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ABSTRACT

We investigate methods for physically-based simulation of aerodynamic forces

acting on a flapping bird in free-flight. We make use of two previous studies as the

basis for our work; Jeffery Wang’s digital Ivory-billed woodpecker model, and Bren-

dan Holt’s high-speed kinematic motion capture data of a Red-winged blackbird

(Agelaius phoeniceus) in free flight. These studies provide an extensive framework

in which to model a high-resolution, morphologically accurate Red-winged black-

bird, which we animate to undergo a physically accurate wingbeat motion. To

complete the geometric picture, we laser scan individual feathers to obtain the

complete wing geometry. Adapting the detailed character rig of the Ivory-billed

woodpecker to suit the smaller Red-winged blackbird, motion picture techniques

allow us to pose and animate the digital bird to match the motion captured joint

kinematics. Several methods of aerodynamic simulation were considered, including

wind tunnel testing and computational fluid dynamics (CFD), before ultimately

implementing a quasi-steady blade element model. Performing aerodynamic simu-

lations on this animated mesh yields forces on the bird which support the validity

of the model. Although the model is unable to account for the entire weight of

the bird, it is within the bounds of error and provides an interactive first order

estimate.
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CHAPTER 1

INTRODUCTION

Modeling bird flight is a complex and challenging problem, and one that has

intrigued researchers for years. Understanding how birds fly carries with it im-

portant implications including insight into the basic nature of fluid flow, as well

as the potential to vastly increase the efficiency of powered flight. The study of

bird flight is unique in that it spans several disciplines, and draws from many

bodies of knowledge. Specifically, our study depended on the relationship between

ornithology, aerospace engineering, and computer graphics.

As a primarily observational biological science, ornithology covers topics in-

cluding avian anatomy and physiology. The biological community has documented

and characterized flapping bird flight in great detail, including studies investigating

such phenomena as neuromuscular impulses, joint kinematics, and wake vortices.

However, little emphasis has been placed on creating an aerodynamic model of

flight from these studies.

Aerospace engineering, which applies the concepts of fluid mechanics to flight,

focuses primarily on developing simulation methods and simulating the flow of air

around wings to compute forces. Most aerodynamic studies have not traditionally

been concerned with deforming or flapping wings, instead devoting resources to

optimizing fixed-wing studies in steady-state conditions. Furthermore, much of

the research has been conducted on relatively simple geometries.

Both of these disciplines, ornithology and aerospace engineering, can leverage

the strengths of the other to simulate bird flight. The discipline which enables

prior research from these two diverse communities to be combined, the one which

makes our study possible, is computer graphics. Historically motivated by the

motion picture industry, computer graphics provides techniques for motion capture

1



of moving bodies as well as a vital framework for manipulating complex geometric

data.

Our goal is to predict the aerodynamic forces on a flapping bird wing. We start

in Chapter 2 by reviewing key concepts in aerodynamics, as well as ornithological

terminology. Chapter 3 summarizes previous studies of bird flight from both the

biological and engineering fields, including an important study by Jia-chi Wu and

Zoran Popovic entitled “Realistic Modeling of Bird Flight Animations” [WP03]. In

this study, Wu and Popovic created a kinematic model with accurate degrees of

freedom and represented each feather as a single polygon. Given a predetermined

flight path, they applied a blade element model with arbitrary parameters, and

were able to create very visually realistic results. We try to improve upon this

approach by constructing a virtual bird from scientifically-measured high resolution

geometry, and implement a blade element model which has been experimentally

vetted. We can validate our model by comparing the lift force predicted with the

weight of the bird.

Chapter 4 describes the process of creating the geometric model, including the

laser scanning of feathers. We build on two excellent recently-completed studies to

construct our model. The first work is a morphologically accurate and animatable

computer generated bird created by Jeffery Wang [Wan07]. This model gives an

anatomic framework for a bird’s geometry and a physiologically-based joint rig

with which to pose and animate the model. Second, we make use of Brendan

Holt’s recent high-speed motion capture study of a Red-winged blackbird’s (Age-

laius phoeniceus) wingbeat [Hol09]. Wang’s and Holt’s work naturally complement

each other, and we utilize them to illustrate how the geometry of a Red-winged

blackbird’s wing deforms during a wingbeat.

Chapter 5 explores the aerodynamic simulation methods considered. Compu-
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tational fluid dynamics and wind tunnel testing were both considered before a

quasi-numeric blade element approach was adopted. We derive a force model and

explain how appropriate coefficients are chosen. Chapter 6 presents the results

of using this model to simulate the wingbeat constructed in Chapter 4. We con-

clude with Chapter 7 which discusses the validity of the model and proposes future

improvements.
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CHAPTER 2

BACKGROUND

In this chapter we will review the two disciplines on which our study is built;

Aerospace engineering, and ornithology. Aerospace engineering is reviewed in two

sections. The first section focuses on the basics of fluid mechanics and how fluid

behaves. The second section reviews aerodynamics, which is the study of fluid

dynamics as applied to wings and the forces generated on wings. Finally, the third

section of this chapter draws from ornithology and biology to detail avian anatomy.

2.1 Fluid Mechanics

It is important to have a working vocabulary and understanding of the terms and

variables used in aerodynamics. Because aerodynamics is built on the foundation

of fluid mechanics we will briefly review some basic fluid dynamic principles in

order to better understand aerodynamic models and how they apply to animal

flight.

2.1.1 Terms and Definitions

For the study of aerodynamics, velocity and pressure are the two most important

fluid properties. Velocity is a term which is comprised of a unit vector and a

magnitude, and indicates the speed and direction of an infinitesimal fluid element.

Pressure is defined as a force per unit area, and is roughly a measure of the intensity

with which the fluid molecules are moving and colliding with each other. Pressure

is a scalar and exerts a force normal to an external object.

According to the laws of solid mechanics, when pressure is exerted on a differ-

ential element by neighboring elements, a tensile or compressive stress is created

in the element. A shear stress can also exist on a differential element when a force
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parallel to a boundary, instead of normal to it, is applied. In two dimensions this

causes a rectangular element to deform into a parallelogram. These stresses exists

not only in solid elements, but in fluid ones. When two differential fluid elements

move in any direction which is not directly toward or away from each other, a

shear is created. If this occurs near the boundary with an external object, a shear

force will be exerted on that object. Just as fluid pressure exerts a force on an

object normal to the boundary, fluid shear exerts a force which is parallel to the

boundary.

Together, pressure and shear stress are solely responsible for all external fluid

forces on objects. Lift and drag and any other forces which are said to be caused by

fluid interaction are simply decompositions of the force resulting from the integral

of the pressure and shear stresses over a boundary.

2.1.2 Reynolds Number

Fluid flow is a particularly challenging problem because the nature of fluid changes

depending on the scale on which it acts. Fluid has a viscosity which tends to

resist motion and damp out nonuniform velocities. The degree of viscosity and

the size of any objects interacting with the flow greatly influences how the fluid

behaves. To a very small object in air such as a bacteria or the wing of a fruit

fly, the viscous forces are dominant and moving through the air at this scale can

be likened to swimming through honey. Conversely, a very large object such as

a Boeing 747 jetliner exhibits none of this type of motion-impeding friction, the

dominant resistance from the air on a large body is not viscous but inertial as

the body must push a relatively larger mass of air out of its way. To quantify

this behavior, we use the dimensionless Reynold’s number (Re). The Reynold’s

number is a ratio of the inertial to viscous forces in the fluid, and indicates the
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Figure 2.1: Streaklines indicate how fluid behaves as it flows past a cylinder at
increasing Reynold’s numbers; showing laminar flow in the first two cases and then
a transition to turbulent flow and vortex shedding.[WS84]

smoothness or turbulence of the flow. It is defined as:

Re =
ρUl

µ
(2.1)

Here, ρ is the density of the fluid, U is the velocity of the flow, l is the charac-

teristic length of the object of interest, and µ is the dynamic viscosity of the fluid.

This type of dimensionless analysis is extremely useful as it allows us to conduct

similar experiments in different fluids or on different scales.

Low Reynold’s numbers indicate that the flow is smooth, or laminar. Lam-

inar flow is a distinct regime of fluid flow where the streamlines of fluid are all

parallel and there is little disruption. As the Reynold’s number increases beyond

laminar flow, there is a transition to turbulent flow. Rough or turbulent flow is

characterized by chaotic swirling vortices. Turbulent flow is generally recognized

as Re � 104. The exact limits of the laminar and turbulent regimes vary depend-

ing on additional conditions. For example, fluid flow in a smooth pipe will remain
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Figure 2.2: The domain of Reynold’s Numbers relevant to locomotion through
air. The ranges of flying organisms as well as some inanimate objects are plotted
with respect to their Reynold’s Numbers. [WS84]

laminar into higher Reynold’s numbers, while the rough laces of a rotating baseball

are designed to induce turbulent flow at lower Reynold’s numbers.

Figure 2.2 shows the ranges of Reynold’s numbers of insects, bats, birds, and

airplanes along with several other objects. As we can see, insect flight spans many

orders of magnitude of Reynold’s numbers. Nearly all insect species, except for the

Hawkmoth with its large wings, fly neatly in the regime of laminar flow. Airplanes

operate under the turbulent conditions of high Reynold’s number flight. Bird flight

falls between these ranges, existing at Reynold’s numbers between roughly 104 and

106. Hummingbirds and small songbirds represent the lower boundary, and large

gliding birds such as eagles, hawks, and gulls represent the upper boundary. It is

clear that a transition from the laminar to turbulent flow must occur somewhere

in the range of bird flight. Contrary to classical aerodynamics however, this break

is not abrupt and birds do not fall neatly into one category or the other. While

a hummingbird has similar wing shape and kinematics to many insects, and a
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soaring gull flies much the same as an airplane does, nearly all birds demonstrate

some flight characteristics of both regimes, and are difficult to classify. This is one

of the major factors which makes studying bird flight so difficult, as it is unclear

what assumptions, about Reynold’s number regime are valid.

2.1.3 Navier-Stokes Equation

The Navier-Stokes equation is the governing equation of all fluid flow (Equation

2.2). The formula is born out of the continuity constraint, that mass must be

conserved, and the momentum constraint which applies Newton’s second law to

fluids. Its derivation is covered in many texts [And01, Whi02, Sed65, KBD35]. It

often has no analytic solution because it is non-linear, but it provides the basis for

numerical solutions.

∂V

∂t
+ V ·∇V = −∇p+ µ∇2V + ρg (2.2)

Here, V is the velocity field, p is the pressure field, g is the acceleration due

to gravity, and the constants ρ and µ are the density and dynamic viscosity of the

fluid, respectively.

2.1.4 Circulation and Vorticity

Both laminar and turbulent flows are subject to swirls, eddies, and vortices as

the flow interacts with objects. These transient artifacts can become important

elements of the flow. Many wings are able to take advantage of these dynamic

elements. In order to measure the vorticity ξ of a fluid field, we take the curl of

the velocity field.
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ξ = ∇×V (2.3)

Vorticity however only gives us a quantification of the flow’s rotation at an

infinitesimal point. To consider a broader volume, such as the rotation around a

wing, we introduce the circulation Γ:

Γ =

˛
V · ds (2.4)

Here, s denotes the surface of the body. Thus, the closed line integral of the

dot product of the velocity and the the surface normal gives the circulation. In

three dimensions, this becomes:

Γ =

˛
ξ · dA =

‹
(∇×V) · dA (2.5)

Circulation is an important concept because it can be used to calculate the lift

on a wing. Often circulation is impossible to measure, but in the cases where it is

measurable it leads to direct knowledge of the upward force on a body.

2.1.5 Boundary Layers

The last important fluid dynamics concept to review is the boundary layer. Whether

the flow is of high or low Reynold’s number, a boundary layer always exists between

the fluid and a solid object. Far from the object, the fluid moves with a constant

velocity known as the free-stream velocity, which is often notated as U∞ or V∞.

However, close to the object the fluid will move slower due to the viscous effects

of the fluid interacting with the solid wall. This phenomenon, first discovered by

Ludwig Prandtl in 1904, is known as the no-slip condition.

The no-slip condition states that every infinitesimal fluid element in contact

with a boundary must move with the same velocity as that boundary due to
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Figure 2.3: Boundary layer around an airfoil showing the velocity profile within
the boundary layer and the thickness of the boundary layer itself.[WS84]

friction. In a reference frame where the object is stationary and the fluid is moving,

the velocity of the fluid will be zero along the boundary with the object. How

quickly the velocity returns to the free stream velocity as one moves away from the

wall depends on many factors, but is known as the boundary layer thickness (δ).

The boundary layer is generally recognized to extend from the object to the point at

which the fluid velocity is moving at ninety-nine percent of the free-stream velocity.

This distance defines the thickness of the boundary layer. The boundary layer is

generally very thin when compared to the scale of the body creating the boundary.

Figure 2.3 illustrates the boundary layer around an airfoil. The magnified portion

shows the velocity profile inside the boundary layer.

2.2 Aerodynamics

Aerodynamics is the branch of fluid mechanics concerned with the dynamics of air

around free moving bodies. Aerodynamics often focuses on the airfoil as the object

of interest, as airfoils are highly efficient at generating forces. In this section we

will introduce the terminology and concepts of airfoils, and the basic model for

describing the aerodynamic forces which act on an airfoil.
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Figure 2.4: Airfoil Terminology

2.2.1 Nomenclature

Airfoils are the fundamental two-dimensional cross sections of rigid body aerody-

namics. Figure 2.4 shows a sample airfoil and its labeled properties. The leading

edge and trailing edge are the most forward and rearward points on the airfoil,

respectively. The chord line connects the two edges, and has a chord length c.

The chord is an approximate measure of the length of the wing. Span is the term

which indicates the width of the wing (i.e. out of the page), if the wing is three-

dimensional. The shape of a three dimensional wing from the top is known as the

planform. The planform area gives the area of the wing. For a rectangular wing

the planform area is the chord multiplied by the span. Airfoils can also have a

degree of camber, which indicates the amount of bend of the airfoil. Airfoils with

zero camber are symmetric.

2.2.2 The Kutta Condition

One of the properties of airfoils which makes them so efficient at generating lift is

the sharp and tapered trailing edge. This has the effect of causing circulation which

increases lift. Figure 2.5 demonstrates this phenomenon. The upper left airfoil in

the figure is moving through a velocity field with no circulation. Here, we note

the stagnation points, points on a body where the velocity is zero. These are the
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Figure 2.5: Flow with no circulation (upper left) added to pure circulation (upper
right) results in a flowfield around an airfoil which satisfies the Kutta condition of
moving the rear stagnation point to the trailing edge (bottom).[Ell84e]

points where the streamlines appear to intersect the airfoil, either because the flow

is splitting to go over the top and bottom surfaces at the leading edge, or because

it is rejoining at the trailing edge. In the upper left figure, the rear stagnation

point is on the top surface of the airfoil, a near physical impossibility. The upper

right airfoil in the figure shows the effect that circulation has on the flow. In this

case, it adds a clockwise rotation to the flow and moves the rear stagnation point

toward the trailing edge. The bottom airfoil in the figure illustrates the result of

the summed uniform and circulating flows, moving the stagnation points to their

proper locations.

This circulation illustrates the Kutta condition. Proposed by Martin Wilhelm

Kutta in the early twentieth century, the observation states that bodies with sharp

trailing edges will develop exactly enough circulation to move the rear stagnation

point to the trailing edge. This requires artificial circulation be imposed on simu-

lations in order to move the stagnation points on a body to their known locations.

Following the Kutta condition, the Kutta-Joukowski theorem (Equation 2.6)

states that the lift force acting on a body is proportional to the circulation and
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free stream velocity. Thus, greater circulation creates greater lift.

L = ρU∞Γ (2.6)

2.2.3 Steady State Aerodynamics

With an understanding of how fluid flows around an airfoil, we can now examine

how forces develop on an airfoil. The net force on any body is found by integrating

the pressure around the airfoil with respect to the differential surface length or area.

By integrating the pressure around the boundary of an airfoil, we determine the

net force acting at a point known as the center of pressure. Figure 2.6 shows a

typical pressure profile around an airfoil. Force due to pressure always acts normal

to the boundary. The figure shows the net forces from the top and bottom surfaces,

F1 and F2 respectively. The points 1 and 2 at which these forces act, known as the

centers of pressure, indicate the location at which the integrated force acts with

no moment. By convention, the moment acting on an airfoil is taken about the

quarter-chord point. Therefore, unless points 1 and 2 in the figure are coincident,

there will be a net moment on this airfoil.

Figure 2.7 shows the same concept but with magnitude of pressure plotted ver-

sus chord position for the top and bottom surfaces. In this example, the pressures

are first differenced with the pressure of still air, known as the far-field pressure.

In this way, the pressure on the top surface of the airfoil becomes negative across

most of its length, and the pressure on the bottom surface mostly positive. This

leads to a net upward force on the airfoil.

The force resulting from the pressure distribution on an airfoil can be under-

stood by decomposing that force into orthogonal components. Figure 2.8 shows

an airfoil illustrating the geometric relationship between the relevant aerodynamic

13



Figure 2.6: Pressure profile on an airfoil. F1 represents the force due to pressure
on the top surface, and F2 represents force due to pressure on the bottom surface.
Points 1 and 2 represent the centers of pressure about which each force acts with
no moment. [And00]

Figure 2.7: A graphical representation of the pressures on the top and bottom
surface of an airfoil, plotted against the horizontal position. The pressures indi-
cated here are relative to some far-field pressure p∞. [Nor90]
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Figure 2.8: Angle of attack and force decomposition on an airfoil

terms. The free stream velocity is given as U∞. The angle of attack α is the angle

between the airfoil chord c and the relative wind. The total force on the airfoil is

given by the total force vector R. R can be understood by decomposing it into

components of lift L and drag D. Lift acts normal to the relative wind, and drag

acts in the direction of relative wind. There can also be a moment about the airfoil

which torques the wing. By convention, the forces and moment are all taken to

act about the quarter-chord point, as indicated in the figure. The projection of

the resultant force R to its lift and drag components is given in Equations 2.7.

L = R cosα

D = R sinα (2.7)

When measuring the lift and drag forces on an airfoil, it is often convenient

to non-dimensionalize these forces. By creating non-dimensional lift and drag

terms, these terms become independent of factors such as air density, airspeed,

and wing planform area. These non-dimensional terms, the coefficient of lift CL

and coefficient of drag CD, allow an easy reference of airfoil performance without
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specifying speed, wing size, or altitude (density). The equations for coefficient of

lift and drag are shown in Equations 2.8 and 2.9. Here, ρ is the density of the

fluid (assumed to be incompressible and therefore constant), U is the free stream

velocity, L and D are the lift and drag forces respectively at a particular angle

of attack, and A is the planform area. This is the two-dimensional form of the

equation; in three dimensions the chord length c is replaced by the area A.

CL =
L

1
2ρU

2c
(2.8)

CD =
L

1
2ρU

2c
(2.9)

This allows coefficients of lift and drag to be calculated for a given airfoil as

solely a function of angle of attack. Figure 2.9 shows a sample section lift coefficient

curve. The airfoil here is the NACA 2412 section, a particular airfoil shape. In

the lower angles of attack, the airfoil is well behaved and flow stays laminar and

attached to the boundary. However, at high angles of attack airfoils exhibit a

behavior known as stall when the boundary layer separates turbulently from the

top surface causing a sharp decrease in lift. This airfoil stalls around sixteen degrees

angle of attack. The more turbulent a flow or the higher the Reynold’s Number,

the more likely boundary layer separation is to occur. A separated boundary layer

causes much higher drag on the object due to the higher shear stresses created.

For this reason, it is highly undesirable. High Reynold’s numbers and high angles

of attack are the most likely causes of boundary layer separation. Note that as

with most airfoil studies, data is only taken between the two stall points, in this

case roughly negative and positive twenty degrees. Once an airfoil stalls it is not

operating in its useful flight range, and therefore data at high angles of attack are

not relevant to fixed wing flight.
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Figure 2.9: Section lift coefficient and moment coefficient for a NACA 2412
airfoil[And00]
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2.2.4 The Blade Element Model

Reversing the non-dimensional approach above gives us the blade element model.

The blade element model is the most widely used model in aerodynamics. It is

a two-dimensional quasi-steady state model that abstracts difficult aerodynamic

concepts into non-dimensional coefficients. Typically, a specific airfoil is tested in

a wind tunnel to experimentally record its coefficient values at different angles of

attack. Thus the blade element model allows lift and drag values to be obtained at

any angle of attack. The resulting coefficients apply only to that airfoil, and any

information about the shape of the wing is encoded in those coefficients. Solving

for lift and drag in Equation 2.8, gives us the lift and drag forces predicted by

the blade element model (Equation 2.10). Here, the prime designation indicates

that the forces are two-dimensional section forces. To obtain the three-dimensional

force, we multiply the section forces by the span l. The span multiplied by the

chords gives the area (A = c l), therefore we replace the span term with the area.

L� =
1

2
ρU2CL (α) c (2.10)

D� =
1

2
ρU2CD (α) c (2.11)

In this equation, the two-dimensional section coefficients are given instead of

coefficients pertaining to three-dimensional airfoils (cl and cd instead of CL and

CD). Here, we substitute the lift per span L� and drag per span D� instead of the

total lift and drag. Likewise, the chord c appears in the denominators instead of

the planform area.

2.2.5 The Quasi-Steady State

Wings which do not change velocity or angle of attack are said to operate in a

steady state. The conditions on the airfoil will be the same at every instant in
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time. In contrast, flapping wings or the wings of an aircraft undergoing a turning

maneuver have changing flow conditions and are subject to the effects of unsteady

flow. While no flying object ever exists in a truly steady state environment, one

of the major assumptions of aerodynamics is that in many cases, unsteady flight

can be modeled by a series of steady state models. This is the quasi-steady state

assumption. In this way, a system of changing flow conditions is modeled as isolated

steady state systems at each time step.

