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Random fields are among the most popular models in computer vision due to

their ability to model statistical interdependence between individual variables.

Three key issues in the application of random fields to a given problem are (i)

defining appropriate graph structures that represent the underlying task, (ii)

finding suitable functions over the graph that encode certain preferences, and

(iii) performing inference efficiently on the resulting model to obtain a solution.

While a large body of recent research has been devoted to the last issue, this

thesis will focus on the first two.

We first study them in the context of three well-known low-level vision prob-

lems, namely image denoising, stereo vision, and optical flow, and demonstrate

the benefit of using more appropriate graph structures and learning more suit-

able potential functions. Moreover we extend our study to landmark classi-

fication, a problem in the high-level vision domain where random field mod-

els have rarely been used. We show that higher classification accuracy can be

achieved by considering multiple images jointly as a random field instead of

regarding them as separate entities.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

Computer vision is a fast growing field in computer science, with areas rang-

ing from low-level vision problems such as segmentation and stereo vision to

high-level vision problems such as object recognition and scene recognition. Yet,

despite the rapid progress in the last few decades, it remains arguably one of the

most “unsolved” field in computer science, at least if the relative performance

between machines and humans is used as the judging criterion.

Random fields are graphical models that can be used to capture the statistical

interdependence between multiple variables. This is very useful for computer

vision, especially low-level vision tasks. In low-level vision, labeling is typically

performed on a per-pixel basis. This means that there is a variable for every

pixel, whose value needs to be inferred. Since the amount of data associated

with each pixel is often very limited, there is usually not enough local evidence

to label each pixel independently. Thus the ability of random fields to model the

relationship between variables and label them jointly is very important in these

situations.

There are three key issues in the successful application of random fields to a

given problem: defining appropriate graph structures, finding suitable potential

functions over the graph, and performing inference efficiently on the resulting

model. While a large body of previous research has been devoted to the last

issue, namely the inference problem, the first two have received relatively less
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attention. This offers an opportunity to improve the success of random fields –

by obtaining better models. If we do not have a good model to start with, we

are unlikely to achieve high performance no matter how good the optimization

techniques are. Thus this thesis will focus on the first two issues, which we call

the “modeling aspect” of random fields.

1.2 Learning for Random Fields

Random fields are a popular choice for many low-level vision problems, such as

image denoising, stereo, and optical flow. However, these models usually have

parameters that are hand set rather than learnt automatically. Indeed there have

been relatively few works on learning random fields for low-level vision until

recent years (e.g., [77, 78, 81, 97]). Hand tuning of models not only involves sub-

stantial human effort, more importantly it limits our understanding of how well

a given method generalizes to unseen data and thus will perform in practice.

This is illustrated by the recently developed Middlebury optical flow evalua-

tion database [5], where methods that perform best on the classical benchmark

sequence tend not to perform as well on new imagery for which they were not

hand tuned.

The scenario for high-level vision is quite different, where learning is ubiqui-

tous. Nevertheless, high-level vision tasks, such as object detection and image

classification, are usually performed on an instance-by-instance basis without

any effort to model the relationship between the instances (e.g., multiple de-

tection windows or images). Consequently, random fields are rarely used in

high-level vision.
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In this thesis, we shall investigate the learning of random fields for low-level

vision problems and explore the potential of the its application in the high-level

vision domain.

1.3 Overview of Random Field Models

Random field models were first proposed in the statistics literature to capture

the interdependence between variables that are statistically correlated [11, 34].

As graphical models, they represent each variable that needs to be labeled as

a vertex, or node, and encode the dependence between variables as edges of

the graph. Originally they were conceived in the Bayesian framework [11] but

later was extended to include discriminative, non-Bayesian formulations [54].

The former are called Markov random fields (MRF) while the latter are called

conditional random fields (CRF).

1.3.1 Markov Random Field (MRF)

Consider a graph consisting of nodes and edges. LetV be the set of nodes and E

be the set of edges. Also let I denote the observed data and X denote the labeling

over the random field. The Markov random field (MRF) models the posterior

probability of the labels of the hidden variables (which correspond to the nodes

of the graph) as the product of the probability of the observed data conditioned

on the labels and the prior probability of the labels independent of the observed

data, using the Bayes rule:

Pr(X|I) =
Pr(I|X) Pr(X)

Pr(I)
. (1.1)
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Since the a priori probability of the data Pr(I) is a constant, it is usually omitted.

Thus:

Pr(X|I) ∝ Pr(I|X) Pr(X). (1.2)

The MRF formulation hence decomposes the posterior into the likelihood Pr(I|X)

and the prior Pr(X). This is similar to the hidden Markov model (HMM) [8] that

is widely used in speech recognition [76]. However, unlike the HMM, the MRF

is defined on an undirected graph and does not require the graph to be acyclic.

One of the most fundamental results in random fields is the Hammersley-

Cliffored Theorem [11], which guarantees that the prior Pr(X) can always factor-

ized into potentials over the maximal cliques of the graph. Hence if we use C to

denote the set of maximal cliques, then

Pr(X) =
1
Z

∏
c∈C

φc(Xc) (1.3)

where Xc is the labeling over clique c and the functions φc(·) are often referred

to as the clique potentials. The factor 1/Z is independent of X and ensures that

Pr(X) is a proper probability function, 1 and the constant Z is called the normal-

ization constant or the partition function.

As a generative model, the MRF has certain restrictions due to the Marko-

vian assumptions. In particular, each node is associated with its own piece of

observation (data) that is independent from the data of all other nodes, i.e.,

Pr(I|X) =
∏
v∈V

Pr(Iv|Xv) (1.4)

where Iv and Xv denote the observation and label at node v respectively. It is easy

to see that this formulation does not allow the data to be shared among nodes

1If the label space is continuous, Pr(X) is a probability density function; it it is discrete, Pr(X)
is a probability mass function.
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Figure 1.1: An illustrative diagram of an MRF. Circles are variables and
squares are observed data. Each variable “generates” its own
piece of observation.

(see Figure 1.1). In addition, the prior must depend solely on the labels and

must not depend on the data in any way. This is evident from the fact the Pr(X)

does not involve the data I. These restrictions reflect the underlying assumption

that the data is generated by the labels of the variables.

1.3.2 Conditional Random Field (CRF)

The conditional random field (CRF), on the other hand, is a discriminative

model and does not assume that the data is generated by the labels. Hence

it models the posterior P(X|I) directly as a conditional probability without using

the Bayes rule. The CRF decomposes the posterior into a data term that encour-

ages agreement between the labels and the observed data and a spatial term that

enforces spatial consistency among the labels (of neighboring nodes). Similar to

the likelihood and the prior of an MRF, the data term factorizes over the nodes

5
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φ
v
(X
v
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Figure 1.2: An illustrative diagram of a CRF. Circles are variables and the
square is observed data, shared among all variables.

and the spatial term factorizes over the cliques of the graph:

Pr(X|I) =
1
Z

∏
v∈V

φv(Xv, I)
∏
c∈C

φc(Xc, I). (1.5)

In this formulation, however, the observed data can be shared among nodes (for

the data term) and the spatial term can depend on data (see Figure 1.2). These

properties make CRFs more permissive and more general than MRFs, and a

desirable alternative to MRFs in situations where there is not a clear or well-

understood generative process and hence the strict MRF formulation may run

into difficulties.

The CRF was first proposed in the context of part-of-speech tagging as an al-

ternative to the HMM, in an effect to address the “label bias” suffered by HMM-

based approaches [54]. Although originally defined only for acyclic graphs, the

CRF has since been extended to loopy graphs and become a popular choice for

many computer vision problems.

Due to its similarity to MRF in practice, the terms “MRF” and “CRF” are of-

ten used liberally and sometimes interchangeably in the computer vision liter-
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ature; and so are “likelihood” and “prior” with “data term” and “spatial term”

respectively. We will follow this custom in this thesis.

1.3.3 Relationship to Energy-based Models

Random fields are closely related to energy-based models, when the probability

is defined in the exponential family in terms of some energy function E:

Pr(X|I) =
1
Z

exp (−E(X, I)) , (1.6)

where Z is the normalization constant or partition function. The energy is there-

fore the negative log-probability, up to a constant due to normalization, i.e.,:

E(X, I) = − log Pr(X|I) + log Z. (1.7)

Since the normalization constant Z does not depend on the labeling of the

random field, finding the labeling that maximizes the probability, namely the

maximum a posteriori (MAP) solution, is equivalent to finding the one that min-

imizes the corresponding energy.

Because of the factorization of random fields, the energy also decomposes

into a sum of individual energy functions over the nodes and the cliques. Let

(again) V be the set of nodes and C be the set of cliques of the random field,

and let gv and fc denote the energy functions associated with node v and clique

c respectively. Then the total energy is

E(X, I) =
∑
v∈V

gv(Xv, I)
∑
c∈C

fc(Xc, I), (1.8)

This is especially useful in computation, since the sum is more convenient to

evaluate than the product. Thus in practice MAP inference is almost always

7



carried out as energy minimization. In computer vision, the “energy” is also

commonly referred to as the “cost” and The two words are often used inter-

changeably.

1.4 Inference

The variables of a random field may belong to either a discrete domain or a con-

tinuous domain. For each case, there are different inference techniques avail-

able. Below we will review some of these techniques that are commonly used

in computer vision.

1.4.1 Discrete Domain

When the variables are discrete, the set of labels is finite and the inference is a

combinatorial problem.

Dynamic Programming

In the case where the random field is acyclic, exact inference can be carried

out efficiently using dynamic programming based techniques. If the under-

lying graph has a chain topology, the MAP solution can be found using the

Viterbi algorithm [106] and the marginal probability distribution for each node

(i.e. variable) can be obtained using the forward-backward algorithm [76]. For

both algorithms, the time complexity is linear to the number of nodes (i.e., the

length of the chain) and quadratic to the number of possible labels at each node.
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Belief Propagation

If the graph is a tree, exact inference can be performed using belief propagation

(BP) [72]. There are two versions of BP: max-product BP computes the MAP

solution whereas sum-product BP computes the marginal distribution for each

node. Both versions have the same time complexity as the Viterbi algorithm and

the forward-backward algorithm. Although BP is formulated as a local message

passing algorithm, it is in fact a form of implicit dynamic programming when

performed in the sequential manner for carrying out exact inference on trees.

For marginal inference (i.e., finding the marginal distribution for each node),

the forward-backward algorithm (for chains) and sum-product BP (for trees) es-

sentially employs discrete convolution to compute the forward/backward prob-

abilities and the messages respectively. Hence the time complexity with respect

to the number of labels (call it M) can be reduced from O(M2) to O(M log M) by

using the fast Fourier transform (FFT), which is helpful when M is large. When

M is relatively small, however, the computational overhead of FFT could more

than offset its benefit and make it slower in practice.

For MAP inference, both the Viterbi algorithm and max-product BP corre-

spond to repeated min-convolutions (in the negative logarithm domain) [27].

For certain subclasses of clique potentials, such as those corresponding to lin-

ear or quadratic energy functions (possibly truncated), distance transforms can

be employed to reduce time complexity by a factor of O(M) [27]. Unlike FFT,

distance transforms have much smaller computational overhead. Although not

always applicable in the general, they have been found to be highly useful in

many computer vision problems.
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Junction Tree

Exact inference becomes much more difficult when the graph contains loops,

since dynamic programming techniques do not allow cycles. The junction tree

algorithm creates a tree structure on a set of “supernode”, where each supern-

ode encapsulates the collective states of a subset of nodes of the original graph.

Such a structure is called a junction tree, and the size of the largest supernode

(i.e., the number of nodes it contains) minus one is called the width of the junc-

tion tree. The minimum width of all possible junction trees of a graph is called

the tree width of the graph. Once a junction tree is created, techniques such as

BP can again be used for inference. In practice, however, the number of mes-

sages that need to be computed at each supernode is exponential to the number

of nodes it contains. Hence the complexity of the junction tree algorithm is ex-

ponential in the tree width of the graph, which is usually prohibitively large (at

least for most computer vision problems). For instance, the m-by-n 4-connected

grid has a tree width of min(m, n). Because of the high complexity, the junction

tree algorithm can only be used on very small (and usually artificial) problems

that are created to facilitate comparisons between some approximate solution

and the optimal solution.

Iterated Conditional Mode

Since exact inference on loopy random fields is usually intractable, much work

has focused on effective approximate inference techniques. Once of the earliest

of these is the iterated conditional mode (ICM) algorithm, which updates the

label of each node to the one with the highest probability conditioned on the

labels of its neighbors at each iteration. Although simple and fast, ICM typically

10



does not produce a high-quality solution and may not converge at all. In fact, it

is not guaranteed to increase either the posterior probability of the random field

or the marginal probability of any node.

Variational Inference

Another option for approximate inference is the variational method using mean

field approximation. In this approach, the interaction between a variable and its

neighbors is replaced using the “mean” effect of the its surroundings (“external

field”). The “mean field” of each variable is updated according to those of its

neighbors, and the whole process iterates. Although the removal of explicit

variable interactions makes inference more tractable, the approximation can be

too crude sometimes and thus results in poor accuracy.

Loopy Belief Propagation

One of the more promising approaches for approximate inference is loopy be-

lief propagation (LBP), which generalizes BP to loopy graphs [68]. Although

BP was originally formulated for exact inference on trees, the forms of its mes-

sage passing rules does not explicit require this. Hence it is possible to run BP

on a loopy graph as an iterative algorithm (i.e., LBP). 2 In practice, LBP works

surprisingly well considering the relatively lack of theoretical justification.

As researchers attempted to understand the empirical success of LBP, more

sophisticated and arguably better variants with modified message update rules

were developed in the process. Generalized belief propagation (GBP) [111] esti-

2On a tree, BP needs only to send each message once.
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mates the marginals by minimizing the Kikuchi free energy of the random field

and has better convergence properties than regular sum-product LBP. GBP is

also shown to reduce to regular LBP under specific setting, which can be viewed

to minimize the Bethe free energy. Tree-reweighted belief propagation (TRW)

[107, 51] was introduced to compute a family of upper bounds on the log parti-

tion function based on spanning trees, but is also able to estimate the marginals

as well as the MAP solution. For MAP inference, TRW is able to determine the

optimality of a solution by examining the strong tree agreement condition [107].

Hence it can provide an optimality guarantee when it is available.

Despite these improved variants, however, the regular LBP remains a use-

ful alternative because of its versatility. When a random field has higher-order

clique potentials (i.e., clique potentials of more than two variables), Loopy BP

can be easily adapted to operate on the corresponding factor graphs and in this

case messages are passed between regular nodes and factor nodes (representing

the cliques). On the other hand, the extension of GBP and TRW to such ran-

dom fields is, though possible in theory, highly non-trivial and very involved in

practice. It is worth noting though that the time complexity of message updates

grows exponentially with respect to clique size. Thus message passing based

algorithms are not feasible for random fields with large cliques in general.

Just like BP on trees, All aforementioned variants of LBP are able to benefit

from distance transforms [27] whenever applicable. Moreover message passing

can be performed in a hierarchical, coarse-to-fine fashion [27], which leads to

faster and more reliable convergence.
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Graph Cuts

If a random field consists of binary variables and has only pairwise clique po-

tentials with submodular energies, the optimization can be reformulated as

finding the min-cut over a graph [15] and solved using max-flow algorithms.

For multi-label problems (where variables have more than two possible val-

ues), the α-expansion algorithm [15], which iterates by solving a series of binary

sub-problems (“expansion moves”), has proved to be highly effective. How-

ever, since the algorithm uses graph cuts as a building block, each binary sub-

problem must be submodular. This in turn requires the energy functions of the

spatial term to be a metric with respect to some ordering of the labels [52], which

is not always warranted.

Quadratic pseudo-boolean optimization (QPBO) [14], on the other hand, is

capable of optimizing binary energy functions that are not submodular. QPBO

is also based on finding a min-cut on a graph, but it creates two nodes for each

variable – one for the variable and the other of its complement. This relaxation

converts the non-submodular terms of the energy function to submodular terms

involving the complements, which can be subsequently solved using graph

cuts. Since each variable is represented by two nodes in the constructed graph,

however, its value may be inconsistent (i.e., both the variable and its comple-

ment may receive the same label after the min cut). If this happens, the variable

remains unlabeled in the final output. The proportion of unlabeled variables

depends on the extent to which the energy function is non-submodular. If the

energy function is in fact submodular, all variables will be labeled by QPBO and

the solution is identical in energy to that given by regular graph cuts. For non-

submodular energies, QPBO guarantees that the inferred labels of all consistent
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variables are part of the optimal solution.

Similar to graph cuts, QPBO can be extended to solve multi-label problems

though a series of binary fusion moves [57]. Unlike α-expansion, fusion does not

impose any explicit restriction on the choice of energy functions; though such

choices may affect the quality of the solution.

