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Cancer is aberrant cellular proliferation that arises due to mutations in growth 

regulatory genes.  DNA damage checkpoint proteins are thought to suppress 

tumorigenesis by preventing mutation accumulation and by inducing senescence in 

response to oncogenic stimuli.  However, checkpoint proteins may be required for 

cancer cells to survive the increased stress associated with transformation. There are 

two main mammalian DNA damage checkpoint pathways, the Atm and Atr pathways. 

While mutations in the Atm pathway results in increased tumorigenesis, roles for the 

Atr pathway in tumor development are less well understood, in part because deletion 

of any component of this pathway, including Hus1, results in embryonic lethality. 

Hus1, a component of the Rad9-Rad1-Hus1 heterotrimeric, PCNA-like sliding clamp, 

is recruited to sites of DNA damage for optimal phosphorylation of the Atr target 

Chk1.   

To investigate the physiological function of the Hus1-dependent Atr pathway, 

our lab developed two systems that bypass the severe phenotypes associated with 

germline Hus1 inactivation. A conditional allele can be used for tissue specific 

deletion of Hus1 in adult mice.  I have utilized this approach to identify an essential 

role for Hus1 in the survival and proliferation of mammary epithelium.  Notably, Hus1 

inactivation in the mammary gland did not result in tumorigenesis, even when 

combined with p53 inactivation.  p53 deficiency exacerbated the effects of Hus1 loss, 

resulting in increased cell death without compensatory proliferation, revealing a novel 

role for p53 in mammary gland tissue regeneration. As a second approach, our lab 



 

developed an allelic series in which mice express incrementally reduced Hus1 levels. I 

used this system to investigate how partial Hus1 impairment affects transformation in 

cell culture and impacts skin papilloma formation. Reduced Hus1 expression impaired 

cell transformation by activated oncogenes as measured in cell culture assays. Mice 

with Hus1 impairment developed significantly fewer and smaller papillomas in a two-

step skin carcinogenesis protocol. These results may be due to an inability of Hus1-

deficient cells to survive the stresses of neoplastic proliferation due to insufficient 

genome maintenance.  These results suggest that reduced Hus1 levels impair tumor 

development and that the Atr-dependent pathway may be exploited for cancer therapy. 
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 CHAPTER 1 

LITERATURE REVIEW 

 

 The mammalian genome is constantly under assault by both internal stresses 

such as replication errors and metabolic byproducts, and external stresses such as 

environmental mutagens and chemical carcinogens, which can result in DNA damage. 

Despite this, genomic integrity is largely preserved due to highly conserved DNA 

damage checkpoint mechanisms that have evolved in response to these endogenous 

and exogenous threats. In a normal somatic cell, DNA damage checkpoint proteins 

prevent mutation accumulation by halting cell cycle progression, initiating DNA 

repair, or signaling programmed cell death (Cimprich and Cortez, 2008). These 

checkpoint pathways play critical roles in embryogenesis, development, and tissue 

regeneration, ensuring that undamaged cells form a functional, healthy organism.  

 Because of the role of DNA damage checkpoint proteins in maintaining 

genomic stability, it is not surprising that checkpoint dysfunction has been shown to 

result in increased genomic instability and cancer development. However, it has been 

shown more recently that transformed cells possess a high level of dependence on 

DNA damage checkpoint proteins in order to survive the increased cellular stress 

associated with rapid proliferation and transformation. Termed non-oncogene 

addiction, this reliance of cancer cells on DNA damage checkpoint machinery may be 

exploited to target cancer cells for death (Luo et al., 2009). These seemingly 

contradictory effects of checkpoint dysfunction which has both been shown to 

correlate with tumorigenesis in some instances and to result in inhibition of tumor 

development in others, may depend on several factors, including affected tissue type, 

extent of checkpoint reduction, and which specific checkpoints are affected. 

Understanding which alterations in checkpoint function result in increased tumor 



2 

development and which result in tumor inhibition are important for developing cancer 

therapies. Here, we focus on the roles of DNA damage checkpoint proteins in 

prevention of genomic instability, in maintenance of tissue homeostasis, and in tumor 

suppression.  

 

1.1 The Atm and Atr pathways are the two main checkpoints that respond to 

DNA damage in mammalian cells.  

1.1.1 The Atm pathway 

 There are two main, evolutionarily conserved DNA damage checkpoint 

pathways in mammals, the ATM and ATR pathways, that are activated in response to 

specific forms of genetic stress (Figure 1.1). The ATM pathway primarily responds to 

double-stranded breaks (DSBs), such as those that arise from ionizing radiation or fork 

collapse (Kastan and Lim, 2000; Matsuoka et al., 2000). DSBs are initially recognized 

by the MRN complex, consisting of MRE11, RAD50, and NBS1, which accumulates 

at sites of damage and recruits additional components, such as MDC1 and ATM. 

ATM, a large PI3K related kinase, is subsequently activated through auto-

phosphorylation.  The phosphorylation of the histone variant, H2AX at these sites of 

damage allows for retention of this checkpoint response. The large Atm kinase then 

phosphorylates downstream effector proteins, such as CHK2 and p53 that signals for 

cell cycle arrest and/or apoptosis. A positive feedback loop forms, recruiting and 

activating additional checkpoint components which amplifies the checkpoint response, 

ensuring rapid cell cycle arrest (Kastan and Lim, 2000; Matsuoka et al., 2000). 

Components of the ATM pathway are non-essential, but are important for genome 

maintenance. Inactivating mutations in components of the ATM pathway can be 

tolerated during development and tissue homeostasis, but result in genomic instability 

and cancer predisposition in mouse models. Additionally, mutations in components of 
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Figure 1.1. There are two main evolutionarily conserved DNA damage 

checkpoint pathways, Atm pathway and Atr pathway. The Atm pathway response 

primarily to dsDNA lesions, and includes downstream effectors Chk2 and p53. The 

Atr pathway response to lesions resulting in ssDNA accumulation, and requires the 

Rad9-Rad1-Hus1 (9-1-1) complex for efficient phosphorylation of downstream 

effector Chk1. There is significant crosstalk between these pathways, and together 

they signal for cell cycle arrest, DNA repair, apoptosis, and fork stabilization in 

response to DNA damage. Inactivation of any component of the Atr pathway results in 

embryonic lethality. 
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the ATM pathway are associated with human diseases that show increased rates of 

cancer development (Bartek et al., 2007). For example, mutations of Atm results in the 

human disease Ataxia Talangiectasia, which also has a predisposition to lymphoma. 

Atm mutant mouse models also show an increased incidence of lymphoma (Shiloh, 

2003), and mutations of several ATM pathway components are associated with an 

increased risk of developing breast cancer (Ahmed and Rahman, 2006). The role of 

this pathway in maintaining genomic integrity and in the prevention of tumor 

suppression has been extensively studied due to several mouse models which harbor 

inactivating mutations in component of this pathway (Shiloh, 2003). 

 

1.1.2 The Atr pathway: mechanism 

 Roles for the ATR pathway in tumor suppression have been less well 

characterized than those of the ATM pathway. This is in part due to the embryonic 

lethality which results from inactivation of any component of the ATR pathway. The 

ATR pathway is initiated by events resulting in the generation of single-stranded DNA 

(ssDNA) (Costanzo and Gautier, 2003; Zou and Elledge, 2003), such as stalled 

replication forks (Cha and Kleckner, 2002; Helt et al., 2005a; Jazayeri et al., 2006) or 

bulky DNA lesions. These lesions can be generated during S-phase of each cell cycle, 

triggering Atr activation (Shechter et al., 2004). ATR activation begins when RPA 

binds to and stabilizes ssDNA (Costanzo and Gautier, 2003; Zou and Elledge, 2003). 

RPA coated single stranded DNA recruits the ATR-ATRIP complex to the site of 

damage (Zou and Elledge, 2003). Independently, the RAD17-RFC clamp loader loads 

the RAD9-HUS1-RAD1 heterotrimeric clamp complex (9-1-1 complex) onto RPA 

coated single stranded DNA (Bermudez et al., 2003; Ellison and Stillman, 2003; 

Majka et al., 2006; Zou et al., 2003). The phospho-tail of RAD9 acts to recruit 

TOPBP1 (Roos-Mattjus et al., 2003), which activates ATR via its ATR activation 
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domain (AAD), allowing ATR-mediated phosphorylation of CHK1 and other targets 

(Delacroix et al., 2007; Kumagai et al., 2006). The extent of damage, or the amount of 

ssDNA generated, can modulate the level of CHK1 phosphorylation (MacDougall et 

al., 2007). Activated CHK1 can then phosphorylate CDC25A, a critical regulator of 

cell cycle progression, to prevent cell cycle progression to allow for DNA repair 

(Sanchez et al., 1997). The ATR pathway is essential; inactivation of any components 

of this pathway is not compatible with life. 

 

1.1.3 Crosstalk between the Atm and Atr pathways 

 Though the ATM and ATR pathways primarily are thought to respond to 

different types of lesions (Helt et al., 2005a) and to activate different downstream 

effectors, there is evidence of crosstalk between the pathways. Activation of either 

pathway ultimately results in the phosphorylation of p53, CHK1, or CHK2 (Helt et al., 

2005a). ATR has been shown to regulate phosphorylation of p53 in damaged cells 

(Tibbetts et al., 1999). DNA double stranded breaks, substrates for ATM activation, 

have been shown to result in CHK1 phosphorylation, a component of the ATR 

pathway (Jazayeri et al., 2006; Shiotani and Zou, 2009). Similarly, CHK1 activation in 

response to stalled replication forks is strictly dependent on ATR, whereas the 

phosphorylation of CHK1 in response to other damage, such as IR-induced lesions, is 

ATM dependent (Cuadrado et al., 2006; Gatei et al., 2003). A large-scale proteomics 

analysis revealed that ATM and ATR share several substrates involved in DNA 

damage response (Matsuoka et al., 2007). Not only can the downstream targets 

overlap, but there is also evidence for compensation between the two pathways. For 

example, the loss of CHK1 in thymocytes resulted in heightened activation of CHK2 

as well as activation the tumor suppressor p53, while inactivation of CHK2 results in 

increased activation of CHK1 (Zaugg et al., 2007). 
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1.2 HUS1 is an essential component of the Atr pathway 

1.2.1 HUS1 structure and function 

 One essential component of the ATR pathway is the 9-1-1 complex. The 9-1-1 

complex, consisting of RAD9, RAD1, and HUS1, was originally identified in screens 

for non-essential proteins which induced cell cycle arrest in response to DNA damage 

(Weinert and Hartwell, 1988). These proteins are evolutionarily conserved from yeast 

to humans, and were later shown to form a DNA damage-responsive, doughnut-

shaped complex (Volkmer and Karnitz, 1999). The 9-1-1 complex and RAD17-RFC 

are structural orthologs of proliferating cell nuclear antigen (PCNA) and replication 

factor C (RFC), respectively.  RFC is a clamp loader for PCNA, a sliding clamp 

protein that tethers DNA polymerase to its template, (Griffith et al., 2002; Shiomi et 

al., 2002). Thus, a heterotrimeric PCNA-like ring structure was predicted (Venclovas 

and Thelen, 2000) and later confirmed (Dore et al., 2009; Sohn and Cho, 2009; Xu et 

al., 2009) for the functional 9-1-1 complex. PCNA and the 9-1-1 complex share some 

similarities, but also perform distinct functions. Both PCNA and 9-1-1 are loaded onto 

ssDNA. However, PCNA is loaded onto ssDNA at primer-template junctions during 

replication and can slide over dsDNA, whereas 9-1-1 is loaded onto ssDNA at sites of 

DNA damage and fork stalling, and is strongly inhibited from sliding over dsDNA 

(Navadgi-Patil and Burgers, 2009). PCNA moves along as a processivity factor and 

serves a tether for polymerases δ and ε, while 9-1-1 remains docked at sites of damage 

and acts as a scaffold for additional checkpoint proteins.  Additionally, both PCNA 

and 9-1-1 may undergo similar post-translational modifications. Both can be 

ubiquitinated (Fu et al., 2008; Majka and Burgers, 2004) which may function to recruit 

other factors to the clamps, such as translesion synthesis polymerases (Kannouche et 

al., 2004; Watanabe et al., 2004), while only PCNA has been shown to be 
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SUMOylated (Stelter and Ulrich, 2003). Furthermore, both PCNA and 9-1-1 have 

been shown to stimulate the base excision repair pathway (Wang et al., 2006). 

 HUS1, one subunit of the essential 9-1-1 component, is a critical member of 

the ATR pathway (Weiss et al., 2002). Full-length Hus1 cDNA is approximately 4.2-

kb and encodes a 32-kDa mouse HUS1 protein. The Hus1 gene consists of nine exons 

and is expressed in a variety of adult tissues and at several stages of embryonic 

development (Weiss et al., 1999). HUS1, together with RAD9 and RAD1, functions to 

promote genotoxin induced CHK1 phosphorylation (Weiss et al., 2002). Germline 

inactivation of Hus1 results in mid-gestational embryonic lethality due to widespread 

apoptosis and defective development of essential extra-embryonic tissues (Weiss et 

al., 2002). HUS1 is particularly important during S phase (Weiss et al., 2003), and 

HUS1 loss leads to chromosomal instability during DNA replication, triggering 

increased apoptosis and impaired proliferation through p53-independent mechanisms 

(Zhu and Weiss, 2007). Therefore, it is not surprising that DNA damage-inducible 

genes are upregulated in HUS1-deficient embryos, and primary cells from Hus1-null 

embryos contain increased spontaneous chromosomal abnormalities. These findings 

suggest that loss of HUS1 leads to an accumulation of genome damage that is not 

compatible with life (Weiss et al., 2000). Consequently, the roles for the 9-1-1 

complex in tumor suppression are not yet known. 

 

1.2.2 The 9-1-1 complex may play a direct role in translesion synthesis, base excision 

repair, mismatch repair, and telomere maintenance 

 Because of its structural homology to PCNA, which interacts with polymerase 

δ and ε, as well as, translesion synthesis polymerases, the 9-1-1 complex has been 

examined for roles as docking platform for translesion synthesis polymerases 

(Navadgi-Patil and Burgers, 2009). HUS1, specifically, has been shown to physically 
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interact with POL-K, a protein involved in translesion synthesis that is upregulated in 

a checkpoint activation-dependent manner (Kai and Wang, 2003). 9-1-1 clamp may 

physically regulate POL-ζ-dependent mutagenesis by controlling the access of POL-ζ 

to damaged DNA (Sabbioneda et al., 2005).  

The 9-1-1 complex has been shown to directly act in DNA repair through 

interactions with components of BER machinery. The 9-1-1 complex interacts with 

and has a stimulatory effect on DNA POL-b, an essential repair polymerase for BER. 

This suggests that the 9-1-1 complex might attract DNA POL-β to DNA damage sites, 

thus directly connecting checkpoints and DNA repair (Toueille et al., 2004). The 9-1-1 

complex has been shown to interact with the apurinic/apyrimidinic endonuclease 1 

(APE 1), an early component of BER, and can stimulate its AP-endonuclease activity. 

9-1-1 also plays a role in the final steps of BER through recruitment and stimulation of 

ligase I (Smirnova et al., 2005; Wang et al., 2006). Moreover, it has also been 

suggested that the 9-1-1 complex is a damage-specific activator of FEN1, which 

cleaves the remaining flap following repair (Friedrich-Heineken et al., 2005; Wang et 

al., 2004c). Overall, this indicates that the 9-1-1 complex is directly involved in long-

patch BER (LP-BER), thus providing a possible link between DNA damage 

checkpoints and BER. Additionally, the 9-1-1 complex has also been shown to be a 

component of the mismatch repair involved in MNNG-induced damage response (Bai 

et al., 2010) and may directly interact with human MYH to repair misincorporated 

bases opposite DNA damage (Shi et al., 2006). Clearly, the 9-1-1 complex is involved 

in a broad range of genomic maintenance mechanisms and the extent of its functions is 

not yet fully understood. 

 The 9-1-1 complex has also been shown to play direct, evolutionarily 

conserved roles in telomere maintenance in yeast, worms, and mammals (Ahmed and 

Hodgkin, 2000; Hofmann et al., 2002; Nakamura et al., 2002). Severe telomeric 
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shortening has been observed in both Hus1-deficient mouse embryonic fibroblasts and 

thymocytes from conditional Hus1-knockout mice (Francia et al., 2006). RAD9 has 

also been shown to preserve telomere integrity and prevent chromosomal fusions in 

mouse and human cells (Pandita et al., 2006). Also, 9-1-1 is found in association with 

catalytically competent telomerase in cell lysates. These findings identify an 

unanticipated function for the 9-1-1 checkpoint complex at telomeres in mammals and 

provide a mechanistic link between the activity of DNA-damage-checkpoint proteins 

and the telomere-maintenance machinery (Francia et al., 2006). 

 

1.3 Defects in the Atr pathway result in genomic instability.  

 Given its essential role in responding to DNA damage, it is not surprising that 

defects in the ATR pathway result in genomic instability, which can have a severe 

physiological impact. ATR knockout cells fail to proliferate, rapidly accumulate 

chromosomal breaks, and ultimately undergo caspase-dependent apoptosis due to loss 

of genomic integrity (Brown and Baltimore, 2000).  Cells expressing greatly reduced 

levels of ATR show hypersensitivity to genotoxic stress, increased chromosomal 

aberrations and DNA damage, delayed checkpoint induction, and an increase in 

replication stress induced apoptosis (Murga et al., 2009; Ragland et al., 2009). ATR 

has also been shown to act at common fragile sites, areas that are difficult to replicate, 

to stabilize forks and prevent breaks and resulting chromosomal rearrangements (Arlt 

et al., 2006; Casper et al., 2002; Cha and Kleckner, 2002). Further supporting a role 

for the ATR pathway in chromosomal stability, depletion of CHK1, but not CHK2, in 

human cells results in increased chromosomal instability and breaks at common fragile 

sites, resulting in chromosomal fragmentation and cell death (Durkin et al., 2006).  

 Individual components of the 9-1-1 complex are also important for the 

maintenance of genomic integrity. Decrease in expression of any component of the 9-
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1-1 complex results in disruption of the 9-1-1 complex as a whole, suggesting an 

interdependence on the stability of each component for the stability of the complex 

(Bao et al., 2004; Roos-Mattjus et al., 2003; Zou et al., 2002). This disrupted complex 

then results in defects in repairing S-phase DNA damage (Bao et al., 2004). For 

example, loss of RAD1 causes disintegration of the 9-1-1 complex, and disruption of 

sliding-clamp function causes major defects in S-phase control. A deficiency in RAD1 

results in defects in sustained cell proliferation and affects the efficiency of replication 

recovery from DNA synthesis blockage, resulting in chromosomal abnormalities and 

prolonged S phase (Bao et al., 2004). Complete loss of RAD9, another component of 

the 9-1-1 complex, in cells also shows a marked increase in spontaneous chromosomal 

aberrations and HPRT mutations (Hopkins et al., 2004). Mice with Rad9+/- or Rad9-/- 

keratinocytes show no overt, spontaneous morphologic defects and seem similar to 

wild-type controls, suggesting a decreased dependence on the 9-1-1 complex of 

unstressed, non-proliferating cells in vivo. However, Rad9-/- keratinocytes incur more 

spontaneous and carcinogen-induced DNA double strand breaks than Rad9+/+ 

keratinocytes (Hu et al., 2008). Likewise, complete inactivation of Hus1 results in 

chromosomal instability, genotoxin hypersensitivity, and embryonic lethality (Weiss 

et al., 2000). MEFs with only partial Hus1 expression exhibit spontaneous 

chromosomal abnormalities and undergo premature senescence due to an impaired 

response to oxidative genomic stress (Levitt et al., 2007). Conditional Hus1 loss leads 

to chromosomal instability, particularly at fragile sites, during DNA replication. This 

causes increased apoptosis and impaired proliferation (Zhu and Weiss, 2007). The 9-1-

1 complex has also been shown to play roles directly in DNA repair through 

interaction with components of base excision repair and mismatch repair (Helt et al., 

2005b).  Moreover, mouse ES cells that lack RAD17, the clamp loader of the 9-1-1 

complex, show hypersensitivity to various DNA damaging agents (Budzowska et al., 
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2004).  Additionally, ATR, HUS1, and RAD9 have been shown to play roles in 

telomere maintenance in mice (Francia et al., 2006; McNees et al., 2010; Pandita et 

al., 2006), a process which is important for both tissue homeostasis and cancer 

prevention; ATR and RAD9 has been shown to play a critical role in human telomere 

maintenance as well (Pandita et al., 2006; Pennarun et al., 2010). Taken together, these 

results show the importance of the ATR pathway in maintaining genomic integrity in 

normal cellular homeostasis and replication as well as under stressed conditions. 

 

1.4 The Atr pathway plays critical roles in development and tissue homeostasis. 

1.4.1 Roles for Atr in development and tissue homeostasis 

 In contrast to the ATM pathway, inactivation of any component of the ATR 

pathway results in embryonic lethality, suggesting the ATR pathway is essential to 

survive embryonic replication stress induced DNA damage (Brown and Baltimore, 

2000; Budzowska et al., 2004; Han et al., 2010; Hopkins et al., 2004; Liu et al., 2000; 

Takai et al., 2000; Weiss et al., 2000). Conditional inactivation of components of the 

ATR pathway in adult mice has provided an avenue to identify roles for the ATR 

pathway in adult tissue homeostasis and tumor development. Mosaic Atr deletion in 

adult mice leads to defects in tissue regeneration and the rapid appearance of age-

related phenotypes, such as hair graying, alopecia, kyphosis, osteoporosis, thymic 

involution, fibrosis, and other abnormalities due to acute cellular loss in tissues in 

which continuous cell proliferation is required for maintenance. This loss causes a 

dramatic reduction in tissue-specific stem and progenitor cell populations and exhausts 

tissue renewal and homeostatic capacity (Ruzankina et al., 2007), suggesting that ATR 

directly plays a role in stem cell maintenance.  
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1.4.2 Mouse models of Seckel syndrome 

 In humans, the disease Seckel syndrome can be caused by a point mutation in 

Atr, resulting in a hypomorphic allele with severely reduced, leaky expression of wild-

type Atr (O'Driscoll et al., 2003) or by mutations in other proteins that result in 

reduced ATR signaling (Alderton et al., 2004; Griffith et al., 2008). Individuals 

homozygous for the Seckel Syndrome-1 (SCKL1) allele of Atr express reduced levels 

of ATR resulting in severe phenotypes, including intrauterine growth retardation, 

profound microcephaly, a ‘bird-like’ facial profile with receding forehead and chin, a 

‘beak-like’ protruding nose, and mental retardation, characteristic of Seckel syndrome 

(O'Driscoll et al., 2003; Seckel, 1960). Because this disease has severe clinical 

characteristics and ultimately reduced lifespan, mouse modes of Seckel syndrome 

have recently been developed in order to better understand the underlying mechanism 

of this disease. In one model, homozygous SCKL1 mice that retain the neo cassette 

used for targeting a point mutation to the endogenous Atr allele have an estimated 66-

82% reduction in total Atr protein levels due to missplicing into the neo cassette 

(Ragland et al., 2009). In a second model, the exons 8, 9, and 10 of mouse Atr 

sequence are exchanged for the mutated human sequence of a Seckel patients, 

including intergenic regions, resulting in Atrs/s mice. In this model, splicing is altered 

as is seen in human Seckel syndrome, resulting in decreased ATR expression. The 

Atrs/s mice recapitulate the phenotypes seen in Seckel syndrome, including premature 

aging, dwarfism, and microcephaly (Murga et al., 2009).  Deletion mutations in Atr, 

Rpa, or Rfc2, which results in decreased ATR signalling, have been linked to Seckel-

like diseases with similar phenotypes, including microcephaly and growth delay 

(O'Driscoll et al., 2007). 
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1.4.3 Downstream components of the Atr pathway also play a role in development and 

tissue homeostasis 

 Other components of the ATR pathway have been shown to be critical for tissue 

homeostasis. For example, CHK1 has been implicated in maintaining the balance 

between cell populations during differentiation in red blood cell production, and 

disruptions in CHK1 levels can lead to anemia in mice (Boles et al., 2010). CHK1 is 

also involved in hematopoietic stem cell differentiation in umbilical cord blood in 

humans (Carrassa et al., 2010). Combined inactivation of ATR or HUS1 with p53 

results in an increased accumulation of damaged and dying cells associated with failed 

proliferation of surrounding cells resulting in loss of tissue homeostasis (Ruzankina et 

al., 2009; Yazinski et al., 2009). Additionally, clearance of chromosomal instable cells 

from the intestine of telomere-dysfunctional mice requires p53 (Begus-Nahrmann et 

al., 2009). Taken together, these results show that DNA damage checkpoint proteins 

play a critical role in maintaining genomic integrity throughout development. 

Furthermore, checkpoint proteins play a role in initiating cell death and clearance of 

aberrant cells in order to maintain tissue homeostasis.   

 

1.5 Defects in the Atr pathway may contribute to tumorigenesis.  

1.5.1 Defects in the Atr pathway correlate with incidence of some human cancers 

 Genomic instability is a classic hallmark of cancer. Since defects in Atr result 

in chromosomal aberrations, it is not surprising that mutations and misexpression of 

members of the Atr pathway have also been implicated in cancer development. 

Increased mutation frequencies in DNA damage response pathway genes, including 

Atr and Chk1, have been found to correlate significantly with advanced tumor grade 

(Vassileva et al., 2002). Specifically, Atr mutations in exon 10 have been seen in 

cancers with microsatellite instability, such as endometrial, stomach, and colon 
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cancers (Fang et al., 2004; Lewis et al., 2007; Lewis et al., 2005; Menoyo et al., 2001; 

Zighelboim et al., 2009). Additionally, endometrial cancers with Atr mutations have a 

poor prognosis (Zighelboim et al., 2009), while colon cancers harboring Atr mutations 

showed an improved disease-free survival compared with those with wild-type Atr 

(Lewis et al., 2007). This difference in prognosis may be due to tissue-specific 

differences in the requirement for ATR function. Additionally, lower levels of RAD9 

are found in some prostate cancers, suggesting decreased Rad9 expression is selected 

for in tumor development, and that RAD9 normally acts to prevent tumor development 

(Wang et al., 2004a). However, complete loss of any component of the ATR pathway 

has not been found in any human tumor. 

