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The formation of biogenic crystals in vivo (biomineralization) is controlled in 

part by the interface between organic and inorganic components. These interfaces can 

control the nucleation and growth of crystals, leading to the desired crystal polymorph, 

morphology, size, and orientation. By studying these interfaces, and developing 

increasingly complex synthetic systems, scientists can better understand biological 

systems and develop new materials with novel materials properties.  

Mollusk nacre (mother-of-pearl) is a composite material composed of 

aragonite (CaCO3) and various biopolymers. Synthetically, aragonite is difficult to 

nucleate. Mollusks utilize an organic matrix (β-chitin, silk fibroin-like hydrogel, and 

proteins) to control shell formation. Here, I present an in vitro assay for calcium 

carbonate mineralization where the assay complexity is systematically increased to 

understand the role of each matrix component in controlling crystallization. First, 

functionalized organic surfaces with soluble peptides were combined to probe the role 

of surface-peptide interactions in polymorph selectivity. Specifically, n16N (a 30 

amino acid peptide from the Japanese pearl oyster Pinctada fucata) and its sequence 

variants, n16Ns (randomly scrambled) and n16NN (global Asp → Asn, Glu → Gln 

substitution), were combined
 
with different forms of chitin (α and β) as well as 

synthetic Self-Assembled Monolayers (SAMs). Only the combination of n16N 

adsorbed onto β-chitin leads to the formation of aragonite in vitro. The n16N peptide 

and its variants have different binding affinities for β-chitin which correlate to their 



 

ability to nucleate aragonite.  

The complexity of the original in vitro assay was further increased to probe the 

role of another matrix component: silk fibroin hydrogels. With the addition of silk to 

synthetic, functionalized surfaces (SAMs), the ability of the SAM to affect crystal 

orientation and nucleation (as compared to controls) changed due to protein adsorption 

and denaturation on the functionalized surfaces. With the addition of silk fibroin to the 

chitin-n16N system, orientation and morphological control is gained (regardless of the 

n16N sequence). Flat vaterite crystals and amorphous calcium carbonate deposits are 

oriented with the β-chitin fibers. The work in this thesis provides evidence for the 

possible roles of the chitin-protein interface on mineralization in nacre.  
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CHAPTER 1 

INTRODUCTION: 

CALCIUM CARBONATE MINERALIZATION IN NACRE: IN VIVO AND IN 

VITRO MODELS 

 

1.1 Introduction 

Biomineralization is the study of biological processes that result in the 

synthesis of composites of inorganic minerals within organic matrices as part of their 

skeletal systems. Organisms from all 5 kingdoms are known to produce many different 

minerals with a wide variety of functions.1  A few common examples include mollusk 

shells (calcium carbonate), bone and teeth (calcium phosphate), diatoms and sponge 

spicules (silica), and magnetotatic bacteria (iron oxide). By studying these systems as 

materials scientists, we can learn strategies from biology to create new composite 

materials as well as design in vitro systems to answer questions from biology. The 

scope of my research was to study the mollusk shell and develop an in vitro organic 

matrix for the crystallization of calcium carbonate to further understand how the 

mollusk exerts control over polymorph selectivity. 

 

1.2 Crystallochemical Aspects of Calcium Carbonate Mineralization 

In classical crystallization theory, nucleation occurs via an accumulation of 

ions or small molecules to form clusters (i.e., nuclei). A crystal will not grow until 

nuclei reach a critical size (a balance between increasing the surface energy related to 

the growing surface area and the reduction of bulk energy related to the formation of a 

crystal lattice). Once the critical size is reached, continued growth leads to a reduction 
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in Gibbs free energy and the crystal will continue to grow unimpeded. Purely 

thermodynamic considerations often do not predict experimental results, because 

crystallization is often a kinetic process (Figure 1.1). Kinetic control can express itself 

in non-equilibrium crystal morphologies as well as in the formation of different 

polymorphs. 