Recently QPBO have been applied to random fields with higher-order

cliques through schematic graph reduction, where each high-order energy is

replaced by a set of pairwise energies [45]. Similar to BP, however, the complex-

ity of the reduction process as well as the reduced graph is exponential in clique

size. Hence optimizing for random fields with large cliques remains impractical

even with these reduction techniques.

Under the special circumstance where the spatial term energy is convex

(with respect to some ordering of the labels), a different iterative scheme based

on graph cuts can be used to minimize the energy exactly [44]. Unfortunately

though, convex spatial terms are not unsuitable for most computer vision prob-

lems.

It should be noted that graph cuts based techniques can only be used for

MAP-inference, which corresponds to energy minimization, and are not appli-

cable for estimating the marginal probabilities.

LP Relaxation

MAP inference on random fields can also be reformulated into an integer pro-

gram, and solved (approximately) using linear programming (LP) relaxation
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[50]. The algorithm is guaranteed to achieve a 2-approximation of the optimal

energy, and the LP dual provides a lower bound on the energy function. How-

ever in its formulation it is necessary to create a variable (in the LP) for every

possible label of every node and for every possible combination of labels over

every clique. This makes it computationally challenging even for pairwise ran-

dom fields, which has to some extent limited its application in computer vision.

1.4.2 Continuous Domain

Numerical Methods

For random fields with continuous variables, MAP inference can often be per-

formed numerically. Gradient based methods, such as conjugate gradient and

iterative reweighted least squares, can be used to search for a local minimum of

the energy function. If the energy function is convex, the exact solution can be

obtained (up to some small numerical error). Numerical optimization is a field

of research in its own right, and a comprehensive review is beyond the scope of

this thesis.

Discretization

In addition to numerical methods, one may also have the option to discretize

the label space and subsequent use discrete inference techniques. This approach

works well for certain problems (e.g., [55, 45]) but may run into difficulty when

the number of bins required for adequate discretization is too large to be com-

putationally feasible (e.g., in optical flow).
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Semi-discrete Optimization with Fusion

An alternative to discretization for MAP inference is to use some known black

box algorithms (not necessarily related to the random field model to be opti-

mized) with varying parameters to generate a collection of “proposal” labelings

for the random field. These proposals are then combined through a series of

binary fusions using QPBO [57]. This typically produce a final labeling that has

lower energy than any of the proposals. The fusion method is especially use-

ful when the energy function is high non-convex with many undesirable local

minimums.

Sampling

Final but not the least, sampling remains one of the most important inference

techniques, for both discrete and continuous valued random fields. Markov

chain Monte Carlo methods, such as Gibbs sampling, can be used to collect a

sample from the posterior, and marginal probabilities of each node can be esti-

mated from the sample. However the Markov chain may take a large number of

iterations to converge, making the procedure very time consuming. Improving

the efficiency of sampling techniques is also an active area of research.

1.5 Learning

The learning task can be regarded as selecting, from a class of (possibly infinitely

many) candidate models, a particular model that is best suited to the problem.

This usually amounts to estimating the parameters of a (parameterized) model
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from a set of labeled training instances.

1.5.1 Maximum Likelihood

Perhaps the most common approach to learning is to seek parameters that max-

imize the likelihood of the training data. 3 Knowing the value of the likelihood,

nevertheless, requires knowing the partition function. In the case where the

random field has no cycles (i.e., chains and trees), the log partition function

as well as its derivatives with respect to the parameters can be computed effi-

ciently using dynamic programming [54]. Hence a max-likelihood estimate for

the parameters is relatively easy to obtain. If the energy function is linear in its

parameters, the corresponding learning problem is convex (in the negative log

space) and the max-likelihood estimator is exact.

When the random field contains loops, however, the partition function it-

self is intractable to compute and not even easy to approximate. However

the derivatives of the log partition function can be expressed in terms of the

marginal probabilities of the cliques, which may be estimated using LBP (on the

corresponding factor graph) or sampling [111]. This makes it possible to find

an approximate max-likelihood estimate using (approximate) gradient ascent.

In practice, however, the gradient obtained though BP tends to be noisy (since

the estimated marginals are only approximate) and sampling either requires a

very large sample (which can be prohibitively slow) or tends to produce inaccu-

rate results. Although techniques such as contrastive divergence [39] have been

developed to improve the efficiency of sampling-based gradient ascent, max-
3Here in the context of learning, the word “likelihood” refers to the probability of observing

the training data given the model and its parameters. It is not to be confused with the likelihood
term (i.e., data term) of a random field.
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likelihood learning on loopy random fields remains computational challenging

in most situations.

1.5.2 Maximum Margin

An alternative to maximum likelihood is maximum margin. Max-margin classi-

fiers were originally formulated for binary classification problems [105, 47], but

were later extended to structured outputs [100, 104]. In the context of random

field models, the goal of max-margin learning is to find parameters that make

the energy of the ground truth labeling lower than the energy of any other la-

beling by a margin as large as possible. The margin is usually soft, which means

margin violations are allowed at the cost of some penalty terms in the objective

function. This is essential for making learning robust against noise (especially

outliers) in the training data. The main difficulty in the max-margin formula-

tion of learning is that the number of possible labelings in a structured output

space (such as that of a random field) grows exponentially with the number of

variables and hence it is impossible to enumerate all of them. The most popu-

lar algorithm for learning max-margin classifiers is arguably the structural sup-

port vector machine (structural SVM) [104], which addresses this issue by us-

ing a cutting plane algorithm to avoid enumerating all possible labelings. The

structural SVM proceeds by finding the most violated constraint [104] at each

iteration. Finding the most violated constraint, however, is generally at least

as hard as inference, which makes it intractable for loopy random fields. Al-

though many approximate inference algorithms (as discussed in Section 1.4)

can be used for this purpose, the resulting most violated constraint is not exact

hence voiding many of the theoretical guarantees of structural SVM [104]. The
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use of approximate most violated constraints for learning random fields was in-

vestigated in [29], which shows that the quality of the learnt model depends on

the accuracy of the approximate most violated constraint. However, the study

focuses on random fields that are complete graphs. Most random fields in com-

puter vision problems, on the other hand, correspond to sparse graphs, and

hence may have different characteristics.

Minimum Training Error

Learning can also be cast as simply minimizing the training error (i.e., the error

over of training data under some evaluation metric). Assuming that the training

data is sufficient and representative for the complexity of model (and hence no

overfitting), then lower training error is expected to lead to lower test error (i.e.,

error on instances unseen during learning). Straightforward as it sounds, this

is usually difficult due to the lack of closed form relationship between training

error and model parameters.

In certain situations, e.g., when the random field is continuously valued,

MAP inference (equivalent to energy minimization) is used, and both the energy

and the error functions are continuously differentiable, it may be possible to

use implicit differentiation techniques to minimize training error with respect

to model parameters via gradient descent [97]. However, the gradient can be

noisy due to local minimums of the energy function (unless the it is convex).

Moreover such methods need to compute the Hessian of the energy with respect

to the variables at some stage, making them computationally challenging for

large random fields.
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An other option is to use stochastic optimization methods (e.g., [48, 85]) that

do not require closed form gradient. Although these class of methods have been

popular in engineering, they are relatively unknown in the computer vision

literature.

1.5.3 Outline of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce the

sparse long-range random field (SLRF) model, a graph structure with long-

range connections but only small cliques, and demonstrate its effectiveness in

the context of image denoising [62]. We then study the problem of learning the

parameters of random field models in Chapter 3, where we formulate a non-

parametric CRF model for stereo vision and learn it using the structural support

vector machine (structural SVM [104]) [61]. We also revisit the SLRF model and

show that long-range connections are beneficial for stereo vision as well. We

continue our investigation in Chapter 4, where we present a method for learn-

ing a continuous-state MRF for optical flow using stochastic optimization [60].

We show that our approach is highly viable for directly minimizing the train-

ing error. In Chapter 5, we apply random field models to high-level vision by

applying them to the problem of landmark classification [59]. Our experiments

demonstrate that better performance can be obtained by exploiting the hidden

relationship between images using random fields. We summarize our work and

discuss possible directions of future research in Chapter 6.
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CHAPTER 2

SPARSE LONG-RANGE RANDOM FIELD AND ITS APPLICATION TO

IMAGE DENOISING

2.1 Introduction

Random fields are among the most common models used in low-level vision

problems such as image restoration, segmentation, and stereo. The strength

of these models lies in their ability to represent both the interaction between

neighboring pixels and the relationship between the observed data values and

estimated labels at each pixel. A random field model defines a graph structure

with potential functions over the labelings of cliques in this graph. For low-

level vision problems the graph generally has a node corresponding to each

pixel, edges connecting certain pairs of neighboring pixels, and potentials that

encourage neighboring pixels to have similar labels. This chapter focuses on the

issue of finding a good graph structure for the problem being modeled.

We propose sparse long-range random field (SLRF) models, that represent in-

teractions between distant pixels using sparse edges so as to maintain a fixed

clique size. The size of the clique is chosen so as to be appropriate for a partic-

ular problem. In image denoising, second-order spatial terms are important for

representing intensity change. Thus we use a graph structure that has cliques of

size three, as discrete approximations to a second order function require three

data values. In this framework the potential functions are defined over fixed-

size cliques that have different spatial extents, effectively encoding image struc-

ture of a fixed order (defined by the clique size) at multiple scales of observation.

This enables such models to produce smooth labelings for highly noisy images
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but at the same time allows efficient solution.

In contrast, other recent work using higher-order models and longer-range

connections, such as the Field of Experts (FoE) model [77], has large cliques and

thus does not support fast optimization. Our main interest is thus in investigat-

ing whether simpler models with smaller cliques can produce results compa-

rable to the state-of-the-art achieved with more powerful models, such as FoE,

while using much less time. The experiments that we report here, performed

on widely used datasets, indicate that this is indeed the case. Not only do we

achieve comparable peak signal-to-noise ratio (PSNR) to large-clique methods,

our method is also better at avoiding over-smoothing although that is not cap-

tured by the PSNR measure. At the same time, our method is over 100 times

faster than FoE and at least 10 times faster than other spatial-domain methods

that achieve state-of-the-art results.

2.1.1 Related Work

The most widely used graph structure for random field models in low-level

vision is a grid where each node is connected to its four immediate neighbors in

the horizontal and vertical direction. While this model is simple and convenient

to set up and optimize, it suffers from a number of drawbacks. First, as noted

above, it can only represent first-order properties of the image, because it is

based on pairwise relations between pixels. Second, it can be sensitive to noise.

Consider a connected region of n nodes in a 4-connected grid graph. In this case

there are only approximately O(
√

n) connections between nodes in the region

and those outside the region, because the boundary grows approximately as
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the square root of the area. Thus the data term of the n nodes over the region

comes to dominate the connections outside the region, especially when robust

(i.e. discontinuity preserving) spatial terms are used. For example, in image

denoising this can be problematic for high noise levels because good estimates

require substantial sized regions. Another way to view this is in terms of the

standard deviation of the mean over the region. For concreteness, consider an

image with additive Gaussian noise of σ = 25, and a 5 × 5 region of the image.

The standard deviation of the mean of that region is σ/
√

5 · 5 = 5. At the same

time, the perimeter-to-area ratio of such a neighborhood is only 4 ·5/52 = 4/5, or

1/5 that of a single pixel. Hence the collective labeling of the group is dominated

by its data term, which is subject to a non-trivial standard deviation of 5 in its

mean.

The 4-connected grid graph is a special case of graphs that connect a node

to all nodes that lie within some distance d. In contrast to our approach, such

graphs produce quite dense edges even for moderate values of d. Early work on

MRF models in vision, such as [34], used these models but restrict their attention

to pairwise clique potentials. However, such pairwise models do not always

capture the underlying distribution. For image denoising, in particular, second-

order statistics are important, implying a need for cliques of size at least three.

Problems with earlier pairwise random field models have led to higher-order

models such the Field of Experts (FoE) [77], where overlapping blocks of pix-

els are used rather than purely local connections. However, such models are

computationally intensive due to their relatively large complete subgraphs. In

addition, the learnt priors are also unintuitive, despite recent interpretations as

derivative filters [97] and frequency filters [108].
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The use of long-range edges have also been studied in the context of texture

synthesis [35]. Clique families are chosen using heuristic search based on the

strength of interaction, which is evaluated on the training data. However, the

model is restricted to pairwise clique potentials. Moreover each model is trained

to synthesize a particular type of texture, which usually consists of some char-

acteristic (and often repeating) patterns. Thus it is not well suited to modeling

generic structures, such as those of natural scenes.

2.2 Sparse Long-Range Random Field

We now introduce our model. A sparse long-range random field (SLRF) is con-

structed so as to have a fixed clique size regardless of the spatial extent of the

edges in the grid. Consider a set of nodesV arranged on a grid, where there is

a spatial distance defined between each pair of nodes. By choosing edges that

increase in length exponentially, we can construct a graph that has a fixed clique

size even though there is no bound on the maximum edge length. Consider the

case of cliques of size 3, which as noted above (and discussed in more detail

below) are important for image restoration because they enable the represen-

tation of second-order spatial statistics. A local 3-clique has edges of length 1

that connect each node to its immediate neighbors and edges of length 2 that

connect each node to those two-away. Adding edges of length 4 to each node

would then create additional 3-cliques composed of edges of length 2, 2 and 4,

but does not increase the maximum clique size. Similarly for edges of length 8

and so on, as illustrated for the one-dimensional case in Figure 2.1.

More formally, each node is connected to other nodes at distance 2k away

24



... ...

Figure 2.1: Horizontal 3-cliques of E2
4 with edge lengths {1, 2, 4, 8}.

... ...

Figure 2.2: Horizontal pairwise cliques of E3
3 with edge lengths {1, 3, 9}.

from it, for integer values k such that 0 ≤ k < K. In other words the density of

connections decreases exponentially with distance. We let E2
K denote this set of

edges; for instance, E2
4 is the set of edges of length {1, 2, 4, 8}. More generally, one

could consider graphs where the edges are of length bk for some b > 2 which

yields sparser graphs. However, for b = 3 the resulting graphs already have

maximum cliques of only size 2 (Figure 2.2), which for image denoising does

not allow representing second-order image statistics.

In the case of a two-dimensional image grid, edges may correspond to any

underlying orientation. Considering both horizontal and vertical directions us-

ing edges in E2
K again yields a graph with maximum cliques of size 3. These

cliques correspond to spatial neighborhoods at different scales of observation

and at different orientations (horizontal or vertical), but in each case capture

second-order spatial information based on three nodes.

The inclusion of long-range edges in the SLRF offers the following advan-

tages over a local grid model:
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• Improved information flow. The graph requires fewer hops to reach one node

from another, as is illustrated in Figure 2.1. In the example shown in the

figure, the maximum graph distance between any two nodes is 2. Without

long range edges, the corresponding numbers would be 8. In general, it

can be shown that any two nodes v1 and v2 with grid distance d have graph

distance O(d/bK−1 + bK). The decreased graph distance facilitates the flow

of information over the random field.

• Increased resistance to noise. Long-range edges address the local bias prob-

lem discussed in Section 2.1. For any n × n neighborhood S with n up to

bK−1 (i.e. up to the length of the longest edges), each node in S is connected

to at least four nodes outside of S . Hence the total amount of interaction

between S and the environment is now proportional to the area of S in-

stead of its perimeter as in the 4-connected grid. This makes the strength

of the spatial constraints between pixel blocks comparable to that of the

data term over the block, suppressing noise-induced local bias without re-

sorting to increasing the weight of the spatial term (which tends to cause

over-smoothing).

The sparse nature of the SLRF also has the following computational benefits:

• Small, fixed clique size. As previously discussed, the size of the maximal

cliques in an SLRF is either 2 or 3 regardless of the span of the longest

range interaction being modeled. The low clique size allows arbitrary

clique potentials to be optimized globally using efficient approximation

algorithms such as belief propagation. In contrast, high-order random

fields in general can only be optimized with continuous methods that rely

on gradient (e.g. diffusion [77]), which may not exist in problems with
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discrete labels. Even when gradient-based methods are applicable, the

running time is still super linear in the size of the cliques. 1

• Low computational cost. Since SLRF models have only K different edge

lengths in an exponential series, the total number of edges in an SLRF

is no more than K times of that in the underlying grid. Hence an SLRF

model is at most logb d times as costly as one with only short edges, where

d is the length of the longest ranged interaction to be modeled. If on the

other hand each node is connected to all the nodes near it up to some dis-

tance d (such as in [34]), the resulting graph would have Θ(d2) edges and

hence much higher computational. Although the model can still be called

“sparse” from a graph theoretical point of view (as any graph with edge

density independent of its size will qualify), it is clearly not so from the

aspect of efficient optimization.

2.2.1 Cliques and clique potentials

Let C = C2
K denote the set of all cliques in an SLRF with edges E2

K for a fixed K.