 

1.5.2 Some mouse models suggest that the Atr pathway may play a role in tumor 

suppression 

 Several mouse models and tissue culture systems were developed expressing 

reduced levels of components of the pathway in order to further understand the role of 

the ATR pathway in tumor development. Atr+/- mice also show a haploinsufficient 

tumor suppressor function on a mismatch repair deficient background, as these mice 

exhibit increased tumor formation and are prone to embryonic lethality (Fang et al., 

2004). Upon chemical carcinogen exposure, mice with Rad9-/- keratinocytes develop 

tumors and senile skin plaques earlier and with greater severity than do Rad9+/- and 

Rad9+/+ littermates, suggesting that RAD9 plays an important role in preventing tumor 

development in mice as well (Hu et al., 2008). Decreased levels of down stream 

effectors of the ATR pathway may also contribute to tumorigenesis. Chk1 

heterozygosity results in inappropriate S phase entry, accumulation of DNA damage 

during replication, and failure to restrain mitotic entry, all of which can contribute to 

tumorigenesis (Lam et al., 2004). Additionally, Chk1 heterozygosity modestly 
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accelerates the tumorigenesis seen in Wnt1 transgenic mice, further supporting CHK1 

may act as a haploinsufficient tumor suppressor (Liu et al., 2000). Taken together, 

these reports suggest that components of the ATR pathway may act as tumor 

suppressors.  

 

1.6 Defects in the Atr pathway may result in decreased tumor development due to 

non-oncogene addiction.  

1.6.1 Increased expression of components of the Atr pathway in human tumors 

 Since defects in DNA damage checkpoints cause genomic instability and can 

lead to cancer development, the checkpoint functionality of many cancers has been 

studied. However, contrary to expectation, many tumors show increases in checkpoint 

protein expression, due to aberrant methylation or gene amplification, relative to the 

surrounding normal tissue. The initial increase in the expression of DNA damage 

checkpoint proteins may be due to replication stress of neoplastic proliferation and act 

as a barrier to cancer formation (Bartkova et al., 2005; Gorgoulis et al., 2005); 

however, sustained increased expression of these genes may function as a mechanism 

for cancer cells to survive the increased stress of neoplastic proliferation and hyper-

replication, and act to promote tumor growth. Overexpression of RAD9, for example, 

is seen in many human breast tumors, and this up-regulation correlates with both 

tumor size and local recurrence (Cheng et al., 2005). Similarly, elevated RAD9 levels 

are seen in some prostate cancer cells. Not only is there a strong correlation between 

RAD9 protein abundance and cancer stage, but also the effectiveness of small 

interfering RNA to lower RAD9 protein levels is correlated with reduction of 

tumorigenicity, indicating that RAD9 actively contributes to the disease (Zhu et al., 

2008). Similarly, HUS1 expression levels in ovarian cancer correlate significantly 

with the clinicopathologic factors of poor prognosis (de la Torre et al., 2008). 
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Interestingly, a majority of tumors are deficient in the G1-DNA damage checkpoint 

pathway while Chk1 loss is rarely seen in human tumors (Bartek and Lukas, 2003). 

And in fact, CHK1 is found to be upregulated in colorectal cancers (Madoz-Gurpide et 

al., 2007) as well as certain types of breast cancers (Verlinden et al., 2007). 

 

1.6.2 Non-oncogene addiction to DNA damage checkpoint proteins in cancers 

 These findings have lead to the hypothesis that transformed cells rely more 

heavily than normal cells on functional S and G2 phase checkpoints for DNA repair 

and cell survival (Ashwell and Zabludoff, 2008). This phenomenon has been termed 

“non-oncogene addiction” since cancerous cells have higher requirements for proteins 

that compensate for increased cellular stress associated with neoplastic proliferation 

(Luo et al., 2009). Many tumors are defective in initiating G1 arrest; therefore, they 

have an increased reliance on S/G2 checkpoint pathway to maintain genomic integrity 

to survive. For this reason, inactivation of components of the ATR pathway, which 

responds primarily in signaling for cell cycle arrest and DNA repair S/G2, results in 

increased tumor cell death, due to loss of genomic integrity, while surrounding normal 

cells, which retain an intact G1 checkpoint, are able to survive this decreased levels of 

Atr signaling (Luo et al., 2001). 

 Further supporting a requirement for DNA damage checkpoint proteins in 

transformation and tumor growth is that inactivating mutations in any component of 

the Atr pathway have not yet been found in human tumors. Furthermore, conditional 

inactivation, partial inactivation, or mouse models heterozygous for any components 

of the Atr pathway alone does not result in spontaneous tumorigenesis (Greenow et al., 

2009; Lam et al., 2004; Murga et al., 2009; Ruzankina et al., 2007; Ruzankina et al., 

2009) (Han et al., 2010; Hu et al., 2008; Levitt et al., 2007; Yazinski et al., 2009).  
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1.6.3 Inactivation of components of the Atr pathway sensitizes tumor cells to 

chemotherapeutics and induces cell death 

  Supporting this idea, tumor-initiating cells of mammary tumors in mice show 

upregulation of several DNA damage response and repair proteins, including HUS1, 

suggesting these proteins are essential for the transformation process (Zhang et al., 

2008). Down regulation of HUS1 enhances the sensitivity of human lung carcinoma 

cells to cisplatin (Kinzel et al., 2002) and loss of HUS1 or ATR in combination with 

loss of p53, a potent tumor suppressor, results in cell death, not tumorigenesis 

(Chapter 2) (Ruzankina et al., 2009; Yazinski et al., 2009). p53 deficient cancer cells 

can be sensitized to chemotherapeutics by CHK1 inhibitors (Chen et al., 2006), and 

knockdown of either ATR or CHK1 in mismatch repair defective colorectal cancer 

cells results in increased sensitivity to chemotherapeutics (Jardim et al., 2009). Since 

CHK1 is the major effecter of the S and G2 checkpoints cascades, the inhibition of 

CHK1 signaling impairs DNA repair and increases tumor cell death, either through 

induction of apoptosis mediated by p53 signaling or through p53-independent 

signaling, such as through activation of caspase-2 (Sidi et al., 2008). CHK1 inhibition 

in tissue with a functional G1 checkpoint, however, allows for DNA repair and cell 

survival (Ashwell and Zabludoff, 2008). Additionally, CHK1 is essential for tumor 

cell viability following activation of the replication checkpoint (Cho et al., 2005).  

 Additionally, checkpoint kinase inhibitors enhance the efficacy of several of 

the most commonly used chemotherapeutic compounds and radiotherapy, which act 

by damaging the genome of rapidly proliferating cells, impeding the progression of the 

cell cycle and preventing further proliferation, and reducing long-term cancer cell 

survival (Wilsker and Bunz, 2007). For example, significant cytotoxicity is observed 

in cancer cells when RAD9 expression is downregulated, probably due to the effects 

of inhibited CHK1 phosphorylation and the impairment of the ATR checkpoint 
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pathway (Yuki et al., 2008). Furthermore, cell lines deficient in the Fanconi Anemia 

(FA) DNA repair pathway are hypersensitive to CHK1 inhibition by siRNA or 

pharmacological agents which results in increased accumulation of DNA strand and 

chromosomal breakages (Chen et al., 2009). Taken together, these results suggest that 

the ATR pathway plays an essential role in maintaining cancer cell viability and can 

be exploited to sensitize cancer cells when abrogation of CHK1 or other pathway 

components is combined with DNA anti-metabolite chemotherapeutic drugs. Already, 

CHK1 inhibitors are being used in combination with common anticancer 

chemotherapies (Chen et al., 2006; Merry et al., 2010). This decreased level of CHK1 

presumably drives cancer cells toward death due to increased fork stalling and DNA 

damage from chemotherapeutics, as cancer cells cannot recover from these insults 

without sufficient CHK1 levels.  

 

1.7 Summary and remaining questions 

 In certain tissue types, reduced function of the ATR pathway may result in 

increased tumorigenesis on a tumor promoting background; however, impairment of 

the ATR pathway alone does not appear to induce tumorigenesis. Instead, decreased 

ATR function has been shown to inhibit transformation and tumor cell survival. In 

several cases, tumor cells display non-oncogene addiction to DNA damage 

checkpoints, and overexpression of these checkpoints actually enhances the growth 

and survival of tumor cells. Furthermore, there is evidence that inhibitors of 

checkpoint proteins in the ATR pathway may be effective in treatment of certain 

cancers that have a high dependence on DNA damage checkpoint function. In this 

case, an impairment of the ATR pathway results in cell death during the process of 

transformation. 
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 Many questions still remain about the effect of reduced DNA damage 

checkpoint function on tumor development. It is not clear whether checkpoint 

inhibition has discrete effects on different cell types. In one cell type, defects in ATR 

signaling may promote tumor development, while in another cell type, the same defect 

may prevent transformation and tumor development. This difference may be related to 

the level of dependence of the tissue type on the ATR pathway in tissue homeostasis 

and cell maintenance. Also, the effect of the level of inhibition must be more clearly 

understood. Reduction of checkpoint function to half the wild-type level may promote 

tumorigenesis, while reduction to less than half may prevent transformation and tumor 

growth. Additionally, the consequences of inactivation of components of the ATR 

pathway on tissue homeostasis and other critical processes, such as meiosis, must be 

further examined to understand the effect of inhibitors, which are used to treat cancers, 

on the organism as a whole.  

 

1.8 Use of HUS1 to understand the role of the Atr pathway in tissue homeostasis 

and tumor development 

1.8.1 Conditional inactivation of Hus1 can be used to determine roles of Hus1 in adult 

tissue.  

 In order to study the physiological functions of the ATR checkpoint pathway 

in tumor suppression and tissue homeostasis while bypassing the embryonic lethality 

of conventional knockout models, we previously developed a conditional loxP-flanked 

Hus1 allele (Hus1Flox) (Figure 1.2 A) (Levitt et al., 2005). Hus1Flox is a fully functional 

allele that expresses wild-type HUS1, but is converted to the null allele Hus1∆2,3 upon 

Cre-mediated recombination. Hus1Flox/Flox mice are bred to Hus1+/∆1 Cre+ mice, which 

have one wild type (Hus1+) and one Hus1-null allele (Hus1∆1), to generate control 

Hus1Flox/∆1 Cre- and Hus1+/Flox Cre+ mice and experimental Hus1Flox/∆1 Cre+ mice. 
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Hus1+/Flox Cre+ mice serve as a reporter of the maximum amount of Hus1 deletion 

achieved following Cre-mediated recombination, as these mice retain one wild-type 

Hus1 allele, preventing selection against cells that have undergone recombination.  

However, these mice heterozygous for Hus1, and may have some heightened level of 

genomic instability. Experimental Hus1Flox/∆1 Cre+ mice have no functional HUS1 

expression in cells which have undergone recombination. Cre-recombinase can be 

expressed from a variety of tissue and developmentally specific promoters (Akagi et 

al., 1997) allowing for tissue specific inactivation of HUS1 in adult tissue.  

 

1.8.2 The Hus1 allelic series is an important tool used to study the roles of Hus1 and 

the Atr pathway.  

 As previously mentioned, germline deletion of Hus1 results in embryonic 

lethality. In order to bypass the severe effects of complete Hus1 deletion, the Weiss 

Lab developed a Hus1 allelic series in which expresses incrementally reduced levels 

of HUS1, while bypassing the embryonic lethality associated with complete germline 

inactivation of Hus1 (Figure 1.2 A and B). The allelic series is created by combining a 

wild-type Hus1+ allele, a Hus1Neo allele, which expresses reduced levels of HUS1 due 

to misplicing and exon skipping, or a null Hus1∆1 allele. Mice with the lowest level of 

HUS1, Hus1Neo/∆1, are grossly normal and are not prone to spontaneous tumor 

development; however, Hus1Neo/∆1 mice exhibit sensitivity to certain genotoxins, such 

as mitomycin C, and have increased genomic instability as measured by elevated 

micronucleus levels in erythrocytes. Primary Hus1Neo/∆1 embryonic fibroblasts exhibit 

spontaneous chromosomal abnormalities, undergo premature senescence associated 

with increase in oxidative stress, and show hypersensitivity to DNA damaging agents 

and replication inhibitors, such as 4NQO and aphidicolin. Together, these findings 

define a critical role for HUS1 in response to genome damage and replication stress.  
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Figure 1.2. Alleles used to construct the conditional Hus1 knockout and Hus1 

allelic series, which expresses incremental reduced levels of Hus1. (A) Alleles 

which make up conditional Hus1 knockout system and Hus1 allelic series. Notably, 

Hus1Neo, an intermediate product in constructing the conditional Hus1Flox allele, has 

only partial Hus1 activity. (B) Northern blot demonstrating the incrementally reduced 

level of Hus1 in the Hus1 allelic series {Levitt, 2007 #199}. Hus1+, Hus1Neo, and 

Hus1∆1 alleles are combined to create the Hus1 allelic series, which ranges from 

Hus1+/+, with wild-type levels of Hus1 expression, to Hus1Neo/∆1 which expresses the 

lowest level of Hus1. 
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Importantly, the Hus1 allelic series provides an ideal tool to test the effect of reduced 

HUS1 on transformation and tumorigenesis (Levitt et al., 2007).  

 In the work presented here, I have made use of both the conditional allele of 

Hus1 and the Hus1 hypomorphic allele to study the role of HUS1 in tumorigenesis, 

and its response to antioxidant treatments. First, I have determined the effect of 

complete Hus1 inactivation on tumorigenesis using the mouse mammary gland as a 

model. Secondly, I have made use of the Hus1 allelic series in order to determine how 

reductions in HUS1 expression affect transformation ability, in both cell culture and in 

vivo using a two-step carcinogenesis scheme. Finally, I have determined the effect of 

antioxidant treatment in rescuing the severe phenotypes seen in cells expressing 

reduced levels of HUS1, as well as Hus1-null embryos. This body of work identifies 

HUS1 as key DNA damage and cellular stress response protein and a potential target 

for sensitizing cancer cells to chemotherapeutic treatment. 
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CHAPTER 2 

 

DUAL INACTIVATION OF HUS1 AND P53 IN THE MOUSE MAMMARY 

GLAND RESULTS IN ACCUMULATION OF DAMAGED CELLS AND 

IMPAIRED TISSUE REGENERATION1 

 

2.1 ABSTRACT 

In response to DNA damage, checkpoint proteins halt cell cycle progression 

and promote repair or apoptosis, thereby preventing mutation accumulation and 

suppressing tumor development. The DNA damage checkpoint protein HUS1 

associates with RAD9 and RAD1 to form the 9-1-1 complex, which localizes to DNA 

lesions and promotes DNA damage signaling and repair. Because complete 

inactivation of mouse Hus1 results in embryonic lethality, we developed a system for 

regulated Hus1 inactivation in the mammary gland in order to examine roles for HUS1 

in tissue homeostasis and tumor suppression. Hus1 inactivation in the mammary 

epithelium resulted in genome damage that induced apoptosis and led to depletion of 

HUS1-null cells from the mammary gland. Conditional Hus1 knockout females 

retained grossly normal mammary gland morphology, suggesting compensation by 

cells that failed to undergo Cre-mediated Hus1 deletion. p53-deficiency delayed the 

clearance of Hus1-null cells from conditional Hus1 knockout mice and caused the 

accumulation of damaged, dying cells in the mammary gland. Notably, compensatory 

responses were impaired following combined HUS1 and p53 loss, resulting in aberrant 

mammary gland morphology and lactation defects. Overall, these results establish an 

                                                 
1 The data in this chapter has been published: Yazinski, S.A., Westcott, P.M., Ong, K., 
Pinkas, J., Peters, R.M., and Weiss, R.S. (2009). Dual inactivation of Hus1 and p53 in 
the mouse mammary gland results in accumulation of damage cells and impaired 
tissue regeneration. Proc Natl Acad Sci U S A 106, 21282-21287 
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essential role for HUS1 in the survival and proliferation of mammary epithelium and 

identify a novel role for p53 in mammary gland tissue regeneration and homeostasis. 

 

2.2 INTRODUCTION 

DNA is constantly subjected to intrinsic and extrinsic genotoxins that may lead 

to mutations in growth regulatory genes, resulting in cancer formation (Hoeijmakers, 

2001). To prevent mutation accumulation, evolutionarily conserved DNA damage 

checkpoint pathways survey the genome and respond to DNA lesions by halting the 

cell cycle, stabilizing replication forks, and inducing repair. In cases of extensive or 

unrepairable damage, checkpoints instead trigger apoptosis, which eliminates 

defective cells that are at risk for malignant transformation and stimulates regenerative 

proliferation that ensures tissue homeostasis. 

Two primary checkpoint pathways, the ATM and ATR pathways, function in 

parallel to respond to DNA damage in mammals (Bartek and Lukas, 2007). The ATM 

pathway, which includes ATM, CHK2, p53, and additional components, responds to 

double-stranded DNA breaks (DSBs). Inactivating mutations in genes of the ATM 

pathway cause increased risk for a variety of malignancies, including breast cancers 

(Walsh and King, 2007). Notably, over half of all solid human tumors are estimated to 

have p53 mutations (Soussi, 2007). In addition to its well-established functions in 

apoptosis induction, cell cycle control, and safeguarding of genome stability, p53 also 

plays a complex and incompletely understood role in tissue homeostasis. In some 

settings, p53 appears to impede regenerative processes (Maier et al., 2004; Rodier et 

al., 2007; Tyner et al., 2002), while in others it facilitates tissue renewal and recovery 

from cell loss (Matheu et al., 2007; Valentin-Vega et al., 2008; Wells et al., 2006).  

The ATR pathway, which includes ATR, CHK1, and the RAD9-RAD1-HUS1 

(9-1-1) complex, responds to stalled replication forks and a broad array of DNA 
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lesions (Bartek and Lukas, 2007).  Because the ATR pathway is essential for 

embryonic development in mammals, many of its physiological roles have not been 

fully characterized. Although CHK1 activation is known to occur in response to 

oncogenic signals (Bartek et al., 2007), there is limited direct evidence indicating that 

ATR pathway defects are strongly tumor predisposing. Monoallelic Atr and Chk1 

mutations, as well as misexpression of Chk1 and 9-1-1 complex components, have 

been reported in human cancers (Bertoni et al., 1999; Menoyo et al., 2001; Vassileva 

et al., 2002). In mouse models, Atr heterozygosity causes a slight increase in tumor 

incidence (Brown and Baltimore, 2000). Chk1 haploinsufficiency is associated with 

defects suggestive of cell transformation in the mammary gland (Lam et al., 2004) and 

modestly accelerates mammary tumorigenesis in Wnt-1 transgenic mice (Liu et al., 

2000). These data suggest a possible role for the ATR pathway in tumor suppression; 

however, heterozygosity for these genes in mice results in relatively mild phenotypes. 

As a member of the 9-1-1 complex, HUS1 shows predicted structural 

homology to proliferating cell nuclear antigen (Parrilla-Castellar et al., 2004), the 

sliding clamp that serves as a processivity factor during DNA replication. 9-1-1 is 

loaded onto DNA in response to damage and functions as a scaffold that facilitates the 

formation of checkpoint signaling complexes, leading to efficient phosphorylation and 

activation of downstream effectors in response to DNA damage. Notably, 9-1-1 

promotes the ATR-dependent phosphorylation of CHK1 through the recruitment of 

the checkpoint mediator TOPBP1, which stimulates ATR kinase activity (Burrows and 

Elledge, 2008). Targeted deletion of Hus1 (Weiss et al., 2000) or Rad9 (Hopkins et al., 

2004) results in severe genomic instability, profound hypersensitivity to genotoxic 

stress, and mid-gestational embryonic lethality. 

In order to study the physiological functions of the ATR checkpoint pathway 

in tumor suppression and tissue homeostasis while bypassing the embryonic lethality 
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of conventional knockout models, we previously developed a conditional loxP-flanked 

Hus1 allele (Hus1Flox) (Levitt et al., 2005). Hus1Flox is a fully functional allele that 

expresses wild-type HUS1, but is converted to the null allele Hus1∆2,3 upon Cre-

mediated recombination. In this study, we generated conditional Hus1 knockout mice 

that express Cre from the beta-lactoglobulin (Blg) promoter in order to inactivate 

Hus1 selectively in the mammary glands of pregnant and lactating mice (Selbert et al., 

1998). The mammary gland was targeted because this tissue expresses HUS1 (Weiss 

et al., 1999), has a well-characterized developmental pattern (Silberstein, 2001), and is 

susceptible to tumor development due to defects in DNA damage response factors 

(Walsh and King, 2007). Complete Hus1 inactivation was not associated with 

increased mammary tumor predisposition; instead HUS1 was found to be essential for 

genome maintenance and cell survival in mammary epithelium. Unexpectedly, p53 

loss exacerbated the deleterious effects of Hus1 inactivation and impaired a 

compensatory response that in p53-proficient animals promoted tissue regeneration by 

cells that failed to delete Hus1. These data identify a novel role for p53 in tissue 

homeostasis in the mammary gland and additionally suggest that inhibition of ATR 

signaling may be an effective tool for the treatment of p53-deficient cancers. 
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2.3 MATERIALS AND METHODS 

Mice. Previously described Hus1Flox (Levitt et al., 2005) and Hus1∆1 (Weiss et al., 

2000) mice were maintained on a 129S6 inbred genetic background. p53+/- mice with 

the Trp53tm1Tyj allele were maintained on a C57BL/6J background (Jacks et al., 1994). 

Blg-Cre mice were maintained on a mixed background (Selbert et al., 1998). 

Hus1Flox/Flox mice were bred to Blg-Cre transgenic (Cre+) mice that also were 

heterozygous for the null Hus1∆1 allele to produce Hus1Flox/∆1 Cre+ conditional Hus1 

knockout mice, as well as Hus1+/Flox Cre+ and Hus1Flox/∆1 Cre- control animals. All 

animals were genotyped by PCR analysis of DNA extracted from tail tip biopsies. 

Mice were housed in accordance with institutional animal care and use guidelines. 

 

Southern blot. Genomic DNA for Southern blotting was isolated from fourth 

mammary gland or spleen tissue using Proteinase K digestion and ethanol 

precipitation. DNA was digested with NheI, run through a 0.8% agarose gel, 

transferred to a nylon membrane, and hybridized with a 32P-labeled 190-base pair EagI 

fragment from plasmid pCR2.1-5'UTR-∆2,3, as previously described (Levitt et al., 

2005). The extent of deletion of the conditional Hus1 allele was quantified using a 

PhosphorImager (GE Healthcare, Piscataway, NJ, USA). Statistical analysis was by 

one-way ANOVA. 

 

Whole mounts and histology. Conditional Hus1 knockout mice (Hus1Flox/∆1 Cre+) or 

control mice (Hus1+/Flox Cre+ or Hus1Flox/∆1 Cre-), either on p53+/+ or p53-/- 

backgrounds, were mated with wild-type males overnight, and checked for copulatory 

plugs the following morning. The fourth mammary glands were harvested on 18th day 

of pregnancy (P18), or the second (L2) or fourth (L4) day of lactation. For whole 

mount analysis, the fourth mammary gland was harvested, fixed in Carnoy’s solution 
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for 6 hours, stained overnight in Carmine Alum solution at 4°C, dehydrated, and 

stored in xylenes. For histological analyses, the fourth mammary gland was fixed in 

10% neutral-buffered formalin overnight, dehydrated, embedded in paraffin, and 

sectioned at 5-8 µm. Sections were deparaffinized in xylenes, rehydrated, and stained 

with Hematoxylin and Eosin or subjected to immunohistochemical analysis. The 

relative area of each mammary gland occupied by epithelial or adipose tissue was 

measured using ImageJ (National Institutes of Health) and Canvas 8 (ACD Systems) 

software applications.  

 

Ki67 and γ-H2AX immunohistochemistry. Mammary gland sections from at least three 

females of each genotype were stained for the presence of Ki67 antigen or γ-H2AX. 

Heat-mediated antigen retrieval was performed in 0.01M citrate buffer (for Ki67) or 

25mM EDTA (for γ-H2AX) for 50 minutes. Sections were incubated with anti-Ki67 

Clone MM1 (Vector Laboratories) or anti-γ-H2AX (Upstate Biotechnology) 

antibodies followed by biotinylated polyclonal rabbit anti-mouse (DAKO). 

Approximately 500 cells in at least two fields of vision at 40X magnification were 

counted per slide. Statistical analysis was by two-tailed Student’s t-test. 

 

TUNEL staining. Mammary gland sections from three different female mice for each 

genotype were prepared and analyzed using the ApopTag® peroxidase In Situ 

Apoptosis Detection Kit (Millipore) according to the manufacturer’s directions. 

Approximately 500 cells in at least two fields of vision at 40X magnification were 

counted per slide. Statistical analysis was by two-tailed Student’s t-test. 
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2.4 RESULTS 

2.4.1 Depletion of Hus1-null cells from the mouse mammary gland following 

conditional Hus1 inactivation. The conditional allele Hus1Flox (Levitt et al., 2005) 

was used in combination with Blg-Cre transgenic mice (Selbert et al., 1998) to 

produce mice in which Hus1 was deleted selectively in mammary epithelium. 

Hus1Flox/∆1 Cre+ conditional Hus1 knockout mice contained the conditional allele and 

one copy of the null allele Hus1∆1 such that Cre-mediated recombination in the 

mammary gland upon pregnancy would generate Hus1-deficient cells. Control 

Hus1+/Flox Cre+ mice served as an indicator of the maximum possible Hus1 deletion in 

the absence of selection against Hus1 loss, as the mammary glands of these mice 

retain one wild-type Hus1 copy following recombination. Hus1+/+ and Hus1Flox/Flox 

Cre- mice express wild-type levels of HUS1 and were used to establish baseline values 

in all assays. 