2.3 Avian Morphology

To understand avian flight we must understand the anatomy of the bird. The

wings are complex biomechanical systems which rely on feathers as their primary

means of interacting with the air. We will briefly review the skeletal system of

the wing and the structure of feathers. Avian anatomy is very well documented

in books by Chamberlain[Cha43], Lucas and Stettenheim[LS72], and Proctor and

Lynch[PL93].

2.3.1 Feather Structure

There are several different types of feathers that occur in avian anatomy as shown

in Figure 2.10. We are specifically concerned with flight feathers, also known as

Remiges, which are only found on the wings. These feathers are rigid and stiffer

than other feathers, designed to be aerodynamic and transmit force instead of

providing insulation.

Figure 2.11 shows the structure of a typical feather. The feather is built around

the central shaft or quill, known as the rachis. Stemming from each side of the

rachis are filaments known as barbs. On the portion of the feather proximal to
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Figure 2.10: Different types of feathers[PL93]
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Figure 2.11: Avian feather structure[LS72]

the base, or calamus, the barbs are non-uniform and comprise the plumulaceous or

downy section. Moving distally along the rachis, the plumulaceous barbs give way

to organized and parallel pennaceous barbs. The remiges are comprised entirely

of pennaceous barbs and contain no plumulaceous portion. The pennaceous barbs

form two vanes, one on each side of the rachis. These vanes are asymmetric in

profile and curvature for flight feathers.

Figure 2.12 shows a flight feather comprised of pennaceous barbs, and illustrates

the three-fold fractal nature of feathers. Off of each barb, barbules extend, and

each barbule contains microscopic barbulets. The barbulets allow the barbules of

neighboring barbs to interlock and create a surface which will hold together and

resist tension. Although the surface created is porous on the microscopic level,

we will treat it as impermeable to macroscopic fluid pressure from air. This is a

reasonable assumption given the no-slip condition of boundary layers which states
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Figure 2.12: Microfeatures of a flight feather showing barbs, barbules, and
barbulets[Goo92]

that the air molecules in contact with the barbules must move with them. This

will create a boundary layer that, while very thin, will remain attached to the

barbules.

Figure 2.13: Sample skeletal system of a Rock Dove wing[PL93]
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2.3.2 Wing Anatomy

Figure 2.13 shows the skeletal wing of a Rock Dove. The arm bones of a bird are

similar to those of humans. The upper arm is comprised of the humerus bone, the

forearm is comprised of the radius and ulna, and the hand is made up of several

digits called the carpometacarpus and the phalanx. The radius and ulna allow for a

degree of twist along the forearm. The wrist and hand, comprised of several bones,

are collectively referred to as the hand-wing because there is little joint movement

among the phalanx digits beyond the wrist.

Figure 2.14 shows the full wing with feathers as well as the skeleton. The wing

consists of two types of flight feathers, primary feathers and secondary feathers.

The primary feathers extend from the hand-wing are more active in the production

of aerodynamic forces. The secondary feathers extend from the forearm and are

closer to the body of the bird. They are less likely to separate and form more of

a continuous surface. The follicle of each feather is anchored nearly to the bone

with a set of ligaments.

Primary feathers are stiffer and asymmetric. The secondary flight feathers

(secondaries) undergo less deformation, overlap more, and are more symmetric.

Note that the feathers are numbered starting where the primary and secondary

feathers meet. The index of the primary feathers increases distally toward the

hand, and secondaries increase in number proximally toward the arm. Different

species have different numbers of primary and secondary feathers.
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CHAPTER 3

PREVIOUS WORKS

In this chapter we will review relevant flight studies from several different dis-

ciplines. We will begin by reviewing the primarily observational biological studies

of hovering insect flight and forward bird flight. Insect flight shares many aero-

dynamic similarities with bird flight, and provides an ideal introduction to bird

flight because it deals with more of the unsteady aerodynamic effects of wings.

Next, we will explore the biological studies of bird flight; including capturing kine-

matic motion, force estimates, and pressure measurements. We will then shift our

focus to engineering studies which sought to measure properties of bird wings us-

ing traditional direct force measurement approaches. Finally, we will detail two

studies in the computer graphics field which sought to simulate bird flight using

physically-based aerodynamics.

3.1 Insect Flight

The aerodynamics of insect flight have been studied far more thoroughly than bird

flight, and although the aerodynamic mechanisms differ somewhat, insect flight

is an excellent starting point for investigating the aerodynamics of flapping wing

flight. Insect flight studies are interesting because their low Reynold’s number

flight regime combined with a reliance on wing rotation demands a scrutinization of

unsteady aerodynamic effects. In contrast to birds and bats which fly at Reynold’s

numbers on the order of 104−105, insects fly with Reynold’s numbers on the order

of 101 − 103. The relatively smoother and more laminar nature of the flow around

insect wings means that interesting flow artifacts such as vortices and separation

can be taken advantage of. At higher Reynold’s numbers, these flow artifacts are

likely to degrade into turbulence from which energy cannot be recovered. Hovering
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Figure 3.1: Dye in the fluid reveals the leading edge vortices around two model
wings undergoing the fling phase of a clap and fling wingbeat[Max79]

flight is investigated most often as a pure form of flight and is the most rigorous

test case. If an aerodynamic model can predict forces accurately for hovering, it

should also be able to predict forward flight forces.

Weis-Fogh investigated hovering flight in 1972 by examining the net power

required for hovering in the fruitfly Drosophila, as well as hummingbirds[WF72].

He assumed a sinusoidal wing movement, and calculated an average coefficient of

lift over the entire wing stroke through a calculation which required knowing the

weight of the specimen. A year later, after careful observation, he proposed a novel

method by which insects generate lift which he called the clap and fling [WF73,

Lig73]. The clap and fling describes a motion whereby insects clap their wings

together on the apex of the upstroke, and then fling the leading edges of the wings

open before the trailing edges separate to start the downstroke. This forms a pair

of leading edge vortices which stay attached to each wing, increasing circulation

and providing far more lift than can be accounted for by the quasi-steady state

model.

In a detailed review of insect flight, Ellington’s 1984 series of articles investi-

gated the morphology, kinematics, aerodynamics, and power requirements for a

number of species of insects[Ell84a, Ell84c, Ell84b, Ell84d, Ell84e, Ell84f]. Elling-

26



ton determined that the quasi-steady model is insufficient for predicting lift, pro-

posed a new model for lift production by vortices, and compared the results of this

model to the known power required for flight. However, Ellington conceded that

insufficient knowledge of circulation profiles necessitates a calculation of mean lift

coefficient using the weight of the insect.

Continuing the study of fruitfly hovering, Sane and Dickinson’s 2001 experiment

on an an actuated model of a drosophila wing takes the next step by attempting

to record instantaneous lift and drag coefficients from a physical wing[SD01]. Sane

and Dickinson’s results for each test are accurate and thorough, but they found

force coefficients to vary greatly due to minute changes in the kinematics of the

wingbeat.

Sane and Dickinson found that although the lift and drag forces measured

proved great enough to support the weight of the insect, the instantaneous forces

differed greatly from those predicted by the quasi-steady state model. Figure 3.2b

shows the instantaneous lift and drag profiles for one test wingbeat. The devia-

tion between the measured forces (solid lines) and predicted forces (dashed lines)

indicates the importance of wing rotation dynamics. In a subsequent article, Sane

and Dickinson examined the prediction of these unsteady forces by looking at wing

rotation in greater detail. In this study, the same model wing was rotated about

different axes while translating, in an attempt to develop coefficients of rotation to

improve the quasi-steady model[SD02]. It is clear from Sane and Dickinson’s work

that transient forces vary greatly with small changes in wingbeat kinematics, and

predicting them is a difficult task.

Andersen et al. improved upon previous unsteady force models by rigorously

examining the behavior of a falling flat plate[APW05]. They used high-speed video

to quantify the trajectory of a plate falling with a Reynold’s number on the order
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as axial flow stabilizes force production at a
level greater than that possible under steady-
state conditions in 2D, the loss of energy
from the vortex core probably limits force
generation below the maximum 2D level.

The stability of the force coefficients fol-
lowing an impulsive start justifies the attempt
to reconstruct a “quasi-steady” estimate of

translational forces based on stroke kinemat-
ics. The results of such predictions for Dro-
sophila kinematics are shown in Fig. 1, D and
E. The calculations do not account for delays
in the development of force via the Wagner
effect (17 ) and probably represent a slight
overestimate of the translational component.
Although the translational values closely

match the magnitude of the measured force
near the middle of each half-stroke, they do
not accurately predict the forces during stroke
reversal. One potential artifact in the mea-
surements of aerodynamic forces during
stroke reversal is the contamination by iner-
tial forces due to the linear and angular ac-
celeration of the wing. However, a series of
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Fig. 1. (A) Robotic fly apparatus. The motion of the two wings
is driven by an assembly of six computer-controlled stepper
motors attached to the wing gearbox via timing belts and
coaxial drive shafts. Each wing was capable of rotational
motion about three axes. The wing was immersed in a 1 m by
1 m by 2 m tank of mineral oil (density ! 0.88 " 103 kg m–3;
kinematic viscosity ! 115 cSt). The geometry of the tank was
designed to minimize potential wall effects (25). The viscosity
of the oil, the length of the wing, and the flapping frequency of the model
were chosen to match the Reynolds number (Re) typical ofDrosophila (Re!
136). The 25-cm-longmodel wings were constructed from Plexiglas (3.2 mm
thick) cut according to the planiform of a Drosophila wing (26). The base of
one wing was equipped with a 2D force transducer consisting of two sets of
strain gauges wired in full-bridge configuration (27). (B) Close-up view
of robotic fly. In Figs. 1, 3, and 5, measured forces are plotted as vectors
superimposed over wing chords inclined at the instantaneous angle of
attack. The vectors and wing chords are drawn as if viewed from a line of
sight that runs axially along the length of the wing. (C) Diagram of wing
motion indicating magnitude and orientation of force vectors gener-
ated throughout the stroke by a kinematic pattern based on Drosoph-
ila (stroke amplitude ! 160°; frequency ! 145 mHz; angle of attack at

midstroke ! 20° upstroke, 40° downstroke). Black lines indicate the
instantaneous position of the wing at 25 temporally equidistant
points during each half-stroke. Small circles mark the leading edge.
Time moves right to left during downstroke, left to right during
upstroke. Red vectors indicate instantaneous flight forces. The large
black vector at the right indicates the orientation of the mean force
coefficient. (D and E) The time history of lift and drag forces. The
measured forces are plotted in red, and forces predicted from trans-
lation force coefficients are plotted in blue (see text and Fig. 2). Data
are plotted over two stroke cycles, with downstroke indicated by gray
background. (F) Time course of rotational lift, defined as the differ-
ence between measured and estimated translational values of lift. (G)
Translational (green) and rotational (purple) velocities of the wing.
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(a) Actuated model fruitfly wing showing
wing planform and servo motors immersed in
fluid[MHD99]

2617Lift and drag production by a flapping wing

Fig. 6. Sample instantaneous forces

for various combinations of flip

start !0 and flip duration "!. In

all kinematic patterns, stroke

amplitude was 180 ° and angle of

attack was 45 °. The format for

each panel is that described for Fig.

3. As in Fig. 3, the radial forces for

all these kinematics are zero and

have not been plotted. (A) Forces

generated with a slow flip ("!=0.5),

symmetrical with respect to stroke

reversal (!0=#0.25, flip timing

!f=0). Under these conditions, the

quasi-steady model (broken lines)

accurately predicts measured lift,

but not drag. (B) Forces generated

with moderate flip duration

("!=0.25), advanced with respect

to stroke reversal (!0=#0.25,

!f=#0.125). With these kinematics,

the augmentation of lift by

rotational circulation and wake

capture is evident. (C) Forces

generated with a long, advanced

flip ("!=0.5; !0=#0.5, !f=#0.25).

This pattern of kinematics

produced elevated drag due to wake

capture at the start of each stroke.

(D) Same kinematics as in C, but

with a delayed flip ("!=0.5; !0=0,

!f=+0.25). The delay in flip timing

causes a small decrease in mean

drag, but an enormous decrease in

lift. (E–H) The influence of

rotational timing on a short-

duration flip. (E) Forces generated

by a short flip advanced by almost a

full half-cycle with respect to

stroke reversal ("!=0.1; !0=#0.5,

!f=#0.45). Note that the angle of

attack is negative during most of

translation because the wing flips

much too soon. As a consequence,

the pattern generates negative lift.

(F) Forces generated by a slightly

advanced short flip ("!=0.1;

!0=#0.1, !f=#0.05). This near-

optimal pattern augments lift

by both rotational mechanisms.

(G) Forces generated by a short

symmetrical flip ("!=0.1; !0=#0.05,

!f=0). (H) Forces generated by a

slightly delayed short flip ("!=0.1;

!0=0, !f=0.05). The small delay of

0.05 decreases the mean lift

coefficient by 20 % compared with

the symmetrical case shown in G.

CD
–

, mean drag coefficient; CL
–

,

mean lift coefficient.
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(b) Instantaneous lift and drag forces mea-
sured by the robotic fruitfly wing from one
of many trials. The solid line indicates the
forces measured from the experiment, while
the dashed line indicates the forces predicted
by a blade element analysis[SD01]

Figure 3.2: Schematic and sample results of Sane and Dickinson’s robotic
drosophila wing
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of 103. Using their measurements as well as direct numerical solutions, they revised

the flat plate aerodynamic force model to include the effects of acceleration and

rotation, in addition to the traditional input of translation.

This model was validated by Berman and Wang in their 2007 study examining

hovering of a fruitfly, bumblebee, and hawkmoth[BW07]. Using an optimization

algorithm to create kinematics which maximize lift and minimize energy expendi-

ture, Berman and Wang found that the quasi-steady forces predicted by Andersen

et al.’s model matched the weight of the insects well. For the fruitfly, the model

predicted three tenths of a percent more force than the weight of the insect. For

the bumblebee, it predicted five percent less force, and for the hawkmoth it over-

predicted by fifteen percent.

3.2 Avian Flight

When comparing insect flight to bird flight, many similarities can be extended

from one flight regime to the other. Crucial to the investigation into any type of

flapping flight is the importance of quantifying the kinematics of the wing; that is,

specifying as precisely and accurately as possible the motion of the wing and its

joints in all degrees of freedom.

3.2.1 Kinematics

While scientists can qualitatively observe bird flight and draw useful conclusions,

it is necessary to precisely measure the motion of a bird’s flapping motion in

order to fully understand avian flight and perform numerical simulations. To date,

only a few techniques have proven adequate for capturing useful data describing

a bird’s motion and the airflow around it. Dial et al. employed high speed x-ray
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videography, also known as cineradiography, to capture the motion of a starling

flying in a wind tunnel[DJJ91]. The bird had had steel pins surgically implanted

in the wing prior to flight to aid the researchers in determining joint angles when

analyzing the x-ray film. Although only one camera was used and thus coordinates

of the pins had to be estimated in the third dimension, this study was one of

the first to attempt to quantitatively plot wing joint angles with respect to time

for a wingbeat. While lacking some numerical precision, Figure 3.3b shows the

orientations of the three bones of the wing.

3.2.2 Wake Visualization

Cineradiography is a valuable tool for measuring joint positions and muscle activity,

but it is sometimes necessary to observe the effects of a wing on the surrounding

air. Nearly the only technique for doing so is known as digital particle image

velocimetry (DPIV). DPIV allows for the visualization of fluid flow by using a

strobe light or laser to illuminate helium-filled neutrally-buoyant soap bubbles

suspended in the flow. The tiny bubbles act as point sources of light as they reflect

the illumination from the source light. They can then be imaged by a stereoscopic

pair of cameras. The small spatial parallax between the cameras produce correlated

projections of the scene in each images where the slight differences in position of

the bubbles allows their three dimensional coordinates to be computed. Because

the bubbles travel some finite distance during the time the camera shutter is open,

a short trail is left on the film from which velocity can be computed, giving a

complete picture of the velocity field[SRP84].

Figure 3.4 shows the DPIV pair of stereo images of a kestrel in flight. The

vortex structure of the wake can be seen as the cyclone-like feature in the bottom

of the frames. DPIV is a powerful tool for imaging fluid in the wake of a bird,
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(a) Side view sketches of a Starling’s skeletal wing poses from
Dial et al.’s radiographic study[DJJ91]

(b) Joint angles of a Starling’s wing bones throughout a
wingbeat

Figure 3.3: Results from Dial et al.’s study of Starling flight[DJJ91]
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62 G. R. SPEDDING

bubble tracks show the foreground wake shed by the port wing. The principaf

features of the wake are visible in Fig. 4 which shows, from right to left, a linear

vortex core of large diameter shed during an upstroke, a curved, smaller diameter

core produced by the following downstroke with the flow induced by this vortex

clearly visible towards the centre of the wake, and finally, a continuation of this

vortex core into the next upstroke as demonstrated by the axial flow along the core.

At their lowest extent the wake trailing vortices are about 250 mm from the ground.

The propensity for bubbles to become trapped inside a vortex and move axially along

its length was found to be quite convenient for tracing the core location and Fig. 5

shows the wingtip trailing vortex behind the starboard wing during the first half of a

downstroke marked in this way. In this photograph, the continuity between upstroke

and downstroke wake vortices is clearly visible.

In all stereopairs examined, the observed wake structure was consistent with a

continuous undulating vortex pair without detectable concentrations of transverse,

or cross-stream vorticity joining the two cores. If transverse lines of vorticity are

present, then they are not aggregated into recognizable vortex structures. Fig. 6 is a

Fig. 2. Stereopair of the vortex wake behind a kestrel in medium-speed flight. The
direction of flight was from right to left and the flexed primary feathers can be dis-
tinguished during the upstroke. The mean time between successive flashes was 16 ms.

Fig. 3. As Fig. 2, but the most clearly visible wake structure is a straight line vortex,
apparently shed from the end of the secondary feathers or the folded primary feathers
during the upstroke. Mean time between flashes was 16 ms.

Figure 3.4: Wake of a Kestrel visualized through particle
stereophotogrammetry[Spe87]

but how to use such data is less clear. Rayner’s vortex theory of animal flight,

innovative for its time, introduced a means for calculating the momentum of the

fluid and thus the power expenditure of the bird[Ray79a, Ray79b]. Rayner pro-

posed that the wake produced by a flapping bird in flight consists of a chain of

elliptical vortex rings, one per wingbeat. With each wingbeat, the bird transfers

momentum to the fluid creating a vortex, and resulting in an opposite and upward

momentum acting on the bird thus keeping it aloft. By using DPIV to deliver the

velocity field of a wingbeat vortex, one can use Rayner’s vortex theory to compute

the momentum that such a vortex of given size would have imparted to the bird.

Spedding attempted to calculate this momentum that when analyzing the wake of

a jackdaw. However, due to the extremely complex nature of fluid flow, he deter-

mined that the vortex wake contained only thirty-five percent of the momentum

necessary to keep the bird aloft.[Spe86].

3.2.3 Gait Selection

A number of studies have concerned themselves with investigating the gaits with

which birds choose to fly[HTB02, THB03, TD96, Tob07]. This is loosely analogous

to investigating the difference between walking and running in humans. The first
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the least, the use of these intermittent flight styles appears to

be related in some way to the use of the different flapping gaits.

For example, species that frequently flap-bound also

characteristically use a vortex-ring gait during their flapping

phases (Rayner, 1991b, 1995).

The selection of a flapping gait is dependent upon the speed

of flight as well as the morphology of the animal (Rayner,

1988, 1991b, 1993, 1995). Regardless of wing shape, most

birds and bats use a vortex-ring gait during slow forward flight.

However, at faster speeds, species with low-aspect-ratio (short,

rounded) wings tend to use a vortex-ring gait whereas animals

with high-aspect-ratio (long, pointed) wings tend to use a

continuous-vortex gait (Scholey, 1983; Rayner, 1991b). The

selection of a particular flapping gait also changes with

acceleration and deceleration (Rayner, 1991b; Tobalske,

1995). Regarding the use of non-flapping phases in birds, some

species glide at a wide range of speeds while gradually

increasing wing flexion as speed increases [Hankin, 1913; e.g.

rock doves (Columba livia Gmelin; hereafter referred to as

pigeons), Pennycuick, 1968a; raptors (Falconiformes), Tucker

and Parrott, 1970; Tucker, 1987, 1992; Tucker and Heine,

1990], while other species flap-glide at slow speeds and shift

to flap-bounding at faster speeds (e.g. budgerigars

Melopsittacus undulatus and European starlings Sturnus

vulgaris; Tobalske and Dial, 1994; Tobalske, 1995).

Previous researchers have visualized the vortex wakes

created by flying animals using stroboscopic photography as

the animal flies through a cloud of neutrally buoyant bubbles

or small particles (Kokshaysky, 1979; Spedding et al. 1984;

Rayner et al. 1986; Spedding, 1986, 1987a,b; Rayner, 1991b).

This technique is useful for estimating aerodynamic function,

force production and mechanical power output during flight

(Rayner, 1991b) but, because the neutrally buoyant bubbles or

particles used in vortex visualization studies must be

suspended in still air, the animal, rather than the researcher,

selects the animal’s flight speed. Thus, for most species, it is

not clear exactly how gait selection changes over the full range

of speeds at which they are capable of flying. The precise role

of speed on gait selection during terrestrial locomotion is better

understood (Alexander, 1989). Transitions between gaits in

terrestrial animals are quite distinct (e.g. the trot/gallop

transition) and identify characteristic speeds for scaling

locomotor performance (e.g. Fedak et al. 1982). Unlike flight

studies, however, these studies of terrestrial locomotion are

conducted using treadmills that allow the researchers to vary

the speed.