 

 

 

 

 

 

 

Figure 1.1 Crystallization pathways under thermodynamic and kinetic control. A 

system may follow a one step route (thermodynamic pathway A) or as a series of steps 

(kinetic pathway B). Each pathway depends on the Gibbs free energy (∆G) associated 

with nucleation (n) and growth (g).2  

 

Polymorphism is the existence of more than one crystal structure for a 

crystalline system. Polymorphism has great scientific and technological significance 

as polymorphs exhibit different materials properties such as hardness, optical 

properties, and solubility all of which are important to fields such as pharmaceuticals, 

agrochemistry, pigments and dyes, as well as the food industry. Therefore, the ability 

to predict and control crystal polymorphism is a continuing scientific challenge. In 
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biomineralization, polymorphism is utilized for different materials properties 

necessary for different locations within the organism. One such example is in 

mollusks, which can selectivity deposit different polymorphs of calcium carbonate 

(i.e., calcite and aragonite) under the control of biopolymers (Figure 1.2). Polymorph 

is determined during crystal nucleation. As such, it is necessary to study the 

microenvironment where the crystal forms to understand polymorph selectivity (see 

Chapters 2, 4 and 5).  

  

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Synthetic and biogenic forms of calcium carbonate. (A) Synthetically 

grown CaCO3. The labels on the micrograph indicate polymorph: A = aragonite, C = 

calcite, and V = vaterite. (B) Biogenic aragonite tablets from a pearl (C) Biogenic 

calcite prisms from Atrina rigida (D) Biogenic vaterite tablets in a lackluster pearl 

from Hyriopsis cumingii (modified from ref.3).  
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Calcium carbonate forms a variety of polymorphic forms.  There are 3 

anhydrous phases (calcite, aragonite, and vaterite), 2 hydrated crystalline forms 

(monohydrate and hexahydrate), and an amorphous phase.  Within Nature, calcite and 

aragonite are the most commonly found polymorphs, having similar thermodynamic 

stabilities under standard conditions.   

Calcite, the most thermodynamically stable polymorph, has trigonal symmetry 

(3bar 2/m). Calcite can be described by two different unit cells: the smallest being the 

acute rhombohedron containing two CaCO3 units, or the hexagonal unit cell with six 

CaCO3 units. The hexagonal unit cell is used for convenience to clearly demonstrate 

the alternating layers of Ca and CO3 perpendicular to the c-axis (Figure 1.3A). 

Synthetically, calcite grows as large rhombohedra defined by six stable {10.4} faces 

(Figure 1.2A). Calcite is brittle, as the {10.4} planes have relatively low attachment 

energies (that holds parallel layers together) and are also cleavage planes. Aragonite 

has orthorhombic symmetry (2/m 2/m 2/m) and is described by an orthorhombic unit 

cell. Similar to calcite, aragonite has alternating layers of Ca and CO3, except in 

aragonite the CO3 layers are split into a double layer, separated by 0.96 Å, with 

different orientations between the two layers (Figure 1.3B).  This double layer 

eliminates the cleavage planes found in calcite and allows for better ion packing (and 

as a consequence aragonite has a higher density than calcite). Aragonite grows 

synthetically as small needle-like crystals, due to a higher growth rate along the crystal 

c-axis, that generally do not grow into large crystals (Figure 1.2A). The last anhydrous 

crystalline phase is metastable vaterite.  Vaterite has hexagonal symmetry (6/m 2/m 

2/m) and is described by a hexagonal unit cell. Like calcite and aragonite, vaterite has 

alternating layers of Ca and CO3, except now the CO3 layers are parallel to the c-axis 

which is perpendicular to the CO3 position in both calcite and aragonite (Figure 1.3C).  
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Synthetically, vaterite forms as poly-crystalline spherulites (Figure 1.2A). Vaterite is a 

metastable phase and as such is rare in Nature (Figure 1.2D).  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Crystal structures of (A) calcite, (B) aragonite, and (C) vaterite, with 

additional CO3 groups shown outside unit cells for clarity and to demonstrate Ca 

coordination.4, 5 

 

Traditional strategies for polymorph selection include changing solvents, 

temperature, reactant concentration, and other growth conditions in an attempt to 

control crystal formation by changing from a thermodynamic toward a kinetic regime 

(or vice versa).6 While calcite and aragonite are widespread in biology, purposely 
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synthesized vaterite (under the control of the organism), exists in few organisms.1, 7-9 