Conditional Hus1 knockout and control mice were born at expected 

frequencies and appeared grossly normal (Table 2.1). To determine the extent of Cre-

mediated Hus1 inactivation, we performed Southern blotting on DNA extracted from 

mammary glands from mice as virgins, at the eighteenth day of pregnancy (P18), or at 

the second day of lactation (L2) using a probe that can distinguish the unrecombined 

Hus1Flox, wild-type Hus1+, and inactivated Hus1∆2,3 alleles (Figure 2.1 A and B). No 

Hus1 deletion was seen in the Cre- control animals as expected, and only limited 

deletion was seen in virgin Cre+ control mice, likely due to basal Blg promoter activity 

as reported previously (Selbert et al., 1998). Blg-Cre expression increases during 

pregnancy and lactation, and accordingly, control Hus1+/Flox Cre+ mammary glands 

showed an average of 43% Hus1 deletion at P18 and 50% at L2. Notably, the extent of 

Hus1Flox deletion was substantially reduced in Hus1Flox/∆1 Cre+ mice relative to 

Hus1+/Flox Cre+ mice at every developmental stage. Hus1Flox/∆1 Cre+ mammary glands 
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Table 2.1. Genotyping results for weanlings from Hus1Flox/Flox X Hus1+/

Δ
1 Cre+ 

breedingsa 

a Genomic DNA was isolated from tail biopsies from weanlings and then genotyped 
by PCR as described in Materials and Methods. [Table by P.Westcott] 

 

 
 
 
 
 
 
 
 
 
 

 

 

Genotype Expected Observed 

Hus1+/Flox Cre- 104 (25%) 98 (26.2%) 

Hus1+/Flox Cre+ 104 (25%) 115 (22.6%) 

Hus1Flox/Δ1 Cre- 104 (25%) 94 (27.6%) 

Hus1Flox/Δ1 Cre+ 104 (25%) 109 (23.6%) 
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Figure 2.1. Depletion of Hus1-deficient cells from mammary glands of conditional 

Hus1 knockout mice. (A) DNA was isolated from mammary glands of virgin mice, 

mice at the 18th day of pregnancy (P18) or mice at the second day of lactation (L2), 

and analyzed by Southern blotting. The position of the bands for Hus1Flox, wild-type 

Hus1, and the recombined inactivated Hus1 allele, Hus1∆2,3, are indicated. The Hus1∆1 

allele is not detected in this assay. Because there is variation in gel mobility between 

samples, the position of the band for wild-type Hus1 is additionally marked with a “<” 

symbol. “% deletion” refers to the extent of Cre-mediated conversion of Hus1Flox to 

Hus1∆2,3, as determined by quantification of Southern blot signal by PhosphorImager. 

(B) Bar graph shows the average percentage of Hus1 deletion at each developmental 

stage for mice of the indicated genotypes. Values are means derived from the Southern 

blots in Fig. 1A and S1A, with error bars denoting standard deviation. Hus1 deletion 

was significantly lower in Hus1Flox/∆1 Cre+ mice relative to Hus1+/Flox Cre+ controls at 

all stages except in virgins (virgin, p=0.856; P18, p<0.001; L2, p<0.001; Multiparous, 

p<0.001) as determined by one-way ANOVA. (C) Representative images of whole 

mount preparations and histological sections of mammary glands from conditional 

Hus1 knockout and control females are shown. Scale bar represents 400µm. [Southern 

blot (A) by R.S. Weiss; Bar graph and whole mounts by S.A. Yazinski] 
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showed an average of 1.4% (virgin), 9% (P18), and 17% (L2) Hus1 deletion. Relative 

to Hus1+/Flox Cre+ controls, these values represent decreases in Hus1 deletion of 84%, 

80%, and 66% in virgin, P18, and L2 mice, respectively. These data suggest that Hus1 

loss puts cells at a selective disadvantage and results in their depletion from the 

mammary gland. 

To determine whether Hus1-deficient cells would accumulate in the mammary 

glands of multiparous females, we continuously bred conditional Hus1 knockout 

females to wild-type males. On average, Hus1+/Flox Cre+ females gave birth to 10 litters, 

while Hus1Flox/∆1 Cre- and Hus1Flox/∆1 Cre+ females gave birth to 11 litters. Mammary 

glands were harvested from these females several months after they gave birth to their 

final litter, and DNA was isolated and analyzed by Southern blot for Hus1 deletion 

(Figure 2.1 B and Figure 2.2). Strikingly, there was a complete absence of Hus1-

deficient cells in Hus1Flox/∆1 Cre+ multiparous mammary glands. By contrast, an 

average of 28% Hus1 deletion was observed in Hus1+/Flox Cre+ multiparous mammary 

glands; this Hus1 deletion level is lower than that seen in control females at L2 of their 

first pregnancy because of reduced epithelial cell content following involution. 

Together, these data indicate that Hus1-deficient cells are selected against and, 

following multiple pregnancies, completely eliminated from mammary glands of 

conditional Hus1 knockout mice. 

 

2.4.2 Grossly normal mammary gland morphology following Cre-mediated Hus1 

inactivation. To determine the effects of Hus1 deletion on mammary gland 

development and morphology, we performed histopathological analysis of mammary 

glands from conditional Hus1 knockout and control mice at P18 (Figure 2.3), L2 

(Figure 2.1 C), or following multiple rounds of pregnancy (Figure 2.2 B). Whole 

mounts and histological sections of Hus1Flox/∆1 Cre+ mammary glands were similar to 
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Figure 2.2. Mammary glands from conditional Hus1 knockout mice following 

multiple rounds of pregnancy show depletion of Hus1-deficient cells and grossly 

normal morphology. (A) DNA was extracted from mammary glands of mice of 

multiparous mice, and probed by Southern blot using a Hus1-specific probe. Southern 

blot analysis of spleen DNA was included to confirm mammary gland-specific Cre 

expression. (B) Hus1-deficient cells are not detectable in mammary tumors from 

multiparous conditional Hus1 knockout mice. DNA was isolated from mammary 

gland tumors from conditional Hus1 knockout and control multiparous females and 

probed by Southern blot using a Hus1-specific probe. The position of the bands for 

Hus1Flox (<), wild-type Hus1, and the recombined inactivated Hus1 allele, Hus1Δ
2,3, 

are indicated. (C) Representative images of histological sections of involuted 

mammary glands from multiparous conditional Hus1 knockout and control females 

are shown. At approximately five months following the weaning of the final litter, the 

fourth mammary glands from females of the indicated genotypes were harvested, 

fixed, embedded, sectioned, and stained with H&E. Scale bar represents 400µm. (D) 

Representative images of mammary tumors from multiparous females of the indicated 

genotypes were taken at low (left) or high (right) magnification.  Scale bars represent 

500µm and 100µm, respectively. The tumor incidence in multiparous conditional 

Hus1 knockout (2 of 22) and control (1 of 16) females was not significantly different 

(p=1.000; Chi-square test). Tumor incidence values also were not significantly 

different when including a third multiparous Hus1Flox/
Δ
1 Cre+ female with a palpable 

mammary mass that subsequently regressed (p=0.624; Chi-square test). [Multiparious 

Southern blot by R.S. Weiss; tumor Southern blot, multiparous histology, tumor 

histology by S.A. Yazinski] 
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Figure 2.3. Grossly normal mammary gland morphology in conditional Hus1 

knockout mice. Representative images of whole mounts and histological sections of 

mammary glands from conditional Hus1 knockout and control females are shown. The 

fourth mammary glands of mice of the indicated genotype at P18 were harvested, 

fixed, and stained with Carmine Alum. The contralateral mammary glands were 

harvested, fixed, embedded, sectioned, and stained with H&E. Scale bar represents 

400µm. [Experiment and figure by S.A. Yazinski] 
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those prepared from control Hus1+/Flox Cre+, Hus1Flox/∆1 Cre-, and wild-type females at 

all developmental stages. Normal mammary gland development was observed during 

pregnancy and lactation in mammary glands of all genotypes (Figure 2.1 C), including 

similar densities of epithelial and adipose cells as well as typical patterns of side 

branching, ductal epithelial expansion, and terminal differentiation of milk-producing 

alveoli (Silberstein, 2001). These findings suggest that cells that failed to undergo Cre-

mediated recombination were able to compensate for the loss of Hus1-deficient cells 

from the mammary gland and promote normal development.  

Consistent with these observations of normal mammary gland architecture, 

Hus1Flox/∆1 Cre+ mice were capable of lactating and nursing offspring. Both Hus1Flox/∆1 

Cre+ and control multiparous females had an average of 7 pups per litter at weaning, 

suggesting that multiparous Hus1Flox/∆1 Cre+ females were capable of nourishing their 

offspring. In addition, conditional Hus1 inactivation had no significant effect on 

mammary tumor incidence. Mammary epithelial tumors were found in 2 of 22 (9.1%) 

multiparous Hus1Flox/∆1 Cre+ females, and 1 of 16 (6.25%) multiparous Hus1+/Flox Cre+ 

and Hus1Flox/∆1 Cre- control females. The mammary tumors were composed of 

cuboidal cells arranged in solid to cystic lobules with variable amounts of glandular 

formation and scant supporting stroma (Figure 2.2 D). The cells had small to moderate 

amounts of eosinophilic cytoplasm and round to oval nuclei with few (<5) mitotic 

figures in ten 400x fields. A third Hus1Flox/∆1 Cre+ mouse developed a palpable 

mammary mass that fully regressed prior to euthanasia. Southern blot analysis further 

indicated that Hus1 loss did not directly contribute to tumor formation in multiparous 

Hus1Flox/∆1 Cre+ mice, as these tumors showed no Hus1 deletion, whereas complete 

recombination of the Hus1Flox allele was observed in the neoplasm from the 

multiparous Hus1+/Flox Cre+ control female (Figure 2.2 C). The tumors arose in mice 

that were on average 14 months old and had delivered multiple litters each, suggesting 
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that these were spontaneous background neoplasms in aged mice. Overall, the analysis 

of conditional Hus1 knockout mice indicates that Hus1-deleted cells are cleared from 

the mammary gland and do not cause increased cancer risk. Moreover, remaining 

Hus1-expressing cells compensate for the loss of Hus1-deficient cells and regenerate a 

morphologically normal, functional mammary gland. 

 

2.4.3 Increased genome damage and apoptosis in Hus1-deficient mammary 

epithelium. Checkpoint dysfunction can cause increased cell death or impaired cell 

cycle progression (Bartek and Lukas, 2007). In order to determine if the depletion of 

Hus1-deficient cells from the developing mammary gland was due to apoptosis or 

defective proliferation, we performed terminal uridine deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) and Ki67 antigen staining. TUNEL staining detects 

extensive DNA fragmentation, a characteristic feature of apoptotic cells (Heatwole, 

1999), while Ki67 antigen is expressed in actively dividing but not quiescent cells and 

therefore is commonly used as a proliferation marker (Scholzen and Gerdes, 2000). At 

L2, control Hus1+/Flox Cre+ mammary glands contained an average of 0.44% apoptotic 

cells, whereas Hus1Flox/∆1 Cre+ glands contained an average of 0.85% apoptotic cells, 

indicating that Hus1 deficiency led to a moderate but significant increase in apoptosis 

in the developing mammary gland (p=0.049; Figure 2.4 B). The increased apoptosis 

was not associated with a significant change in cellular proliferation (p=0.265; Figure 

2.4 A). 

To determine the basis for the increased apoptosis, we performed 

immunohistochemistry against γ-H2AX, the phosphorylated histone variant that 

accumulates at DSB sites and serves as a robust marker for genome damage (Vidanes 

et al., 2005). Control Hus1+/Flox Cre+ mammary glands showed low levels of γ-H2AX 

staining, whereas Hus1Flox/∆1 Cre+ mammary glands showed significantly elevated 
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Figure 2.4. Significantly increased apoptosis and genome damage in mammary 

glands from conditional Hus1 knockout mice. Sections from the fourth mammary 

gland of conditional Hus1 knockout mice at L2 were stained for Ki67 to assess 

proliferation, by TUNEL assay to detect apoptosis, or for γ-H2AX to detect DNA 

damage. The percentage of (A) Ki67, (B) TUNEL, or (C) γ-H2AX positive cells was 

quantified. Values are means of at least 6 fields per genotype, with error bars denoting 

standard deviation. The respective number of wild-type (Hus1+/+ or Hus1Flox/Flox Cre-), 

Hus1+/Flox Cre+, and Hus1Flox/∆1 Cre+ mice analyzed was 4, 2, and 3 in panel (A); 4, 4, 

and 5 in panel (B); and 4, 2, and 2 in panel (C). [Experiments and figure by 

S.A.Yazinski] 
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levels of DNA damage (p=0.016; Figure 2.4 C). Overall, these histological analyses 

suggest that Hus1 deficiency in the mammary gland results in genome damage that 

impairs cell viability, while cells that escape recombination and retain wild-type Hus1 

compensate to maintain the structure of the developing mammary gland. 

 

2.4.4 p53 loss delays the clearance of Hus1-deficient cells from the mammary 

gland but impairs mammary gland structure and function. Hus1 loss results in 

genome damage that can trigger HUS1-independent DNA damage responses (Weiss et 

al., 2000; Zhu and Weiss, 2007). Because p53 induction is observed following Hus1 

inactivation in embryos and cultured fibroblasts (Weiss et al., 2002), we hypothesized 

that the increased apoptosis in Hus1-deficient mammary tissue may be due to a p53-

dependent checkpoint response to genome damage that occurs following Hus1 loss. 

We therefore tested whether Hus1-deficient cells would be retained in the mammary 

gland in the absence of p53 by crossing conditional Hus1 knockout mice onto a p53-

deficient background. Southern blot analysis of mammary glands from control 

Hus1+/Flox Cre+ mice on p53-/- and p53+/- backgrounds revealed levels of Hus1 deletion 

similar to those in Hus1+/Flox Cre+ p53+/+ controls (Figure 2.5 A and B, Figure 2.6). 

Notably, Hus1Flox/∆1 Cre+ mice on p53-/- and p53+/- backgrounds showed deletion 

levels similar to those of Hus1+/Flox Cre+ controls, suggesting that inactivation of even 

one p53 allele reduced the loss of Hus1-deficient cells from the mammary gland. At 

L2, p53-/- conditional Hus1 knockout mammary glands showed an average of 41% 

deletion, a 2.3-fold increase in Hus1 deletion as compared to that in p53+/+ conditional 

Hus1 knockouts. Likewise, p53-deficiency caused a 2.2-fold increase in Hus1 deletion 

in the p53-deficient conditional knockout glands at P18 (Figure 2.6), and similar 

results also were observed at L4 (Figure 2.7 A).  

To determine the effects of combined Hus1 and p53 loss on mammary gland 
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Figure 2.5. Increased retention of Hus1-null cells in mammary glands from p53-

deficient conditional Hus1 knockout mice. (A) Southern blot analysis was 

performed to determine the extent of Hus1 deletion in mammary glands of conditional 

Hus1 knockout mice that differ in p53 status. DNA was extracted from mammary 

glands of mice of the indicated genotypes at L2 and probed by Southern blot as 

described in Fig. 1. (B) The percentage of Hus1 deletion for each genotype was 

calculated as the average from the following number of mice: Hus1+/Flox p53+/+ Cre+ 

(n=2), Hus1Flox/
Δ
1 p53+/+ Cre+ (n=4), Hus1+/Flox p53+/- Cre+ (n=1), Hus1Flox/

Δ
1 p53+/- Cre+ 

(n=2), Hus1+/Flox p53-/- Cre+ (n=4), Hus1Flox/
Δ
1 p53-/- Cre+ (n=2). Error bars denote the 

standard deviation. Hus1 deletion was significantly lower in Hus1Flox/∆1 Cre+ mice 

relative to Hus1+/Flox Cre+ controls in the p53+/+ background (p=0.006) but not in the 

p53-/- background (p=0.839) as determined by one-way ANOVA. (C) Representative 

histological sections of mammary glands from p53-deficient conditional Hus1 

knockout and control mice are shown. Scale bars represent 400µm or 100µm for low 

(left panels) or high (right panels) magnification images, respectively. [Experiments 

and figure by S.A.Yazinski] 
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Figure 2.6. Increased retention of Hus1-null cells in mammary glands from p53-

deficient conditional Hus1 knockout mice at P18. (A) Southern blot analysis was 

performed to measure Hus1 deletion in the mammary glands of conditional Hus1 

knockout mice that differ in p53 status. DNA was extracted from mammary glands of 

mice of the indicated genotypes at P18 and probed by Southern blot as described in the 

legend of Fig. 1. (B) Representative histological sections of mammary glands from 

p53-deficient conditional Hus1 knockout and control mice are shown. The fourth 

mammary glands of mice of the indicated genotype at P18 were harvested, fixed, 

embedded, sectioned, and stained with H&E. Scale bars represent 400µm for the low 

magnification images (middle panels) and 100µm for the higher magnification images 

(right panels). (C) Representative images of whole mounts from p53-deficient 

conditional Hus1 knockout and control mice are shown. The fourth mammary glands 

of mice of the indicated genotype at P18 or L2 were harvested, fixed, and stained with 

Carmine Alum. [Experiments and figure by S.A. Yazinski] 
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Figure 2.7. Aberrant morphology and increased frequency of damaged and dying 

cells in L4 mammary glands from p53-null conditional Hus1 knockout mice. (A) 

Hus1 deletion in the mammary glands of conditional Hus1 knockout mice at L4 was 

measured by extracting DNA from mammary tissue from mice of the indicated 

genotypes and probing by Southern blot as described in the legend of Fig. 1. The 

position of the band for Hus1Flox is marked with a “<” symbol. (B) Representative 

histological sections of mammary glands from p53-deficient conditional Hus1 

knockout and control mice are shown. The fourth mammary glands of mice of the 

indicated genotype at L4 were harvested, fixed, embedded, sectioned, and stained with 

H&E. Scale bars represent 400µm for the 10X images (left panels), 100µm for the 

40X images (middle panels), or 40µm for the 100X images (right panels). (C-E) 

Sections from the fourth mammary gland of p53-deficient conditional Hus1 knockout 

mice at L4 were stained for Ki67 to assess proliferation, by TUNEL assay to detect 

apoptosis, or for γ-H2AX to detect DNA damage. Bar graphs show the average 

percentage of cells positive for (C) Ki67, (D) TUNEL, or (E) γ-H2AX staining. 

Values are the mean for three independent mammary gland regions from a single 

mouse of each genotype, with error bars denoting standard deviation. [Experiments 

and figure by S.A. Yazinski] 
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development and morphology, we prepared whole mounts and histological sections 

from the mammary glands of these mice at P18 and L2. Germline p53-/- mice exhibit 

normal mammary gland growth and morphogenesis during pregnancy and lactation 

(Jerry et al., 1998). These mice typically do not develop mammary neoplasms, but 

succumb to other malignancies. In agreement with these previous findings, grossly 

normal mammary gland growth and morphogenesis was observed at P18 and L2 in 

Hus1+/Flox Cre- p53-/-, Hus1+/Flox Cre+ p53-/- and Hus1Flox/∆1 Cre- p53-/- control mice 

(Figure 2.5 C, Figure 2.6 B and C). However, histological analysis of Hus1Flox/∆1 Cre+ 

p53-/- mammary glands at P18 unexpectedly showed delayed lobuloalveolar 

development and fewer lipid vacuoles (Figure 2.5 B). These defects were even more 

striking at L2 (Figure 2.5 C and Figure 2.6 C) and L4 (Figure 2.7 B), at which point 

the mammary epithelium appeared sparser and the formation of milk-filled alveoli was 

impaired. Quantification of epithelial content revealed that Hus1Flox/∆1 Cre+ p53-/- 

mammary glands contained 2.2-fold less epithelium than those from Hus1+/Flox Cre+ 

p53-/- control mice (p<0.001; Figure 2.8). Consistent with these findings, offspring 

from four Hus1Flox/∆1 Cre+ p53-/- females showed delayed growth relative to cross-

fostered littermates and in three of four cases failed to survive to weaning age, 

suggesting that these females were incapable of normal lactation. Subsequent litters 

from these females showed less severe phenotypes, and in one case, apparently normal 

pups were obtained, presumably because the involution defects of p53-deficient mice 

(Jerry et al., 1998) resulted in retention of mammary epithelium into subsequent 

pregnancies. 

To determine how p53 loss affected the proliferation and survival of mammary 

epithelium, we performed TUNEL and Ki67 staining on histological sections from 

p53-deficient conditional Hus1 knockout mice at L2 (Figure 2.9). There was no 

significant difference in proliferation between conditional Hus1 knockout and control 
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Figure 2.8. Significantly reduced epithelial content in mammary glands from 

p53-null conditional Hus1 knockout mice. Digital images of H&E-stained L2 

mammary gland tissue were analyzed using ImageJ and Canvas 8 software 

applications to determine the total area occupied by epithelial or adipose tissue. At 

least three independent 40X fields were analyzed from each animal, including 

Hus1+/Flox Cre- p53-/- (2 mice), Hus1+/Flox Cre+ p53-/- (3 mice), and Hus1Flox/
Δ
1 Cre+ p53-

/- (2 mice). The difference in epithelial content between Hus1Flox/∆1 Cre+ p53-/- and 

control Hus1+/Flox/ Cre+ p53-/- mammary glands was significantly different (p<0.001) 

as determined by Student’s t-test. [Experiment and figure by S.A. Yazinski] 
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Figure 2.9. Increased genome damage and apoptosis in mammary glands from 

p53-deficient conditional Hus1 knockout mice. Sections from the fourth mammary 

gland of p53-deficient conditional Hus1 knockout mice at L2 were stained for Ki67 to 

assess proliferation, by TUNEL assay to detect apoptosis, or for γ-H2AX to detect 

DNA damage. Representative images of mammary glands stained for (A) Ki67, (C) 

TUNEL, or (E) γ-H2AX are shown. Arrows highlight positively-stained cells. Scale 

bars represent 40µm. Bar graphs show the average percentage of cells positive for (B) 

Ki67, (D) TUNEL, or (F) γ-H2AX staining. Wild-type refers to Hus1+/+ Cre- p53+/+ 

and Hus1Flox/Flox Cre- p53+/+ or Hus1+/Flox Cre- p53-/-.  Values for p53-/- mice are the 

mean of at least 6 fields from two animals, with error bars denoting standard 

deviation. Data for Ki67, TUNEL, and γ-H2AX staining on sections from p53+/+ mice 

are the same as those shown in Fig. 2. The difference between the frequency of 

positively stained cells in Hus1Flox/∆1 Cre+ p53-/- and Hus1+/Flox Cre+ p53-/- mice was 

significant for TUNEL (p=0.021) and H2AX (p<0.001) but not Ki67 (p=0.059) assays 

as determined by Student’s t-test. [Experiments and figures by S.A.Yazinski] 
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mice on either p53+/+ or p53-/- backgrounds (Figure 2.9 A and B). Interestingly, the 2-

fold increase in apoptosis observed in p53+/+ conditional Hus1 knockout mammary 

glands as seen in Figure 2.4 was elevated to a 4-fold increase in the absence of p53 

(Figure 2.9 C and D). The significantly increased apoptosis in the p53-deficient 

conditional Hus1 knockout as compared to p53-deficient Hus1+/Flox Cre+ control mice 

(p=0.021) also was associated with a significantly greater level of H2AX 

phosphorylation (p<0.001) (Figure 2.9 E and F). Similar results were observed in 

mammary glands at L4 (Figure 2.7 C-E). Together, the data suggest that while p53 

loss delays the clearance of Hus1-deficient cells from the mammary gland, these cells 

do undergo apoptosis through a p53-independent pathway that responds to unrepaired 

DNA damage. In contrast to what happens in p53+/+ conditional Hus1 knockout 

mammary glands, tissue regeneration by cells that have not undergone Hus1 deletion 

is limited in the absence of p53, resulting in impaired mammary gland development 

and function.  
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2.5 DISCUSSION 

Hus1 is an essential checkpoint gene, inactivation of which results in 

spontaneous chromosomal aberrations and embryonic lethality in mice. The ability to 

conditionally delete Hus1 in adult mice using Cre-loxP recombination allowed us to 

circumvent this lethality and investigate the physiological consequences of checkpoint 

dysfunction specifically in the mammary gland. Southern blot analysis revealed that 

Hus1-deficient cells were under-represented in mammary glands from Hus1Flox/∆1 Cre+ 

mice at all developmental stages and, instead of accumulating over multiple rounds of 

pregnancy and repeated Cre induction, were entirely absent from multiparous females. 

Mammary glands from conditional Hus1 knockout mice exhibited increased DNA 

damage and apoptosis, suggesting that Hus1-null cells were selected against due to 

impaired genome maintenance. Together with previous observations that Hus1 

inactivation has severe consequences on genomic integrity in embryos and embryonic 

fibroblasts (Weiss et al., 2000; Zhu and Weiss, 2007), these data further establish a 

fundamental requirement for HUS1 in responding to spontaneous genome damage, 

even in the absence of extrinsic genotoxic stresses.  

Importantly, conditional Hus1 knockout females were not predisposed to 

mammary tumor formation. This finding is consistent with the fact that complete 

inactivation of ATR pathway components has not been observed in human cancers. In 

mice, nullizygous mutations in Atr, Chk1, Hus1, or Rad9 cause embryonic lethality 

(Brown and Baltimore, 2000; Hopkins et al., 2004; Liu et al., 2000; Weiss et al., 

2000). Conditional inactivation of these genes also has not been reported to result in 

tumor predisposition. Chk1 deletion in the mammary glands of Chk1Flox/Flox Wap-Cre+ 

mice leads to loss of proliferative potential and clearance of Chk1-deficient epithelium 

by apoptosis (Lam et al., 2004), similar to the effects of Hus1 deficiency we observed. 

In thymocytes, Chk1 deletion causes apoptosis and cell loss, but is not associated with 
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spontaneous tumorigenesis or leukemogenesis (Zaugg et al., 2007). Atr adult mosaic 

knockout mice similarly are not tumor prone (Ruzankina et al., 2007). Partial 

inactivation of the ATR pathway, however, may have tumor-promoting effects. 

Deletion of one Chk1 allele causes inappropriate S-phase entry and other features 

common to cancer cells (Lam et al., 2004), and also moderately enhances mammary 

tumor predisposition in Wnt-1 transgenic mice (Liu et al., 2000). In addition, Atr+/- 

mice develop various neoplasms at a low frequency (Brown and Baltimore, 2000). On 

the other hand, mice with a partial reduction in HUS1 expression are not prone to 

spontaneous tumor development, despite increased genomic instability (Levitt et al., 

2007). Clearly, additional studies are required to fully resolve the importance of HUS1 

and the ATR checkpoint pathway in tumorigenesis. 