For flying animals, a variable-speed wind-tunnel is

analogous to a treadmill for animals that walk or run. The

animal flies in a clear-walled (i.e. closed-section) or wire-

mesh-walled (i.e. open-section) flight chamber through which

air is drawn at different speeds, and both lateral and

dorsal–ventral views may be obtained directly or with the use

of mirrors to observe the animal’s flight kinematics (e.g.

Pennycuick, 1968a,b; Torre-Bueno and LaRochelle, 1978;

Tobalske and Dial, 1994; Tobalske, 1995; reviewed in Rayner,

1995). Fortunately, the extensive literature on the kinematics

of animals in flight (see Scholey, 1983; Norberg, 1990) may

be coupled to the vortex visualization data to provide a

reasonable interpretation of the aerodynamic consequences of

a kinematic event (Rayner, 1991b).

Rayner (1993, 1995) provides an equation to predict when

gait changes should occur which depends upon the relationship

between the aerodynamic conditions at different flight speeds

and the efficiency of an active, lift-producing upstroke in a

species. Even though the gait used at one speed or across a

limited range of speeds has been documented for a number of

species (Rayner, 1988, 1991b, 1993, 1995), such specific

predictions will remain difficult to evaluate in the absence of

detailed kinematic or vortex visualization data over a full range

of incrementally increasing speeds. For almost all bird species,

several important questions remain (Rayner, 1988, 1991b).

(1) At precisely which speed(s) does a gait transition occur?

(2) How do wing and body kinematics change within gaits as

speed varies? (3) Which gaits are used for acceleration and

deceleration? (4) What is the relationship between the selection

of flapping gaits and of non-flapping phases? To begin to

answer these questions for birds with different morphologies,

we have studied the flight kinematics of black-billed magpies

(Pica pica L. hereafter referred to as magpies) and pigeons in

B. W. TOBALSKE AND K. P. DIAL

Continuous-vortex gait

Vortex-ring gait

Fig. 1. Gait selection during flapping flight in birds and bats is

currently categorized on the basis of the aerodynamic function of the

upstroke as revealed through wake-vortex visualization studies during

which the animal flies through a cloud of neutrally bouyant particles

or soap bubbles (Kokshaysky, 1979; Spedding et al. 1984; Spedding,

1986, 1987b, 1992; Pennycuick, 1988; Rayner, 1988, 1991b; 1993,

1995; Norberg, 1990). In the vortex-ring gait, lift is produced only

during downstroke. Kinematic changes in the wing, including flexion

and rotation, render the airfoil of the wing ineffective during upstroke.

In contrast, lift is produced during both downstroke and upstroke in

the continuous-vortex gait. Greater flexion of the wing during

upstroke than during downstroke gives rise to an undulating or

concertina-shaped wake in the continuous-vortex gait. Figure adapted

from Rayner (1988) and Norberg (1990).

Figure 3.5: Avian flight gaits[TD96]

gait, the vortex-ring gait, creates discreet vortices, and is often employed by smaller

birds flying at slower speeds. The second gait, the continuous-vortex gait, is more

likely to be observed in larger birds for birds flying at faster speeds. A bird flying

with a continuous vortex gait will not retract its wings fully on the upstroke and

has more in common with the soaring flight associated with gulls and birds of prey.

Figure 3.5 illustrates the difference in the wake of the two gaits. This difference

was first noticed by Spedding while using DPIV to image the wake of a Kestrel

[Spe87].

Thus far, we have seen seen how cineradiometry and particle image velocimetry

can be used to gather data about bird flight. However, neither of these techniques

can resolve simultaneous joint positions. Figure 3.6 shows Tobalske and Dial’s es-

timates of wrist and wingtip locations of a magpie flying at four meters per second.

However, in this study only those two points were plotted, and the markers used

to indicate wrist and wingtip locations on the bird had a width of one centimeter.
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Figure 3.6: Wingtip and wrist motion of a Magpie in steady flight at 4 m/s[TD96]
1391Three-dimensional kinematic analysis of avian gait change

acceleration or deceleration. The three-dimensional kinematic

analysis also includes the information available in two-

dimensional kinematic studies, and three-dimensional changes

in airfoil shape and estimates of airflow can be related to

simpler two-dimensional kinematic parameters.

The goals of our analysis are to identify the speeds at which

gait transitions occur in both species and to test whether gait

transitions during flight are gradual or abrupt. We also seek to

evaluate what key kinematic changes underlie the aerodynamic

basis of a gait change during flapping flight. The two species

involved in this study differ in body mass, wing shape and

wing loading (body weight/wing area). Ringed turtle-doves

have approximately twice the body mass of cockatiels and have

shorter, broader wings with a proportionately larger wing area

proximal to the wrist joint; cockatiels have longer and more

pointed wings with a greater distal wing area. Species with a

high wing length-to-width ratio (aspect ratio) are expected to

shift to a continuous-vortex gait at lower speeds than similarly

sized species with shorter or broader wings (Rayner, 1991).

Species with lower wing loading should also shift to a

continuous-vortex gait at lower flight speeds because the

magnitude of circulation developed during the upstroke and

downstroke required to support the body weight should be

lower. Because cockatiels have approximately two thirds the

wing loading of ringed turtle-doves as well as longer, more

pointed wings, we expected cockatiels to adopt a continuous-

vortex gait at lower speeds than ringed turtle-doves.

Materials and methods

Animals and flight training

Two cockatiels (Nymphicus hollandicus Kerr; body mass

76.5 and 76.9g, wingspan 435 and 440 mm, mean wing chord

66 and 72 mm, respectively) and two ringed turtle-doves

(Streptopelia risoria L.; body mass 152.0 and 128.9 g,

wingspan 456 and 432 mm, mean wing chord 83 and 82 mm,

respectively) (hereafter termed doves) were purchased from a

local licensed animal vendor and housed in the Concord Field

Station animal care facilities, where they were provided with

food and water ad libitum. The birds were trained to fly over

a range of speeds from 1 to as high as 17 m s–1 in the Concord

Field Station wind tunnel. Training lasted 1 month and

consisted of a minimum of five 30 min bouts of flight training

per week. All individuals tended to fly in the upper forward

quadrant of the working section of the wind tunnel. Flight

position was more variable at slow speeds. Whereas the

cockatiels tended to oscillate from side to side in the tunnel,

the doves tended to hold a more fixed lateral position. Lateral

oscillations in flight movement decreased in both species at

faster flight speeds. Cockatiels learned to fly steadily in the

wind tunnel in 2–4 days and were then exercised for at least

three additional weeks prior to data recording. The trained

cockatiels were willing to fly for at least 10 min without rest at

9 m s–1. At fast and slow speeds, the duration of flights that the

birds were willing to sustain was less than this. The maximum

speed of each bird was defined as the highest speed at which

the bird was willing and able to maintain position in the wind

tunnel for 15 s. Doves learned to fly steadily more slowly,

requiring as much as 1 month of training to achieve flights of

more than 2 min duration at any given speed.

Design of the wind tunnel

The Harvard-Concord Field Station (Harvard-CFS) wind

tunnel is an open-circuit tunnel with a closed jet in the flight

chamber, designed and constructed in 1998–1999 (Fig. 2). It

has a working section 1.2 m!1.2 m in cross section and 1.4 m

in length and can operate at wind speeds from 0 to 28.5 m s–1.

Air is moved through the tunnel by a 55.9 kW (75 horsepower)

direct current motor (General Electric, Inc.) and 1.4 m diameter

fan assembly (AFS-1.4 Series axial flow fan, SMJ Inc.)

equipped with a built-in silencer (1.4 LCP series) to reduce

noise levels. Barlow et al. (1999) and other sources cited

therein were used to design the tunnel.

Air is first pulled through a settling section, measuring

Fig. 2. The Harvard-Concord Field Station (CFS) wind tunnel, designed for use in studies of animal flight.

6:1 contraction
0.5°

9.01 m

1.4 m

1.2 m
2.95 m

Figure 3.7: The Harvard Field Station’s avian wind tunnel used by Hedrick et
al.[HTB02]

Furthermore, data was recorded on low resolution cameras at the slow framerate

of 60 frames per second[TD96].

3.2.4 Motion Capture

Hedrick et al. continued their studies on bird flight and kinematics in their 2002

study [HTB02]. They utilized the Harvard-Concord Field Station’s wind tunnel

(Figure 3.7) to capture the flapping motion of Cockatiels and Turtle-Doves. By

mounting four high-speed cameras around the transparent test section of the wind

tunnel and lighting the test section with six 300 watt halogen lamps, Hedrick was

able to attain excellent high contrast high speed (250 frames per second) video of
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Figure 3.8: Position of motion capture cameras relative to wind tunnel test
section[HTB02]

birds trained to fly in the wind tunnel.

To gather kinematic data, birds were outfitted with reflective markers on their

wings prior to flight. Each marker was five millimeters in diameter, and five were

placed on the right wing of each bird. Figure 3.9 shows sample data of a bird with

markers on its wing from each of the four cameras. By utilizing the direct linear

transformation technique (DLT), three dimensional coordinates for each marker

were computed from the camera views.

Knowing the motion of five important points on the wing, Hedrick represented

the wing as two triangles defined by the measured five markers in order to perform

aerodynamic calculations. This simplified representation allows one triangle to

represent the primary feathers, and the second to represent the secondary feathers

(T2 and T1 respectively in Figure 3.10).

Hedrick uses these two polygonal faces to calculate the amount of lift produced

by the bird. He assumed a sinusoidal curve for the coefficient of lift. He then

computed the total velocity around each wing panel. The velocity that each trian-

gle experiences is a sum of the forward velocity of the bird (or speed of the wind

tunnel), the velocity of the wing relative to the body of the bird, and also a factor

called the induced velocity. The induced velocity accounts for changes in velocity
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midline cross was used as a proxy for the center of mass to

calculate changes in whole-body position, velocity and

acceleration during flight. Individual sequences of flight

consisting of three successive wingbeats with minimal lateral

and vertical movement within the wind-tunnel flight chamber

(within-chamber velocity <0.3 m s–1) were selected from the

video data and digitized using custom-designed software

written in Matlab v5.3. In cases where sequential wingbeats

with minimal change in wind-tunnel position were not

available, we selected additional wingbeats from the recorded

T. L. Hedrick, B. W. Tobalske and A. A. Biewener

Fig. 7. (A) Arrangement of the four high-speed video cameras around

the flight chamber of the wind tunnel and typical images from each

camera. Cameras 1 and 2 (C1, C2) captured dorsal views of the bird,

while cameras 3 and 4 (C3, C4) captured either latero-dorsal or -ventral

views of the bird and wings. (B) Points marked on each bird that were

digitized for three-dimensional reconstruction. 1, back; 2, shoulder; 3,

wrist; 4, tip of the ninth (longest) primary; 5, tip of the fourth primary; 6, tip of the first primary. T1 designates the triangle used to represent the

proximal wing section; T2 designates the triangle forming the distal wing section.

Wk, airflow generated by wing motion

Ve, effective tunnel airflow

(Wk+Ve), incident airflow

Wiv, vertical induced airflow (equation 3)

Wit, total induced airflow, perpendicular to (Wk+Ve)

Wih, horizontal induced airflow

Angle between Wiv and Wk+Ve

WivWit

(Wk+Ve)

Ve

Wk

Wih

!

!

Fig. 8. Lateral view of a dove at the beginning of the downstroke in

slow flight (1 m s–1) with vectors showing the components of the

induced velocity calculation (equation 3). The vertical induced

airflow (Wiv) is calculated from equation 3, incident airflow (Wk+Ve)

is measured via kinematics and wind-tunnel velocity, and horizontal

induced airflow (Wih) is calculated from Wih=Wivtan(!/2–"). Note

that the vectors shown are not precisely to scale and that Wk acts

opposite to the direction of wing motion. Wk, airflow generated by

wing motion; Ve, effective wind-tunnel airflow; Wiv, vertical induced

airflow (equation 3); Wit, total induced airflow perpendicular to

Wk+Ve; Wih, horizontal induced airflow; ", angle between Wiv and

Wk+Ve.

Figure 3.9: Motion capture camera views showing markers on a Turtle-Dove in
the wind tunnel[HTB02]

Figure 3.10: Triangular representations of the primary and secondary feathers
approximating the wing of a Turtle-Dove[HTB02]
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Fig. 10. Representative results for several kinematic and aerodynamic variables obtained for two wingbeats of dove 2 flying at (A) 1 m s–1,

(B) 5 m s–1, (C) 9 m s–1 and (D) 17 m s–1. Each plot shows (i) vertical (z direction) motions of the wrist and wing tip, (ii) distal and proximal

effective wing lengths (b), (iii) distal and proximal incident airflow (Wt), (iv) distal and proximal wing angles of attack (!) and (v) distal and

proximal circulation ("). The y-axis and x-axis scales are the same for all speeds. Shading indicates downstroke periods, which were

determined from the z-axis (vertical) wrist motion.

Figure 3.11: Hedrick et al.’s kinematic and force data for triangular wing sections
of a Turtle-Dove in the wind tunnel[HTB02]

due to the tendency of a disturbed wake to affect the velocity of oncoming air.

Once the total velocity is known, circulation and finally the total lift force can

be calculated. Figure 3.11 shows his collected data for vertical position, length,

and relative velocity, as well as the calculated angle of attack and circulation for

both of the two triangles representing the wing over two wingbeats. The solid line

indicates data from the distal triangle representing the primary feathers, while the

dashed line represents the proximal secondary feathers. The shaded time periods

indicate the downstroke.

Hedrick concluded that this aerodynamic model underestimates the lift on birds

flying at slow speeds (below 5 m/s) and overestimates the lift at high speeds (above

11 m/s). While this model is crude, it seems applicable to the middle range of

flight speeds for the birds that Hedrick was investigating. Clearly however, the
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Materials and methods

Five small, lightweight differential pressure transducers,

combined with accelerometers (Fig.·1), were tied between the

bases of adjacent flight feathers (two between primaries, two

between secondaries and one at the secondary–tertial

boundary) along the wings of three Canada geese [Branta

canadensis L.; mass, 4.7±0.2·kg (mean ± S.D. throughout);

span 1.58±0.04·m; wing and intervening body area

0.36±0.01·m2 (following Pennycuick, 1989)] caught from local

pest populations (Massachusetts Division of Fisheries and

Wildlife permit 038.02SCB). Acceleration-compensated

pressure signals and high-speed video were recorded for the

five sites during the first 30·m of take-off flight.

Acceleration compensation of pressure transducers

Each unit (4.5·g or 7.5·g) consists of a differential pressure

transducer (PX74-0.3DV; Omega, Stamford, CT, USA) with

a stiff 3.2·mm-diameter nozzle cut to project through the

feathers to the upper wing surface when tied between flight

feathers (Fig.·1). Each sensor was relatively light compared

with the wing (1–2% of wing mass, together totaling 9%),

each comparable to the mass of 2–4 primary feathers. While

the additional wing mass may have resulted in a slight

compensation in kinematics due to increasing the moment of

inertia, I {by approximately 12% for the outstretched wing,

using the scaling relationship for a single wing I=0.118[(wing

mass)!(wing length)2]1.040, r2=0.997, from Van den Berg and

Rayner, 1995}, we found that the action of the loaded and

unloaded wings was similar. Each differential pressure

transducer was attached next to either one (sites a, c and e;

Fig.·1B) or a pair of (sites b and d; Fig.·1B) single-axis

accelerometers (SA20; Sensor One, Sausalito, CA, USA). The

response of both accelerometers and pressure transducers to

acceleration was determined by steadily (thus avoiding

pressure differentials) orientating the units vertically upwards

(+1·g, +9.81·m·s–2), horizontally (0·g, 0·m·s–2) and vertically

downwards (–1·g, –9.81·m·s–2). This was done so that the

confounding effect of acceleration (because of flapping) on

the pressure signal, due to the inertial deflection of the

membrane integral to the pressure transducer, could be

removed. The units with a pair of accelerometers allow the

effects of wing rotation (pronation or supination) and the

slight (12.5·mm) separation between pressure transducer and

accelerometer to be assessed. The traces for sites b and d in

Fig.·2 consist of two lines, one for each accelerometer signal

removal. However, the two lines are barely distinguishable,

appearing occasionally as a thickening of the trace, showing

that the impact of separation between pressure transducer and

accelerometer was negligible. Acceleration compensation of

the pressure signal was, however, significant. At positions

of peak acceleration (around ±75·g or 750·m·s–2, at the

beginning/end of downstroke and upstroke at the most distal

transducer placement), a false signal of up to ±350·Pa was

removed. While the frequency response of each transducer

was high (>1·kHz), both high-frequency noise and limitations

in the kinematic data made high-frequency signals difficult

to interpret. As a result, acceleration-compensated pressure

signals were low-pass filtered at 25·Hz (2nd order

Butterworth), approximately five times that of the wingbeat

frequency. 

Experimental protocol

The five pressure/accelerometer units were tied in place

using 0-silk between flight-feather shafts (a, S17–S18; b,

S9–S10; c, S4–S5; d, P2–P3; e, P8–P9; ‘S’ being secondary

and ‘P’ being primary) along the right wing of three Canada

geese sedated with isoflurane. Blocking of dorsal or ventral

ports by displaced covert feathers was prevented with small

tabs of elastic adhesive tape (visible in the outline tracings of

Figs·1B,·3B). Voltage signals from the five units, consisting of

J. R. Usherwood, T. L. Hedrick and A. A. Biewener

Fig.·1. Positioning of a pressure transducer/accelerometer unit.

(A) Position within a wing chord, with dimensions appropriate for

the most proximal site, at the secondary–tertial boundary. Each unit

is tied between the bases of two adjacent flight feathers. The dorsal

port of the differential pressure transducer projects slightly through

the upper surface of the wing; the ventral port is exposed beneath the

unit. (B) Positioning of the five units along the right wing. Tabs of

sticky tape surrounding the dorsal ports of the pressure transducers

(to prevent covering with covert feathers), and the flight feathers

between which the units are tied are highlighted in gray (S,

secondary; P, primary). The most proximal position (position a) is

situated at the secondary–tertial boundary. Positions b and d have

units with pairs of accelerometers; positions a, c and e have single

accelerometers. 

100 mm

Differential

pressure transducer

Accelerometer

a

b

c

d

e

A

B

100 mm

P2

P8

P9

P3

S9

S10

S4

S5

Figure 3.12: Pressure transducers (labeled a through e) mounted to pairs of
primary and secondary feathers on the wing of a Canada Goose [UHB03]

geometric representation of a flapping wing can advance beyond the simplicity of

two triangular elements.

3.2.5 Pressure Measurements

In order to gain insight into the aerodynamic forces acting on a flapping bird’s

wing, Usherwood et al. applied a novel approach in their 2003 study directly

measuring the air pressures on the wing of a flying Canada Goose[UHB03]. By

attaching pressure transducers to feathers shafts along the wing, the differential

pressures between the top and bottom surfaces of the wing were measured in five

locations (Figure 3.12).

Figure 3.13 graphically illustrates the magnitudes of the pressure at each trans-

ducer site along the wing over a single wingbeat. As expected, we can see that

the pressures increase toward the distal end of the wing, where the feathers are

moving faster. Also of note is the unforeseen double peak in pressure at the most

distal site, and the positive pressure at the proximal sites which is maintained
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throughout the stroke.

This study provides interesting new insight into the mechanics of bird flight;

however it is highly constrained and looks only at one species of bird at one flight

speed. Further, five transducers across the span of the wing seems to prove ade-

quate for resolving the pressure distribution spanwise, but gives only one data point

in the chord-wise direction oriented along the shafts of the secondary feathers.

Usherwood et al. followed this study two years later by conducting the same

experiment, with more sensors, this time on pigeons in slow flight[UHMB05]. Here,

they measured the pressure differential with eight transducers on the wing instead

of five, and also turned their attention to the tail where they added four transduc-

ers. They found similar results in the pigeon as they found in the goose, and went

on to investigate the muscle-mass specific power required for the bird to overcome

gravity.

The additional sensors address some of the above shortcomings and provide

a greater wealth of knowledge; however it is still unclear how to extract forces

on the bird’s flight surfaces from these pressure measurements. In the absence

of kinematic joint motion data, it is impossible to describe the force vector even

though the pressure data can help determine the magnitude. One of the most

important aspects of these studies is that they were carried out in still air, away

from the complications of wind tunnel flight. Without the turbulence of fan blades

and visual distractions, these birds are likely to have flown more naturally. It has

been shown that the induced velocity of the wind tunnel environment causes birds

and bats to fly unnaturally [Ray94].

The last study of interest sought to quantify the instantaneous aerodynamic

accelerations on a flying bird. To this end, Hedrick et al. flew cockatiels in a

wind tunnel at various speeds, and recording both kinematic motion data through
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ventral pressure with a magnitude close to mean wing loading

during the second half of upstroke (Fig.·3). The results provide

direct evidence for three interesting phenomena: (1)

maintenance of positive (ventral-to-dorsal) pressure at site a

(most proximal) throughout the wingstroke cycle; (2) reversal

of the pressure sense (indicating a dorsal-to-ventral direction)

at site e, the most distal; and (3) double pressure peaks at the

distal sites during the downstroke.