The choice of polymorph, though, is almost always under strict control of specific 

biopolymer interactions. Specialized macromolecules (proteins, polysaccharides, etc.) 

are thought to control the physico-chemical processes of biomineral formation. For 

example, preferential adsorption of these macromolecules on distinct crystal faces can 

lead to growth of certain crystal faces (i.e., morphological control) as well as template 

a specific polymorph of the growing crystal. Vaterite is deposited abnormally (under 

the control of the environment) in lackluster pearls (Figure 1.2D), and has also been 

found in some mollusk shells trying to quickly repair their shell, and is suggested to be 

kinetically favorable under certain conditions and then transform into a more stable 

polymorph later.10  

Within biology there is evidence that developing single crystals grow totally 

co-aligned with respect to an oriented domain of the organic matrix.11 This growth 

process is termed heteroepitaxy. However, the occurrence of highly regular and 

oriented biogenic crystals does not automatically imply the validity of epitaxy. For 

example, recently it has been demonstrated that the formation of calcium carbonate 

crystals in biological systems may occur through the formation of amorphous calcium 

carbonate (ACC) which later converts to a more stable phase.12-14 Furthermore, 

laboratory experiments have also demonstrated that calcite and aragonite can form via 

an amorphous precursor phase.15-17  Regardless of the mineralization mechanism, 

biomineral synthesis is under strict control of the mineralizing organism.  

 

1.3 Mollusk shell formation 

The Mollusca phylum contains 7 taxonomic classes, 5 of which are shell 

bearing. The shells are typically layered structures composed of calcium carbonate, the 
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most commonly produced mineral by biological organisms.1  Within the mollusk shell 

calcite, aragonite, and/or the amorphous phase have been identified. Within 3 of the 

mollusk classes, Gastropoda, Cepholopoda, and Bivalvia, there are several species that 

are capable of forming a bilayer structure. Typically, the bilayer structure contains 

both calcite and aragonite polymorphs separated into distinct layers of each called the 

prismatic and nacreous layers, respectively.  Due to the mollusk’s ability to abruptly 

switch from calcite to aragonite within its shell, the formation of mollusk shells is a 

model system for the general understanding of polymorphic control in 

biomineralization.  

1.3.1 Mollusk shell physiology 

Mollusk shell mineralization is classically described as a series of extracellular 

events occurring within compartments.18  Over the years, the in vivo model for nacre 

formation has evolved due to continued research on the mollusk shell. Nacre contains 

an organic (proteins, polysaccharides, etc) and inorganic (mineral) component. Studies 

have focused primarily on how the organism utilizes these organic molecules to 

control mineralization, including polymorphism, crystal orientation, and morphology. 

Cells synthesize and release macromolecules (to the extracellular environment) which 

self-assemble into a three-dimensional matrix in which the mineral forms.  The main 

steps in the mineralization process are: confining a space, forming an organic matrix 

framework, controlling ion input, constructing a nucleation site, controlling crystal 

orientation and growth, and terminating crystal growth.   

The mantle, the organ responsible for shell formation, is a thin sheet of tissue 

that lies at the inner surface of the shell (Figure 1.4).  The external surface of the shell 

is covered by a layer of highly cross-linked proteins called the periostracum (made by 

the mantle). The periostracum isolates the mantle from the surrounding environment 
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and creates an isolated compartment, called the extrapallial space, in which mineral is 

deposited.  The organic biopolymers and inorganic ions (precursors to shell formation) 

are secreted by the epithelial cells of the mantle and make up the complex fluid filling 

the extrapallial space.  It is well accepted that the organic matrix (both soluble and 

insoluble matrix components) are formed first, and this complex organic matrix 

induces heterogeneous nucleation of calcium carbonate crystals on its surface and 

regulates growth. The outer prismatic layer is deposited first, followed by the inner 

nacreous layer as the shell grows in thickness. Therefore, the mollusks that form 

bilayer shells are suitable models for investigating the polymorphic transition in the 

formation of the shell. 