50-60% of cells in the mammary glands of control Hus1+/Flox Cre+ mice 

underwent Cre-mediated Hus1 deletion. Depletion of an equivalent number of cells 

from the mammary glands of conditional Hus1 knockout mice would be predicted to 

result in significant morphological defects. Yet, Hus1Flox/∆1 Cre+ mammary glands 

were morphologically indistinguishable from controls, suggesting that cells that failed 

to undergo Hus1 deletion compensated for the loss of Hus1-deficient cells and 

promoted normal mammary gland development. Similarly, Atr deletion in adult mice 

by Cre-loxP recombination leads to widespread cell loss, followed by the recovery of 

cellularity in most tissues due to expansion of cells retaining Atr expression 

(Ruzankina et al., 2007). Apoptosis-induced compensatory proliferation is a well-

established phenomenon known to occur in Drosophila and mammals (Fan and 

Bergmann, 2008; Valentin-Vega et al., 2008; Vandivier et al., 2006; Wells et al., 

2006). Dying cells, as well as the phagocytes that clear them, signal to surrounding 

cells via mitogens and immune modulators (Fan and Bergmann, 2008; Shi et al., 2003; 

Vandivier et al., 2006). The relatively normal mammary gland architecture in 
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conditional Hus1 knockout mice reflects the action of powerful homeostatic 

mechanisms that are capable of regenerating a functional mammary gland following 

extensive cell loss. 

Based on the central role of p53 in the apoptotic response to DNA damage 

(Rodier et al., 2007), we hypothesized that p53 was responsible for the elimination of 

Hus1-deficient cells from the mammary gland. In mouse embryos, Hus1 deficiency 

triggers p53-dependent induction of p21 and Perp, indicating that p53 is activated by 

genome damage induced by Hus1 loss (Weiss et al., 2002). In this study, Hus1-

deficient cells were retained in the mammary gland longer in the absence of p53, 

suggesting that p53 normally contributes to the death and/or clearance of Hus1-

deficient cells. Although p53 loss did reduce the clearance of Hus1-deficient cells 

from the mammary gland at P18, L2, and L4, the combined loss of p53 and Hus1 

ultimately resulted in significantly increased DNA damage and apoptosis in the 

mammary gland. The increased TUNEL staining observed in p53-deficient conditional 

Hus1 knockout mice may occur because cell death becomes restricted to a narrower 

time frame, or because dying cells accumulate due to inefficient clearance. 

Alternatively, p53 deficiency may cause an even greater amount of genome damage in 

Hus1-null mammary epithelial cells, resulting in elevated apoptosis. The latter 

possibility is supported by the prior observation that p53 loss increases genomic 

instability in primary conditional Hus1 knockout fibroblasts (Zhu and Weiss, 2007). 

These results add to the emerging picture that dysfunction of the ATR 

checkpoint pathway triggers p53-independent apoptotic responses. For instance, Chk1-

deficient embryos undergo p53-independent apoptosis (Liu et al., 2000). Similarly, IR 

or replication stress in the absence of CHK1 trigger apoptosis through p53-

independent pathways that are dependent on Caspase-2 or Caspase-3, respectively 

(Myers et al., 2009; Sidi et al., 2008). Here we show that Hus1 loss sensitizes p53-
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deficient cells to apoptosis in vivo, without additional exogenous stresses. Altogether, 

the data presented here suggest that Hus1-deficient cells in the developing mammary 

gland are targeted for apoptosis even when p53 is absent, a process that eliminates 

cells that are at risk for malignant transformation due to increased genomic instability. 

While this manuscript was in preparation, Greenow and colleagues published similar 

results indicating that conditional Chk1 inactivation in the small intestine causes p53-

independent apoptosis followed by compensatory proliferation by remaining Chk1-

proficient cells (Greenow et al., 2009). 

 It follows that HUS1 impairment also may reduce cancer cell viability. 

Interestingly, tumor-initiating cells from p53-null mammary tumors show upregulation 

of Hus1 and other DNA damage response genes, suggesting that these cancer stem 

cells may be highly dependent upon checkpoint functions (Zhang et al., 2008). 

Inactivation of Hus1 or other ATR checkpoint pathway components therefore 

represents a potential strategy to sensitize tumors, particularly those harboring p53 

mutations, to DNA-damaging chemotherapeutics. The CHK1 inhibitors currently 

undergoing clinical testing represent one promising means to accomplish this, and 

evidence from cell culture models suggests that these agents are indeed effective in 

cells with mutant p53 (Ashwell and Zabludoff, 2008; Chen et al., 2006). 

Among the most striking findings from this study was that p53 deficiency 

greatly limited compensatory tissue regeneration by cells that escaped recombination 

of the conditional Hus1 allele, resulting in substantial morphological defects in the 

mammary glands of p53-/- conditional Hus1 knockout mice. In p53+/+ conditional Hus1 

knockout mice, p53-induced apoptosis and clearance of Hus1-deleted cells during 

mammary development may signal surrounding cells to regenerate a functional 

mammary gland. This could be a physical cue, such as the creation of space for the 

expansion of neighboring cells, or a biochemical signal, such as the production of a 
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secreted mitogen, that is lacking in the p53-deficient genetic background. Such a 

mechanism has been elucidated in Drosophila, where p53 is required for 

compensatory proliferation in damaged tissues containing dying cells (Wells et al., 

2006). An alternative model is that the damaged Hus1-deficient cells that accumulate 

in the absence of p53 secrete a dominant inhibitory signal that acts on surrounding 

cells. Cells that are induced to senesce by genotoxic stress are known to produce 

various secreted factors, some of which are growth inhibitory, and a recent study 

indicates that the senescence-associated secretory phenotype is more vigorous in the 

absence of p53 (Coppe et al., 2008). These mechanisms are not mutually exclusive; in 

p53-deficient conditional Hus1 knockout mammary glands, compensatory growth may 

be prevented through a combination of the absence of a regenerative signal and the 

presence of a dominant inhibitory signal. The conditional Hus1 knockout mouse 

model described here will be a valuable tool for deciphering the precise molecular 

mechanism underlying the novel role for p53 in mammary gland tissue regeneration 

and homeostasis. 
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CHAPTER 3 

A PARTIAL DEFECT IN THE CHECKPOINT PROTEIN HUS1 IMPAIRS 

CELLULAR TRANSFORMATION AND TUMOR DEVELOPMENT 

 

3.1 ABSTRACT 

DNA damage checkpoint proteins act to protect genomic integrity. In some 

contexts, this may function as a tumor suppressor by preventing mutations that can 

result in activation of oncogenes or inactivation of tumor suppressors. However, 

checkpoints also may act to promote tumor initiation and development by providing 

the tools to cope with the genomic stress of oncogene-induced proliferation. Our lab 

previously developed an allelic series in which mice express incrementally reduced 

levels of HUS1, an essential component of the ATR DNA damage checkpoint 

pathway, allowing us to investigate how partial HUS1 impairment effects 

transformation and oncogene-induced proliferation. Cell culture transformation assays 

revealed that more immortalized embryonic fibroblasts cell lines with reduced HUS1 

levels showed reduced focus formation and anchorage-independent growth as 

compared to control cell lines, suggesting impaired transformation ability. We further 

tested the effect of reduced levels of HUS1 on skin papilloma formation following 

chemical carcinogenesis. A subset of mice with reduced Hus1 expression initially 

developed papillomas at an accelerated rate compared to control animals, suggesting 

that genomic instability and checkpoint failure in initiated cells with reduced Hus1 

expression results in shorter latency for papilloma development. However, at late 

stages of the experiment, mice expressing reduced levels of HUS1 showed a decreased 

risk of papilloma development and, by the conclusion of the experiment, they showed 

significant decreases in papilloma size and number, which correlated with the level of 

HUS1 reduction. These effects were not associated with increased cell death or 
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decreased cellular proliferation following carcinogen exposure, suggesting that the 

decrease in papilloma formation may be because of an inability of cells with reduced 

Hus1 expression to survive the stresses of neoplastic proliferation due to insufficient 

genome maintenance. Taken together, these results suggest that the HUS1-dependent 

ATR pathway may be exploited as a drug target to sensitize tumors to anti-cancer 

therapies that act by causing genome damage. 

 

3.2 INTRODUCTION 

Cancer is aberrant, uncontrolled cellular proliferation that arises due to an 

accumulation of mutations in cell growth regulatory genes. DNA damage checkpoint 

proteins act to protect genomic integrity against such mutations. Additionally, DNA 

damage checkpoint proteins act in response to oncogene-induced proliferation to 

promote senescence (Bartek et al., 2007). In these two ways, checkpoint proteins can 

suppress tumorigenesis. On the other hand, checkpoints may also aid tumor 

development by playing a critical role promoting survival and growth following 

transformation (Luo et al., 2009). Checkpoint proteins may protect the genome of 

transformed cells from chromosomal instability, oxidative stress, and replication stress 

associated rapid proliferation. The roles of checkpoint pathways in tumorigenesis and 

tumor maintenance is yet unresolved, and an important area of research.  

There are two main DNA damage checkpoint pathways, the ATR pathway and 

the ATM pathway. Roles for the ATM pathway have been well established, and 

mutations in many of the components have been shown to increase tumor incidence in 

both mouse models as well as human disease (Bartek et al., 2007). For example, 

mutations of ATM itself results in the human disease Ataxia Talangiectasia, which has 

a predisposition to lymphoma. Atm mutant mouse models also show an increased 

tumor incidence of lymphoma (Shiloh, 2003). Additionally, mutations of several ATM 
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pathway components are also associated with an increased risk of breast cancer 

development (Ahmed and Rahman, 2006). The role of the ATR checkpoint pathway in 

tumor suppression is not well understood, as deletion of any component of this 

pathway results in embryonic lethality (Brown and Baltimore, 2000; de Klein et al., 

2000; Han et al., 2010; Hopkins et al., 2004; Liu et al., 2000; Takai et al., 2000; Weiss 

et al., 2000). Some studies have suggested that the ATR pathway may play a critical 

role in tumor suppression, while others suggest that inactivation of the ATR pathway 

may instead inhibit tumor growth. For example, heterozygous mutations in Chk1, Atr, 

and Rad1 slightly elevate tumor incidence when these mutations are crossed onto a 

tumor prone background (Fang et al., 2004; Han et al., 2010; Lam et al., 2004; Lewis 

et al., 2005). Additionally, ATR pathway mutations have been found in human tumors 

(Fang et al., 2004; Lewis et al., 2007; Lewis et al., 2005; Menoyo et al., 2001; 

Vassileva et al., 2002); though, tumors retain at least partial function of the mutated 

protein. On the other hand, heterozygous mutants or conditional knockout mice for 

Chk1, Atr, Rad9, Rad1, and Hus1 mice are not prone to spontaneous tumor 

development (Boles et al., 2010; Greenow et al., 2009; Han et al., 2010; Hu et al., 

2008; Lam et al., 2004). Furthermore, mutations in the ATR pathway that result in 

complete inactivation of any component have not been found in human tumors. This, 

together with recent studies that show some components of the ATR pathway up-

regulated in human tumors (Maniwa et al., 2005; Zhu et al., 2008), suggests that the 

ATR pathway may not play a role in tumor suppression, but rather may be necessary 

or beneficial for tumor development. 

HUS1 is an essential component of the ATR pathway, that, along with RAD9 

and RAD1, forms the 9-1-1 complex, a heterotrimeric sliding clamp which is loaded 

onto DNA in response to damage, acting as a scaffold to allow docking of checkpoint 

and repair proteins. To determine the role of HUS1 in tumor suppression, we made use 
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of the previously described Hus1 allelic series, which expresses incrementally reduced 

levels of HUS1, while bypassing the embryonic lethality associated with complete 

germline inactivation of Hus1. Mice with the lowest level of Hus1, Hus1Neo/∆1, are 

grossly normal, are not prone to spontaneous tumor development, but show sensitivity 

to certain genotoxins; while, primary Hus1Neo/∆1 embryonic fibroblasts exhibit 

spontaneous chromosomal abnormalities and undergo premature senescence 

associated with increase in oxidative stress. Treatment of Hus1Neo/Neo, with ~40% 

Hus1 expression, and Hus1Neo/∆1, with ~20% Hus1 expression, cells with DNA 

adducting agents results in a loss of cell viability associated with S-phase DNA 

damage checkpoint failure (Levitt et al., 2007). Together, these findings define a 

critical role for HUS1 in response to genome damage and replication stress. 

Importantly, the Hus1 allelic series also provides an ideal tool to test the effect of 

reduced HUS1 on transformation and tumorigenesis.  

In this study, we show that reduced levels of HUS1 results in decreased 

transformation ability. Cells with decreased Hus1 expression showed a slight defect in 

transformation by a less stringent focus formation assays, and showed a more obvious 

defect in transformation ability by the more stringent soft agar assays. Furthermore, 

we found that, following a two-step chemical carcinogen treatment to induce 

papilloma formation in the skin, mice expressing reduced levels of HUS1 showed a 

decreased risk of papilloma development and, ultimately developed fewer and smaller 

papillomas. Furthermore, the decrease in papilloma number and size was dependent on 

the level of Hus1 expression. These data suggest that cells with reduced Hus1 

expression are not able to survive the stresses of neoplastic proliferation due to 

insufficient genome maintenance.  
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3.3 MATERIALS AND METHODS 

Mice: Previously described Hus1+/∆1 and Hus1+/Neo mice (Levitt, 2007 #31) were 

maintained on a 129S6 inbred genetic background. To generate experimental 

Hus1Neo/∆1 mice, as well as littermate control Hus1+/+, Hus1+/Neo, and Hus1+/∆1 mice, 

Hus1+/∆1 and Hus1+/Neo mice were bred, and first generation offspring were used for 

DMBA/TPA experiments. To generate Hus1Neo/Neo and control littermates, Hus1+/Neo 

mice were intercrossed. All animals were genotyped by PCR analysis of DNA 

extracted from tail tip biopsies. Mice were housed in accordance with institutional 

animal care and use guidelines. 

 

Generation of mouse embryonic fibroblasts (MEFs): Timed matings were performed 

with Hus1+/Neo females by Hus1Neo/Δ1 males. Embryos from pregnant females were 

harvested at 13.5dpc, as previously described (Levitt et al., 2007). After differentiated 

tissues (head, liver, and spleen) were removed, the remaining cells were plated in 

DMEM + 10% FBS, 1% non-essential amino acids, 1% l-glutamine, 1% penicillin-

streptomycin. Cells were maintained on a 3T3 protocol (Todaro and Green, 1963), and 

passed every three days. Cells were immortalized spontaneously following at least 20 

passages when cells overcame senescence, as measured by population doublings, by 

spontaneous immortalization.  

 

Large-T antigen immortalization assay: Primary MEFs were prepared, grown at low 

oxygen, and transfected at passage 1 using Fugene 6 transfection agent (Roche) with 

pSG5-Large-T (Addgene plasmid 9053) (Zalvide and DeCaprio, 1995) or eGFP-C2 

(GenBank Accession #: U57606) (BD Biosciences) as a control for transfection 

efficiency. The transfected cells were passed after 48 hours, plated at low density 

(1×103 cells), and fed every three days. After two weeks, plates were fixed with 
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methanol, and stained overnight with 0.01% crystal violet in 95% ethanol. Colonies 

were counted for each plate, and statistical analysis was performed by two-tailed 

Student’s T-test. 

 

Focus formation assays: Immortalized MEFs were transfected by the calcium 

phosphate precipitation method with 20µg total plasmid DNA (eGFP-C2 (Zhao et al., 

1998), Ras (Tabin and Weinberg, 1985), E1A (Logan and Shenk, 1984), or 10µg of 

each Ras and E1A). Cells were fed every three days for two weeks, fixed with 

methanol, and stained with Giemsa overnight. Foci were quantified by ImageJ® 

software. Statistics were done by two-tailed Student’s T-test. 

 

Virus production and infection: Ecotropic viruses were generated from Phoenix-Eco 

packaging cells following transfection using Fugene 6 transfection reagent (Roche) 

with 6µg of DNA construct (pBabe-p-GFP, pBABE-p-HRas-V12 (Serrano et al., 

1997), or pBABE-c-mycT58A+HRasG12V (Addgene plasmid 11130)(Kendall et al., 

2005)) and 3µg p(Psi)2 packaging vector. 2 x 105 immortalized MEFs were seeded to 

a single well of a gelatinized, 6-well plate and then were infected with 100ul of virus 

in 1ml of media containing heat inactivated serum and 1µl polybrene. Cells were 

passed after 48 hours and subsequently used for anchorage independent growth assays.  

 

Anchorage independent growth assays: Immortalized MEFs were infected with equal 

volumes of packaged retroviruses (pBabe-p-GFP, pBABE-p-HRas-V12 (Serrano et 

al., 1997), or pBABE-c-mycT58A+HRasG12V (Addgene plasmid 11130))(Kendall et 

al., 2005). 48 hours after infection, 1 X 105 cells were passed to 0.4% top agar, plated 

over 0.6% base agar in 60mm dishes, and fed once a week with fresh top agar. Plates 
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were imaged after two weeks of growth, and colony number and size were analyzed 

using ImageJ® software. Statistics were performed by two-tailed Student’s T-test. 

 

Transplantation assay: Immortalized MEFs were infected with equal volumes of 

packaged retroviruses (pBabe-p-GFP or pBABE-c-mycT58A+HRasG12V (Addgene 

plasmid 11130))(Kendall et al., 2005). Cells were passed for amplification 48 hours 

after infection. Cells were collected by gentle trypsinization, and resuspended at 107 

cells/ml of serum free media. 106 cells were injected subcutaneously into the flanks of 

wild-type 129 mice and tumors were permitted to grow for 4 weeks. Tumors were 

harvested, measured, fixed, and processed for histological evaluation. 

 

Cell sensitivity to puromycin: Immortalized MEFs were treated media containing the 

indicated concentration of puromycin for 2 weeks. Surviving colonies of cells were 

fixed with methanol overnight and stained with 0.01% crystal violet in 95% ethanol.  

 

Sensitivity to DMBA and TPA in cell culture: Primary MEFs were given a single 

treatment of either DMBA or TPA dissolved in acetone or vehicle (acetone) alone 

added to cell culture media. The media was changed after 24 hours, and cell survival 

was determined after 48 hours using trypan blue exclusion staining to count surviving 

cells. 

 

Skin carcinogenesis experiments: Mice were anesthetized with 2.5% Avertin and 

shaved on their back. Mice were determined not to be in anagen phase of the hair 

growth cycle by failure of hair to regrow after three days (Muller-Rover et al., 2001). 

Mice treated with a single dose of DMBA (200nmol in acetone). One week following 

DMBA treatment, mice were treated twice weekly with 5µg TPA for twenty weeks. 
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Papilloma development was monitored twice weekly, and tumor number and size were 

noted. Mice were euthanized 20 weeks post DMBA application following a 6 hour 

incubation with BrdU (50ug/g body weight) injected intraperitoneally, and skin was 

harvested, fixed, and processed for histopathological analysis. Statistical analysis were 

by a random coefficient model with random slope and intercept. The fixed effects are 

the genotype, days, and their interaction term. Tumor latency was plotted using a 

Kaplan-Meier survival curve and analyzed by log rank survival analysis using SPSS 

software.  

 

Sensitivity to DMBA and TPA in vivo: To determine sensitivity of skin cells to DMBA 

or TPA, mice were anesthetized with 2.5% Avertin, shaved on their backs, and given a 

single treatment of DMBA or TPA. Twenty hours after initial treatment, mice were 

injected intraperitoneally with 50μg of BrdU per gram of body weight. Four hours 

later, mice were euthanized and skin samples were harvested, fixed in formalin, 

paraffin embedded, and sectioned. Tissue sections were stained using a TUNEL kit 

(ApopTag® Peroxidase In Situ Kit - Millipore) to assess apoptosis or using a BrdU kit 

(Zymed-Invitrogen) to assess proliferation. Approximately 500 cells in at least three 

fields of vision from at least three mice at 40X magnification were counted per slide. 

Statistical analysis was by a random coefficient model with random slope and 

intercept. The fixed effects were the genotype, dose, and their interaction term.  
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3.4 RESULTS 

3.4.1 Reduced Hus1 expression results in a decreased ability to become 

immortalized. Cells expressing reduced levels of Hus1 have reduced DNA damage 

checkpoint function, which may affect the ability of cells to become immortalized 

and/or transformed. Decreased checkpoint function may allow cells to bypass 

senescence more easily and become transformed. Alternatively, decreased checkpoint 

function may decrease the ability of a cell to survive the transformation process, which 

is associated with hyper-replication and increased oxidative stress. In order to 

determine the effect of reduced levels of HUS1 on tumor development, we first tested 

the effect of reduced HUS1 on transformation capacity using a series of 

transformation assays in tissue culture models.  

We tested the ability of primary MEFs expressing incrementally reduced levels 

of HUS1 to undergo immortalization by addition of a potent oncogene, Large-T 

antigen, which is singly capable of immortalizing cells by targeting the retinoblastoma 

(pRB) and p53 tumor suppressor proteins (Ali and DeCaprio, 2001). Primary Hus1+ 

MEFs were more readily immortalized than Hus1Neo/Neo and Hus1Neo/Δ1 MEFs upon 

exposure to Large-T antigen, as quantified by colony formation (Figure 3.1). On 

average, Hus1+ MEFs formed more colonies (41.5) than either Hus1Neo/Neo (12.75) 

(p=0.194) or Hus1Neo/Δ1 (13) (p=0.194) MEFs (Figure 3.1 A and B). This assay was 

repeated with two separate primary cultures for each genotype with consistent results. 

Importantly, there was equivalent transfection efficiency among all cell lines, as 

assessed by transfection using an equal amount of a GFP construct (Figure 3.1 C). 

Additionally, GFP transfected cells were not able to form colonies when plated at the 

same density. These data show that both Hus1Neo/Neo and Hus1Neo/Δ1 cells are less able 

to become immortalized following addition of an oncogene. This suggests that a 

reduced level of HUS1 is not compatible with the continuous proliferation associated  
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Figure 3.1 Cells with reduced Hus1 expression are resistant to Large-T antigen 

induced immortalization.  (A) Representative images of primary mouse embryonic 

fibroblasts (MEFs) of the indicated genotypes two weeks after transfection with 

Large-T Antigen. (B) Quantification of colony formation assay.  Bars indicate the 

average of two independently derived averaged from colony formation at two densities 

(1 X 103 and 1 X 104), with error bars indicating standard deviation. The number of 

colonies formed by Hus1+ is not statistically different from Hus1Neo/Neo (p=0.194) or 

Hus1Neo/Δ1  (p=0.194) by Students T-test.  (C) Representative images of primary cells 

infected with GFP construct. Cultures showed equal transfection efficiency regardless 

of genotype. [Experiment and figure by S. Yazinski and L. Gerwitz 
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with immortalization, resulting in reduced colony numbers. This raises the possibility 

that cells with reduced HUS1 may also be more difficult to become transformed, as 

the process of transformation can involve increased proliferation due to an oncogenic 

stimulus. 

 

3.4.2 Reduced Hus1 expression results in impaired focus formation in a 

transformation assay measuring loss of contact inhibition. We next wanted to test 

the ability of cells with reduced levels of HUS1 to undergo transformation using the 

well-characterized focus formation assay. This assay assesses the ability of these cells 

to bypass contact inhibited growth by screening for focus formation, which results 

when cells continue to proliferate despite antagonistic signals from adjacent cells. 

Though transfection with a single oncogene alone is known to induce senescence in 

primary wild-type cells, transfection with two oncogenes simultaneously bypasses 

senescence and pushes a cell toward transformation (Knudson, 2001).  

Three separately derived, spontaneously immortalized MEF cell lines for each 

genotype were tested at least twice (Figure 3.2). Immortalized cells are more readily 

transfected than primary cells; however, each line may have acquired additional 

mutations through the immortalization process. Because of this, there may be 

differences between cell lines of the same genotype in any given assay. It is important 

to note that the resulting monolayer from Hus1Neo/Δ1 cells growing to confluence is 

more dense in all three independently derived cell lines. All nine spontaneously 

derived immortalized cell lines were transfected with plasmids expressing oncogenes, 

specifically, adenovirus E1A, activated H-Ras, or both simultaneously and assessed 

for focus formation (Figure 3.3). All MEF cell lines showed few to no foci following 

transfection with GFP or the E1A oncogene. Two Hus1+ cell lines formed several foci 

after addition of activated Ras alone. All three cell lines formed a large number foci  
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Figure 3.2 Three immortalized cell lines were derived independently for each 

genotype.  MEFs were prepared as described and were passed at least 25 times and 

had bypassed senescence before being used in transformation assays. Three separately 

derived immortalized cell lines were prepared from MEFs from two litters. The 

highlighted Hus1+ cell line is morphologically distinct from the other 8 eight cell lines, 

grew slower, and was not able to form colonies in a soft agar assay. 
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Figure 3.3 Cells with reduced Hus1 expression have a decreased probability of 

forming foci in a contact inhibition tranformation assay.  (A-C) Representative 

images of three independently derived immortalized MEF cultures of the indicated 

genotypes following transfection with (A) GFP, (B) a single activated oncogene (Ras 

or E1A), or (C) two activated oncogenes (Ras and E1A). Two weeks post transfection, 

cells were fixed with methanol and stained with Giemsa overnight. (D) Quantification 

of focus formation assays. Foci were counted using ImageJ software. Bars indicate the 

average of at least two independent experiments on each of three cell lines, with error 

bars indicating standard deviation. There was no statistically significant difference in 

the average focus formation across cell lines following transfection with plasmids 

expressing Ras and E1A between Hus1+ and Hus1Neo/Neo (p=0.727) or Hus1Neo/Δ1 

(p=0.232) by Students two-tailed T-test. (E) Images of cells from each of the three 

independently derived cell line following transfection with GFP. Cells overall showed 

equivalent transfection efficiency within each experiment regardless of genotype. 