Upstroke and ‘gaits’ in avian flight

Studies by PIV of the wake left behind flying birds have

led to the description of two distinct flight ‘gaits’ (Spedding

et al., 1984; Rayner, 1986, 1991, 1995; Spedding, 1986,

1987; Tobalske, 2000): the ‘vortex-ring gait’, in which the

upstroke results in minor aerodynamic forces, and the

‘continuous-vortex gait’, in which aerodynamic lift is

maintained during the upstroke. The concept of ‘gaits’ in

flight is useful in distinguishing between slow, sparrow-like

flight and fast, gull-like flight, but the transition between the

two gaits as a function of speed, for most birds, is likely to

be continuous (e.g. Spedding et al., 2003a), with the

aerodynamic role of the upstroke gradually increasing with

increasing flight speed. Whether the term ‘gait’ should be

dropped because of this lack of discontinuity with speed

(although ‘walking’ and ‘running’ are normally termed gaits

even in birds that can show continuous variation in

kinematics with speed; Gatesy and Biewener, 1991) and

‘flight style’ should be adopted, the concept of different flight

techniques, largely defined by force production during the

upstroke, remains useful. In this context, the results for the

goose through upstroke during take-off are interesting.

Pressures along the wing divide into three regions: (1)

‘positive’ (a vertral-dorsal sense) at the wing base; (2) near-

zero for the center portion of the wing; and (3) ‘negative’ (a

dorsal-ventral sense) at the wingtip (Fig.·3). The maintenance

of ventral-dorsal pressure at the wing base, and the reversal

at the wingtip, adds a new flight ‘style’ to those previously

described based on upstroke function; again, however,

discontinuity between take-off flight style and other flight

styles (whether closer to the ‘vortex-ring’ or ‘continuous-

vortex’ gaits or styles) should not be inferred.

Wingtip pressure reversal

Circulation (and pressure-sense) reversal at the wingtip

during the upstroke has been reasonably argued for take-off

flight in the pigeon (Alexander, 1968): wingtip attitudes, and

presumed low induced air velocities, are likely to result in

the wingtips operating at negative aerodynamic angles of

J. R. Usherwood, T. L. Hedrick and A. A. Biewener
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Fig.·3. Pressure distribution related to kinematics for a wing over a single flap during take-off flight, but five flaps after lift-off. The traced

outlines and graphs for pressure distribution along the wing (A) show snapshots separated by 4/250·s. The contour plot (B) shows the pressure

distribution through time as it would be mapped to an outstretched wing. Contours are calculated assuming a linear distribution of pressure with

spanwise distance between the five measurement sites indicated on the wing image (labeled a–e). Positive pressures indicate a ventral-to-dorsal

sense; the wing base maintains a weight-supporting sense throughout the wingstroke cycle. Pressure differentials are greater than mean wing

loading (138.2·Pa) for all sites between snapshots 2 and 5 and remain above wing loading for all but site a (base of wing) for most of the

downstroke. Wingtips experience the greatest pressure differentials, maximally more than four times the mean wing loading. During upstroke,

the distal sites show ‘negative’ pressures, indicating a dorsal-to-ventral sense. The direction of the resulting forces cannot be determined

accurately, but the wingtips are aligned approximately vertically when the negative pressure differential is greatest (the second half of

upstroke), suggesting a thrust-orientated force. 

(b) Spatial representation of pressures along the wing. On top, the graphs indicate
the pressure distribution from shoulder to handwing for each frame. In the middle, an
illustration of the goose and wingbeat phase for each frame. On the bottom, a map using
colors to show the magnitudes of pressures across the wing. Yellow indicates areas of high
pressure, while blue indicates negative pressures, and grey represents pressures near zero.

Figure 3.13: Pressures on individual transducers across the wing throughout one
wingbeat of a Canada Goose[UHB03]
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1693Instantaneous flight forces in cockatiels

to 13·m·s–1), probably due to the additional drag from the cable

and accelerometers. Flight duration and the position within the

tunnel that each bird selected, however, were unaffected.

After each recording session, we recorded accelerometer

calibration voltages by positioning each accelerometer’s

sensitive axis at 0°, 45°, 90° and 180° with respect to gravity.

An accelerometer calibration equation was calculated from

least squares regression of the recorded voltages and the

expected accelerations of g, 0.707·g, 0 and –g. In all cases, the

r2 for the calibration regression was !0.99. After calibration,

we used the position information obtained by digitizing the

three markers attached to the accelerometer block to rotate the

accelerometer outputs from their native ‘bird-fixed’ orientation

on the dorsal surface of the animal to the standard global

coordinate space defined by the camera calibration frame.

Rotations were performed via a series of Euler angle

transformations:

where [XB YB ZB] are the total center of body accelerations in

the global coordinate space and [Ä1 Ä2 Ä3] are the three

orthogonal accelerations recorded by the accelerometers.

Angle ! is the angle about the Z (vertical) axis between Ä1 and

the X (forward) axis in the global coordinate space, " is the

angle about the Y (lateral) axis between Ä3 and the global Z
axis (following the initial transformation with !) and # is the

angle about the X (forward) axis between Ä2 and the global Y
axis (following the transformations with ! and ").

Although the inertial forces produced by wing motion

cannot accelerate the bird’s center of mass (CT), they can

produce accelerations at the center of the body (CB; Fig.·2B),

above which the accelerometers were attached and that will be

included in the accelerometer recordings. Following Bilo et al.

(1984), we accounted for these accelerations of CB due

to inertial forces (subsequently referred to as inertial

accelerations) by reconstructing them from the 3-D wing

kinematics (see below) and subtracting them from the

accelerometer recordings.

Reconstruction of the inertial accelerations requires a mass

distribution for the wing as well as the wing’s kinematics. We

created a standard cockatiel wing mass distribution by

sectioning and weighing wings from three cockatiels. The

resulting standard cockatiel wing was composed of 18 slices,

each of which was 1.3·cm wide, and included both the actual

section mass and an estimated virtual mass predicted from the

volume of air accelerated with the wing (Fig.·3). The virtual

mass contributed 12.6% to the total wing mass (Fig.·3B) and

25.8% to the moment of inertia (Fig.·3A) for a fully extended

wing. The total moment of inertia for the outstretched

standardized wing shown here was 4.02$10–5·kg·m–2; the

standard deviation between the three individual wings was

3.12$10–6·kg·m–2. Virtual mass for each section was computed

using the following equation from Norberg (1990):

mi,v = s%&wici·, (2)

where mi,v is the virtual (or added) mass of section i, & is air

density, wi is the width of section i, and ci is its chord.

Our model treats each wing section as a point mass. This is

a reasonable assumption given the concentration of mass in

each strip at the leading edge in the bone and muscle rather

than in the feathers extending posterior and the large number

of wing slices we employed (Van den Berg and Rayner, 1995).

We merged the mass information from the standard wing with

the 3-D kinematics by computing the position of each wing

strip in each video frame, then distributing the appropriate

number of strips between the shoulder, wrist and wingtip. We

then derived the acceleration of each wing section in the global

frame of reference by taking the 2nd derivative of a quintic

spline fit between the successive positions of each wing strip.

The resulting X-, Y- and Z-axis section accelerations were used
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Fig.·3. (A) This histogram shows the contribution of each wing

section to the overall mass moment of inertia (I) of the wing. The

moment of inertia calculation employs the sum of the actual and

virtual masses shown in B. Each wing section was 1.3·cm wide.

(B) This histogram shows the mass and estimated virtual mass of the

individual wing sections. Total mass of the standard wing was

8.32·g; the S.D. between the masses of the three original wings was

0.66·g. (C) A silhouette of the standard cockatiel wing divided into

18 sections. The sections incorporating the elbow and wrist joints are

labeled.

Figure 3.14: Mass and moment of inertia distributions of a Cockatiel
wing[HUB04]

high speed cameras, as well as instantaneous acceleration data through a three-

axis accelerometer mounted to the bird’s torso[HUB04]. To determine the inertia

of a flapping wing, they sliced a feathered specimen wing into 1 centimeter wide

strips, weighed and determined the center of mass of each strip. Treating each

slice as a point mass, he now had a mass distribution and moment of inertia for

the wing. Knowing the wing kinematics, Hedrick et al. were able to subtract the

inertial accelerations due to wing movement on the body of the bird to obtain the

instantaneous accelerations due only to aerodynamic forces on the bird. They used

this data to draw conclusions about the energy expenditure of the bird and the

percent of lift generated on the upstroke. They did not compare their data to a

force prediction model.
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3.3 Aerodynamic Properties of Bird Wings

Apart from studying live birds flapping, researchers have examined the properties

of rigid specimen wings. These few studies attempt to treat a bird wing as a

classical airfoil and measure lift and drag coefficients. These studies ignore the

flapping motion entirely and observe the wing under steady state conditions, but

have the benefit of measuring forces directly. Working with dead specimens allows

the attachment of force transducers to precisely measure the aerodynamic forces

on the wing.

In 1981, Withers tested wings of several bird species in a wind tunnel at many

different angles of attack and flight speeds. He used specimen wings dried in

an open position, and reinforced the humerus with a brass rod for strength. He

reported no significant bending of the feathers or separation of the primaries to

confound his data. His results showed a wide range of lift and drag coefficient

curves among the different species, and a large variance within the data for each

wing. The coefficient curves for most wings could be correlated to a quadratic best-

fit curve. Figure 3.15 shows Withers’ coefficient of lift, coefficient of drag, and the

lift-drag ratio curves for one of his examined species; the European Starling. For

this wing, he only recorded data at angles of attack between negative fourteen and

positive fourteen degrees, which limits the usefulness of the data. Furthermore,

he provides no insight into how his steady-state analysis translates to unsteady

flapping wing flight.

Recognizing that air flows faster over the tips than the bases of flapping wings,

Usherwood and Ellington sought to examine a variety of animal wings in the

manner of classical propellers by rotating them[UE02]. They examined the aero-

dynamic properties of several insect wings as well as a quail wing. The insect wings

were not real wings, but plastic wings cut and molded to the proper shape. An
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Figure 3.15: Experimental wind tunnel Cl, Cd, and Cl/Cd curves for the wing of
a European Starling specimen (Sturnus vulgaris)[Wit81]

actual quail (Coturnix chinensis) wing was used for the quail study, and a plastic

quail wing was also tested for comparison. The wings were mounted on an intricate

rig which allowed them to be rotated at precise angular velocities. The rig included

an integrated force transducer to directly measure the forces generated by the air

on the wings. Figure 3.16 shows the measured lift and drag coefficients derived

from the measured forces for three insect species as well as the quail. Usherwood

and Ellington examined a much wider range of angles of attack than previous

studies, as shown in the figure, and the resulting curves approximately represent

periodic functions as indicated by flat plate theory. Later, Usherwood repeated

the study on Pigeon wings while also measuring pressures on the wing, and found

similar resulting lift and drag coefficient curves [Ush09]. While these studies still

represents a steady-state approach, they recognize that the velocity profile on a

wing is non-uniform and thus obtain more realistic coefficient curves.

In 2005 March et al. took the study of specimen wings one step further by di-

rectly measuring the forces on a real wing whose shape could be changed [MBG05].
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Figure 3.16: Lift and drag coefficients vs angle of attack for several species
recorded in rotating wing experiments[UE02]

Figure 3.17: Red-tailed hawk wing with poseable wrist on a force transducer in
a wind tunnel[MBG05]

They surgically implanted steel wires in the arm of a deceased Red-Tailed Hawk

(Buteo jamaicensis) so that the wrist could be held rigidly at different angles. They

then tested the wing on a force transducer in a wind tunnel at different airspeeds,

angles of attack, and wrist angle. They also performed tests on a Great Horned

Owl wing (Bubo virginianus) but did not actuate the owl’s wrist joint. While this

study implemented new methods for studying the aerodynamic effects of changing

wing shape, too little data was recorded over too small a range of angles of attack

(negative five degrees to positive twenty degrees) to draw any useful conclusions.
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3.4 Animation Studies

To date, studies of avian flight have primarily fallen into one of two domains, biol-

ogy and ornithology, or aerospace engineering. Biological studies of bird flight are

interested in metabolic energy and power requirements, and therefore the simplest

aerodynamic force models are sufficient. Even a first order estimate of a bird’s

power requirement is sufficient to gain important insight into migration patterns

and the distances birds can fly between food sources. Thus biological studies have

only a tangential application of aerodynamics. These studies are experimental

in nature, based on observation and measurement, with little need for computer

simulation.

In contrast, aerodynamic studies in the engineering domain have developed

powerful fluid simulation techniques and force models. Numerical methods can

solve complex flow conditions with great accuracy. However, these techniques are

primarily applied to traditional fixed-wing type aircraft studies. With no historical

motivation to create flapping aircraft (ornithopters), the aerospace community has

focused its attention on rigid-body aircraft.

The techniques of both of these domains can be used directly in computer ani-

mation and simulation. The computer animation and motion picture industry has

developed sophisticated physically-based simulation techniques, as well as design-

ing a set of tools to create and animate virtual creatures. Birds have appeared

in many computer generated feature films, including recently: Disney-Pixar’s Up,

Pixar’s Finding Nemo, Dreamworks Animation’s Kung Fu Panda, and Weta Dig-

ital’s Lord of the Rings. However, the motivation behind the avian-inspired crea-

tures in these films is entertainment, not realism. A minimal amount of research

has been dedicated to the accurate portrayal of birds in the animation and com-

puter graphics field. However, the few attempts to simulate a virtual bird using
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Figure 3.18: Ramakrishnananda and Wong’s geometric bird model showing a
wing as two airfoils[RW99].

physically based aerodynamics are notable.

The first study to take this approach of using physical principles to simu-

late and animate the forward flight of birds was that of Ramakrishnananda and

Wong[RW99]. They used a very primitive representation of bird geometry where a

wing is comprised of two airfoil sections each with one hinge, a degree of twist, and

a sweep angle (Figure 3.18). This model ignores the wrist joint, constrains the de-

grees of freedom of the other two joints, and ignores any effects of feathers. Given

user inputs such as the wingbeat frequency, a set of dynamic equations describe

the state of the system for each timestep. A proportional-derivative controller at-

tempts to propel the bird along a series of user specified waypoints. Each timestep

is solved sequentially to find the optimal angle of attack, twist, and sweep for each

section. A blade element model was used, but the coefficients were not described in

the article. Without specifying the lift and drag coefficients, the physical accuracy

of even such a simplified model can be called into question.

Building on the work of Ramakrishnananda and Wong, Wu and Popovic’s 2003

model was a vast improvement[WP03]. This new model was far more advanced in

the way it represented a bird’s geometry. As shown in in Figure 3.20a, the wing was

morphologically accurate, taking the shoulder, elbow, and wrist joints into account.

The shoulder was represented as a ball joint with twist, for a total for four degrees
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Figure 3.19: Ramakrishnananda and Wong’s animated eagle[RW99].

of freedom. The elbow and wrist joints were both modeled as single degree of

freedom hinge joints, though the elbow had an extra degree of twist mimicking the

action of the radius and ulna bones. While the wrist is technically a ball joint with

two axes of rotation, it was represented here with only one. The primary function

of the wrist is to control the spread of the primary feathers, which it can do as

a single axis hinge joint. The lack of a second degree of freedom may limit the

model, but the wrist still serves its function. The tail was also accounted for in

this model, as a non-trivial amount of lift and moment on the body is generated

by the tail.

Feathers were represented in a way that simplifies their geometry while still

accounting for the mechanisms by which they physically interact with the air.

Each feather was represented as a quadrilateral, as shown in Figure 3.20b, and

made dynamic by the introduction of three virtual springs. A twist spring and a

bend spring exist at the base of the feather, and a second bend spring was placed in

the middle of the feather to allow for bend along the rachis. These added degrees

of freedom allowed for important interaction with the flow as the feathers bend

and twist to change the configuration of the wing. Aerodynamic forces were tallied

for each side of a feather (shown as the dotted line in Figure 3.20b) so that they
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Figure 2: The bird skeleton. Note that in order to model both twist
and bend movement, the forearms and the tail are each divided into
two links. The actuated joints are shoulder × 2, elbow bend × 2,
forearm twist × 2, wrist bend × 2, tail bend, tail twist, and tail
spread. The shoulder joint has 3 DOFs and the other joints each has
1 DOF. The trunk has 6 DOFs representing its global position and
orientation.
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aerodynamic
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Figure 3: Left: Angular springs on a feather. Right: Because
of vane asymmetry, air pressure may create different amounts of
forces on both sides of the shaft and cause the feather to rotate
around its shaft.

torque. To avoid the concentration of mass at the front edge of the
wing because of the massless feathers, links with feathers are ex-
tended in the direction of feather growth for a more accurate mass
distribution.

4.1 Wingbeat parameterization
In order to represent the desired DOF patterns q∗(t) for a wing-
beat, we use a set of wingbeat parameters u. The size of u defines
the dimensionality of the search space for the optimization and di-
rectly impacts the performance of the optimization process. It is,
therefore, important that we specify each wingbeat using as few
parameters as possible while still giving the bird enough maneuver-
ability. The parameters are shown in Table 1. The superscripts u
and d indicate upstroke and downstroke parameters. Most of these
parameters are replicated for the left and right wings. For simplic-
ity, we do not list them here separately. The dihedral and sweep
angles are defined in Figure 4.

These parameters are used to determine the composite func-
tions gk which in turn determine q∗:

q∗i (t) = qi +(qi −qi)gk(u
d
µ(i),u

u
µ(i),φ(t))

where qi and qi are the maximum and minimum allowed values for
DOF i (i.e. the joint limits), and φ is the phase of the wingbeat cycle.

Parameter Description
ud

1 , uu
1 arm dihedral angles

ud
2 , uu

2 arm sweep angle
ud

3 , uu
3 arm twist angles

ud
4 , uu

4 forearm twist angles
ud

5 , uu
5 wing spread extents

ud
6 , uu

6 tail bend angles
u7 tail twist angle
u8 tail spread angle
uT duration of the wingbeat

Table 1: Wingbeat parameters.

dihedral angle

sweep angle

front view top view

Figure 4: Arm dihedral and sweep angles.

Each wingbeat starts with the downstroke, i.e. , φ = 0 is the begin-
ning of the downstroke, and φ = 2π is the end of the upstroke. The
function µ(i) determines the mapping between DOFs and wingbeat
parameters. DOF i is determined by the parameters ud

µ(i) and uu
µ(i).

The composite functions gk are

g1(u
d
j ,u

u
j ,φ) = (uu

j −ud
j )

1+ cosφ
2

+ud
j

g2(u
d
j ,u

u
j ,φ) =

�
ud

j 0 ≤ φ < π
(uu

j −ud
j )

1−cos(2φ)
2 +ud

j π ≤ φ < 2π

Figure 5(a) shows curves generated by these two composite func-
tions.

Based on observations made in the biomechanics literature, we
use g1 for upper arm dihedral and tail bend. We use g2 for the
arm sweep, arm and forearm twists, and wing spread extends. We
provide the rationale for the specific choice of composite functions
in Appendix A.

For DOF i with constant desired state such as tail twist and tail
spread, the desired state is

q∗i = qi +(qi −qi)uµ(i)

The mapping µ(i) is straightforward for most DOFs, with the
exception of the wrist bend and elbow bend DOFs. These DOFs are
both determined by the wing spread parameters ud

5 and uu
5 because

of a bird’s musculoskeletal constraints. The wing linkage allows the
forearm and the hand to fold and unfold synchronously [Norberg
1990]. As the wing folds, it also causes the forearm to rotate so
that the hand is depressed downward [King and McLelland 1985].
We linearly decrease the bounds for the arm twist depending on
the wing spread parameters to achieve this. We could avoid this
inelegance by modeling the complete linkage system, but doing so
would make the skeletal model unnecessarily complex and hinder
the simulation performance.

4.2 Phase transformation
As previously defined, the functions g1 and g2 generate wingbeats
with equal downstroke and upstroke durations. To allow variability
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beat, we use a set of wingbeat parameters u. The size of u defines
the dimensionality of the search space for the optimization and di-
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therefore, important that we specify each wingbeat using as few
parameters as possible while still giving the bird enough maneuver-
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and d indicate upstroke and downstroke parameters. Most of these
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Figure 5(a) shows curves generated by these two composite func-
tions.

Based on observations made in the biomechanics literature, we
use g1 for upper arm dihedral and tail bend. We use g2 for the
arm sweep, arm and forearm twists, and wing spread extends. We
provide the rationale for the specific choice of composite functions
in Appendix A.

For DOF i with constant desired state such as tail twist and tail
spread, the desired state is

q∗i = qi +(qi −qi)uµ(i)

The mapping µ(i) is straightforward for most DOFs, with the
exception of the wrist bend and elbow bend DOFs. These DOFs are
both determined by the wing spread parameters ud

5 and uu
5 because

of a bird’s musculoskeletal constraints. The wing linkage allows the
forearm and the hand to fold and unfold synchronously [Norberg
1990]. As the wing folds, it also causes the forearm to rotate so
that the hand is depressed downward [King and McLelland 1985].
We linearly decrease the bounds for the arm twist depending on
the wing spread parameters to achieve this. We could avoid this
inelegance by modeling the complete linkage system, but doing so
would make the skeletal model unnecessarily complex and hinder
the simulation performance.

4.2 Phase transformation
As previously defined, the functions g1 and g2 generate wingbeats
with equal downstroke and upstroke durations. To allow variability
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(b) Individual feather geometries showing springs
and degrees of freedom

Figure 3.20: Wu and Popovic’s geometric and kinematic representation of a
bird[WP03]

could be summed to find the total forces.

The goal of this study was visual realism, not numerical accuracy and thus a

quasi-steady blade element model was sufficient. Wu and Popovic cite Withers

[Wit81] as a baseline for their lift and drag coefficients, but Withers’ data falls

within a very narrow range of angles of attack. For lift and drag coefficients

outside this curve, Wu and Popovic conjectured values which were intuitive but

not based on any physical properties. These curves are shown in in Figure 3.21. It

is unclear how the functions representing these coefficients were derived. However,
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The lift and drag forces for each vane segment i are

fi
l =

1
2

cl(θ)ρsiai‖v‖2l

fi
d =

1
2

cd(θ)ρsiai‖v‖2d

where ρ is the air density. Figure 8 shows the plot of the lift and
drag coefficients used in our system. For body link i, the external
force and torque due to aerodynamic interaction are

∑
j

f j
l + f j

d and ∑
j

x j,i × (f j
l + f j

d)

for each vane segment j of the feathers attached to link i, where x j,i
is the vector from the i’s center of mass to j’s area center.

