

phenylalanine auxotroph. Since the chorismate mutase enzyme function is redundant 

in yeast (Ball et al. 1986), we hypothesize that if inhibition of ADT2 is the only mode 

of action of m-tyrosine toxicity, transformation of A. thaliana ADT2 gene into yeast 

PHA2 knock-out mutant would complement its function for phenylalanine 

biosynthesis but also make it sensitive to m-tyrosine, whereas complementation with 

adt2-1D gene will produce m-tyrosine resistant yeast strain. However, our results 

indicated that although ADT2 gene indeed restored the biosynthetic pathway in yeast, 

it does not make the transgenic yeast strain sensitive to m-tyrosine (Figure 4.4).  

 

 

 

 

 

 

 

 

 

Figure 4.4. ADT2 and adt2-1D rescue yeast PHA2 phenylalanine auxotroph 
without changing sensitivity to m-tysosine. 
Yeast PHA2 mutants were transformed with ADT2 or ADT2-1D and dilution 
series of yeast culture were plated on phenylalanine-free synthetic defined media 
with various concentration of m-tysoine. 
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Self-resistance to m-tyrosine in Fescue does not depend on the mutation found in 

the A. thaniana adt2-1D mutant 

The highly toxic effect of m-tyrosine on plant growth raises an interesting question: 

how do the m-tyrosine producing fescues avoid self-toxicity? One possible mechanism 

suggested by cloning of adt2-1D mutation is that Chewings fescue also posses such a 

mutation in the same enzyme, thereby providing resistance to m-tyrosine by similar 

mechanism as in A. thaliana. The adt2-1D protein has an S to A mutation at the ESPR 

motif of the ACT domain, a regulatory domain conserved in several enzymes involved 

in amino acid metabolism (Chipman and Shaanan 2001). In another recent study of 

rice mtr mutant, the protein normally encoded by Os07g0694600, an arogenate 

dehydratase, was also found to contain an S to I mutation at the same ESRP motif of 

the ACT domain (Yamada et al. 2008). To clone the ACT domain of ADT2 in 

Chewings fescue, degenerate primers were designed based on homologs of ADT2 

sequences identified from several grass species. Two rounds of PCR using Chewings 

fescue cDNA as template produced a single band which was sequenced. The translated 

peptide sequence was aligned by ClustalW and showed very high similarity to rice 

Os7g0694600 gene and is in the same cluster with ADT2 when compared to all 6 

genes in A. thaliana ADT gene family. This sequence was then designated as the 

partial cDNA sequence of the A. thaliana ADT2 homolog in Chewings fescue (Figure 

4.5). Interestingly, the ACT domain of fescue ADT2 share the conserved ESRP motif 

as wild type A. thaliana ADT2, indicating that the resistance to m-tyrosine in 

Chewings fescue is caused by a different mechanism than in the adt2-1D mutant of A. 

thaliana (Figure 4.5). For instance, Chewings fescue might have different resistant 

ADT enzymes or the phenylalanyl-tRNA synthetase from Chewings fescue could 

better discriminate m-tyrosine from phenylalanine. Alternatively, m-tyrosine could be 

sequestered in distinct cellular compartments so that it does not interfere with the 
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normal metabolism of Chewings fescue.  

 

 

 

 

  

  

  

  

Figure 4.5. Sequence analysis of ACT domain in putative fescue ADT2 
protein. 
(a) Peptide sequence containing the ACT domain of a putative fescue ADD2 
protein is aligned with all six genes in Arabidopsis ADT family and two proteins 
from rice that show high similarity to Arabidopsis ADT2. Conserved ESPR motif 
is boxed. 
(b) Phylogenetic tree of sequenced analyzed showed the fescue ADT protein 
being a close homolog of Arabidopsis ADT2 and two genes in rice, 
Os07g0694600 and Os03g0286200. 

a 

b 
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Concluding remarks 

In this chapter, several hypotheses were tested for the modes of action of m-tyrosine 

toxicity. Evidence of m-tyrosine incorporation into A. thaliana proteins was shown 

and could account for the inhibition of plant growth. Other results suggest that m-

tyrosine shares the same transporters with other common amino acids when being 

absorbed by roots of A. thaliana. Interference with auxin, an important plant hormone, 

might have little or nothing to do with the m-tyrosine mode of action. Generation of a 

yeast model proved that the A. thaliana ADT2 gene functionally supplements the 

prephenate dehydratase activity encoded by yeast PHA2 gene and suggests that ADT2 

might not be the direct target of m-tyrosine. Cloning of the ACT regulatory domain 

from the ADT2 homolog of Chewings fescue showed a conserved ESPR domain, the 

same as A. thaliana wildtype ADT2 gene, indicating that Chewings fescue avoids the 

toxicity of m-tyrosine in a different manner than the A. thaliana adt2-1D mutant. 

 

Experimental procedures 

Plants and materials 

Seeds of A. thaliana were purchase from ABRC (Arabidopsis Biological Resource 

Center, www.arabidopsis.org). The following seeds stocks were used for auxin mutant 

tests: CS8099 (ilr1-1), CS3074 (aux1-7), CS3798 (tir1-1), CS3075 (axr1-3), CS3077 

(axr2-1), CS57504 (axr3-1). Yeast PHA2 strain (ATCC number: 4006272) was 

purchased from ATCC (American Type Culture Collection, www.atcc.org). 

Chemicals were purchased from Sigma-Aldrich (www.sigmaaldrich.com) if not 

otherwise specified. 

 

Agar plate bioassays with A. thaliana  

To assess effects of m-tyrosine and other compounds on A. thaliana root growth, 
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formulated solutions of each were added to ½-strength Murashige and Skoog medium 

(½x MS) (31), 1% Phytagar (Invitrogen, Carlsbad, California) and 1% sucrose in Petri 

dishes. A. thaliana seeds were sterilized by shaking in 30% bleach, 0.3% TritonX-100 

for 10 min, followed by three rinses with sterile distilled water. Petri dishes with seeds 

on agar medium were cold-stratified for 24 h at 4 °C, and were subsequently placed 

vertically in Conviron (Winnipeg, Canada) growth chambers at 23 °C, 180 μmols   

m-2s-1 photosynthetic photon flux density, and a 16:8 h light-dark cycle. After five 

days of growth, the root lengths of 10 seedlings per plate were measured. Experiments 

were repeated three times, and each replicate consisted of three agar plates.  Using 

this assay, rescue of 3 μM m-tyrosine toxicity was assessed by adding the 20 protein 

amino acids individually at 40 μM concentration to the assay.   

 

GUS staining 

GUS staining was performed according to the protocol described by (Weigel and 

Glazebrook 2002). 

 

Measurement of protein-incorporated m-tyrosine  

A. thaliana land race Col-0 seeds were sterilized and sown on ½x MS agar plates that 

were placed vertically in the growth chamber. After eight days, seedlings were 

transferred to new plates with control agar or agar containing 10 μM m-tyrosine. Two 

days after transfer, plant roots were harvested into 1.5 mL tubes (~ 60 mg for each 

sample) and immediately frozen with liquid nitrogen. One 3-mm steel ball was placed 

into each tube, and plant tissue was crushed by shaking on a Harbil 5G-HD paint 

shaker (Fluid Management, Wheeling, Illinois). Five hundred μl extraction buffer (1 x 

phosphate buffered saline, pH 7.4, with 2 mM phenylmethanesulfonylfluoride) were 
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then added to the crushed sample and mixed using the same shaker. Samples were 

centrifuged for 10 min at 14,000 rpm at 4 °C. Supernatant was transferred to Millipore 

YM-10 spin columns (Millipore, Billerica, Massachusetts), centrifuged at 14000 rpm 

for 30 min at room temperature, washed twice with 500 μl extraction buffer, and 

centrifuged at 14,000 rpm. Samples were adjusted to a final volume of 100 μL using 

extraction buffer. Free amino acid profiles of these samples were analyzed using the 

AccQ tag HPLC detection system (Waters, Milford, Massachusetts) to confirm that 

they did not contain free m-tyrosine. Eighty μl of each sample were adjusted to a final 

volume of 400 μl with 1% phenol and a final HCl concentration of 6N. Samples were 

then transferred to Kontes valved NMR tubes (Kontes, Vineland, New Jersey) and the 

tubes were flushed with argon gas. Sealed tubes were then incubated using a 110 °C 

oil bath for 24 h. After hydrolysis, samples were dried by evaporation, re-dissolved in 

20 mM HCl and analyzed using the AccQ tag HPLC detection system as described in 

(Joshi et al. 2006), except that a column temperature of 30° C were used to improve 

separation of the m-tyrosine derivative from the methionine derivative. 

