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Nanocomposite materials with ordered structures are critical for the advancement

of numerous fields ranging from microelectronics to energy conversion and stor-

age. However, there are few techniques for controlling the necessary nanoscale

morphologies and compositions which are compatible with affordable, large-scale

manufacturing. The coassembly of block copolymers with inorganic materials pro-

vides such a route to achieve controlled nanomaterials, but such examples have

generally resulted in mesoporous single-component materials. In this thesis it is

shown that the general challenge to achieve multifunctional nanocomposites di-

rectly from block copolymer coassembly may be surmounted by designing novel

block copolymers where each block has the design intent to result in a functional

component of the resulting nanocomposites. Such a method would enable block

sequence directed materials (BSDM), where a sequence of three or more chemically

unique polymer blocks direct the spatial arrangement and interface definitions of

multiple functional materials.

Towards this end, four examples are provided. First, a diblock copolymer

poly(ethylene oxide-b-acrylonitrile) is demonstrated to enable direct synthesis of

nanocomposites composed of crystalline titania and partially-graphitic carbon.



Second, this method is expanded by adding a third chemically unique block to form

PAN-b-PEO-b-PPO-b-PEO-b-PAN where now the use of three chemically distinct

polymer blocks enabled control over each of the three final components: partially-

graphitic carbon, crystalline transition metal oxide, and porosity. Although these

nanocomposites only possessed short-range order, tuning of the individual block

lengths and block fractions resulted in control over the three components.

Third, it is shown that highly-ordered, multi-ply nanocomposites can result

from the coassembly of poly(isoprene-b-styrene-b-ethylene oxide) (ISO) triblock

terpolymers. Tuning the ratio of nanoparticles to ISO enabled access to four unique

morphologies and the selection of quasi-1D, 2D, or 3D pathways. Fourth, it is

shown that an ordered 3D network morphology which is chiral (non-centrosymmetric)

can result from the coassembly of an ISO with a particular composition. Such

non-centrosymmetric nanostructures are necessary to enable macroscopic polariza-

tion for piezoelectric, pyroelectric, and second-order nonlinear optical properties in

amorphous materials. Thus through these four examples, it is demonstrated that

the tuning of the polymer-oxide coassembled systems enables control over both

nanocomposite composition and morphology.
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CHAPTER 1

INTRODUCTION

Ordered nanocomposite materials are crucial for numerous applications ranging

the gamut from electronics to energy conversion. In particular, many of the en-

ergy conversion and storage devices under development—including photovoltaics,

batteries, fuel cells, and supercapacitors—are electrochemical devices which rely

upon reactions occuring at interfaces with the transportation of reactants and

products occuring along pathways. The performance of such energy devices could

be greatly enhanced by structuring the active components with control over the

composition, interfaces, and pathways. In particular, this structural control should

occur at the nanoscale to faciliate high interfacial areas for high power density as

well as short transport distances to limit transport restrictions. Of the potential

synthetic routes to make controlled nanoarchitectures, bottom-up procedures are

the most promissing due to their simplicity, scalability, and low cost.

Block copolymers are a class of macromolecules which have been extensively

applied towards the bottom-up synthesis of a diverse range of precisely controlled

nanomaterials with controlled morphologies.1 However, the resulting materials

generally are purely organic and have very limited physical and chemical proper-

ties which prevents their direct use in many applications such as energy conversion

and storage devices or as photonic metamaterials.2,3 The combination of inor-

ganic materials which have robust functionality with block copolymers which form

ordered nanoscale morphologies has been extensively studied in the past decade.

Generally amphiphilic block copolymers are utilized such that a selective interac-

tion may drive inorganic nanoparticles or molecular prescursors to selectively swell

the hydrophilic block of the polymer. In a typical procedure, the polymer and

inorganic species are combined in a common solvent and then cast or coated onto

1



a substrate to allow evaporation to induce coassembly. During evaporation dis-

tinct, ordered domains form from the hydrophobic block phase-separating from a

mixture of the hydrophilic block with an inorganic species; the balance of interface

and chain stretching free energies lead the polymer to direct the coassembly into

various ordered morphologies. Such routes have been extensively applied towards

the synthesis of nanocomposites with ordered morphologies. While many different

compositions have been explored—oxides,4–6 metals,7,8 and carbon9–11 materials—

published examples have generally been limited to single-component materials with

mesopores.

Electrochemical devices often require several different components to provide

the necessary functionality such as electron transport, ion transport, as well as

reactant and product transport. In this thesis it was shown that the general

challenge to achieve multifunctional nanocomposites directly from block copoly-

mer coassembly may be surmounted by designing novel block copolymers where

each block has the design intent to yield a functional component of the resulting

nanocomposites. Please note that this approach is fundamentally different from

combining an amphiphilic block copolymer with multiple hydrophilic precursors

which was previously shown to result in a random dispersion of two materials with

ordered pores.12–14 Rather, the objective was to have the block sequence directly

define the materials in the resulting nanocomposites. Such a method would enable

block sequence directed materials (BSDM),15 where a sequence of three or more

chemically unique polymer blocks direct the spatial arrangement and interface

definitions of multiple functional materials. The achievement of BSDMs would be

a significant step towards mimicking the more complex assembly processes, e.g.

protein coassembly, that result in biological nanocomposites. The nanocomposite

design intent thus may be directly encoded into the molecular structure of the

2



block copolymer.

This thesis is organized into sections which each demonstrate significant steps

towards the realization of BSDMs. It was shown that di-functional nanocompos-

ites may be directly synthesized from the coassembly of an AB diblock copolymer

in Section 2. Next, it was shown that this approach may be extended to en-

able the direct synthesis of tri-functional nanocomposites from the coassembly of

ABCBA pentablock terpolymers in Section 3. While these two sections demon-

strated compositional control of multifunctional nanocomposites, the short-range

ordered worm-like morphologies did not facilitate much tunability of the morphol-

ogy. It was then shown that different block terpolymers based on poly(isoprene-

b-styrene-b-ethylene oxide) (ISO) enable the direct synthesis of highly-ordered,

multi-ply nanocomposites in Section 4. Tuning the ratio of nanoparticles to ISO

enabled access to four unique morphologies including core-shell hexagonal, core-

shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, all

of which are centrosymmetric morphologies. In contrast, non-centrosymmetric

morphologies are known to enable polarization properties which are key for cer-

tain applications. It was next shown such a non-centrosymmetric and networked

morphology—the alternating gyroid GA— may be obtained directly by coassem-

bly with an ISO of a particular composition in Section 5. Through these examples

it was demonstrated that careful tuning of coassembled oxide-block copolymer

systems enables control over both the composition and morphology of nanocom-

posites. While the compositions and morphologies explored in these studies were

particularly relevant to electrochemical energy conversion and storage devices, sig-

nificant challenges still remain before functioning devices may be realized from

BSDMs. These challenges and several potential synthetic routes to achieve BSDM

devices were then discussed in Section 6.
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CHAPTER 2

CARBON-CRYSTALLINE TITANIA NANOCOMPOSITES FROM

MICROPHASE SEPARATION OF POLY(ETHYLENE

OXIDE-b-ACRYLONITRILE) WITH TITANIA SOLS∗

2.1 Introduction

Recent literature contains multiple examples of efficient electrode materials com-

posed of an electrochemically active metal or metal oxide dispersed on a carbon

matrix.1–5 The invention of silica-templated ordered mesoporous carbon triggered

new electrode materials for Li-ion battery, supercapacitor, and fuel cell applica-

tions.6–9 For example, mesostructured carbon-electrochemically active metal oxide

(or metal) composites were fabricated by infiltration of metal precursors into an

ordered mesoporous carbon.10–12 Materials based on these silica-templated carbons

require tedious techniques and the extension of known infiltration procedures to

new materials is often challenging. Furthermore, in most cases the ordered meso-

porous carbon was made from sources for amorphous carbon.8 This is also true

for our recently published CASH method which leads to amorphous carbon-highly

crystalline transition metal oxide composites.13 In contrast, the efficient electron

transfer, high electrical conductivity, and thermodynamic stability necessary in

electrode applications favours the use of graphitic carbon. Poly(acrylonitrile) is an

established graphitic carbon source which is commonly used for the commercial

production of graphite carbon nanofibers.14 Despite much interest in block copoly-

mer derived mesoporous carbons, to the best of our knowledge there is no report

on the synthesis of nanostructured carbon-electrochemically active transition metal

∗M. Stek, J. Lee, and U. Wiesner. Chemical Communications, 2532-2534,
2009. Reproduced by permission of The Royal Society of Chemistry (RSC).
http://www.rsc.org/publishing/journals/CC/article.asp?doi=b818972b
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Figure 2.1: Schematic representation of “one-pot” synthesis of mesostruc-
tured crystalline TiO2-carbon composites and mesoporous tita-
nia via self-assembly of PEO-b-PAN with TiO2 sols followed by
specific heat treatments.

oxide composites from poly(acrylonitrile) based block copolymers.3,15–22

Here we show that a carbon-transition metal oxide nanocomposite can be

synthesized from microphase separating diblock copolymer poly(ethylene oxide-

b-acrylonitrile) (PEO-b-PAN) and a transition metal oxide sol. More specifically,

nanostructured carbon-crystalline (anatase) TiO2 was fabricated (Figure 2.1) us-

ing a non-hydrolytic sol-gel route.23 The “one-pot” synthetic method presented

herein is much simpler than the backfilling methods based on preformed meso-

porous carbons.10–12 PEO-b-PAN was synthesized by anionic polymerization of

PEO and subsequent atomic transfer radical polymerization (ATRP) of PAN. The

final polymer was characterized by gel permeation chromatography (GPC) for its

polydispersity and by nuclear magnetic resonance spectroscopy (NMR) to deter-

mine its molecular weight (Figure 2.2). The NMR results show that the PEO

macroinitiator (6,400 g/mol) was chain extended with 2,500 g/mol of PAN. The

GPC elugram was monomodal with a moderate shoulder and had a polydisper-

sity of 1.15. The shoulder was likely due to the termination of living PAN chain

ends by CuI species and acidic protons of DMF as previously reported.24 The
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Figure 2.2: The gel permeation chromatography traces indicate controlled
growth of PEO-b-PAN from the PEO macroinitiator (left). 1H
NMR spectra of PEO-b-PAN (right) were used to determine the
block fractions.

low acrylonitrile conversion of 4.5% was also attributed to this side reaction. The

PEO-b-PAN-TiO2 hybrid materials were produced by selectively swelling the hy-

drophilic PEO block of the PEO-b-PAN block copolymer with the metal-oxide sol.

In this procedure, the block copolymer was first dissolved in dimethylformamide

(DMF). The sol was prepared in the polymer solution by reacting a metal chlo-

ride with the corresponding metal alkoxide to form the metal oxide sol and the

accompanying alkyl halide. The sol-polymer solution was cast at 70 ◦C resulting

in an amorphous hybrid material. The as-made film was heated to 250 ◦C in air

to stabilize the PAN by cyclization5 and then heat-treated under argon in a tube

furnace to 700 ◦C to obtain a highly crystalline composite. During this process, the

metal oxide crystals nucleate, grow and sinter into wall material while the PEO is

thermally removed and the stabilized PAN is converted to a carbon material. This

results in a nanostructured carbon-crystalline titanium dioxide composite denoted

TiO2-carbon.
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2.2 Experimental Methods

2.2.1 Materials

Acrylonitrile (AN) (99% Aldrich) was stirred over calcium hydride for at least one

hour before distillation under reduced pressure. CuCl (99.995% Aldrich), 2,2’-

bipyridyl (BPY) (99% Aldrich), and HPLC grade N,N-dimethylformamide (DMF)

(99.9% Aldrich) were used as recieved.

2.2.2 Synthesis of PEO-b-PAN

PEO Growth and Functionalization

PEO was grown and functionalized for ATRP chain extension with 2-bromoisobutyryl

bromide as described elsewhere,25 however potassium tert-butoxide was used as the

initiator.

ATRP PAN Chain Extension

Polyacrylonitrile was grown from the bromine functionalized PEO. In a typical

polymerization of AN, 1 g (1.56E-4 mol, 6,400 g/mol) PEO-Br and a stir bar were

placed into a Schlenk flask equipped with a septum, a high vacuum valve, and a

hose connector. The macroinitiator was then dissolved in 19.5 mL DMF and 10.27

mL (156 mmol) AN. The resulting solution was then subject to four freeze-pump-

thaw cycles before being backfilled with nitrogen. In a separate Schlenk flask, a

stock solution was prepared of 30 mg (0.3 mmol) CuCl, 142 mg (0.91 mmol) BPY,

and 10 mL of degassed DMF was prepared in a nitrogen glove box. The stock

solution was allowed to stir for at least 10 minutes before transferring a quantity

containing 3.1 mg (0.031 mmol) CuCl and 14.5 mg (0.0937 mmol) BPY to the

reaction flask using a degassed syringe. The reaction flask was then placed in an

9



oil bath at 55 ◦C for 27 hours. The polymerization was terminated by exposing

the reaction contents to air. The copper catalyst was removed by diluting the

reaction crude with DMF and passing the solution through basic alumina. The

polymer was isolated by removing the DMF under high vacuum overnight. The

resulting block copolymer had 6,400 g/mol PEO, 2,500 g/mol PAN, and had a

polydispersity of 1.15.

2.2.3 Synthesis of TiO2-carbon

After 0.1 g of PEO-b-PAN was dissolved in 2 ml N,N-dimethylformamide (DMF),

0.36 ml of titanium tetraisopropoxide (TTIP) and 0.14 ml titanium chloride (IV)

were added into the solution. After stirring for 12 hours at room temperature, films

were cast by evaporation of the solvent and byproducts in air on a hot plate at 70 ◦C

and then at 130 ◦C in a vacuum oven for one hour. The as-made amorphous TiO2-

PEO-b-PAN material was heat treated at 1 ◦C/min to 250 ◦C in air to stabilize the

PAN for subsequent carbonation. The stabilized film was then heated to 700 ◦C

using 1 ◦C/min ramp under argon and held for 2 hours resulting in crystallization

of the amorphous metal oxide walls and conversion of the crosslinked PAN to

partially graphitic carbon.

2.3 Results and Discussion

The microphase separated structure of as-made TiO2-PEO-b-PAN was charac-

terized by transmission electron microscopy (TEM), thermal gravimetric analysis

(TGA), powder x-ray diffraction (XRD), and Raman spectroscopy. The TEM im-

age in Figure 2.3 a suggests that the hydrophilic titanium dioxide-PEO domains

(dark) microphase separate from the hydrophobic PAN domains (bright). As ev-

ident from the TEM micrograph, the resulting structures had short range order
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Figure 2.3: TEM images of as-made TiO2-PEO-b-PAN (a) and calcined crys-
talline TiO2-carbon composites (b) exhibited nanoscale features.
The powder XRD pattern of TiO2-carbon composites (c) was
characteristic of anatase titania (markers indicate expected peaks
for PDF #89-4921). The TiO2-carbon Raman spectrum (d) had
the characteristic D and G bands of partially graphitic carbon.