5 Wingbeat optimization
After we have obtained a sequence of simulation states by apply-
ing the wingbeat defined by the set u of wingbeat parameters, we
use the objective function E to evaluate the goodness of motion.
E is the weighted sum of various flight metrics that fall into two
groups. The first group evaluates how close the bird follows the
path with the specified velocity without regard to the smoothness
of the motion or energy consumption. These metrics alone cannot
ensure that the motion looks natural. The second group of metrics
measure the gracefulness of the motion. These two groups of met-
rics work together to ensure that the optimal wingbeat achieves the
goal gracefully.

5.1 Objective function
Suppose the simulation for the wingbeat is carried out from time
t0 to the end of the wingbeat t1. Let qp denote the position of the
gravity center of the bird’s trunk and the quaternion qr denote the
trunk’s orientation. Let p(si) denote the point on p that is closest
to qp(ti). The first group of metrics evaluate how well the bird is
following the path by measuring the deviation of the final position,
velocity, and orientation with respect to the path:

Ep = ‖qp(t1)−p(s1)‖
2

Ev = ‖q̇p(t1)−v(s1)‖
2

Er = ψ2(qr(t1),q
∗
r (s1))

where ψ(qa,qb) is the absolute value of the rotation angle from qa
to qb, and q∗

r is the desired orientation. See Appendix B for the
details on how we determine q∗

r .

The first metric from the second group penalizes non-smooth
change of orientation and larger than necessary angular velocity at
any instance in time. This term ensures that the bird remains as
stable as possible over the entire duration of the wingbeat:

Eω = R2
�

γω

∫
‖ω‖dt +(1− γω )max

t
(‖ω‖)∆t −∆ψ

�

where ω is the angular velocity of the trunk, ∆t = t1 − t0,
∆ψ = ψ(qr(t0),q

∗
r (s1)), and R is the ramp function defined as

R(x) =
�

0 x < 0
x otherwise (2)

The integration term measures the overall change of orientation
within the wingbeat duration. We also measure the maximum angu-
lar velocity to discourage abrupt changes in orientation. The con-
stant γω controls the relative importance of the integration and the
maximum value of the angular velocity.

Grzeszczuk and Terzopoulos [1995] used a metric that penalizes
controller actuation amplitudes and their variation for synthesis of
fish swimming controllers. We found this particular metric insuffi-
cient for bird flight. Although this metric may work well for wing-
beats – such as those for cruising and soaring – that consume less
energy, it fights with the other metrics (Ep and Ev in particular) for
wingbeats – such as those for takeoff – that require a huge amount
of energy. In order to devise a more general metric of energy con-
sumption, we turn to the flight biomechanics literature.

It has been observed that the twist of the forearm which rotates
the hand and hence the primary feathers undergoes a relaxed move-
ment during the upstroke [Burton 1990]. Minimizing the torque
for the twist of the forearms only during the upstroke gives natu-
ral looking results without overrestricting the overall torque from
the controller. Intuitively, the energy spent during downstroke is
mainly governed by the bird’s need to maintain altitude. During
the upstroke the bird has significantly more freedom to move in
different ways. Consequently, we use this metric to minimize the
excessive torque usage during upstroke:

Eu =
1

m2 ∑
j∈V

�
γu

1
uα ∆t

∫
τ2

j υ(t)dt +(1− γu)max
t

(τ2
j υ(t))

�

where V is the set of the two elbow twist DOFs, m is the bird’s
mass, and υ(t) is 1 during upstroke and 0 otherwise. We also mea-
sure the maximum torque during upstroke to suppress sudden actu-
ation in a short period time, which will not be accounted for in the
integration term.

During the simulation, the bird can at times move its wings back-
wards through the air. Such motion would disturb, and possibly
damage, the flight feathers of a real bird. In order to avoid “fluff-
ing the feathers” during flight, we devise an additional metric. Let
b j denote the speed feather j travels backward through the air. We
define “backward” for a feather to be the shaft direction of its end
vane segment, and b j has a positive value when feather j is mov-
ing backward and 0 if not. The following metric penalizes such
movement:

E f =
1
∆t

∫
max
j∈F

(b2
j(t))dt

where F is the set of flight feathers. The objective function is
therefore the weighted sum

E = wpEp +wvEv +wrEr +wω Eω +wuEu +w f E f
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Figure 3.21: Wu and Popovic coefficient of lift and drag curves over the complete
range of angles of attack[WP03]

their success in creating realistic animations lends at least some merit to these

arbitrary coefficients.

Once the aerodynamic forces were computed, an advanced simulated annealing

algorithm solved for wingbeat parameters. These parameters, such as amplitude

and frequency for each joint, were specified and held constant through one wing-

beat. The solver therefore found the kinematic parameters for each wingbeat in

order for the bird to follow a user-specified path. The simulated annealing solver

minimizes a specified energy function by finding a local minimum which is proba-

bilistically representative of the global solution. This solver does not find an exact

solution, as this is often impossible in simulations with many degrees of freedom;

instead the solver ran for one thousand iterations per wingbeat in order to converge

on a solution.

The energy function specified by Wu and Popovic is a concatenation of six

terms. The first three terms are measures of the deviation from the specified path

in position, velocity, and orientation. The fourth term seeks to minimize both the

angular velocity of the bird’s body and the first derivative of the angular velocity
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Realistic Modeling of Bird Flight Animations
Jia-chi Wu Zoran Popović

University of Washington

Figure 1: An animation sequence of a raven’s wingbeat motion during takeoff.

Abstract

In this paper we describe a physics-based method for synthesis of
bird flight animations. Our method computes a realistic set of wing-
beats that enables a bird to follow the specified trajectory. We model
the bird as an articulated skeleton with elastically deformable feath-
ers. The bird motion is created by applying joint torques and aero-
dynamic forces over time in a forward dynamics simulation. We
solve for each wingbeat motion separately by optimizing for wing-
beat parameters that create the most natural motion. The final an-
imation is constructed by concatenating a series of optimal wing-
beats. This detailed bird flight model enables us to produce flight
motions of different birds performing a variety of maneuvers in-
cluding taking off, cruising, rapidly descending, turning, and land-
ing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: computer animation, bird flight, physically based ani-
mation, forward dynamics, aerodynamics

1 Introduction

Computer animation research has produced a number of models
for the natural motion of animals. Most of this research has fo-
cused on terrestrial animals, primarily humans (e.g. [Hodgins et al.
1995]). Other studies have explored the motion of kangaroos [Raib-
ert and Hodgins 1991], snakes [Miller 1988], aquatic animals [Tu
and Terzopoulos 1994], and even extinct and imaginary animals
[Sims 1994].

Perhaps equally, if not more, intriguing is the motion of animals
in flight. Birds and insects are both among the most frequently seen
wildlife in our everyday life. The flight of birds is arguably the most
graceful and expressive of all natural motions. However, modeling

aerial motion is extremely challenging. First, any locomotion in
air flows or other environments with high Reynolds numbers [Ab-
bott and Basco 1990] presents a significant simulation and control
challenge. The interaction between a bird’s wings and the air is
very complex. The forces generated by this interaction are chaotic
and hard to control. The simulations are often unstable because of
high sensitivity: the slightest change of wing position during down-
stroke can have significant effects in the result and the stability of
the bird’s flight. Furthermore, the specific musculoskeletal struc-
ture of the bird, and especially the elastic properties of the feathers,
seem to greatly affect not only a bird’s wingbeat pattern but also
whether the bird can fly at all.

This paper addresses some of these challenges. We focus on
the problem of bird flight synthesis. Specifically, we describe al-
gorithms for dynamic simulation of a bird following a given flight
trajectory. Our framework can generate flight motions for differ-
ent birds performing various flight maneuvers including taking off,
cruising, rapidly descending, turning, and landing. These motions
could potentially be used in animation or film productions, as well
as an analysis tool for designing optimal flight controllers.

The rest of the paper describes our approach in more detail. In
Section 2, we discuss related work. Section 3 gives a short overview
of our flight synthesis approach. Subsequent sections describe var-
ious aspects of our algorithms in more detail. In Section 7, we
describe a collection of example animations generated by our sys-
tem. Section 8 summarizes our contributions and outlines possible
future research directions.

2 Related work

In addition to a large body of research concerned with model-
ing realistic human motion, a number of researchers have focused
on modeling other animals. Miller [1988] modeled locomotion
of snakes and worms using mass-spring systems. Grzeszczuk et
al. used a multi-level learning technique to optimize and choose
appropriate actuators and controllers of locomotion for snakes and
fish [Tu and Terzopoulos 1994; Grzeszczuk and Terzopoulos 1995].

Birds have received somewhat limited attention within the com-
puter graphics community. Haumann and Hodgins [1992] used a
physics-based model to generate the hovering flight of humming-
birds. Reynolds [1987] modeled the group behavior of birds by
modeling flocks as particle systems. Ramakrishnananda and Wong
[1999] utilized simplified aerodynamics and manually tuned con-
trollers for bird flight animation. They used forward kinematics in
their simulation, omitted the elbow joints, and simplified the joint
movements for the wrists. In order to obtain more realistic flight be-
haviors, we use forward dynamics and skeletal structures that fully
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Figure 3.22: Wu and Popovic’s resulting animation of a raven taking off[WP03]

of the body to achieve smooth flight. The fifth term minimizes forearm twist on

the upstroke, a metric that mimics this energy conserving feature of true bird

flight and makes for realistic looking animations. The last energy minimization

term penalizes backflow of feathers through the air; that is a feather moving with

negative relative airspeed with respect to its forward pointing vane. If this were to

happen, it would ruffle a bird’s feathers and create parasitic drag. The simulation

optimization step solves these parameters for the next wingbeat, and the two

wingbeats are blended together into a smooth motion.

Wu and Popovic’s results are impressive and show a high degree of visual real-

ism. While their methods are more intuitive than experimental, the fact that their

results are very similar to the way real birds fly is encouraging. However, the lift

and drag coefficients used are arbitrary, and other parameters require manual ad-

justment in order achieve realism. Constants such as feather spring stiffnesses and

energy function coefficients need all require user input. Furthermore, the quadri-

lateral representation of feathers leaves significant room for improvement in their

geometric resolution. With more complex geometry, more realistic aerodynamic

forces can be modeled.
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CHAPTER 4

CONSTRUCTING A DIGITAL BIRD AND WINGBEAT

In this chapter, we detail the steps taken to digitally recreate the motion of a

flapping bird. The particular bird whose geometry we recreate and whose motion

we capture is a Red-winged Blackbird (Agelaius phoeniceus). We concentrated on

this species because it lent itself well to observation for high-speed motion capture

in our flight tunnel. However, in order to mimic the captured motion we must first

have a digital model of the bird.

We start by building off of work done by Jeffrey Wang to construct a mor-

phologically accurate deformable bird mesh and rig[Wan07]. Then, we introduce

a novel method to obtain individual feather geometry by laser scanning. Knowing

the geometry of the bird’s body as well as its feathers gives a complete model of the

bird. We then utilize the research conducted by Brendan Holt on high speed mo-

tion capture of a Red-winged Blackbird[Hol09]. This work yields highly detailed

kinematics of the wingbeat of a bird in level flight in a flight tunnel. Applying

the joint angles resulting from this study to our digital bird model, we have a

morphologically accurate polygonal bird wing undergoing a physically measured

kinematic wingbeat motion. Because the model is polygonal, in the next chapter

we will analyze these polygons to compute the aerodynamic forces on each and

obtain a total force on the bird.

4.1 The Skin Mesh of an Ivory-Billed Woodpecker

4.1.1 Computerized Tomography and Modeling of the Body

Motivated by alleged sightings of the thought-to-be extinct Ivory-billed wood-

pecker (Campephilus principalis)[FLL+05], Jeffrey Wang’s 2007 work used three-
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(a) CT data filtered to isolate bones and reveal
the skeleton

(b) CT data filtered to reveal the bird’s skin

Figure 4.1: Wang’s Ivory-billed woodpecker reconstructed from computerized
tomography scan data showing different anatomic features[Wan07]

dimensional volume capture techniques to construct a digital model of this bird[Wan07].

Since the species was considered extinct, a pickled specimen was used for anal-

ysis. This specimen was scanned using x-ray Computerized tomography (CT),

which produced a series of two-dimensional scans. These scans were stitched to-

gether to create a three-dimensional volume using medical imaging techniques

[MSS92][SFF91]. Wang was then able to manually define contours of bone and

skin, building a three dimensional skeleton and skin mesh.

Next, Wang employed animation techniques to create a rig of virtual joints for

the model, joints which mimic the physiological degrees of freedom of the actual

bird. This was based in part on the specimen’s skeleton revealed by the CT scan

(Figure 4.1a). Wang then fit a mesh of quadrilateral elements to the skin surface

indicated by the CT scan. In this way he was able to smooth the rough surface

shown in Figure 4.1b, and obtained a clean mesh suitable for binding to the joint

rig. By using the animation technique of smooth skinning, the mesh thus became

deformable, and Wang was able to pose the the virtual model of the bird in any

position.

Figure 4.2 shows the smooth digitally reconstructed skin mesh of the Ivory-

52



Figure 4.2: Wang’s digital Ivory-billed woodpecker model showing the smooth
skin mesh. Feathers are not shown to better illustrate the anatomy of the wings.

billed woodpecker. Here, it has been unfolded out of the unnatural pose shown

in Figure 4.1 into a “neutral pose” from which it is easy to animate. Wang subse-

quently added flight feathers modeled as NURBS surfaces to the wings, and clev-

erly used animation techniques for rendering fur to approximate the appearance

of plumaceous feathers on the body. Figure 4.3 shows Wang’s digital Ivory-billed

woodpecker model successfully posed to match a video of a Pileated woodpecker in

flight. Our model makes use of Wang’s bird’s body, but not the feathers because

the NURBS feathers of this model were not morphologically accurate.

Of particular importance in Wang’s woodpecker model and rig is the physio-

logical accuracy of the patagium. The patagium is an elastic area of skin near the

elbow which connects the shoulder and wrist joints. The patagium is stretched

taught when the wing is extended and provides important aerodynamic function-

ality by maintaining an airfoil cross section of the wing in this elbow area. Figure

4.4 illustrates the function of the patagium by comparing the patagium in the
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Figure 4.3: Comparison of Wang’s digital model to actual video. Left: A still-
frame from a video of a Pileated woodpecker in flight. Right: The digital Ivory-
billed woodpecker with NURBS feathers posed to match.[WBL+08]

rendered model to that of a Pileated woodpecker specimen.

Wang scripted a procedural rigging algorithm to control the patagium and

simulate its natural motion. The animator now only has to be concerned with

posing the shoulder, elbow, and wrist joints. The patagium will automatically

assume the proper shape as controlled by Wang’s algorithm.

Because the bird in our investigation is not an Ivory-billed woodpecker, this

model cannot be used without modification. However, it is a remarkable model for

its morphological accuracy, and we can take advantage of the fact that most birds

share nearly identical anatomical structure, varying only in the size and length

of certain bones. By scaling the rig of the Ivory-billed woodpecker model as a

whole as well as scaling individual arm bones, we can closely represent a Red-

winged blackbird at the proper scale and with all the degrees of freedom of motion

necessary for animating any bird.

4.2 Scanning and Construction of Flight Feathers

While the body of our Red-winged blackbird can be digitally reconstructed based

on another species, the feathers are unique. Feather shapes, sizes, and even num-
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Figure 4.4: Functionality of the patagium. In the top view the wing is extended
and the patagium stretched taught. In the lower view, the wing is retracted and the
patagium folds into the shoulder. The inset shows the wing of specimen Pileated
woodpecker for comparison to the digital model.[Wan07]
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Figure 4.5: Laser scan of the first primary feather of a Red-winged blackbird in
progress on the Cyberware Modelshop scanning table.

bers vary across bird species and therefore it is important that we model our digital

feathers on the feathers of an actual Red-winged blackbird. Because feathers com-

prise most of the surface area of the wing, with the patagium and skin of the arm

making up the rest, we took special care to model the geometry of the feathers

as accurately as possible. Even slight changes in the geometry of the wing can

dramatically affect the aerodynamics.

4.2.1 Laser Scanning

Using the feathers from a female Red-winged blackbird window-kill specimen, we

scanned each feather individually using a laser ranging scanner. The scanner we

used was a Cyberware 3030 Scanhead in conjunction with Cyberware’s actuated

Modelshop table. With position encoders embedded in the table, the scanhead is
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Table 4.1: Cyberware scanner resolution

Dimension Resolution
X 0.1 mm
Y 1 mm
Z 0.1 mm

rigidly mounted while the table can move in two degrees of freedom (lateral, and

rotational). Our scans were conducted by mounting the feather on a clay pedestal

about four inches from the front of the scanhead enclosure. The feather was ori-

ented vertically and normal to the scanhead as to appear as broad as possible.

Figure 4.5 shows a scan in progress. A vertical beam of 650 nanometer light

sweeps across the feather as the Modelshop table moves laterally. The time for

the light to return to the sensor is measured and a distance from the sensor to

each point is calculated. For the purposes of the scans, the X direction is along

the lateral track of the table’s motion, parallel to the vanes of the feather. The

Y direction is up, along the rachis. The Z direction is away from the scanhead,

perpendicular to the vanes. The scans were conducted at the maximum possible

resolution as indicated in Table 4.1.

While the resolution of the scanner is very high, it also gives a very noisy

output. This is likely due in part to the irregular nature of the feather. It is not

a smooth and well behaved object with a uniform reflectance profile. Instead, it

is a complex object comprised of microfeatures with subsurface structures, where

light does not reflect cleanly back to the sensor. Edges are especially problematic

because of scattering effects where the vane becomes thin. The result is an often

jagged and discontinuous mesh whose overall geometry and curvature represent

the feather well, but whose small scale features must be filtered. Comparing the

photographic representation to the rendered raw scan of the first primary feather

in Figure 4.6, we see that general curvature is quite accurate, but there is a great
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Figure 4.6: Photographic and digital comparison of the first RWBB primary
feather. (A) Shows reference photographs of the feather from the front and side.
(B) Shows the rendered point cloud data of the feather obtained from the scanning
process shown from the front and side.
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Figure 4.7: Photograph of the RWBB first primary feather showing the traced
outline used to define the edges of the three-dimensional mesh

deal of high frequency noise.

4.2.2 Processing Feather Data

Through a series of smoothing operations and reprojections, we can modify the

noisy and dense raw data mesh into a smooth and well ordered polygonal mesh.

We begin processing the raw scanned mesh by manually deleting the particu-

larly egregious vertices around the edge. Next we iteratively smooth the mesh by

averaging vertices locally just enough to damp out the high frequency noise without

altering the overall geometry or curvature. Next we trace a series of NURBS curves

across the smoothed mesh. The goal is to replace the high resolution polygonal
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Figure 4.8: Final polygonal feather mesh

mesh with a NURBS surface. We ultimately convert the NURBS surface back to

a polygonal mesh for analysis, but having this intermediate NURBS surface allows

us to control the feather’s tessellation and topology. For each feather we manually

trace the boundary of the vanes with NURBS curves (Figure 4.7) and project these

curves onto the surface. After trimming away the surface outside these curves, we

are left with the reconstructed feather defined as a parametric surface. The isopara-

metric lines and defining tessellation are oriented along the principal axes of the

surface. This allows the creation of relatively uniform polygons. Evenly spaced

and unskewed polygons will be useful for aerodynamic computations.

Figure 4.8 shows the final polygonal mesh of a typical feather. Its curvature

and geometry accurately reflect that of the original specimen. Because of the

NURBS representation, the polygonal resolution is variable and can be refined or

coarsened for more accurate or faster simulations, respectively. Figure 4.9 shows

the first primary feather, comparing the photographic reference to the processed

polygonal mesh.

Repeating this process for each of the eighteen feathers gives a complete picture
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Figure 4.9: Photographic and digital comparison of the first RWBB primary
feather. (A) Shows reference photographs of the feather from the front and side.
(B) Shows the rendered smoothed and processed polygonal mesh from the front
and side.
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of the wing. Figure 4.10 shows a lineup of each Red-winged blackbird flight feather.

Figure 4.10: Complete set of digitized feathers of the Red-winged blackbird

4.3 Motion Capture

For the kinematic data describing the motion of a Red-winged blackbird wingbeat,

we utilize the motion capture work done by Brendan Holt in 2009[Hol09]. This

work focused on the high speed motion capture of birds flying in a flight tunnel.

Distinct from a wind tunnel, a flight tunnel is not powered by fans and the bird

flies through still air. Its motion is recorded by multiple cameras as it flies through

a test section of the tunnel. By using two cameras to track retroreflective markers

placed on the bird, Holt was able to obtain accurate joint kinematic data for one

complete wingbeat using direct linear transformation methods (DLT).

Wild birds were captured through the use of mist nets, were flown in the tun-

nel, and then released in the location they were caught. While Holt’s work exper-

imented with a number of different species of birds, a female Red-winged black-

bird provided the best results. Birds were handled according to IACUC protocol

2001-0051 under the supervision of Cornell University ornithologist Dr. Kimberly

Bostwick[Hol09].