 

Complementation of yeast PHA2 with A. thaliana ADT2 and adt2-1D genes 

Coding sequences without transit peptides of A. thaliana ADT2 and adt2-1D genes 

were amplified using forward primer 5’-CCGGAATTCATGGAAGTGAAGAAGA 

TCT-3’ and reverse primer 5’-CGCGGATCCTTAGAGCATTGTAGTGTC-3’ and 

cloned into pWV3 vector using BamHI and EcoRI restriction sites. After sequence 

confirmation, both clones were transformed into the yeast PHA2 mutant using the 

lithium acetate method (Gietz and Schiestl 1991). Transformed yeast colonies were 

inoculated into yeast SD (synthetic defined) media with 0.67 g/L yeast nitrogen base, 

20 mg/L L-adenine hemisulfate, 20 mg/L L-methionine, 20 mg/L L-histidine HCl 

monohydrate, 100 mg/L L-leucine, and 20 mg/L L-uracil. After shaking at 29 °C for 
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two days, the OD values of the culture were measured, and all cultures were diluted to 

the same density. This adjusted stock solution was then again diluted to 1:10, 1:100, 

1:1000 and 1:10000. Three µL of each dilution was dropped onto yeast SD agar plates 

with various concentrations of m-tyrosine and incubated at 29 °C before pictures were 

taken. 

 

Cloning of the cDNA sequence encoding the ACT domain of Chewings fescue 

ADT2 enzyme 

cDNA of Chewings fescue was prepared as described in Chapter 2 of this thesis. For 

the first round PCR, forward degenerate primer AGASARCCTGTYGAYGAYAC and 

reverse degenerate primer CTYCGYAGWTACCGACTAGG were used. PCR was 

conducted at 94°C for 30 s, 47°C for 90 s, and 72°C for 60 s, for a total of 35 cycles. 

The PCR product was cleaned and used for nested PCR with forward degenerate 

primer 5’-GCDGGTGCAGCMAAGHHWRTHGC-3’ and reverse primer 5’-

TARAAVAGGTA RAGRAAVTDCTT-3’. The PCR program is the same, except that 

the annealing temperature is 52°C. The PCR product was then sequenced. Sequence 

alignment was performed by ClustalW program (www.ebi.ac.uk/clustalw). Rice and A. 

thaliana sequences used for comparison were downloaded from Genbank 

(www.ncbi.nlm.nih.gov/genbank/).  

 

 
  



 

   
99 

 

REFERENCES 

Aronson, J.N. and Wermus, G.R. (1965) Effects of m-Tyrosine on Growth and 
Sporulation of Bacillus Species. J.Bacteriol., 90, 38. 

Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. and Vivanco, J.M. (2003) 
Allelopathy and exotic plant invasion: from molecules and genes to species 
interactions. Science, 301, 1377. 

Ball, S.G., Wickner, R.B., Cottarel, G., Schaus, M. and Tirtiaux, C. (1986) 
Molecular  cloning and characterization of ARO7-OSM2, a single yeast gene  
necessary for chorismate mutase activity and growth in hypertonic medium. 
Mol. Gen. Genet., 205, 326-330. 

Belz, R.G. and Hurle, K. (2004) A novel laboratory screening bioassay for crop 
seedling allelopathy. J.Chem.Ecol., 30, 175. 

Bertin, C. (2005) Allelopathic potential of fine leaf fescue : isolation, identification, 
and elucidation of the mode of action of a key phytotoxin: Dissertation (Ph.D.) 
Cornell University. 

Chen, L. and Bush, D.R. (1997) LHT1, a lysine- and histidine-specific amino acid 
transporter in arabidopsis. Plant Physiol., 115, 1127. 

Chipman, D.M. and Shaanan, B. (2001) The ACT domain family. 
Curr.Opin.Struct.Biol., 11, 694. 

Estelle, M. (2001) Plant hormones. Transporters on the move. Nature, 413, 374-375. 

Fischer, W.N., Kwart, M., Hummel, S. and Frommer, W.B. (1995) Substrate 
specificity and expression profile of amino acid transporters (AAPs) in 
Arabidopsis. J.Biol.Chem., 270, 16315. 

Gietz, R.D. and Schiestl, R.H. (1991) Applications of High-Efficiency Lithium-
Acetate Transformation of Intact Yeast-Cells Using Single-Stranded Nucleic-
Acids as Carrier. Yeast, 7, 253-263. 



 

   
100 

 

Gurer-Orhan, H., Ercal, N., Mare, S., Pennathur, S., Orhan, H. and Heinecke, 
J.W. (2006) Misincorporation of free m-tyrosine into cellular proteins: a 
potential cytotoxic mechanism for oxidized amino acids. Biochem.J., 395, 277. 

Held, M.A., Tan, L., Kamyab, A., Hare, M., Shpak, E. and Kieliszewski, M.J. 
(2004) Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich 
extensin analogs cross-linked in vitro. Journal of Biological Chemistry, 279, 
55474-55482. 

Hirner, A., Ladwig, F., Stransky, H., Okumoto, S., Keinath, M., Harms, A., 
Frommer, W.B. and Koch, W. (2006) Arabidopsis LHT1 is a high-affinity 
transporter for cellular amino acid uptake in both root epidermis and leaf 
mesophyll. The Plant Cell, 18, 1931. 

Joshi, V., Laubengayer, K.M., Schauer, N., Fernie, A.R. and Jander, G. (2006) 
Two Arabidopsis threonine aldolases are nonredundant and compete with 
threonine deaminase for a common substrate pool. The Plant Cell, 18, 3564. 

Lee, Y.H., Foster, J., Chen, J., Voll, L.M., Weber, A.P. and Tegeder, M. (2007) 
AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J., 50, 
305. 

Leyser, O. (2002) Molecular genetics of auxin signaling. Annu.Rev.Plant.Biol., 53, 
377-398. 

Luan, S. (2002) Tyrosine phosphorylation in plant cell signaling. 
Proc.Natl.Acad.Sci.U.S.A., 99, 11567-11569. 

Ma, Y., Sugiura, R., Saito, M., Koike, A., Sio, S.O., Fujita, Y., Takegawa, K. and 
Kuno, T. (2007) Six new amino acid-auxotrophic markers for targeted gene 
integration and disruption in fission yeast. Curr. Genet., 52, 97-105. 

Macias, F.A., Molinillo, J.M., Varela, R.M. and Galindo, J.C. (2007) Allelopathy--
a natural alternative for weed control. Pest Manag.Sci., 63, 327. 

Rodgers, K.J., Wang, H., Fu, S. and Dean, R.T. (2002) Biosynthetic incorporation 
of oxidized amino acids into proteins and their cellular proteolysis. Free 
Radic.Biol.Med., 32, 766. 



 

   
101 

 

Smith, I.K. and Fowden, L. (1968) Studies on the specificities of the phenylalanyl- 
and tyrosyl-sRNA synthetases from plants. Phytochemistry, 7, 1064. 

Svennerstam, H., Ganeteg, U., Bellini, C. and Nasholm, T. (2007) Comprehensive 
screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to 
be involved in plant uptake of amino acids. Plant Physiol., 143, 1853. 

Taiz, L. and Zeiger, E. (2002) Plant physiology  Sunderland, Mass.: Sinauer 
Associates. 

Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T. (1997) Aux/IAA proteins 
repress expression of reporter genes containing natural and highly active 
synthetic auxin response elements. Plant Cell, 9, 1963-1971. 

Weigel, D. and Glazebrook, J. (2002) Arabidopsis: a laboratory manual  Cold 
Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. 

Yamada, T., Matsuda, F., Kasai, K., Fukuoka, S., Kitamura, K., Tozawa, Y., 
Miyagawa, H. and Wakasa, K. (2008) Mutation of a rice gene encoding a 
phenylalanine biosynthetic enzyme results in accumulation of phenylalanine 
and tryptophan. The Plant Cell, 20, 1316. 

 

 

 
  



 

   
102 

 

SUMMARY AND FUTURE DIRECTIONS 

 

The research presented in this dissertation shows a new pathway for m-tyrosine 

biosynthesis in Chewings fescue (Festuca rubra L. ssp commutate), where m-tyrosine 

is directly derived from phenylalanine. Genomic resources were also generated, 

providing several candidate genes for functional tests. These genes will be expressed 

in yeast together with A. thaliana ATR1 (Arabidopsis P450 reductase 1) gene to verify 

their function. Identification of an m-tyrosine biosynthesis gene would provide 

information needed to manipulate the production of m-tyrosine in Chewings fescue. 

Genetically engineered Chewings fescue could then be used to verify the potential 

function of m-tyrosine, especially as an allelochemical. Understanding the function 

and biosynthesis of m-tyrosine would open the door to improving plant performance 

using this nonprotein amino acid. 

The A. thaliana m-tyrosine resistant mutant adt2-1D and transgenic padt2-1D 

plants have many interesting phenotypes that merit further investigation. For example, 

the level of free phenylalanine seems to activate the metabolic flux to tryptophan and 

the  overall shikimate pathway, which suggests a novel regulatory mechanism for 

aromatic amino acid biosynthesis. The detection of 2-phenylethyl glucosinolate (2PE) 

in mature padt2-1D makes this transgenic line an excellent plant material to study the 

enzymes involved in 2PE biosynthesis. The improved root growth of adt2-1D 

compared to wildtype Col-0 under salt stress conditions suggests involvement of free 

amino acids in abiotic stress tolerance. However, the exact mechanism will need 

further investigation.  