[Experiment and figure by S. Yazinski and L. Gerwitz] 
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Figure 3.3 (Continued) 
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Figure 3.3 (Continued) 
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(74, 78, 122) following addition of Ras and E1A, which is expected, as two oncogenes 

in immortalized cells should efficiently transform cells.  

Hus1Neo/Neo cells and Hus1Neo/Δ1 cells showed more variability between 

independent cell lines, though results were reproducible for each cell line. As with 

Hus1+, only two Hus1Neo/Neo and one Hus1Neo/Δ1 cell lines formed few foci after 

transfection with activated Ras. This suggests that expression of a single activated 

oncogene in an immortalized cell line, regardless of genotype was not sufficient to 

induce efficient transformation. After addition of Ras and E1A, in two of three cell 

lines, Hus1Neo/Neo cells show very few foci (0 and 25), and the third cell line 

developed, on average, slightly more foci than Hus1+ cells (183). This suggests that 

reduction of Hus1 expression to about ~40% of wild-type levels, as is seen in 

Hus1Neo/Neo cells, results in a decreased probability of transformation, as two of three 

cell lines developed fewer foci. However, when a Hus1Neo/Neo cell line is able to 

undergo transformation, more foci form, suggesting that in some cases, these cells are 

more readily transformed.  

Following addition of Ras and E1A, in the set of three Hus1Neo/Δ1 cell lines, 

two cell lines developed fewer foci than Hus1+ on average (6.3 and 62), and one cell 

line grew a similar number of foci compared to Hus1+ (87). Although the average 

number of foci formed by Hus1Neo/Neo or Hus1Neo/∆1 cells was not significantly 

different from the number of foci formed by Hus1+ cells (p=0.727 or p=0.232), there 

is a trend of decreased focus formation ability associated with decreased levels of 

HUS1 in some cells lines. This suggests that cells with severe reduction of Hus1 

expression are less prone to becoming transformed, although overcoming contact 

inhibition is still possible in certain cell lines. This variability between cell lines in 

Hus1Neo/Neo and Hus1Neo/Δ1 may be due to mutations that arise during immortalization 

and fixation of these mutations throughout the cell line. Despite the variability, these 
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data show that Hus1Neo/Neo and Hus1Neo/Δ1 cells show decreased focus formation 

following addition of two oncogenes in a majority of cell lines, as compared to Hus1+ 

cells. 

 

3.4.3 Reduced HUS1 levels result in impaired oncogene-induced anchorage 

independent growth. In order to resolve the ambiguity seen in the focus formations 

assays (Figure 3.3) in Hus1Neo/Neo and Hus1Neo/Δ1 MEFs, we next assessed the effect of 

reduced Hus1 expression on transformation ability using anchorage independent 

growth, a more stringent test of transformation. Cell lines with reduced HUS1, which 

have an increased level of genomic instability, may be on the border of becoming 

transformed more readily or not being able to undergo transformation at all, and a 

more stringent assay may be a better indication of transformation ability and result in 

less variability between cell lines (Steele et al., 1996). Again, three independently 

derived, immortalized MEF cell lines were used for each genotype expressing 

incrementally reduced levels of HUS1. MEFs were infected with retroviruses carrying 

GFP, activated Ras, or activated Ras and Myc, and then grown in a suspension of soft 

agar. The number and size of macrocolonies, which directly related to the degree of 

transformation, was then determined (Freedman and Shin, 1974)(Figure 3.4). It was 

determined that cells of each genotype achieved similar levels of infection by 

evaluating percentage of cells expressing GFP 48 hours after infection (Figure 3.4 E).  

When transduced with a vector expressing GFP, no cell lines formed colonies 

in soft agar, as expected. Two of three Hus1+ MEF cell lines transduced with Ras 

alone formed many colonies (62 and 66). Whereas only one of three Hus1Neo/Neo cell 

lines and no Hus1Neo/Δ1 cell lines were able to form colonies to the same extent when 

transduced with Ras alone, suggesting that reduced levels of Hus1 expression decrease 

the probability of transformation after addition of a single oncogene (Figure 3.4 B and 
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Figure 3.4 Cells with reduced Hus1 expression have a decreased capacity to form 

colonies in an anchorage independent growth transformation assay.  (A) 

Representative images of soft agar growth by three independently derived 

immortalized mouse embryonic fibroblasts (MEFs) of the indicated genotypes 

following infection with (two activated oncogenes (Ras and Myc). (B) Quantification 

of colony formation in soft agar. Foci were counted using ImageJ software. Bars 

indicate the average of at least two independent experiments on each of three cell 

lines, with dark shading indicating large colonies (>300 pixels) and light shading 

indicating small colonies (<300 pixels). (C) Images of immortalized cells following 

infection with a virus expressing GFP. All cell lines, regardless of genotype, showed 

similar infection efficiency. [Experiment and figure by S. Yazinski and L. Gerwitz] 
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Figure 3.4 (Continuted) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C 
 



81 

D). Two of three Hus1+ cell lines developed a large number of colonies following 

addition of Ras and Myc (148 and 185), while one Hus1+ cell line developed very few 

colonies (14), suggesting, on average, Hus1+ cells are readily transformed after 

addition of two active oncogenes (Figure 3.4 C and D). The cell line that was not able 

to form colonies is also morphologically distinct from the remaining 8 cell lines, in 

that it is more epithelial than fibroblastic, which may alter the behavior of this cell line 

in a colony formation assay (Figure 3.3). All three Hus1Neo/Neo cell lines showed 

reduced colony formation relative to Hus1+ cells after infection with Ras and Myc (10, 

33, 57). Two of three Hus1Neo/Δ1 cell lines developed reduced colony numbers 

compared with Hus1+ cell lines following infection with Ras and Myc (33 and 52) 

(Figure 3.4 C and D). The remaining Hus1Neo/Δ1 cell line developed more than twice as 

many colonies (357) as the Hus1+, however, the resulting colonies were smaller than 

the colonies of Hus1+ cells (Figure 3.4 A and B). This suggests that cells with reduced 

levels of HUS1 that are able to be transformed are less able to proliferate to form large 

colonies in soft agar, as seen in Hus1+ cells, following infection with activated 

oncogenes. Hus1Neo/Neo and Hus1Neo/Δ1 cells more consistently show decreased 

transformation in comparison to Hus1+ cells in this more stringent soft agar assay, as 

compared to a focus assay. 

Taken together, these cell culture assays suggest that reduced levels of HUS1 

may decrease the ability of cells to undergo transformation. Primary MEFs, that have 

not acquired any additional mutations from tissue culture, show that Hus1Neo/Neo cells 

and Hus1Neo/Δ1 cells are less likely to be immortalized. Additionally, on average, cell 

lines with reduced HUS1, either Hus1Neo/Neo or Hus1Neo/Δ1, were less likely to 

overcome contact inhibition and are less prone to undergo anchorage independent 

growth following oncogenic stimuli, both characteristics of transformation. This defect 

in proliferation following oncogenic-stimulation is not due to a universal decrease in 
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robustness in cells with reduced HUS1, as Hus1Neo/Δ1 cells show resistance to 

treatment with puromycin, a translation inhibitor (Figure 3.5). This increased survival 

following treatment with puromycin shows that the inability of Hus1Neo/∆1 cells to 

proliferate to form either foci in a focus formation assay or colonies in an anchorage 

independent growth assay as a result of oncogene expression, not a general heightened 

sensitivity to stress. Taken together, these data indicate that reduced levels of HUS1 

result in decreased transformation.  

 

3.4.4 Reduced Hus1 expression results in decreased tumor size in a cell 

transplantation assay.  In order to determine the effect of reduced levels of Hus1 

expression on transformation in a more stringent assay, Hus1+/Neo, Hus1Neo/Neo, and 

Hus1Neo/Δ1 MEFs were infected with an ecotropic virus expressing GFP or a virus 

expressing Ras and Myc from the same vector (Figure 3.6). An equal number of cells 

from each genotype were injected into the flanks of wild-type 129 mice, and tumors 

were allowed to grow for four weeks. Mice that were injected with Hus1+ cells, 

Hus1Neo/Neo cells, or Hus1Neo/Δ1 cells infected with virus expressing GFP formed no 

tumors. Mice injected with Hus1+/+ cells infected with a virus expressing Ras and Myc 

grew the largest tumors, while mice that were injected with Hus1Neo/Neo cells or 

Hus1Neo/Δ1 cells infected with a virus expressing Ras and Myc grew small tumors. 

These preliminary results show that cells expressing reduced levels of HUS1 are less 

able to become transformed as measured by this stringent assay of transformation, 

which agree with our previous cell culture data.  This transplantation assay is a 

rigorous way to evaluate transformation abilities, which may reduce some variability 

seen between cell lines of the same genotype in other less stringent assays and this 

assay will need to be repeated with additional cell lines expressing reduced levels of 

HUS1. Additionally, this assay can be performed using host mice expressing  
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Figure 3.5 Reduced Hus1 expression caused increased puromycin resistance 

treatment compared to a cell line with wild-type Hus1 expression.  (A-B) Three 

independently derived, immortalized MEF cell lines of the indicated genotypes were 

treated with the indicated dose of puromycin for ten days. The cells were fixed and 

stained with crystal violet overnight.  (A) The first set of Hus1Neo/Δ1 MEFs shows 

increased resistance to puromycin treatment at 0.5 and 1.0µg/ml compared to Hus1+ 

MEFs. (B) A second and third set of Hus1+, Hus1Neo/Neo, and Hus1Neo/Δ1 MEFs were 

tested for puromycin resistance. The second Hus1Neo/Δ1 cell line and the second 

Hus1Neo/Neo cell line showed increased resistance to puromycin treatment at 1.0µg/ml 

compared to Hus1+ MEFs, while a third Hus1Neo/Δ1 cell line and a third Hus1Neo/Neo 

cell line showed similar sensitivity to puromycin treatment at 1.0µg/ml compared to 

Hus1+ MEFs. [Experiment by S. Yazinski; Figure by L. Gerwitz] 
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Figure 3.5 (Continued) 
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Figure 3.6 Transplantation of Hus1+ cells infected with a virus expressing Ras 

and Myc results in larger tumors than transplantation of Hus1Neo/Neo and 

Hus1Neo/∆1 cells infected with a virus expressing Ras and Myc. (A) Images of mice 

injected with Hus1+, Hus1Neo/Neo, or Hus1Neo/∆1 cells that were infected with a virus 

expressing GFP or expressing Ras and Myc. (B) Images of tumors resulting from 

injection with Hus1+, Hus1Neo/Neo, or Hus1Neo/∆1 cells that were infected with a virus 

expressing Ras and Myc. No tumors developed from cells of any genotypes infected 

with a virus expressing GFP. Scale bar represents 1cm. (C and D) (C) Average size 

and (D) average weight of tumors resulting from injection with Hus1+ (n = 3), 

Hus1Neo/Neo (n = 2), or Hus1Neo/∆1 (n = 2) cells that were infected with a virus 

expressing Ras and Myc. [Experiment by S. Yazinski and L. Gerwitz] 
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incrementally reduced levels of HUS1 in order to determine the effect of reduced 

HUS1 levels in surrounding cells on support of tumor development and growth. 

 

3.4.5 Mice with reduced levels of Hus1 expression develop fewer and smaller 

papillomas than Hus1+ mice in a two-step carcinogenesis model. The cell culture 

results suggest that cells with reduced levels of HUS1 were resistant to transformation, 

and these results were more consistent in more stringent assays. We next tested the 

effect of reduced HUS1 on transformation using an in vivo animal model, by making 

use of the well-characterized carcinogen-induced skin papilloma model of 

tumorigenesis. In this experiment, mice with reduced levels of HUS1 were treated 

with 12-7-dimethylbenz(a)-anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-

acetate (TPA) to induce skin papillomas. DMBA causes specific A-T transversions at 

the second nucleotide of codon 61 of the Harvey-ras (H-ras) gene, resulting in H-ras 

activation, and is a well-characterized tumor initiator (Quintanilla et al., 1986). TPA is 

potent tumor promoter that acts through activation of protein kinase C (PKC) (Angel 

et al., 1987). DMBA is applied once to the skin, while TPA is applied twice weekly 

for twenty weeks, resulting in skin papilloma formation. Mice in anagen phase of the 

hair cycle were not used in the two-step skin carcinogenesis assay, as this phase 

features more stem cell proliferation. DMBA or TPA treatment of skin with an 

increased number of stem cells may result in altered papilloma numbers relative to 

treatment skin with fewer stem cells.   

Based on the results of tissue culture assays, we anticipated that fewer tumors 

would develop on the back of Hus1Neo/Neo and Hus1Neo/Δ1 mice, as the skin cells would 

be less prone to transformation. At each application of TPA, tumor latency, size, and 

number were measured. Hus1+ mice developed the most and the largest papillomas, on 

average (Figure 3.7). Hus1Neo/Neo mice, with moderately reduced Hus1 expression,  
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Figure 3.7 Hus1Neo/Neo and Hus1Neo/Δ1 mice develop fewer and smaller average 

largest papillomas than Hus1+controls. Hus1+ (n=18) and Hus1Neo/Δ1 (n=18), and 

Hus1+ (n=19) and Hus1Neo/Neo (n=16), mice were treated with a single dose of DMBA 

and repeated applications of TPA to induce papilloma formation. Tumor development 

was monitored for 20 weeks. (A and B) The average number of papillomas per mouse 

was plotted for each day. (A) Hus1Neo/Δ1 and (B) Hus1Neo/Neo mice had significantly 

fewer papillomas when compared with control mice (p<0.001 and p=0.004, 

respectively, determined by mixed model analysis: linear regression with covariant 

structure using SPSS software). (C and D) The average size of the largest papilloma 

per mouse was plotted for each day.  Hus1Neo/Δ1 mice had significantly smaller average 

largest papillomas than control mice (p < 0.001), while Hus1Neo/Neo papillomas were 

not significantly smaller (p=0.605). (E and F) Fraction of tumor free survival for (E) 

Hus1+ compared to Hus1Neo/Δ1 mice and (F) Hus1+ compared to Hus1Neo/Neo over 20 

weeks is not significantly different between genotypes (p=0.420 and p=0.077, by Log 

Rank Comparison). Hus1Neo/Δ1 mice are the first to develop papillomas, but show a 

decreased risk for tumor development after 67 days (p<0.05 by Log Rank Hazard 

Analysis).  (G and H) Representative images of (G) Hus1+/+ (right) and Hus1Neo/Δ1 

(left) and (H) Hus1+/Neo (right) and Hus1Neo/Neo (left) sex-matched littermates following 

DMBA/TPA treatment at 140 days after DMBA treatment.  [Experiment by L. Gerwitz 

and S. Yazinski, figure by S. Yazinski] 
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developed fewer papillomas than Hus1+ mice (p=0.004) (Figure 3.7 B). Interestingly, 

a few Hus1Neo/Δ1 mice, with the lowest level of Hus1 expression, developed 

papillomas with a slightly shorter latency than either Hus1+ or Hus1Neo/Neo mice, 

though this difference in latency was not significant; however, overall tumor-free 

survival was not significantly different among genotypes (Figure 3.7 E and F). 

Hus1Neo/Δ1 mice had a reduced risk for papilloma development after 67 days when 

compared with Hus1+ mice (p < 0.05 by Log Rank Hazard Analysis). Although 

Hus1Neo/Δ1 mice were the first to form papillomas, these mice ultimately developed the 

fewest (p <0.001 when compared with Hus1+) and smallest papillomas (p <0.001 

when compared with Hus1+), on average (Figure 3.7 A and C). Although papillomas 

from Hus1Neo/Δ1 mice were significantly smaller than papillomas from Hus1+ mice, the 

proliferation rate within papillomas of each genotype, as measured by BrdU 

incorporation, was not significantly different (p = 0.97) (Figure 3.8). Additonally, 

there was no change in malignancy between papillomas arising in Hus1+ and 

Hus1Neo/Δ1, as only a single papilloma from Hus1+ mice underwent malignant 

conversion, and no papillomas from a Hus1Neo/Δ1 mouse progressed to malignancy. 

These in vivo tumorigenesis data were consistent with the cell culture data, which 

suggested that Hus1Neo/Neo and Hus1Neo/Δ1 cells are less able to become transformed, 

though small number of Hus1Neo/Neo and Hus1Neo/Δ1 cells are able to undergo 

transformation and form papillomas. Furthermore, the in vivo data supports that a 

reduction in Hus1 expression impairs transformed cell growth, as papillomas were 

smaller.  

 

3.4.6 Hus1Neo/Δ1 mice are not sensitive to the initial treatments of DMBA or TPA. 

There are at least two possible explanations for the correlation between reduced Hus1 

expression and the reductions in papilloma number and largest size. First, impaired  
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Figure 3.8 Papillomas from Hus1Neo/Δ1 mice and Hus1Neo/Δ1 cells have similar 

proliferation rates.  (A) Papillomas from Hus1+ and Hus1Neo/Δ1 mice were harvested, 

fixed, and stained for BrdU incorporation. Sections were counter stained by 

hematoxylin. (B) Quantification of BrdU positive cells in papillomas of Hus1+ and 

Hus1Neo/Δ1 mice. There was no significant difference between BrdU staining of 

papillomas of Hus1+ and Hus1Neo/Δ1 mice (p = 0.972, by Student’s t-Test). Three 40X 

images were quantified for three mice of each genotype, with error bars denoting 

standard deviation. [Experiment and figure by S. Yazinski] 
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checkpoint function due to reduced Hus1 expression in Hus1Neo/Δ1 cells may prevent 

transformation as these cells are unable to cope with the increased genomic stress 

associated with neoplastic proliferation, resulting in cell death. A second, more trivial, 

explanation maybe that a decreased ability to respond to genomic damage may 

sensitize Hus1Neo/Δ1 cells to the initial treatments of DMBA or TPA, causing early cell 

death and few surviving cells capable of forming papillomas. To test whether cells 

with reduced Hus1 expression were sensitive to the initial treatments of DMBA or 

TPA, we first treated primary MEFs with increasing doses of DMBA or TPA, and 

assessed for cell survival using a trypan blue exclusion assay (Figure 3.9 A and B). 

Hus1Neo/Δ1 cells showed no increased sensitivity to either DMBA or TPA relative to 

Hus1+ MEFs in cell culture, as both genotypes showed similar survival at each dose of 

DMBA or TPA.  

While these results suggest that Hus1Neo/Δ1 cells are not sensitive to DMBA or 

TPA treatment, we next wanted to test the sensitivity of the skin cells expressing 

reduced levels of HUS1 to the DMBA or TPA treatment in vivo. A single dose of 

DMBA or TPA was administered to the shaved skin of mice, and the skin was 

harvested 24 hours later. These mice were not in the anagen phase of hair cycle, 

reducing the probability that proliferation of stem cell pools at the hair follicle affected 

our results. Next, BrdU and TUNEL assays were performed to assess the rates of 

proliferation and apoptosis, respectively, by calculating the percentage of positively 

stained epithelial skin cells. Following DMBA treatment, the proliferation of cells was 

not significantly different from cells treated with acetone alone, regardless of the 

genotype or dose of DMBA (p=0.777) (Figure 3.10 A and C). Similarly, the 

percentage of cells undergoing apoptosis following each dose was similar to that of 

cells treated with acetone alone (p=0.908) (Figure 3.10 B and C). This indicates that 

acute treatment of DMBA at these doses does not affect proliferation or cell death. 
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Figure 3.9 Hus1Neo/Δ1 cells do not show increased sensitivity to DMBA or TPA in 

culture.  Primary Hus1+ or Hus1Neo/Δ1 MEFs were treated with a single dose of (A) 

TPA (0 ng/ml, 100 ng/ml, or 1,000 ng/ml) or (B) DMBA (0 µg/ml, 1 µg/ml, or 20 

µg/ml).  24 hours after treatment, cells were harvested, stained with trypan blue, and 

counted to assess cell survival relative to untreated cells. Each assay was done in 

triplicate using three different primary cell lines. [Experiment and figure by S. 

Yazinski] 
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Figure 3.10 Skin of Hus1Neo/Δ1 mice and Hus1Neo/Δ1 cells do not show increased 

sensitivity to DMBA or TPA.  Hus1+ and Hus1Neo/Δ1 mice were shaved and treated 

with a single dose of DMBA or TPA. Skin was harvest and stained for apoptosis and 

BrdU. (A and B) Quantification of (A) BrdU positive and (B) TUNEL positive cells in 

skin sections from mice of the indicated genotype treated with a single dose of DMBA 

to determine the percentage of proliferating and apoptotic cells, respectively.  (C) Skin 

sections from control and Hus1Neo/Δ1 mice treated with a 25nmol of DMBA stained by 

BrdU and TUNEL assay. Arrows point to brown, positive cells.  Sections were 

counterstained with hematoxylin. (D and E) Quantification of (D) BrdU positive and 

(E) TUNEL positive cells in skin sections from mice of the indicated genotype treated 

with a single dose of TPA to determine the percentage of proliferating and apoptotic 

cells, respectively.  (F) Representative skin sections from control and Hus1Neo/Δ1 mice 

treated with a 25µg/ml dose of TPA stained by BrdU and TUNEL assay.  Arrows 

point to brown, positive cells.  Sections were counterstained with hematoxylin. 

DMBA and TPA experiments were each performed on three mice of each genotype 

and three fields of view were counted to determine the rates of proliferation and 

apoptosis in each mouse.  Error bars denote standard deviation. Statistical analysis was 

by a random coefficient model with random slope and intercept. The fixed effects 

were the genotype, dose, and their interaction term. [Experiment and figure by L. 

Gerwitz, S. Yazinski, and T. Shand]  
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Figure 3.10 (Continued) 
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Following a low dose of TPA treatment (5µg), skin cells of both genotypes showed 

increased proliferation relative to acetone alone treated samples, and a moderate, but 

insignificant, increase in apoptosis (Figure 3.10 D - F). Following a higher dose of 

TPA (25µg), skin cells of both genotypes showed no change in proliferation relative to 

acetone alone treated samples, along with a larger increase in apoptosis (Figure 3.10 D 

– F). This increased cell death at the higher dose of TPA may account for the 

decreased proliferation levels compared to the lower dose of TPA. There was no 

difference in either cell death or proliferation between genotypes following TPA 

treatment (p=0.696 and p=0.352, respectively). Taken together, the rates of 

proliferation and apoptosis were not significantly different between the skin of Hus1+ 

and Hus1Neo/Δ1 mice among all doses of DMBA and TPA tested (Figure 3.10). These 

data suggest that decreased papilloma formation in Hus1Neo/Δ1 mice is not due to a 

proliferation defect or increased sensitivity to either DMBA or TPA, but rather an 

inability of Hus1Neo/Δ1 cells to survive the increased stress associated with 

transformation. 
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3.5 DISCUSSION 

 Because defects in DNA damage checkpoints have been shown both to result 

in tumorigenesis and to inhibit tumor growth, we set out to determine how reduced 

levels of HUS1, a component of the ATR pathway, affects the process of 

transformation and tumor development. We have made use of the previously described 

Hus1 allelic series, which genetically expresses incrementally reduced levels of wild-

type HUS1 protein, allowing us to bypass the embryonic lethality associated with 

complete Hus1 inactivation (Levitt et al., 2007). Primary cells with reduced levels of 

HUS1 exhibited a decreased propensity of becoming immortalized following 

transfection with large T antigen, a potent oncogene, suggesting that these cells may 

also be less likely to undergo transformation. 

 In order to test this, immortalized cell lines expressing reduced levels of HUS1 

were then tested for transformation capability using two well-characterized assays, 

focus formation and anchorage independent growth. While all Hus1+ cell lines were 

readily transformed after addition of two oncogenes, not all Hus1Neo/Neo and Hus1Neo/Δ1 

cell lines were able to be transformed. Instead, in two of three Hus1Neo/Neo cell lines 

tested, transfected cells were not able to form foci in a contact inhibition assay, and in 

two of three cell lines, infected cells were not able to form colonies in soft agar. 

Similarly, in two of three Hus1Neo/Δ1 cell lines, fewer foci formed following addition 

of two oncogenes, and in two of three cell lines, a greatly reduced number of colonies 

form in soft agar. In the one set of cell lines tested, Hus+ cells expressing two 

oncogenes were readily transformed forming large tumors in a transplantation assay, 

while Hus1Neo/Neo and Hus1Neo/Δ1 formed very small tumors. Importantly, these results 

were reproducible within each cell line, suggesting that the differences between cell 

lines were not due to technical difficulties, but rather genetic differences, perhaps due 

to an accumulation of mutations acquired during immortalization. Because Hus1Neo/Neo 
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and Hus1Neo/Δ1 cells show higher levels of genomic instability in cell culture, these 

cells may be less likely to survive the process of transformation, as seen in the more 

stringent anchorage independent growth and transplantation assays. However, this 

level of genomic instability may allow cells to overcome a less stringent test of 

transformation, such as contact inhibition. While these data suggest that reduced levels 

of Hus1 expression may inhibit transformation ability, cell culture data may not 

recapitulate the effect of reduced HUS1 in an in vivo animal model.  

 In order to determine if cells with reduced HUS1 have reduced transformation 

ability in a mouse model, we made use of the well-characterized two-step skin 

carcinogenesis model of tumorigenesis using DMBA and TPA treatment. Because the 

resulting papillomas arise directly from clonal expansion of the initially transformed 

cells, the number of papillomas directly relates to the transformation potential of the 

cells (Yuspa, 1998). Initial time points reveal that a small number of Hus1Neo/Δ1 mice 

developed tumors with a shorter latency than Hus1Neo/Neo or Hus1+ mice, suggesting 

that the severe genomic instability and checkpoint defect of an initiated cell with 

reduced HUS1 can result in decreased tumor latency. Overall, Hus1Neo/Δ1 mice 

developed strikingly fewer papillomas than Hus1+ mice, while Hus1Neo/Neo mice 

developed an intermediate number. This result demonstrates that overall, mice with 

reduced levels of HUS1 show reduced transformation capacity in vivo, however, a 

small number of tumors are still able to form. This correlates with the cell culture data, 

which shows that in most cell lines expressing reduced HUS1 levels, cells show 

reduced ability to be transformed, but that transformation is possible in at least one 

cell line of each genotype. Taken together, these data suggest that reduced levels of 

HUS1 are not compatible with transformation and tumor development.  