The thirteen meter long flight tunnel, located at the Cornell University Ex-
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Figure 4.11: Cornell University flight tunnel schematic showing the locations
of the two high speed cameras used to record the Red-winged blackbird in free
flight[Hol09]

perimental Ponds, provided an optimal environment for observing a small bird in

free flight (Figure 4.11). The bird was introduced through the rear of the tunnel

and flew towards the sunlit exit, where it was recaptured in mist netting.Two cam-

eras recorded the flight of the bird at five-hundred frames per second. These two

vantage points later allowed the motion of the wing to be reconstructed in three di-

mensions. A large amount of lighting was needed to illuminate the markers on the

bird at such high framerates. Several halogen floodlamps were used to illuminate

the inside of the tunnel. Figure 4.13 shows several superimposed images from the

side camera of the recorded flight. Before each test the cameras were calibrated

though the use of a calibration cube, which is necessary to specify coefficients of

the DLT algorithm.

Figure 4.12 shows the test specimen with retroreflective markers attached.

These three millimeter in diameter markers were cut out from commercially avail-

able adhesively backed 3M tape. Because the tape is thin and weighs relatively
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Figure 4.12: Underside of the Red-winged blackbird test subject showing nine
retroreflective markers on the wing, four on the body, and one on the tail.[Hol09]

little, it had a negligible impact on the flight of the bird. Non-permanent adhesive

allowed the bird to pick the markers off after the flight. The bird was marked in

nine places on each wing surface, top and bottom.

Using software techniques developed by Ty Hedrick[Hed08], Holt was able to

reconstruct the positions of the wing markers on the bird. Hedrick’s software

methods make use of the DLT algorithm for triangulating the position of points in

three dimensions from multiple two-dimensional camera views. This method was

first introduced by Abdel-Aziz and Karara in 1971[AAK71].
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Figure 4.13: Four superimposed frames from the side camera showing the bird
at the top of its upstroke and bottom of its downstroke for two wingbeats. The
wing markers are clearly visible.
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manus

1
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1    tip of 9th primary

2    inner 9th primary

3    tip of 4th primary

4    inner 4th primary

5    tip of 2nd secondary

6    manus

7    wrist joint

8    elbow joint

9    shoulder joint

  arm bones

Figure 4.14: Virtual mesh showing the positions of markers on the wing in
relation to the arm bones and feathers[Hol09]
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The resulting wingbeat kinematics gave numerical three-dimensional positions

for each wing marker over the seventy-seven millisecond long wingbeat. Although

it is impossible to know positions of all markers with complete precision, the DLT

algorithm takes an error-minimization approach and results in the best possible

analysis of the data.

Figure 4.14 shows a basic geometric mesh constructed from the wing mark-

ers. Animating this mesh yields the time slices shown in Figure 4.15. Here we

can clearly see the extension of the wing at the top of the upstroke, the forward

sweeping motion of the downstroke, and the way the wing folds up to make itself

smaller as it begins the upstroke.

4.4 Feathering the Model Wing

With the coarse mesh describing the wing motion obtained from the markers, the

final step in recreating the wingbeat is to substitute individual feathers into the

RWBB model. To do this, we constrain each feather such that it is parented to the

joint hierarchy of the wing. The positions of the primary feathers are constrained to

the virtual wrist bone, and the positions of the secondary feathers are constrained

to the virtual radius and ulna bones. As for rotations, the ninth primary feather

is oriented to the rotation of the wrist bone and the ninth secondary feather is

oriented to the rotation radius and ulna bones. The orientations of the feathers

between these two extremities are smoothly blended between the two. This gives

an accurate model of feather movement as the wing opens and closes.

Figure 4.16 shows the substitution of polygonal feathers into the RWBB model.

Only the shoulder and arm of the bird’s geometry are shown here. The arm of the

bird has been posed to match the position given by the markers for one instant

in time. Figure 4.16a shows the coarse mesh of the markers relative to the arm.
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(a) Wing marker coarse mesh

(b) Polygonal feathers

Figure 4.16: Red-winged blackbird model wing posed to fit kinematics. The wing
is represented as a coarse mesh created from marker locations and also individual
feather meshes. The bird’s shoulder is located in the lower right of each frame.
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In Figure 4.16b the coarse mesh is replaced by the individual polygonal feather

meshes, which give a good representation of the shape of the coarse mesh while

adding finer detail.
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CHAPTER 5

AERODYNAMIC ANALYTIC METHODS

With the wing geometry and kinematics of a Red-winged blackbird wingbeat

fully defined, we will attempt to simulate the aerodynamic forces on the wing

during the wingbeat. Three different approaches were explored, each with its own

unique set of challenges. First, a numerical simulation approach was taken using

computational fluid dynamics (CFD) software. The geometric complexity of the

model wing proved itself a formidable obstacle. Rather than simplify the geometry

and sacrifice precision we experimented with a second method; wind tunnel testing.

By using a three-dimensional rapid prototyping machine to print a plastic wing,

we were able to measure the forces on this plastic wing in a wind tunnel. However,

working with a rigid plastic model lacked the deformability of a flapping wing. In

addition, working within the constraints of the rapid prototyping machine sacrificed

precision and added complexity to the workflow. Finally, a quasi-numerical blade

element simulation was implemented to model the bird wing. This method had

the advantage of being able to approximate the non-linear and unsteady velocity

field and flow conditions, as well as the non-rigid deformation of the geometry.

This chapter presents this blade element method and our modifications to the

traditional model. We will detail how how coefficients were chosen, the vector

math required for simulation in three dimensions, and the additional mathematical

terms influenced by insect flight studies.

5.1 Computational Fluid Dynamics

Computational fluid dynamics (CFD) is the analysis of fluid flow using numerical

iterative solvers. The technique requires a mesh of the fluid domain, and uses finite

volume methods to solve the complete Navier-Stokes equations. These methods are
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similar to techniques used in finite element analysis (FEA) to solve for mechanical

stresses in structural mechanics. CFD offers the potential of fully solving the

problem, obtaining the complete velocity and pressure fields numerically. The CFD

method is widely used in the aerospace industry as it is the most accurate method

of solving for forces on a body. Modern CFD software is capable of simulating

complex compressible, supersonic, and turbulent flows. However, the algorithms

are highly computationally expensive, often taking minutes or hours to solve simple

problems. In addition, CFD solvers often stumble over intricate geometries and

non-rigid bodies. The software we used in our CFD tests is FLUENT, by ANSYS

Inc.1

Before ever attempting to run even a steady state simulation of our wing in

FLUENT, we first had to modify the wing geometry to be compatible with the

software. This proved to be a difficult process. Because our digital feathers are

defined as infinitesimally thin surfaces, we needed to give them volume in order

for FLUENT to recognize them as a solid boundary. This was solved by extruding

each digital feather by one millimeter, and then rounding the edges. Figure 5.2

shows the mesh of one of these converted feathers. The feathers were given rounded

edges to avoid sharp pressure gradients, a phenomenon which occurs around sharp

edges and can cause the solver to fail. Unfortunately, the thickness and roundness

of the feathers detract from their physical accuracy.

To convert a series of thick feathers into a wing, we performed a series of

boolean operations which intersected the surfaces of the feathers with each other

to create one continuous surface (Figure 5.1). Care was taken to ensure that

the elements within the mesh were small enough and of sufficient resolution for

the solver to accurately converge on a solution. Too much mesh resolution will

needlessly increase computation time without contributing to improved accuracy.
1FLUENT version 6.3.26. URL: http://www.ansys.com/products/fluid-dynamics/fluent/
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Figure 5.1: Surface mesh of a wing with merged feathers for use in FLUENT

While we were able to create a surface mesh of the wing, meshing the fluid vol-

ume proved too complex a task. FLUENT’s mesh and grid creating software pack-

age TGRID was unable, after repeated attempts, to create a volume mesh around

such a complex three-dimensional structure. Several proof of concept simulations

were run on three-dimensional single feathers, as well as on two-dimensional slices

of the wing. The result of one of these tests on a single feather is shown in Figure

5.2.

CFD, while powerful, does not fulfill our needs. Even if TGRID managed to

create a mesh to simulate the wing, commercial CFD software is ill-equipped to

handle the non-linear deformation of the surface that is required to accurately

simulate the kinematic behavior of the wing. For all geometric configurations

of a moving surface, the software would need to recompute the volume mesh to

account for the changes in boundary geometry. This is a non-trivial problem, which

FLUENT’s deformable mesh capabilities could not handle.
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Figure 5.2: Three-dimensional CFD solution showing a slice of the velocity field
around a single feather

5.2 Wind Tunnel Testing

Wind tunnel testing offers a physical analog to CFD’s virtual simulation. By

taking the same wing model used in our CFD meshing attempts and printing it,

we were able to test the physical geometry in a wind tunnel.

Using a Stratasys Inc. Dimension 1200ES 3D Printer, we printed our model

wing in ABS plastic. The Dimension 1200ES printer allows printing of parts within

a ten by ten by twelve inch volume. The printer builds parts by depositing layer

upon layer of plastic one-tenth of an inch thick. The active printing volume allowed

us to print the wing at actual size, and thus no Reynold’s number conversion was

needed.

Mounting this plastic wing in a wind tunnel, we were able to measure external

forces on the wing. We utilized Cornell University’s custom four-foot wind tunnel2.
2Harley-Davidson Laboratory, Sibley School of Mechanical and Aerospace Engineering, Cor-

nell University
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Figure 5.3: Computer rendering of the model wing which was printed in plastic
by a rapid prototyping machine

This tunnel has a four-foot by four-foot test section with a fifty-foot flow develop-

ment section behind a honeycomb inlet. The wind tunnel was also equipped with

a helium bubble generator and strobe light used to visualize the flow. By injecting

small (on the order of one millimeter) helium-filled neutrally buoyant soap bubbles

into the flow and illuminating them with the strobe light, one can visualize the

path taken by the fluid around the test object. The wing was mounted on a JR3

Inc. 20E12A six-degree-of-freedom strain gauge force balance. The analog signal

from the force balance was converted to a digital signal, filtered, and recorded by

computer.

Wind tunnel analysis is traditionally used to experimentally determine forces

on scaled down models of aircraft. In order to maintain the same Reynold’s number

as the expected flight regime, the airspeed of the wind tunnel is increased in inverse

proportion to the model scale. By printing an actual size model, we had no such

scaling issues with the Reynold’s number regime; however, the limitations inherent

to wind tunnel testing and the rapid prototyping printing process provided their
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Figure 5.4: Plastic printed wing mounted on stand in wind tunnel for testing

own insurmountable difficulties.

The largest obstacle that we sought to overcome was the limitation of only

being able to conduct steady-state experiments. One approach to accurately por-

tray the detailed kinematic motion described in Section 4.3 is to run a number of

experiments on differently shaped wings. By recording the forces on each wing we

could create a quasi-steady state database of forces that could be input into the

kinematic model. We could do this by printing a plastic wing for each geomet-

ric wing-shape described by the kinematics, and recording the forces on each of

these wings in the wind tunnel throughout the complete range of angles of attack.

However, we were hampered by the monetary cost and time investment involved

in printing a number of such wings. Printing one wing takes roughly forty-eight

hours. Even with such a library of printed wings, it is unclear exactly how to

map the recorded forces at different wing-shapes and angles of attack to the forces

acting on the kinematic model of the wing. Our goal was to obtain instantaneous

forces on the wing and integrate them over the wingbeat for a discreet number of

poses in the wingbeat cycle to determine the total momentum transferred to the
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Figure 5.5: Plastic wing in wind tunnel with streaklines illuminated by helium
bubbles

bird from the air. Since different polygons of the kinematic wing have different

instantaneous velocities and angles of attack, there is no clear look up into the

force values recorded at the wind tunnel.

Furthermore, we were limited by the rapid prototyping process itself. The ABS

plastic printed by the machine is brittle, and care must be taken to add enough

geometric thickness to the model so that it will not break. Similar to the CFD

meshing process, this thickening of the wing detracts from the wing’s physical

realism. The surface of the printed model is also rough where the many layers of

plastic one-tenth of an inch thick join each other on the model. This roughness

disrupts airflow and causes boundary layer separation. The plastic can be sanded

smooth if handled carefully, but in trying to maintain the realism of gaps between

certain feathers there will always be areas of the model unreachable for sanding.

Finally, we are limited by the scale of the prototyping volume. By printing a larger

model it may be possible to avoid the problems of roughness and thickness of the

plastic; however the size would still be limited to the ten by ten by twelve inch
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printing volume.

5.3 The Basic Blade Element Model

Looking for a faster simulation method than CFD and more dynamic simulation

method than wind tunnel testing, we turned to the blade element (BE) model,

described in Section 2.2. Free of the constraints of a fully-numeric computer simu-

lation and physical experiments, the blade element model provides a quasi-numeric

framework in which to compute instantaneous forces on differential areas of the

wing. By analyzing the wing as a geometric mesh of quadrilateral elements, we can

treat each element as a differential flat plate and sum the combined aerodynamic

forces acting on each small plate.

L� =
1

2
ρU2CL (α) c (5.1)

D� =
1

2
ρU2CD (α) c (5.2)

Recall from Chapter 2.2.4 that the formulas for the lift and drag forces on a

two-dimensional blade element are given by Equations 5.1 and 5.2, where ρ is the

density of air, U is the airspeed, CL and CD are the respective coefficients of lift

and drag, and c is the chord length. Figure 5.6 reviews the fundamental blade

element directions. Recall that the chord is oriented in the same direction that the

airfoil is aiming, and that the relative wind is the total velocity of the oncoming

air. The angle of attack is the angle between the chord and the relative wind. It

is also important to remember that the lift force acts in a direction orthogonal to

the relative wind, while the drag force acts in the same direction as the relative

wind.

With a digital model representing each feather, and fully defined kinematics of
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Figure 5.6: Blade element lift and drag forces in two dimensions on a typical
airfoil

the wingbeat, we know the velocity and orientation of every face within all of the

feathers of the wing throughout the wingbeat. We can then take each polygonal

face as an individual blade element and compute the instantaneous lift and drag

force acting on that element at a given time. By summing the force acting on

every element, we can obtain a net force on the bird. This Riemann sum type of

integration is described in detail in Section 5.6. Until that section, we will focus on

the forces on a single element. In the following sections we review the coordinate

systems of a blade element, the lift and drag coefficients, and the additional force

terms besides lift and drag which act on a blade element.

5.3.1 Two-Dimensional Coordinate System

The blade element model is a two dimensional model. Figure 5.7 shows the two

relevant coordinate systems used in computing the forces on a blade element.

The first is the blade element velocity coordinate system defined by unit vectors

x̂v and ŷv. This represents the frame of the moving blade element oriented relative

to the oncoming airflow. The velocity of fluid is in the −x̂v direction. The external

aerodynamic forces act in this coordinate frame. Lift acts in the +ŷv direction,
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Figure 5.7: The two different frames of reference used in the blade element model

which represents the relative up direction. Drag acts in the −x̂v direction, the

direction of fluid flow. Because circulation will play an important factor in lift

generation, the rotational velocity ωv of this frame is also important.

Table 5.1: Coordinate system axis labels

Unit Vector Full Name
x̂BE Chord
ŷBE Normal
x̂v Velocity
ŷv Relative Up
α Angle of Attack

Next, the blade element orientation coordinate system is defined by unit vec-

tors x̂BE and ŷBE. This frame of reference describes the orientation of a blade

element by defining its chord and normal directions. The chord is the vector cre-

ated between the trailing edge and leading edge, and indicates the direction the

element is aiming. The chord is represented by the axis +x̂BE, and the direction

of the face normal is indicated by +ŷBE. The rotational velocity of this frame is

ωBE.
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Figure 5.8: Projecting a three-dimensional face into a two dimensional blade
element

The angle of attack is the angle between the chord and airflow velocity, or x̂BE

and x̂v. When we wish to indicate the change in angle of attack with respect to

time, we use α̇ instead of ω, and define α̇ as α̇ ≡ ωBE − ωv. Table 5.1 lists the

common names associated with the axis variables to avoid confusion.

5.3.2 Extension to Three Dimensional Coordinate System

Although our polygonal elements are three dimensional, we can project them into

the two dimensional coordinate systems described in Section 5.3.1 in order to fit

the blade element model. Figure 5.8 shows the way in which a polygon is sliced by

a vertical plane in the direction of fluid flow in order to build the blade-element-

centric and velocity-centric coordinate systems. Knowing only the normal and the

velocity of the face, we use vector mathematics to construct the remaining principle

axes and determine the angle of attack.

The face normal ŷBE is implicitly defined, and the face velocity U is computed
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using a central finite difference approach by comparing the positions of a face

at timesteps immediately preceding and proceeding the current time. Dividing

velocity by its magnitude (Equation 5.3) gives us the unit vector x̂v which is the

direction of the fluid flow relative to the face.

x̂v ≡
U

�U� (5.3)

Next, we wish to determine the chord direction x̂BE. To determine the chord we

must first build the rest of our coordinate systems by defining a binormal direction

ẑBE. Then, we can compute the chord x̂BE, the fluid up vector ŷv, and finally

determine the angle of attack α. In Equation 5.4 we define the binormal vector by

crossing the velocity with the normal. This z direction in the the blade element

coordinate system is also the same in the fluid flow coordinate system (ẑBE = ẑv)

however we will use the blade element subscript for simplicity.

ẑBE = x̂v × ŷBE (5.4)

We calculate the direction of the chord x̂BE by crossing the normal with the

binormal (Equation 5.5). This gives us a vector which is coplanar with the face

but oriented in the direction of the face’s velocity.

x̂BE = ŷBE × ẑBE (5.5)

Finally, by crossing the binormal with the chord, we obtain the relative up

direction of the fluid flow ŷv (Equation 5.6). This is the direction in which the lift

force acts on the face.

ŷv = ẑBE × x̂v (5.6)
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Figure 5.9: Theoretical lift coefficient curve of a flat plate

With these principle unit vectors defined for both the blade element and fluid

velocity coordinate systems, we can calculate the angle of attack. Shown in Equa-

tion 5.7, the angle of attack is found by taking the inverse cosine of the dot product

between the chord and velocity unit vectors. We use a conditional statement to

test whether the airflow is coming from above or below the face and force the angle

to be negative when the flow has a negative ŷBE component.

α =






− cos−1 (x̂BE · x̂v) if (x̂v · ŷBE) < 0

+ cos−1 (x̂BE · x̂v) otherwise

(5.7)

In this section we have described our method of computing the directions in

which the blade element forces act, as well as the face velocity U and angle of

attack α, which are inputs into the blade element force model. Now we will turn our

attention to the only remaining input to the model, the lift and drag coefficients.

5.3.3 Lift and Drag Coefficient Curves and Values

Lift and drag coefficients are traditionally determined experimentally. Although

our wind tunnel efforts proved unsuccessful, we can draw on flat plate theory and

the large body of research on animal flight to make educated guesses.

Classical aerodynamic theory defines a flat plate as a symmetric airfoil of zero

camber, infinite span, and infinitesimal thickness. For such a theoretical element,
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Figure 5.10: Theoretical lift and drag coefficient curves for a stalled flat plate

Bernoulli’s law and the Blaussius theorem tell us that the coefficient of lift is defined

as CL = 2π sin (α) (Figure 5.9) [Wit81, And00, WS84, Nor90]. This derivation

assumes that the Kutta condition is satisfied, indicating that the flow remains

attached to the trailing edge. For small angles of attack this approximation holds

true. As the angle of attack increases however, the flow is certain to detach and

stall the wing before ninety degrees. Thus, we cannot rely on this theoretical

prediction of the lift coefficient due to attached flow.

Theoretical lift and drag predictions also exist for a theoretical flat plate which

is stalled from the beginning. This stalled flat plate theory predicts the lift coeffi-

cient as CL =
πsin (2α)

4 + πsin (α)
, and the drag coefficient as CD =

πsin2 (α)

4 + πsin (α)
(Figure

5.10) [KBD35, WBD04]. In this prediction, the lift coefficient has a periodic de-

pendence on 2α instead of α. Although this theory underestimates the magnitudes

of the coefficients, the periodic shape of the coefficient curves reflects experimental

values well[WBD04].

Several studies have sought to experimentally quantify the values of the coef-

ficients of lift and drag in greater detail for both insects and birds. Texts gen-

erally recognize the maximum coefficient of lift as being between 1.5 and 2.0

[Nor90, WS84]. Weis-Fogh found the maximum lift coefficient to be 1.8 for a

hummingbird[WF72]. Whithers experimented with many bird wings and found

lower maximum lift coefficients, between 0.8 and 1.2[Wit81]. He found the angles
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of attack of maximum lift to be between 8 and 25 degrees.

Although flying at lower Reynold’s numbers (102 < Re < 103), insect wings

offer valuable insight into the shape of force coefficient curves. Dickinson and

Gotz experimented with a low Reynold’s number robotic flat plate assembly and

found that the coefficient of lift scaled with sin (2α) and the coefficient of drag

scaled with sin2 (α)[DG93]. Experimenting on a robotic fruit fly wing, Sane and

Dickinson found the lift coefficient to be CL = 0.225 + 1.58 sin (2.13α− 7.2◦) and

the drag coefficient to be CD = 1.92 − 1.55 cos (2.04α− 9.82◦)[MHD99, SD01].

Usherwood and Ellington’s investigation of several insect wings and a quail wing

yielded rough coefficients of CL = 1.75 sin (2α) and CD = 3.0 sin2 (α) at Reynold’s

numbers near the range of bird flight at Re ≈ 5×103[UE02] (Note the trigonometric

identity relevant to CD curves: sin2 θ =
1− cos 2θ

2
). Wang et al. found the curves

for a fruit fly to be CL = 1.2 sin (2α) and CD = 1.4 − cos (2α)[WBD04]. These

curve shapes were also confirmed for fruit flies by Dickson and Dickinson[DD04].

Finally, Usherwood investigated a rotating pigeon wing and found the same curve

shapes with a maximum CL of 1.64 at 45 degrees and maximum CD of 3.0 at 90

degrees[Ush09].