The exact mode of action of m-tyrosine toxicity is still not clear. m-Tyrosine 

could have multiple target sites and likely interferes with metabolism and functions of 

phenylalanine, which explains why an A. thaliana mutant overproducing 



 

   
103 

 

phenylalanine is resistant to m-tyrosine. Misincorporation of m-tyrosine into proteins 

could be one of such reasons that disrupts normal protein functions and inhibits plant 

growth. This misincorporation could be further verified by in vitro translation assays. 

How Chewings fescue avoids self-toxicity is another interesting question that needs 

further investigation. 

    Finally, the identification of m-tyrosine resistant A. thaliana, as well as 

potentially genetically engineered Chewings fescue that does not produce m-tyrosine, 

would provide many opportunities for testing the significance of m-tyrosine in 

Chewings fescue allelopathy. This would contribute to the overall understanding of 

allelopathy, a research field that is still full of uncertainty.  
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APPENDIX 

 

For each gene, 4 different sequences were presented. The differences may due to 

PCR errors produced in cloning and sequencing.  

Cloned coding sequences of CYP450 candidates: 

 
>Seq1 [organism=Festuca rubra] Chewing's fescue root CYP81A20 mRNA, CDS A 
ATGGATAATTTTTACATTGCCATCCTTTCATTCGCTTTCATCTTCCTGCTCCACCACCTCCTG
GGCAGGAAGCCAAACAAGGCGCCTCTGCCGAGCCCTCCGGCCATCCCATTCGCCGGCCAT
ATCCATCTCGTGAAGAAGCCATTCCACGCCGTGCTATCCCGCCTCGCAGAGCGCCATGGGC
CCCTGTTCTCGTTGCGGCTCGGCACCTTCAATGCTGTGGTGGTGTCCTCACCGGCATTAGCG
AAGGAGTGCTTCACGGAAATGGACGTGACCTTCGCCAACCGCCCAAGGCTCCCCTCGTGG
AAATTCCTGTCCGAGGACTACTCAATGATCGCCACGAGCAGCTATAACCCGCACTGGCGA
AACCTCCGCCGCGTCGCGGCCGTGCAGCTCCTCTCGACGCACCGTGTCAGCTGCATGTCAG
GCGTCATCTCCGGTGAGGTGCACGCCATGGTGCGGCGGTTGAATCGATCGGCCACGGAGT
CCCCGCGCATCCGGCTGAAGCAGAGGCTGTTCGAGCTCTCCCTCAGCGTACTCATGGAGAC
CATCGCAAACACCAAGGCAACTCGTTCAGAAGCCACCGCCGCCGACACGGACATGTCGGT
CGAGGCCCAGGAATTCAGGACGGTGATGGACAATATCAACCCACTTGTCGGCCTGGCCAA
CCTGTGGGAGCTATTGCCAATTGTTCGCTGGTTCGACGTGTCCGGCATCAAGAACAAGCTC
CTGGCTTCGGTGACTAGAAGGGATGCGTTCCTGCAGAGGCTCATCGACGCCGAGCGGCGG
AAGGTAGAGGACGGCGGCAGTGAAGACGGCAAGAAGAGTATGATTTCCGTCATGTTCGGT
CTGCAGAAGAAAGAGCCAAATGTCTATACCGACAAAATGATCAGGGGTCTGATCACGAGT
TTATTTAGTGCTGGAACAGATACCATCTTGGCTACGACAGAATGGGCTATGTCGCTCCTAC
TAAACCATCCAACGGCCCTAAAAAAGGCACATGCACAGATCGACCAAGTTGTTGGGACCT
CCCGCCTAGTTTCCTCTGAGGACCTTTCCCGCCTCACTTACCTCCAGTGTATCATTAGTGAG
ACCCTCCGTCTTTACCCTGCTGCACCGCTTCTGCTGCCGCGTCAGACTTACGTCGACTGTAA
GATTGGTGGCCACACAATTCCGAGTGGGACCATGCTGATCTGTAATGCGTACGCCATCCAT
AGGGACCCAAACGTGTGGGAGGATCCCCTGGAGTTCAAGCCGGATCGGTTTGAGGATGGC
AAGGCGGAAGGGTTATTCATGATACCATTTGGAATGGGGAGGAGGAAGTGTCCGGGAGAG
GCAATGGCTTTACGGACAATGGGACTTGTTCTTGGGGCACTTATACAATGCTTCGAATGGG
ACCGGGTAGACGATGCGAAGGTGGACATGAAGGAATATGGAGAAGAATTTGTGGTCTTTA
GGGCCATACCATTTGAGGCTTTGTGCAAGCCACGTGCATCTATGTATGACGTGCTCGAGAG
GCTCTGA 
 
>Seq2 [organism=Festuca rubra] Chewing's fescue root CYP81A20 mRNA, CDS B 
ATGGATAATTTTTACATTGCCATCCTTTCATTCGCTTTCATCTTCCTGCTCCACCACCTCCTG
GGCAGGAAGCCAAACAAGGCGCCTCTGCCGAGCCCTCCGGCCATCCCATTCGCCGGCCAT
ATCCATCTGGTGAAGAAGCCATTCCACGCCGTGCTAGCCCGCCTCGCAGAGCGCCATGGGC
CCCTGTTCTCGTTGCGGCTCGGCACCTTCAATGCTGTGGTGGTGTCCTCACCGGCGTTAGCG
AAGGAGTGCTTCACGGAAATGGACGTGACCTTCGCCAACCGCCCAAGGCTCCCCTCGTGG
AAATTCCTGTCCGAGGACTACTCAATGATCGCCACGAGCAGCTATAACCCACACTGGCGA
AACCTCCGCCGCGTCGCGGCCGTGCAGCTCCTCTCGACGCACCGTGTCAGCTGCATGTCAG
GCGTCATCTCCGGTGAGGTGCACGCCATGGTGCGGCGGTTGAATCGATCGGCCACGGAGT
CCCCGCGCATCCGGCTGAAGCAGAGGCTGTTCGAGCTCTCCCTCAGCGTACTCATGGAGAC
CATCGCAAACACCAAGGCAACTCGTTCAGAAGCCACCGCCGCCGACACGGACATGTCGGT
CGAGGCCCAGGAATTCAGGACGGTGATGGACAATATCAACCCACTTGTCGGCCTGGCCAA
CCTGTGGGAGCTATTGCCAATTGTTCGCTGGTTCGACGTGTCCGGCATCAAGAACAAGCTC
CTGGCTTCGGTGACTAGAAGGGATGCGTTCCTGCAGAGGCTCATCGACGCCGAGCGGCGG
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AAGGTAGAGGACGGCGGCAGTGAAGACGGCAAGAAGAGTATGATTTCCGTCATGTTCGGT
CTGCAGAAGAAAGAGCCAAATGTCTATACCGACAAAATGATCAGGGGTCTGATCACGAGT
TTATTTAGTGCTGGAACAGATACCATCTTGGCTACGACAGAATGGGCTATGTCGCTCCTAC
TAAACCATCCAACGGCCCTAAAAAAGGCACATGCACAGATCGACCAAGTTGTTGGGACCT
CCCGCCTAGTTTCCTCTGAGGACCTTTCCCGCCTCACTTACCTCCACTGTATCATTAGTGAG
ACCCTCCGTCTTTACCCTGCTGCACCGCTTCTGCTGCCGCATCAGACTTACGTCGACTGTAA
GATTGGTGGCCACACAATTCCGAGTGGGACCATGCTGATCTGTAATGCGTACGCCATCCAT
AGGGACCCAAACGTGTGGGAGGATCCCCTGGAGTTCAAGCCGGATCGGTTTGAGGATGGC
AAGGCGGAAGGGTTATTCATGATACCATTTGGAATGGGGAGGAGGAAGTGTCCGGGAGAG
GCAATGGCTTTACGGACAATGGGACTTGTTCTTGGGGCACTTATACAATGCTTCGAATGGG
ACCGGGTAGACGATGCGAAGGTGGACATGAAGGAATATGGAGAAGAATTTGTGGTCTTTA
GGGCCATACCATTTGAGGCTTTGTGCAAGCCACGTGCATCTATGTATGACGTGCTCGAGAG
GCTCTGA 
 