Figure 2.4: TGA data of as-made TiO2-PEO-b-PAN (black) and TiO2-
carbon (bold red) in air exhibited characteristic mass losses from
the cycylization process and carbon removal, respectively.
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attributed to the high glass transition temperature (∼85 ◦C) and high melting

point of the semicrystalline PAN block (∼326 ◦C). Thermogravimetric analysis

(Figure 2.4) of the as-made composites under air showed two major decomposition

steps. The first step below 250 ◦C corresponds to the cyclization of PAN while

the second step above 250 ◦C corresponds to the decomposition of PEO and car-

bonization of PAN. Heat-treatment at 700 ◦C under inert atmosphere converted

the amorphous TiO2 to crystalline TiO2 and the PAN to the final carbon material

(Figure 2.3 b). The resulting wormhole-like porous structure as evidenced by TEM

was reminiscent of the disordered crystalline alumina reported by the Pinnavaia

group.26,27 A representative XRD spectrum, Figure 2.3 c, of a heat-treated sample

reveals several well-resolved, sharp peaks on a flat baseline that were consistent

with crystalline anatase (PDF #89-4921). The average crystallite size of 12 nm

was calculated from the (101) XRD peak width using the Debye-Scherer equation.

The similarity between this size and the structural feature sizes in the TEM of

the heat treated composite (see Figure 2.3 b) suggests that the TiO2 particles

observed in TEM were primarily single crystalline. The TiO2-carbon exhibited

characteristics of partially graphitic carbon as evidenced by the presence of D and

pronounced G bands in Raman spectroscopy ( Figure 2.3 d). A subsequent TGA

run on the heat treated TiO2-carbon composite in air showed a significant weight

loss of 8.7 % starting around 400 ◦C ascribed to the carbon oxidation to CO or

CO2.

Further evidence of carbon-titania phase separation was provided by nitrogen

physisorption measurements. To this end the carbon was removed from TiO2-

carbon composites via heat-treatment under air at 450 ◦C, resulting in samples

denoted as meso-TiO2. The behaviour of meso-TiO2 was then compared to that of

the parent TiO2-carbon. The nitrogen adsorption-desorption isotherm (Figure 2.5)
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Figure 2.5: Nitrogen adsorption-desorption isotherms are shown for TiO2-
carbon (solid circles) and meso-TiO2 (open circles) as well as the
corresponding BJH pore size distributions (inset) of TiO2-carbon
composite (solid circles) and meso-TiO2 (open circles).

and Barret-Joyner-Halenda (BJH) pore size estimate for TiO2-carbon showed no

significant mesoporosity (Figure 2.5 inset). In contrast, the same measurement on

meso-TiO2 exhibited a well-defined step at approximately 0.40-0.80 P/P0, which

was associated with the filling of mesopores due to capillary condensation. BJH

pore size distribution analysis (Figure 2.5 inset) was used to determine the presence

of relatively uniform 7.4 nm sized mesopores. The surface area increased from 52

m
2
/g for TiO2-carbon to 111 m

2
/g for meso-TiO2. These results suggest that

the space occupied by carbon in TiO2-carbon samples was converted to 7 nm sized

mesopores in meso-TiO2. XRD measurements on meso-TiO2 show that the anatase

crystal structure was preserved (Figure 2.6). These observations were consistent

with the assumption that PAN as well as the resulting carbon phase are microphase

separated from the rest of the composite.

13



Figure 2.6: The powder XRD pattern of meso-TiO2 was consistent with
anatase titania (markers indicate expected peaks for PDF #89-
4921).

2.4 Conclusions

In conclusion, carbon-crystalline titanium dioxide composites were fabricated through

a simple “one-pot” method employing a graphitic carbon source (PAN) containing

PEO-b-PAN diblock copolymer as a structure directing agent for titania precur-

sors. Using this process, we were able to produce highly crystalline mesoporous

titanium dioxide after removal of the carbon. This simple process may be extended

to the preparation of other transition metal oxide-carbon systems and other highly

crystalline mesoporous transition metal oxides.
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CHAPTER 3

THREE-COMPONENT POROUS-CARBON-TITANIA

NANOCOMPOSITES THROUGH COASSEMBLY OF ABCBA

BLOCK TERPOLYMERS WITH TITANIA SOLS∗

3.1 Abstract

We report the first use of a block terpolymer for the synthesis of three-component

nanocomposites. Here, the use of three chemically distinct polymer blocks enabled

control over each of the three final components: partially graphitic carbon, crys-

talline transition metal oxide, and porosity. Tuning of the individual block lengths

and block fractions resulted in control over the three components. Specifically,

two PAN-b-PEO-b-PPO-b-PEO-b-PAN pentablock terpolymers were synthesized

starting with a functionalized P123 or F127 macroinitiator. The PEO blocks were

selectively swelled with titania sols while the PPO primarily served as a mesoporos-

ity source and the PAN served as a carbon source with high yield. Two subsequent

heat treatments were used to form partially graphitic carbon which acted as an in

situ hard template preserving the mesostructure through the crystallization of the

titania sols. TEM and SAXS analysis revealed worm-like microphase separation.

Nitrogen physisorption analysis revealed that the pore size distributions for all

nanocomposites were narrow and the distribution centers were tuned from 6.0 to

16.5 nm. The carbon content of the nanocomposites was varied from 11.3 to 35.2

wt% by increasing the fraction of PAN in the nanocomposites.

∗Reprinted with permission from M. Stek, H. Sai, K. Sauer, S. M. Gruner, F.
J. DiSalvo, and U. Wiesner. Macromolecules, 42(17):6682-6687, 2009. Copyright
2010 American Chemical Society.
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3.2 Introduction

The self-assembly of amphiphilic block copolymers has been extensively applied

towards the structure-directing of porous materials. Generally, the hydrophilic

block is selectively swelled with hydrophilic nanoparticles or molecular precursors

via van der Waals or ionic interactions while the hydrophobic block repels these

precursors.1 Subsequent pyrolysis of such composites generates porous materi-

als by removal of the polymer. This or similar approaches have been broadly

applied to generate mesoporous silicates,2 aluminosilicates,3 transition metal ox-

ides,4–7 platinum,8 and carbon9–13 materials. Most examples of block copolymer

derived porous multi-material composites were synthesized by selectively swelling

the hydrophilic block of a block copolymer with a mixture of multiple hydrophilic

precursors which resulted in a random dispersion of the two materials with or-

dered pores.14–16 In order to structure-direct multiple materials separately, other

approaches have utilized block copolymers where the hydrophobic block served as

a carbon source to form silica-carbon17 or titania-carbon18 nanocomposites. The

recently published CASH method utilized hydrophobic poly(isoprene) as both a

porosity source and a carbon source to enable the preservation of the mesostructure

during the high temperature crystallization of the transition metal oxides.19 While

this approach resulted in porous transition metal oxides with a small amount of

carbon, it did not demonstrate direct control over the amount of carbon. Many

of these approaches may be combined conceptually by utilizing an amphiphilic

block terpolymer (having three chemically different mer units) with, for example,

two different hydrophobic blocks—one hydrophobic block generates porosity, the

other hydrophobic block generates carbon in high yield, and the hydrophilic block

selectively swells with sol particles. Such a method would enable block sequence

directed materials (BSDM), where a sequence of three or more chemically different
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polymer blocks direct the spatial arrangement and interface definitions of multi-

ple functional materials. The achievement of BSDMs would be a significant step

towards mimicking the more complex assembly processes that result in biological

nanocomposites. While there have been a few papers on aluminosilicate structure-

directing with block terpolymers,20,21 there are no reports, to the best of our

knowledge, that have utilized a block terpolymer to synthesize three-component

nanocomposites.

Nanocomposite materials have attracted considerable attention due to their

often novel properties. Such nanocomposites are not only more homogenous than

their bulk analogs, but sometimes also enable new functionality.22,23 For exam-

ple, bulk titania has poor electrode performance in Li-ion battery applications

due to its very low Li diffusivity and poor electrical conductivity (semiconductor).

However, porous nanoscale composites of titania with good electrical conductors,

such as carbon, enable the use of titania for Li-ion battery anodes. Furthermore,

shrinking the Li diffusion length in titania enables utilization of titania’s fast Li

insertion/desertion kinetics.24,25 Similarly, such porous-oxide-carbon nanocompos-

ites could also function as fuel cell electrodes by utilizing the surface proton con-

ductivity of oxides which is comparable to that of Nafion.26,27 Three-component

nanocomposites are of great general interest for electrochemical devices such as

batteries and fuel cells which all require multiple continuous pathways for the

reaction of (1) reducing/oxidizing species with (2) electrons, and (3) ions.28

Here we report on the one-pot synthesis of three-component nanocomposites

directly from the self-assembly of block terpolymers with transition metal oxide

sols. Specifically, the PEO blocks of PAN-b-PEO-b-PPO-b-PEO-b-PAN pentablock

terpolymers were selectively swelled with titania sols. Subsequent heat treat-

ments transformed the microphase separated materials into mesoporous-partially
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Figure 3.1: Schematic representation of one-pot synthesis of mesostruc-
tured porous-carbon-titania nanocomposites via self-assembly of
a pentablock terpolymer with TiO2 sols followed by specific heat
treatments.

graphitic carbon-anatase titania nanocomposites (Figure 3.1). A nanocomposite

was also made using as-received P123 for comparison. Tuning of the individual

block lengths and block fractions resulted in control of all three components in

three different samples: Cornell composition of materials with pores, carbon, and

titania (CCM-PCT-1, CCM-PCT-2, and CCM-PCT-3).

3.3 Experimental Methods

3.3.1 Materials

For the macroinitiator synthesis, 2-bromo-2-methylpropionic acid (98%, BiB), N,N’-

dicyclohexylcarbodiimide (99%, DCC), 4-(dimethylamino)pyridine (99%, DMAP),

Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock

copolymers Pluronic P123 (PEO20PPO70PEO20) and F127 (PEO106PPO70PEO106),

and anhydrous, methanol-free chloroform (99%) were purchased from Sigma Aldrich

and used as received.

For the PAN chain extension, Acrylonitrile (99%, AN), CuBr (99.999%), CuBr2
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Figure 3.2: Schematic showing synthesis of block terpolymer by using an
esterification to attach ATRP initiating sites to commercially
available Pluronic triblock copolymers followed by ATRP chain
extension of PAN.

(99.999%), basic-alumina (activity I, MP Biomedical), 1,1,4,7,10,10-hexamethyl-

triethylenetetramine (97%, HMTETA), N,N-dimethylformamide (99.9%, DMF),

ethylene carbonate (99%, EC) were purchased from Sigma Aldrich, and used as

received. SnakeSkin dialysis tubing with a 3.5 kg/mol molecular weight cutoff was

purchased from Pierce. Deionized water was prepared from a Barnstead NANOp-

ure filtration system.

For the composite synthesis, titanium(IV) chloride (99%, Sigma Aldrich), ti-

tanium(IV) isopropoxide (97%, Sigma Aldrich), 37 wt% hydrochloric acid (ACS

grade, BDH), NaBr (99%, Sigma Aldrich), and anhydrous ethanol (99%, Pharmco)

were used as received. DMF and deionized water, were used for composite synthesis

as detailed above.

3.3.2 Synthesis

Macroinitiator Synthesis

The P123 and F127 based macroinitiators were both prepared in a similar fashion

to that reported previously (Figure 3.2).29 The diol Pluronic triblock copolymer

was dried at 40 ◦C under high vacuum to remove trace water. The Pluronic

22



polymer was then dissolved in dry, methanol-free chloroform to form a 30 wt%

polymer solution under constant stirring. Then, BiB was added to the solution

in a 2.35:1 molar ratio of BiB:polymer with an overflow of nitrogen. The solution

was cooled in an ice bath before the next additions. Then, DCC was added to

the stirred solution and quickly followed by DMAP in a 2.35:0.37:1 molar ratio of

DCC:DMAP:polymer. The solution turned cloudy indicating transformation of the

DCC to the corresponding urea. The reaction was stirred for 5 minutes in contact

with the ice bath and then allowed to stir at room temperature for 1 day. The

polymer solution was filtered through a glass frit to remove most of the urea and

then syringe filtered. The chloroform was removed with rotary evaporation and

the polymer was redissolved in THF and refiltered. The THF was then removed

by rotary evaporation and the product was dried under high vacuum for at least

1 day. 1H NMR spectroscopy was used to confirm the quantitative chain end

transformation of the Pluronic polymer to form the macroinitiator (Pluronic-Br2)

with a bromine end group at each end.

PAN Chain Extension

Acrylonitrile was flowed over basic-alumina to remove the inhibitor. Each poly-

merization was carried out in a glass reactor equipped with a septum and attached

to a Schlenk line via a rubber hose. The Pluronic-Br2 macroinitiator was added to

reactor along with a stir bar. Nitrogen was flowed through the reactor as molten

EC and AN were added via the septum port. The reactor contents were stirred at

40 ◦C until a homogeneous solution was formed. The septum was replaced and the

reactor was subjected to 3 freeze-pump-thaw cycles and then backfilled with posi-

tive nitrogen pressure. Two catalyst stock solutions were prepared separately in a

glovebox. The CuBr stock solution contained equal moles of CuBr and degassed
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HMTETA and was dissolved in degassed DMF to a concentration of 10 mg CuBr

per mL. The CuBr2 solution was prepared in the same fashion. The reactor was

placed in an oil bath maintained at 55 ◦C by a stirring hot plate. The CuBr2 stock

solution was added to the reactor via the septum, followed by the CuBr stock solu-

tion. All polymerizations were carried out with molar ratios of 0.5:0.1:0.08:0.02:250

for Pluronic-Br2:HMTETA:CuBr:CuBr2:AN with EC added to make the initial

AN concentration 5.25 M. A timer was started immediately and the polymeriza-

tion was stopped at the desired conversion by exposing the reactor contents to air.

The reaction contents were diluted to twice the volume with DMF and dialysed

against deionized water 3 times for at least 12 hours. The contents of the dialysis

bag were rotary evaporated to remove water and then dried for a day under high

vacuum. The resulting product was white to yellow depending on the amount of

PAN grown. The resulting PAN-b-PEO-b-PPO-b-PEO-b-PAN pentablock terpoly-

mer (Pluronic-PAN) was characterized by 1H NMR and GPC. The PAN molecular

weight was calculated from the 1H NMR data and the polydispersity was deter-

mined by GPC. Two different terpolymers were used to make nanocomposites:

Pluronic-PAN1 and Pluronic-PAN2. Pentablock terpolymer Pluronic-PAN1 was

synthesized from P123 and had a number average molecular weight of 6.35 kg/mol,

a polydispersity of 1.52, and was composed of 8.25 wt% PAN and 27.7 wt% PEO.

Pluronic-PAN2, was synthesized from F127 and had a number average molecular

weight of 21.5 kg/mol, a polydispersity of 1.37, and was composed of 37.7 wt%

PAN and 43.4 wt% PEO. The as-received P123 and F127 had reported number av-

erage molecular weights of 5.8 and 12.6 kg/mol, respectively. The polydispersities

of P123 and F127 were determined with GPC to be 1.34 and 1.46, respectively.