There are several distinct types of cliques in this set, which can be characterized

by the lengths of their edges. For instance,

C2
K = C1,1,2 ∪C2,2,4 ∪ ... ∪C2K−2,2K−2,2K−1 (2.1)

where Ca,b,c is the set of 3-cliques with edge length a, b, and c. Each of these sets

of 3-cliques corresponds to observations at a different spatial scale, based on the

lengths of the edges. Let T (c) denote the type of clique c, e.g. T (c) = (1, 1, 2) ∀c ∈

C1,1,2 and T (c) = (1) ∀c ∈ C1.
1The time for computing the gradient is linear in clique size for using linear filters, and

quadratic in the general case. At the same time, larger cliques also tend to require more itera-
tions.
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We represent the likelihood of the random field as an exponential family of

cost functions f and g parameterized by θ, where f θT (c) is the spatial term and gθ

is the data term. Thus given observation I,

pθ(X|I) =
1

Z(θ)
exp(−

∑
c∈C

f θT (c)(xc; I) −
∑
v∈V

gθ(xv; I)) (2.2)

where X is the labeling of the random field, and xc and xv are the configurations

of clique c and node v respectively. The configuration of a clique or node in-

cludes its labeling, and may also include input-dependent latent variables such

as image gradient. This formulation is similar to a CRF except that parametric

functions over the clique and node configuration space X f and Xg are used in-

stead of features. The random field becomes Markovian when f is independent

of the observed data, i.e. f θT (c)(xc; I) = f θT (c)(xc) and g is a function only of the

observation at a single node, i.e. gθ(xv; I) = gθ(xv; I(v)).

2.3 Parameter Estimation

To learn the parameters θ, it is desirable to find the maximum a posteriori (MAP)

estimate. By applying Bayes’ rule and assuming a uniform prior over the pa-

rameter space, this is equivalent to finding the maximum likelihood (ML) es-

timate. Computing the maximum likelihood estimate is nevertheless hard on

loopy graphs due to the intractability of the partition function Z(θ) in pθ(X|I).

This makes it impossible to use the standard CRF learning scheme, since it is de-

signed for tree-structured graphs where the partition function can be computed

efficiently using dynamical programming [54]. Various approaches have been

proposed to address this difficulty. Gradient descent methods [39] have been

used to obtain a local minimum in the negative log-likelihood space. The expec-
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tation over the model is nonetheless intractable to compute and often has to be

estimated by MCMC sampling [77, 39], by loopy belief propagation [68, 111], or

approximated using the mode (i.e. MAP labeling) [81]. The last case resembles

the perceptron algorithms [19], except that the inference is not exact. As recently

proposed in [108], a basis rotation algorithm based on expectation maximization

(EM) can be used to learn parameters for filter based image models. This comes

from a key observation that the partition function can be kept constant by con-

straining the parameter vectors to have unit norm. An alternative to maximum

likelihood is using discriminative training to optimize for some loss function,

typically evaluated on the mode. Such a loss can be minimized by descending

along its derivative in the parameter space, when the mode has a closed-form

solution [99] (or approximate solution [97]).

Since some approximation must be used, we take the approach of optimiz-

ing for the marginal likelihood of the random field cliques, which effectively

approximates the global partition function using the product of local partition

functions over the cliques. This can be considered as form of piecewise local

training [93, 94], which minimizes a family of upper bounds on the log partition

function. It can be shown that maximizing the marginal likelihood is equiva-

lent to minimizing the Kullback-Leibler (KL) divergence DKL(p0||pθ) between the

empirical distribution p0 and the model distribution pθ for each type of cliques.

The minimization can be performed using gradient descent with the standard

update rule (as in [77])

δθ = η

〈∂ fθ
∂θ

〉
pθ

−

〈
∂ fθ
∂θ

〉
p0

 , (2.3)

where 〈·〉pθ and 〈·〉p0 denote the expectation with respect to the model and the

empirical distribution respectively, and η is the learning rate.
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Unlike in FoE we do not need to sample, since the model expectation can be

computed by summing over all possible values of clique configurations. This

computation is inexpensive in our model due to the small clique size. As noted

in [77] performance can be improved by learning an additional weight for the

data term, which we also use for our model.

2.4 Image Denoising

To test the effectiveness of our model, we apply it to the widely studied problem

of image denoising. As is conventional in the literature, the image is assumed

to be gray-scale and have been corrupted by additive white Gaussian noise of

known standard deviation. Since this is a well-defined generative process, we

model the data term using the known Gaussian noise model and only the spa-

tial term needs to be estimated. As described above we use 3-cliques since they

capture second-order properties. In order to illustrate the importance of these

second-order statistics we considered the marginal statistics of the images in

the Berkeley dataset [66] that is commonly used in evaluations of such meth-

ods. These images show a strong correlation between the distribution of neigh-

boring pairs, suggesting that simple pairwise models are less appropriate (see

Figure 2.3).

We denote clique c of type Cs,s,2s as a triplet (vc
−s, v

c
0, v

c
+s), where vc

0 is the center

node of c, vc
−s is the left node, and vc

+s is the right node. We limit our discussion

to horizontal cliques, as the case for vertical ones is essentially the same. Let

d1(c) = X(vc
+s)− X(vc

−s) and d2(c) = X(vc
−s) + X(vc

+s)− 2X(vc
0), where X is the labeling

of the image. Hence d1 and d2 are proportional to the discrete first and second
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(a) (b) (c)

Figure 2.3: Frequency (unnormalized, logarithm scale) plotted against
gradients of the two neighboring pairs in a linear 3-clique, from
the Berkeley dataset [66]. (a) The empirical marginal distribu-
tion. (b) The would-be distribution if gradients of the neighbor-
ing pairs were independent. (c) The distribution from a fitted
Lorentzian cost function.

derivatives of the image luminance respectively. In other words, the clique po-

tential couples both first and second order spatial information.

The Lorentzian function has been widely used to model the statistics of nat-

ural images (e.g., [43, 77, 97]). In our case, we use a family of 2-dimensional

Lorentzian functions for the spatial term, i.e.

f (xc) = α · log(1 +
1
2

[(β1d1)2 + (β2d2)2]) (2.4)

where {α, β1, β2} is the set of parameters for cliques of type T (c). Hence f is

intensity-invariant and regulates both the first and the second derivatives of the

spatial signal. We choose this family since it not only fits the statistics of natural

images (Figure 2.3) but is also able to produce smooth gradient while preserving

discontinuities. This form is subtly different from filter based models, such as

[77, 108], that use a linear combination of functions over filter responses; in our

case the first and second order derivatives are coupled, that is both orders of

derivatives are inputs to the same non-linear function rather than using a linear
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combination of separate non-linear functions of each spatial filter.

It has been noted that natural images are self-similar over different spatial

scales [32, 88]. As a result, cliques with different scales (i.e. edge lengths) all

have very similar marginal distributions. This makes the marginals of cliques

at different scales highly correlated, which we also observed empirically. Hence

using independently collected marginals as the clique potentials is not a good

model when dealing with natural scenes. To account for this factor, we reweigh

the distribution of smaller-scale cliques according to the marginals of larger-

scale ones, so as to make the former learn different trends from what have al-

ready been captured by the latter.

2.4.1 Inference

For denoising, inference can be performed using either belief propagation (BP)

[55] or gradient based methods such as limited memory BFGS (L-BFGS) [70].

We experimented with both and found that L-BFGS produces the same quality

of results as BP while requiring less running time. Hence the results we report

in this chapter are based on using L-BFGS. It should be noted, however, that

some problems in vision are of a discrete nature and cannot be solved using

gradient-based methods. In those cases, discrete optimization techniques such

as BP and graph cuts are required.
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Table 2.1: Denoising performance of SLRF measured in peak signal-to-
noise ratio (PSNR), higher is better. Results from other random
field based denoising methods are shown for comparison. (Bold
indicates the best performance among the 3-clique MRF mod-
els, asterisk denotes the best overall result, and “–” indicates no
published data available.)

Model \ Noise σ 5 10 15 20 25
SLRF, K=4 36.90 32.71∗ 30.39 28.86∗ 27.73
Local MRF, K=2 36.51 32.04 29.81 27.89 26.41

FoE [77] – 32.67 30.47∗ 28.79 27.59
GCRF [99] – – – – 28.04∗

Var. MRF [97] – – 30.25 – –
SRF [79] – – – 28.32 –

2.5 Experimental Results

To evaluate the model for image denoising we used the Berkeley Segmenta-

tion Dataset and Benchmark [66] in order to compare the results with previous

methods. The models were trained on the training images in the dataset and

performance was measured on a subset of the testing images, which are the

same as the ones used in [77, 79, 97, 99]. In all the experiments we ran L-BFGS

for 20 iterations, which we found to be sufficient for our model. 2 This is in con-

trast to large-clique methods, which usually require many hundred iterations to

produce results of good quality [77, 99].

Table 2.1 shows the denoising performance of our model along with the re-

sults from the FoE model in [77], the steerable random field (SRF) in [79], the

Gaussian CRF in [99], and the variational MRF in [97]. This table reports the

peak signal-to-noise ratio (PSNR) of each method averaged over the 68 test im-

ages (higher is better). These results demonstrate that the performance of our

2We also experimented with conjugate gradient as the optimization method, which achieved
the same performance but needs a few more iterations (about 30 as opposed to 20 for L-BFGS).
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(a) (b) (c) (d)

Figure 2.4: Denoising output for a medium-texture scene. (a) Original im-
age. (b) Corrupted by Gaussian noise, σ = 25. (c) Restored
using our SLRF model, PSNR = 28.63. (d) Restored using
FoE [77], PSNR = 28.72. The magnified view shows that our
model, while having comparable PSNR, does a significantly
better job at preserving the small and low-contrast structures
of the stonework below the windows.

approach is comparable to that of recent top performing random field meth-

ods using the standard measure of PSNR. However, as is widely recognized,

PSNR does not tell the entire story, thus we also consider some example images

in more detail both to show the overall quality and to highlight the extent to

which our method removes noise without smearing out the details.

Figures 2.4 and 2.5 display sample outputs from our model (in c) and from

FoE (in d), illustrating the comparable quality of our method and FoE. In par-

ticular our method is able to reproduce image texture without yielding to the

visually unpleasant blockiness that other methods using small cliques tend to

produce [27, 55]. The enlarged regions in each of the images illustrate that

our method is able to reproduce fine-scale texture better than the FoE. For in-

stance in the castle image (Fig. 2.4), the stonework detail below the windows is

smoothed out in the FoE but preserved in our model. The textured surface of the

34



(a) (b) (c) (d)

Figure 2.5: Denoising output for a high-texture scene. (a) Original image.
(b) Corrupted by Gaussian noise, σ = 25. (c) Restored using
our SLRF model, PSNR = 26.02. (d) Restored using FoE, PSNR
= 25.55. Again, the detail illustrates that our model not only
achieves good PSNR but also produces less over-smoothing.

rocks in the sheep image (Fig. 2.5) similarly illustrates the ability of our method

to preserve realistic texture while removing noise, rather than over-smoothing.

Moreover, our method produces a consistent level of sharpness across the whole

image, and, unlike FoE, does not tend to make high-contrast regions very sharp

while low-contrast regions very smooth (Fig. 2.4 and 2.5, compare (c) and (d)).

This gives the output of our model a more natural look.

Table 2.1 also shows that the model with long-range edges (K = 4) performed

better than the local model (K = 2), in terms PSNR, and that the difference is

most pronounced at high noise levels (e.g. σ = 25) as would be expected. Even

at low noise levels (e.g. σ = 5), where one would not necessarily expect much

help from longer-range connections, the long-range model still slightly outper-

formed the local model. This suggests that long-range interactions increase ro-

bustness of the model without sacrificing fine-scale precision. Figure 2.6 shows

in side-by-side comparison some sample output of the long-range model and
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PSNR = 30.96dB PSNR = 30.08dB

PSNR = 28.78dB PSNR = 27.65dB

Figure 2.6: Comparison of denoising outputs of the long-range and the
local models. Input images have Gaussian white noise with
σ = 25 (PSNR = 20.17). Left: Results of the long-range (K = 4)
model. Right: Results of the local (K = 2) model. Observe
that the outputs of the local model is blocky and appear tainted
while those of the long-range model are smooth and clean.

the local model. The difference in visual quality between the two emphasizes

that longer-range connections are useful and that our simple second-order mod-

els are capturing important properties of images, though these are not com-

pletely reflected in the PSNR numbers.

In addition to the experiments with artificial Gaussian noise, we also test our

model on real-world noisy images. For color images, we simply transform them
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Input SLRF BLS-GSM [74]

Figure 2.7: Results on two real-world noisy images used in [74]. For these
two images, our model assumes Gaussian white noise of stan-
dard deviation of 50 and 25 respectively. Despite the lack of
accurate noise model, the visual quality of the output of our
method is comparable to that of [74].

into YCbCr space and apply the model on each channel separately. In all our

experiments, Gaussian white noise is assumed. Although this is suboptimal, we

obtain qualitatively good results as can be seen in Figure 2.7.

These results illustrate that our model utilizing sparse long-range connec-

tions achieves state-of-the-art performance when compared with other random

field methods for image denoising. Arguably the better preservation of texture

and more natural look compared with FoE, without the blocky effects of other

local methods, improves upon previous results. Due to the small clique size and

hence low complexity, our model is less prone to artifacts, such as the ringing

pattern, which occurs more often with higher-order models. The highest PSNR

has been achieved by wavelet based methods (e.g. [75, 74]); nevertheless, such

models tend to produce a larger amount of ringing artifacts.

Finally we compare in Table 2.2 the running time of our model with those

37



Table 2.2: Running time of various image denoising methods.

Method Image size Processor Running time (sec.)
SLRF 481×321 Xeon-3.0GHz 3.2
FoE [77] 481×321 Xeon-3.2GHz 376.9
GCRF [99] 481×321 Xeon-3.2GHz 97.8
GSM [75] 256×256 PentiumIII-1.7GHz approx. 40

reported for some other methods, including both random field [77, 99] and

wavelet-based [75]. These results show that our method is a factor of 30 or

more faster than the other random field methods and about 10 times faster than

the wavelet-based one (note that while the running time in this last case is for

a slower processor, the image is also considerably smaller). The speed of our

model makes it a practical denoising method even for high-resolution images.
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CHAPTER 3

LEARNING FOR STEREO USING STRUCTURAL SVM

3.1 Introduction

Stereo is among the most widely studied low-level problems in computer vi-

sion. It is an especially challenging task due to the inherent ambiguity in pixel

matching, which is further complicated by phenomena such as occlusion and

untextured regions. Random field models, which address the ambiguity prob-

lem by enforcing global consistency using spatial priors, have substantially ad-

vanced the state of the art of stereo vision [96, 98]. Despite the progress, how-

ever, the parameters of most of these models remain hand-tuned. This not only

requires a large amount of human effort but also limits the adaptability of the

model, because of the difficulty of optimizing models by hand for new environ-

ments.

In this chapter we present a conditional random field [54] based model for

stereo vision with non-parametric cost functions, which can be learnt automat-

ically using the structural support vector machine (structural SVM) [104] with

linear kernels. We choose the discriminative conditional random field (CRF)

over its generative counterpart, the Markov random field (MRF), because the

former avoids the necessity to define a generative process, which is somewhat

difficult to characterize in stereo. For instance it is common and often desirable

to use gradient-adaptive spatial terms, which tend to violate the Markovian in-

dependence assumptions of generative models. Deviating from the traditional

approach in random field based stereo, we use non-parametric cost functions to

model the node and clique potentials of the CRF. In addition to providing flex-
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ibility in functional forms, this non-parametric approach allows us to express

the total cost of the model as the inner product of a feature vector and a vec-

tor of the corresponding costs, where the costs correspond to the parameters

of the model. The negated costs are commonly called “feature weights” in the

machine learning literature. This linear form of the model enables us to use the

structural SVM to learn the model parameters.1

The structural SVM is a large-margin method for estimating parameters, and

can be an attractive alternative to the commonly used maximum likelihood es-

timator. A major advantage of the structural SVM, and large-margin methods

in general, is that they take the loss function into consideration during training.

Therefore, the approach can be used to train different models that specifically

target different types of loss. In contrast, the maximum likelihood method is

oblivious to loss; in fact it can be regarded as always minimizing the expected

aggregate 0/1 loss (which is 0 if the labeling is completely correct and 1 oth-

erwise). Such a loss function is clearly not optimal for most low-level vision

problems, which usually have pixel-based performance criteria.