 

 

 

 

Figure 1.4 Schematic (not drawn to scale) of a mollusk shell cross section 

demonstrating the locations of the soft and hard tissues in relationship to the mineral 

growth edge. (Adapted from ref.19) 

 

There is much to be learned from mollusk shell formation and the role of the 

soluble and insoluble organic matrix in the formation and control of CaCO3 

mineralization. More specifically, Nature’s control over crystal polymorph, size, and 

orientation, as well as, the thickness and configuration of the microstructural layers in 

vivo.  
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1.3.2   In vivo nacre models 

Mollusca is a huge phylum with a wide variety of biomineral structures, but 

here I focus on mollusk nacre in mollusks that contain a bilayer structure containing a 

calcite prismatic layer and aragonite nacreous layer. Nacre, or mother of pearl, is only 

found in a few species across the entire Mollusca phylum, though it receives a lot of 

scientific attention due to its impressive mechanical properties, its bioactivity (i.e., as a 

material utilized for bone tissue engineering20), as well as for its polymorph selectivity 

(as it is difficult to synthesize aragonite under ambient conditions).  X-ray 

photoelectron emission spectromicroscopy (X-PEEM) measurements on nacre indicate 

that the nacre tablets are co-aligned in the c-axis (with only ±11º misorientation over 

centimeter length scales), while there is no long-range order in the ab orientation.21, 22 

Although nacre has the same basic structure in different species of mollusks, there are 

a few differences when making comparisons across classes (i.e., gastropods, 

cephalopods, and bivalves). Bivalves follow a “brick wall” type structure, where there 

are overlapping terraces of nacre tablets (Figure 1.2B, 1.5A).23 While in gastropods 

there is a “stack of coins” type structure where all the tablets are vertically aligned on 

top of each other (Figure 1.5B-D).11, 24, 25 Some cephalopods (Nautilus is an example 

of this) have a mixture of both towered and terraced growth in adjacent locations. To 

focus my discussion of nacre, I will focus on what is known regarding nacre in 

bivalves only. 
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Figure 1.5 Simplified models of nacre formation of (A) “brick wall” bivalve nacre 

and (B) “stack of coins” gastropod nacre.26 SEM micrographs of gastropod nacre from 

a (C) fractured transverse section of nacre from Calliostoma zizyphynus and (D) a top 

down view displaying towers of tablets from Bolma rugosa.27 

 

The “modern” nacre models started in 1969 with the work of Bevelander and 

Nakahara who studied various mollusks through electron microscopy.28 They 

proposed a “compartment model” where a preformed organic mold existed for 

aragonite tablets to form, but neglected to identify the organic components of the 

interlamellar matrix. As time progressed, individual researchers began to identify the 

organic components, such as an acidic template for nucleating crystal growth,29 acidic 

macromolecules for inhibiting crystal growth,30 and charged biomacromolecules such 

as specific amino acid sequences (i.e., Asp-rich)31, 32 and sulfated polysaccharides33 for 

concentrating calcium ions. These findings segregated the organic matrix into two 

groups, the soluble and the insoluble matrix fractions. The soluble component is made 
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up of “soluble” proteins (by water, acid, or EDTA), while the insoluble component is 

made up of the polysaccharide β-chitin and a hydrophobic silk fibroin-like protein 

(amino acid sequence is similar to spider and silkworm silk fibroin34).  

All of these findings, as well as additional x-ray and electron diffraction data, 

were integrated into the next nacre model which was published in the 1980s by 

Weiner and coworkers.32, 35, 36 This model was known as the “sandwich model” where 

the insoluble framework (composed of β-chitin) is sandwiched between two 

hydrophobic silk fibroin-like protein layers with a β-sheet structure, on top of which is 

a layer of Asp-rich soluble proteins (Figure 1.6A). The model suggested successive 

steps of nucleation and inhibition, with the addition of new organic matrix layers: 

poly-anionic template (chitin + proteins) to promote crystallization followed by the 

introduction of other proteins on top of the newly formed tablet to inhibit further 

crystal growth.  This model was later referred to as “heteroepitaxy” because of indirect 

evidence that the organic matrix (β-chitin) acts as a template for aragonite nucleation 

and growth. Implications for epitaxial crystal nucleation was assumed because of the 

well-defined spatial relationship between the orientations of protein and chitin with 

aragonite.36 A template mechanism requires stereochemical matching between the 

organic molecules and the mineral lattice, and is expected to determine crystal 

polymorph and orientation. However, this model does not explain the hierarchical 

structures of nacre tablets. A mineral bridge model was also proposed where the 

aragonite crystals grow through pores, or mineral bridges, to explain growth of co-