For nanocomposite comparison, a third sample was synthesized using as-received

P123. All polymers used had a 4.1 kg/mol PPO center block.
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Composite Synthesis

All composites were synthesized using hydrolytic sol-gel routes for titania. Each

sample was synthesized from a different polymer. CCM-PCT-1 was synthesized by

dissolving 0.109 g Pluronic-PAN1 in 3.7 mL of ethanol and 0.3 g of hydrochloric

acid under rapid stirring at 85 ◦C for 3 hours. The solution was cooled to 40 ◦C

and 0.313 mL of titanium isopropoxide was added while stirring. The solution

was stirred at 40 ◦C for 20 hours. The solution was cast in a teflon dish inside

a box oven set to 35 ◦C with 50-60%RH maintained by a stirred and fan blown

saturated aqueous NaBr salt bath for 5 days. The film was then heated to 80 ◦C

for 7 more days to crosslink the sol. The film was then heated in air at 1 ◦C/min

to 250 ◦C and held for 2 hours to cyclize the PAN. Lastly, the film was heated at 1

◦C/min to 700 ◦C under nitrogen flow and held for 2 hours to carbonize the PAN

and crystallize the titania.

CCM-PCT-2 was synthesized by dissolving 0.250 g of Pluronic-PAN2 in 25 mL

of DMF followed by the dropwise addition of 0.91 mL of ethanol. The polymer

solution was brought into a glove bag where 0.171 mL of titanium chloride was

added under rapid stirring. The solution was stirred for an hour before being cast

in an open teflon dish maintained at 40 ◦C for 7 days. The film was dried under

high vacuum for several hours and then subjected to the same 250 ◦C and 700 ◦C

heat treatments under air and nitrogen, respectively.

For comparison, sample CCM-PCT-3 was synthesized from as-received P123.

The same conditions were used as previously reported by the Zhao group for pure

TiO2,30 except the calcination steps were performed using the same two step heat

treatment used for samples CCM-PCT-1 and CCM-PCT-2.
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3.3.3 Equipment

Gel Permeation Chromatography (GPC)

GPC measurements were performed in DMF with 10 µm Polymer Standards Ser-

vice (PSS, Warmick, RI) GRAM columns (102, 103, 3 · 103 Å, 300 mm long each,

and 8 mm in diameter) at a flow rate of 1.0 mL/min. An Agilent 1200 refrac-

tive index detector operated at 40 ◦C was used to detect the polymer. Raw data

were processed using PSS-Win GPC V6.2 software. Molecular weight distributions

(Mw/Mn) were calculated using a poly(styrene) calibration curve.

1H Nuclear Magnetic Resonance (NMR)

1H solution NMR spectra were recorded on a Varian INOVA 400 Mhz spectrometer

using the deuterated chloroform signal (δ=7.27 ppm) or the deuterated dimethyl-

sulfoxide signal (δ=2.50 ppm) as an internal standard.

Transmission Electron Microscopy (TEM)

Samples were ultrathin sectioned at -55 ◦C with a Leica Ultracut UCT microtome.

Sample slices were collected on a water/DMSO eutectic solution and transferred

to 300 mesh copper grids (no carbon film). A Technai T12 operating at 120 kV

was used to image the sections.

Small-angle X-ray Scattering (SAXS)

SAXS data were collected on a Rigaku RU300 which used a copper rotating anode

(λ=1.54 Å) operated at 40 kV and 50 mA. The X-rays were monochromated using

a Ni filter and focused using orthogonal Franks mirrors. The SAXS patterns were

collected with a homebuilt 1k x 1k pixel CCD detector similar to that described
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elsewhere.31 Data are presented as q = 4πsin(θ)λ−1, where 2θ is the total scattering

angle.

Raman Spectroscopy

Raman spectra were collected on a Renishaw InVia microRaman system using a

488 nm laser.

Powder X-ray diffraction (XRD)

XRD spectra were collected on a Scintag - diffractometer using Cu Kα radiation

(λ=1.54 Å).

Thermal Gravimetric Analysis (TGA)

TGA analysis was performed with flowing air on a TG/DTA 320 at a heating rate

of 20 ◦C/min to 550 ◦C and held for 2 hours. The sample mass in all TGA curves

was normalized at 150 ◦C to eliminate mass loss due to water desorption.

Nitrogen Physisorption Analysis

Isotherms were measured at -196 ◦C using a Micromeritics ASAP 2020 system. The

samples were degassed at 150 ◦C overnight under high vacuum. The Brunauer,

Emmett, and Teller (BET) and Brunauer, Jonyer, and Halenda (BJH) analysis

were performed using Micromeritics ASAP 2020 V1.05 software.
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Figure 3.3: The end group transformation in the macroinitiator synthesis
was determined to be quantitative by comparing the PPO 1H
NMR peak near 1.0 ppm to the peak corresponding to the methyl
groups of the initiator near 1.9 ppm (A). Similarly, the PAN
molecular weight after chain extension was determined by com-
paring the PAN backbone peaks at 2.0 and 3.2 ppm to the PPO
peak near 1.0 ppm (B). The GPC elugrams for Pluronic-PAN1
(C) and Pluronic-PAN2 (D) shifted to lower elution volumes in-
dicating that the Pluronic-PAN polymers (dashed lines) increase
in molecular weight relative to their macroinitiators (solid lines).
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3.4 Results and Discussion

3.4.1 Synthesis of Pluronic-PAN Pentablock Terpolymers

Pluronic block copolymers P123 and F127 have been extensively studied for structure-

directing porous materials and thus serve as a suitable starting point for block ter-

polymer synthesis. We sought to add graphitic carbon to these nanocomposites to

aim for the high electrical conductivity and thermodynamic stability desirable for

electron conduction in electrochemical applications. Poly(acrylonitrile) is a well

established source of graphitic carbon and is commercially used for the produc-

tion of graphitic carbon fibers.32 There are numerous examples of the controlled

radical polymerization of PAN, especially using atom transfer radical polymeriza-

tion (ATRP).17,33–40 To this end an initiator of suitable kinetic activity41 for PAN

growth was attached to the alcohol end groups of Pluronic block copolymers via

a Steglich esterification. The resulting Pluronic-Br2 macroinitiator was then used

for chain extension using ATRP. ATRP of PAN can be challenging due to a side

reaction with the activator CuBr, often limiting achievable molecular weights to

c.a. 10 kg/mol.35 Although AGET ATRP was shown to greatly suppress this side

reaction,39 standard ATRP was instead used to keep the polydispersity as low

as possible. To this end, all polymerizations were performed with a 10:0.8 ratio

of chain ends to CuBr. This side reaction was further suppressed by utilizing a

tetradentate ligand (HMTETA) to saturate the coordination sites of the Cu better

than the commonly employed bipyridine ligands. HMTETA has a similar kinetic

activity to bipyridine42 and was found (unpublished work) to enable the synthe-

sis of much larger PAN blocks with similarly low polydispersities. The purified

product was characterized by NMR to determine the PAN molecular weight and

GPC to determine the polydispersity. The GPC elugrams of the starting triblock
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copolymers P123 and F127 had bimodal molecular weight distributions as previ-

ously reported.43 Elugrams of Pluronic-PAN1 and Pluronic-PAN2 showed a shift

to higher molecular weights while maintaining similar polydispersities to the parent

Pluronic polymers (Figure 3.3 C and D).

3.4.2 Synthesis of Mesoporous-Carbon-Titania Nanocom-

posites

A simple one-pot approach was used to synthesize three-component nanocompos-

ites. The structure-directing polymer was dissolved in a suitable solvent and a

hydrolytic titania sol was synthesized in the same solution. Films were cast to

remove volatile solvents, leading to micophase separation of polymer blocks with

the titania sol particles selectively swelling the hydrophilic PEO block. The titania

sol is highly protonated under the acidic conditions typically utilized and does not

condense appreciable until sufficient HCl has volatilized.15 The films were aged at

a low temperature to provide time for titania gelation before further heat treat-

ments. The subsequent heat treatment to 250 ◦C in air is well known to cyclize

the PAN blocks to form a rigid ladder like polymer backbone which increases the

carbon yield. The cyclized PAN chains further react thermally in inert atmosphere

via dehydrogenation (400-600 ◦C) and denitrogenation (600-1300 ◦C) reactions to

form carbon materials.32 The second heat treatment to 700 ◦C under nitrogen

carbonized the PAN, crystallized the amorphous titania sol, and generated meso-

porosity from the PPO pyrolysis.

The microphase separation of Pluronic-PAN and as-cast nanocomposites was

investigated with diffraction studies. The XRD spectrum of neat Pluronic-PAN2

has peaks at 17.0, 19.2, and 23.3◦ (Figure 3.4 D bottom). The peaks at 19.2

and 23.3◦ correspond to PEO crystallites44 and the peak at 17.0◦ corresponds to
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Figure 3.4: TEM images of three-component porous-carbon-titania
nanocomposites CCM-PCT-1 (A) and CCM-PCT-2 (B)
with worm-like structures resulted from microphase separa-
tion of Pluronic-PAN1 and Pluronic-PAN2 block terpolymers,
respectively. SAXS (C) of CCM-PCT-1 (solid line) and CCM-
PCT-2 (dashed line) nanocomposites exhibited a single peak
corresponding to the length scale of the microphase separation.
XRD (D) of neat Pluronic-PAN (bottom) and an as-cast
film CCM-PCT-2 (top) show discrete crystallites of PAN and
PEO indicating block terpolymer microphase separation before
pyrolysis.
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PAN crystallites.45 The XRD observation of separate PEO and PAN crystallites is

consistent with the expected microphase separation of the semi-crystalline PEO,

semi-crystalline PAN, and amorphous PPO domains. Furthermore, the SAXS

patterns of Pluronic-PAN1 and Pluronic-PAN2 each have a single broad peak at

c.a. 11 and 15 nm, respectively, corresponding to the short-range order result-

ing from worm-like microphase separation of the neat polymers (Figure 3.4 C).

These results were not unexpected considering that both PEO-b-PPO-b-PEO43

and PEO-b-PAN17 polymers are known to microphase separate. The composite

materials resulting from Pluronic-PAN polymers had similar XRD peaks at 17.0,

19.2, and 23.3◦ in addition to a broad peak centered near 25◦ (Figure 3.4 D top).

The presence of PAN and PEO crystallites in composite materials is again a strong

indication for the microphase separation of PAN, PEO, and PPO. The broad peak

centered near 25◦ is attributed to the amorphous titania sol. Although PEO crys-

tallization is known to be suppressed by the fractal oxide networks resulting from

silicate sol-gel processes,3 the closo oxide particles6 resulting from the hydrolytic

titania sol-gel processes used here did not completely suppress the PEO crystal-

lization. The complete mixing of PEO with oxide sol particles, and thus complete

suppression of PEO crystallization, is not necessary for PEO based amphiphiles to

structure-direct oxide materials.46 We suspect that the titania sol is mixed selec-

tively with the amorphous regions of the PEO47 and excluded from the crystalline

PEO regions. Although mechanistically interesting, the small regions of crystalline

PEO did not prevent the synthesis of three-component nanocomposites.

We take the three-component nanocomposite CCM-PCT-1 as a representative

example of composites synthesized from Pluronic-PAN block terpolymers. The

bright field TEM image of the final calcined porous-carbon-titania nanocomposite

(Figure 3.4 A) showed worm-like phase separation of the porosity (light) from the
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Figure 3.5: Integrated SAXS profiles of Pluronic-PAN1 (solid) and Pluronic-
PAN2 (dashed) each have a single peak corresponding to the
short-range ordering resulting from the block terpolymer mi-
crophase separation.

carbon and titania (both dark) with a period of c.a. 13 nm. Contrast was not

observed between the carbon and titania components in bright field TEM. Such

short-range ordered microphase separation is commonly found in mesostructures

derived from PAN based block copolymers38,48–52 due to the high glass transition

temperature (85-110 ◦C) and high melting temperature (320 ◦C) for the partially

crystalline PAN block.53 The single SAXS peak at 12.8 nm was consistent with

the observed length scale of the worm-like morphology in TEM (Figure 3.5).

The titania and carbon of CCM-PCT-1 were further characterized to deter-

mine their type and relative proportions. The XRD spectrum showed several

well-resolved peaks on a flat baseline suggesting that the amorphous titania sol

particles were successfully converted to crystalline material (Figure 3.6 A). All of

the observed XRD peaks were consistent with the anatase phase of titania (PDF

# 21-1272). The Debye-Scherrer formula was used to calculate the crystallite size

from the peak widths. This equation was applied to the non-overlapping peaks

near 25 and 48◦ two-theta to calculate an average crystallite size of 9.4 nm. The
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Figure 3.6: The powder XRD of CCM-PCT-1 (A) matches the indicated
peaks for anatase titania (PDF #21-1272). The Raman spec-
trum of CCM-PCT-1 (B) was consistent with partially graphitic
carbon.

Figure 3.7: Dark field TEM image of CCM-PCT-1 showing c.a. 10 nm titania
nanocrystallites (white) embedded in porous carbon (gray).
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Figure 3.8: Oxidative TGA (A) was used to determine the carbon content of
each nanocomposite. Nitrogen physisorption isotherms (B) were
used to calculate the mesoporous surface area, microporous sur-
face area, pore volume, and pore size distribution (inset) for each
nanocomposite. Isotherms were offset to aid viewing. Tuning of
the terpolymer block lengths enabled control over the porosity
and carbon content of the nanocomposites.

titania crystallite size was consistent with length scale of the microphase sepa-

ration determined by TEM (13 nm) and SAXS (12.8 nm). Furthermore, dark

field TEM was used to directly view the 9-14 nm diameter titania nanoparticles

(Figure 3.7). Raman spectroscopy was used to determine the type of carbon in

the nanocomposite. The Raman spectrum had two pronounced peaks centered

at 1,600 and 1,358 cm−1, respectively (Figure 3.6 B). Often, Raman spectra of

carbon materials are convolutions of several peaks, possibly including those for

ideal graphite (G 1,580 cm−1), a disordered graphitic lattice (D1 1,350 cm−1, D2

1,620 cm−1, and D4 1,200 cm−1), or amorphous carbon (D3 1,500 cm−1).54 The

significant G, D1, and D2 character in the Raman spectrum of CCM-PCT-1 was

consistent with partially graphitic carbon composed of turbostatic graphite crys-

tallites less than 7 nm in extent and with very little amorphous content (D3).55,56

Partially graphitic carbon is expected to result from such a low carbonization

temperature. The fraction of carbon in the nanocomposite was determined by

oxidative TGA (Figure 3.8 A solid line). The sample had a single mass loss step
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starting at c.a. 400 ◦C corresponding to oxidative removal of the carbon from the

nanocomposite. CCM-PCT-1 lost 13.9% of the normalized mass, suggesting that

the composite was composed of 13.9 wt% carbon. The change in sample color from

black initially to white after TGA further supports that the mass loss is due to

the loss of carbon. The amount of carbon in the nanocomposite is consistent with

the typical 50 wt% carbon yield for PAN54 combined with a c.a. 10 wt% carbon

yield for the Pluronic (discussed further for CCM-PCT-3). The XRD, Raman, and

TGA data suggest that CCM-PCT-1 was composed of crystalline anatase titania

and 13.9 wt% partially graphitic carbon.