In this chapter, we describe a formulation of stereo vision in terms of non-

parametric CRF models and a technique for training them using the structural

SVM. This approach naturally allows us to learn models using the kinds of eval-

uation criteria that are normally used to assess stereo, such as the number of

pixels whose labels are within 1 unit of the correct disparity level [82]. In our

experiments we demonstrate that our method significantly outperforms other

pixel-based stereo methods that have parametric (e.g. Potts) potentials trained

using maximum likelihood. We also investigate the effect of the underlying

graph structure on model performance, and show that the addition of explicit

1In this work, we only consider structural SVM with linear kernels.
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non-local interactions (as described in Chapter 2) generally improves accuracy

on more difficult scenes and especially in the presence of image noise.

3.1.1 Related Work

Random fields are among the most popular models in stereo vision. Common

forms of the spatial term for stereo are parametric functions of the disparity

difference between neighboring pixels, which usually model the distribution as

a mixture of a line process and an outlier process (e.g. in [92, 90, 114]). These

include the Potts model and the truncated linear model. The functions are some-

times gradient adaptive (e.g. in [81]) to encourage discontinuity in disparity to

coincide with change in image intensity. The data term is typically the value of

some dissimilarity measure, such as the absolute intensity difference.

While these functional forms have been successfully used to produce good

results, some fundamental issues remain unaddressed. Reasonable and intu-

itive as they are, parametric spatial terms such as the Potts and line-outlier

models make particular assumptions about the form of the disparity distribu-

tion, which may not be true for the data. Therefore these models can be over-

restrictive and fail to fit the data well. Using any dissimilarity measures directly

as the cost function for the data term is also problematic. While a sophisticated

metric, such as the sampling-insensitive dissimilarity [12], can provide a faith-

ful measure of image difference and hence a reliable input to the data term, the

metric itself is not necessarily a good cost function. In our model, the spatial

term is a non-parametric function of disparity difference and discretized image

gradient, and the data term is a non-parametric function of discretized dissim-
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ilarity value. While non-parametric stereo has been studied in many earlier

works (e.g. [112, 6]), these approaches are typically based on ordering trans-

forms and formulated as purely local methods rather than the global models

that we investigate here.

Learning for stereo vision is a challenging subject. Considerable progress

has been made in recent years, largely owing to the increasing availability of

ground truth data. The work of [53] learns a probability model for matching

errors using the scene structure of the input images. In [114], an expectation

maximization (EM) algorithm is used to iteratively estimate disparity and re-

learn the model parameters based on the estimate. While these methods have

shown promising results, they do require some initial model whose parameters

still need to be preset. Moreover they are conducted in a manner different from

the standard settings of machine learning, where there are separate training and

testing data. In these previous works, the model is learned from the same (un-

labeled) data that is to be labeled, and the parameters are adjusted in order to

improve performance. Our approach, on the other hand, learns the model from

labeled training data and tests it on unseen inputs, which is a standard form of

supervised training in machine learning.

A recent work that employs supervised learning for stereo vision is [81],

where a maximum likelihood estimator for the model parameters is obtained

via gradient descent. Computing the likelihood gradient, however, involves the

partition function, which is intractable on loopy graphs. Hence the partition

function is approximated by the mode of the model distribution (i.e. the MAP

solution), which is obtained using graph cuts (GC) [15]. However the gradient

tends to be noisy due to the approximation, as is observed in [81], which can
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lead to inaccurate estimates.

Large margin methods are an alternative to the maximum-likelihood ap-

proach, and were originally introduced in the context of binary classification

using optimal hyperplane separation [105]. The idea was first adapted to do-

mains with structured output in the framework of max-margin Markov net-

works (M3N) [100], where the required margin is rescaled by the loss of the

inferred labeling. Since the set of linear constraints (of the M3N quadratic pro-

gram) is exponential in size, it is replaced with a non-linear constraint approx-

imately solvable by linear programming relaxation. The method was subse-

quently applied to several low-level vision problems, including segmentation

and terrain classification, demonstrating improvement [3] over the performance

of previous models. Though a remarkable breakthrough, M3N has its limitation.

The linear programming formulation places a restriction on the form of admis-

sible loss functions; more specifically, the per-label (i.e. per-pixel) loss function

must be an indicator and must return zero if and only if the the inferred label

is the exact same as the ground truth. In particular such a form of loss function

is not well suited to stereo, where the performance metric typically allows an

error range around the true value (e.g., [82]).

The structural SVM [104] handles the exponential number of linear con-

straints in the quadratic program by employing a cutting-plane method. The

algorithm iteratively finds the most violated constraint, i.e. the labeling with

the smallest cost-less-loss value, and recomputes model parameters. The pro-

cess is repeated until no significantly more violated constraint can be found.

Thus the structural SVM places no restrictions on the form of loss functions,

as long as the most violated constraint is feasible to compute under such loss.
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For random field based stereo, finding the exact most violated constraint is not

tractable due the loopy graph structure; nonetheless an approximate one can

be obtained using energy minimization techniques. In our work, we use loopy

belief propagation (BP) [27, 68, 111] for this purpose. Although loopy BP is

known to perform poorly on densely connected graphs [29], the graph struc-

ture for stereo vision is sparse enough that this does not become an issue. Our

experiments show that the models trained with the approximate most violated

constraints obtained in this way perform well in practice.

3.2 CRF Model for Stereo

We model the problem of disparity labeling as a conditional random field on

a grid graph. Hence each node, representing a pixel, is connected to its four

nearest neighbors in both the horizontal and vertical direction. Later we will

also formulate models with longer-range connections and investigate the im-

pact on performance from the modified graph structure. For ease of presenta-

tion, however, we will start by describing the model defined on the conventional

4-connected grid.

Let V be the set of nodes and E be the set of edges in the graph. As is well

known, the likelihood of a labeling X (i.e. the disparity map) given the input I

decomposes into the product of maximal clique potentials and node potentials,

p(X|I;θ) =
1

Z(θ)

∏
(u,v)∈E

φθ
uv(xuv, I)

∏
v∈V

φθ
v (xv, I), (3.1)

where θ represents the parameters of the model and Z(θ) is the partition func-

tion. The notations xuv and xv denote the labeling over clique (u, v) and node v

respectively. Note that the maximal cliques are simply the edges in the grid,
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since the graph is pairwise. As is a common practice, we assume that the distri-

bution is in the general exponential family with φθ
uv(xuv, I) = exp[− f θ

uv(xuv, I)] and

φθ
v (xv, I) = exp[−gθ

v (xv, I)], where f θ
uv and gθ

v are cost functions for the spatial and

the data terms respectively. Hence the cost of labeling X, given input I, can be

defined in the negative log-likelihood space as

Eθ(X, I) = − log p(X|I;θ) − log Z(θ)

=
∑

(u,v)∈E

f θ
uv(xuv, I) +

∑
v∈V

gθ
v (xv, I). (3.2)

This quantity is also commonly referred to as the energy of the random field, and

we will use the words “energy” and “cost” interchangeably. Since the input I is

a constant and the log partition function log Z(θ) does not depend on X, finding

a labeling that maximizes the likelihood p(X|I;θ) is equivalent to finding one

that minimizes the cost Eθ(X, I).

The input for stereo consists of two images I = (IL, IR), where IL is the one

taken by the left camera and IR by the right. We assume without loss of gen-

erality that the disparity map is always computed for the left camera scene IL.

Since we model occlusion explicitly, the set of labels include the set of integer

disparity levels plus occlusion.

3.2.1 Spatial Term

The spatial cost f θ
uv is a function of disparity levels at neighboring pixels u and v

as well as the local image gradient. More specifically,

f θ
uv(xuv, I) = f θ

uv(J(xu, xv),K(u, v)), (3.3)
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(recall from Equation 3.1 that xuv and xv are the labelings of the clique (u, v) and

the node v respectively) with discrete valued functions J and K

J(xu, xv) =



xv − xu if neither u nor v is occluded

le f t occl if u is occluded

right occl if v is occluded

0 if both u and v are occluded

(3.4)

and

K(u, v) = b|I′L(v) − I′L(u)|c. (3.5)

For f θ
uv we assume that (u, v) is in the horizontal direction, since the case for

vertical direction is entirely analogous. In K(u, v), I′L is IL after a small amount of

Gaussian smoothing, which is applied to reduce the impact of texture and noise.

In the case of color images, |I′L(v) − I′L(u)| is averaged over the color channels.

Since the structural SVM requires the model to have a linear discriminative

function, the cost function f θ
uv(J(xu, xv),K(u, v)), abbreviated as f θ(J,K), has to be

linear; in other words, f θ(J,K) needs to be expressible as the inner product of

a parameter vector and some feature vector. This can be achieved using the

following form for the cost function

f θ(J,K) = θ f ( jk) if J = j and K = k , (3.6)

where θ f ( jk) are real valued model parameters. Let ψuv( j, k) be the indicator func-

tion that J(xu, xv) = j and K(u, v) = k, i.e. it is one if the condition holds and

zero otherwise. Let ψuv(xuv, I) denote the vector whose entries are ψuv( j, k) for

each combination of j and k at clique (u, v). Let θ f be the vector that contains the

corresponding parameters θ f ( jk). Hence f θ
uv can be written as the inner product

of θ f and ψuv(xuv, I), i.e.

f θ
uv(xuv, I) =

〈
θ f ,ψuv(xuv, I)

〉
. (3.7)
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For notational convenience we assume that horizontal and vertical cliques

(i.e. edges in pairwise models) share the same spatial parameters. Below we will

discuss the extension to anisotropic clique potentials, which is straightforward.

We define the spatial feature vector

Ψ f (X, I) =
∑

(u,v)∈E

ψuv(xuv, I). (3.8)

Hence the total spatial cost (i.e. the first term of Equation 3.2) is

Eθ, f (X, I) =
〈
θ f ,Ψ f (X, I)

〉
. (3.9)

When horizontal and vertical cliques have different potentials, we simply

have separate parameter and feature vectors for each type of cliques. The over-

all vectors are just the concatenations over the different clique types, and hence

the cost is still the inner product of the parameter vector and the feature vec-

tor as in Equation 3.9. The same extension also applies directly to the scenario

where there are multiple classes of edges in the graph that may correspond to

various lengths and orientations.

3.2.2 Data Term

Similar to the spatial cost, the data cost gθ
v is also defined as a non-parametric

function

gθ
v (xv, I) =


cv · θg(k) if v is not occluded and

bδ(v, IL, v − xv, IR)c = k

cv · θg(occl) if v is occluded

(3.10)

where cv is some constant scalar and δ(v, IL, v− xv, IR) is the sampling-insensitive

dissimilarity [12] between pixel v in image IL and its match in IR.

47



As before, let θg be the vector containing all data term parameters θg(k) (in-

cluding θg(occl)) and let ψv(xv, I) be the corresponding vector of indicators for the

conditions in Equation 3.10. Hence gθ
v is the inner product of θg and cvψv(xv, I)

gθ
v (xv, I) =

〈
θg, cvψv(xv, I)

〉
. (3.11)

Analogous to spatial features, the data feature vector is defined as

Ψg(X, I) =
∑
v∈V

cvψv(xv, I). (3.12)

We let cv equal the degree of node v, so that the ratio between the total counts of

spatial features and data features is constant with respect to the number edges.

This prevents potential imbalance between the norms of the spatial and the data

feature vectors when the model has multiple families edges and hence a higher

edge-to-node ratio. Thus it ensures that SVM never places too much attention

on one type of features and not enough on the other.

The total data cost (i.e. the second term of Equation 3.9) is also the inner

product of the data parameter vector and the data feature vector,

Eθ,g(X, I) =
〈
θg,Ψg(X, I)

〉
. (3.13)

Therefore, the total cost of labeling X given input I is

Eθ(X, I) = 〈θ,Ψ(X, I)〉 (3.14)

where parameter vector θ = (θT
f ,θ

T
g )T and feature vector Ψ(X, I) =

(Ψ f (X, I)T ,Ψg(X, I)T )T are both concatenated over the spatial and the data terms.

The desired labeling under the model is simply the one with minimum cost.
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3.2.3 Graph Structure with Long-range Edges

In addition to the grid graph, we also explore structures with long-range

edges. This corresponds to the SLRF model introduced in Chapter 2. In

particular, we consider horizontal and vertical edges that have length 3k for

k = 0, 1, 2, · · · ,K − 1. The larger K, the greater the maximum range of explicit

interaction is modeled. Thus the grid graph is a special case where K = 1. We

choose 3 as the base, since it is the smallest integer for which the random field re-

mains strictly pairwise (i.e. the maximal cliques are still of size two and thus the

same formalization applies). The exponentially increasing edge length also en-

ables us to model longer range of interaction at relatively lower computational

expense, compared with earlier models with denser edges (e.g. [34]).

The cost function in this more general setting is still the inner product be-

tween parameters and features, where the spatial term vectors are concatenated

over each type of edges. Hence the form of Equation 3.14 remains valid under

this extension.

3.3 Parameter Learning

The model parameters are learnt using the structural SVM [104]. Let

((I(1), X(1)), · · · , (I(n), X(n))) be the training examples, each of which is an input-

output pair. The structural SVM optimizes for parameters θ by minimizing a

quadratic objective function subject to a set of linear soft margin constraints

min
θ,ξ

1
2
‖θ‖2 +

C
n

n∑
i=1

ξi (3.15)

s.t. ∀i,∀X ∈ X : 〈θ, δΨi(X)〉 ≥ ∆(X(i), X) − ξi
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where X is the set of all possible labelings, ξi are the slack variables associated

with each example, and ∆(X(i), X) is the loss function, which we will define later

in this section. Also δΨi(X) denotes Ψi(X) −Ψi(X(i)) with Ψi(X) being shorthand

for Ψ(X, I(i)), and C > 0 is a constant that controls the trade-off between margin

and training error. Rearranging the terms of Equation 3.16 shows that the SVM

objective function is an upper bound on average training loss (up to a constant

factor C), as long as a labeling with cost no higher than that of the ground truth

can be found for every training example. While this condition is not guaranteed

due to the intractability of exact energy minimization on loopy graphs, it is often

true in many real-world low-level vision problems and especially stereo [96].

The apparent difficulty in this formulation is the exponential sized labeling

set X. The structural SVM addresses this problem by replacing it with a col-

lection of finite constraint sets S i. Initially all the constraint sets S i are empty

and the parameter vector θ is set to some arbitrary value, typically all-zeros. At

each iteration and for each example i, the algorithm computes the most violated

constraint, i.e. one with the largest slack ξi, and adds it to the constraint set S i

if it is more violated than those already in the set. The solution to the quadratic

program is then recomputed and hence θ updated. The algorithm iterates until

no new constraints are added.

Since maximizing ξi is equivalent to minimizing 〈θ, δΨi(X)〉 − ∆(X(i), X) and

Eθ(X(i), I(i)) =
〈
θ,Ψi(X(i))

〉
is a constant, the most violated constraint for example

i is just the one with the smallest cost-less-loss value

X̂ = arg min
X∈X

{
Eθ(X, I(i)) − ∆(X(i), X)

}
. (3.16)

For any per-pixel loss function, approximate solutions for X̂ can be obtained effi-

ciently using energy minimization techniques. It is worth noting that the struc-
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tural SVM also provides several other formulations of the quadratic program

[104]. However, the version with linear slack penalties and margin rescaling

(Equation 3.16) is the only one under which there are known efficient approxi-

mation algorithms for X̂ in stereo.

A challenge for learning non-parametric functions using the structural SVM

is that the parameters, namely the discrete cost function outputs, are treated

as independent variables by the learning algorithm, and hence the learnt cost

functions may have certain characteristics that are unnatural for the underly-

ing problem. In stereo, this is mainly manifested as fluctuations in the shape

of the data cost function. Though the learnt function does have the expected

overall trend of increasing with dissimilarity, it is not strictly monotone as it

should be for stereo. We address this problem by imposing a monotonicity

constraint on the data cost function after training. This is done by setting θg(k)

to min(θg(k), θg(k+1)) in decreasing order of k (k , occl, i.e. occlusion cost is un-

changed). In this way, we capture the domain-specific knowledge without fur-

ther restricting the form of the cost function.

We also noticed that the lowest training error is usually achieved not by the

final output of the SVM, but by some θ produced after one of the intermediate

training iterations. This is not surprising since the SVM objective function is

not the same as training error, even though it is an upper bound on the loss.

One reason to formulate learning as constrained optimization of such a bound

is that directly minimizing training error is usually not feasible. Also in SVM

theory, minimizing the norm of the learnt parameter vector (i.e. the first term

of the objective function) is equivalent to increasing the margin [105] and hence

guards against overfitting. For our stereo learning problem, however, we found
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that overfitting hardly occurs and that generalization error is much more closely

correlated with training error than with the value of the SVM objection function.

Therefore, we choose from all learnt θ vectors (produced after each iteration) the

one with the lowest training error as the model parameter. Parameters learnt in

this way are still large margin estimates since they are obtained through SVM

optimization. This modified training procedure can be considered as explor-

ing a subset of the parameter space that has the large margin properties, and

choosing the best instance based on training performance.