Reduced levels of HUS1 also correlated with reduced tumor size. When 

comparing the largest papilloma on the back of each mouse, Hus1Neo/Δ1 mice 
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developed smaller papillomas than Hus1+ mice, and Hus1Neo/Neo mice developed an 

intermediate sized average largest papilloma. This suggests that cells with reduced 

levels of HUS1 cannot expand to form papillomas as large as Hus1+ papillomas. This 

is consistent with the soft agar assay data, which shows that the colonies that are able 

to form in Hus1Neo/Δ1 cells are much smaller than Hus1+ colonies, demonstrating 

difficulty to undergo rapid, oncogene-induced proliferation when there are insufficient 

levels of HUS1. 

In some mouse models, a decrease in papilloma formation can be attributed to 

increased sensitivity to DMBA or TPA treatment. For example, BRCA2+/- mice, 

which express reduced levels of BRCA2, a DNA damage repair protein, develop 

papillomas at a slower rate than BRCA2+/+ mice following DMBA treatment, but this 

is due to BRCA2+/- cell sensitivity to DMBA resulting in apoptosis (Yan et al., 2004).  

In the case of Hus1Neo/Neo and Hus1Neo/Δ1, reduced papilloma number and size is not 

due to increased sensitivity, but rather due to a decreased ability of cells with reduced 

HUS1 to become transformed. This is further supported by the in vitro assays that do 

not make use of chemical carcinogens, but still show a reduced potential of cells with 

reduced Hus1 expression to become transformed. Furthermore, the decreased ability to 

become transformed is directly related to the level of HUS1 reduction, as Hus1Neo/Δ1 

mice, which have a severe decrease in Hus1 expression, also show a severe reduction 

in tumor number; whereas, Hus1Neo/Neo mice, with a moderate reduction in Hus1 

expression, develop a moderate number of papillomas, relative to Hus1+ mice. 

The data provided here are in contrast with other studies which have made use 

of a conditional Rad9 knockout and Rad1 heterozygotes. Because RAD9 and RAD1, 

along with HUS1, form the heterotrimeric 9-1-1 complex, one would predict that 

deficiencies in RAD9 or RAD1 would phenocopy the reduced tumorigenicity reported 

here. However, in these studies, Rad9 inactivation in keratinocytes or Rad1 
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heterozygosity results in increased tumorigenesis using the same two-step skin 

carcinogenesis procedure to induce papilloma formation (Han et al., 2010; Hu et al., 

2008). The mouse genetic background may play a role in tumor development. 

Hus1Neo/∆
1 mice are maintained on a 129SvEv background, whereas Rad9 conditional 

knockout mice and Rad1 knockout mice were produced from a mixed 129SvEv and 

C57BL/6 background. Modifiers present in different strain backgrounds may also have 

an effect on tumor development. This discrepancy between tumor development in 

mice with partial Hus1 expression, mice with conditionally inactivated Rad9, and 

Rad1 heterozygous mice may be due to the level of checkpoint impairment. In the data 

presented here, Hus1 is reduced to 20%-40% of wild-type expression, whereas the 

Rad1 and Rad9 studies utilize heterozygous mice and complete conditional knockout 

mice, respectively. However, in contrast with the Rad1+/- mice, Hus1+/- mice do not 

show increased genomic instability and Rad9+/- mice do not develop an increased 

number of papillomas in the same DMBA/TPA assays. In contrast with Rad9 

conditional inactivation in the skin, previous data from our lab shows that complete 

inactivation of Hus1 in a tissue specific manner results in extensive cell death with no 

increase in spontaneous tumorigenesis (Chapter 2)(Yazinski et al., 2009). However, in 

Rad9 conditional knockout cells, cell death and reconstitution of skin cells may 

function as a mechanism of tumor promotion, resulting in increased papilloma 

formation, or alternatively, keratinocytes may not have as high a requirement for 

RAD9 as mammary cells have for HUS1. Another difference between these studies is 

the cell type affected by checkpoint impairment. In the previous study, Rad9 is 

inactivated exclusively in keratinocytes, whereas our Hus1Neo/Δ1 mice globally express 

reduced HUS1 in all cell types. There may also be non-cell-autonomous effect in 

which surrounding cells with reduced Hus1 expression may not be able to support 

sustained transformation and tumor growth. Finally, this inconsistency between the 
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phenotypes seen in Hus1 hypomorph mice and phenotype of conditional Rad9 

knockout and Rad1 heterozygous mice may be due to additional functions of RAD9, 

RAD1, or HUS1 outside of the 9-1-1 complex that have yet to be uncovered, which 

may be of critical importance for tumor initiation and development. For example, 

RAD9 has recently been shown to interact with BCL-2 and BCL-xL to induce 

apoptosis and furthermore, to play a role as a transcription factor which can activate 

transcription of p21 and induce apoptosis when overexpressed (Komatsu et al., 2000) 

(Yin et al., 2004).  

Lower levels of HUS1 resulting in reduced tumor number is not universal to all 

tumor types and may be determined by the genetic composition of the tumor or cell 

type of origin. For example, Hus1Neo/Δ1 mice crossed to a p53-null background develop 

thymic lymphoma at the same rate as Hus1+ p53-null mice (Levitt et al., 2007), 

suggesting reduced levels of HUS1 does not effect tumor development due to a p53-

deficiency. This may be due to a requirement for p53 to respond to the damage 

induced by inhibition of Hus1 in cells undergoing transformation to induce apoptosis 

or senescence, and thus prevent tumorigenesis. Alternatively, thymocytes have been 

shown to have a lower requirement for HUS1 (Francia et al., 2006), and proliferation 

of tumors originating from this tissue, such as thymic lymphoma seen in p53-null 

mice, may not be highly dependent on the ATR pathway. On the other hand, Hus1-

inactivation in the mouse mammary gland in a p53-deficient background results in cell 

death, and does not result in mammary tumorigenesis. This suggests that in some 

tissue types, Hus1-inactivation actually sensitizes p53-null cells, which are normally 

resistant to apoptosis, to cell death. Because inactivation of Hus1 and p53 appears to 

be synthetic lethal in some cell types, Hus1 may be a therapeutic target for p53-

deficent tumors.   
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The results presented here fit well with the growing notion of “non-oncogene 

addiction” that posits that transformed cells may be “addicted” to DNA damage 

checkpoint proteins, and have a heavy reliance on their expression to survive 

transformation and sustain tumor development (Luo et al., 2009). Transformation is a 

process which results in elevated cellular stress due to increased proliferation and 

reactive oxygen species. This increased stress early in transformation continues 

throughout cancer development and growth (Benhar et al., 2002). Because of this, 

transformed cells may have a greater dependence on proteins involved in response to 

this stress, such as chaperone and DNA damage response proteins. The ATR pathway 

plays a critical role in response to DNA damage and stalled replication forks 

associated with normal S-phase progression. For this reason, the requirement for the 

ATR pathway may be higher in cells that have increased proliferation or hyper-

replication, such as that seen in cells undergoing transformation. Because HUS1 is a 

critical component of the ATR pathway, reduced levels of Hus1 expression may result 

in sensitivity to the cellular stress associated with transformation. Cells with reduced 

HUS1 that are forced to proliferate through oncogenic signaling may not be able to 

sustain this state of growth, and may instead induce senescence, apoptosis, or undergo 

mitotic catastrophe from the level of DNA damage sustained. This idea is supported 

by the reduced foci formation and colony formation in transformation assays of some 

Hus1Neo/Neo and Hus1Neo/Δ1 cell culture lines, as well as reduced papilloma number and 

size seen in Hus1Neo/Neo and Hus1Neo/Δ1 mice compared to Hus1+ mice. Taken together, 

the cell culture and in vivo data presented here suggest that HUS1 may be involved in 

non-oncogene addiction in tumor cells since cells undergoing transformation or 

maintaining a transformed state are more dependent on the ATR pathway, which is 

normally involved in genome maintenance, resulting in decreased cancer 

development.  
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Several recent studies corroborate this idea of tumor cell addiction to DNA 

damage checkpoints. Cancer stem cells harvested from a murine model of mammary 

tumorigenesis upregulate several DNA damage response and repair proteins, including 

HUS1 (Zhang et al., 2008), suggesting an increased dependence on these proteins for 

tumor initiation. Human tumors have not been found to have loss of function of 

components of the ATR pathway (Bartek and Lukas, 2003), and several human tumor 

show increased expression of components of the Atr pathway, including upregulation 

of Rad9 in breast and prostate cancers (Cheng et al., 2005; Zhu et al., 2008), increased 

expression of Hus1 in ovarian tumors (de la Torre et al., 2008), and overexpression of 

Chk1 in colorectal and breast cancers (Madoz-Gurpide et al., 2007; Verlinden et al., 

2007). Taken together, the data presented here suggests that inhibition of Hus1 or the 

ATR pathway may function as a potential target for cancer therapies. The idea of 

inactivation of DNA damage checkpoints as a potential therapeutic treatment is 

currently being tested through inhibitors targeted against the downstream effector in 

the ATR pathway, CHK1(Ashwell and Zabludoff, 2008; Chen et al., 2006). Inhibition 

of checkpoint proteins can lead to a checkpoint defect and genomic instability in 

rapidly proliferating cells, resulting in increased sensitivity of cancer cells to currently 

used chemotherapies which act by damaging DNA.  

While inactivation of checkpoint proteins of the ATR pathway may decrease 

tumorigenesis in some contexts, mutations of many other DNA damage checkpoints of 

the parallel ATM pathway, such as Atm, Chk2, and p53 instead results in an elevated 

tumor incidence in both mice and humans due to an increase in genomic instability 

(Bartek et al., 2007). Although defects in both ATR and ATM pathways result in 

genomic instability, ATM may play a less critical role in response to the type of stress 

induced by transformation and the rapid proliferation of tumor growth. This is 

supported by the fact that ATM and components of the ATM pathway are not essential 
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for embryonic growth and development (Shiloh, 2003). Instead, impairment of the 

ATM pathway results in a level and type of DNA damage that promotes tumorigenesis 

and does not result in extensive cell death in combination with the stresses of 

neoplastic proliferation. 

While these experiments suggest that reduced levels of HUS1 result in 

decreased transformation and inhibition of tumor growth, there are limitations to our 

studies. Many of our cell culture transformation assays make use of immortalized 

cells, which are more readily transformed, to determine the transformation potential of 

cells with reduced HUS1. However, these cells have undergone spontaneous 

immortalization by random mutagenesis from repeated passing of cells. Testing the 

effect of oncogene-induced proliferation on primary cells or cells immortalized in the 

same way, i.e. through Large-T antigen expression, would better reflect the effect of 

reduced HUS1 on transformation without the added complexity of additional unknown 

mutations. Although our data suggest that decreased tumor formation following the 

two-step skin carcinogenesis protocol is not due to enhanced sensitivity to DMBA or 

TPA, we cannot completely exclude this possibility. In order to overcome this 

complication, we would like to induce tumors genetically, rather than with use of 

chemicals which act by damaging DNA. Additionally, we have only tested the effect 

of reduced HUS1 levels on skin tumorigenesis and would like to extend these studies 

to other tissue types in which oncogene activation results in tumorigenesis to 

determine if this model holds true. 
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CHAPTER 4 

EFFECT OF ANTIOXIDANTS ON TUMORIGENESIS AND GENOMIC 

INSTABILITY 

 

4.1 INTRODUCTION 

 Mammalian cells are constantly assaulted by intrinsic and extrinsic stresses 

that can damage DNA, proteins, and lipids.  Naturally occurring oxidative stress 

arising from metabolic byproducts or environmental factors can be one source of 

cellular damage. This is due to the increased reactive oxygen species (ROS) that result 

from high levels of oxygen, which can than react with DNA to produce adducts 

(Kawanishi et al., 2001), with lipids resulting in peroxidation (Bartsch and Nair, 

2002), or with proteins to result in carbonylation (Nystrom, 2005). These molecular 

changes can result in cellular changes, such as increased proliferation, induction of 

senescence, or increased cell death, which then have a detrimental physiological 

impact on an organism, such as development of cancer, neurological diseases, or aging 

(Bartsch and Nair, 2002; Kawanishi et al., 2001; Nystrom, 2005). Because of the 

obvious toxic effect of increased ROS in a cell, the resulting molecular consequence 

of ROS, the mechanisms that act to correct these molecular changes, and preventative 

measures to preclude these molecular changes from occurring have been an important 

area of research. In particular, the effect of antioxidant treatment on transformation 

and tumorigenesis has yet to be fully understood.  

ROS poses many difficulties to DNA replication and genome maintenance. 

The most common type of DNA damage to arise from an increase in ROS levels is the 

formation of 8-oxo-deoxyguanine (8-oxo-dG), but other oxidative DNA damage can 

occur. Unrepaired 8-oxo-dG can result in G→T transversions, resulting in permanent 

mutations in the DNA sequence, which can have detrimental effects, such as 
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activation of oncogenes (Kohen and Nyska, 2002). Additionally, these altered bases 

can be bypassed by error-prone translesion polymerases, which insert incorrect bases 

across from the damaged base, resulting in mutations. Helix distorting lesions can also 

pose a block to DNA replication, resulting in stalled forks, which can result in 

collapsed replication forks and DNA breaks (Wang, 2008).  

 DNA damage checkpoint proteins are known to respond to a variety of DNA 

lesions, including those resulting from increased oxidative stress, to maintain genomic 

integrity. There are two main, evolutionarily conserved DNA damage checkpoint 

pathways which respond to DNA damage, the ATM and the ATR pathways (Cimprich 

and Cortez, 2008). The ATM pathway responds primarily to double stranded DNA 

breaks (DSBs), and includes downstream effectors such as CHK2 and p53 (Kastan and 

Lim, 2000). The ATR pathway, on the other hand, responds to generation of single 

stranded DNA (ssDNA) which arises from stalled forks or bulky DNA lesions 

(Cimprich and Cortez, 2008). The ATM pathway has been shown to play a role in 

response to oxidative stress, and A-T patients and ATM deficient mice show a 

decreased antioxidant capacity (Barzilai and Yamamoto, 2004). Roles for the ATR 

pathway in response to oxidative stress are less clear. Because oxidative stress can 

cause bulky DNA adducts and stalled replication forks, it is possible that an increase 

in ROS will result in activation of the ATR pathway. The ATR pathway includes other 

components such as the 9-1-1 complex, which includes RAD9, RAD1, and HUS1, and 

downstream effector kinase, CHK1. Inactivation of any component of the ATR 

pathway results in embryonic lethality. HUS1 is an essential component of the 9-1-1 

complex, a PCNA-like, heterotrimeric clamp, which is loaded onto RPA-coated 

ssDNA and acts as a scaffold to facilitate efficient activation of ATR and 

phosphorylation of CHK1. Additionally, the 9-1-1 complex has been shown to interact 

directly with components of the base excision repair (BER) pathway (Chang and Lu, 
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2005; Friedrich-Heineken et al., 2005; Shi et al., 2006; Smirnova et al., 2005; Toueille 

et al., 2004; Wang et al., 2004b; Wang et al., 2006), which responds to DNA damage 

caused by oxidative stress (Mitra et al., 2001).  

Roles for the 9-1-1 complex in response to oxidative stress and in 

tumorigenesis have yet to be well characterized due in part to the fact that inactivation 

of any component of the ATR pathway results in embryonic lethality. In the present 

work, we made use of a previously described Hus1 allelic series, which expresses 

incrementally reduced levels of HUS1 by combining Hus1∆1 allele which is null for 

Hus1 expression, Hus1Neo allele which has a partial defect in Hus1 expression, and 

Hus1+ allele which is normal for Hus1 expression. Hus1Neo/∆1 mice, which have about 

~20% Hus1 expression, allow us to study reduced levels of HUS1 while bypassing the 

embryonic lethality associated with complete germline inactivation of Hus1 (Levitt et 

al., 2007). Here, we describe an essential role for the DNA damage checkpoint protein 

HUS1 in response to oxidative stress. Furthermore, we show the discrepancy between 

the severe phenotype of reduced Hus1 expression in tissue culture and the more mild 

phenotype of reduced Hus1 expression in mice is due to the increased oxidative stress 

associated with atmospheric oxygen levels. However, antioxidants cannot rescue all 

phenotypes of cells with reduced HUS1 levels, including hypersensitivity of Hus1 

hypomorph cells to high doses of aphidicolin, increased micronucleus levels in Hus1 

hypomorph mice, and lethality of Hus1 knockout embryos, suggesting HUS1 plays a 

critical role in response to replicative stress, in addition to oxidative stress response. 

Furthermore, we have shown that antioxidant treatment has little effect on tumor 

growth or tumor regression following DMBA and TPA treatment, but significantly 

decreases malignant progression of skin tumors.  
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4.2 MATERIALS AND METHODS 

Mice: 

Previously described Hus1+/∆1 and Hus1+/Neo mice (Levitt, 2007 #31) were maintained 

on a 129S6 inbred genetic background.  Hus1+/∆1 and Hus1+/Neo mice were bred to 

generate experimental Hus1Neo/∆1 mice, as well as littermate control Hus1+/+, 

Hus1+/Neo, and Hus1+/∆1 mice. To generate Hus1Neo/Neo and control littermates, 

Hus1+/Neo mice were intercrossed. All animals were genotyped by PCR analysis of 

DNA extracted from tail tip biopsies.  Wild-type mice were ordered from Jackson 

Laboratory. Mice were housed in accordance with institutional animal care and use 

guidelines. 

 

Generation of mouse embryonic fibroblasts (MEFs): 

Hus1+/Neo females were crossed to Hus1+/Δ1 males in timed matings and embryos from 

pregnant females were harvested at 13.5dpc.  After differentiated tissues (head, liver, 

and spleen) were removed, the remaining cells were plated in DMEM + 10% FBS, 1% 

non-essential amino acids, 1% l-glutamine, 1% penicillin-streptomycin.  Cells were 

maintained on a 3T3 protocol (Todaro and Green, 1963), and passed every three days. 

 

Antioxidant and Aphidicolin treatment of cells: 

MEFs of the indicated genotypes at passage 1 were treated with N-acetyl-alanine 

(NAA) or N-acetyl-cysteine (NAC) (Sigma) to a final concentration of 5mM in 

DMEM + 10% FBS. Antioxidant or control media was changed daily. Cells were 

passed every three days and population doublings were determined using the formula 

Population doubling=log(nf/no)/log(2), where no is the initial number of cells plated, 

and nf is the final number of cells (Blasco et al., 1997). Metaphase spreads were 

prepared at passages 1, 3, and 5 by treating cells with 0.15µg/ml colcemid for 1 hour, 
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harvesting the cells with trypsinization, swelling cells with hypotonization buffer 

(0.034M KCl and 0.017 sodium citrate), fixing cells with 75% methanol/25% acetic 

acid, dropping cells onto microscope slides, and staining slides with 2% Giemsa stain 

in Gurr buffer. Metaphase spreads were imaged at 100X magnification, and evaluated 

for aneuploidy, breaks, gaps, or acentric chromosomes using standard guidelines 

(Savage, 1976; Standing Committee on Human Cytogenetic Nomenclature. and 

Mitelman, 1995). For aphidicolin survival assays, MEFs of the indicated genotypes 

were treated with the indicated dose of aphidicolin at passage one. The media was 

removed 24 hours later and replaced with media containing either NAA or NAC. Cells 

were fed fresh media again 48 hours after treatment, and cells were harvested by 

trypsinization 72 hours following initial aphidicolin treatment. Surviving cells, as 

determined by trypan blue exclusion, were counted.  

 

Effect of antioxidant treatment on micronucleus formation in Hus1Neo/∆1 mice.  

Hus1Neo/∆1 and control Hus1+ mice were bled and micronucleus levels were analyzed 

as performed by others (Reinholdt et al., 2004). Briefly, peripheral blood was 

collected from the mandibular vein directly into heparin and fixed in cold methanol. 

Cells were co-stained with anti-CD71-FITC (Biodesign International) and propidium 

iodide, and analyzed on a FACSCalibur flow cytometer (Becton-Dickinson). 

Following initial micronucleus measurements, mice were given 0.04M NAC water as 

their sole drinking source, and water was replaced weekly. Mice were reassayed at 1, 

2, and 4 weeks of NAC water treatment. 

 

Effect of antioxidant treatment on Hus1∆1/∆1 embryos: 

Female Hus1+/∆1 mice were bred with Hus1+/∆1 males in timed matings. Plugged 

females were untreated (water alone) or treated with 4mM NAC in water. Water was 
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changed weekly. Remaining water was measured in each bottle to confirm mice were 

consuming equal amounts of water. Embryos were harvested at 9.5dpc, imaged, and 

somites were quantified. The embryos were then fixed in 4% paraformaldehyde, 

dehydrated, paraffin embedded, and sectioned. Sections were rehydrated and stained 

using Feulgen-Schiff protocol, and the percentage of interphase, metaphase, and 

pyknotic cells was determined by cell morphology. Head folds of embryos from 

unstained sections were removed using Laser capture microdissection for genotyping 

by PCR as previously described (Espina et al., 2006).  

 

Effect of antioxidant treatment on papilloma development: 

Singly housed male FVB mice (n = 30) of the same age, ordered from the Jackson 

Laboratory, were shaved and treated with a single dose of DMBA (200nmol in 

acetone). One week later, mice were treated with repeated doses of TPA (5µg in 

acetone) twice weekly for twenty weeks.  65 days after initial DMBA treatment, half 

the mice (n = 15) were given 40mM NAC dissolved in water while the other half (n = 

15) were given water alone, and drinking water was changed once weekly for the 

twenty weeks of treatment. 40mM NAC treatment was calculated based on 1 g 

NAC/kg body weight/day, which was shown to reduce DNA-adduct formation in rats 

exposed to carcinogens (Balansky et al., 1996). Papillomas were counted and 

measured twice weekly. One week and twenty weeks after the start of NAC treatment, 

two and three mice, respectively, from each group were injected with 50ug/g body 

weight BrdU for papilloma proliferation studies. At the conclusion of the study, the 

skin of the mice was harvested, fixed in 4% paraformaldehyde, dehydrated, embedded 

in paraffin, sectioned, stained by hematoxylin and eosin, and evaluated by a 

pathologist. 
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BrdU Immunohistochemistry: 

Skin sections from two or three different mice for each treatment group at each time 

point were prepared and analyzed using the BrdU kit (Zymed-Invitrogen) to assess 

proliferation according to the manufacturer’s directions. Approximately 500 cells in at 

least two fields of vision at 40X magnification were counted per papilloma. Statistical 

analysis was by two-tailed Student’s t-test. 

 

4.3 RESULTS 

4.3.1 Antioxidant treatment rescues the premature senescence and chromosomal 

aberrations of Hus1Neo/∆1 cells, but does not rescue aphidicolin hypersensitivity. 

Previous studies have shown that primary MEFs senesce in cell culture due to the 

increased oxidative stress of hyperoxic atmospheric conditions (~20% oxygen) 

associated with cell culture as compared to nomoxic levels (~3% oxygen) in vivo 

(Parrinello et al., 2003). Because HUS1 is known to respond DNA adducts and may 

play a role in BER, we wanted to test whether the premature senescence observed in 

Hus1Neo/∆1 MEFs is due to sensitivity to oxidative stress. Hus1+/+ or Hus1Neo/∆1 MEFs 

were treated daily with either N-Acetyl-Alanine (NAA) or N-Acetyl-Cysteine (NAC) 

in cell culture media. NAC is a potent antioxidant due to the reactive thiol group 

which can act to neutralize ROS directly, as well as, serve as a precursor for the 

synthesis of glutathione, which acts to detoxify and protect cells from free radicals 

(Zafarullah et al., 2003). NAA, on the other hand, does not have any reactive side 

group, and should have no effect on levels of reactive oxygen species within a cell, 

and serves as a control in our experiments.  

 Primary Hus1Neo/Δ1 MEFs grown in atmospheric oxygen and treated with the 

control compound NAA senesced after 9 days in cell culture, as determined by the 

plateau in population doubling, as compared to Hus1+/+ MEFs derived from the same 
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litter also treated with NAA which did not senesce until after 18 days in culture 

(Figure 4.1 A). Following treatment with NAC, Hus1Neo/Δ1 MEFs did not senesce until 

after 21 days in culture, suggesting the initial premature senesce of these cells after 9 

days in culture was due at least in part to increased oxidative stress associated with 

atmospheric oxygen which is relieved by antioxidant treatment. Hus1+/+ MEFs treated 

with NAC also proliferated for a more prolonged period in cell culture compared to 

Hus1+/+ MEFs in response to oxidative stress from culture conditions at atmospheric 

oxygen, which has been previously reported (Parrinello et al., 2003), but are not as 

sensitive to oxidative stress as Hus1Neo/Δ1 cells. To confirm this premature senescence 

in cells with reduced levels of HUS1 is due impart to oxidative stress, primary Hus1+ 

or Hus1Neo/Δ1 MEFs derived from the same litter, were grown in low oxygen or 

normoxia from the time of initial preparation (Figure 4.1 C). As before, Hus1+ cells 

grew well in atmospheric oxygen and began senescing after 25 days in culture, while 

Hus1Neo/Δ1 cells underwent premature senescence after only 15 days in culture. Hus1+ 

cells were grown in low oxygen conditions grew at a similar rate as Hus1+ cells grown 

in atmospheric oxygen; however, the low oxygen Hus1+ MEFs failed to senesce 

during the time course of the experiment, which has previously been observed 

(Parrinello et al., 2003). Hus1Neo/Δ1 MEFs grown in low oxygen conditions grew 

markedly better than those grown in normal oxygen, though not as well as Hus1+ cells. 