>Seq3 [organism=Festuca rubra] Chewing's fescue root CYP81A20 mRNA, CDS C 
ATGGATAATTTTTACATTGCCATCCTTTCATTCACTTTCATCTTCCTGCTCCACCACCTCCTG
GGCAGGAAGCCAAACAAGGCGCCTCTGCCGAGCCCTCCGGCCATCCCATTCGCCGGCCAT
ATCCATCTCGTGAAGAAGCCATTCCACGCCGTGCTAGCCCGCCTCACAGAGCGCCATGGGC
CCCTGTTCTCGTTGCGGCTCGGCACCTTCAATGCTGTGGTGGTGTCCTCACCGGCATTAGCG
AAGGAGTGCTTCACGGAAATGGACGTGACCTTCGCCAACCGCCCAAGGCTCCCTTCGTGG
AAATTCCTGTCCGAGGACTACTCAATGATCGCCACGAGCAGCTATAACCCGCACTGGCGA
AACCTCCGCCGCGTCGCGGCCGTGCAGCTCCTCTCGACGCACCGTGTCAGCTGCATGTCAG
GCGTCATCTCCGGTGAGGTGCACGCCATGGTGCGGCGGTTGAATCGATCGGCCACGGAGT
CCCCGCGCATCCGGCTGAAGCAGAGGCTGTTCGAGCTCTCCCTCAGCGTACTCATGGAGAC
CATCGCAAACACCAAGGCAACTCGTTCAGAAGCCACCGCCGCCGACACGGACATGTCGGT
CGAGGCCCAGGAATTCAGGACGGTGATGGACAATATCAACCCACTTGTCGGCCTGGCCAA
CCTGTGGGAGCTATTGCCAATTGTTCGCTGGTTCGACGTGTCCGGCATCAAGAACAAGCTC
CTGGCTTCGGTGACTAGAAGGGATGCGTTCCTGCAGAGGCTCATCGACGCCGAGCGGCGG
AAGGTAGAGGACGGCGGCAGTGAAGACGGCAAGAAGAGTATGATTTCCGTCATGTTCGGT
CTGCAGAAGAAAGAGCCAAATGTCTATACCGACAAAATGATCAGGGGTCTGATCACGAGT
TTATTTAGTGCTGGAACAGATACCATCTTGGCTACGACAGAATGGGCTATGTCGCTCCTAC
TAAACCATCCAACGGCCCTAAAAAAGGCACATGCACAGATCGACCAAGTTGTTGGGACCT
CCCGCCTAGTTTCCTCTGAGGACCTTTCCCGCCTCACTTACCTCCAGTGTATCATTAGTGAG
ACCCTCCGTCTTTACCCTGCTGCACCGCTTCTGCTGCCGCATCAGACTTACGTCGACTGTAA
GATTGGTGGCCACACAATTCCGAGTGGGACCATGCTGATCTGTAATGCGTACGCCATCCAT
AGGGACCCAAACGTGTGGGAGGATCCCCTGGAGTTCAAGCCGGATCGGTTTGAGGATGGC
AAGGCGGAAGGGTTATTCATGATACCATTTGGAATGGGGAGGAGGAAGTGTCCGGGAGAG
GCAATGGCTTTACGGACAATGGGACTTGTTCTTGGGGCACTTATACAATGCTTCGAATGGG
ACCGGGTAGACGATGCGAAGGTGGACATGAAGGAATATGGAGAAGAATTTGTGGTCTTTA
GGGCCATACCATTTGAGGCTTTGTGCAAGCCACGTGCATCTATGTATGACGTGCTCGAGAG
GCTCTGA 
 
>Seq4 [organism=Festuca rubra] Chewing's fescue root CYP81A20 mRNA, CDS D 
ATGGATAATTTTTACATTGCCATCCTTTCATTCGCTTTCATCTTCCTGCTCCACCACCTCCTG
GGCAGGAAGCCAAACAAGGCGCCTCTGCCGAGCCCTCCGGCCATCCCATTCGCCGGCCAT
ATCCATCTCGTGAAGAAGCCATTCCACGCCGTGCTAGCCCGCCTCGCAGAGCGCCATGGGC
CCCTGTTCTCGTTGCGGCTCGGCACCTTCAATGCTGTGGTGGTGTCCTCACCGGCGTTAGCG
AAGGAGTGCTTCACGGAAATGGACGTGACCTTCGCCAACCGCCCAAGGCTCCCCTCGTGG
AAATTCCTGTCCGAGGACTACTCAATGATCGCCACGAGCAGCTATAACCCACACTGGCGA
AACCTCCGCCGCGTCGCGGCCGTGCAGCTCCTCTCGACGCACCGTGTCAGCTGCATGTCAG
GCGTCATCTCCGGTGAGGTGCACGCCATGGTGCGGCGGTTGAATCGATCGGCCACGGAGT
CCCCGCGCATCCGGCTGAAGCAGAGGCTGTTCGAGCTCTCCCTCAGCGTACTCATGGAGAC
CATCGCAAACACCAAGGCAACTCGTTCAGAAGCCACCGCCGCCGACACGGACATGTCGGT
CGAGGCCCAGGAATTCAGGACGGTGATGGACAATATCAACCCACTTGTCGGCCTGGCCAA
CCTGTGGGAGCTATTGCCAATTGTTCGCTGGTTCGACGTGTCCGGCATCAAGAACAAGCTC



 

   
106 

 

CTGGCTTCGGTGACTAGAAGGGATGCGTTCCTGCAGAGGCTCATCGACGCCGAGCGGCGG
AATGTAGAGGACGGCGGCAGTGAAGACGGCAAGAAGAGTATGATTTCCGTCATGTTCGGT
CTGCAGAAGAAAGAGCCAAATGTCTATACCGACAAAATGATCAGGGGTCTGATCACGAGT
TTATTTAGTGCTGGAACAGATACCATCTTGGCTACGACAGAATGGGCTATGTCGCTCCTAC
TAAACCATCCAACGGCCCTAAAAAAGGCACATGCACAGATCGACCAAGTTGTTGGGACCT
CCCGCCTAGTTTCCTCTGAGGACCTTTCCCGCCTCACTTACCTCCACTGTATCATTAGTGAG
ACCCTCCGTCTTTACCCTGCTGCACCGCTTCTGCTGCCGCATCAGACTTACGTCGACTGTAA
GATTGGTGGCCACACAATTCCGAGTGGGACCATGCTGATCTGTAATGCGTACGCCATCCAT
AGGGACCCAAACGTGTGGGAGGATCCCCTGGAGTTCAAGCCGGATCGGTTTGAGGATGGC
AAGGCGGAAGGGTTATTCATGATACCATTTGGAATGGGGAGGAGGAAGTGTCCGGGAGAG
GCAATGGCTTTACGGACAATGGGACTTGTTCTTGGGGCACTTATACAATGCTTCGAATGGG
ACCGGGTAGACGATGCGAAGGTGGACATGAAGGAATATGGAGAAGAATTTGTGGTCTTTA
GGGCCATACCATTTGAGGCTTTGTGCAAGCCACGTGCATCTATGTATGACGTGCTCGAGAG
GCTCTGA 
 
>Seq5 [organism=Festuca rubra] Chewing's fescue root CYP75A47 mRNA, CDS A 
ATGTCCCTCCTCACCGGCACCGGGCTGTTCAACATCAGCGACTTCGTGCCGGCGCTGGCGT
GGATGGACCTGCAGGGCGTGCAGGCCAGGCTGCGCGGTGTTCACCGGCAGTTCGACGGCC
TCATCACCAAGCTTCTGGCGGAGCACGCCGCTACGGCCGAGGACCGCGCCCGGGAGGGCC
GCCTGGACTTCGTCGACAAGCTCCGCGCCAGCAAGGACGACGATGACGGCGAGACCATTA
CCGAGATCAACATCAAGGGGCTCATCTTCGACATGTTCACGGCAGGCACGGACACGTCGT
CGGTGATCGTGGAGTGGGCGATGGCGGAGATGATGGCGAACCCGTCCATCATGGCGCGCG
CGCAGGAGGAGATTGACCGCGTCGTCGGCCGCGACCGGCGGCTGGAGGAGTCCGACATCG
CCGACCTCCCCTACCTGCAGGCCGTCTGCAAGGAGGCCATGCGCCTCCACCCCTCCACGCC
GCTCAGCCTCCCGCACTTCTCCTTCCAGGAGACCCAGGTGGACGGCTACCACGTCCCCGCC
AACACACAGCTCCTCGTCAACATCTGGGCCATCGGCCGCGACCCGGACGCCTGGGAGGAT
CCCCTCCAGTTCTGCCCCGAGCGCTTCCTCTCCGACGGGCCGGCGGCCAAGGTCGACCCCA
TGGGCAACTACTTCGAGCTCATACCGTTCGGTGCCGGCAGGAGGATCTGTGCTGGGAAGCT
GGCCGGCATGGTGTTCGTGCAGTACTTCCTGGGCACGCTCGTGCACGCGTTCGAGTGGCGC
CTGCCGGATGGCGAGGAGATGGTCGACATGGCCGAGACCTCCGGCCTGGCGCTGCCCAAG
GCTGTGCCGCTCAGGGCCCTCGTCACGCCGCGTCTTGCGCCGGTCGCCTACGCCTGA 
 