aligned tablets.11 Direct evidence for the mineral bridges model, however, was found 

in gastropods, but not in bivalves.11, 37, 38  
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Figure 1.6 (A) The “sandwich” model where layers of chitin, silk, and acidic 

macromolecules separate aragonitic plates.35 (B) The currently accepted model of the 

nacre growth within a silk gel-like phase.39 

A drastic change in the view of in vivo nacre models came in 2001 with work 

by Levi-Kalisman et al., which remains the accepted model today (though it has been 

modified to fit a more dynamic perspective).39, 40 This model (Figure 1.6B) retains the 

layered structure of the sandwich model, but changes the matrix structure based on 

cryo-TEM characterization of nacre. The insoluble β-chitin scaffold, which is the main 

component of the interlamellar matrix remains the same, but the silk fibroin-like 

proteins are proposed to be in a β-sheet gel-like state that acts as a space filler between 

chitin layers. Later environmental SEM studies of nacre verified that the silk-like 

protein is a hydrated gel.40 The last matrix component, the assembly of soluble 

proteins, are both adsorbed onto the chitin surface as well as occluded within the silk-

like gel. The proteins occluded within the silk-like hydrogel may control crystal 

polymorph and/or morphology.  Nudelman et al. demonstrated, by histochemical 

studies of decalcified nacre, that there are carboxylate and sulfate groups on the 

organic matrix sheets acting as nucleation sites for nacre tablets.41 These nucleation 
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sites (one per tablet) are randomly distributed and have no associated crystallographic 

orientation in the ab aragonite plane, though they may play a role in determining the 

crystal orientation in the c direction (i.e., templating mechanism). All the organic 

components are not thought to function in isolation, and their assembly and interaction 

may be essential for the correct regulation of crystal nucleation, growth, morphology, 

and polymorph.42 

Although the soluble organic material is present in relatively low amounts 

(between 0.03 to 0.5 wt%),43 great endeavors have been made to isolate these proteins 

from specific shell layers to sequence and characterize them. Some of these soluble 

proteins become occluded within the crystal while others may form films around the 

mineral.44-47 A comprehensive review by Marin and coworkers discusses and groups a 

majority of the known molluscan proteins (from both the prismatic and nacreous 

layers) according to their pI values.48 The majority of aragonitic proteins are termed 

“moderately acidic shell proteins” with pI’s ranging between 4.5 and 7.5 and 

molecular weights below 85 kDa, and include n14,49 n16,50 nacrein,51 pearlin,52 

MSI60,34 mucoperlin,53 Pif,54 AP7,55 and AP24,55 to name a few examples. While 

many mollusk protein sequences are becoming known, we still lack a fundamental 

understanding of the participation of proteins in mollusk shell formation and no 

proteins that independently induce aragonite crystal formation, characteristic of nacre, 

have been identified. 

Recently, it has been demonstrated that the formation of calcium carbonate 

crystals in biological systems may occur through the formation of ACC which later 

converts to a more stable phase.12-14 Weiss et al. found that the larval shells of two 

marine bivalves contain an ACC precursor for aragonite.13 Other researchers have 

begun to detect amorphous material in adult mollusks as well.40, 56, 57 Amorphous 

materials are thought to be advantageous, because with the aid of organic 
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macromolecules, they can control the crystalline transition to a non-equilibrium crystal 

phase, as well as potentially be molded into intricate structures.12, 58, 59 While the 

existence of ACC in nacre has become well accepted, its role, as well as the 

conversion mechanism to crystalline material (with the correct orientation and 

polymorph) is still debated. 

 

1.4 Model systems 

As discussed in the previous sections, mollusk biomineralization (and most 

other biomineralization systems) is regulated by soluble and insoluble organic 

components. The soluble components may control crystal phase and morphology, 

while the insoluble components may control nucleation and growth. The interplay 

between the organic and inorganic components in vivo, at both the molecular and the 

supramolecular levels, are dynamic, complicated, and not well understood. Therefore, 

scientists have tried to create model systems (such as for nacre) to better understand 

biomineralization systems, and to provide information about the mechanisms that may 

be relevant to biomineralization processes (section 1.4.1). Biomimetic experiments, or 

bio-inspired materials synthesis, try to exploit biological control in vitro to design new 

materials with novel materials properties (briefly discussed in section 1.4.2). 