This difference in senesce initiation between Hus1+/+ and Hus1Neo/Δ1 MEFs suggests 

that HUS1 normally plays an important role in response to oxidative stress. 

treated with NAA, suggesting that wild-type cells also undergo senesce  

 In order to evaluate the level of genomic instability in Hus1+/+ and Hus1Neo/Δ1 

cells treated with NAA or NAC, I prepared metaphase spreads at passage 1, 3, and 5 

(Figure 4.1 B). Metaphase spreads at passage 1 exhibited very little DNA damage, 

regardless of the genotype; however, Hus1+/+ cells treated with NAC had no  
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Figure 4.1 Premature senescence and chromosomal aberrations of Hus1Neo/Δ1 cells 

can be rescued by antioxidant treatment, but sensitivity of Hus1Neo/Δ1 cells to a 

high dose aphidicolin cannot be rescued with antioxidant treatment.  (A) Hus1+/+ 

or Hus1Neo/Δ1 MEFs were prepared and treated daily with NAA or NAC media. Cells 

were passed every three days, and population doublings were calculated. (B) 

Representative metaphase spreads from Hus1+/+ or Hus1Neo/Δ1 treated with NAA or 

NAC at passage 3. (C) Hus1+/Neo or Hus1Neo/Δ1 MEFs were prepared and grown at low 

oxygen or normal oxygen conditions. Cells were passed every three days, and 

population doublings were calculated. (D) Hus1+ and Hus1Neo/Δ1 cells treated with 

NAA or NAC were given a single dose of aphidicolin at the indicated concentration, 

and cell survival was measured 24 hours later using a trypan blue exclusion assay. 

Graphs are representative of the three separate primary MEF cell lines tested in each 

assay. [(A)Published in (Levitt et al., 2007);Experiments and Figures by S.A. 

Yazinski] 
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mosomal abnormalities (Table 4.1). At passage 3, where two independently derived 

cell lines were evaluated, Hus1+/+ cells treated with NAA had low levels of damage, 

and these cells had even fewer abnormalities when treated with NAC. On the other 

hand, a majority of Hus1Neo/∆1 cells treated with NAA had a high level of 

chromosomal damage, including instances of extensive damage. Treatment with NAC 

reduced the number of abnormalities to a great extent and this level of damage was 

comparable to the Hus1+/+ cells treated with NAA at the same passage number. 

Thissuggests that the increased level of chromosomal aberrations seen in metaphase 

spreads of Hus1Neo/∆1 MEFs is due to increased oxidative stress from tissue culture 

conditions which results in unrepaired DNA damage. At passage 5, no clear 

metaphase spreads of Hus1Neo/∆1 MEFs treated with NAA could be prepared, 

suggesting cells were not entering metaphase or were not surviving proliferation, 

while metaphase spreads of Hus1Neo/∆1 cells treated with NAC still had a low level of 

chromosomal aberrations (Figure 4.1 C and Table 4.1). This is consistent with the 

population doubling data, which shows that Hus1Neo/∆1 cells enter premature 

senescence at passage 5, while Hus1Neo/∆1 cells treated with NAC continue to 

proliferate until passage 7. Together, these results suggest that HUS1 plays a critical 

role in response to oxidative stress in order to maintain genomic integrity.  

 We next set out to test whether antioxidant treatment would reduce the 

sensitivity of Hus1Neo/∆1 cells to aphidicolin. Hus1Neo/∆1 cells had previously shown 

sensitivity to DNA damaging agents and replication inhibitors, such as aphidicolin, 

which acts by inhibiting Polα, and results in stalled replication forks (Levitt et al., 

2005). Because HUS1 acts at the site of stalled forks, severe depletion of HUS1 could 

result in fork collapse and cell death. It is possible that the increased cell death 

following aphidicolin treatment is due to the compounding effects of the replication 

inhibitor and oxidative stress due to hyperoxic oxygen levels. The atmospheric oxygen 
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level may create a sensitized background in Hus1Neo/∆1 cells, which then results in 

increased cell death following aphidicolin treatment compared to Hus1+/+ cells. To test 

this, I treated Hus1+ and Hus1Neo/∆1 cells with NAA or NAC, followed by a single dose 

of aphidicolin. Cell survival was assessed 72 hours later using trypan blue exclusion 

assay. Following treatment with a low dose of aphidicolin (0.3µM), Hus1+ cells did 

not show any decreased cell survival when compared with vehicle alone, while 

Hus1Neo/∆1  cells showed hypersensitivity to aphidicolin at this dose (Figure 4.1 D). 

Treatment with NAC rescued the hypersensitivity of Hus1Neo/∆1 cells to a low dose of 

aphidicolin, suggesting that atmospheric oxygen sensitizes Hus1Neo/∆1 cells to 

treatment with the replication inhibitor. Following treatment with a high dose of 

aphidicolin (1.0µM), survival of Hus1+ cells dropped to ~50%, but was slightly higher 

after treatment with NAC, with survival at ~65%. At this high dose of aphidicolin, 

Hus1Neo/∆1 cells showed decreased survival (~30%) relative to Hus1+ cells. This 

enhanced sensitivity to a high dose of aphidicolin was not rescued by treatment with 

NAC, and survival of Hus1Neo/∆1 cells still remained low (~30%). This suggests that 

the limited amount of HUS1 in Hus1Neo/∆1 cells is not enough to respond to the level of 

genomic instability incurred by a high dose of aphidicolin, and that all defects seen in 

Hus1Neo/∆1 cannot be attributed to hypersensitivity to oxidative stress alone. 

 

4.3.2 Mice with reduced levels of HUS1 show an increase in micronucleus 

formation that cannot be rescued by treatment with an antioxidant. Because cells 

with reduced levels of HUS1 were found to be hypersensitive oxidative stress, which 

resulted in chromosomal aberrations in culture, we next wanted to determine if 

antioxidant treatment could rescue the genomic instability seen in mice with reduced 

levels of HUS1. Hus1Neo/∆1 mice have an increased level of micronuclei compared to 

Hus1+ mice (Levitt et al., 2007). Normally, red blood cells expel their nucleus as they 



 

121 

reach full maturity, resulting in an anucleated cell. However, mice with heightened 

chromosomal instability form micronuclei, acentric fragments of chromosomal DNA 

due to the chromosomal instability. This fragment is then retained in the mature red 

blood cell. The percentage of red blood cells that retain a micronucleus reflects the 

level of genomic instability. To quantify this population, cells isolated from peripheral 

blood were double labeled with CD71, which labels reticulocytes and erythrocytes 

progenitor cells, and propidium iodide (PI), which labels DNA (Reinholdt et al., 

2004). These cells were run through FACS, and CD71- PI+ cells, which are mature 

erythrocytes that still retain DNA, were gated. 

 To test whether antioxidant treatment could reduce the level of genomic 

instability in Hus1Neo/∆1 mice, we treated Hus1+ (n = 6) and Hus1Neo/∆1 (n = 4) mice 

with 0.04M NAC in their drinking water, and monitored changes in the micronucleus 

level overtime for each mouse. As expected, following initial bleeds, Hus1+ mice had 

a low level of micronucleus formation (0.153%) while Hus1Neo/∆1 mice had a much 

higher initial level of micronuclei (0.408%) (Table 4.2). To determine how this level 

changed over time, a ratio of initial micronucleus level to final micronucleus level was 

determine for each mouse at 1 week, 2 weeks, and 4 weeks after the start of NAC 

treatment, with NAC water being changed every week. The ratio of change was 

averaged for each genotype and plotted (Table 4.2 and Figure 4.2). Although Hus+ 

mice began with low micronucleus levels (0.153%), the level actually became lower 

over time (0.113% at 4 weeks after the start of NAC treatment) after 4 weeks of NAC 

treatment. The micronucleus level of Hus1Neo/∆1 mice did not change following NAC 

treatment suggesting that NAC treatment did not relieve the increase in genomic 

instability seen in peripheral red blood cells. The average micronucleus levels of 

Hus1+ mice did decrease over the four week NAC treatment, suggesting that 
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antioxidant treatment did have a positive effect on decreasing the low level genomic 

instability in these mice.  

 

4.3.4 Embryonic lethality caused by Hus1-deficiency is not rescued by 

antioxidant treatment in utero. Because cells with reduced HUS1 levels were found 

to be hypersensitive to oxidative stress, which could then be rescued by treatment with 

antioxidant treatment (Figure 4.1), we next set out to test if antioxidant treatment 

could partially rescue the embryonic lethality seen in Hus1∆1/∆1 embryos, which are 

null for Hus1 expression. Hus1∆1/∆1 embryos die mid-gestationally with elevated levels 

of apoptosis due to a high level of genomic instability. Previous studies have shown 

that the genomic instability resulting from a deficiency in ATM, another DNA damage 

checkpoint protein, can be rescued by antioxidant treatment. ATM-null mice treated 

with NAC in utero showed a decrease in oxidative stress, in DNA deletions, in 

neurobehavioral defects, and in tumor incidence, all which are normally elevated in 

ATM-deficient mice (Browne et al., 2004; Reliene et al., 2004; Reliene and Schiestl, 

2006; Schubert et al., 2004). This prompted us to test whether treatment of Hus1-null 

embryos with NAC in utero can partially rescue the heightened level of apoptosis. 

 Hus1+ (which includes both Hus1+/+ and Hus1+/∆1) and Hus1∆1/∆1 embryos were 

untreated or treated with NAC throughout gestation. The embryos were harvested at 

8.5dpc, embedded, sectioned, and stained by Feulgen-Schiff technique (Figure 4.3 A 

and B). Embryos were genotyped by Laser microdissection using unstained, sectioned 

tissue from the headfold. Stained cells from the headfold of the embryos were scored 

as interphase, mitotic, or apoptotic by morphology. As expected, untreated Hus1∆1/∆1 

embryos had a marked increase in apoptotic cells (11%) compared to levels of Hus1+ 

embryos (1%). There was no change in the distribution of cells in Hus1+ cells 

following NAC treatment, with a similar level of mitosis (7%) and apoptosis (1%)  
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Figure 4.2 The heightened level of micronucleus in Hus1Neo/Δ1 mice is not rescued 

by antioxidant treatment.  Peripheral blood from Hus1+/+ or Hus1Neo/Δ1 mice was 

collected and sorted for erythrocytes containing micronucleus DNA, and this initial 

measurement served as a baseline. Mice were then placed on 0.04M NAC water as 

their sole water source. Micronucleus levels were measured at 1, 2, and 4 weeks after 

antioxidant treatment began, and the final/initial micronucleus level was calculated. 

Micronucleus levels remained high in Hus1Neo/Δ1 mice, even following 4 weeks of 

NAC treatment. [Experiment and figure by S.A. Yazinski] 
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following the antioxidant treatment. Hus1∆1/∆1 embryos also showed no improvement 

in morphology (Figure 4.3 B) or levels of apoptosis (Figure 4.3 C) following NAC 

treatment. NAC treated Hus1∆1/∆1 embryos were as underdeveloped as untreated 

Hus1∆1/∆1 embryos and had elevated levels of apoptosis (9%), indicating that NAC 

treatment did not have a rescuing effect on Hus1-deficient embryos. These data 

suggest a fundamental role for HUS1 in embryonic development apart from response 

to oxidative stress. 

 

4.3.5 Effect of NAC treatment on papilloma development following a two-step 

carcinogenesis treatment.  Both tumor initiation and development have shown to 

result in an increase in oxidative stress in transformed cells, which can result in 

increased DNA damage (Benhar et al., 2002; Klaunig et al., 2010). This increased 

oxidative stress may provide a mechanism for an increased mutation rate that can aid 

tumor development. Based on this reasoning, antioxidant treatment before or during 

tumorigenesis has been shown to have an effect on cancer treatment and progression 

(Zafarullah et al., 2003). However, NAC treatment has also been shown to be anti-

apoptotic and promote growth and survival, and may act to enhance tumorigenesis.  

In order to determine the effect of antioxidant treatment following transformation, we 

made use of the well-characterized carcinogen-induced skin papilloma model of 

tumorigenesis (Yuspa, 1994). In this experiment, wild-type mice of the same age were 

shaved and treated with 12-7-dimethylbenz(a)-anthracene (DMBA) and 12-O-

tetradecanoylphorbol-13-acetate (TPA) to induce skin papillomas. Because these mice 

were all of the same age, hair cycle should be synchronized among these mice and 

should not generate differences in papilloma growth. DMBA causes specific A-T 

transversions at the second nucleotide of codon 61 of the Harvey-ras (H-ras) gene,  
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Figure 4.3 NAC treatment cannot rescue the increased apoptosis seen in Hus1Δ1/Δ1 

embryos.  Hus1+/Δ1 female mice were placed on bottled water or 0.04M NAC water, 

and then were bred to Hus1+/Δ1 mice to generate Hus1+/+, Hus1+/Δ1, and Hus1Δ1/Δ1 

embryos. Representative (A) Hus1+/+ and (B) Hus1Δ1/Δ1 embryos at day 9.5 dpc stained 

by Feulgen-Schiff technique taken at low magnification (upper panels) or high 

magnification (lower panels).  Embryos on the left of each panel were harvested from 

females that were given water, while embryos on the right of each panel were 

harvested from females that were given NAC water. Arrow heads in panel B indicate 

pyknotic nuclei. (C) Interphase, mitotic, and apoptotic cells from the head folds of 

embryos from Hus1+ (n = 8) and Hus1Δ1/Δ1 (n = 5) embryos treated with water, or from 

Hus1+ (n = 9) and Hus1Δ1/Δ1 (n = 7) embryos treated with NAC, were quantified based 

on morphology. [Experiments (NAC treatment, timed matings, dissections, and 

genotyping) and figures by S. Yazinski; experiments (embedding, sectioning, staining, 

counting, and genotyping) by A. Ramanathan] 
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Figure 4.3 (Continued) 
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resulting in H-ras activation, and is a well-characterized tumor initiator (Quintanilla et 

al., 1986). TPA is potent tumor promoter that acts through activation of protein kinase 

C (PKC) (Angel et al., 1987). DMBA is applied once to the skin, while TPA is applied 

twice weekly for twenty weeks, resulting in skin papilloma formation. After tumor 

growth had begun, 65 days post DMBA treatment, mice were divided into two groups, 

a control group which received normal bottled water, and a treatment group, which 

received NAC water. This time point allowed us to determine that all mice had in fact 

begun developing tumors. However, NAC 65 days after initiation of tumor growth 

precludes us from understanding the role of antioxidant treatment on prevention of 

initiation.  Because NAC can break down over time, the water for both groups was 

changed weekly. Papilloma number and size was documented. At the conclusion of 

the experiment, there was no significant difference in papilloma number or size due to 

NAC treatment (Figure 4.4 A).  

In order to determine if there was a change in tumor growth, either acute or 

progressive, following NAC treatment, skin samples containing papillomas from 

control mice or mice treated with NAC were harvested following administration of 

BrdU at one week or 20 weeks after NAC treatments began. Sections from papillomas 

were sectioned and stained, and BrdU positive cells were quantified (Figure 4.4 B). 

There was no significant difference in proliferation rates of papillomas after one week 

or 20 weeks of NAC treatment, suggesting that antioxidant treatment alone does not 

alter papilloma proliferation.  

  In order to determine the effect of antioxidant treatment on tumor progression, 

H&E stained sections were prepared from the papillomas of all mice at the conclusion 

of the experiment. Papillomas from mice treated with NAC progressed to malignancy 

at a significantly lower frequency than papillomas from mice that were fed water alone 

(p < 0.001) (Table 4.3). This suggests that antioxidant treatment can decrease the 
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malignant progression of skin tumors. This is further supported by data in other model 

systems which suggest that antioxidants can reduce angiogenesis and inflammation 

associated with tumor growth, which then prevents tumor progression (Zafarullah et 

al., 2003).  
 

4.4 DISCUSSION 

 DNA damage checkpoint proteins play a key role in response to oxidative stress, 

which can be toxic to cells and result in diseases, such as cancer, in organisms. In 

order to determine what role the DNA damage checkpoint protein HUS1 plays in 

response to oxidative stress, we have made use of the Hus1 allelic series to reduce the 

levels of HUS1. Primary Hus1Neo/Δ1 cells senesce rapidly under standard culture 

conditions, which is hyperoxic compared to physiological oxygen levels (Levitt et al., 

2007). This premature senescence can be relieved by treatment with a potent 

antioxidant, NAC, or by growth in low oxygen conditions, suggesting that HUS1 

normally plays a critical role in response to oxidative stress (Figure 4.1 A). ROS can 

result in the formation of 8-oxo-dG, which if unrepaired, can result in G→T 

transversions, and permanent mutations which can have detrimental effects on a cell 

and an organism.  Base excision repair (BER) machinery specifically can recognize 

and repair oxidative lesions to prevent mutations. The 9-1-1 complex has been shown 

to interact with components of BER, which may be one reason cells deficient for Hus1 

have an increased sensitivity to oxidative stress. Additionally, the 9-1-1 complex is 

known to stabilize replication forks, which may become stalled in hyperoxic 

conditions, due to bulky DNA lesions or breakdown of other important 

macromolecules. The lack of HUS1, and thus the lack of functional 9-1-1 complex, 

may result in increased fork collapse and double stranded breaks (Branzei and Foiani; 

Zhu and Weiss, 2007). This is further supported by the chromosomal instability seen  
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Figure 4.4 No significant difference in papilloma number or size in wild-type 

mice treated with NAC and no significant change in proliferation rate within 

papillomas.  30 wild-type FVB mice of the same age were shaved and treated with a 

single dose of DMBA followed by repeated doses of TPA for 20 weeks. After visible 

papillomas began to form 65 days after DMBA treatment, mice were divided into two 

groups with half the mice were placed on 0.04M NAC water as their sole water 

source, while half the mice were placed on normal bottled water. This antioxidant 

water was changed weekly. (A) Papilloma number and size were measured twice 

weekly. There was no significant difference between papilloma number (p = 0.191) or 

size (p = 0.361) between non-treated and NAC treated mice as assessed by mixed 

model analysis (linear regression with covariant structure). (B) Representative images 

of BrdU staining in papillomas of non-treated and NAC treated mice at 10X and 40X 

magnification. (C) Quantification of BrdU staining in papillomas of control (n = 4 

papillomas from 2 mice) and NAC treated (n = 4 papillomas from 2 mice) mice 

following acute NAC treatment, and quantification of BrdU staining in large 

papillomas of control (n = 4 papillomas from 2 mice) and NAC treated (n = 6 

papillomas from 3 mice) mice 20 weeks after the start of NAC treatment. At least two 

sections were counted for each papilloma. There was no significant differences in 

proliferation between control and NAC treated papillomas at 1 week (p = 0.388) or at 

20 weeks (p = 0.344) by two-tailed Students t-Test. [Experiments and figures by S.A. 

Yazinski] 
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Figure 4.4 (Continued) 
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Figure 4.4 (Continued) 
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Table 4.3 Summary of histological evaluation of papillomas arising from a two-
step skin carcinogenesis treatment in wild-type FVB mice treated with water or 
NACa 
 

Treatment Non-Malignant Malignant Total 
NAC 77 13 90 
Water 42 38 80 
Total 119 51 170 

 
aSections of skin papillomas of wild-type FVB mice with (n = 15) or without (n=15) 

treatment of NAC in their drinking water were H&E stained and evaluated for 

malignancy by a pathologist. A malignant tumor was determined as a papilloma with 

non-defined borders with cells that had begun to migrate below the basal epidermal 

layer. Mice that were given antioxidant supplement in their drinking water had 

significantly fewer papillomas progress to malignancy than control mice that received 

only water (p < 0.001 by Pearson Chi-Square). [Experiment by S.A. Yazinski; 

Malignancy evaluated by R. Peters]  
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in metaphase spreads prepared from Hus1Neo/Δ1 cells that were not treated with NAC 

(Figure 4.1 B). Additionally, antioxidant treatment was able to rescue the 

hypersensitivity of Hus1Neo/Δ1 cells to low doses of aphidicolin, a replication inhibitor, 

suggesting that DNA damage from oxidative stress occupies the available HUS1, 

sensitizing these cells to aphidicolin treatment. However, when the oxidative stress is 

relieved, Hus1Neo/Δ1 cell have enough HUS1 to cope with aphidicolin inhibition of 

replication. However, when the system is overloaded with replication inhibitor, 

Hus1Neo/Δ1 cells no longer have enough HUS1 to stabilize stalled forks, resulting in 

cell death. 

 This rescue of genomic instability by antioxidant treatment seen in Hus1Neo/Δ1 

cells with severe replication defects in culture (Figure 4.1) suggested that antioxidant 

treatment of Hus1Neo/Δ1 mice may reduce the high level of genomic instability in vivo, 

as assessed by micronucleus assay. However, NAC treatment of Hus1Neo/Δ1 mice in 

drinking water was not able to reduce micronucleus levels (Figure 4.2). This may be 

because the NAC may be metabolized in such a way that the antioxidant does not 

reach the erythroid progenitor population. Also, NAC may have a more long term 

effect that was not detected in our assay which only measured micronucleus in 

erythrocytes out to 28 days (4 weeks) after NAC treatment, while the turn over rate for 

erythrocytes in mice is about 60 days (Walker et al., 1984). Alternatively, this may be 

because the genomic instability of Hus1Neo/Δ1 mice assessed by micronucleus assay is 

not due to oxidative stress, but rather, due to another defect resulting from inadequate 

levels of HUS1, such as increased replication stress in proliferative tissues. That 

HUS1 has additional functions beyond responding to oxidative stress was further 

confirmed by treatment of Hus1Δ1/Δ1 embryos with antioxidants in utero which has no 

effect on levels of apoptosis and embryonic lethality (Figure 4.3). Again, this critical 

requirement for HUS1 during embryonic development, even when levels of ROS are 



 

137 

decreased, further supports the idea that HUS1 is plays an important role in response 

to replication stress and stalled forks during high rates of proliferation.  

 Because antioxidant treatment had such a remarkable effect on genomic 

instability in cell culture (Figure 4.1), we wanted to determine what effect NAC 

treatment would have on the growth of tumors, which have been shown to have 

increased genomic instability. Antioxidants did not significantly alter the number or 

size of tumors that developed; however, NAC treatment did significantly reduce the 

number of papillomas that progressed to malignancy (Figure 4.4). It is not surprising 

that antioxidant treatment, which was given after tumor initiation, did not halt tumor 

growth or result in tumor regression, as the mutation in H-ras from DMBA treatment 

is permanent, and TPA, which promotes tumor development, is still continually 

delivered. Antioxidant treatment did not affect the tumor cells themselves, as 

proliferation rates between treated and untreated tumors were not significantly 

different. However, antioxidant treatment was able prevent malignant progression, 

despite continuous applications of TPA. This may be due to a reduction in 

inflammation or angiogenesis due to NAC treatment (Zafarullah et al., 2003), which 

then prevents tumor cell invasion and metastasis (Makrilia et al., 2009; Moore et al., 

2010). By this reasoning, the antioxidant treatment does not affect the tumor growth 

itself, but rather acts on surrounding cells to prevent malignant progression. On the 

other hand, NAC may also prevent further oxidative damage to the tumor cells 

themselves. In this way, NAC would prevent mutations in tumor cells required for 

malignant progression and impede aggressive tumor growth.  These ideas are 

validated by studies which have found decreased malignancy in certain tumors 

following NAC treatment (Estensen et al., 1999; Goldman et al., 2000; Kawakami et 

al., 2001). Our results indicate a beneficial effect of NAC treatment following tumor 

initiation; however, our study did not determine the long term effect of NAC treatment 
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prior to tumor initiation. Because tumors have high levels of oxidative stress and 

genomic instability, NAC treatment prior to initiating events may actually lower the 

stress in cells undergoing transformation, and allow cells to become transformed more 

efficiently. Additionally, this lower stress level may also allow cancer cells to grow 

more aggressively. Further studies are needed to better understand the role antioxidant 

treatment plays in tumor initiation and development. 
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CHAPTER 5 

SUMMARY, MODELS, AND FUTURE DIRECTIONS 

 

 The ATR DNA damage checkpoint pathway is essential and responds to 

various DNA lesions which result in single stranded DNA. HUS1 is an indispensable 

component of the ATR pathway, and germline deletion of Hus1 results in embryonic 

lethality (Weiss et al., 2000). Conditional inactivation of Hus1 in cultured cells had 

previously been shown to result in genomic instability, increased chromosomal breaks 

at common fragile sites, proliferation defects, and apoptosis that cannot be rescued by 

inactivation of p53 (Zhu and Weiss, 2007). Reduced expression of wild-type HUS1 

also resulted in increased genomic instability and chromosomal aberrations in culture, 

as well as sensitivity to DNA damaging agents (Levitt et al., 2007). Taken together, 

these data suggest HUS1 acts to maintain genomic integrity in order to allow 

proliferation and survival of cultured cells under normal conditions and in response to 

DNA damaging agents.  This suggests that HUS1 may also play a role in tumor 

suppression, as an increase in genomic instability correlates with tumor susceptibility. 

 

5.1 An essential role for HUS1 in mammary gland development and tissue 

homeostasis 

In order to determine the role of HUS1 in tumorigenesis, we made use of a 

conditional Hus1 knockout mouse to inactivate Hus1 in the mouse mammary gland. 

This allowed us to bypass the embryonic lethality of germline inactivation while 

studying the consequences of deletion of Hus1 at a specific time and tissue. We found 

that Hus1-null cells were not present and that levels of DNA damage and apoptosis 

were elevated in conditional Hus1 knockout mammary glands. However, conditional 

Hus1 knockout mammary glands appeared grossly normal. This suggested that Hus1-
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null cells were being cleared from the mouse mammary gland by apoptosis due to 

increased genomic instability and DNA damage. Hus1 loss resulted in cell death, 

rather than tumorigenesis. However, clearance of these Hus1-null cells may have 

promoted compensatory proliferation of surrounding Hus1-retaining cells, as there 

were no morphological defects following clearance of a large number of cells from the 

mammary gland. This may be due to compensatory signaling from other DNA damage 

proteins that recognize the severe DNA damage in Hus1-null cells and induce 

apoptosis to prevent tumorigenesis (Figure 5.1). 