>Seq6 [organism=Festuca rubra] Chewing's fescue root CYP75A47 mRNA, CDS B 
ATGTCCCTCCTCACCGGAACCGGGCTGTTCAACATCAGCGACTTCGTGCCGGCGCTGTCGT
GGATGGACCTGCAGGGCGTGCAGGCCAGGCTGCGCCGGGTTCACAAGCAGTTCGACGGCC
TCATCACTAAGCTTCTGGCGGAGCACGCCGCCACGGCCGAGGACCGCGCCCGGGAGGGCC
GCCTGGACTTCGTCGACAAGCTCCGCGCCAGCAAGGACGATGAGGACGGCGAGACCATCA
CCGAGATCAACATCAAGGGGCTCATCTTCGACATGTTCACGGCAGGCACGGACACGTCGT
CGGTGATCGTGGAGTGGGCGATGGCGGAGATGATGGCGAACCCGTCCATCATGGCGCGCA
CGCAGGAGGAGCTTGACCGCGTCGTCGGCCGCGACCGTCGGCTGGAGGAGTCCGACATCG
CCGACCTCCCCTACCTGCAGGCCGTCTGCAAGGAGGCCATGCGCCTCCACCCCTCCACGCC
GCTCAGCCTCCCGCACTTCTCCTTCCAGGAGACCCAGGTGGACGGCTACCACGTCCCCGCC
AACACACAGCTCCTCGTCAACATCTGGGCCATCGGCCGCGACCCGGACGCCTGGGAGGAT
CCCCTCCAGTTCTGCCCCGAGCGCTTCCTCTCCGACGGGCCGGCGGCCAAGGTCGACCCCA
TGGGCAACTACTTCGAGCTCATACCGTTCGGTGCCGGCAGGAGGATCTGTGCTGGGAAGCT
GGCCGGCATGGTGTTCGTGCAGTACTTCCTGGGCACGCTCGTGCACGCGTTCGAGTGGCGC
CTGCCGAATGGCGAGGAGATGGTCGACATGGCCGAGACCTCCGGCCTGGCGCTGCCCAAG
GCTGTGCCGCTCAGGGCCCTCGTCACGCCGCGTCTTGCGCCGGTCGCCTACGCCTGA 
 
>Seq7 [organism=Festuca rubra] Chewing's fescue root CYP75A47 mRNA, CDS C 
ATGTCCCTCCTCACCGGAACCGGGCTGTTCAACATCAGCGACTTCGTGCCGGCGCTGTCGT
GGATGGACCTGCAGGGCGTGCAGGCCAGGCTGCGCCGGGTTCACAAGCAGTTCGACGGCC
TCATCACTAAGCTTCTGGCGGAGCACGCCGCCACGGCCGAGGACCGCGCCCGGGAGGGCC
GCCTGGACTTCGTCGACAAGCTCCGCGCCAGCAAGGACGATGAGGACGGCGAGACCATCA
CCGAGATCAACATCAAGGGGCTCATCTTCGACATGTTCACGGCAGGCACGGACACGTCGT
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CGGTGATCGTGGAGTGGGCGATGGCGGAGATGATGGCGAACCCGTCCATCATGGCGCGCA
CGCAGGAGGAGCTTGACCGCGTCGTCGGCCGCGACCGTCGGCTGGAGGAGTCCGACATCG
CCGACCTCCCCTACCTGCAGGCCGTCTGCAAGGAGGCCATGCGCCTCCACCCCTCCACGCC
GCTCAGCCTCCCGCACTTCTCCTTCCAGGAGACCCAGGTGGACGGCTACCACGTCCCCGCC
AACACACAGCTCCTCGTCAACATCTGGGCCATCGGCCGCGACCCGGACGCCTGGGAGGAT
CCCCTCCAGTTCTGCCCCGAGCGCTTCCTCTCCGACGGGCCGGCGGCCAAGGTCGACCCCA
TGGGCAACTACTTCGAGCTCATACCGTTCGGTGCCGGCAGGAGGATCTGTGCTGGGAAGCT
GGCCGGCATGGTGTTCGTGCAGTACTTCCTGGGCACGCTCGTGCACGCGTTCGAGTGGCGC
CTGCCGAATGGCGAGGAGATGGTCGACATGGCCGAGACCTCCGGCCTGGCGCTGCCCAAG
GCTGTGCCGCTCAGGGCCCTCGTCACGCCGCGTCTTGCGCCGGTCGCCTACGCCTGA 
 
>Seq8 [organism=Festuca rubra] Chewing's fescue root CYP75A47 mRNA, CDS D 
ATGTCCCTCCTCACCGGCACTGGGCTGTTCAACATCAGCGACTTCGTGCCGGCCCTGTCGT
GGATGGACCTGCAGGGCGTGCAGGCCAGGCTGCGCCGGGTCCACCGCCAGTTCGACGACC
TCATCACCAAGCTTCTGGCGGAGCACGCCGCCACGGCCGACGACCGCGCCCGGGAGGGAC
GCCTGGACTTCGTCGACAAGCTCCGCGCCAGCAAGGACGACGAGGACGGCGAGACCATCA
CCGAGATCAACATCAAGGGGCTCATCTTCGACATGTTCACGGCTGGCACGGACACGTCGTC
GGTGATCGTGGAGTGGGCGATGGCGGAGATGATGGCGAACCCGTCCATCATGGCGCGCAC
GCAGGAGGAGCTTGACCGCGTCGTCGGCCGCGACCGTCGGCTGGAGGAGTCCGACATCGC
CGACCTCCCCTACCTGCAGGCCGTCTGCAAGGAGGCCATGCGCCTCCACCCCTCCACGCCG
CTCAGCCTCCCGCACTTCTCCTTCCAGGAGACCCAGGTGGACGGCTACCACGTCCCCGCCA
ACACACAGCTCCTCGTCAACATCTGGGCCATCGGCCGCGACCCGGACGCCTGGGAGGATC
CCCTCCAGTTCTGCCCCGAGCGCTTCCTCTCCGACGGGCCGGCGGCCAAGGTCGACCCCAT
GGGCAACTACTTCGAGCTCATACCGTTCGGTGCCGGCAGGAGGATCTGTGCTGGGAAGCT
GGCCGGCATGGTGTTCGTGCAGTACTTCCTGGGCACGCTCGTGCACGCGTTCGAGTGGCGC
CTGCCGGATGGCGAGGAGATGGTCGACATGGCCGAGACCTCCGGCCTGGCGCTGCCCAAG
GCTGTGCCGCTCAGGGCCCTCGTCACGCCGCGTCTTGCGCCGGTCGCCTACGCCTGA 
 