Figure 5.11 shows the obtained lift and drag coefficient curves from several

insect and bird wing studies. In all cases, the form is approximated by CL =

A sin (2α)and CD = B (1− cos (2α)) where A is the maximum coefficient of lift

and 2B is the maximum coefficient of drag. We will use Ellington’s value of 1.64

for the maximum coefficient of lift (Equation 5.8) because it is one of the few

studies to accurately determine the maximum lift coefficient of a real feathered

bird wing (A = 1.64)[Ush09]. Finally, we will use the value of 3.0 (B = 1.5) for

the maximum drag coefficient (Equation 5.9). This value is supported by several

studies[Ush09, DG93, UE02].
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CL = 1.64 sin 2α (5.8)

CD = 1.5 (1− cos 2α) (5.9)

Incorporating these coefficient functions into the equations for lift and drag

(Equations 5.1 and 5.2), we obtain the final form of the two-dimensional lift and

drag forces on an element in Equations 5.28 and 5.29.

F�
L =

1.64

2
ρ�U�2 sin (2α) c ŷv (5.10)

F�
D = −1.5

2
ρ�U�2 (1− cos (2α)) c x̂v (5.11)

5.4 Revising the Blade Element Model

The major shortcoming of the blade element model is its lack of transient force

terms. The angle-of-attack-dependent coefficients of lift and drag do little to cap-

ture the dynamic forces which arise as the wing undergoes rapid accelerations,

decelerations, twists, and changes in direction. In order to add some of these

forces to the blade element model, we incorporate two additional force terms into

the model. The first is an added mass terms which is dependent on the acceleration

of the wing elements. The second is a circulation term, which is dependent on the

angular velocity of the wing. This implementation is borrowed from studies of fruit

fly flight, where these terms are vitally important. While their relative magnitudes

may be somewhat less when applied to bird flight, they remain important force

terms for maintaining a physically accurate model.
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5.4.1 Added Mass

Also referred to as virtual mass, added mass refers to the mass of fluid surrounding

the wing that gets accelerated along with the wing as the wing moves. This fluid

moving with the wing adds inertial forces which can be accounted for. Force due

to added mass is an unsteady term which depends on the acceleration of the wing.

A wing moving at constant velocity incurs no added mass. For high Reynold’s

number wings the added mass is very small and can be neglected. Added mass

only becomes significant in low Reynold’s number flight and in applications where

the density of the wing is close to the density of the fluid.

For bird flight, the importance of added mass lies somewhere in between, and its

effects are non-negligible. We follow the approach of Sane and Dickinson [SD01]

and Berman and Wang[APW05, BW07], both of which sought to improve the

quasi-steady model of flight as applied to fruit fly hovering. Following the classical

derivation for the force due to added mass FA around a theoretical flat plate, and

projecting the added mass tensor into two dimensions yields equations 5.12 to 5.15

[Sed65]:

F�
A =

�
m22ωBE�U�sinα−m11�U̇�cosα

�
x̂BE

−
�
m11ωBE�U�cosα +m22�U̇�sinα

�
ŷBE (5.12)

Equation 5.12 gives the terms which comprise the two-dimensional added mass

force F�
A for a wing of arbitrary shape. Each of the x̂BE and ŷBE components have

both a linear acceleration and angular velocity term.

m11 =
1

4
πρc2 (5.13)

m22 = 0 (5.14)
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The coefficients m11 and m22 are terms from the added mass tensor which

depend on the geometry of the wing. For a two dimensional flat plate with zero

thickness, the equations for m11 is defined by Equation 5.13 where ρ is the density

of air and c is the chord length of the element. In Equation 5.14, m22 becomes zero

because we have simplified the geometry to have no thickness in the ŷBE direction.

This simplification allows us to cancel two of the terms in equation 5.12 and yields

a simpler formula.

F�
A = −1

4
πρc2�U̇� cosα x̂BE − 1

4
πρc2ωBE�U� cosα ŷBE (5.15)

5.4.2 Angular Rotation

In addition to added mass, another transient term exists which accounts for lift due

to the rotational velocity of an element as distinct from the already calculated lift

due to translation (Equation 5.28). Sane and Dickinson [SD02] as well as Berman

and Wang[APW05, BW07] obtained similar results to each other in applying this

terms to the net force in their fruit fly hovering models. Sane and Dickinson

took the approach of adding a separate coefficient-based force due to circulation

term to the net force, while Berman and Wang included an angular rotation-based

term in the general lift equation. Berman and Wang based their model on the

earlier Andersen et al. study [APW05] which fit a solution of ordinary differential

equations to the results computed through thorough experimentation and CFD

simulation. Andersen et al. found that this angular velocity term ω augmented

the translational lift to fit the lift predicted by CFD on a thin and flat wing very

well.

Sane and Dickinson’s circulation term is described in Equations 5.16 to 5.20.

Referring back to the equation for lift force due to circulation (Equation 2.6, Equa-
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tion 5.16), Sane and Dickinson define the circulation Γ as depending on the rota-

tional velocity of the element, chord length squared, and a coefficient of rotation

(Equation 5.17). Given in Equation 5.18, this newly introduced coefficient of ro-

tation Crot depends on a non-dimensional axis of rotation x̂0 (not to be confused

with a unit vector). This axis of rotation x̂0 goes from a value of 0.0 at the leading

edge to 1.0 at the trailing edge.

FR = ρUΓ (5.16)

Γ = Crotωc
2 (5.17)

Crot = π (0.75− x̂0) (5.18)

However, the axis of rotation is difficult to define if it is not externally imposed

by a motor, as Sane and Dickinson did. Sane and Dickinson state that x̂0 is thought

to lie between 0.25 and 0.5 for insects. We will set the value of x̂0 to 0.25 because

it agrees well with Berman and Wang’s model below. Substituting this value into

Equation 5.18, we find the coefficient of rotation to be a constant equal to π
2 . We

substitute this coefficient back into Equation 5.17 and exchange the generic ω for

the more appropriateα̇ to obtain the circulation (Equation 5.19).

Γ =
π

2
α̇c2 (5.19)

Finally, we substitute Equation 5.19 into Equation 5.16 to obtain the final force

due to circulation around a two-dimensional element in Equation 5.20.

F�
R =

1

2
ρπ�U�α̇c2 ŷv (5.20)

Andersen et al. obtained the same result by creating an analytic model to

approximate the results from highly accurate CFD simulations and physical ex-

periments. The lift force for this model is given in Equation 5.21.
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F�
lift = −1

2
ρCT c�U�2 sin (2α) ŷv +

1

2
ρCR�U�α̇c2 ŷv (5.21)

F�
R =

1

2
ρCR�U�α̇c2 ŷv (5.22)

Isolating the angular velocity dependent term from the blade element trans-

lational lift term, we obtain Equation 5.22. Berman and Wang set the value of

the coefficient of rotation CR, introduced in this model, to π. This substitution

yields Equation 5.23, the same force due to angular rotation as found by Sane and

Dickinson.

F�
R =

1

2
ρπ�U�α̇c2 ŷv (5.23)

5.5 Three-Dimensional Forces

In the previous sections, we have been looking at the two-dimensional forces on

an element denoted by the prime designation. In order to extend these forces into

the third dimension, we must multiply them by the span width l of the element.

Equations 5.24 through 5.27 list these forces.

FL =
1.64

2
ρ�U�2 sin (2α) c l ŷv (5.24)

FD = −1.5

2
ρ�U�2 (1− cos (2α)) c l x̂v (5.25)

FA = −1

4
πρc2l

�
�U̇� cosα x̂BE − ωBE�U� cosα ŷBE

�
(5.26)

FR =
1

2
ρπ�U�α̇c2l ŷv (5.27)

The arbitrary orientation of our polygonal flat plates makes defining a chord

and span length difficult. Instead, we make the assumption that each flat plate is

square, thus the chord and span are both equal. Therefore, we can define both of
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them as a function of the polygonal surface area, a known quantity. In Equations

5.28through 5.31, we make the substitutions c ≡
√
A and l ≡

√
A where A is the

area of the polygonal element.

FL =
1.64

2
ρ�U�2 sin (2α)A ŷv (5.28)

FD = −1.5

2
ρ�U�2 (1− cos (2α))A x̂v (5.29)

FA = −1

4
πρA

3
2

�
�U̇� cosα x̂BE − ωBE�U� cosα ŷBE

�
(5.30)

FR =
1

2
πρ�U�α̇A 3

2 ŷv (5.31)

5.6 Integration

We now have the pieces in place to compute the external fluid forces on every

individual polygonal element in the wing to obtain an net instantaneous force on

the bird. We can integrate this instantaneous force over the time range of the

complete wingbeat to find the net impulse on the bird, IBE. Impulse is simply a

force multiplied by the time period over which it acts, and has units of momentum.

With this predicted impulse integrated from the aerodynamic forces, we can com-

pare it to the actual impulse required to keep the bird aloft I∗. The actual impulse

is calculated as the weight of the bird mb multiplied by gravitational acceleration

g, and the wingbeat period T . This impulse is given as a scalar in Equation 5.32.

I∗ = mbgT (5.32)

We then can then define a lift ratio parameter rlift (Equation 5.33) which is the

ratio of the theoretical impulse to the real impulse in the vertical direction. In

this equation, we double the theoretical impulse of a single wing to account for the

pair of wings. If the predicted lift and drag forces are accurate, the lift ratio will
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Table 5.2: Mathematical Term Definitions

Description Notation Definition
2-D instantaneous force on
element F�

i F�
i = [F�

L + F�
D + F�

A + F�
R]i

3-D instantaneous force on
element Fi Fi = F�

i × span of element

Total instantaneous force
on wing: Force summed
over all elements

F F =
�
wing

Fi

Total force on wing
summed over time: Impulse I I =

�
T
F∆t

be equal to one. A value of greater than one would indicate that the aerodynamic

force model is overestimating forces, and a value less than one would indicate an

underestimation of forces.

rlift =
2IBE,vertical

I∗
(5.33)

Table 5.2 describes the terms used as we integrate to find the impulse. We start

with F�
i, the two-dimensional force on an element. The index i denotes the specific

element, and i ranges from 0 to n where n is the total number of faces making

up the wing. When F�
i is converted to force on a three-dimensional element, it

becomes Fi and is equal to the sum of the lift, drag, added mass, and circulation

forces on the element (Fi = FL,i+FD,i+FA,i+FR,i). Summing this force for every

element gives the total instantaneous force on the wing F. The last piece of the

integration is to sum the instantaneous forces on the wing throughout the entire

wingbeat period T (Equation 5.34).

I =
�

T




�
�

wing

Fi

�

t

∆t



 (5.34)

We now have a fully-defined quasi-steady state which acts on individual polyg-

onal elements, accounts for transient forces, and integrates to a single numerical
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value (impulse in the vertical direction) with which we can evaluate the accuracy

of our model.
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CHAPTER 6

RESULTS

In this chapter we apply the aerodynamic model developed in Chapter 5 to the

geometric and kinematic model described in Chapter 4, and present the resulting

forces on a bird throughout a wingbeat. We begin by outlining the timing of

the wingbeat and dimensions of the wing. We compute several non-dimensional

parameters, including the Reynolds number and Strouhal number. Importantly,

we also estimate the mass of the bird for use in our force equations.

We then look at the forces on the simple mesh created directly from Holt’s

motion capture data. We look at each of the four force terms; lift, drag, added

mass, and circulation, and compare the effects of each. We then determine the

efficiency of this model as applied to the simple mesh, before moving on the higher-

resolution feathered mesh. We perform the same computations on the feathered

mesh, and investigate the differences between the two. Finally, we look at the

effects of feather bending and twist on force production of the feathered model.

6.1 Biological Benchmarks

Our Red-winged blackbird test subject was an adult female. During the recorded

wingbeat in the flight tunnel, the bird flew at 4.36 meters per second. The ob-

served wingbeat had a period of duration of 83 milliseconds, yielding a flapping

frequency of 12.0 hertz. Although we could not measure the dimensions of the

wings directly from the specimen, we can estimate these parameters from the mo-

tion capture data. Our specimen had a wingspan of approximately 35 centimeters

from wingtip to wingtip, including the body. A single wing measured 16 cen-

timeters from shoulder to wingtip (the distal tip of the ninth primary feather). We

estimate the average chord length c̄ to be 6 centimeters. The surface planform area
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of the extended wing is about 80 cm2. We can use these physiological dimensions

to calculate non-dimensional characteristic parameters.

The Reynolds number (Re =
ρUl

µ
) comes to Re = 1.85× 105 when we set the

characteristic length l to the average chord length c̄ and use standard values for

density and viscosity1. This is within the expect range of Reynolds numbers for

bird flight.

The Strouhal number, a dimensionless parameter which is a ratio of the ver-

tical motion of the wing to its horizontal translation, is the wingbeat frequency

multiplied by vertical amplitude and divided by the forward velocity of the bird:

St =
f a

U
. Studies have shown that animals which propel themselves through fluid,

including fish, sharks, dolphins, insects, bats, and birds, all move most efficiently at

Strouhal numbers between 0.2 and 0.4 [TNT03, NTT04]. Our Red-winged black-

bird’s wing bends nearly ninety degrees upward from the horizontal plane, giving

a rough flapping amplitude of 13 centimeters. This gives a Strouhal number of

St = 0.36. Although a flight tunnel is not a natural flying environment, we can

conclude that the bird was flying efficiently during the captured wingbeat.

Lastly, we can look at the reduced frequency parameter (k =
πf c̄

U
) to char-

acterize the oscillatory motion of the wing. Reduced frequency parameters below

0.1 indicate that unsteady aerodynamic effects play no role, while values above

1.0 indicate unsteady effects to be important [Spe03]. Our bird flew with a re-

duced frequency of k = 0.52, indicating that unsteady effects may not be large in

magnitude but cannot be ignored either.

To determine the mass of the bird, we have to estimate from cataloged speci-

mens. We were unable to measure the mass of our test specimen in the field due

to handling constraints. However, since our specimen was an adult female Red-
1Assuming standard temperature (20◦c) and pressure (101kPa) values for the properties of

air: ρ = 1.225kg m−2 µ = 1.53× 10−5kg m−1 s−1.
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winged blackbird, and mass estimates are readily available. The CRC Handbook

of Avian Masses lists the average mass of a female Red-winged blackbird as 42.72

grams with a standard deviation of 2.51 grams[Jr.07]. Using this reference, we will

assume the mass of our bird to have been 43 grams.

6.2 Coarse Motion Captured Mesh

Our preliminary analysis begins with the coarse motion capture mesh. Figures 6.1

and 6.2 show this coarse mesh as a series of snapshots from four different camera

views; the three main axes as well as a perspective view. A force analysis of these

low-resolution polygons is indicative of the forces on the higher resolution model,

treated later in this chapter. Figure 6.3 shows the area of each face throughout

the wingbeat with an inset giving a reference of polygon location. The downstroke

period of time is shaded gray, and the upstroke is white. Looking at the data, we

can see that Face 0, which represents the humerus, elbow, and forearm; undergoes

the most deformation of the faces. Face 2 is most contracted at 50 milliseconds,

the threshold between the downstroke and upstroke. The other faces are most con-

tracted in the middle of the upstroke, around 70 milliseconds. This is corresponds

to the flexion of the wrist, just before it begins to extend in preparation for the

next downstroke.

Figure 6.4 gives the angle of attack per face. Again, Face 0, representing the

shoulder and elbow joints, reaches its minima earlier than the other polygons. The

angle of attack is positive for the entire downstroke, with an mean of around 45

degrees, and a maximum of 80 degrees. In the latter part of the upstroke, the

angle of attack becomes positive again as well.

Figure 6.5 plots the average angle of attack and average velocity. Of note is

the double peak in velocity during the downstroke, and the single sharp minima
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during the upstroke. Angle of attack increases during the downstroke until it peaks

at the end of the downstroke, and then sharply minimizes on the upstroke. It is

difficult to conclude anything more from this plot because the directions in which

the forces act are constantly shifting. Thus a high velocity on the downstroke is

not necessarily inefficient, because the faces are likely oriented in a way minimize

the net downward force. The force computations take the changing coordinate

systems into account, and apply each of the force terms in the proper direction.

Each of the four force terms; lift, drag, added mass, and circulation, acts in some

combination of face normal, back, and relative up unit vectors (refer to Figure 5.8

and Table 5.1 for definitions of these unit vectors) .

Figure 6.22 shows the vertical component of each of the four force terms. We

can see that translational lift contributes the most force, followed by drag, which

is also translational. Although drag is often thought of as a hindering force, here

it is advantageous due to the orientation of the polygons. The added mass and

rotational lift terms contribute a smaller amount, but are not negligible. The

translational lift and drag terms show a distinct peak in the latter portion of the

downstroke, and all of the force terms are minimized on the upstroke. The added

mass and rotational lift terms are more difficult to correlate with the motion of

the bird, but their oscillatory nature in the early part of the downstroke reinforce

the high-frequency bumps in the translational lift curve.

Summing these force terms together, we obtain the total force shown in figure

6.7. Each directional component of the total force is plotted, with the vertical force

indicated in bold. Here the triple-peaked nature of the vertical force is evident.

As shown above, the unsteady added mass and circulation terms reinforce this

trend. Integrating through the wingbeat, we can see that while the vertical force

integrates to a net positive force, the side and forward forces have negative values
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which serve to cancel out their effect. Theoretically, a bird in straight and level

flight has only to over come the force of gravity. If it is neither accelerating nor

decelerating, the side and forward forces should integrate to zero. However, our

model does not take into account the additional drag on the bird due to the body

and tail. Thus, the forward force is likely underestimated.

Note that in all of these plots, we are investigating only the single wing. To

obtain the full force on the bird, we must double the force to account for the second

wing. The second wing also negates the effects of force in the side (mediolateral)

direction. However, some of this air which is forced together by the wings likely

results in a forward propulsive effect, and may account for the low values of force

in the forward direction.

Looking to see the contribution to total vertical force of each of the four force

terms, we plot their percentages in Figure 6.8. We can see that translational lift

and drag together account for almost ninety percent of the total force, with the

unsteady terms contributing just over ten percent. Circulation contributes slightly

more than added mass.

Having estimated the mass of the bird in Section 6.1, we can now compute

the required impulse I∗ (Equation 5.32). Using a mass for the bird of forty-three

grams, we compute the required impulse for the wingbeat to be I∗ = 0.0356N · s.

Dividing by the time period, we can compute the instantaneous required force to

overcome gravity, F ∗
wing = 1

2mbg = 0.215N. The one-half coefficient accounts for

the single wing supporting half of the weight of the bird. Plotting this required

force value against the computed total vertical force gives us Figure 6.9. Here, the

dotted line indicates the required force, and the solid line represents the computed

force from our model. To support the weight of the bird, the area under each curve

should match.
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20%
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Lift (Translational)
Drag
Lift (Rotational)
Added Mass

Figure 6.8: Percent contributions of force components of coarse mesh

Table 6.1: Integrated impulse and average force values in three dimensions for
one and both wings of the coarse mesh

Term Direction Single Wing Both Wings
Vertical Iy = 1.36× 10−2N · s Iy,bird = 2.73× 10−2N · s

Impulse I Forward Ix = 8.42× 10−4N · s Ix,bird = 1.68× 10−3N · s
Side Iz = −4.78× 10−3N · s Iz,bird = 0.00× 10−3N · s

Vertical F̄y = 1.64× 10−1N F̄y,bird = 3.28× 10−1N

Average Force F̄ Forward F̄x = 1.01× 10−2N F̄x,bird = 2.02× 10−2N

Side F̄z = −5.76× 10−2N F̄z,bird = 0.00× 10−2N

106



30
40

Ti
m

e 
(m

s)
0

10
20

50
60

70
80

10
20

30
40

50
60

70
80

-0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Ti
m

e 
(m

s)

Force (N)

 

-0
.2

F
ig

ur
e

6.
9:

To
ta

lv
er

tic
al

ae
ro

dy
na

m
ic

fo
rc

e
of

th
e

co
ar

se
m

es
h

an
d

gr
av

ita
tio

na
lf

or
ce

.
T

he
w

ei
gh

t
of

th
e

bi
rd

(F
∗ w
in

g
)

is
sh

ow
n

as
th

e
do

tt
ed

lin
e.

107



Integrating the total aerodynamic force gives the values listed in Table 6.1.

Dividing the impulse by the time period gives the average force, F̄ . We can now

compute the lift ratio rlift (Equation 5.33) and determine how well the modeled

force values match the actual force needed to overcome gravity and keep the bird

in the air. Setting the lift ratio equal to rlift = Iy,bird
I∗ , and using the value of

Iy,bird = 2.73× 10−2 for the computed vertical impulse and a value of I∗ = 0.0356

for the actual required impulse, we obtain a lift ratio value of rlift = 76% (Equation

6.3).

rlift =
Iy,bird
I∗

= 0.760 (6.1)

Our force model predicts seventy-five percent of the force required to overcome

gravity from the wings. Additional force arising from the body and tail is not con-

sidered. According to a recent study by Usherwood et. al, the tail can contribute

more than eight percent of a bird’s weight in lift[UHMB05]. Such a force addition

from the tail would leave only sixteen percent of the bird’s weight unaccounted for

by aerodynamic forces. Given the amount of simplification in this model, even an

inconsistency of sixteen percent is an encouraging result.

Next, we will look at the wing with full feather geometry. We will describe

how we animated the wing, and investigate the differences in force and impulse

production between the above coarse mesh and the finely-resolved full feather

mesh. Finally, we will look at the effects of feather bend and twist on the total

force production.