A nitrogen physisorption experiment was performed to characterize the poros-

ity in CCM-PCT-1. The nanocomposite had a type IV isotherm (Figure 3.8 B

solid line) indicating that it had open and accessible mesoporosity. Our previously

published work utilizing PEO-b-PAN structure-directing agents18 were not meso-

porous, indicating the need for an additional hydrophobic block as a mesoporosity

source. A narrow pore size distribution centered at 10.0 nm was calculated from

the adsorption branch of the isotherm using the BJH model (Figure 3.8 B inset

solid line). The average mesopore size of CCM-PCT-1 was considerably larger

than the 5-9 nm pore sizes normally resulting from the microphase separation of

P123 based hybrids.2 We suspect that the crystallization of the PAN stretches

the PEO and PPO blocks, an effect thoroughly investigated in a recent study.57

Such a stretched conformation of the PPO is consistent with the increased pore

size. Sample CCM-PCT-1 had 0.21 cm3/g of pore volume and the BET model

was used to determine that the nanocomposite had a total surface area of 163

m2/g. The sample had 36 m2/g of microporous surface area primarily due to the

presence of carbon. Subtraction of the microporous surface area from the total

surface area revealed that CCM-PCT-1 had 127 m2/g of mesoporous surface area.
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The physisorption analysis revealed that nanocomposite CCM-PCT-1 had both

mesoporosity and microporosity consistent with the microphase separation and

carbon yield of the block terpolymer used. Sample CCM-PCT-1, to the best of

our knowledge, is the first three-component nanocomposite synthesized directly

from the microphase separation of a block terpolymer. The use of a simple one-

pot approach enabled the synthesis of a mesoporous nanocomposite composed of

partially graphitic carbon and crystalline anatase titania.

3.4.3 Composition and Porosity Control with Polymer Vari-

ation

A different nanocomposite, CCM-PCT-2, was synthesized from Pluronic-PAN2 for

comparison. The polymer used in this case was based instead on F127 which has

the same PPO center, but longer PEO blocks. Furthermore, in this case much

longer PAN blocks were grown from the ends of the macroinitiator. Bright field

TEM of the final calcined three-component nanocomposite again showed worm-

like phase separation of the block terpolymer (Figure 3.4 B). The 29 nm worm

spacing was larger than in CCM-PCT-1 (13 nm), which was consistent with the

longer block terpolymer used for CCM-PCT-2. The increased length scale of the

microphase separation was further supported by the shift of the SAXS peak to

a lower q value, corresponding to 26.3 nm (Figure 3.4 C). The XRD and Raman

spectroscopy were again consistent with crystalline anatase titania (average domain

size 9.4 nm) and partially graphitic carbon. The TEM, SAXS, XRD, and Raman

spectroscopy of CCM-PCT-2 were qualitatively similar to CCM-PCT-1, except the

phase separation occurred on a longer length scale consistent with the longer block

terpolymer used.

The differences in carbon content and porosity were characterized by TGA and
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nitrogen physisorption analysis. The oxidative TGA of CCM-PCT-2 exhibited a

single weight loss step starting around 400 ◦C, suggesting that this nanocomposite

contained 35.2 wt% carbon (Figure 3.8 A dashed line). The carbon content was

again consistent with the expected 50 wt% carbon yield from PAN combined with

c.a. 10 wt% carbon yield from the Pluronic. Sample CCM-PCT-2 had more than

twice the carbon content of CCM-PCT-1 due to the much larger PAN fraction of

the block terpolymer coupled with a similar Titania:EO molar ratio (c.a. 1.55).

Thus the PAN fraction of a Pluronic-PAN block terpolymer can tune the carbon

content of the final three-component nanocomposite when all other conditions are

held constant.

The increased PAN fraction in the Pluronic-PAN2 used for CCM-PCT-2 also

effected the resulting porosity. The nitrogen physisorption analysis of CCM-PCT-2

exhibited a type IV isotherm (Figure 3.8 B dashed line). Analysis of this isotherm

showed a much larger total surface area of 238 m2/g and pore volume of 0.27 cm3/g.

The mesoporous surface area of 131 m2/g was nearly identical to that of CCM-

PCT-1. The much larger microporous surface area of 107 m2/g in CCM-PCT-2

is attributed to its larger carbon fraction. The BJH analysis on the adsorption

isotherm indicated that the mesopores had a narrow distribution of pore diameters

centered at 16.5 nm (Figure 3.8 B inset dashed line). The larger PAN fraction and

PAN molecular weight of the polymer used in CCM-PCT-2 is expected to result in

higher PAN crystallinity and thus cause more PEO and PPO chain stretching. The

expected additional PPO chain stretching is consistent with the observed increase

in mesopore diameter. The use of a block terpolymer with a larger weight fraction

of PAN resulted in a nanocomposite that had more wt% carbon, larger diameter

mesopores, and increased microporous surface area.

A control sample, CCM-PCT-3, was synthesized from P123 to further under-
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Figure 3.9: The mesostructure of the nanocomposite made from as-received
P123 was preserved through the 250 ◦C heat treatment in air (A),
but collapsed upon subsequent calcination to 700 ◦C in N2 form-
ing CCM-PCT-3 (B). Although the original mesostructure was
not preserved, the resulting nanocomposite had a powder XRD
spectrum (C) consistent with anatase titania (PDF #21-1272)
and a Raman spectrum (D) consistent with partially graphitic
carbon.

39



stand the role of PAN in the previous nanocomposites. Although others have

reported nearly complete removal of Pluronic polymers under either oxidative2

or inert15 atmospheres, we found that the two step heat treatment utilized here

resulted in an appreciable carbon residue. Subsequent oxidative TGA of CCM-

PCT-3 showed a single step weight loss starting at 400 ◦C corresponding to the

loss of 11.3 wt% carbon (Figure 3.8 A dotted line). This amount of carbon residue

corresponds to a 10.7 wt% carbon yield from P123. The heat treatment to 250

◦C in air likely converts the Pluronic to some partially pyrolized products which

were then more stable under the subsequent heat treatment to 700 ◦C under N2.

TEM of CCM-PCT-3 showed that the inverse hexagonal structure present after

the 250 ◦C heat treatment collapsed during the subsequent 700 ◦C calcination

(Figure 3.9 A and B). Thus, the carbon resulting from P123 alone was insufficient

to preserve the mesostructure during crystallization of the titania. In contrast,

the in-situ hard template resulting from PAN carbonization in CCM-PCT-1 and

CCM-PCT-2 acted as a scaffold to preserve the mesostructure during the high

temperature titania crystallization. Nitrogen physisorption analysis showed that

CCM-PCT-3 had a type IV isotherm with a H2 type hysteresis loop58 (Figure 3.8

B dotted line). This hysteresis loop is indicative of ink-bottle type pores and is due

to the connected interstitial spaces of the collapsed mesostructure. BJH analysis

of the adsorption branch showed a narrow mesopore diameter distribution with

a maximum at 6.0 nm (Figure 3.8 B inset dotted line). Although the originally

ordered mesostructure collapsed during calcination to form CCM-PCT-3, the final

material had a powder XRD spectrum consistent with crystalline anatase titania

(average domain size 10.8 nm) and a Raman spectrum consistent with partially

graphitic carbon (Figure 3.9C and D). Thus nanocomposite CCM-PCT-3 may still

be of interest for electrochemical applications. The addition of PAN to Pluronic
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polymers was necessary to preserve the microphase separated structure through

calcination.

3.5 Conclusions

We report the first use of a block terpolymer for the synthesis of three-component

nanocomposites towards the goal of block sequence directed materials (BSDM).

Pluronic-PAN block terpolymers were synthesized from P123 and F127 macroini-

tiators. The resulting pentablock terpolymers were used in a simple one-pot pro-

cess to produce porous nanocomposites containing tunable amounts of partially

graphitic carbon and anatase titania. A sample was also made with P123 for

comparison. The average mesopore diameter increased with the PAN content of

the polymers. The tuning of the mesopore size is attributed to the induced PPO

chain stretching due to PAN crystallization. The porosity, carbon, and titania in

these nanocomposites were all controlled by varying the block ratios and molecular

weights of the polymers used during self-assembly. We expect that such nanocom-

posites will play an increasing role in applications for energy conversion, generation,

and storage.
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CHAPTER 4

ORDERED THREE- AND FIVE-PLY NANOCOMPOSITES FROM

ABC BLOCK TERPOLYMER MICROPHASE SEPARATION WITH

NIOBIA AND ALUMINOSILICATE SOLS∗

4.1 Abstract

We report the first use of a non-frustrated block terpolymer for the synthesis of

highly ordered oxide nanocomposites containing multiple plies. The morpholog-

ical behavior of 15 ISO-oxide nanocomposites was investigated spanning a large

range of compositions along the fI = fS isopleth using aluminosilicate and nio-

bia sols. Morphologies were determined by TEM and SAXS measurements. Four

morphologies were identified, including core-shell hexagonal, core-shell double gy-

roid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing

O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply

morphologies containing domains that were continuous in one, two, or three dimen-

sions. The five-ply core-shell double gyroid phase was only found to be stable when

the O+oxide domain was a minority. Removal of the polymer enabled simple and

direct synthesis of mesoporous oxide materials while retaining the ordered network

structure. We believe that advances in the synthesis of multi-ply nanocomposites

will lead to advanced materials and devices containing multiple plies of functional

materials.
∗Reprinted with permission from M. Stefik, S. Mahajan, H. Sai, T. H. Epps III,

F. S. Bates, S. M. Gruner, F. J. DiSalvo, and U. Wiesner. Chemistry of Materials,
21(22):5466-5473, 2009. Copyright 2010 American Chemical Society.
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4.2 Introduction

The microphase separation of amphiphilic block copolymers has been broadly ap-

plied toward structure-direction in numerous materials. Typically, the hydrophilic

block is selectively swelled with hydrophilic particles via attractive intermolecular

forces while the hydrophobic block is repelled. The balance of interface and chain

stretching free energies lead the polymer to direct the co-assembly into various

ordered morphologies. While such techniques have been extensively studied with

diblock (AB)1 and triblock (ABA) copolymers,2,3 there are very few examples of

triblock terpolymers (ABC) used as structure-directing agents.4–6

The application of triblock terpolymers as structure-directing agents is par-

ticularly interesting due to the dozens of known ordered morphologies of the neat

polymers.7–17 The plethora of network morphologies18 is particularly interesting for

use in devices, such as fuel cell, battery, or supercapacitor electrodes, which require

multiple transport materials arranged in continuous pathways for fuel/electrolyte,

ion conduction/storage, and electron transport. The network phases formed by

triblock terpolymers are not only trifunctional, but also form over much wider

phase composition window (4 to 14.1 vol%14,19) than the bifunctional double gyroid

structure found in diblock copolymer systems (2 to 6 vol%20,20). Such a method

of fabrication, where a sequence of three or more unique polymer blocks direct the

spatial arrangement of multiple materials, thus defining the interfaces and path-

ways, is termed block sequence directed materials (BSDM).21 The achievement of

BSDMs would be a significant advance towards mimicking the complex assembly

processes apparent in nature. In particular, ordered transition metal oxide ma-

terials are interesting in energy generation, storage, and conversion applications

due to their ability to catalyze reactions, conduct ions, and intercalate ions.22,23

Indeed it has already been shown that the three blocks of a terpolymer can be
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designed to lead to trifunctional materials with control over each of the three final

components.21

Morphology prediction of triblock terpolymer coassemblies is particularly com-

plex due to the number of parameters. The phase behavior of ideal diblock copoly-

mers may be predicted solely based on two parameters: the volume fraction fa of

the A block and the product χN of Flory-Huggins χ parameter with the overall

degree of polymerization N. In contrast, the phase behavior of ideal triblock ter-

polymers is governed by five parameters: two independent volume fractions, fa and

fb, and the products of three Flory-Huggins parameters, χABN, χBCN, and χACN.

The relative magnitude of each of the parameters further determines the types

of morphologies formed. When χAC is the largest, the system is considered non-

frustrated24 and the large energetic penalty of A-C contacts leads to only core-shell

and alternating versions of the morphologies found in diblock copolymers.19 In con-

trast, frustrated block terpolymers are known to form decorated morphologies in

which A-C interfaces are made to minimize A-B or B-C interfaces.25 This mor-

phological tendency was preserved when aluminosilicate structures were directed

with such frustrated triblock terpolymers.5,6

The symmetry of the polymer blocks, or lack thereof, influences interfacial cur-

vature. Symmetric and near symmetric diblock copolymers (fa ≈ fb) form lamellar

morphologies whereas asymmetric diblock copolymers lead to morphologies with

curved interfaces, including gyroid, hexagonal cylinders, and cubic micellar phases.

Similarly, triblock terpolymer morphologies are influenced by both the A-B and B-

C symmetries. Symmetric-symmetric ideal triblock terpolymers (fa = fb =c) form

a 3-domain lamellar phase with flat interfaces whereas asymmetric-asymmetric

triblock terpolymers (fa 6= fb 6=c) form numerous morphologies with curved inter-

faces. Combining both of these tendencies with a symmetric-asymmetric triblock
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Figure 4.1: Schematic representation of “one-pot” synthesis of ordered
multi-ply nanocomposites via evaporation induced coassembly of
poly(isoprene-b-styrene-b-ethylene oxide) with oxide sols.

terpolymer (fa = fb 6=c) can cause the competing interfacial forces to buckle the

interface into periodic networks of saddle surfaces.26

Herein we present the results from the use of a non-frustrated, symmetric-

asymmetric triblock terpolymer as a structure directing agent for oxide materi-

als(Figure 4.1). To the best of our knowledge, this is the first report of ordered

oxide materials structure-directed by a non-frustrated block terpolymer.

4.3 Experimental Methods

4.3.1 Materials

The poly(isoprene-b-styrene-b-ethylene oxide) (ISO) triblock terpolymers used here

were prepared by sequential anionic polymerization and were thoroughly charac-

terized previously.14 ISO3 had a molecular weight of 15.24 kg/mol and a polydis-

persity of 1.05. ISO4 had a molecular weight of 15.78 kg/mol and a polydispersity

of 1.05. The volume fractions of I, S, and O were calculated based on reported
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homopolymer densities at 140 ◦C.27 The volume fractions of I, S, and O in ISO3

were determined to be 0.448, 0.454, and 0.098, respectively. Similarly, ISO4 had

volume fractions of 0.440, 0.435, and 0.125 for I, S, and O, respectively. The

equilibrium morphologies of ISO3 and ISO4 were previously determined to be 2-

domain lamellar and O70, respectively.14 The O70 is a tricontinuous orthorhombic

network structure which was first identified in 2002 and has been detailed else-

where.14,18,26,28 ISO polymers are amphiphilic, having a hydrophilic O block and

two hydrophobic blocks, I and S. The hydrophilic oxide sol particles are expected

to selectively swell the O block.