>Seq9 [organism=Festuca rubra] Chewing's fescue root CYP92A44 mRNA, CDS A 
ATGGAGTTTCCTCAGTGGGCGTCCTTCCTGGTCGTCGTGCTCGCCACGGTGCTCTTTCTCAA
GGCCGTCCTCCGGCGCCGAAGCAGCCGCAAGTACAACCTCCCGCCGGGTCCCAAGGCGTG
GCCGATCATCGGCAACCTGAACCTCATCGGCACGCTCCCACATCGCTCCATCCACGCGCTC
TCCAAGCAGTACGGCCCGCTCTTGCAGCTCCAGTTTGGCTCCTTTCCCTGCGTCGTCGGCTC
CTCCGTCGAGATGGCTAAGTTCTTCCTCAAGACCCACGACGTGATGTTCACCGACCGGCCC
AAGTTCGCCGCCGGCAAGCACACCACCTACAACTACAGCGATATCACCTGGTCCCCCTACG
GCGCCTACTGGAGGCAGGCCCGCAAGATGTGCCTCACGGAGCTCTTCAGCGCCAGGCGGC
TCCAGTCGTACGAGTACATCCGCAGCGAGGAGGTACTCGCCCTCCTCCGCGACCTGCATCG
CGGCGCCACCGTCGGCGCCGGCCGCGCCCTGGTGCTCAAGGACTACCTGTCCACGGTGAG
CCTGAACGTGATCACGCGCATGGTGATGGGCAAGAAATACCTGGAGAAGGAGGTGAGGG
ACGGGAGCGGCGCGGTGATCACGACGCCGGACGAGTTCAAGTGGATGATCGACGAGCTGT
TCCTTCTCAACGGCGTGCTGAACATCGGTGACTCCATCCCGTGGCTCGACTGGATGGACCT
GCAGGGTTACATTAAGAGGATGAAGAAGCTCAGCAAGATGTTTGACCGGTTCCTGGAGCA
CGTCGTCGACGAGCACAGCGAGCGACGCCGCCACGAGGCGGAGAGCTTCGTTGCCAAGGA
CATGGTTGACGTGCTTCTGCAGTTCGCGAGCAACCCCGATCTCGAGGTCAAGCTCAACAGG
GAGGGCGTCAAGGCTTTCACTCAGGATCTTATCGCTGGCGGCACAGAAAGCTCGGCGGTG
ACGGTGGAGTGGGCACTCTCGGAGCTCCTGAAGAAGCCCGAGGTGTTCGCCAGGGCGACC
GAGGAGCTGGACCGCGTCGTCGGAAGAGGCCGTTGGGTCACCGAGAAGGACATGCCGAGC
CTCCCCTACGTGGACGCCATCGTGAAGGAGACGATGCGGCTGCACCCAGTGGCGCCGATG
CTGGTGCCCCGCCTCTCCCGCGAGGTCACGACCATCGGCGGCTATGACATCCCCGCCGGCA
CCCGGGTGCTCGTCAGTGTGTGGACCATCGGCCGGGACCCAGAGCTATGGGACGCGCCTG
AAGAGTTCATGCCAGAGAGGTTCCTCGGCAGCAGGCTCGACGTCAAGGGGCAGGACTACG
AGCTACTGCCGTTCGGATCGGGACGCAGGATGTGCCCTGGGTACAGTCCTGGACTAAAAG
TCATCCAGGTGAGCCTGGCCAACCTACTGCACGGCTTCGAGTGGAAGCTCCCCGACGGCGT
GGAGCTGAGCATGGAGGAGATCTTCGGCCTCTCCACGCCGCGCAAGTTCCCGCTGGAGGC
CGTCGTGGAGCCCAAGCTCCCGGCTCATCTCTACGAATGA 
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>Seq10 [organism=Festuca rubra] Chewing's fescue root CYP92A44 mRNA, CDS B 
ATGGAGTTTCCTCAGTGGGCGTCCTTCCTGGGTGTCGTGCTCGCCACGGTGCTCTTTCTCAA
GGCCGTCCTCCGGCGCCGAAGCGGCCGAAAGTACAACCTCCCGCCGGGTCCCAAGGCGTG
GCCGATCATCGGCAACCTGAACCTCATGGGCACGCTCCCACATCGCTCCATCCACGCGCTC
TCCAAGCAGTACGGCCCGCTCTTGCAGCTCCAGTTCGGCTCCTTCCCCTGCGTCGTCGGCTC
CTCCGTCGAGATGGCCAAGTTCTTCCTTAAGACCCACGACGTGTCGTTCACCGACCGGCCC
AAGTTCGCCTCCGGCAAGCACACCACCTACAACTACAGCGATATCACCTGGTCCCCCTACG
GCGCCTACTGGCGGCAGGCCCGCAAGATGTGCCTCACCGAGCTCTTCAGCGCCAGGCGGC
TCCGGTCGTACGAGTACATCCGCAGCGAGGAGGTGCTGGCCCTCGTCCGCGACCTGCATCG
CGGCGCCACCGCCGGCGCCGGTCGCGCCCTGGTGCTCAAGGACTACCTGTCCACAGTGAG
CCTGAACGTGATCACGCGCATGGTGATGGGTAAGAAGTACCTGGAGAAGGAGGTGAGGGA
CGAGAGCGGCGCGGTGATCACGACGCCGGACGAGTTCAAGTGGATGATCGACGAGCTGTT
CCTTCTCAACGGCGTCCTCAACATCGGCGACTCCATCCCGTGTCTCGACTGGATGGACCTG
CAGGGGTACATTAAGAGGATGAAGAAACTCAGCAAGATGTTCGACCGCTTCCTGGAGCAC
GTCGTGGAAGAGCACAGCGAGCGGCGCCGCCGTGACGGGGAAAGCTTCGTGGCGAAGGA
CATGGTCGACGTGCTGCTGCAGTTCGCCAGCAACCCCGATCTCGAGGTCAAGCTCAACAGG
GAGGGCGTCAAGGCTTTCACTCAGGATCTTATCGCTGGCGGCACAGAAAGCTCGGCGGTG
ACAGTGGAGTGGGCTCTCTCGGAGCTCCTGAAGAAGCCCGAGGTGTTCGCCAGGGCGACG
GAGGAGCTGGACCGCGTCGTCGGCAGAGGCCGCTGGGTCACCGAGAAGGACATGCCGAGC
CTCCCCTACGTGGACGCCATCGTGAAGGAGACGATGCGGCTGCACCCGGTGGCGCCGATG
CTGGTGCCCCGCCTCTCCCGCGAGGACACGTCCATCGGCGGCTACGACATCCCCGCCGGCA
CGCGGGTGCTCGTCAGCGTGTGGTCCATCGGCCGCGACCCGGAGCTATGGGAAGCGCCGG
AGGAGTTCATGCCAGAGCGGTTCATCGGCAGCAGGCTCGATGTTAAGGGGCAGGACTACG
AGCTGCTGCCGTTCGGGTCGGGGCGCAGGATGTGCCCCGGGTACAGTCTGGGGCTGAAGG
TGATCCAGGTGAGCCTGGCGAACCTACTGCACGGGTTCGAGTGGAAGCTCCCCCATGGCGT
GGAGCTGAGCATGGAGGAGATCTTTGGGCTGTCCACGCCGCGCAAGTTCCCACTGGAGGC
CGTCTTGGAGCCCAAGCTCCCGGCTCATCTCTACGAATGA 
 
>Seq11 [organism=Festuca rubra] Chewing's fescue root CYP92A44 mRNA, CDS C 
ATGGAGTTTCCTCAGTGGGCGTCCTTCCTGGGAGTCGTGCTCGCCACGGTGCTCTTTCTCAT
GGCCGTCCTCCAACGCCGAAGCAGCCGCAAGTACAACCTCCCGCCGGGTCCCAAGGCGTG
GCCGATCATCGGCAACCTGAACCTCATCGGCACGCTCCCGCATCGCTCCATCCACGCGCTC
TCCAAACAGTACGGCCCGCTCTTGCAGCTCCAGTTTGGCTCCTTTCCCTGCGTCGTCGGCTC
CTCCGTCGAGATGGCTAAGTTCTTCCTCAAGACCCACGACGTGATGTTCACCGACCGGCCC
AAGTTCGCCGCCGGCAAGCACACCACCTACAACTACAGCGATATCACCTGGTCCCCCTACG
GCGCCTACTGGAGGCAGGCCCGCAAGATGTGCCTCACGGAGCTCTTCAGCGCCAGGCGGC
TCCAGTCGTACGAGTACATCCGCAGCGAGGAGGTACTCGCCCTCCTCCGCGACCTGCATCG
CGGCGCCACCGTCGGCGCCGGCCGCGCCCTGGTGCTCAAGGACTACCTGTCCACGGTGAG
CCTGAACGTGATCACGCGCATGGTGATGGGCAAGAAATACCTGGAGAAGGAGGTGAGGG
ACGGGAGCGGCGCGGTGATCACGACGCCGGACGAGTTCAAGTGGATGATCGACGAGCTGT
TCCTTCTCAACGGCGTGCTGAACATCGGTGACTCCATCCCGTGGCTCGACTGGATGGACCT
GCAGGGTTACATTAAGAGGATGAAGAAGCTCAGCAAGATGTTTGACCGGTTCCTGGAGCA
CGTCGTCGACGAGCACAGCGAGCGACGCCGCCACGAGGCGGAGAGCTTCGTTGCCAAGGA
CATGGTTGACGTGCTTCTGCAGTTCGCGAGCAACCCCGATCTCGAGGTCAAGCTCAACAGG
GAGGGCGTCAAGGCTTTCACTCAGGATCTTATCGCTGGCGGCACAGAAAGCTCGGCGGTG
ACGGTGGAGTGGGCACTCTCGGAGCTCCTGAAGAAGCCCGAGGTGTTCGCCAGGGCGACC
GAGGAGCTGGACCGCGTCGTCGGAAGAGGCCGTTGGGTCACCGAGAAGGACATGCCGAGC
CTCCCCTACGTGGACGCCATCGTGAAGGAGACGATGCGGCTGCACCCAGTGGCGCCGATG
CTGGTGCCCCGCCTCTCCCGCGAGGTCACGACCATCGGCGGCTATGACATCCCCGCCGGCA
CCCGGGTGCTCGTCAGTGTGTGGACCATCGGCCGGGACCCAGAGCTATGGGACGCGCCTG
AAGAGTTCATGCCAGAGAGGTTCCTCGGCAGCAGGCTCGACGTCAAGGGGCAGGACTACG
AGCTACTGCCGTTCGGATCGGGACGCAGGATGTGCCCTGGGTACAGTCTTGGACTAAAAGT
CATCCAGGTGAGCCTGGCCAACCTACTGCACGGCTTCGAGTGGAAGCTCCCCGACGGCGT
GGAGCTGAGCATGGAGGAGATCTTCGGCCTCTCCACGCCGCGCAAGTTCCCGCTGGAGGC
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CGTCGTGGAGCCCAAGCTCCCGGCTCATCTCTACGAATGA 
 