We next set out to determine if loss of p53 could prevent apoptosis and 

clearance of Hus1-null cells from the mammary gland. Conditional Hus1 knockout, 

p53-deficient mammary glands retained Hus1-null cells, suggesting that p53 normally 

induces apoptosis in response to Hus1-deficiency-induced DNA damage and promotes 

clearance of these cells. Surprisingly, the levels of DNA damage and apoptosis were 

significantly higher in conditional Hus1 knockout mammary glands in the absence of 

p53. This may be due to delayed induction of apoptosis to a narrow window of time in 

a p53-deficient setting or lack of clearance of these damaged cells. Furthermore, 

retention of Hus1-null cells was accompanied by severe morphological abnormalities 

in the mammary gland, resulting in nursing defects of conditional Hus1 knockout, 

p53-deficient mice. The cause of this loss of tissue homeostasis has yet to be 

determined. A dominant inhibitory signal from apoptotic cells remaining in the 

mammary gland may prevent compensatory growth. Alternatively, clearance of 

apoptotic cells may act as a positive growth signal in normal conditions, and, because 

apoptotic cells are not cleared from conditional Hus1 knockout mammary glands, 

there may not be a positive growth center for regeneration. This shows that a 

combined loss of Hus1 and p53 results in loss of tissue homeostasis, but does not 

result in tumorigenesis. Furthermore, these data suggest that loss of Hus1 is not likely 
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Figure 5.1 Model for interaction between Hus1 and p53 in maintenance of tissue 

homeostasis in the mouse mammary gland. Conditional Hus1 inactivation is 

achieved in the mammary gland of pregnant mice using Cre-recombinase expression 

driven by the Blg promoter sequence. Following Hus1 inactivation, cells experience 

increased genomic instability, resulting in DNA damage and cell death. Clearance of 

these cells may signal for compensatory proliferation, as this level of cell death does 

not result in morphological abnormalities, resulting in a functional mammary gland. 

Following Hus1 inactivation in the absence of p53, there is a greater increase in DNA 

damage and, surprisingly, a greater increase in apoptosis. This may be due to a failure 

to clear dead cells or delayed apoptosis occurring in a more narrow window of time. 

This retention or increase in apoptotic cells in the mammary gland resulted in failed 

tissue regeneration and striking morphological abnormalities that were not compatible 

with milk production or with nursing pups. Overall, these results establish an essential 

role for Hus1 in the survival and proliferation of mammary epithelium and identify a 

novel role for p53 in mammary gland tissue regeneration and homeostasis.  
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to contribute to tumorigenesis, and, in fact, may sensitize p53-null cells, which are 

generally resistant to apoptosis, to cell death. This may be because inactivation of p53 

results in genomic instability, which, when combined with Hus1-inactivation, elevates 

the level of DNA damage to level which induces p53-independent apoptosis. 

 

5.2 Reduced HUS1 levels result in impaired tumorigenesis 

While complete Hus1 inactivation results in severe genomic instability which 

is not compatible with cellular survival, this does not exclude the possibility that 

partial reduction in HUS1 levels, which also results in genomic instability, may have a 

different effect on tumorigenesis. Cells with a partial reduction in Hus1 expression 

have increased levels of genomic instability and are sensitive to DNA damaging 

agents (Levitt et al., 2007). However, mice expressing reduced levels of HUS1 

(Hus1Neo/Δ1 mice) are grossly normal and are born at expected frequencies (Levitt et 

al., 2007), making them an ideal tool to study the effect of reduced levels of HUS1 on 

transformation and subsequent tumorigenesis. In preliminary experiments, Hus1Neo/Δ1 

cells, despite a higher basal level of genomic instability, showed a decreased 

probability of becoming transformed as measured by focus formation assays and soft 

agar assays. To better understand the effect of reduced HUS1 on tumorigenesis, 

Hus1Neo/Δ1 mice were subjected to two-step skin carcinogenesis protocol which 

induces skin papillomas. In agreement with the cell culture data, Hus1Neo/Δ1 mice 

developed fewer and smaller papillomas than control littermates. The reduced 

papilloma development in Hus1Neo/Δ1 mice was not associated with sensitivity to either 

DMBA or TPA treatment, the chemicals which induce and promote tumor 

development, respectively. Taken together, the cell culture transformation assays and 

the skin tumorigenesis study suggest that reduced levels of HUS1 inhibit 

tumorigenesis (Figure 5.2).  
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Figure 5.2 Model for reduced Hus1 expression resulting in reduced skin 

papilloma formation. Hus1+ mice, with wild-type levels of Hus1, and Hus1Neo/Δ1 

mice, with reduced levels of Hus1, were treated with a single dose of DMBA to induce 

tumor development, and were treated with TPA twice weekly for twenty weeks to 

promote tumor development. A small number of Hus1Neo/Δ1 mice developed 

papillomas with a shorter latency than Hus1+ mice, perhaps due to a higher basal level 

of genomic instability resulting in HusNeo/Δ1 skin cells being more ready transformed. 

However, at the conclusion of 20 weeks, HusNeo/Δ1 mice had significantly fewer 

papillomas than Hus1+ mice. We hypothesize this is due to a requirement for Hus1 in 

order for cells to survive transformation and to undergo oncogene-induced 

proliferation.  
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5.3 Model for the effect of reduced HUS1 levels on tumorigenesis.  

The data presented here, along with previous data from our lab and others, 

allow us to formulate a model for the effect of reduced levels of HUS1 on 

tumorigenesis. Complete inactivation of Hus1 results in severe genomic instability, 

which may not be compatible with rapid proliferation, such as that which occurs 

during tumor growth. This is supported by the fact that germline inactivation of Hus1 

results in embryonic lethality, suggesting HUS1 is essential during rapid embryonic 

proliferation. Furthermore, HUS1 is necessary for survival of rapidly proliferating 

mammary gland epithelial cells, as Hus1-deficient cells are cleared from the mammary 

gland during pregnancy. Additionally, conditional Hus1 inactivation in cultured cells 

results in delayed S-phase progression, increased DNA breaks at common fragile sites, 

and increased apoptosis. Taken together, these data suggest that Hus1 inactivation 

likely does not contribute to tumor initiation and growth, as rapid proliferation in the 

absence of Hus1 results in cell death. 

 A partial defect in Hus1 expression has a different cellular phenotype than 

complete Hus1 inactivation. Hus1Neo/Δ1 mice, which express only 20% wild-type 

Hus1, are grossly normal and born at expected frequencies, suggesting that this level 

of Hus1 expression permits embryo growth and normal mouse development. Overall, 

Hus1Neo/Δ1 mice have only mild phenotypes, such as increased sensitivity to some 

DNA damaging agents as well as a higher level of micronucleus formation. These 

characteristics indicate that these mice have a higher basal level of genomic instability, 

but that these genome maintenance defects have little effect on an unstressed mouse, 

as Hus1Neo/Δ1 mice show no increase in spontaneous tumor development. Hus1Neo/Δ1 

cells exhibit more severe phenotypes than Hus1Neo/Δ1 mice, including increased 

genomic instability, premature senescence, and hypersensitivity to DNA damaging 

agents and oxidative stress. When HusNeo/Δ1 cells were tested in transformation assays, 
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there were variable results between immortalized cell lines, though these cells are less 

able to be transformed overall. This variability between cell lines may be due to 

mutations incurred during the transformation process, and variability decreased as the 

stringency of the assay increased. This decreased ability of cells with reduced levels of 

HUS1 to undergo transformation was further confirmed in vivo, as Hus1Neo/Δ1 mice 

developed fewer and smaller skin papillomas following a two-step skin carcinogenesis 

treatment. These results suggest that the high level of genomic instability in Hus1Neo/Δ1 

mice is compatible with normal cell proliferation, but cannot support the rapid 

proliferation of neoplastic transformation. Hus1Neo/Neo mice, with a less severe 

reduction in Hus1 expression, show an intermediate phenotype, developing more 

papillomas than Hus1Neo/Δ1 mice, but fewer than Hus1+. This suggests that the ability 

of cells be transformed directly relates to the level of Hus1 expression. Taken together, 

these experiments demonstrate that transformed cells may require HUS1 in order to 

survive the stress of oncogene-induced proliferation (Figure 5.3). 

 Hus1 is an essential checkpoint protein that is critical for response to 

replication and oxidative stresses. The process of transformation results in increased 

oxidative stress as well as increased proliferation. Without sufficient levels of HUS1, 

cells cannot survive these stresses of transformation and neoplastic proliferation. 

However, this effect may be tissue specific. Some tissues have more tolerance for loss 

of HUS1, and HUS1 may not be required for transformation of these tissue types. This 

may be because of a more prominent function of other redundant checkpoint proteins, 

such as those of the ATM pathway or DNA-PK, in these tissues. Therefore, reduced 

levels of HUS1 may not result in decreased tumorigenesis in every tissue type. This 

effect may also depend on interactions with other DNA damage proteins. Tumors 

which are initiated by mutations in other DNA damage checkpoint proteins, rather 

than initiated by oncogenes, may not be sensitive to Hus1-loss. For example, reduced 
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Figure 5.3 Model for the effect of reduced Hus1 on transformation. Cells 

expressing wild-type levels of Hus1 have normal checkpoint mechanisms in place, and 

have no genome maintenance defects. Despite normal checkpoint function, a certain 

number of these cells become transformed after addition of two oncogenes as 

measured by cell culture transformation assays. Accordingly, a certain number of cells 

of Hus1+ mice also become transformed after a two-step skin carcinogenesis 

treatment, resulting skin papilloma formation. On the other hand, Hus1Neo/Neo and 

Hus1Neo/Δ1 cells have a higher basal level of genomic instability. Despite this, cells are 

less readily transformed as measured by cell culture transformation assays. Hus1Neo/Neo 

and Hus1Neo/Δ1 mice also develop fewer skin papillomas following DMBA and TPA 

treatment. Additionally, the level of Hus1 expression correlates with the level of 

tumorigenesis and is inversely related to the level of genomic instability, such that the 

low level of Hus1 expression results in a small number of papillomas, but very high 

levels of genomic instability. Complete germline inactivation of Hus1 results in 

embryonic lethality due to severe genomic instability. Similarly, complete conditional 

Hus1 inactivation also results in increased DNA damage and apoptosis, but does not 

cause tumor development. Taken together, this points to an essential role for Hus1 in 

survival of transformation and in neoplastic proliferation. 
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levels of HUS1 does not affect lymphoma incidence promoted by loss of p53 (Levitt 

et al., 2007) or ATM (Balmus, et al., manuscript in preparation). In order for reduced 

levels of HUS1 to result in decreased tumorigenesis, cells may require the remaining 

DNA damage checkpoint proteins to be in place in order to respond to the damage 

resulting from Hus1 loss to induce senescence or apoptosis, and prevent 

tumorigenesis.  

  

5.4 Model for the role of the ATR pathway in tumorigenesis. 

  The results described here, along with results from other labs describing other 

components of the ATR pathway, provide insight into the roles of the ATR in 

prevention of genomic instability, in maintenance of tissue homeostasis, and in tumor 

suppression. Some reports suggest that inactivation of or mutations in the ATR 

pathway may result in increased tumorigenesis due to genomic instability. Several 

components of the ATR pathway, such as ATR, CHK1, RAD9, and RAD1, have been 

suggested to be haploinsufficient for tumor suppression (Fang et al., 2004; Hu et al., 

2008; Lam et al., 2004; Liu et al., 2000). While other reports suggest that impairment 

of the ATR pathway results in a heightened levels of genomic instability that is 

incompatible with hyper-proliferation resulting in decreased tumor development (Cho 

et al., 2005; Jardim et al., 2009; Kinzel et al., 2002; Luo et al., 2009; Luo et al., 2001; 

Yuki et al., 2008; Zhu et al., 2008).  The dependence on the ATR pathway for 

proliferation is seen clearly during embryogenesis, as inactivation of any component 

of the ATR pathway is not compatible with life (Brown and Baltimore, 2000; 

Budzowska et al., 2004; Han et al.; Hopkins et al., 2004; Liu et al., 2000; Takai et al., 

2000; Weiss et al., 2000). Additionally, there are several examples of increased 

expression of checkpoint proteins in human tumors, suggesting that tumors have an 

increased dependency on these factors (Cheng et al., 2005; de la Torre et al., 2008; 
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Madoz-Gurpide et al., 2007; Verlinden et al., 2007; Zhu et al., 2008). Reducing 

expression of several components of the ATR pathway has a tumor preventative 

phenotype and also sensitizes tumor cells to therapeutic treatments. 

 These conflicting reports may be due to tissue specific requirements for DNA 

damage responsive elements. For example, certain cell types of cancer origin may 

have less dependence on components of the ATR pathway for survival, such as certain 

types of prostate cancers, endometrial cancers, colon cancers, and stomach cancers. 

For these types of cancer, a lower level of components of the ATR pathway would 

result in genomic instability and higher mutation rate that would be advantageous to 

the rapidly dividing tumor cells. While other cell types of cancer origin may have a 

greater dependence on components of that ATR pathway, such as breast cancers, some 

types of prostate cancer, ovarian cancers, and some colon cancers. For these types of 

cancers, lower levels of Atr expression are not compatible with rapid proliferation, and 

results in cell death following oncogene activation or transformation due to the 

increased stress and genomic instability. 

 The extent of reduced expression of each checkpoint protein may also have an 

effect on tumorigenesis. Heterozygosity for components of the ATR pathway, 

expressing only half the wild-type level, may result in a modest increase in genomic 

instability, which may result in increased mutation rate and accelerated tumorigenesis. 

A more drastic decrease in checkpoint expression can result in severe genomic 

instability. This, in combination with the increased stress level of replication and 

oxidative stress associated with neoplastic proliferation, may result in DNA damage 

incompatible with cell survival.  Thus, an extreme decrease in protein expression of 

certain checkpoint proteins may actually prevent tumorigenesis, while having very 

little effect on normal cells which are proliferating at a slower rate and retain other 

redundant, though less vital, checkpoint pathways. 
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 While there are many indicators that inhibitors of checkpoint proteins in the 

ATR pathway may be effective in treatment of cancer, the effect of checkpoint 

inhibition on specific cell type and the level of inhibition must be more clearly 

understood, so as to prevent tumor promotion. Additionally, the consequences of 

inactivation of components of the ATR pathway on tissue homeostasis and other 

critical processes, such as meiosis, must be further understood. The information 

provided here further shows the importance of understanding the genetic makeup of 

tumors cells prior to treatment, in order to determine the effectiveness of 

combinational therapy. For example, the synthetic lethal effect of combined 

inactivation of p53 with components of the ATR pathway can be exploited to target 

cells deficient for p53. The effectiveness of inhibitors of the ATR pathway may 

depend on a combination of tissue type, genetic fingerprint of the tumor, and level of 

checkpoint reduction. In certain tissue types, ATR inhibition may increase the risk for 

tumor development (Figure 5.4). Clearly, the role of the ATR pathway in 

tumorigenesis is not a simple story, and many questions still remain.  

 

5.5 FUTURE DIRECTIONS  

While the data presented here indicate that reduced levels of HUS1 result in 

decreased tumorigenesis, there is evidence that inhibition of other components of the 

ATR pathway in various tissue types may have a tumor promoter effect. We cannot be 

sure that reduced HUS1 levels will result in reduced tumor formation in other tissue 

types. In fact, reduced levels of HUS1 does not decrease lymphoma incidence induced 

by p53 or ATM deficiency. Furthermore, the mechanism by which reduced levels of 

HUS1 result in decreased skin papillomas has yet to be determined.  

One caveat of our results that Hus1Neo/Δ1 mice develop fewer skin papillomas is 

that chemical carcinogens were used in the two-step skin carcinogenesis experiments. 
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Figure 5.4 Overall model for the effect of reduced function of the Atr pathway on 

transformation and tumor development. In response to oncogenic stimuli, most 

cells with normal checkpoint function will induce senescence or apoptosis to prevent 

transformation. However, some cells will become transformed, allowing cancer to 

develop. In cells that are deficient for components of the Atr pathway, there are at 

least two possible outcomes following a signal of oncogene-induced proliferation. If 

the oncogenic signal occurs in a tissue which has a low requirement for the Atr 

pathway, loss of the Atr pathway may result in increased genomic instability that can 

enhance transformation ability and result in increased tumorigenesis. This same effect 

can occur if there is only moderate reduction of function of the Atr pathway, such that 

there is enough Atr checkpoint function to allow cells to survive, but not enough to 

prevent a modest increased in genomic instability, which can accelerate tumorigenesis. 

A second possibility is that reduced Atr function results in reduced tumorigenesis. 

This can be due to a tissue specific requirement for Atr function. In this case, when 

cells receive an oncogenic signal, they cannot survive the rapid proliferation and stress 

associated with transformation without Atr function, and may induce senescence, 

apoptosis, or undergo mitotic catastrophe.  Similarly, an extreme decrease in Atr 

function can result in severe genomic instability that can be detrimental to cell survival 

in a stressed state, such as during transformation. This too would result in induction of 

senescence, apoptosis, or mitotic catastrophe in cells with oncogenic signaling, 

resulting in decreased tumorigenesis.  
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Because Hus1Neo/Δ1 cells and mice have shown increased sensitivity to certain DNA 

damaging agents, it is possible the skin of Hus1Neo/Δ1 mice is sensitive to the chemicals 

DMBA and TPA, which induce and promote tumor development. Although we tested 

the acute effect of both DMBA and TPA on cells in culture expressing reduced levels 

of HUS1 and on skin sections from mice expressing reduced HUS1 levels, and found 

no heightened sensitivity, we still cannot rule out a long term effect of these genotoxic 

chemicals on cell survival.  In order to further understand the effect of reduced levels 

of HUS1 on tumorigenesis without the use of chemical carcinogens, we would like to 

induce tumors using other methods, including genetically inducing mammary 

tumorigenesis in mice with incrementally reduced levels of HUS1. 

 

5.6.1 Mouse models of mammary tumorigenesis. As a second mechanism to induce 

tumor formation in mice with reduced HUS1 levels, we will make use of the well 

characterized MMTV-Neu and MMTV-PyMT mice to drive tumorigenesis 

specifically in the mammary gland of female mice (Guy et al., 1992a; Guy et al., 

1992b). These mice overexpress Neu or PyMT, two potent oncogenes, driven by the 

long terminal repeats of the murine mammary tumor virus sequence. MMTV-NeuTg 

mice or MMTV-PyMTTg mice were crossed to Hus1+/Neo mice. The resulting Hus+/Neo 

MMTV-NeuTg or Hus+/Neo MMTV-PyMTTg offspring were bred to Hus1+/Δ1 mice to 

generate control Hus1+ MMTV-NeuTg or Hus+ MMTV-PyMTTg and experimental 

Hus1Neo/Δ1 MMTV-NeuTg or Hus1Neo/Δ1 MMTV-PyMTTg female littermates. These 

mice were then aged until tumor development or to 20 months, and onset of tumor 

development was noted, as well as, tumor size and number upon dissection. 

Hus1+MMTV-NeuTg mice developed more tumors than Hus1Neo/Δ1MMTV-NeuTg mice 

(Figure 5.5 A, B and Table 5.1). However, the MMTV-Neu transgene on a 129 

background was only 30% effective at inducing a single mammary tumor after an 
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Figure 5.5 Hus1+ MMTV-Neu+ and Hus1Neo/∆1 MMTV-Neu+ mice develop 

mammary tumors, while Hus1Neo/∆1 mice are leaner and develop uterine 

pathology, regardless of MMTV-Neu transgene status. (A) Representative H&E 

stained image of a MMTV-Neu induced mammary tumor from a Hus1+ MMTV-Neu+ 

mouse. Scale bar represents 200µm. (B) Kaplan-Meier plot showing fraction of tumor 

free survival over time for all Hus1+ MMTV-Neu+ and Hus1Neo/∆1 MMTV-Neu+ mice. 

Mice were euthanized when a mammary tumor developed, when uterine pathology 

developed, or at 600 days. There are no statistically significant difference in tumor 

free survival between Hus1+ MMTV-Neu+ and Hus1Neo/∆1 MMTV-Neu+ (p=0.466 by 

Log Rank survival test). (C) Image showing body size difference between Hus1+ and 

Hus1Neo/∆1 mice on a mixed background. (D) Weight differences across age between 

Hus1+ and Hus1Neo/∆1 on a mixed 129SvEv and FVB background. (E) Abnormal 

uterine pathology found more frequently in Hus1Neo/∆1 mice than Hus1+ mice, 

regardless of MMTV-Neu transgene status. Arrowhead indicates start of right uterine 

horn, which has grossly normal uterine morphology. Scale bar represents 1cm. 

[Experiments and figures by S.A. Yazinski] 
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extended 20 month latency, making it difficult to determine the contribution of 

reduced Hus1 on reduced mammary tumor development. There was no significant 

difference in tumor latency (p=0.466). Additionally, Hus1+ mice were much heavier 

and had more adipose tissue than Hus1Neo/Δ1 mice on this strain background (Figure 

5.5 C and D). Because increased adipose tissue has been shown to increase 

inflammation, and inflammation has been linked to cancer development, the resulting 

decreased tumor burden in Hus1Neo/Δ1 mice may be due to decreased fat and 

inflammation rather than decreased levels of Hus1 directly (van Kruijsdijk et al., 

2009). The results were further complicated due to an increased number of Hus1Neo/Δ1 

mice, with or without MMTV-NeuTg that died from uterine hemorrhaging, which may 

have prevented mammary tumor development (Figure 5.5 F). To clarify this, a more 

robust genetic model of mammary tumorigenesis was used, MMTV-PyMT transgenic 

mice. MMTV-PyMT mice, which express polyomavirus middle T oncogene 

specifically in the mammary epithelium, should develop mammary tumors within 6 

weeks of age, and affect multiple mammary glands (Guy et al., 1992a). Thus, by 

comparing tumor number and size in MMTV-PyMTTg  Hus1+ and Hus1Neo/Δ1 mice, we 

can more accurately assess the effect reduced levels of Hus1 on oncogene induced 

tumorigenesis, without the added complications of advanced mouse age and low 

frequency of tumor development. Based on results in cell culture transformation 

assays as well as skin tumorigenesis studies, we hypothesize that there will be a 

reduced tumor burden in Hus1Neo/Δ1 mice bearing MMTV-PyMTTg relative to Hus1+ 

mice.  

 

5.6.2 Intranasal or intratracheal instillation of AdenoCre Virus used to 

conditionally activate Kras while simultaneously inactivating Hus1 in the mouse 

lung. While reduced levels of HUS1 resulted in decreased skin tumorigenesis, the 
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effect of complete inactivation of Hus1 on oncogene-induced tumorigenesis has yet to 

be determined. Previous data using conditional inactivation of Hus1 in the mouse 

mammary gland suggest that Hus1-null cells are unable to survive rapid proliferation. 

However, forced proliferation by activated oncogenes in a tissue with a lower 

requirement for HUS1 may have a different effect than natural proliferation in the 

mouse mammary gland. In order to determine the role for HUS1 in oncogene-induced 

tumorigenesis in the lung, mice harboring a conditionally active Kras allele (LSL-

KrasG12D) (Jackson et al., 2001) were crossed with conditional Hus1 knockout mice 

(Hus1Flox/Flox) (Levitt et al., 2005). Hus1+/Flox LSL-KrasG12D mice, with only one 

conditional Hus1 allele serve as controls, as these mice retain one wild-type Hus1 

allele following recombination, and should not be subject to selection from loss of 

Hus1. Mice were anesthetized and 6.67X108 PFU adenovirus expressing Cre-

recombinase was administered in 40ul of MEM/CaCl2 either drop wise into a single 

nostril or directly into a catheter inserted in the trachea for intranasal or intratracheal 

instillation, respectively (DuPage et al., 2009). Following intranasal instillation, mice 

were given a single burst of pressurized air into the nostril to ensure virus was forced 

into the lungs, and not trapped in the nasal passage. Intranasal instillation achieves 

efficient recombination when the virus reaches the lung; however, because the virus is 

not directly delivered to the lungs, some virus can be swallowed or coughed up prior 

to reaching the lungs, resulting in variability of infectivity. Intratracheal instillation is 

a more efficient method to deliver virus directly to the lungs, though this method is 

more invasive. As previously reported, expression of KrasG12D results in induction of 

tumorigenesis specifically in the lung. We hypothesize that inactivation of Hus1 in 

cells which express constitutively active Kras will result in cell death or induction of 

senescence; thus, Hus1Flox/Flox LSL-KrasG12D mice will have a reduced tumor burden  
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Figure 5.6 Intranasal instillation can be used to effectively deliver virus to mouse 

lungs which can be used to conditionally activate KrasG12D to induce tumor 

growth. (A) Mouse lungs infected with vehicle alone (PBS) or an adenovirus 

expressing LacZ. (B) Mouse lungs from either Kras+ (right) or LSL-KrasG12D (left) 

mice infected with adenovirus expressing Cre-recombinase. LSL-KrasG12D mice 

develop tumors following recombination and activation of KrasG12D, while Kras+ mice 

do not. (C) Hematoxylin and Eosin stained sections of KrasG12D induced tumors 8 

weeks following infection with AdenoCre virus. [(A)Experiment and figure by S.A. 

Yazinski; (B and C) Experiment and figure by S.A. Yazinski and K. Hume] 
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compared to Hus1+/Flox LSL-KrasG12D mice following AdenoCre administration 

(Figure 5.6). 

 

5.6.3 Mechanism of reduced Hus1 expression resulting in decreased 

tumorigenesis. As previously discussed, reduced Hus1 expression resulted in 

decreased transformation in cell culture and decreased papilloma formation in mice 

following a two-step skin carcinogenesis protocol. We hypothesize that this may be 

due to cell death or senescence in cells with a high basal level of genomic instability 

due to reduced Hus1 expression following the increased oxidative and replicative 

stresses associated with neoplastic transformation. To test this, we will harvest cells 

expressing incrementally reduced levels of Hus1 following addition of activated 

oncogenes at various time points to determine if the parallel ATM pathway is 

activated, if apoptosis is induced, or if senescence is induced. Additionally, papillomas 

and surrounding skin in mice with reduced levels of Hus1 will be stained for markers 

of DNA damage, apoptosis, and senescence to determine if there is increased genomic 

instability in the few resulting papillomas, and if the surrounding skin cells, which did 

not develop papillomas, induce senescence or apoptosis in response to oncogenic 

stimuli. The experiments proposed here will clarify the effect of reduced Hus1 

expression on oncogene-induced proliferation.  

Taken together, the data outlined here suggests that impairment of Hus1, or the 

ATR pathway, may be a possible drug targets, either alone or in combination with 

chemotherapeutics, to treat cancers.  
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