3.3.1 Loss Functions

The most natural choice of loss function is simply the error function under

which model performance is evaluated. For stereo this is usually the number

of bad pixels in non-occluded regions (determined by the ground truth), where

a pixel is bad if the disparity estimated by the model differs from the true dis-

parity by an amount greater than some threshold r. The conventional choice in

stereo is r = 1, which we use in our work. Hence the loss function is

∆(l) =
∑
v∈V

l(v) (3.17)

where l is the pixel-wise loss and in the case of standard stereo evaluation metric

it is

lstd(v) =


1 if v is bad and not in occluded regions

0 otherwise.
(3.18)

Both l and ∆(l) take as arguments the ground truth and the proposed labeling,

which are omitted from the notation above for conciseness. It is easy to see

that lstd discourages labeling of occlusion, since every non-occluded pixel mis-

labeled as occlusion encounters a loss while there is no penalty for occluded
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pixels mislabeled as non-occlusion. Such a loss function tends to produce mod-

els that label very little or no occlusion, though this is consistent with the goal

of achieving the best performance in non-occluded regions.

We can extend the definition of bad (i.e. mislabeled) pixel to occluded region.

In particular, we consider a pixel a false negative if it is occluded in the ground

truth but not labeled so by the model; similarly it is a false positive if the opposite

happens. In either case, the pixel is regarded as mislabeled. We can define a new

pixel-wise loss that is aimed at achieving lower overall error rates by correctly

identifying occluded regions

loccl(v) =


q if v is a false positive

1 if v is otherwise mislabeled

0 if v is correctly labeled

(3.19)

where constant q adjusts the extent to which occlusion labeling shall be encour-

aged. If q = 1 then ∆(loccl) would measure the model performance as the number

of bad pixels over the whole scene. For use as an SVM loss function, we find

that a smaller value of 0.06 proves to be a better choice for improving overall

accuracy.

3.4 Experimental Results

For performance evaluation we train and test our model mainly on the

Middlebury-2005 stereo data set release in [81], which contains scenes that are

more complex and challenging than the older ones on the Middlebury Stereo

Evaluation page [82]. Since the stereo benchmark does not label occlusions,

we simply fill in the occluded region by replacing the occluded pixel (inferred
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Table 3.1: Performance of models on the Middlebury-2005 data set [81] as
well as the “Teddy” and “Cones” scenes from the Middlebury
Stereo Evaluation page [82]. Here the learnt models are trained
on all the 6 scenes in Middlebury-2005. The table shows error
rates measured as the percentage of bad pixels, lower is better,
calculated in non-occluded regions (as is common). Bold fonts
indicate the lowest error rates among the models being com-
pared, and “–” indicates result not available.

† Extracted from the plots in Figure 6 – 8 of [81].

Model \ Scene Art Books Dolls Laun. Moeb. Rein. Avg. Teddy Cones
- Grid (K = 1), lstd loss 14.66 19.12 12.70 19.16 10.88 11.72 14.71 11.34 4.68
- Grid, loccl 15.24 21.13 12.11 17.14 11.28 16.47 15.56 10.92 4.27
- Long-range (K = 3), lstd 12.11 15.68 12.14 15.82 10.80 15.26 13.64 8.89 3.94
- Long-range, loccl 12.69 16.29 12.57 15.79 11.30 15.70 14.06 8.15 3.77

- [81] w/ 2 gradient bins – – – – – – 18† 11.3 10.7
- [81] w/ 6 gradient bins – – – – – – 20 14.5 16.8

- [82] w/ GC (non-learning) – – – – – – – 16.5 7.70
- [91] (non-learning) – – – – – – – 6.47 4.79

by the model) with the disparity of the first non-occluded pixel to its left (or

to its right if it is near the left boundary) when evaluating performance. This

is obviously suboptimal and fails to exploit the full benefit of occlusion label-

ing; nonetheless, finding a good extrapolation scheme for occluded regions is

beyond the scope of this work. For training of all models, we use Joachims’s

SVM-struct [104] with a C value (see equation 3.16) of 10−3 that is empirically

chosen based on training error. The outcomes are nevertheless rather insensi-

tive to the choice of C, and in fact values from 10−4 to 10−1 produce models that

are indistinguishable in performance.

We compare our results with several other pixel-based stereo algorithms [81,

82, 91], and show that our model achieves a high level of performance. The

error rates of our models are compared with those of [81] whenever possible

(i.e. when the corresponding data is available in [81]). The comparison with

[82] and [91], both non-learning based, is limited to the “Teddy” and “Cones”
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Table 3.2: Performance of learnt models in leave-one-out cross validation
on the Middlebury-2005 data set (top) and performance of mod-
els trained on Middlebury-2006 and tested on Middlebury-2005
(bottom). The error rates are measured in the same way as in
Table 3.1.

Model \ Scene Art Books Dolls Laundry Moebius Reindeer Average
Leave-one-out
- Grid, lstd 15.54 20.81 12.83 18.21 11.69 13.04 15.35
- Grid, loccl 15.11 21.97 12.88 18.10 11.13 14.09 15.55
- Long-range, lstd 12.77 17.56 12.40 16.75 11.25 15.41 14.36
- Long-range, loccl 13.49 15.98 12.89 17.06 10.64 18.94 14.83

- [81], 2 grad. bins – – – – 17 14 –
- [81], 6 grad. bins – – – – 13 18 –
Train on Midd. 2006
- Long-range, lstd 13.60 16.13 13.86 20.65 12.21 17.90 15.73
- Long-range, loccl 14.37 16.79 12.87 17.14 12.84 15.76 14.96

Figure 3.1: Sample disparity maps for stereo scenes Art and Cones pro-
duced by long-range CRF models (K = 3) learnt with loccl loss
function. For “Art” (top), the model is trained on the rest 5
scenes in the same data set; for “Cones” (bottom), the model is
trained on all 6 scenes in the Middlebury-2005 data set (which
contains “Art” but not “Cones”). Occluded regions inferred by
the model are masked in full black.
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scenes, since these algorithms predate [81] and hence no results are reported

on the Middlebury-2005 data. It should be noted that our method is raw-pixel

based and treats stereo as a generic random field labeling problem, and does

not use techniques such as weighted support windows, segmentation, or plane

fitting (e.g. [49, 110, 116]). However, many of these more involved methods

use MRF or CRF models at some stage, and thus our learning technique should

prove useful to further work on such approaches to stereo.

The results in Table 3.1 show that our method achieves performance superior

to that of [81], which also uses machine learning. Comparing with the non-

learning based methods, the performance of our learnt models by far surpasses

[82] and is comparable with [91], one of the top-performing stereo algorithms.

This is despite the fact that [91] generates a second disparity map using the

other image of the stereo pair in order to exploit visibility constraints, while our

models are generic random fields and do not make use of this property.

Table 3.2 shows the error rates of leave-one-out cross validation, where for

each scene the model is trained on all the other scenes in the data set. In addi-

tion we also train our model on the 2006 data set from the Middlebury Stereo

website, which has very different characteristics, and test it on the 2005 data

set. As one can see, the performance of leave-one-out cross validation is close

to that of training on the whole data set; moreover, training on a very different

data set yields only slightly higher error rates. This indicates that model and the

training method generalize well to unseen data.

Another observation from the two tables is that when the models are trained

directly using loss functions that encourage occlusion labeling (i.e. loccl) they

have nearly the same level of performance as those trained using the evaluation
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Table 3.3: Model performance on noisy stereo input (Middlebury-2005
data set). The images from the testing scenes are corrupted by
additive Gaussian noise with standard deviation σ. Models are
trained on the original (non-noisy) images with lstd loss. (The
scenario for using loccl is essentially the same.) Evaluation is
based on leave-one-out cross validation and the error rates are
averaged over the whole data set.

Model \ Noise σ 3 5 7 10
Grid 18.84 24.18 32.25 46.44

Long-range 15.55 18.23 21.20 24.20

metric itself as the loss function (i.e. lstd). This demonstrates that our method is

able to handle occlusion without sacrificing much accuracy in the non-occluded

regions. Figure 3.1 displays some sample output disparity maps produced by

models trained with loccl loss. One can see that most of the occluded regions are

correctly identified.

Moreover, the figures in both Table 3.1 and 3.2 suggest that models with

explicit long-range interactions generally perform better than those with only

local connections, namely the grid model (e.g. compare row 1, 2 with row 3,

4). This indicates that the inclusion of sparse long-range edges does yield some

benefit. To investigate this further, we study the trends in which model perfor-

mance degenerates with increasing image noise. This bears practical concern

for stereo, since in real-world situations the input images are unlikely to be as

noise-free as those taken in the lab. In fact, noise in stereo has been a subject of

study in several recent works, e.g. [40, 38].

Table 3.3 shows the percentage error rates of grid and long-range models

on stereo inputs with Gaussian noise. Here the difference is much more pro-

nounced. The performance of the 4-connected grid model rapidly declines as

the noise level increases, whereas the one with long range connections under-
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goes a much more graceful degradation. Note that the goal of this comparison is

not to develop a new method for noisy stereo, which is itself a separate research

topic; it is simply shows the advantage of increased robustness of long-range

models over the grid under equal conditions.
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CHAPTER 4

LEARNING FOR OPTICAL FLOW USING STOCHASTIC

OPTIMIZATION

4.1 Introduction

Optical flow is among the most widely studied problems in low-level vision.

While the development of better matching and regularization criteria as well

as more effective optimization techniques has significantly advanced the state

of the art [16, 69, 2, 9, 17, 13, 1], the parameters of these methods are generally

set by hand on the same data that is used for evaluation. Although there has

recently been some work on learning for optical flow, such as [78], the practice

of hand tuning parameters remains prevalent.

In this chapter, we describe a continuous-state Markov random field (MRF)

[11, 33, 95] based model for optical flow and earn the parameters of this model

using simultaneous perturbation stochastic approximation (SPSA) [85] to min-

imize the training loss – that is the error on the training data under some error

function. In particular, we measure training loss using the average end-point

error (AEPE) [71] which is one of the error metrics commonly used to assess the

quality of optical flow estimation.

Directly optimizing for training loss as opposed to a maximum likelihood

approach (e.g. as pursued in [78]) has a number of advantages. First, the likeli-

hood of the data under models with loopy spatial dependency is intractable to

compute. In order to obtain the maximum likelihood estimate, one thus has to

resort to approximation techniques such as estimating the mode (i.e. the max-
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imum a posteriori estimate) [81], sampling [78], or some type of local training

[93]. These approximations, however, tend to be imprecise and may lead to

noisy and unreliable estimates, as noted in [81]. Moreover, from a statistical

learning point of view, the maximum likelihood estimate is not well suited for

problems such as optical flow that have structured outputs, such as a label at

each pixel, as opposed to a single overall right-or-wrong answer. Thus an at-

tractive alternative approach is to minimize some specific loss function, or error

metric, on the training data (e.g., [56]) as we discuss further in Section 4.3.

Learning model parameters that minimize the loss on the training data is

a challenging optimization problem, since the relationship between the target

function (i.e. the training loss) and the model parameters cannot be determined

analytically except in some special cases (e.g. [97]). SPSA [85] is a convenient

choice in this situation, since it only requires the target function to be smooth

and to have non-vanishing gradient (with respect to the parameters being opti-

mized), a rather generous condition that is usually satisfied, but does not require

the analytical form or the true gradient to be known. Hence it can be used to

optimize for a wide range of loss functions, including the commonly used er-

ror metrics on which optical flow quality is judged such as AEPE. Given the

large number of problems in computer vision that have structured outputs and

the breadth of applicability of SPSA [87], the approach that we develop here is

likely to be of broader interest for other problems in computer vision.

We evaluate our method in the standard setup of supervised learning,

namely by training the model on a set of sequences with ground truth and test-

ing it on a different set that does not include any of the training sequences. This

allows one to assess the generalization power of the learnt model. We compare
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our results to those of previous methods and show that our model both gener-

alizes well to unseen data and achieves state-of-the-art performance for optical

flow.

4.1.1 Related Work

Optical flow is a highly challenging low-level vision problem due to inherent

ambiguity in local regions of the image, known as the aperture problem [10].

This is further complicated by phenomena such as motion discontinuity, untex-

tured regions, and sensor noise. To address these issues, many early methods

utilize local support windows over which some matching cost is aggregated

(e.g. [65]). Window-based approaches approaches, however, suffer from the

generalized aperture problem [46], namely that they are either too small to pro-

vide sufficient support or too big that they span over motion boundaries. Al-

though this can be alleviated by using parametric and mixtures models (e.g.

[46]), support windows have not proven to be good for accurately estimating

the motion of non-rigid bodies undergoing deformation. Moreover, purely lo-

cal methods are susceptible to erroneous matches in poorly-textured regions

even with the aid of support windows. Global models for optical flow, first

proposed in [42], compute the flow field by minimizing a global energy func-

tion. The energy function is usually composed of a data term that encourages

agreement between frames and a spatial term (i.e. regularization) that enforces

consistency of the flow field. Markov random fields (MRF) are closely related to

energy-based models [56] in that the node and clique potentials of an MRF are

often defined in terms of energy or cost functions in general exponential fami-

lies. Thus equivalence can be drawn between the negative log-posterior of MRF
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models and global energy functions. MRF models, however, have explicitly-

defined topology and are convenient to model higher-order and non-local (i.e.

long-range) interactions (e.g. in [34, 78]), which would otherwise be more diffi-

cult to express.

Learning for optical flow is a challenging subject, which has not been studied

extensively. A major difficulty for learning optical flow models is the scarcity

of ground-truth data. Despite the challenges, considerable progress has been

made over the past decades that has improved our understanding of the prob-

lem. The robust estimation framework introduced in [13] makes a key observa-

tion that the brightness constancy and spatial smoothness assumptions are often

violated near motion boundaries, and hence robust energy functions such as the

Lorentzian should be used instead of quadratics to account for these violations.

Although that work proposes a variety of robust function forms, it does not

attempt to automatically estimate their parameters. Probability distributions

of optical flow are studied in [84], where they are used to represent uncertain-

ties and account for errors. Nevertheless, the parameters of the models used to

compute optical flow are still set by hand. In [30], linear bases of parameterized

models are learnt from examples using principal component analysis. Pioneer-

ing for its time, these models mainly target certain specific motion types and

are not designed for general motion estimation. In a more recent work, field-of-

expert (FoE) models [77] are learnt from ground-truth flow fields inferred from

range-scan data [78]. This appears to be the first work to employ supervised

learning technique for general optical flow estimation. However, their model

differs from ours in several important respects, including the use of decoupled

large-clique (5 × 5) filters and learning with approximate maximum likelihood

rather than considering training loss.
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Simultaneous perturbation stochastic approximation (SPSA) is a stochastic

optimization method that iteratively minimizes a given target function. At each

iteration all model parameters are simultaneously perturbed at random, and the

loss function is evaluated at the perturbed positions in the parameter space to

estimate its pseudo-gradient with respect to the parameter vector. This infor-

mation is then used to determine the direction of descent and to subsequently

update the model parameters. Since exact convergence is difficult to determine,

the algorithm is usually run for either a fixed number iterations or until the

reduction in loss becomes insignificant.

The SPSA algorithm was first proposed in [85] as a gradient-free stochastic

optimization method, and it is closely related to the classical finite-difference

stochastic approximation (FDSA) algorithm [48] since both methods estimate

the gradient of the loss function by measuring its values only and hence avoid

the necessity to know its closed-form derivatives. However, by simultaneously

perturbing all model parameters, SPSA requires substantially fewer measure-

ments of the loss function and hence achieves faster convergence rates [85, 87].

The gradient-free SPSA is well-suited for problems where the input-output re-

lationship of the system is difficult to determine. Since its introduction, SPSA

has been applied to optimize for a variety of engineering systems ranging from

traffic control, weapon targeting, to buried object localization [87]. Neverthe-

less, the method has received less attention in the vision community. To our

knowledge, it has not previously been applied to learning parameters for low-

level vision problems.

63



4.2 An MRF Model for Optical Flow

We model the optical flow computation as a labeling problem on a continuous-

state Markov random field, where each node p, representing a pixel, receives

a 2-dimensional vector label wp ∈ R
2 indicating its flow (i.e. apparent motion).

1 In our MRF model, each node is connected to nodes that are either adjacent

or two pixels away in both the horizontal and vertical directions. Hence the

resulting MRF consists of linear 3-cliques (i.e. 3-node complete subgraphs) that

are either horizontally or vertically oriented. The 3-clique MRF topology allows

us to model both the first derivative (i.e. gradient) and the second derivative

(i.e. curvature) of the flow field, which are both important motion statistics.

On the other hand, the clique size is small enough that it doesn’t pose a severe

computational burden.