>Seq12 [organism=Festuca rubra] Chewing's fescue root CYP92A44 mRNA, CDS D 
ATGGAGTTTCCTCAGTGGGCGTCCTTCCTGGGTGTCGTGCTCGCCACGGTGCTCTTTCTCAA
GGCCGTCCTCCGGCGCCGAAGCGGCCGAAAGTACAACCTCCCGCCGGGTCCCAAGGCGTG
GCCGATCATCGGCAACCTGAACCTCATGGGCACGCTCCCACATCGCTCCATCCACGCGCTC
TCCAAGCAGTACGGCCCGCTCTTGCAGCTCCAGTTCGGCTCCTTCCCCTGCGTCGTCGGCTC
CTCCGTCGAGATGGCCAAGTTCTTCCTTAAGACCCACGACGTGTCGTTCACCGACCGGCCC
AAGTTCGCCTCCGGCAAGCACACCACCTACAACTACAGCGATATCACCTGGTCCCCCTACG
GCGCCTACTGGCGGCAGGCCCGCAAGATGTGCCTCACCGAGCTCTTCAGCGCCAGGCGGC
TCCGGTCGTACGAGTACATCCGCAGCGAGGAGGTGCTGGCCCTCGTCCGCGACCTGCATCG
CGGCGCCACCGCCGGCGCCGGTCGCGCCCTGGTGCTCAAGGACTACCTGTCCACGGTCAGC
CTGAACGTGATCACGCGCATGGTGATGGGCAAGAAGTACCTGGAGAAGGAGGTGAGGGA
CGGGAGCGGCGCGGTGATCACGACGCCGGATGAGTTCAAGTGGATGATCGACGAGCTATT
CCTTCTCAACGGCGTGCTCAACATCGGCGACTCCATCCCGTGGCTCGACTGGATGGACCTG
CAGGGGTACATTAAGAGGATGAAGAAGCTGAGCAAGATGTTCGACCGGTTCCTGGAGCAC
GTCGTGGACGAGCACAGCGAGCGGCGCCGCCGCGATGGGGAGAGCTTCGTGGCCAAGGAC
ATGGTCGACGTGCTGCTGCAGTTCGCCAGCGACCCCAACCTCGAGGTCAAGCTCAACAGG
GATGGCGTCAAGGCTTTCACTCAGGATCTCATTGCTGGGGGCACAGAAAGCTCGGCAGTG
ACGGTGGAGTGGGCCCTCTCGGAGCTCCTGAAGAAGCCCGAGGTGTTCGCCAGGGCGACC
GAAGAGCTGGACCGCGTCGTTGGCCGAGGCCGTTGGATCACCGAGAAGGACATGCCGAGC
CTCCCCTACGTGGACGCCATCGTGAAGGAGACGATGCGGCTGCACCCGGTGGCGCCGATG
CTGGTGCCCCGCCTCTCCCGCGAGGACACGACCATCGCCGGCTATGACATCCCCGCCGGCA
CCCGTGTGCTCGTCAGCGTGTGGTCCATCGGCCGCGACCCGGAGCTATGGGACGTGCCGGA
GGAGTTCATGCCAGAGCGGTTCATCGGCAGCAAGCTCGATGTTAAGGGGCAGGACTACGA
GCTGCTGCCGTTCGGGTCAGGGCGCAGGATGTGCCCCGGGTATAGCCTGGGGCTGAAGGT
GATCCAGGTGAGCTTGGCGAACCTACTGCACGGGTTCGAGTGGAAGCTCCCCGACGGCGT
GGAGCTGAACATGGAAGAGATCTTCGGCCTGTCTACGCCGCGCAAGTTCCCGCTGGAGGC
CGTCGTAGAGCCCAAGCTCCCGGCTCATCTCTACGAATGA 
 
>Seq13 [organism=Festuca rubra] Chewing's fescue root CYP73A91 mRNA, CDS A 
ATGGACGTCAACCTCCTGGAGAAAGCCCTACTGGGCCTCTTTGCGGCAGCGGTGCTCGCCA
TCGCGGTCGCGAAGCTCACCGGTAAGAAGTTCAAGCTTCCTCCAGGCCCGTCCGGTTACCC
CATCGTGGGCAACTGGCTCCAGGTCGGCGATGACCTGAACCACCGCAACCTGATGGGCAT
GGCCAAGCGCTTCGGCGAGGTGTTCCACCTCCGCATGGGCGTCCGCAACCTGGTGGTCGTC
TCCAGCCCCGAGCTCGCCAAGGAGGTCCTCCACACCCAGGGCGTGGAGTTCGGTTCCCGCA
CCCGCAACGCCGTCTTCGACATCTTCACCGGCAAGGGGCAGGACATGGTGTTCACCGTGTA
CGGCGACCACTGGCGCAAGATGCGCCGCATCATGACCGTGCCCTTCTTCACCAGCAAGGTG
GTGGCGCAGAACCGCCTCGGGTGGGAGGAGGAGGCAAGGCTGGTGGTGGAGGACGTGAA
GGCCGACCCGGCGGCGGCCACCACCGGCGTGGTCATCCGCCGCAGGCTGCAGCTCATGAT
GTACAACGACATGTTCCGCATCATGTTCGCCCGCCGCTTCGAGTCCCTCGCCGACCCGCTC
TTCAACAAGCTCAGGGCGCTCAACGCCGAGCGCAGCATCCTCTCCCAGAGCTTCGACTACA
ACTACGCCGACTTCATCCCCTTCCTCCGCCCCTTCCTCCGCGGATACCTCAACCGCTGCACC
AATCTGAAGACAAAGAGGATGAAAGTCTTCGAGGACGACTTCGTCACACCACGCAAGAAG
GCATTGGAGCAGAGTGGTGAGATCAAGTGTGCCATGGACCACATCCTCGAGGCCGAAAGG
AAGGGCGAGATCAACCACGACAACGTCCTCTACATCGTCGAGAACATCAATGTCGCAGCT
ATCGAGACGACGCTGTGGTCAATCGAGTGGGGCATTGCTGAGCTCGTGAACCACCCAGAA
GTCCAGTCAAAGCTGCGCAACGAGATTGCCGCCGTATTGGGCCCCAACGTGGCGGTGACG
GAGCCGGACCTGGAGCGCCTCCCCTACCTGCAGTCTGTCGTGAAGGAGACCCTCCGCCTCC
GCATGGCCATCCCGCTGCTGGTGCCACACATGAACCTCCAGGAGGCCAAGCTGTCCGGCTA
CGACATCCCCGCCGAGTCCAAGATCCTCGTGAACGCCTGGTTCCTTGCCAACGACCCCAAG
CGTTGGCTGCGGGCCGACGAATTCAGGCCGGATCGCTTCCTCGAGGAGGAGAAGGCCGTC
CAAGCTCATGGCAATGACTTCCGCTTCGTGCCCTTCGGTGTCGGCCGCCGAAACTGCCCGG
GGATCATCCTAGCGCTGCCCATCATCGGCATTACGCTCGGCAACATGGTGCAGAACTTCCA
GCTGCTGCCGCCGCCGGGGCAGGACAAGATCGACACCACCGAGAAGCCCGGACAGTTCAG
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CAACCAGATCCGCACCCACGCCAACGTCGTCTGCAAGCCCCTCAAGGCTTAGAA 
 
>Seq14 [organism=Festuca rubra] Chewing's fescue root CYP73A91 mRNA, CDS B 
ATGGACGTCAACCTCCTGGAGAAGGCCCTACTGGGCCTCTTCGCGGCGGCGGTGCTCGCCA
TCGCAGTCGCGAAGCTCACCGGTAAGCGCTTCAAGCTTCCTCCAGGCCCGTCCGGTTACCC
CATCGTGGGCAACTGGCTCCAGGTCGGCGATGACCTGAACCACCGCAACCTGATGGGCAT
GGCCAAGCGCTTCGGCGAGGTGTTCCACCTCCGCATGGGCGTCCGCAACCTGGTGGTCGTC
TCCAGCCCCGAGCTGGCCAAGGAGGTCCTCCACACCCAGGGCGTGGAGTTCGGCTCCCGC
ACCCGCAACGCCGTCTTCGACATCTTCACCGGCAAGGGGCAGGACATGGTGTTCACCGTCT
ACGGCGACCACTGGCGCAAGATGCGCCGGATCATGACCGTGCCCTTCTTCACCAGTAAGGT
GGTGGCGCAGAACCGCGTCGGCTGGGAGGAGGAGGCTAGGCTGGTGGTCGAGGACGTGA
AGGCCGACCCGGCGTCGGCGACGACCGGCGTGGTCATCCGCCGCAGGCTGCAGCTGATGA
TGTACAACGACATGTTCCGCATCATGTTCGACCGCCGCTTCGAGTCCCTCGCCGACCCGCT
CTTCAACAAGCTCAGGGCGCTCAACGCCGAGCGCAGCATCCTCTCCCAGAGCTTCGACTAC
AACTACGGCGACTTCATCCCCTTCCTCCGCCCATTTCTCCGCGGATACCTCAATCGCTGCAC
CAATCTCAAGACCAAGAGGATGAAAGTCTTCGAGGACGACTTCGTCACACCACGCAAGAA
GGCGTTGGAGCAGAGTGGTGAAATCAAGTGTGCCATGGACCACATCCTCGAGGCCGAAAG
GAAGGGTGAGATCAACCACGACAACGTCCTCTACATCGTCGAGAACATCAATGTCGCAGC
CATCGAGACGACACTGTGGTCAATCGAGTGGGGCATTGCTGAGCTGGTGAACCACCCAGA
AGTCCAGTCAAAGCTGCGCAACGAGATTGCCGCCGTACTCGGCCCCAATGCGGCGGTGAC
GGAGCCGGACCTGGAGCGCCTCCCCTACCTGCAGTCCGTCGTGAAGGAGACTCTCCGCCTC
CGCATGGCCATCCCGCTGCTCGTGCCACACATGAACCTCAACCAGGCGAAGCTCTCCGGCT
ACGACATCCCCGCCGAGTCCAAGATCCTCGTGAACGCCTGGTTCCTCGCCAACGACCCCAA
GCGTTGGGTGCGGGCCGATGAGTTCAGGCCGGAGCGATTCCTCGAGGAGGAGAAGGCCGT
CCAAGCTCATGGCAATGACTTCCGCTTCGTGCCCTTCGGCGTCGGCCGGCGAAACTGCCCG
GGGATCATCCTAGCACTGCCCATCATCGGCATTACGCTCGGCAACATGGTGCAGAACTTCA
ATCTGCTGCCGCCGCCGGGTCTGGACAAGATCGACACCACCGAGAAGCCGGGACAGTTCA
GCAACCAGATCCGCACCCACGCCAACGTCGTCTGCAAGCCCCTCAAGGCTTAGAA 
 