4.3.2 Synthesis

Each aluminosilicate hybrid film was prepared from a 2.0-2.5 wt% polymer solution

in THF-CHCl3 (1:1 by volume) by adding a predetermined amount of aluminosil-

icate sol solution and casting the homogeneous mixture covered at 60 ◦C. The

sol solution was prepared using a two step acid catalyzed hydrolysis procedure

as described in detail elsewhere.1,29 This sol is an organically modified ceramic

(ORMOCER) which has much lower density than bulk silica.1,30 The volume frac-

tion of the combined O and aluminosilicate phase was calculated using a combined

density of 1.4 g/cm3 as thoroughly established previously.5,6, 31–34

Each niobia hybrid film was prepared from a 0.3-0.8 wt% polymer solution

in CHCl3 by forming a non-hydrolytic sol in-situ, in a similar fashion to that

previously described.35 Specifically, niobium(V) ethoxide was added to the stirring

polymer solution in a nitrogen glovebox. After 10 minutes of stirring, niobium(V)

chloride was added in a 1.0:1.61 chloride:ethoxide molar ratio. The polymer-sol

solution was stirred overnight at room temperature and cast in a teflon dish at

50 ◦C covered with a glass hemisphere. All films were subsequently placed in a
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vacuum oven at 130 ◦C for at least one hour. The volume fraction of the O and

niobia containing domain was calculated using densities of 1.064 and 2.0 g/cm3,

respectively. We believe that this is a reasonable estimate for the density of the

amorphous niobia sol since metal oxide sol-gel densities are often less than half

that of the bulk density.36

4.3.3 Equipment

Transmission Electron Microscopy (TEM)

Ultrathin sections were cut at -55 ◦C using a Leica Ultracut UCT microtome. The

sections were transferred to copper grids and stained with aqueous 2 wt% OsO4

solution or anhydrous OsO4 vapor. Staining made the poly(isoprene) darker than

poly(styrene). Bright field TEM was performed on a Tecnai T12 operating at 120

kV. The ISO polymer was removed from a sectioned sample by using a Fischione

model 1020 Ar-O plasma cleaner. The 10 minute etching time combined with a

∼1 nm/sec carbon etch rate was sufficient to remove all of the ISO from the c.a.

70 nm thick sections.

Small Angle X-ray Scattering (SAXS)

A Rigaku RU300 with a copper rotating anode (λ=1.54 Å) operated at 40 kV and

50 mA was used to gather SAXS data of the niobia containing samples. The X-rays

were monochromated with a Ni filter and focused with orthogonal Franks mirrors.

The 2D scattering patterns were collected with a homebuilt 1k x 1k pixel CCD

detector similar to that described elsewhere.37 SAXS data of the aluminosilicate

containing samples were collected at the Cornell High Energy Synchrotron Source

(CHESS), with a setup consisting of a multilayer monochromator (λ=1.457 Å)

with a 2D area detector and a sample-to-detector distance of 1.61 m. Data are
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presented as 1D plots of radially integrated intensity versus scattering vector q

where q=4πsin(θ)λ−1, where 2θ is the total scattering angle.

4.4 Results

4.4.1 Aluminosilicate Nanocomposites

Table 4.1: Compositions, Morphologies, and d-Spacing of ISO-Oxide
Nanocomposites

Our initial experiments targeted the orthorhombic O70 network phase. A pre-

vious study showed that neat ISO polymers along the fI = fS isopleth form the

O70 phase over a wide composition window spanning from 9.8 to 23.9 vol% of O.14

We synthesized six nanocomposites within this window spanning from 15 to 23

vol% O+oxide. The stained TEM images of five of these nanocomposites rang-

ing from 15.0 to 22.3 vol% O+oxide were characteristic of a core-shell hexagonal
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Figure 4.2: Representative TEM images of aluminosilicate nanocomposites
with core-shell hexagonal (A) and core-shell double gyroid (B)
morphologies (image and inset in B show a (111) and (100) pro-
jections, respectively). Also, representative TEM images of nio-
bia nanocomposites with 3-domain lamellae (C) and core-shell
inverse-hexagonal (D) morphologies. Light regions of these im-
ages correspond to poly(styrene) and dark regions correspond to
either OsO4 stained poly(isoprene) or oxide swelled poly(ethylene
oxide). Polymer schematic (top) defines the colors used in the
inset morphology schematics: gray, white, and black correspond-
ing to I, S, and O+oxide domains respectively. Images shown at
same scale with 50 nm scale bars inset. The representative TEM
images above correspond to samples ISO3-S2, ISO4-S4, ISO4-N1,
and ISO4-N3, respectively.
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Figure 4.3: Representative SAXS patterns of aluminosilicate nanocomposites
with core-shell hexagonal (A) and core-shell double gyroid (B)
morphologies as well as niobia nanocomposites with 3-domain
lamellae (C) and core-shell inverse-hexagonal (D) morphologies.
The sequence of expected peaks was indicated in each spectrum
(dashed lines). Normally forbidden-reflections which become al-
lowed with unit cell compression (B) are additionally indicated
(dotted lines). The patterns correspond to samples ISO4-S2,
ISO4-S3, ISO4-N1, and ISO4-N3, respectively.
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morphology (CS-H) containing O+oxide cores (gray) covered by a S shell (light)

within an I matrix (dark) (Figure 4.2 A). The two samples with the least amount

of oxide, ISO3-S1 and ISO4-S1, were primarily composed of short-range ordered

worm-like structures, but ISO4-S1 also had some well-ordered CS-H regions. The

SAXS patterns of these CS-H nanocomposites were also consistent with hexagonal

symmetry, exhibiting characteristic peaks in the ratios defined as (q/q∗)2=1, 3,

and 7 (Figure 4.3 A). The d10 spacing for these series of samples varied from 19.9

to 22.2 nm and were consistent with the molecular weight of the ISO polymers as

well as the observed c.a. 20 nm cylinder spacings in TEM (Table 4.1).

The three aluminosilicate samples with the highest O+oxide compositions all

had similar phase behavior. TEM images of all three of these samples, ISO3-

S4, ISO4-S3, and ISO4-S4, ranging from 23.0 to 32.3 vol% O+oxide exhibited

core-shell wagon-wheel patterns with silicate cores (gray) surrounded by a S shell

(light) within an I matrix (dark) which were characteristic of the (111) plane of the

core-shell double gyroid (CS-GD) morphology (Figure 4.2 B). The CS-GD phase

is a pentacontinuous structure with two separate core-shell gyroid networks of the

same composition. Other TEM images of these samples were consistent with the

(100) (Figure 4.2B inset) and (125) projections of the CS-GD. The SAXS patterns

of these samples were also consistent with the CS-GD morphology exhibiting the

strongest scattering at (q/q∗)2=6 and 8. The scattering pattern closely matched

the expected peaks which were indicated with dashed lines at (q/q∗)2=6, 8, 14,

16, 20, 22, 24, 26, 30, and 32 (Figure 4.3 B). Samples ISO4-S3 and ISO4-S4 also

exhibited a small peak corresponding to a forbidden reflection at
√

2q∗. Such

forbidden reflections were also observed in previous cocontinuous cubic silica-type

structures which were compressed in the z-direction leading to a breaking of the

symmetry of the cubic phases.22,31,38–40 The CS-GD nanocomposites in this study
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were all made by solvent casting which is well-known to compress films in the

direction of evaporation. Detailed calculations by Toombes et al.39 predicted the

appearance of normally forbidden peaks at (q/q∗)2=2, 4, 10, 12, and 18, depending

on the nature of the GD distortion (Figure 4.3 B, indicated with dotted lines). A 2D

SAXS pattern of ISO4-S4 perpendicular to the evaporation direction showed 3.6-

14.2% compression (varies from grain to grain) of the
√

6q∗ ring and is attributed

to the appearance of the forbidden reflection at
√

2q∗. The d100 spacing determined

by SAXS ranged from 52.9 to 56.2 nm and was consistent with the observed 53-63

nm spacings observed in TEM. The roughly twice as large lattice dimension, d,

for CS-GD relative to the CS-iH was due to the pentacontinuous nature of the

CS-GD morphology which has twice as many interfaces per unit cell: O-S-I-I-S-O-

O-S-I-I-S-O compared to O-S-I-I-S-O. Thus the much larger lattice dimension d

was still consistent with the molecular weight of the ISO polymers used. Sample

ISO4-S4 with the largest amount of O+oxide fraction of 32.3 vol% had c.a. 20%

three-domain lamellae (Lam3) phase and is thus very close to Lam3 phase space.

A free-standing mesoporous aluminosilicate double gyroid structure was syn-

thesized by removing the ISO from sample ISO4-S4 using a reactive oxygen plasma.

After ten minutes of etching the ISO was removed and the structure was preserved

as evidenced by ordered network structures viewed on TEM (Figure 4.4). TEM

observation of this sample revealed 5 to 11 nm diameter tubes of aluminosilicate

with 3-fold nodes and 29 to 37 nm mesopores. The free-standing aluminosilicate

structure was much more sensitive to the intensity of the incident electron bream

than the nanocomposites and had to be imaged with a low intensity beam with

very long CCD exposure times to limit the distortion of the structure. Further-

more, the lower contrast relative to (Figure 4.2 B) is due to the much lower atomic

number of silicon as compared to osmium as well as the plasma treatment leading
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Figure 4.4: TEM image of free-standing mesoporous oxide double gyroid re-
sulting from oxygen plasma removal of ISO structure directing
agent from ISO4-S4. Schematic of the morphology (left inset) is
next to the high magnification TEM image (right inset).
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to a much lower density than bulk aluminosilicates.

4.4.2 Niobia Nanocomposites

Seven additional samples were synthesized with a niobia sol in order to further

explore the ISO-oxide phase diagram with the sol of a transition metal oxide.

Samples spanned the fI = fS isopleth from 43.8 to 70.0 vol% O+oxide.

Five of these niobia nanocomposites had volume fractions within the 27 to 62

vol% O range of the three-domain lamellae phase of neat ISO polymers along the

fI = fS isopleth.28 Only two of the five samples with the lowest O+oxide volume

fraction, ISO4-N1 and ISO4-N2, with O+oxide fractions ranging from 43.8 to 48.2

vol%, were identified to have the Lam3 morphology by TEM and SAXS. The

TEM images of these stained Lam3 nanocomposites had layers of O+oxide (dark),

S (light), and I (gray) arranged in patterns of ISO-OSI- which is characteristic of

this morphology (Figure 4.2 C). The switching of O+oxide and stained I contrast in

the niobia samples is due to the much higher atomic number of Nb (41) compared to

Si (14) and Al (13). This resulted in the niobia providing more electron scattering

contrast than the OsO4 stained I. The SAXS patterns of these two samples have

peaks consistent with lamellar symmetry, with peaks at (q/q∗)2=1, 4, and 9 (Figure

4.3 C). The d1 lattice spacing measured by SAXS varied from 24.0 to 26.3 nm and

was consistent with both the observed c.a. 25 nm spacings observed in TEM and

the molecular weight of the ISO polymer.

Niobia nanocomposites with O+oxide fractions beyond 50.0 vol% were found

to form a different morphology. Neat ISO polymers are known to form core-

shell double gyroid (Ia3d) and core-shell hexagonal phases in narrow composition

windows on the O-rich side of the ISO phase diagram.28 Samples ISO4-N3 and

ISO4-N4 had O+oxide fractions of 51.1 and 54.0 vol%, respectively, and both
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Figure 4.5: Representative TEM image of sample ISO3-N2 showing
macrophase separation of niobia precipitates at high oxide load-
ings ( >58 vol% O+oxide).

formed the same morphology. TEM images of these samples showed a hexagonal

arrangement of continuous tubes of I (gray) covered with shells of S (white) within

a matrix of O+oxide (dark) (Figure 4.2 D). Although this image is similar to the

aluminosilicate core-shell hexagonal image (compare Figure 4.2 A and 4.2 D), the

I and O+oxide domains have switched places. Accordingly, this morphology is

named core-shell inverse-hexagonal (CS-iH) since the O+oxide domain forms the

matrix. The SAXS patterns of these two samples were also consistent with the

observed hexagonal symmetry, showing scattering peaks at (q/q∗)2= 1, 3, and 4

(Figure 4.3 D). The d10 spacing varied from 22.0 and 24.8 nm and was consistent

with c.a. 23 nm spacings observed in TEM as well as the molecular weight of the

ISO polymer used.

The niobia nanocomposites synthesized with 58 vol% O+oxide or more had

macrophase separated regions of niobia. Samples ISO4-N5, ISO3-N1, and ISO3-

N2 all had clear formation of precipitates throughout the films when viewed on

the TEM (Figure 4.5). The precipitation of some of the niobia sol from solution
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Figure 4.6: Morphology map for poly(isoprene-b-styrene-b-ethylene oxide)
nanocomposites with axes indicating the volume fractions of
I, S, and O+oxide. Symbols identify the polymer and oxide
used. Four ordered morphologies were identified, including core-
shell hexagonal, core-shell double gyroid, 3-domain lamellae, and
core-shell inverse-hexagonal. The three samples with the high-
est O+oxide fractions had oxide precipitation from the polymer
which lead to lower effective O+oxide volume fractions.

leads to a lower effective volume fraction of niobia mixed with O block of the

polymer. This is likely why ISO4-N5 with 58 vol% O+oxide exhibited a Lam3

morphology predominantly in TEM and SAXS. Samples ISO3-N1 and ISO3-N2

also had clear macrophase separation, but still had the expected CS-iH morphology.

The macrophase separation correlated to a decrease in d10 in the ordered regions

relative to samples of similar composition (Table 4.1).
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4.5 Discussion

The morphology results of 15 oxide nanocomposites structure-directed with 2 dif-

ferent ISO triblock terpolymers along the fI = fS isopleth are displayed in Figure

4.6. Due to the many parameters of this phase space, the two-dimensional ternary

phase diagram represents a small slice of the complete phase space along this iso-

pleth. In particular, the molecular weight (N), and volume fraction of O (fO) were

only varied within a narrow range. Furthermore, this morphology map is a com-

posite containing results from both aluminosilicate and niobia nanocomposites.

Each morphology is discussed separately before the overall phase behavior of this

isopleth is discussed.

4.5.1 Core-Shell Hexagonal Phase

The core-shell hexagonal phase was found to form in the composition window

from 15.0 to 22.3 vol% O+oxide. This contrasts sharply from neat ISO which

forms the O70 phase from 9.8 to 23.9 vol% O along the same isopleth. This CS-H

phase was even observed when ISO4 (forms O70 when neat) was mixed with just

2.9 vol% aluminosilicate (ISO4-S1). Clearly, the system thermodynamics were

strongly affected by the selective mixing of sol particles with the O domain. A

similar suppression of the O70 phase was observed when relatively small amounts

of lithium perchlorate were mixed with similar ISO polymers.4 The marked change

in phase behavior was attributed to the 17-fold increase in segregation strength

induced by the selective dissolution of lithium perchlorate into the O blocks. An

analagous effect is likely at play in the ISO-oxide system. The effect of the addition

of oxide nanoparticles on the segregation strength of ISO was crudely estimated41

by comparing the d∗(≡ 2π/q∗) spacing of hexagonal ISO3 to that of ISO3-S2 using

d∗ ∝ χ1/6. This approximation lead to an estimated increase in χ by a factor
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of 1.8 upon addition of oxide sol. While addition of oxide sol to ISO does not

increase nearly as much as lithium perchlorate, it is still sufficient to explain the

similar change in phase behavior. The CS-H phase was not only found at very

low oxide loadings, but also into the dense nanoparticle regime.42 Sample ISO3-

S3 formed the CS-H phase with an aluminosilicate volume fraction larger than

the O vol fraction. The CS-H phase was stabilized by the increased segregation

strength induced by very small amounts of oxide and was preserved into the dense

nanoparticle regime.