LetV be the set of nodes and C be the set of cliques of the graph. The poste-

rior of a labeling w given data I decomposes into the product of maximal clique

potentials and node potentials,

p(w|I;θ) =
1

Z(θ)

∏
c∈C

φθ
c (wc)

∏
p∈V

φθ
p(wp, I), (4.1)

where θ represents the parameters of the model and Z(θ) is the partition func-

tion. The notations wc and wp denote the labeling over clique c and node

p respectively. Recall that the MRF is continuous, and thus w is also in a

continuous vector space. As is a common practice, we represent the distri-

bution in the general exponential family so that φθ
c (wc) = exp(− f θ

c (wc)) and

φθ
p(wc, I) = exp(−gθ

p(wp, I)). That is, f θ
c and gθ

p are the energy functions for the

spatial term and the data term respectively, and the total energy of a labeling

1It is convention to use the notation w for optical flow variables.
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(i.e. flow field) w given input I can be written as

E(w;θ, I) = − log p(w|I;θ) − log Z(θ)

=
∑
c∈C

f θ
c (wc) +

∑
p∈V

gθ
p(wp, I). (4.2)

Therefore minimizing the energy E(w;θ, I) is equivalent to finding the maxi-

mum a posteriori (MAP) labeling over the MRF. Although exact minimization

of the energy is generally intractable due to the loopy graph structure, methods

based on gradient descent can be used to obtain an approximate solution (which

we shall return to in Section 4.2.2).

The input for our model is a pair of images, i.e. I = (I0, I1). Without loss of

generality, we assume that the flow is computed for I0.

4.2.1 Energy Functions

We use robust energy functions as proposed in [13]; in particular, we choose the

family of Lorentzian functions for their ability to maintain spatial consistency

and brightness agreement while being tolerant to motion discontinuity in the

spatial term and outliers in the data term. The energy function for the spatial

term is defined as

f θ
c (wc) = λS · ρ(

√
||β1d1||

2 + ||β2d2||
2) (4.3)

where λS , β1, and β2 are model parameters, the function

ρ(·) = log(1 +
1
2
| · |2) (4.4)

is the standard Lorentzian function, and

d1 = wr − wp

d2 = wp − 2wq + wr, (4.5)
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Figure 4.1: A horizontal 3-clique over pixels (nodes) p, q, and r. Each pixel
has a 2-D vector label indicating the flow value (i.e. the appar-
ent motion).

with wp = (up, vp)T denoting the flow vector at pixel p. Here p, q, and r are

the three pixels (i.e. nodes) belonging to the linear 3-clique c. If the clique c

is horizontally oriented, they are the left, middle, and right pixel of the clique

respectively and hence d1 and d2 are the discrete first and second partial deriva-

tives (up to a constant factor) of the flow field along the horizontal direction; the

case for clique c being vertically oriented is analogous.

Figure 4.1 illustrates the layout of a horizontal clique and the vector labels of

its nodes. Notice that the spatial energy function (and hence the clique potential

of the MRF) is symmetric with respect to x and y directions, and therefore its

value is unchanged if the coordinates are rotated by 90◦ or have the two axes

switched. The spatial energy function is also isotropic (i.e. has perfect rotational

symmetry) in the motion domain, since only the magnitude of relative motion is

computed. Thus rotating the flow vectors by the same angle everywhere would

result in no change of the spatial energy.

While the form of our energy function is similar to filter based models such

as [77, 78, 108], it differs in a subtle but important way. Those models use a lin-

ear combination of functions over individual filter responses, which implicitly

assumes that the filters are independent of each other. In our case, both the first

and second derivative filters are inputs to the same non-linear robust function.

66



Hence the influence of one derivative is reduced if the other is already large

(due to the robust spatial term), thereby avoiding double-penalties at motion

boundaries.

The energy function for the data term is defined in terms of the difference

between a pixel in I0 and its matching position in I1 under the flow field w,

gθ
p(wp, I) = λD · ρ(βD||I1(p + wp) − I0(p)||), (4.6)

where p is used synonymously with its 2-vector coordinates (xp, yp)T on the im-

age grid, ρ is the same Lorentzian function as defined in Equation 4.4, and λD

and βD are model parameters. For color images, I(p) is simply a 3-vector of the

RGB values at position p in image I. Although using more psychophysically

motivated color spaces such as Lab or XYZ may yield better matching models,

it is beyond the scope of this work. Since in general p + wp does not fall on

integer grid positions, its value in I1 is sampled using bilinear interpolation.

4.2.2 Optical Flow Estimation

To estimate optical flow, we perform approximate MAP inference on the MRF

by minimizing the energy function in Equation 4.2 using gradient descent.

Computing the gradient of the spatial term energy ES =
∑

c∈C f θ
c (wc) is straight-

forward since it has an analytical form in w, and the gradient at each pixel is

given by

(∇wES )p =
∑

c∈C:p∈c

∇wp f θ
c (wc). (4.7)

Since the data term (Equation 4.6) involves the image input, it is not a closed-

form expression with respect to w. Nevertheless, by using the chain rule, the
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gradient of the data term energy ED =
∑

p∈V gθ
p(wp, I) can be written as

(∇wED)p = ∇I1(p+wp)gθ
p(wp, I)∇wp I1(p + wp). (4.8)

The value of ∇I1(p+wp)gθ
p(wp, I) is readily available, since it is analytical in I1(p+wp)

(cf. Equation 4.6). Moreover, ∇wp I1(p + wp) is simply the image gradient of I1 at

position p + wp. (To see this, let z = (x, y)T = p + wp, i.e. z is the coordinates of the

matching position of p. Since ∇wpz = 1 according to the definition of z, it follows

that ∇wp I1(p + wp) = ∇zI1(p + wp)∇wpz = ∇zI1(p + wp).) We approximate the image

gradient using the 1
2 (−1, 0, 1) derivative filters and bilinear interpolation.

As is standard in the literature, the input images are preprocessed with a

low-pass filter. In our case, we use a small Gaussian kernel with σ = 0.25.

For performing gradient descent we use limited memory BFGS [70, 63], which

has faster converge speed than steepest descent. We also employ hierarchical

coarse-to-fine strategy for optical flow computation [2, 9], since it is well known

to produce globally more consistent and hence more accurate flow estimations.

As is commonly done, all flow values are initialized to zero at the beginning of

the optimization.

4.3 Learning the Parameters

As noted above, we take the approach of learning models that yield low train-

ing loss (e.g., [56]) rather than those that maximize the likelihood of the training

data. There are several advantages to this approach. First, as discussed in Sec-

tion 4.1 maximum likelihood estimation is intractable for labeling problems on

large loopy graphs leading to the use of a number of approximation techniques.

Second, maximum likelihood estimation may not be consistent with the error
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measure that one would like to optimize, which we discuss further here. Fi-

nally, directly minimizing training loss is well suited to ground truth from real

scenes, as opposed to synthetic data, which generally contain pixels at which

the data is unknown.

We now turn to the second of these issues, training models that optimize for

an appropriate error measure. If we regard the training data as a sample drawn

from some unknown distribution characterizing the domain of the problem,

then lower training loss implies lower expected generalization loss (i.e. error

rate on unseen testing data) for a given class of models. The maximum likeli-

hood estimate, other other hand, does not take the specific error metric into ac-

count. Thus even if the correct (zero error) output is assigned a high likelihood,

it does not necessarily discriminate between bad outputs (i.e. those with high

loss) and reasonably good ones (i.e. those that are not completely correct but

nevertheless have low loss). For instance, suppose there are two different loss

functions for optical flow, each designed to suit a different need. One of them

heavily penalizes non-smooth flows in the uniform region but does not mind

having blurred motion boundaries, whereas the other does just the opposite.

Given this scenario, there is little reason to believe that the same model should

be optimal for both loss functions. By minimizing the training loss one finds

model parameters best suited to the particular loss function. Although in prin-

ciple one could instead learn the parameters using maximum likelihood and

then take the error metric into account during the inference stage, this would

pose additional challenges of what optimization problem to solve that took both

the model and the metric into account, and whether such a problem could be

solved efficiently.
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The third issue that is naturally handled by minimizing the training loss is

that of incomplete ground-truth. Currently available ground-truth data of real,

as opposed to synthetic, motion sequences contains a non-trivial number of pix-

els with unknown flow values due to phenomena such as occlusion. While this

may be improved to some degree with the gathering of additional data, it is an

inherent problem that some pixels will have unknown values. Handling pixels

with missing ground-truth values is easy with pixel-based loss functions such

as AEPE, as such pixels can simply be excluded from consideration. Computing

the likelihood of data with missing values, on the other hand, is not so straight-

forward because of spatial interdependencies.

4.3.1 Training Loss Minimization Using SPSA

Thus we seek parameters θ = (β1, β2, βD, λS , λD)T that minimize the average

training loss L(θ). 2 As noted above we do this using SPSA [85]. SPSA is

an iterative pseudo-gradient descent algorithm that updates its solution θ̂ =

(θ̂1, . . . , θ̂i, . . . , θ̂m)T at each step by

θ̂k+1 = θ̂k − akĝk(θ̂k), (4.9)

where ak is the step size at iteration k and ĝk(θ̂k) is the pseudo-gradient of the

loss function L. The pseudo-gradient is obtained using two-sided simultaneous

perturbation, (
ĝk(θ̂k)

)
i
=

l(θ̂k + ck∆k) − l(θ̂k − ck∆k)
2ck (∆k)i

, (4.10)

2One could reduce the dimensionality of θ by 1 by observing that only the ratio between λS

and λD is relevant under MAP inference. This, however, has little effect on the learning process,
since the dimensionality of the space of optimal solutions is also reduced. Thus we do not carry
out this explicit reduction in our learning formulation.
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where l(·) is some noisy measurement of the true loss L(·) (l = L if the measure-

ment is noise-free), ∆k is a user-defined m-dimensional random perturbation

vector satisfying certain conditions [85], and ck is a scalar factor. The gain se-

quences ak and ck both decrease over time, and are given by ak = a/(A + k)α and

ck = c/kγ [85]. In our case, we used the recommended values (0.602, 0.101) for

(α, γ) and set (A, a, c) to (50, 5, 0.001) following the guidelines given in [86].

Since all the parameters in our model are some type of scale parameters and

have a natural domain of (0,∞), we transform them into the logarithm space

during learning so that θ̂ = logθ ∈ Rm. Although the most commonly used dis-

tribution for the random perturbation vector ∆ is the Bernoulli ±1 for each com-

ponent, we find that the Bernoulli distribution is somewhat overly restrictive on

the possible directions of descent. Thus we instead sample each component of

∆ uniformly at random from the union of intervals [−1 − δ,−1 + δ] ∪ [1 − δ, 1 + δ]

with δ = 0.99. Note that the distribution has no probability mass at around

zero, which is a condition that the perturbation vector is required to satisfy [85].

Since measuring training loss given parameters is deterministic and can be con-

sidered essentially noise-free, we require that the loss function (i.e. training

error) decreases monotonically with time. Hence a solution θ̂k+1 is rejected, i.e.

remains the same as θ̂k, if the loss L(θ̂k+1) is greater than L(θ̂k). We also observe

that most common types of parametric motions, such as affine transformation

and divergence, result in large first derivative, but much smaller second deriva-

tive, of the optical flow field. Thus a large magnitude of the second derivative

should reasonably produce more energy (hence lower probability) than that of

the first derivative. To this end, we impose the constraint β2 ≥ β1 to reflect this

prior knowledge. If the constraint becomes violated during learning, we simply

swap β1 with β2 and resume. This to some extent resembles a restart, a common
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mechanism used by stochastic methods to depart from undesired local optima.

Finally, we run the SPSA algorithm multiple times and choose from the solu-

tions the one with the lowest training loss. This helps to reduce the variance in

the performance of learnt parameters.

4.4 Experimental Results

To evaluate our method, we trained our model on the “other” data set 3 from the

Middlebury optical flow web site [5] and tested its performance on the “eval”

data set from the same web site. For learning, we use the average end-point

error (AEPE) [71, 5] as the loss function. We initialized all parameters of the

model to one and ran the SPSA algorithm for 300 iterations. The procedure

was repeated 5 times (i.e. five models trained), and the model with the lowest

training loss was chosen and used for testing on unseen data. 4 Among the

multiple runs, the losses (i.e. training error) of the three best models are within

5% of each other while the other two have losses about 15% higher than the best

model. This shows that the results obtained by SPSA is quite reliable, especially

with multiple trials, given that the initial loss is many times higher. Figure 4.2

shows a plot of the training errors against the number of iterations for all five

trials.

For evaluation, we report error rates in both average angular error (AAE)

[7] and average end-point error (AEPE). Table 4.1 shows the performance of

our learnt model on the eight sequences for flow evaluation from the Middle-

3Only sequences with ground-truth flow are used. We excluded the stereo sequence “Venus”
from the training set.

4Note that the choice of the model is part of the learning procedure and is completely based
on the training data, without any knowledge of the data on which the model is evaluated.
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Figure 4.2: Average training error in terms of AEPE plotted against the
number of iterations over multiple trials of running the SPSA
algorithm. The error rate generally decreases rapidly at the be-
ginning and much more slowly afterward, indicating a reason-
ably good solution can be obtained with relatively few itera-
tions.

bury optical flow web page [5]. The error rates of some of the well-known

methods are also shown for comparison. These results demonstrate that our

model achieves state-of-the-art performance, surpassing the previous methods

on most of the benchmark sequences. We want to emphasize that the perfor-

mance of our model is achieved using parameters trained on a different set of

sequences, which includes none of those used for evaluation. In other words,

the parameters are learnt completely without any knowledge of the testing data.

Thus the results demonstrate that our model has good generalization power. In

addition we also trained our model using the approximate maximum likelihood

scheme of [81] (second method in Table 4.1), so as to compare it with SPSA (first
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Table 4.1: Performance on the eight evaluation sequences from the Mid-
dlebury optical flow page [5], measured in terms of both average
angular error (upper row) and average end-point error (lower
row). The lowest error rates for each sequence are shown in
bold fonts.

Method\Sequence Arm. Meq. Sch. Woo. Gro. Urb. Yos. Ted. Avg.
Our model 6.84 8.47 12.5 8.40 3.88 6.32 2.56 7.29 7.03

0.18 0.57 0.84 0.52 1.12 1.75 0.13 1.32 0.804

- max-likelihood 6.86 9.11 15.1 8.60 3.84 10.1 2.15 10.3 8.26
0.18 0.65 0.99 0.62 1.28 1.98 0.11 1.81 0.953

Bruhn et al. [16] 10.1 9.84 16.9 14.1 3.93 6.77 1.76 6.29 8.71
0.28 0.69 1.12 1.07 1.24 1.56 0.10 1.38 0.930

Black/Anandan [13] 7.83 9.70 13.7 10.9 4.67 8.00 2.61 8.58 8.25
0.21 0.65 0.93 0.76 1.40 2.04 0.15 1.68 0.978

Horn/Schunk [42] 8.01 9.13 14.2 12.4 4.69 8.35 4.01 9.16 8.74
0.22 0.61 1.01 0.78 1.27 1.42 0.16 1.51 0.873

Lucas/Kanade [65] 13.9 24.1 20.9 22.2 18.9 22.0 6.41 25.6 19.25
0.39 1.67 1.50 1.57 2.95 3.30 0.30 3.80 1.94

method in Table 4.1). The results show that the model learnt with SPSA has bet-

ter overall performance, demonstrating the effectiveness of SPSA learning for

optical flow.

For completeness, we show in Table 4.2 the error rates on the training se-

quences. Results from other methods are quoted from [5] whenever available.

One can see that our training data includes only three sequences, which is in

contrast with the several hundred used in [78]. The available training sequences

are also significantly less comprehensive in terms of the variation of appear-

ance and motion than are the test sequences. For instance the training data does

not have any synthetic sequences, which do appear in the evaluation set. Thus

learning with this limited training data is especially challenging. Nonetheless,

our model obtained under such adverse circumstances performs well on unseen

data.
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Table 4.2: Error rates on the three training sequences, given in the form of
AAE/AEPE, with “–” indicating result not available.

Method\Sequence Dimetrodon RubberWhale Hydrangea
Our model 2.92/0.152 5.22/0.149 2.43/0.198

Bruhn et al.[16] 10.99/0.43 – –
Black/Anandon [13] 9.26/0.35 – –
Lucas/Kanade [65] 10.27/0.37 – –

Figure 4.3: Output of our model for the sequences “Yosemite” (top),
“Army” (middle), and “Dimetrodon” (bottom). Left: A
frame of the image sequence. Right: Estimated flow. Ob-
serve the predominantly smooth flow field of “Yosemite” and
“Dimetrodon” in contrast to the large amount of motion dis-
continuity in “Army”.
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Figure 4.4: Output of our model for the sequence “Mequon”. Left: A
frame of the image sequence. Right: Estimated flow. Most
of the errors occur in the shadows around the cartoon mod-
els, due to their high relative motion with respect to the back-
ground.