>Seq15 [organism=Festuca rubra] Chewing's fescue root CYP73A91 mRNA, CDS C 
ATGGACGTCAACCTCCTGGAGAAGGCCCTACTGGGCCTCTTCGCGGCGGCGGTGCTCGCCA
TTGCAGTCGCGAAGCTCACCGGTAAGCGCTTCAAGCTTCCTCCAGGCCCGTCCGGTTACCC
CATCGTGGGCAACTGGCTCCAGGTCGGCGATGACTTGAACCACCGCAACCTGATGGGCAT
GGCCAAGCGCTTCGGCGAGGTGTTCCACCTCCGCATGGGCGTCCGCAACCTGGTGGTCGTG
TCCAGCCCCGAGCTGGCCAAGGAGGTCCTCCACACCCAGGGCGTGGAGTTCGGCTCCCGC
ACCCGCAACGCCGTCTTCGACATCTTCACCGGCAAGGGGCAGGACATGGTGTTCACCGTCT
ACGGCGACCACTGGCGCAAGATGCGGCGGATCATGACCGTGCCCTTCTTCACCAGCAAGG
TGGTGGCGCAGAACCGCGTCGGGTGGGAGGAGGAGGCGAGGCTGGTGGTCGAGGACGTG
AAGGCCGACCCGGCGTCGGCGACGACCGGCGTGGTCATCCGCCGCAGGCTGCAGCTGATG
ATGTACAACGACATGTTCCGCATCATGTTCGACCGCCGCTTCGAGTCCCTCGCCGACCCGC
TCTTCAACAAGCTCAGGGCGCTCAACGCCGAGCGCAGCATCCTCTCCCAGAGCTTTGACTA
CAACTACGGCGACTTCATCCCCTTCCTCCGCCCATTCCTCCGCGGATACCTCAACCGCTGCA
CCAATCTCAAGACCAAGAGGATGAAAGTCTTCGAGGACGACTTCGTCACACCACGCAAGA
AGGCGTTGGAGCAGAGTGGTGAGATCAAGTGTGCCATGGACCACATCCTCGAGGCCGAAA
GGAAAGGCGAGATCAACCACGACAACGTCCTCTACATCGTCGAGAACATCAATGTTGCAG
CCATCGAGACGACGCTGTGGTCAATCGAGTGGGGCATTGCTGAGCTGGTGAACCACCCTG
AGGTCCAGTTGAAGCTGCGCAACGAGATTGCTGCTGTGCTTGGCCCCAACGTGGCGGTGAC
GGAGCCGGACCTGGAGCGTCTCCCCTACCTGCAGTCTGTGGTGAAGGAGACCCTCCGCCTC
CGCATGGCCATCCCGCTGCTCGTGCCACACATGAACCTCAACCAGGCGAAGCTGGCTGGCT
ACGACATCCCCGCAGAGTCCAAGATCCTCGTCAACGCCTGGTTCCTCGCCAACGACCCCAA
GCGCTGGGTGCGGGCCGACGAGTTCAGGCCGGAGCGATTCCTCGAGGAGGAGAAGGCCGT
CCAAGCTCATGGCAATGACTTCCGCTTCGTGCCCTTCGGTGTCGGCCGCCGAAACTGCCCG
GGGATCATCCTAGCACTGCCCATCATCGGCATTACGCTCGGCAACATGGTGCAGAACTTCA
ATCTGCTGCCGCCGCCGGGTCAGGACAAGATCGACACCACCGAGAAGCCCGGACAGTTCA
GCAACCAGATCCGCACCCACGCCAACGTCGTCTGCAAGCCCCTCAAGGCTTAGAA 



 

   
111 

 

 
>Seq16 [organism=Festuca rubra] Chewing's fescue root CYP73A91 mRNA, CDS D 
ATGGACGTCAACCTCCTGGAGAAGACCCTACTGGGCCTCTTCGCGGCGGCGGTGCTCGCCA
TCGCAGTCGCGAAGCTCACCGGTAAGCGCTTCAAGCTTCCTCCAGGCCCGTCCGGTTACCC
CATCGTGGGCAACTGGCTCCAGGTCGGCGATGACCTGAACCACCGCAACCTGATGAGCAT
GGCCAAGCGCTTCGGCGAGGTGTTCCACCTCCGCATGGGCGTCCGCAACCTGGTGGTCGTC
TCCAGCCCCGAGCTGGCCAAGGAGGTCCTCCACACCCAGGGCGTGGAGTTCGGCTCCCGC
ACCCGCAACGCCGTCTTCGACATCTTCACCGGCAAGGGGCAGGACATGGTGTTCACCGTTT
ACGGCGACCTCTGGCGCAAGATGCGGCGGATCATGACCGTGCCCTTCTTCACCAGCAAGGT
GGTGGCGCAGAACCGCGTCGGGTGGGAGGAGGAGGCGAGGCTGGTGGTCGAGGACGTGA
AGGCCGACCCGGCGTCGGCGACGACCGGCGTGGTCATCCGCCGCAGGCTGCAGCTGATGA
TGTACAACGACATGTTCCGCATCATGTTCGACCGCCGCTTCGAGTCCCTCGCCGACCCGCT
CTTCAACAAGCTCAGGGCGCTCAACGCCGAGCGCAGCATCCTCTCCCAGAGCTTCGACTAC
AACTACGGCGACTTCATCCCCTTCCTCCGCCCATTTCTCCGCGGATACCTCAATCGCTGCAC
CAATCTCAAGACCAAGAGGATGAAAGTCTTCGAGGACGACTTCGTCACACCACGCAAGAA
GGCGTTGGAGCAGAGTGGTGAAATCAAGTGTGCCATGGACCACATCCTCGAGGCCGAAAG
GAAAGGCGAGATCAACCACGACAACGTCCTCTACATCGTCGAGAACATCAATGTTGCAGC
CATCGAGACGACGCTGTGGTCAATCGAGTGGGGCATTGCTGAGCTGGTGAACCACCCTGA
GGTCCAGTTGAAGCTGCGCAACGAGATTGCTGCTGTGCTTGGCCCCAACGTGGCGGTGACG
GAGCCGGACCTGGAGCGTCTCCCCTACCTGCAGTCTGTGGTGAAGGAGACCCTCCGCCTCC
GCATGGCCATCCCGCTGCTCGTGCCACACATGAACCTCAACCAGGCGAAGCTGGCTGGCTA
CGACATCCCCGCAGAGTCCAAGATCCTCGTCAACGCCTGGTTCCTCGCCAACGACCCCAAG
CGCTGGGTGCGGGCCGACGAGTTCAGGCCGGAGCGATTCCTCGAGGAGGAGAAGGCCGTC
CAAGCTCATGGCAATGACTTCCGCTTCGTGCCCTTCGGTGTCGGCCGCCGAAACTGCCCGG
GGATCATCCTAGCACTGCCCATCATCGGCATTACGCTCGGCAACATGGTGCAGAACTTCAA
TCTGCTGCCGCCGCCGGGTCAGGACAAGATCGACACCACCGAGAAGCCCGGACAGTTCAG
CAACCAGATCCGCACCCACGCCAACGTCGTCTGCAAGCCCCTCAAGGCTTAGAA 

 