4.5.2 Core-Shell Double Gyroid Phase

The core-shell double gyroid morphology was found with O+oxide volume fractions

ranging from 23.0 to 32.3 vol%. This large 9.3 vol% O+oxide window is comparable

to the 14.1 vol% O window for the O70 phase in neat ISO polymers along the

same isopleth. From a synthetic standpoint, this wide phase window with ISO

structure-directing agents makes the fabrication of materials with tri-functional

network structures far easier than with diblock copolymers.31 The existence of

this network structure in the ISO-oxide system was quite unexpected considering

the suppression of all network phases when similar ISO polymers were selectively

swelled with lithium salts.4 In this case, the less drastic increase in segregation

strength for the ISO-oxide system likely leads to the replacement of O70 with CS-

GD rather than the complete suppression of network phases.

4.5.3 Three-domain Lamellae Phase

The Lam3 phase was found with O+oxide fractions ranging from about 32.3 to

48.2 vol%. The Lam3 phase window for ISO-oxide is more narrow than that of

neat ISO polymers (27 to 62 vol% O), but occurs over a similar region of the
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fI = fS isopleth. The considerable asymmetry of the phase boundaries about the

fI = fS = fO = 1/3 symmetric point is due to the asymmetry of the I, S, and O

mer units as well as the asymmetry of the χ parameters19,43 which was exaggerated

by the addition of oxide sols.

4.5.4 Core-Shell Inverse-Hexagonal Phase

The core-shell inverse-hexagonal morphology was found when the O+oxide com-

position was between 51 and 54 vol%. Larger O+oxide fractions could be explored

by starting with ISO polymers with larger O fractions or perhaps by modifying the

niobia sol-gel process. However, such searches towards the O+oxide rich corner

of the phase diagram are likely to result in isolated micellar phases or disordered

mixing. The onset of the CS-iH at 51 vol% O+oxide is considerably lower than

that predicted for neat ISO polymers (c.a. 70 to 80 vol% O)19 and is likely due to

the increased segregation strength of the O+oxide domain. It is impressive to note

how well the ISO-oxide system behaves deep into the dense nanoparticle regime.

For example, ISO4-N4 with 54 vol% O+oxide contained 7.2 times more volume of

oxide than O yet still formed a highly ordered morphology. All samples targeting

O+oxide fractions higher than 54 vol% resulted in macrophase separation of nio-

bia precipitates (ISO3-N1, ISO3-N2, and ISO4-N5). The isolated precipitates of

niobia resulted in a lower effective O+oxide volume fraction. This lower effective

O+oxide fraction led ISO4-N5 to form a Lam3 phase even though the recipe tar-

geted an O+oxide region of phase space near CS-iH. This lower effective O+oxide

fraction was further evidenced in SAXS by a shift to smaller d∗ spacings (compare

ISO4-N4 to ISO4-N5 and ISO3-N1 to ISO3-N2).
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4.5.5 Phases Encountered

The phase behavior observed in the ISO-oxide system was characteristic of the

non-frustrated ISO polymers used. All of the observed phases CS-H, CS-GD,

Lam3, and CS-iH exhibited only A-B and B-C type interfaces without any A-C

type contacts. The four observed phases were all core-shell analogs of the lamellar,

double gyroid, and hexagonal phases common to diblock copolymers and appeared

in same sequence. The very different phase space of the ISO-oxide system relative

to neat ISO is attributed to the change in system thermodynamics which was

evidenced even at very low oxide loadings.

The network morphology observed in the ISO-oxide system differed substan-

tially from neat ISO. Along the fI = fS isopleth neat ISO polymers form the

orthorhombic O70 phase on the O minority side of the isopleth from 9.8 to 23.9

vol% O and the cubic core-shell double gyroid on the O majority side of the iso-

pleth from 61 to 67 vol% O.28 In contrast, the ISO-oxide system differed in two

regards: 1) the cubic core-shell double gyroid structure formed on the O+oxide

minority side of the isopleth and 2) no network phases were found on the O+oxide

majority side of the isopleth. The appearance of the CS-GD phase on the O+oxide

minority side of the isopleth, 1), can be rationalized by a slight distortion of neat

ISO phase boundries19 by extending the CS-GD phase space slightly towards the

I corner of the ternary phase diagram. The change in ISO thermodynamics with

the addition of oxide sol could be attributed to such a shift. As predicted for

neat ISO, the symmetric-asymmetric ISO structure-directing agents lead to an

ISO-oxide network structure with saddle surfaces.26 In contrast the lack of any

observed network structures on the O+oxide majority side of the isopleth, 2), re-

quires further discussion. Although the existence of an ISO-oxide network phase on

the O+oxide majority side of the isopleth cannot be disproved, it is not expected
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for the polymers used in this study since no such phases were observed as minority

phases in samples ISO4-N2 or ISO4-N3 near the transition from Lam3 to CS-iH.

We suspect that O+oxide majority network phases are suppressed by the entropic

penalty associated with the O chain stretching necessary to reach the center of

each node. This effect was likely exacerbated by the relatively small O fraction of

the ISO polymers used in this study as well as the increased unit cell size at high

oxide loadings. For comparison, such O+oxide majority network phases for IO

diblock copolymers are know to form under a narrow set of conditions including a

larger 32 vol% O.31,39 Furthermore, the stability of ISO-oxide network phases may

be rationalized in terms of the increased polydispersity of the combined O+oxide

domain. Copolymers with blocks of different polydispersity are known to favor

structures with surfaces curving towards the block of higher dispersity.44–47 Thus

the stability of O+oxide minority network phases is expected to be higher than

that of O+oxide majority network phases. There is likely a narrow set of con-

ditions under which the ISO-oxide system forms network phases on the O+oxide

majority side of the fI = fS isopleth, however, we don’t expect these conditions

to be as experimentally tractable as when O+oxide is a minority.

4.5.6 Outlook for Applications

The reported CS-H, CS-GD, Lam3, and CS-iH morphologies could be useful for

applications requiring continuous paths of multiple functional materials. The core-

shell hexagonal morphologies contain a continuous matrix with two minority com-

ponents that are continuous in one dimension whereas the Lam3 phase has all

three components continuous in two dimensions. In contrast, the CS-GD morphol-

ogy has a pentacontinuous structure with all five-plies continuous in all directions.

A series of selective domain transformations48–50 could be used to convert the ma-
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terials reported here into nanocomposites containing multiple function materials

with either anisotropic or isotropic continuity. Such materials could be useful for

advanced applications including photonic materials as well as energy generation,

conversion, and storage devices.

Furthermore, ordered materials with continuous porosity are of interest for fil-

tration, electronic, and optical applications. Towards this end we demonstrated a

free-standing mesoporous aluminosilicate double gyroid (Figure 4.4). Such mate-

rials could be directly used as orientation independent filters. Alternatively, these

free-standing oxide networks could be used as sacrificial hard templates for the syn-

thesis of mesoporous, crystalline transition metal oxides.51 Similarly, these oxide

networks could also be used as substrates for the deposition of layers of functional

materials for 3-dimensionally continuous electronic and optical devices.

4.6 Conclusions

The results of 15 ISO-oxide nanocomposites were detailed along the fI = fS iso-

pleth using aluminosilicate and niobia sols. Four morphologies were identified,

including core-shell hexagonal, core-shell double gyroid, three-domain lamellae,

and core-shell inverse-hexagonal. These three- and five-ply nanocomposites con-

tained continuous domains spanning in either one, two, or three dimensions. We

believe that this approach will lead to advanced materials and devices containing

several plies of functional materials.
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CHAPTER 5

CHIRAL AND NETWORKED NANOCOMPOSITES FROM ABC

TRIBLOCK TERPOLYMER COASSEMBLY WITH TRANSITION

METAL OXIDE NANOPARTICLES∗

5.1 Abstract

Multicomponent materials with ordered nanoscale structures are critical for appli-

cations ranging from microelectronics to energy conversion and storage. Nanoscale

network morphologies are ideal for many such applications requiring charge trans-

port along multiple 3D continuous pathways. Similarly, non-centrosymmetric mor-

phologies facilitate macroscopic polarization for piezoelectricic, pyroelectric, and

second-order nonlinear optical properties in amorphous materials. Although the

alternating gyroid (GA, I4132 space group) morphology posesses all of these char-

acteristics, the coassembly of such nanomaterials has eluded researchers. Here

we report the coassembly of niobia nanoparticles with a poly(isoprene-b-styrene-

b-ethylene oxide) (ISO) which resulted in chiral and networked nanocomposites.

Detailed SAXS and TEM measurements of both pure ISO and the nanocompos-

ites were most consistent with the GA. Electron tomographic reconstructions of

the nanocomposites enabled observation of the chiral spirals as well as the ox-

ide nanoparticle spatial distribution. Removal of the ISO polymer from these

nanocomposites resulted in a mesoporous single gyroid strut network. These are

the first reports of nanocomposites and mesoporous oxides with I4132 symmetry

derived directly from block copolymer coassembly. This general approach was

further demonstrated with amorphous and anatase titania. Such procedures are

compatible with large-scale manufacturing of networked nanoscale devices and

∗Publication in preparation: M. Stefik, S. Wang, R. Hovden, H. Sai, M. W.
Tate, D. A. Muller, U. Steiner, S. M. Gruner, U. Wiesner
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photonic metamaterials utilizing the GA helical axes.

5.2 Introduction

Although there is considerable interest in both networked1 and non-centrosymmetric2

nanomaterials, there are few approaches which are compatible with the large-scale,

affordable fabrication necessary to have a significant impact. Bottom-up fabrica-

tion techniques, such as block copolymer self-assembly enable large-scale process-

ing via casting or roll-to-roll processes, for example. The demixing of covalently

linked polymer blocks into ordered nanoscale morphologies is well understood.3,4

The double gyroid (GD) is a particularly appealing morphology which is cubic

and networked with all of the blocks forming 3D continuous pathways. The most

studied polymer architecture is the AB diblock copolymer, however this class of

polymers is generally limited to spherical, cylindrical, double gyroid, or lamellar

morphologies, all of which are achiral and centrosymmetric.

Use of ABC triblock terpolymers rather than AB diblocks significantly increases

the number of accessible ordered nanostructures and at the same time provides

a natural path to three-component nanocomposites. Furthermore the network

phases formed by triblock terpolymers are not only trifunctional, but also form

over much wider composition windows (4 to 14 vol%5,6) than the double gyroid

structure found in diblock copolymers (2 to 6 vol%7,8). For example an ABC

triblock terpolymer (containing three chemically unique mer units) was shown to

form the alternating gyroid morphology where each of the two minority end blocks

formed a 3D continuous strut network which were separated by a continuous ma-

trix of the middle block.9 The GA not only has three networked compartments,

but also has chiral spirals along six axes within each strut network and is non-

centrosymmetric, unlike the double gyroid which is achiral due to the inversion
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center (Ia3d space group). Non-centrosymmetric morphologies have been made

by self-assembly of triblock terpolymers in selective solvents10 or in the presence

of a diblock copolymer,2 however the resulting non-networked morphologies were

uniaxial and would suffer from pronounced direction dependent properties.11 Chi-

ral nanostructures have also recently been obtained from diblock copolymers in

confinement12 or with a chiral block.13

The addition of inorganic species to polymers often enhances the physical and

chemical properties.14,15 Coassembly processes utilizing the selective interactions

of amphiphilic block copolymers with inorganic particles have been broadly applied

toward structure directing of numerous materials resulting in e.g. highly ordered

silicate,16,17 transition metal oxide,18 and metal19,20 nanostructures. Successful

coassembly relies upon careful tuning of key enthalpic,20,21 entropic,22 and kinetic23

considerations. While such techniques have been extensively studied with AB

diblock and ABA triblock copolymers, there are only a few examples of ABC

triblock terpolymers used as structure directing agents for inorganic materials.24–26

None of these studies describes the formation of chiral and networked structures

such as the alternating gyroid.

Here we report the synthesis of nanocomposites from the coassembly of poly(isoprene-

b-styrene-b-ethylene oxide) with transition metal oxide nanoparticles resulting in

the GA morphology. Note that this approach is different from templating/backfilling

approaches since coassembly provides direct access to inorganic nanocomposites

without the need for multiple and tedious processing steps. For a series of nanocom-

posites with niobia nanoparticles we demonstrate that the chiral and networked

nature of the resulting inorganic networks was most consistent with the GA mor-

phology by using in-depth x-ray and electron microscopy measurements. After dis-

cussing several potential pathways to transform these nanocomposites into func-
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tional multicomponent nanoscale devices we demonstrate the first step of such

approaches by creating mesoporous niobia of the same symmetry. The generaliz-

ability of this approach was evidenced by demonstrating mesoporous single gyroid

strut networks of both amorphous titania and anatase titania.

5.3 Experimental Methods

5.3.1 Block Copolymer Synthesis and Characterization

The ISO triblock terpolymer utilized in this study was synthesized by anionic

polymerization using established procedures.22,27 Briefly, the polymerization of

isoprene and styrene were conducted sequentially in benzene at room termper-

ature. The living chains were end capped with ethylene oxide and terminated.

After purification, the alcohol terminated poly(isoprene-b-styrene) was reactivated

in tetrahydrofuran using potassium napthalide and chain extended with ethylene

oxide monomer, then terminated and further purified. The resulting ISO poly-

mer was amphiphilic, having one hydrophilic O block and two hydrophobic blocks,

I and S. The polyisoprene molecular weight was determined by gel permeation

chromatography (GPC) using twelve poly(isoprene) standards for calibration and

tetrahydrofuran as the eluent. The polydispersity of the final ISO polymer was

determined by GPC. The molecular weight ratios of the styrene and ethylene oxide

blocks were determined by nuclear magnetic resonance spectroscopy in deuterated

chloroform. Quantitative spectra were collected using a Varian INOVA 400 MHz

spectrometer with a 12 second delay between transients. The reported homopoly-

mer densities28 at 140 ◦C were used to calculate block volume fractions.
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5.3.2 Nanocomposite Synthesis

The nanocomposites were synthesized in a one-pot fashion by casting a solution

containing niobia nanoparticles and ISO1. The niobia nanoparticles were prepared

in a chloroform solution containing 50-100 mg of polymer as previously reported

in detail.26 The hydrophilic oxide particles are expected to selectively swell the

O block, thus increasing its effective volume fraction. The combined O + niobia

volume fraction was controlled with the polymer to particle ratio. The volume con-

tribution of the amorphous sol-gel derived niobia was approximated using a density

of 2.0 g/cm3. For comparison, a pure polymer film was prepared with the same

casting procedure. The titania nanocomposite ISO1-T1 was synthesized using a

1.4 wt% solution of ISO1 in tetrahydrofuran. First, concentrated hydrochloric acid

(37 wt%) was added to the polymer solution, followed by titanium isopropoxide.

The molar ratios were 1:2.17:7.47 for Ti:HCl:H2O for the sol-gel reagents. This

solution was then stirred overnight and cast on a covered hot plate set to 50 ◦C.

After the film was completely dry, it was aged at 100 ◦C for 3 days followed by

130 ◦C for 2 days to enhance the condensation reaction. A portion of the film was

heated at 1 ◦C/min to 400 ◦C, held for 1 hr in air and cooled at 1 ◦C/min in order

to convert the amorphous titania sol to anatase.