6.3 Kinematics and Animation of Fine Feather Meshes

We use character animation techniques to define the pose of the wing for each

timestep. By setting keyframes for the rotations of each joint, the hierarchy of
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Figure 6.10: Nomenclature of the rotational degrees of freedom of arm joints

the model and the scripted constraints determine the position and rotation of each

feather. We use a combination of forward kinematics (FK) and inverse kinematics

(IK) to specify joint rotations. Figure 6.10 illustrates the seven degrees of freedom

of the bird arm, which are similar to the human arm. The should and wrist are

both ball joints, and have three degrees of freedom. The elbow, conversely, is a

hinge joint and has a single degree of freedom.

The rotations of the shoulder and elbow are determined using an IK solver,

which seeks to minimize those rotations in order to colocate the wrist joint with

the marker on the coarse mesh representing the wrist. The IK solver also seeks to

keep the two joints in the plane created by the markers of the coarse mesh. Bone

length affects the rotations of each joint, and therefore we use Holt’s analysis of

bone lengths for our model, given in Table 6.2. The wrist joint itself is controlled
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Table 6.2: Estimated bone lengths from specimen and marker data [Hol09]

Bone Length
Humerus 29mm
Ulna 45mm
Manus 15mm

by an FK solver which utilizes an aim constraint. This aim constraint points the

wrist along the axis created by the the leading edge of the wing and again seeks

to keep the rotations in the plane of the coarse mesh.

Figure 6.11 shows the animation curves of the rotations of the shoulder joint

along with the joint positions superimposed over the perspective snapshot views.

The main motion of the wingbeat is the vertical elevation-depression motion of the

shoulder (long-dashed blue curve). This creates the framework of the flap, which

is completed by the other rotational degrees of freedom.

Figure 6.12 shows the extension-flexion of the elbow joint. When the arms

is fully outstretched, this angle is 180 degrees, and zero when the elbow is fully

bent. Here we see that the elbow is almost fully extended at the beginning of the

downstroke, and retracts to about forty degrees on the upstroke to help minimize

surface area during this drag-inducing phase of the wingbeat.

Figure 6.13 shows the complex rotation of the wrist. Since all of the primary

feathers are attached to the manus or hand-wing, the orientation of the wrist has

the most direct impact on the motion of the feathers of any of the arm joints. Like

the elbow, the wrist is nearly fully extended on the downstroke, and retracts in

flexion to near zero degrees on the upstroke for aerodynamic efficiency. This is

the most noticeable motion of the wrist, but the other two axes have important

functions as well. The spike in depression at the end of the downstroke and just

before the upstroke gives a flick of air inward, which may contribute to forward

force as discussed earlier. The supination-pronation movement of the wrist serves
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the important function of adjusting the overall angle of attack of the primary

feathers. This angle is near neutral during the downstroke, but on the upstroke

the wrist supinates sharply to minimize the angle of attack as the wing is now

moving upward.

With our joint angles specified by the outlined constraints, we are finally able

to animate the finely-resolved mesh of the wing including each of the eighteen

feathers as well as the entire arm and patagium. Figure 6.14 shows how the fine

mesh compares to the coarse mesh. The overlap is not perfect, but it fits the

motion well given the degrees of freedom of the arms joints and the constraint of

constant bone lengths. Figures 6.16 and 6.17 in Section 6.5 show the fine mesh

from additional viewpoints.

6.4 Feather Occlusion

As we can see in Figure 6.14, many feathers overlap. Therefore, we cannot simply

sum the forces on each polygonal element, because many forces would be counted

twice. Therefore, we implement a crude algorithm to determine if a given face on

a feather is occluded by another feather. Knowing the geometry of the neighbor-

ing feather, this algorithm simply determines whether the centerpoint of a face,

projected orthogonally, is within the two-dimensional geometric bounds of the

neighboring feather. If so, it is ignored and forces are not computed. If it lies

outside the bounds of the overlapping feather, its forces are computed to be ag-

gregated with the others to determine the net force. While still discreet in nature,

the resolution of the polygons is high enough that this approach yields an accurate

description of which faces are actually affected by the oncoming air.
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Feather of Interest

(3rd Primary)

Occluding Neighbor Feather

(2rd Primary)

Non-occluded faces for force computation

Occluded faces which are discounted in force computation

Figure 6.15: Example of feather occlusions showing the polygons in blue which
are used in force computations, and the polygons in red which are occluded by a
neighboring feather.

6.5 Rigid Feather Results

Figures 6.16 and 6.17 show the motion of the fine mesh from four viewpoints. We

perform our numerical simulation on this fine mesh, as we did the coarse mesh in

Section 6.2. While echoing similar trends as the coarse mesh, important differences

arise between the two models.

First, we look at the surface area of the wing and compare it to the area of

the coarse mesh in Figure 6.18. Both meshes follow the trend of maximizing wing

surface area on the downstroke, and minimizing it on the upstroke. However, the

fine mesh has a greater area for most of the wingbeat. This is likely due to the

area of secondary feathers which lies outside the coarse mesh, as shown in Figure

6.19.

Comparing the mean angle of attack of the two meshes in Figure 6.20, we see

that the angle of attack varies greatly between the meshes. Because each feather is

rotated slightly in the transformation hierarchy to simulate the layering and non-
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Area not represented by coarse mesh

Coarse Mesh

Figure 6.19: A reference frame from the high speed video showing the area of
secondary feathers not represented by the coarse mesh model

intersection of feathers, each feather can have a greater angle of attack than a wide

plane representing the feathers. We see that the fine mesh has a higher angle of

attack in the downstroke, which is beneficial. Curiously though, we would expect

to see the angle of attack minimized on the upstroke, but instead it hovers around

twenty degrees on the upstroke of the fine mesh. The geometry of the feathers

differs greatly from the coarse mesh on the upstroke, and the bird must move its

wing through some lift-adverse poses in order to reach the top of the upstroke.

Thus the higher-than-expected angle of attack on the upstroke may be a necessary

sacrifice.

Figure 6.21 compares the mean speed of the fine mesh and coarse mesh. Both

meshes exhibit high speed during the downstroke, and as well as a minima in speed

at the beginning of the upstroke. The fine mesh has a comparatively lower speed

during the downstroke. This can be attributed to the flexion of the elbow and

wrist during the downstroke (refer to Figures 6.10, 6.12, and 6.13). The flexion

of these two joints causes the feathers to close tighter together, and this motion

reduces the absolute speed of the faces of these feathers. The irregularity of the

speed during upstroke is due to the complex transformations of the feathers as
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compared the the coarse mesh.

Figure 6.22 shows the decomposition of the four force terms projected in the

vertical direction. Again, the translational lift and drag terms provide the vast

majority of the force. The unsteady terms, force due to added mass and rotational

lift, play a comparatively smaller role in the fine mesh than in the coarse mesh.

Of interest in this plot is the negative spike in drag force during the upstroke.

The spreading of feathers due to wrist extension in preparation for the downstroke

gives a momentary increase in vertical velocity to the feathers. The translational

drag produces a net downward force in reaction to this movement of the feathers,

explaining the spike.

Comparing the net combined force in the vertical direction of the fine mesh with

that of the coarse mesh in Figure 6.23, we see the spike in drag on the upstroke

mentioned above and we also notice that the three peaks in lift on the upstroke

are smoothed out. Otherwise, the fine mesh and coarse mesh show similar trends.

Figure 6.24 shows the three dimensional components of the total instantaneous

force. The vertical component is similar to that of the coarse mesh, as mentioned

above. However, the side and forward axes show significant differences between

the two meshes. In the forward direction, the major impulse comes at the end of

the downstroke in the fine mesh, as opposed to the beginning of the downstroke

in the coarse mesh. The side force in the distal direction (outward from the body

of the bird) follows the same trend in the fine mesh as in the coarse mesh, but

the peak around 70 milliseconds is greatly exaggerated in the fine mesh, enough

so that it changes the sign of the integrated impulse. In this way, the each wing

produces an outward impulse in the side axis as opposed to an inward impulse,

although these impulses cancel out due to the opposing nature of the two wings.

Table 6.3 gives the computed force and impulse values for the fine mesh. In this
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Table 6.3: Integrated impulse and average force values in three dimensions for
one and both wings of the fine mesh

Term Direction Single Wing Both Wings
Vertical Iy = 1.47× 10−2N · s Iy,bird = 2.94× 10−2N · s

Impulse I Forward Ix = 5.30× 10−4N · s Ix,bird = 1.06× 10−3N · s
Side Iz = 2.89× 10−3N · s Iz,bird = 0.00× 10−3N · s

Vertical F̄y = 1.77× 10−1N F̄y,bird = 3.54× 10−1N

Average Force F̄ Forward F̄x = 6.39× 10−3N F̄x,bird = 1.28× 10−2N

Side F̄z = 3.48× 10−2N F̄z,bird = 0.00× 10−2N

fine mesh simulation, Iy,bird is slightly higher than in the coarse mesh simulation,

and give a lift ratio of 83% (Equation 6.3), as compared with 76%.

rlift =
Iy,bird
I∗

=
2.94× 10−2

3.56× 10−2
= 0.826 (6.2)

6.6 Effects of Bend and Twist

The analysis of the fine mesh in Section 6.5 treats each feather as a rigid object.

The arm deforms, but the feathers do not. While each whole feather undergoes

translations and rotations, its shape is held constant. Actual feathers on a bird are

not rigid, they bend and twist in complex ways. These non-linear deformations are

difficult to simulate. One would need to know stiffness parameters of each feather

such as the modulus of elasticity, spring coefficients, and damping coefficients.

Furthermore, a soft-body simulation would also need to be run to resolve collisions

between feathers and allow feathers in contact to exert forces on each other without

intersecting. Finally, once those spring and collision models were implemented,

an iterative solver would need to consider the interaction between the air and

the feather and find a state for both the feather and the air which satisfies the

conditions of the other. Such undertakings are the next logical step in this project,
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+ 90°

0°

-90°

Figure 6.25: Non-rigid feathers deformed by bending

but here we limit ourselves to a preliminary investigation of the effects of user-

defined feather bend and rotation.

This open-loop approach makes use of bend and rotation parameters which we

built into the feather meshes. We interactively keyframe these parameters, using

visual artistic evaluation to determine the amount of bend or rotation at each time

step. This approach is distinct from a coupled feedback loop where the amount

of bend or rotation would be determined by an optimization solver based on the

external aerodynamic forces.

6.6.1 Bend

We first examine the effects of feather bend. We define feather bend as the degree

of curvature beyond the feather’s neutral state. For the wing, the ninth primary at

the leading edge of the wing undergoes the full degree of bending, while the amount

of bend falls off linearly among sequential feathers until it is zero at the ninth

secondary at the base of the wing. This bend mimics the natural elasticity of the
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Visible Bending

Figure 6.26: Perspective snapshots of fine mesh with bend. An area where
feather bend is particularly evident is noted.

wing and provides a way to artificially recreate the deflection due to aerodynamic

and inertial effects.

Figure 6.25 shows how the wing changes as it is bent from negative ninety

degrees to positive ninety degrees. Figure 6.30 shows new snapshots of the bent

feathers. Although there is some small degree of bending at each timestep, it is

only evident in certain places, as indicated in the figure. Figure 6.27 shows the

magnitude of bend throughout the wingbeat. As stated above, this amount of bend

is a purely artistic interpretation based on the motion capture video and visual

intuition. The results presented here are not intended to prove that the feathers

actually bend in a particular way, but to give feedback as to how different types

of deformation affect net force on the wing.

Figure 6.27 shows the particular bend motion which we tested. Here, we bend

the wing during the downstroke to account for the strong forces of the air on the

feathers. During the upstroke, we bend the wing in the opposite, negative, direction

to account for the inertial bend as the wing changes direction. The peak and valley

between 60 and 70 milliseconds accounts for a period during the upstroke where

the wing speed fluctuates before accelerating in preparation for the downstroke

around 80 milliseconds.
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45° 90°0
Feather Rotation

Figure 6.29: Feather rotation illustrated

rlift = 0.739 (6.3)

Figure 6.28 shows the resulting total vertical force for the bent wing versus

the wing with rigid feathers. Contrary to expectations, the bend of the wing

actually reduces lift during the downstroke, and has little effect during the rest

of the wingbeat. Equation 6.3 shows that lift ratio drops by ten percent, from

83 to 73 percent. However, this is only one example of the infinite possible bend

animations. In the future, one could implement a solver to determine the optimal

bend profile for the wingbeat.

Lastly, it is worth noting that the marker positions from Holt’s motion capture

study are of course deformed to some degree by bending when they were recorded.

Thus, the motion of the joints may already be reflecting a degree of spring or

bend, and we may be attempting to add additional bend to a system which already

contains this behavior.

6.6.2 Twist

In addition to bend, we also test the effects of feather rotation. The twist and

rotation of each feather is not evident from the motion capture data, and thus

far we have assumed that each feather is oriented as close to flat as possible with
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Without Rotation

With Rotation

Visible Difference in
Feather Angle of Attack

Figure 6.30: Perspective snapshots of fine mesh with animated feather rotations.
An area where the difference is particularly visible is noted.

respect to the coarse mesh. However, each feather is held to the skin with a

ligament which allows at least a small degree of rotation about the rachis. These

rotations can affect the angle of attack of the feathers, especially the primary

feathers. We define a feather rotation parameter that varies this orientation of

each feather about its rachis, the long axis. Figure 6.29 shows the wing as the

feather rotation parameter varies from zero to ninety degrees. Similar to the wing

bend above, the ninth primary feather rotates the full amount specified, and then

the amount of rotation falls off linearly until the ninth secondary feather does not

rotate.

Figure 6.30 shows snapshots of the wing with rotations implemented, following

the profile curve shown in Figure 6.31. This profile attempts to minimize drag on

the upstroke by twisting the feathers to present less of a profile to the oncoming

air, and then to maximize the angle of attack of the feathers on the downstroke.

rlift = 0.879 (6.4)

Figure 6.32 shows the resulting force from this feather rotation test. A distinct

increase in lift occurs during the middle portion of the downstroke. We also see

an unexpected increase in drag during the upstroke. This increase in lift on the

133



30
40

Ti
m

e 
(m

s)
0

10
20

50
60

70
80

D
ow

ns
tr

ok
e 

   
 U

ps
tr

ok
e

0
10

20
30

40
50

60
70

80
0153045607590

Ti
m

e 
(m

s)

Amount of  Feather Rotation

 

 

F
ig

ur
e

6.
31

:
Fe

at
he

r
ro

ta
tio

n
pa

ra
m

et
er

an
im

at
ed

th
ro

ug
ho

ut
th

e
w

in
gb

ea
t

134



D
ow

ns
tr

ok
e 

   
 U

ps
tr

ok
e

30
40

Ti
m

e 
(m

s)
0

10
20

50
60

70
80

0
10

20
30

40
50

60
70

80
-0

.2

-0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Ti
m

e 
(m

s)

Force (N)

 

 

W
ith

 F
ea

th
er

 R
ot

at
io

n
W

ith
ou

t F
ea

th
er

 R
ot

at
io

n

F
ig

ur
e

6.
32

:
To

ta
lf

or
ce

re
su

lti
ng

fr
om

w
in

g
w

ith
dy

na
m

ic
fe

at
he

r
ro

ta
tio

n
ve

rs
us

st
at

ic
fe

at
he

r
ro

ta
tio

n

135



downstroke is enough to overcome the extra drag, however, and produces a lift

ratio of 88 percent (Equation 6.4), five percent higher than the results from the

rigid simulation without additional rotation.

These investigations of the effects of feather bend and rotation show that we

can “tweak” the virtual model to produce more lift and approach the weight of

the bird. However, more detailed data will be needed to determine the physical

validity of these additions to the kinematic model.
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CHAPTER 7

CONCLUSION

We have shown how we built and animated a digital Red-winged blackbird,

and used aerodynamics to compute forces on the bird’s wings for two different

geometric cases: a coarse mesh providing an approximation of wing shape, and a

fine mesh consisting of individual feathers. The impulse predicted by the coarse

mesh case supported 76% of the weight of the bird. The fine mesh accounted for a

slightly greater impulse, at 83% of the weight of the bird. We experimented with

user controlled bend and rotation of feathers and achieved a slightly higher still

impulse of 88% of the bird’s weight.

It must be stressed, however, that these results represent only a first-order

estimate of force. We make many assumptions to the aerodynamic model which

detract from its precision, though not necessarily its accuracy. Further validation

by comparison to other aerodynamic methods such as the lifting line method are

needed. In addition, this work is built on motion capture data which contains

inaccuracies, and even a small change to joint rotations can greatly affect angle

of attack and therefore forces. However, the blade element model can produce

macro-scale representative trends, even if the micro-scale values from face to face

contain error. This work has a large qualitative, if not quantitative, potential to

reveal masked features of flapping bird flight.

The data used to construct this wingbeat of a Red-winged blackbird is culled

from different sources, and while each source is thorough, there is room for im-

provement when combined. The computer generated rigged model of the bird

is based on Jeffery Wang’s Ivory-billed woodpecker, which was developed from a

CT scanned specimen. While woodpeckers and blackbirds share many traits, it

would have been advantageous for our study, though impractical, to construct an
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anatomically correct rigged model based on a Red-winged blackbird.

Brendan Holt’s motion captured wingbeat provided a wealth of information and

the basis of our animated motion. Although infeasible for Holt’s work, it is possible

to obtain better and more accurate data using more markers, more cameras, more

time, and a more natural flying environment. With more markers we could have

determined a more thorough picture of joint positions, feather orientation and

bending, feather spread, and position of the body of the bird. Instead, we must

guess at values like placement of the elbow joint. In addition, we would like to be

able to capture the opposing wing’s motion as well. We have assumed symmetry

between the two wings, but this may not necessarily be the case even in straight

and level flight. A longer capture time would allow us to capture more than

one wingbeat and analyze how each flap deviates from the previous one. Lastly,

although there is good evidence to support the fact that birds fly more naturally

in the still air of a flight tunnel than the moving air of a wind tunnel [Ray94], we

would still have preferred to record the bird flying in open setting to achieve the

most natural flight movements possible.

Lastly, our model did not consider lift or drag on the body of the bird or the tail

feathers. Motion capturing and simulating these parts of the bird would complete

the task of simulating force on the entire bird instead of just the wings.

While the results presented in Chapter 6 are encouraging, there are no prior

studies of measured instantaneous forces on bird wings with which to compare. In

addition, it must be understood that we have made many aerodynamic simplifica-

tions which potentially affect the accuracy of the model. The blade element model

and thin airfoil theory in general are designed to operate on simple geometry un-

der steady-state conditions. The model assumes that flow conditions are steady or

close to steady such that airflow around each blade, or slice of a wing, is similar
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to airflow around a neighboring slice. Our model treats each blade independently,

with no knowledge of what is happening elsewhere on the wing or previously in

time.

We are certainly utilizing the blade element model in an unconventional way.

Specifically, the assumption is that the represented geometry is projected onto a

blade which extends from the leading edge of the wing to the trailing edge of the

wing. In our model, each blade is a polygon whose leading and trailing edges do

not correspond with the leading and trailing edges of the wing, but instead lie

somewhere within the boundary of the wing as a whole.

The quasi-steady state nature of the blade element model also adds uncertainty

to our model. Traditionally, the quasi-steady approximation has proved reasonable

because the state of the wing changes slowly enough. However, our bird wing is

undergoing rapid movements. We attempted to capture the unsteady effects by

computing the transient forces due to added mass and rotational lift. However,

our simulator produced less force than expected.

The blade element model is appropriate for most values of the Reynolds number.

However, our additional force terms, forces due to added mass and rotational

lift, are borrowed from insect flight studies. These studies examine airflow at

much lower Reynolds numbers, and therefore these terms may not be applicable

to our comparably higher Reynolds number flow. However, these forces end up

being small in magnitude, especially in the fine mesh simulation, and therefore the

question of Reynolds number is of little consequence.

Despite these simplifying assumptions, we find great value in this work when

taken as a first-order of magnitude simulation and a description of general force

trends. The strength of this project lies in its interactivity and its usefulness as

a visualization tool. It gives scientists and artists alike a representative picture of
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the forces in a simulation so that they can understand the effects of the system or

make changes to the motion.

The potential for future work in the area of simulating bird flight is unlimited.

The next logical addition to the model may be to implement physically-based

feather bending. This would require measuring the stiffness of physical feath-

ers. Several studies exist which have begun to document the material properties

of feathers, including the modulus of elasticity and cross-sectional profile of the

rachis [PV78, BP95]. Knowing these parameters, one could treat the feather as a

cantilever beam, and determine flexure using bending equations from mechanical

engineering.

Next, the addition of a soft-body collision simulator to the virtual feathers

would be needed to prevent feathers from interpenetrating and allow them to exert

force on each other. Additionally, distribution of mass measurements of feathers

and the bird itself would allow inertial forces arising from the flapping motion to be

taken into account when computing feather deformation and bending. A coupled

solver would iteratively find the state at which the conditions of airflow, feather

spring, and body inertia, are all satisfied.

Further wind tunnel and CFD testing should not be discounted. The wind

tunnel can be used to experiment on physical specimen wings to determine how

they differ from numerical simulations in the steady state. CFD software is con-

stantly evolving and may soon be able to process the complex geometry and time-

dependent deformation of a flapping wind. The advantage of CFD’s highly accu-

rate numerical method cannot be ignored. Also worth considering in the future are

vortex panel methods, a quasi-numeric simulation technique using potential flow

equations to compute flow conditions around airfoils [SWW96, KP01].

There are many directions to build upon this work. Visualizing three-dimensional
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data such as the force on a bird wing is a challenging problem, and new display

techniques are always emerging. Applying our method to other species of birds,

and even aquatic swimming animals would be an interesting endeavor. We have

built a framework which is based on discreet geometric elements and can therefore

be extended to make use of new techniques and be used in new experiments. The

possibilities are unlimited.
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