1.4.1   In vitro nacre models 

Biological control over nacre mineralization is currently beyond what scientists 

have been able to achieve synthetically. By testing in vitro models we can better 

understand biological systems. Two in vitro studies have looked at the entire nacre 

organic matrix. Falini et al. and Belcher et al. have explored the organic matrix 

components of nacre in vitro to try and elucidate their roles in polymorph selectivity 

for nacre formation.42, 60 Belcher et al. grew calcium carbonate on the nucleating 



 15 

protein sheet isolated from the red abalone (Haliotis rufescens) and was able to switch 

between calcite and aragonite polymorphs in the presence of soluble proteins extracted 

from either the calcitic or aragonitic shell layers, respectively.60 These results suggest 

that the soluble proteins control crystal polymorph and morphology. Falini et al. 

suggested that the insoluble organic matrix plays a role in polymorph control as well.42 

In Falini’s assay, calcium carbonate was grown on a substrate of β-chitin and silk 

fibroin, with the addition of soluble macromolecules from either the calcitic or 

aragonitic layers. Falini’s results demonstrated that polymorphic control was only 

possible with the complete substrate assembly (chitin + silk with soluble 

macromolecules). Both Belcher and Falini used a mixture of soluble macromolecules 

isolated from mollusk shells. As a result, nothing could be concluded about which 

protein(s) were important for determining polymorph selectivity.  

Subsequent experiments have further investigated the function of the total 

organic matrix assembly extracted from the mollusk shell.39, 54, 61, 62  These 

experiments have tried to distinguish between different protein functions in the 

assembly by isolating individual matrix components, and the results suggest that a 

subset of macromolecules are important for polymorph selectivity. More recently 

researchers have focused on extracting, purifying, and characterizing individual 

macromolecules, then using them in in vitro crystallization assays to try and gain 

information regarding the nucleating capabilities of the specific macromolecule 

isolated.49, 54, 62-68 Information about these shell proteins’ location (in the tissue and its 

spatial relationship to nacre) as well as structure (primary, secondary, and tertiary) are 

necessary to identify its function in vivo.  

Shell proteins exert a control on the biomineralization process, and to start to 

understand these “control” proteins at the molecular level, shorter terminal peptide 

sequences have been made from the full known protein sequences.55, 69-73 By utilizing 
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peptides, studies can try and understand the relationship between the structure of the 

peptide and its function in nacre formation (see Chapter 2). From these shorter 

sequences, important residue clusters can be identified. Many nacre proteins contain 

short, contiguous charged clusters of anionic (Asp, Glu), cationic (Lys, His, Arg), or 

hydrogen-bonding donor/acceptor (Ser, Thr, Tyr, Gln, Asn) residues.74 With an 

appropriate balance of each residue type, each protein sequence is capable of binding 

Ca2+, CO3-, and water either in solution or at the mineral interface.45, 70, 75 Other 

important residues include Gly, Pro, and Cys, which can affect protein conformation, 

motion, and stability.74 To date, few nacre peptide structural studies have been 

conducted, though the ones that have been studied demonstrate that many nacre-

associated polypeptides are structurally unstable and require external forces to 

stabilize their internal structures (i.e., intrinsically disordered).70, 72, 76-78 One such 

study investigated the organic-mineral interface with x-ray adsorption near edge 

spectroscopy (XANES). This study found evidence of peptide ordering (of the amino 

acid side chains) when the nacre-specific peptide is associated with the mineral.78 

The control macromolecules are typically minor macromolecular components 

of the biological material. Often, in in vitro crystallization studies, aragonitic proteins 

are insufficient to nucleate aragonite by itself. Rather the proteins need to be adsorbed 

to a substrate, mixed with other macromolecules, or combined with magnesium to 

achieve polymorph selectivity.42, 49, 50, 60, 79 While nacre protein research looks at the 

individual macromolecules, these studies often neglect to take into account the other 

organic matrix components (i.e., the insoluble “framework” macromolecules: β-chitin 

and silk-like protein hydrogel, or that some of the control proteins may be part of a 

larger protein complex). 