Figure 4.3 displays some sample flow fields produced by our model, color

coded using the scheme described in [5]. It can be seen that our model is ca-

pable of producing smooth flows (as in “Yosemite”) while preserving motion

boundaries (as in “Army”). Figure 4.4 shows the result of a sequence on which

our model did not perform particularly well. Most of the errors lie inside the

shadows (cast by the two cartoon models), which have rather high motion rela-

tive to the background on which they lie. Since optical flow is generally defined

as the apparent motion, the flow inside a shadowed region can be interpreted as

either the motion of the background or that of the shadow itself. Thus this is

an inherent ambiguity in optical flow, which also occurs with transparent and

specular surfaces. A principled approach to dealing with these phenomena is

to estimate the multiple motions in such areas. This has attracted a fair amount

of investigation from researchers (e.g. [31, 13]), and remains an interesting topic

for future work.
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CHAPTER 5

LANDMARK CLASSIFICATION IN INTERNET IMAGE COLLECTIONS

5.1 Introduction

The billions of photographs in Internet-scale photo collections offer both ex-

citing opportunities and significant challenges for computer vision, and for

the area of object recognition in particular. Achieving Internet-scale object

recognition and image classification is currently limited by the relatively small-

scale datasets for which ground truth information is available. For instance,

the widely-used PASCAL VOC 2008 dataset [26] has about 10,000 images and

20 categories, while the LabelMe dataset [80] is of similar size, with a larger

hierarchically-organized label set. Bigger datasets such as Tiny Images [101]

have millions of images but do not include category labels, whereas other

datasets make use of visual features during image selection which may bias

towards certain methods (e.g., [18, 83]). Recent work on scaling classification

algorithms to Internet-sized datasets with millions of images (such as [102]) has

thus been limited to evaluating classification performance on relatively small

datasets such as LabelMe.

Here we consider image classification on much larger datasets featuring mil-

lions of images and hundreds of categories. First we develop a collection of over

30 million photos with ground-truth category labels for nearly 2 million of those

images. The ground-truth labeling is done automatically based on geolocation

information that is separate from the image content and the text tags that we use

for classification. The key observations underlying our approach is that photos

taken very near one another are likely to be of similar things. Moreover, if many
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people have taken photos at a given location, there is a high likelihood that they

are photographing some common area of interest, or what we call a landmark.

Thus we use a mean shift [20] procedure to find peaks in the spatial distribution

of geotagged photos, and then use large peaks to define the category labels. The

photographs taken at these landmarks are typically quite diverse (see Figure 5.1

for some examples), so that the labeled test datasets are challenging, with signif-

icant amounts of visual variation and a large fraction of outliers. In most cases,

a landmark does not consist of any one prominent object; for example, many of

the landmarks are museums, in which the photos are distributed among hun-

dreds of exhibits. Our landmark classification problem can thus be thought of

as more similar to an object category recognition problem than to a specific ob-

ject recognition problem. In Section 5.2 we discuss the details of our dataset

collection approach and compare it to some alternative techniques.

We use multiclass support vector machines [21] to learn models for various

classification tasks on this labeled dataset of nearly two million images. We

use visual features based on clustering local interest point descriptors [64] into

a visual vocabulary that is used to characterize the descriptors found in each

image. We also explore using the textual tags that Flickr users assign to photos

as additional features. The learning and classification methods and the feature

extraction are discussed in more detail in Section 5.3.

Internet photo collections also include rich sources of relational information

that can be helpful for classification. For instance, social ties have been found

to improve face recognition performance on Facebook [89]. In this chapter, we

consider the photo stream of a given photographer. In particular we model this

sequence of category labels of a photo stream as a conditional random field
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(CRF) [54], which is learnt using the structural support vector machine [104].

Feature extraction, learning, and classification methods using temporal context

are discussed further in Section 5.4.

In Section 5.5 we present a set of large-scale classification experiments in-

volving between 10 and 500 categories and tens to hundreds of thousands of

photos (in contrast to other recent image recognition work which use large

datasets but small test subsets). We find that the combination of image and

text features performs better than either alone, even when we remove untagged

photos from the dataset. We also describe a small study of human performance

on landmark classification which suggests that a multiclass SVM using both im-

age and text features performs nearly as well as people can. Finally we show

that CRF models that expoit temporal context from photos taken by the same

photographer nearby in time yields a striking improvement compared to using

visual features alone — around 10 percentage points in most cases. On the other

hand, the improvement using the textual tags from those same nearby photos is

small.

5.1.1 Related Work

Image classification using bag-of-features models has been studied extensively

(see [24] or [113] for recent surveys), however such previous work has been car-

ried out only at much smaller scales. The work we report here uses two orders

of magnitude more labeled photos – nearly two million photos as opposed to

a few thousand in previous work – and one to two orders of magnitude more

categories – up to 500 compared to tens in most previous work. This larger scale
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allows us to study how performance is affected by the number of categories and

the number of training images available. Our investigation also evaluates text

tags versus image features, and considers the use of temporal context which has

not received much attention in the literature.

Some recent work has used large datasets, but the number of labeled pho-

tos available for evaluating performance has usually been quite small. For in-

stance [73] uses one million photos but only 5,000 of them have ground truth

labels. The recent work of [102] considers a dataset with tens of millions of im-

ages, but only at thumbnail resolutions and again without labels for assessing

classification accuracy. Another line of research uses small training sets to auto-

matically label larger image sets (e.g., [18, 83, 115]), however such approaches

generally make use of image features and machine learning techniques, and

thus the resulting datasets are not independent of the kinds of features and

methods that one wants to test. This raises the possibility that methods related

to the ones used to create the dataset might be at an unfair advantage.

We also investigate how the visual vocabulary size affects classification per-

formance. Although [109] presents a technique for finding the optimal visual

vocabulary size for their task, it is not clear that their method can scale to

large datasets because the running time is linear in the number of images and

quadratic in the number of categories.

The work of [36] is related to our work in that it studies geolocating pho-

tographs, but their goal is quite different from ours, as we do not try to predict

location but rather just use location to derive category labels. (For instance, in

our problem formulation a misclassification with a geographically proximate

category is just as bad as with one that is far away.) Our experiments use a stan-
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dard classification paradigm and thus are comparable with many other studies.

Moreover, the test set in [36] contains only 237 images that were partially se-

lected by hand, making it difficult to generalize the results beyond that set. In

contrast we use automatically-generated test sets that contain tens or hundreds

of thousands of photos, providing highly reliable estimates of performance ac-

curacy.

Some very recent studies have considered landmark classification tasks sim-

ilar to the one we study here, but again have done so at a much smaller scale.

For example, [58] studies how to build a model of a landmark by extracting a

small set of iconic views from a large set of photographs. However it was tested

on just three hand-chosen categories, making it unclear how well the method

would scale to more realistic classification tasks. The very recent work of [115]

is similar to our approach in that it finds highly-photographed landmarks auto-

matically from a large collection of geotagged photos. However the test set they

use is hand-selected and very small — 728 total images for a 124-category prob-

lem, or fewer than 6 test images per category — and their approach is based

on nearest-neighbor search, which is unlikely to scale to the millions of test im-

ages we consider here. The recent of [22] on organizing large photo collections

uses a dataset of geotagged photos similar to the one we describe here, however

the focus of that work is on geographic embedding and organization of photos

instead of image classification.
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5.2 Building Internet-Scale Datasets

Our long-term goal is to create large publicly-available, labeled datasets that are

representative of photos found on photo-sharing sites on the web. In construct-

ing such datasets, it is critical to avoid potential biases either in selecting the im-

ages to include in the dataset or in assigning ground-truth labels. For instance,

methods based on searching for photos tagged with hand-selected keywords

(e.g., [36, 73]) are prone to bias because one might inadvertently choose key-

words corresponding to objects that are amenable to a particular image classifi-

cation algorithm. A number of previous collection efforts also use unspecified

criteria to discard certain photos from the dataset, again introducing the poten-

tial for bias towards a particular algorithm. Also problematic is using the same

kinds of features to produce ground-truth labels as are used by the classifica-

tion algorithm (e.g., as in [18, 83, 115]). We thus advocate automatic techniques

for creating datasets based on features that are independent from those used by

the algorithms being tested. In our case, we avoid using textual tags or visual

features to label or select images, instead using a completely separate source of

information: geotags.

Our dataset was formed by using the Flickr API to retrieve metadata for

over 60 million publicly-accessible geotagged photos. We eliminate photos for

which the precision of the geotags (as reported in Flickr metadata) is worse than

about a city block. For each of the remaining 30 million photos we consider the

latitude-longitude coordinates as a point in the plane, and then perform a mean

shift clustering procedure [20] on the resulting set of points to identify local

peaks in the photo density distribution, as in [22]. The radius of the disc used

in mean shift is about 100m. Since our goal is to identify locations where many
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different people took pictures, we count at most 5 photos from any given Flickr

user towards any given peak. We currently use the top 500 such peaks as cat-

egories; the number of photos becomes small for lower-ranked categories (e.g.

the 500th largest peak has 585 photos whereas the 1000th largest peak has 284

photos). Figure 5.1 illustrates the top 10 categories in our dataset, corresponding

to the ten most photographed landmarks.

We downloaded the image data for all 1.9 million photos known to our

crawler that were geotagged within one of these 500 landmarks. For the ex-

periments on classifying temporal photo streams, we also downloaded all im-

ages taken within 48 hours of any photo taken in a landmark, bringing the total

number of images to about 6.5 million. The images were downloaded at Flickr’s

medium resolution level, which is about 1/4-megapixel. The total size of the

dataset is just over one terabyte.

5.3 Single Image Classification

To perform image classification we adopt the bag-of-features model of [24]. We

build a visual vocabulary by clustering SIFT descriptors from photos in the

training set using the k-means algorithm. To make k-means clustering tractable

on this quantity of data we use the approximate nearest neighbor (ANN) tech-

nique of [4] to efficiently assign points to cluster centers. The advantage of this

technique is that it guarantees an upper bound on the approximation error, un-

like other techniques that have recently been used for clustering such as ran-

domized k-d trees [73]. In our implementation we set the bound such that the

cluster center found by ANN is no further away than 110% of the distance be-
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Landmark
Most distinctive tag (bold)

and Random tags Random images

1.

eiffeltower
eiffel
city
travel
night

2.

trafalgarsquare
london
summer
july
trafalgar

3.

bigben
westminster
london
ben
night

4.

londoneye
stone
cross
london
day2

5.

notredame
2000
portrait
iglesia
france

6.

tatemodern
england
greatbritian
thames
streetart

7.

empirestatebuilding
manhattan
newyork
travel
scanned

8.

venice
tourists
slide
venecia
vacation

9.

colosseum
roma
england
stadium
building

10.

louvre
places
muséedulouvre
eau
paris

Figure 5.1: The world’s most photographed landmarks, and the first 10
categories of our dataset. We show the highest-frequency tag
and 4 random tags, and 5 random images. The landmark
tagged “venice” is Piazza San Marco (St. Mark Square).
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tween the point and the optimal cluster center.

Once a visual vocabulary of size k has been generated, a k-dimensional fea-

ture vector is constructed for each image by using SIFT to find local interest

points and assigning each interest point to the visual word with the closest de-

scriptor. We then form a frequency vector which counts the number of occur-

rences of each visual word in the image. For textual features we use a similar

vector space model in which any tag used by at least three different users is a

dimension in the feature space, so that the feature vector for a photo is a binary

vector indicating presence or absence of each text tag. Both types of feature vec-

tors are normalized to have L2-norm of 1. We also study combinations of image

and textual features, in which case the image and text feature vectors are simply

concatenated.

We learn a linear model that scores a given photo for each category and

assigns it to the class with the highest score. More formally, let m be the number

of classes and x be the feature vector of a photo. Then the predicted label is

ŷ = arg max
y∈{1,··· ,m}

s(x, y; w), (5.1)

where w = (wT
1 , · · · ,w

T
m)T is the model and s(x, y; w) =

〈
wy, x

〉
is the score for

class y under the model. Note that in our settings, the photo is always assumed

to belong to one of the m categories. Since this is by nature a multi-way (as

opposed to binary) classification problem, we utilize the multiclass SVM [21]

to learn the model w, using the SVMmulticlass software package [47]. For a set of

training examples {(x1, y1), · · · , (xN , yN)} the multiclass SVM optimizes the objec-

tive function

min
w,ξ

1
2
‖w‖2 + C

N∑
i=1

ξi (5.2)

s.t. ∀i, y , yi :
〈
wyi , xi

〉
−

〈
wy, xi

〉
≥ 1 − ξi
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where C is the trade-off between training performance and margin in SVM for-

mulations.1 Hence for each training example, the learned model is encouraged

to give higher score to the correct class label than to the incorrect ones. In fact,

by simply rearranging terms it can be shown that the objective function is an

upper bound on the training error.

In contrast, many previous approaches to object recognition using bag-of-

parts models (such as [24]) train a set of binary SVMs (one for each category)

and classify an image by comparing scores from the individual SVMs. Such ap-

proaches are problematic for n-way forced-choice problems, however, because

the scores produced by a collection of independently-trained binary SVMs may

not be comparable, and thus such approaches lack any performance guarantee.

It is possible to alleviate this problem by using a different C value for each bi-

nary SVM (as is done in [24]), but this introduces additional parameters that

need to be tuned, either manually or via a process such as cross validation.

Note that while the categories in this single-photo classification problem cor-

respond to geographic locations, there is no geographical information used in

the learning or classification. For example, unlike [36] we are not concerned

with pinpointing a photo on a map, but rather with classifying images into dis-

crete categories.

1For all our experiments, we simply set C to 1/x̄2 where x̄ is the average L2-norm of the
training feature vectors.
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5.4 Temporal Model for Joint Classification

Modern photo-sharing sites collect a rich set of metadata which is potentially

useful for image classification tasks. For example, photos taken by the same

photographer at nearly the same time are quite likely to be related. In the spe-

cific case of classifying landmarks, practical and physical constraints on human

movement mean that certain sequences of category labels are much more likely

than others. To learn the patterns created by such constraints, we view tempo-

ral sequences of photos taken by the same user as a single entity and label them

jointly as a structured output.

We model a temporal sequence of photos as a CRF with a chain topology,

where the nodes represent photos and edges connect nodes that are consecu-

tive in time. The set of possible labels for each node is simply the set of m

landmarks, indexed from 1 to m. The task is to label the entire sequence of

photos with category labels, however we evaluate correctness only for a single

selected photo in the middle of the sequence, with the remaining photos serv-

ing as temporal context for that photo. Denote an input sequence of length n

as X = ((x1, t1), · · · , (xn, tn)), where xv is a feature vector for node v (encoding ev-

idence about the photo such as textual tags or visual information) and tv is the

corresponding timestamp. Let Y = (y1, · · · , yn) be a labeling of the sequence.

We would like to express the scoring function S (X,Y; w) as the inner product of

some feature map Ψ(X,Y) and the model parameters w, so that the model can be

learned efficiently using the structural SVM.
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5.4.1 Node Features

To this end, we define the feature map for a single node v under the labeling as,

ΨV(xv, yv) = (I(yv = 1)xT , · · · , I(yv = m)xT )T , (5.3)

where I(·) is an indicator function. Let wV = (wT
1 , · · · ,w

T
m) be the corresponding

model parameters with wy being the weight vector for class y. Then the node

score sV(xv, yv; wV) is the inner product of the ΨV(xv, yv) and wV ,

sV(xv, yv; wV) = 〈wV ,ΨV(xv, yv)〉 . (5.4)

5.4.2 Edge Features

The feature map for an edge (u, v) under labeling Y is defined in terms of the

labels yu and yv, the time elapsed between the two photos δt = |tu − tv|, and the

speed required to travel from landmark yu to landmark yv within that amount

of time, speed(δt, yu, yv) = distance(yu, yv)/δt. Since the strength of the relation

between two photos decreases with the elapsed time between them, we divide

the full range of δt into M intervals Ω1, · · · ,ΩM. For δt in interval Ωτ, we define

feature vector

ψτ(δt, yu, yv) = (I(yu = yv), I(speed(δt, yu, yv) > λτ))T , (5.5)

where λτ is a speed threshold. This feature vector encodes whether the two con-

secutive photos are assigned the same label and, if not, whether the transition

requires a person to travel at an unreasonably high speed (i.e. greater than λτ).

The exact choices of the time intervals and the speed thresholds are not crucial,

so long as they are sensible. We also take into consideration the fact that some
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photos have invalid timestamps (e.g. a date in the 22nd century) and define the

feature vector for edges involving such photos as,

ψ0(tu, tv, yu, yv) = I(yu = yv)(I(z = 1), I(z = 2))T , (5.6)

where z is 1 if exactly one of tu and tv is invalid and 2 if both are. Here we no

longer consider the speed, since it is not meaningful due to invalid timestamps.