5.3.3 Equipment

Transmission Electron Microscopy (TEM)

Polymer and nanocomposite films were cut into ultrathin ∼50-70 nm sections at

-55 ◦C with a Leica Ultracut UCT microtome. The slices were collected on a

40:60 solution of water and dimethylsulfoxide and then transferred onto 300 mesh

copper grids. The sections were imaged using a Technai T12 operating at 120 kV.
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The polyisoprene of some samples was stained with the sublimed vapor of pure

OsO4 for 1-24 hours at room temperature. The ISO polymer was subsequently

removed from microtomed samples of ISO1-N3 and ISO1-T1 using a Fischione

model 1020 Ar-O plasma cleaner for 10 minutes. The expected ∼1 nm/sec etch

rate was sufficient to remove all of the ISO from the ∼70 nm thick sections.

A three-dimensional reconstruction of nanocomposite ISO1-N3 was generated

using high angle annular dark field scanning transmission electron microscopy

(HAADF-STEM). A tilt series was collected from -70 to 60◦ at 1◦ intervals and the

images were aligned to a common tilt axis using a combination of cross-correlation

and manual refinement. A simultaneous iterative reconstruction technique (SIRT)

was used to reconstruct the niobia lattice. All tomographic data was processed

using custom software described elsewhere.29 A combination of blue isosurfaces

with a blue translucent density profile was used to render the reconstructed niobia

mesostructure.

Small-Angle X-ray Scattering (SAXS)

Two instruments were used to collect SAXS data. Most of the SAXS data were

collected at the Cornell High Energy Synchrotron Source (CHESS) G1 station,

with a setup consisting of a multilayer monochromator (λ=1.457 Å) with a 2D area

detector and a sample-to-detector distance of 1.61 m and a photon flux of ∼5x1013

photons/sec/mm2. Typical CHESS measurements were made using a beam size

of 200 by 200 µm with an exposure of ∼1 second. The measurements for Figure

5.3 E were made using a 100 by 80 µm beam with 5 second exposures. When

CHESS was unavailable an alternative system was used consisting of a Rigaku

RU300 with a copper rotating anode (λ=1.54 Å) operated at 40 kV and 50 mA.

The X-rays were monochromated using a Ni filter and focused using orthogonal
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Franks mirrors. The SAXS patterns were collected with a homebuilt 1k x 1k pixel

CCD detector similar to that described elsewhere.30 Data are presented as 2D

images as well as 1D plots of radially integrated intensity versus scattering vector

q where q = 4πsin(θ)λ−1, where 2θ is the total scattering angle.

The simulated 2D SAXS pattern in Figure 5.3 B was calculated by combining

the allowed diffraction peaks for all possible in-plane orientations of GA grains with

1◦ increments. All grains were oriented with [110] zone axes aligned with the film

normal which was 60◦ from the simulated scattering pattern.

5.3.4 Modelling

All models were produced using Matlab and a level set model31 which was modified

to have more constant strut thickness.32 The unit cell models were rendered using

isosurfaces of the level set model. The simulated TEM projections were created

using the vol3d v2 package33 to render voxels contained within the isosurfaces. All

TEM simulations were calculated using a thickness of ∼1 d∗
100 which corresponds

to ∼50-60 nm. The niobia was rendered three times as dark as the OsO4 stained

I to be consistent with TEM observations.

5.4 Results and Discussion

5.4.1 Design of an ISO Polymer for Achieving GA Nanocom-

posites

The triblock terpolymer ISO was selected for this study for multiple reasons.

Firstly, ISO is one of the most studied triblock terpolymers providing a mor-

phology map as determined by both experiments34,35 and simulations.6 Secondly,

the block sequence of ISO is in order of increasing hydrophilicity making it non-
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Figure 5.1: The compositions of ISO1 (white) and the resulting nanocompos-
ites (orange) are shown above a morphology diagram calculated
for pure ISO polymers.6 The axes correspond to the volume
fractions of I, S, and O. The oxide nanoparticles (blue circles)
selectively incorporate into the O block of ISO. Thus the com-
bined O + oxide volume fraction was used for the O axis of the
nanocomposites. The shaded region corresponds to the volume
fractions explored in this study.
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frustrated36 and preventing the formation of decorated phases with A-C inter-

faces.3,37,38 Thirdly, ISO is amphiphilic, having two hydrophobic blocks, I and S,

and one hydrophilic block, O, which may be used for the selective incorporation of

hydrophilic nanoparticles. Lastly, ISO is quite similar to poly(isoprene-b-ethylene

oxide) which has been studied extensively as a structure directing agent.39 The

polymer ISO1 was synthesized with the minimum O volume fraction necessary for

the GA morphology since the addition of oxide nanoparticles increases the com-

bined O + oxide volume fraction. ISO1 was composed of 14.63, 29.04, and 9.77

kg/mol of I, S, and O, respectively, and had a polydispersity of 1.05. The volume

fractions of ISO1 were 31.0 vol% I, 52.8 vol% S, and 16.2 vol% O (Figure 5.1).

Furthermore, the 37:63 I:S isopleth which has a large O composition range for

forming the GA was targeted with the hope that this would also result in a large O

+ oxide composition range for GA nanocomposites; please note that there is shift

of the GA region between experimental observations35 and theory.

5.4.2 Morphology of Pure ISO1

The morphological behavior of the parent ISO structure directing agent was char-

acterized by TEM and SAXS. A film of neat ISO1 was prepared using the same

method detailed for the nanocomposites. Microtomed sections were stained with

OsO4 which selectively makes the I domain appear dark in bright field imaging

whereas the unstained S and O domains remain light. TEM images of the stained

film exhibited 4-fold and 3-fold symmetry projections (Figure 5.2 a and b) which

were consistent with the simulated (100) and (111) planes of the I domain in the

GA. Quantitative analysis of these images provided a unit cell dimension d∗
100≈41-

44 nm, (see Figure 5.1 d). An oriented circular 2D SAXS pattern was measured

with the beam path along the film normal (Figure 5.2 c inset). The scattering
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Figure 5.2: Bright field TEM images of neat ISO1 were consistent with the
(100) (a) and (111) (b) planes of the alternating gyroid morphol-
ogy (simulated TEM projections inset). Samples were stained
with OsO4 to enable contrast between the I strut (dark), S ma-
trix (light), and O strut (light). The radially integrated 1D SAXS
pattern (c) (2D pattern inset) was consistent with I4132 symme-
try and the allowed peaks were indicated with dashed lines. A
model unit cell (d) was rendered depicting the I (red), S (green),
and O (blue) domains using the measured volume fractions. The
unit cell dimension d∗

100 was indicated on the model unit cell.
The chiral spirals down the <100> (e) and <111> directions are
easiest to visualize with a low strut volume fraction. The I and
O struts of this morphology have spirals with opposite chiralities
and interweave through each other without contact (f).
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pattern was radially integrated (Figure 5.2 c) and the expected peaks of the I4132

space group were indicated with dashed lines at (q/q∗)2=2, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26, 30, 32, 34. Occasionally a (q/q∗)2=4 peak was observed in some

regions of the film which may have been due to film compression.40 As expected

from the known ISO morphology map35 and the volume fractions of ISO1, the

scattering pattern was consistent with the symmetry of the GA. Furthermore, the

GA is the only one of the six known morphologies for ISO polymers6,35 which was

consistent with this SAXS data. The d∗
100 spacing was calculated to be 47.8 nm

from the q110 scattering vector which was close to the value obtained by TEM.

The cast films of ISO1 formed remarkably well-ordered structures considering the

equilibration challenges of network forming ABC triblock terpolymers41 and that

the film was prepared below the Tg of S. A model unit cell was rendered using

the volume fraction of each component displayed with red, green, and blue for I,

S, and O, respectively (Figure 5.2 d). The GA contains small and large spirals

along both the <100> and <111> family of directions. For a given direction,

the smaller diameter helices share edges with larger diameter helices of opposite

handedness (Figure 5.2 e). However, at realistic strut volume fractions the volume

down the axes of the small diameter spirals is obstructed by the increased strut

diameter, whereas the larger diameter spirals remain open (only these larger spi-

rals will be discussed further). The spirals down the <100> and <111> directions

have opposite handedness. This chirality is preserved throughout a grain. From

the unit cell model, the diameter of the <100> spirals is slightly less than the

pitch, p100=d∗
100. Similarly, the diameter of the <111> spirals is slightly less than

the pitch, p111 =
√

3 · d∗
100/2. The inversion of the I strut through the unit cell

center produces another network with opposite spiral chiralities and is otherwise

topologically identical to the O strut (Figure 5.2 f). All measurements on neat
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ISO1 films were consistent with the GA morphology.

5.4.3 2D SAXS Analysis of Nanocomposites

Nanocomposite materials were fabricated by the coassembly of niobia nanoparti-

cles with ISO1. The three prepared niobia nanocomposites were named in order

of increasing niobia content: ISO1-N1, ISO1-N2, and ISO1-N3 had oxide:polymer

weight ratios of 0.103, 0.250, and 0.419, respectively. These ratios were calculated

using the final mass of oxide assuming complete formation of Nb2O5. The com-

bined O + oxide domain for these three nanocomposites was approximately 20,

25, and 30 vol%, respectively (Figure 5.1). The mesostructures of these nanocom-

posites were determined by a combination of SAXS and TEM characterizations.

SAXS patterns were collected for all nanocomposites as a function of φ, the angle

between the incident beam and the film normal. From this series of characteriza-

tions, sample ISO1-N1 had the largest number of well-resolved SAXS peaks. The

best-defined pattern from ISO1-N1 at φ=60◦ was utilized first for identification

of the structural symmetry. The 2D SAXS pattern was eccentric due to casting

induced mesostructure compression along the film normal, vide infra. The scat-

tering pattern was distortion corrected (Figure 5.3 a) so that the peaks could be

indexed using a combination of manual fitting with algorithmic refinement.40,42

It is usually difficult to determine the lattice symmetry of classic powder diffrac-

tion patterns consisting of a limited number of concentric rings. The inclusion

of azimuthal information such as in Figure 5.3 a places strong constraints on the

possible symmetry groups and unit cell lengths of the sample. The observed scat-

tering peaks had cubic symmetry and the first three peak intensity ratios enabled

the elimination of all cubic space groups except those within aspects 6, 8 and 9.43

While we cannot eliminate space groups within aspects 6 and 8 based on SAXS
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Figure 5.3: The SAXS pattern of sample ISO1-N1 had the most well-resolved
peaks when the incident beam angle relative to the film normal
was φ=60◦ (a inset). This eccentric pattern was distortion cor-
rected to remove the effect of casting induced mesostructural
compression (a). The ∼70 observed diffraction peaks and lobes
were consistent with a homogeneous distribution of GA grain ori-
entations having a common [110] zone axis aligned with the film
normal. Circles are drawn for all even integer values of (qx/q0)2

with q0 = 0.147nm−1 from 2 to 26, inclusive. SAXS patterns of
ISO1-N1 taken at different incident angles were consistent with
lamellae aligned with the sample surface which were hypothesized
to give rise to the observed [110] zone axis alignment with the film
normal (c). The 2D SAXS patterns for all nanocomposites were
radially integrated (d) and are shown in black, red, and green,
respectively, for ISO1-N1, ISO1-N2, and ISO1-N3. The allowed
peak positions for the I4132 space group were indicated with
dashed lines for sample ISO1-N1. A composite of 200 integrated
SAXS scans evenly spaced along a 5 mm by 5 mm area of ISO1-
N1 were displayed as a stack of horizontal lines with the color
indicating the scattering intensity. The relatively uniform scat-
tering profile of ISO1-N1 indicated that the mesostructure was
macroscopically homogeneous (e). All color scales correspond to
the log of the x-ray intensity.
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alone, the combination of SAXS with TEM (vide infra) provides compelling evi-

dence for the I4132 space group of the GA. The ∼70 diffraction spots and lobes

were consistent with a textured film of GA gains having a homogeneous distribution

of grain orientations with all of the [110] zone axis aligned with the film normal.44

Additional characteristics of ISO1-N1 were determined from this SAXS dataset.

At φ=0◦ the resulting pattern exhibited a circular powder pattern indicating that

there was no preferred azimuthal orientation of grains around the film normal

(Figure 5.3 c). The scattering pattern monotonically became more elliptical as φ

increased until the eccentricity was maximized at φ=90◦. Such evaporation induced

unit cell compression along the film normal has been observed many times before

and is characteristic of similar casting processes.23,26,40,42,45,46 The unit cell com-

pression along the film normal was determined from the eccentricity to be between

16.7 and 18% for all of the nanocomposites. Such compression does not remove

the chiral nor the network characteristics of the GA morphology. An additional

feature that was not observed at lower angles of φ was two peaks near q=0.159

nm−1 which were oriented along the film normal. The appearance of a (100) GA

peak could perhaps be caused by symmetry breaking due to film compression,

however, the d-spacing of this feature was 3.1 nm smaller than the compressed

GA d∗
100=42.6 nm dimension. At φ=90◦ these additional peaks were most clearly

resolved in addition to numerous higher ordered peaks corresponding to (q/0.159

nm−1)2=1, 4, 9, 16, 25, and 36, consistent with a lamellar morphology parallel

to the film surface. Considering the orientation of the lamellae, we suspect that

lamellar layers were formed at the teflon-film interface during casting to lower the

interaction free energy. A similar formation of lamellae at the substrate interface

was observed before for thin films of ISO which also formed the GA in bulk.47 Fur-

thermore, oriented lamellae were previously shown to transform into [110] oriented
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GA due to an epitaxial relationship (5% strain) between the lamellar d1 spacing

and the GA d110 spacing.44 In contrast, the lamellar d1=39.5 nm spacing and the

compressed GA d110=30.1 nm spacing in the same direction differed significantly

by 27%. It may be possible that a less strained epitaxial relationship existed be-

tween these two morphologies during the dynamic coassembly process. However, a

simpler interfacial energy argument that one of the A, B, or C dense (110) planes

aligned on top of the terminal lamellae could also explain the observed film texture.

5.4.4 1D Integrated SAXS Analysis of Nanocomposites

The radially integrated SAXS patterns of all of the nanocomposites are shown in

Figure 5.3 d. These patterns were all collected with φ=0◦. The allowed peaks for

the I4132 space group were indicated with dashed lines for sample ISO1-N1. At

high q the peaks become broad and symmetry identification more equivocal; how-

ever, the 2-dimensional patterns (Figure 5.3 a) give confidence to the space group

assignment. Radially integrated diffraction patterns for ISO-N2 and N3 have too

few resolved higher q peaks for a symmetry assignment. This peak broadening

perhaps indicates that higher oxide concentrations lead to limited structural equi-

libration due to oxide cross-linking. However, the first order peak was well resolved

and was used to determine the lattice constant, assuming the I4132 space group;

this assumption was supported by electron microscopy (see below). The d∗
100 spac-

ing calculated from the q110 peak positions shifted to larger spacings with increased

oxide content. The d∗
100 spacing increased from 49.5 to 57.4 nm in sample order

which was consistent with the expected unit cell expansion with increased oxide

volume fraction. Comparison of the d∗
100 spacing from pure ISO to a sample with

very low oxide loading, ISO1-N1, enabled the increase in segregation strength to

be crudely estimated as χeff ≈ 1.2χ using the d∗
100 ∝ χ1/6 relationship.48 Epps et
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al. hypothesized that the increase in segregation strength is enhanced by having

a glassy block (S) at the interface with the hydrophilic O block.49 An increase

in eff should also result in sharper intermaterial dividing surfaces. Two hundred

2D SAXS patterns were gathered at even spacings along a 5 mm by 5 mm piece

of ISO1-N1. The relatively uniform 1D integrated data resulting from all of these

scans (Figure 5.3 e) indicate that the ordered network mesostructure was uniform

over macroscopic distances. The variations in the traces were consistent with large

grains.