The complete feature map for an edge is thus,

ΨE(tu, tv, yu, yv) = (I(δt ∈ Ω1)ψ1(δt, yu, yv)T , · · · ,

I(δt ∈ ΩM)ψM(δt, yu, yv)T ,

ψ0(tu, tv, yu, yv)T )T (5.7)

and the edge score is,

sE(tu, tv, yu, yv; wE) = 〈wE,ΨE(tu, tv, yu, yv)〉 , (5.8)

where wE is the vector of edge parameters.

5.4.3 Overall Feature Map

The total score of the CRF with input sequence X under labeling Y and model

w = (wT
V ,w

T
E)T is simply the sum of individual scores over all the nodes and

edges. Therefore, by defining the overall feature map as,

Ψ(X,Y) = (
n∑

v=1

ΨV(xv, yv)T ,

n−1∑
v=1

ΨE(tv, tv+1, yv, yv+1)T )T ,

the total score becomes an inner product with w,

S (X,Y; w) = 〈w,Ψ(X,Y)〉 . (5.9)

89



The predicted labeling for sequence X by model w is one that maximizes the

score,

Ŷ = arg max
Y∈YX

S (X,Y; w), (5.10)

whereYX = {1, · · · ,m}n is the the label space for sequence X of length n. This can

be obtained efficiently using Viterbi decoding because the graph is acyclic.

Here we follow the convention in high-level vision to formulate the labeling

problem as score maximization as opposed to energy minimization in low-level

vision. Nevertheless, the two formulations are equivalent and only differs by a

flip of sign.

5.4.4 Parameter Learning

The model parameters are learned using structural SVMs [104]. Let

((X1,Y1), · · · , (XN ,YN)) be the training examples. The structural SVM optimizes

for parameters w by minimizing a quadratic objective function subject to a set

of linear soft margin constraints,

min
w,ξ

1
2
‖w‖2 + C

N∑
i=1

ξi (5.11)

s.t. ∀i,Y ∈ YXi : 〈w, δΨi(Y)〉 ≥ ∆(Yi,Y) − ξi,

where δΨi(Y) denotes Ψ(Xi,Yi) − Ψ(Xi,Y) (thus 〈w, δΨi(Y)〉 = S (Xi,Yi; w) −

S (Xi,Y; w)) and the loss function ∆(Yi,Y) in this case is simply the number of

mislabeled nodes (photos) in the sequence. It is easy to see that the structural

SVM degenerates into a multiclass SVM if every example has only a single node.

The difficulty of this formulation is that the label space YXi grows exponen-

tially with the length of the sequence Xi. Structural SVMs address this prob-
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lem by iteratively minimizing the objective function using a cutting-plane al-

gorithm, which requires finding the most violated constraint for every training

exemplar at each iteration. Since the loss function ∆(Yi,Y) decomposes into a

sum over individual nodes, the most violated constraint,

Ŷi = arg max
Y∈YXi

S (Xi,Y; w) + ∆(Yi,Y), (5.12)

can be obtained efficiently via Viterbi decoding in the same manner as making

a prediction using the model.

5.5 Experiments

Figure 5.2 presents results for various classification experiments on our dataset

of nearly 2 million images. For each of these experiments we evenly divided

the dataset into test and training image sets that are disjoint by photographer,

so that duplicate photos taken by the same user could not appear during both

training and testing. To make classification results easier to interpret across dif-

ferent categories with differing numbers of images, we constructed the test and

training datasets by sampling the same number of images from each category.

In practice this means that the number of images used in an m-way classification

experiment is equal to m times the number of photos in the least popular of the

m landmarks, and the baseline probability of a correct random guess is 1/m.

We see from Figure 5.2 that in classifying single images (as described in Sec-

tion 5.3), the visual features are less accurate than textual tags but neverthe-

less significantly better than random baseline — four to six times higher for the

10 category problems and nearly 50 times better for the 500-way classification.

The combination of textual tags and visual tags performs significantly higher
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Single images Photo streams
Categories Baseline visual textual combined visual textual combined
Top 10 landmarks 10.00 57.55 69.25 80.91 68.82 70.67 82.54
Landmarks 200-209 10.00 51.39 79.47 86.53 60.83 79.49 87.60
Landmarks 400-409 10.00 41.97 78.37 82.78 50.28 78.68 82.83
Top 20 landmarks 5.00 48.51 57.36 70.47 62.22 58.84 72.91
Landmarks 200-219 5.00 40.48 71.13 78.34 52.59 72.10 79.59
Landmarks 400-419 5.00 29.43 71.56 75.71 38.73 72.70 75.87
Top 50 landmarks 2.00 39.71 52.65 64.82 54.34 53.77 65.60
Landmarks 200-249 2.00 27.45 65.62 72.63 37.22 67.26 74.09
Landmarks 400-449 2.00 21.70 64.91 69.77 29.65 66.90 71.62
Top 100 landmarks 1.00 29.35 50.44 61.41 41.28 51.32 62.93
Top 200 landmarks 0.50 18.48 47.02 55.12 25.81 47.73 55.67
Top 500 landmarks 0.20 9.55 40.58 45.13 13.87 41.02 45.34
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Figure 5.2: Percentage of images correctly classified for varying numbers
of categories and combinations of features.

92



than either alone, increasing performance by about 10 percentage points in most

cases. This performance improvement is partially because about 15% of photos

in the dataset do not have any textual tags. However even when such photos are

excluded from the evaluation, adding visual features still gives a significant im-

provement over using text tags alone, increasing accuracy from 79.2% to 85.47%

in the top-10 category case, for example.

The figure also shows a dramatic improvement in visual classification per-

formance when photo streams are classified jointly using a structural SVM (as

described in Section 5.4) — nearly 12 percentage points for the top-10 category

problem, for example. In contrast, the temporal information provides little im-

provement for the textual tags, suggesting that tags from contemporaneous im-

ages contain largely redundant information. In fact, the classification perfor-

mance using temporal and visual features is actually slightly higher than using

temporal and textual features for the top-20 and top-50 classification problems.

For all of the experiments, the best performance is achieved using the full combi-

nation of visual, textual and temporal features, which gives for example 82.54%

correct classification for the 10-way problem and 45.34% for the 500-way prob-

lem — more than 220 times better than the baseline! For these experiments, the

maximum length of a photo stream was limited to 11, or five photos before and

after a photo of interest.

Figure 5.2 shows classification experiments for different numbers of cate-

gories and also for categories of different rank. For the textual features, prob-

lems involving higher-ranked categories are more difficult; for example, the per-

formance on classifying landmarks ranked 1 through 10 is about 10 percentage

points worse than for landmarks 200 through 209. This is because the top land-
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marks are mostly located in a small set of cities including Paris, London, and

New York, so that textual tags like “london” are relatively uninformative. On

the other hand, classification using visual cues is significantly better for higher-

ranked landmarks, probably because higher-ranked categories have more train-

ing images (e.g., 1,829 per category for the top 20 categories vs. 542 per category

for 400-419).

A substantial number of Flickr photos are mislabeled or inherently ambigu-

ous — a close-up photo of a dog or a sidewalk could have been taken at almost

any landmark. To try to gauge the frequency of such difficult images, we con-

ducted a small-scale human subject study. We asked 20 well-traveled people

to each label 50 photos taken at the world’s top ten landmarks. Textual tags

were also shown for a random subset of the photos. We found that the aver-

age human classification accuracy was 68.0% without textual tags and 76.4%

when both the image and tags were shown (with standard deviations of 11.61

and 11.91, respectively). Thus the humans performed better than the automatic

classifier when using visual features alone (68.0% versus 57.55%) but about the

same when both text and visual features were available (76.4% versus 80.91%).

For most of the experiments shown in Figure 5.2, the visual vocabulary size

was set to 20,000. This size was computationally prohibitive for our (single-

threaded) structural SVM learning code for the 200- and 500-class problems,

so for those tasks we instead used 10,000 and 5,000, respectively. An interest-

ing question is how the vocabulary size impacts classification performance on

large-scale image sets. To study this we repeated a subset of the experiments

for several different vocabulary sizes. As Table 5.1 shows, classification perfor-

mance improves as the vocabulary size increases, but the relative effect is more
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Table 5.1: Visual classification rates for different vocabulary sizes.

# of Single images
categories 1,000 2,000 5,000 10,000 20,000

10 47.51 50.78 52.81 55.32 57.55
20 39.88 41.65 45.02 46.22 48.51
50 29.19 32.58 36.01 38.24 39.71

100 19.77 24.05 27.53 29.35 30.42

pronounced as the number of categories increases. For example, when the vo-

cabulary size is increased from 1,000 to 20,000, the relative performance of the

10-way classifier improves by about 20% (10.05 percentage points, or about one

baseline) while the accuracy of the 100-way classifier increases by more than

50% (10.65 percentage points, or nearly 11 times the baseline). We found that

performance on the 10-way problem asymptotes by about 80,000 clusters at

about 59.3%. Unfortunately we could not try such large numbers of clusters

for the other tasks because the learning becomes computationally challenging;

studying how to efficiently learn structural SVMs with such large feature vec-

tors would be an interesting area for future work.

In the experiments presented so far we sampled from the test and training

sets to produce equal numbers of photos for each category, in order to make the

empirical results easier to interpret. However our approach and results do not

depend on this property of the experimental setup; when we sample from the

actual photo distribution our techniques still perform dramatically better than

the baseline (which is to guess the most frequent category). For example, in

the top-10 category classification problem using the actual photo distribution

we achieve 53.58% accuracy with visual features and 79.40% when tags are also

used, versus a baseline of 14.86%; the 20-way classifier produces 44.78% and
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69.28% respectively, versus a baseline of 8.72%.

The experimental results we report here are highly precise because of the

large size of our test dataset. Even the smallest of the experiments, the top-10

classification, involves about 35,000 test images. To give a sense of the variation

across runs due to differences in sampling, we ran 10 trials of the top-10 classi-

fication task with different samples of photos and found the standard deviation

to be about 0.15 percentage points. Due to computational constraints we did not

run multiple trials for the experiments with large numbers of categories, but the

variation is likely even less due to the larger numbers of images involved.

Image classification on a single 2.66 GHz processor takes about 2.4 seconds,

most of which is consumed by SIFT interest point detection. Once the SIFT fea-

tures are extracted, classification requires only approximately 3.06 ms for 200

categories and 0.15 ms for 20 categories. SVM training times varied by the num-

ber of categories and the number of features, ranging from less than a minute on

the 10-way problems to about 72 hours for the 500-way structural SVM on a sin-

gle CPU. We conducted our experiments on a small cluster of 60 nodes running

the Hadoop open source map-reduce framework.

96



CHAPTER 6

SUMMARY AND DISCUSSION

In this dissertation, we have investigated several aspects of learning random

field models ranging from graph topology to parameter estimation. These stud-

ies were done in the context of real-world problems in both low-level and high-

level vision.

We first presented in Chapter 2 a model which explicitly represents long-

range interactions but only uses low-order cliques, thereby enabling much faster

optimization than other approaches that rely on high-order cliques. For im-

age denoising this model achieves state-of-the-art PSNR results among random

field methods, is better at preserving fine-scale detail, and runs at least an or-

der of magnitude faster. The low complexity nature of the model not only re-

duces artifacts such as ringing, but also makes it readily interpretable and easy

to understand. The small clique size enables the use of efficient approximate

global inference algorithms for arbitrary clique potentials, whilst the explicit

long-range interactions effectively counters noise. The combination of speed

and expressiveness makes it an efficient and robust approach for low-level vi-

sion problems in noisy domains.

In Chapter 3, we described a technique for learning random field based non-

parametric models for stereo using the structural support vector machine. Ex-

periments illustrate that our method achieves significantly better performance

than previous learning approaches and moreover is capable of explicitly label-

ing occlusion. We also found that models with long-range interactions generally

outperform the grid model, which has only local connections; the performance

gap becomes more evident as the noise level increases, reaffirming the findings
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in the previous chapter. Though only applied to stereo, the model is formulated

as a generic random field labeling problem and the learning algorithm makes

few assumptions specific to stereo. As such, it can be adapted to other low-level

vision problems as well

In Chapter 4, we described a Markov random field based model for estimat-

ing optical flow and a technique for learning its parameters using simultane-

ous perturbation stochastic approximation. Experiments on publicly available

benchmark data sets show that our results compare favorably with previous

methods and achieve the state-of-the-art performance. This demonstrates that

our learnt model generalizes well to unseen data. Since many low-level vision

problems involve parameters that are difficult to optimize deterministically, the

learning approach that we employed here may well prove useful in other re-

search areas.

In Chapter 5, we studied the image classification problem for internet photo

collections. Our experiments demonstrate that multiclass SVM classifiers using

SIFT-based bag-of-word features achieve good classification rates for large-scale

problems, with accuracy that in some cases is comparable to that of humans on

the same task. Moreover the stream of photos taken by the same photographer

can be modeled as a conditional random field, which can be learning using the

structural SVM. We show that classifying photos jointly in this way, rather than

classifying them independently, yields dramatic improvement in the classifica-

tion rate.
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6.1 Future Work

While the work described in Chapter 5 is a step towards utilizing random field

models for high-level vision, potentially much more could still be done in this

direction. At present, features, objects, and images are too often treated as inde-

pendent entities, while their spatial relationships are ignored. Fresh opportuni-

ties are there to advance the state of the art, if we can harness the power of such

spatial priors.

6.1.1 Features

The histogram of orientated gradient (HOG) [25] features have become one of

the most successful methods in object recognition in the recent years. In this

approach, the image is transformed into a multi-dimensional grid of feature

values based on local image gradient information. These features are often used

in conjunction with the support vector machine (SVM) [105, 47], where an object

model is learnt to classify each subwindow of the HOG grid of the input image

(e.g. [25, 28]). In the case of a linear classifier, the model has the same grid

structure and dimensions as the subwindows it is trained to classify. Thus it can

be regarded as an object template and the classification score reflects how well

a given subwindow matches the object template.

In the typical settings of a linear SVM, the object template is simply treated

a vector (with a quadratic regularization on its norm), which effectively ignores

any spatial structure. This has worked well in practice and has become more or

less a standard approach. However if we go back one step and think about it
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closely, we should realize that a lot of information is lost here. Objects of interest

typically have geometric shapes, which emerge as consistent contours in the

image gradient space. Therefore, all object templates are not equally probable

a priori. Templates that capture such intrinsic characteristics of objects should

be judged as more plausible than those that don’t. For instance if the model

template has a vertical edge at location (x, y), its desirability should increase if

it also has a vertical edge at (x, y − 1) or (x, y + 1) since this extends the contour.

Therefore we can treat the template as a random field with just a spatial term,

whose energy function reflects such prior belief. This can be incorporated into

the learning framework as a hyperprior. For a linear SVM the energy function

of the random field is simply added as an additional regularization term to the

object function, which can still be minimized with gradient descent in the primal

space. Moreover, the global optimum is still attainable if the energy function is

convex.

We have performed some preliminary experiments with this framework on

the INRIA pedestrian data set [25], observed some encouraging results. The

use of random field regularization significant improved classification accuracy

when we used 4 × 4 HOG cells. Although such improvement was not observed

with 8× 8 cells, we believe this is due to the low resolution nature of the images

and hence the reduced significance of the contour consistency assumption in

a coarse grid. We plan to carry out further investigation on this subject in the

future, which we hope will verify our hypothesis and provide insight into this

class of problems.
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6.1.2 Object Locations

Similar to the values in a feature template, object appearances in an image are

not independence either. Objects of the same categories (e.g. cars) as well as

some objects of certain different categories (e.g. persons and bikes) tend to

co-occur with each other. Moreover, they often co-occur with certain relative

spatial locations (e.g. cars next to each other). However most object detection

methods, include many of the best performing ones (e.g., [28]), use a sliding

window approach, which scores each detection window (i.e. a subwindow of

the image corresponding to a certain location and scale) independently of each

other. In the recent years, researchers have become increasingly aware of the

limitation of treating object detection at each location and scale as independent

tasks and models that utilize contextual information have been proposed in a

number of papers (e.g. [23, 41, 67, 103, 37]). In addition to using image context,

it is also possible to use random fields to model the presence of objects at ev-

ery location and scale jointly. This will increase the expressiveness of the model

by encoding direct interactions between objects that are not captured in the ex-

isting contextual models. Before we can build this powerful model, of course,

there are quite a few challenges we must face: What is a suitable graph topol-

ogy, given the overlapping and multi-scale nature of object locations and sizes?

What is a appropriate spatial prior, and how to learn it? How to keep inference

fast yet accurate? These are the open research problems that we are yet to study,

and we believe that solving them will have a major impact in the field of object

detection.
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