5.4.5 TEM Analysis of Nanocomposites

TEM images of microtomed sections of different nanocomposites are shown in Fig-

ure 5.4. The niobia present in the O + oxide domain (dark) enabled TEM imaging

of the microtomed nanocomposites without any staining of the I (light) or S (light)

domains. The low oxide fraction (∼5 vol%) of ISO1-N1 was apparent in the sparse

connectivity and narrow oxide channels of the shown (111) plane projection (Fig-

ure 5.4 a). We suspect that the niobia nanoparticles were preferentially distributed

towards the center of the PEO domain to relax the chain stretching necessary to fill

space.40,50 Nanocomposites ISO1-N2 and ISO1-N3 had much higher oxide loadings

(∼10 and 16 vol%, respectively) and much clearer oxide connectivity when viewed

by TEM. The oxide nanoparticles of ISO1-N3 occupy ∼55 vol% of the combined

O + oxide domain showing that this approach works into the dense nanoparticle

regime.51 TEM projections consistent with several different GA planes were ob-

served for each sample. For the sake of brevity we detail only a few of the numerous

TEM projections for sample ISO1-N3 (Figure 5.4 b-f). The four-fold (100) and

three-fold (111) symmetric planes consistent with a cubic unit cell were viewed by

TEM (Figure 5.4 b and c). The cross-section of the O + oxide helices were clearly
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Figure 5.4: Bright field TEM was used to image the (111) plane of sample
ISO1-N1 (a) as well as the (100) (b), (111) (c), (110) (d), and
(113) (e) planes of sample ISO1-N3. The dark regions correspond
to the O + oxide struts and the light regions correspond to either
the I strut or S matrix. Selective I staining with OsO4 enabled
simultaneous visualization of both the I strut (dark) and the O
+ oxide (darkest) strut within the S (light) matrix on the (113)
plane (f). TEM simulations are shown in insets.
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observed in both of these projections, however the handedness of the spirals cannot

be determined from individual projections. Additional oblique planes such as the

(110) and (113) were also observed frequently by TEM (Figure 5.4 d and e) and

were consistent with simulated TEM projections (insets). It should be pointed

out that there are several different TEM projections that are very similar to the

(113), including the (125), (123), and (431) for example. Due to microtoming in-

duced distortion as well as room temperature flow of the low Tg I block, it is very

difficult to distinguish between these projections with quantitative certainty. The

nanocomposite texture of ISO1-N3 was investigated by microtoming slices parallel

to the film surface. The dominant (110) and (113) projections observed in TEM

of these oriented slices were consistent with the preferred [110] zone axis align-

ment with the film normal determined by SAXS. The I domain was subsequently

stained selectively with OsO4 to enable simultaneous visualization of both the O +

oxide domain (darkest) and the I domain (dark) within the S matrix (light). The

images of stained nanocomposite ISO1-N3 enabled visualization of both minority

strut networks interweaving in the (113) plane (Figure 5.4 f, compare to Figure 5.4

e). Quantitative measurements from the unstained images of ISO1-N1, ISO1-N2,

and ISO1-N3 were consistent with GA morphologies having dimension d∗
100≈30-43,

37-46, and 48-56 nm which were similar to the 49.5, 57.4, and 57.4 nm values

determined by SAXS. The underestimation of lattice dimensions from TEM due

to relaxation in thin sections is a well described and understood phenomena in

I-containing polymer systems.16

5.4.6 Electron Tomography Analysis of Nanocomposites

Electron tomography was performed on nanocomposite ISO1-N3 to directly com-

pare a single enantiomer with a model structure. The reconstructured niobia
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Figure 5.5: The 3D electron tomography reconstruction of nanocomposite
ISO1-N3 (a, blue) was consistent with the level set model (gold)
of the alternating gyroid (b). Views down the [100] axis exhib-
ited left-handed spirals (c) where as views down the [111] axis
exhibited right-handed spirals (d). Measured density distribu-
tions for (110) planes at increasing depth along a [110] direction
(e) were distorted relative to simulated planes from the level set
model (g), perhaps due to the sample preparation. The superpo-
sition of these measured planes (f) had similar symmetry (dotted
box) to the superposition of the simulated planes (h). The aver-
age of fifteen density line profiles across different strut diameters
showed that the niobia distribution was highest at the center of
the struts (i) which lowered the chain stretching requirements for
strut formation.

93



volume (Figure 5.5 a, blue) was clearly networked and was closely related to the

level set model of a single gyroid strut (gold) of the GA structure (Figure 5.5 b).

The differences between the ideal model and the reconstructed volume were likely

due to a convolution of casting-induced compression, microtome-induced shearing,

and reconstruction-induced elongation (each occurring on different planes/axes).

Spirals were directly observed down both the [100] (left-handed) and [111] (right-

handed) directions (Figure 5.5 c,d). As expected for the GA, these two directions

contained helices of opposite chirality. Measurements on the reconstructed niobia

volume were used to determine the pitch and diameter of the <100> niobia spirals

to be ∼51 and ∼40 nm, respectively, as compared to the p100=57.4 nm dimension

expected from the SAXS data. Similarly, the pitch and diameter of the <111>

spirals were determined to be ∼36 and ∼45 nm, respectively, which were similar

to the anticipated p111=49.4 nm calculated from the SAXS data. The consistency

of this 3D structure with the level set model was further tested by analyzing a

series of (110) planes at increasing depth along the [110] direction. The samples

planar density distributions in this direction progressed from a rhombic array of

circles, to a rhombic network, and then to a shifted rhombic array of circles (Fig-

ure 5.5 e). Simulations of these (110) planes based on the level set model undergo

a similar series of patterns, although with rectangular symmetry (Figure 5.5 g).

The measured planes thus were somewhat sheared relative to the simulated planes

which could be due to distortions from both casting and/or microtoming. The

superposition of the measured and simulated planes highlight the similar relative

positions of the structural elements (Figure 5.5 f and h). In particular, the alternat-

ing color of circles along horizontal rows was quite similar to the simulation, albeit

with some distortions. Additionally, the niobia nanoparticle distribution within

the struts was determined from a slice of the reconstructed volume. Fifteen line
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profiles across different strut diameters were normalized and averaged to yield the

bell shaped density distribution of niobia nanoparticles (Figure 5.5 i). The niobia

nanoparticles were most densely packed at the center of the struts and decreased

in density towards the edge of the O+oxide domain. Such a nanoparticle distri-

bution could significantly stabilize networked morphologies by limiting the chain

stretching necessary to fill the volume of the struts.40,50 While the location of

nanoparticles within coassemblies containing block copolymers has been predicted

before, it has never been directly measured using electron tomography.52,53 Al-

though a particular GA enantiomer was observed, we expect these nanocomposites

to have a racemic mixture of grains with equal proportions of each enantiomer.54

However, the large >5 µm grains in these nanocomposites could enable physical

isolation of an enantiomer.

5.4.7 Symmetry Determination and Stability of GA Nanocom-

posites

The chiral and networked nanocomposites presented here are complex in nature.

The convolution of the morphology with the mentioned distortions makes struc-

tural assignment a non-trivial task. However, the combination of 1D and 2D SAXS

with TEM and STEM tomography provides a compelling case for assignment to

the alternating gyroid morphology. In particular, the compositional window (∼20-

30 vol% O + oxide) for the GA nanocomposites was larger than that for pure ISO

(14-18 vol% O) along a similar I:S isopleth.34 This enhanced network morphology

composition window is likely due to the nanoparticles lowering the entropy loss

for O-chain stretching to fill the O-strut volume. The large composition window

for networked nanocomposites derived from ABC triblock terpolymers is a distinct

advantage over AB diblock copolymer structure directing agents.39
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5.4.8 Outlook for Applications

We envision several methods of future fabrication to produce functional networked

nanocomposites from the materials described above. Realization of devices from

these materials may require that the I and S domains be replaced with materials

having different functionality while preserving the networked connectivity. Such a

method of fabrication, where a sequence of three or more unique polymer blocks di-

rect the spatial arrangement of multiple materials, thus defining the interfaces and

pathways, was termed block sequence directed materials (BSDM).55 Two iterations

of selective etching followed with backfilling could produce such a device. There are

numerous accounts of the selective removal of I from block copolymers.56 The vol-

ume previously occupied by the I block could then be backfilled with a functional

hard material. The remaining soft materials (primarily S) could then be selectively

removed with a process such as plasma cleaning. The free volume would then again

be backfilled with a functional material resulting in a nanoscale three-component

networked device. The implications of such a fabrication technique could be signif-

icant provided that the grain boundaries are coherent and do not result in device

failure due to short circuits. An alternative approach to avoid this potential issue

is to use a non-selective etch to remove all of the polymer followed by sequential

conformal depositions of functional materials. This non-selective method would

enable construction of many component nanoscale networked devices and in prin-

cipal could contain far more than three layers. The first step of this approach

was demonstrated with TEM imaging of a mesoporous niobia single gyroid strut

network which resulted from plasma etching the nanocomposite ISO1-N3. The

increased oxide contrast and increased sensitivity of the sample to the incident

electron beam were consistent with complete removal of the ISO polymer.
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Figure 5.6: Bright field TEM images demonstrated that the ordered oxide
single gyroid strut networks (dark) were preserved after removal
of the ISO polymer from GA nanocomposites to produce ordered
mesopores (light). A close-up (a inset) and wide view (a, (100)
plane) of sample ISO1-N3 after plasma removal of the ISO exhibit
the large GA grain with ordered mesopores. This approach was
also demonstrated with titania from sample ISO1-T1. Plasma
removal of ISO from ISO1-T1 yielded amorphous titania with
ordered mesopores (b, (110) plane). Furthermore, crystalline
anatase titania was demonstrated after high temperature calcina-
tion of ISO1-T1. A large view of the (111) plane of a mesoporous
anatase single gyroid (c left) as well as a magnified section (c bot-
tom right) show that the structure survived the heat treatment.
Selected area electron diffraction on the calcined sample was con-
sistent with anatase titania (c top right, PDF #21-1272).
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Extension to Different Oxide Systems

This approach was shown to be generalizable by demonstrating two additional

mesoporous single gyroid strut networks. The coassembly of amorphous titania

nanoparticles with ISO1 using a 0.419 oxide:polymer weight ratio was found to

result in a nanocomposite with the GA morphology, named ISO1-T1 (detailed

characterizations to follow in a separate publication). Plasma removal of the ISO

polymer resulted in a mesoporous single gyroid strut composed of amorphous ti-

tania (Figure 5.6 b). Many applications utilizing transition metal oxides rely on

the specific catalytic, optical, and electronic properties of the oxide in a crystalline

state. To this end, the titania nanocomposite was subjected to a high temper-

ature heat treatment which crystallized the titania and oxidatively removed the

ISO polymer resulting in mesoporous single gyroid strut networks composed of

anatase titania (Figure 5.6 c). Selected area electron diffraction patterns collected

from these materials were consistent with the anatase (PDF No. 21-1272) crystal

structure (Figure 5.6 c, upper right). The structure control for networks of dif-

ferent amorphous and crystalline transition metal oxides as obtained by a direct

coassembly approach is encouraging (Figure 5.6).

Such mesoporous transition metal oxide networks could be useful directly or

as a hard template. When used directly the network could enable orientation

independent percolation for either transport or filtration properties (Figure 6.2

b). A key quality of the mesoporous single gyroid strut is the large ∼70 vol%

of porosity which should enable easier backfilling or higher filtration fluxes. The

mesoporous oxide strut could also be used directly for chiral metamaterials57,58 or

for photonic band gap applications requiring a complete photonic bandgap.59,60

Furthermore, the mesopores could be infiltrated with another functional material

that is perhaps not yet compatible with block copolymer structure directing.61
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Such a process could result in two-component nanocomposites (Figure 6.2 d) or

mesoporous inverse replicas after removal of the template (Figure 6.2 e).62
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CHAPTER 6

OUTLOOK

The previous chapters detailed progress towards the realization of block se-

quence directed materials (BSDM). It was demonstrated through several examples

that the careful tuning of coassembly processes can lead to robust control over

both the composition and morphology of multicomponent nanocomposites. While

the demonstrations thus far are quite promising, there are still several challenges

remaining to create the first operational devices based on BSDMs (Figure 6.1).

Realization of ordered BSDM devices would require that either all polymer blocks

lead directly to functional materials, or alternatively that non-functional polymer

blocks are subsequently replaced by functional materials while preserving the mor-

phology. The future of the former option is dubious as most polymer blocks with

interesting e.g. electronic properties are either semi-crystalline or have a high Tg

and thus tend to form poorly ordered morphologies.1 The latter option seems more

feasible since the required steps have been demonstrated before for simpler binary

systems.

I can envision several methods of fabrication to produce functional nanocom-

posites from the ISO-oxide nanocomposites described in Chapters 4 and 5. The

challenge to building devices out of these nanocomposites is to replace the I and

S domains with different functional materials. One route to accomplish this could

utilize two iterations of selective etching followed with backfilling (Figure 6.2 a).

There are numerous accounts of the selective removal of I from block copolymers.2

The volume previously occupied by the I block could then be backfilled with a func-

tional material by utilizing methods developed in the nanoscale hard-templating

community. The remaining soft materials (primarily S) could then be selectively

removed with a process such as plasma cleaning. The free volume would then again
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Figure 6.1: The pathways and interfaces for e.g. electrochemical devices (a)
could result directly from morphology of a block copolymer (b).
The ultimate goal is to have a sequence of three or more chemi-
cally unique polymer blocks direct both the spatial arrangement
and interface definitions of multiple functional materials.

Figure 6.2: There are two potential routes to convert the ISO-oxide nanocom-
posites into nanoscale networked devices by a series of either se-
lective processes (a) or non-selective processes (c). Furthermore,
mesoporous single gyroid oxides could be fabricated (b) for op-
tical devices, devices requiring orientation independent percola-
tion, or for the hard templating of binary nanocomposites (d) or
for inverse replicas (e). All strategies proposed here would result
in chiral and networked materials.
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be backfilled with a functional material resulting in a nanoscale three-component

networked device. The implications of such a fabrication technique could be signif-

icant provided that the grain boundaries are coherent and do not result in device

failure due to short circuits i.e. A-C type contacts between grains. An alternative

approach to avoid this potential issue is to use a non-selective etch to remove all of

the polymer (Figure 6.2 b) followed by sequential conformal depositions of func-

tional materials (Figure 6.2 c). Thus the electronic integrity of the device would

rely upon the quality of the conformal deposition technique rather than on the soft

dynamics of macromolecules. Successful conformal deposition could be achieved in

such nanostructured cavities with procedures such as atomic layer depostion,3 elec-

trodeposition,4 or chemical vapor deposition.5 This non-selective method would

enable construction of many component nanoscale networked devices and in prin-

cipal could contain far more than three layers. With so many compositional and

morphological options becoming available with future developments of BSDMs

the future is certainly bright for both evolutionary improvement and revolutionary

innovation in nanotechnologies such as advanced energy conversion and storage

devices.
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