After cellulose, chitin (a linear polysaccharide whose monomer unit is N-

acetylglucosamine, Figure 1.7) is the second most abundant biopolymer found in 



 17 

Nature.80 In nacre, the major component of the nacre interlamellar matrix is β-chitin 

(parallel repeat of the monomer unit).39 Little in vitro research has been done on 

chitin,79, 81-84 as its role in calcium carbonate based minerals appears relatively passive: 

neither chitin nor chitosan (deacetylated chitin) modify calcium carbonate growth in 

vitro.79, 81, 82, 84 In vivo, β-chitin fibrils are preferentially aligned parallel to the a-axis 

of the aragonite tablets.32  This polysaccharide-crystal alignment implies that aragonite 

orientation may be governed by the chitin, however, chitin lacks any chemical 

functional groups (i.e., carboxylates) capable of interacting strongly with calcium 

carbonate.32, 36 However, a class of multi-domain proteins, often referred to as 

interactive matrix proteins,85 are believed to interact with both the β-chitin substrate 

and the growing crystal.34, 64, 65 It is likely that these proteins somehow translate the 

chitin fibril orientation to the crystals,41 either directly or via “molecular proxies”, i.e., 

other matrix proteins that interact directly with the interactive matrix proteins and the 

mineral phase as it grows. Over the years, multiple nacre-specific proteins, which may 

fulfill the role of “molecular proxies,” have been identified and characterized.48, 54, 74 

In order to successfully model polymorph selection and phase stabilization in the 

laboratory, similar protein-polysaccharide interactions should be exploited to form a 

stable, functionalized surface for crystal nucleation (see Chapters 2, 4, and 5). 

 

 

 

 

 

Figure 1.7 Chemical structure of chitin monomer (α-chitin = anti-parallel repeat, β-

chitin = parallel repeat) 
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Another key component in the formation of mollusk shells is the hydrophobic 

Gly and Ala rich silk-like protein hydrogel (Figure 1.8). While the exact role of silk 

fibroin in nacre growth is unknown, possible roles have been speculated.40 In vivo the 

silk-like hydrogel is a space filling agent and therefore can maintain the appropriate 

microenvironment for mineralization. In vitro, silk fibroin hydrogels are mild 

inhibitors of mineralization, and as such may limit the space for a critical nucleus to 

develop.40 Therefore, the hydrogel can act as a site directing agent by suppressing 

crystallization, preventing uncontrolled crystallization until nutrients are in contact 

with the nucleating site or with the already formed mineral. Nature utilizes hydrogels 

in vivo because the crystallization environment in a hydrogel differs from solution 

growth in diffusion rates, ion activities, and water “structure” (especially in 

hydrophobic gels like silk) making a hydrogel an ideal environment to control crystal 

growth in vivo. Crystal growth in gels can also lead to morphological changes in the 

forming crystal, and sometimes result in porous crystals if the gel becomes 

occluded.86-93  

 

 

 

 

 

 

 

Figure 1.8 β-sheet structure of silk fibroin (rich in glycine and alanine)  
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In nacre, the silk-like proteins do not occur alone in vivo, but as a three-

dimensional matrix (with chitin) for interaction with the soluble proteins, and together 

the matrix is able to control mineralization in a confined space. Therefore, both chitin 

and silk should be considered when designing an in vitro nacre model.39, 42 Scanning 

electron microscopy (SEM) and cryo-TEM (transmission electron microscopy) studies 

of an artificial chitin-silk (from silkworm cocoons) substrate showed that the addition 

of silk does not alter the appearance of chitin, nor does it appear to form a 

recognizable separate layer, and therefore may be intercalated into the chitin matrix.39, 

61 However, these studies, and most in vitro crystallization studies with silk have 

utilized silk as a solution or a film,42, 83, 94-96 and few studies have actually looked at 

silk fibroin hydrogels. Therefore, to create more accurate in vitro models for nacre 

formation, one must use silk fibroin hydrogels in their experiments (see Chapters 4 

and 5).  

 In vitro mineralization experiments, with nacre specific components, are 

essential for clarifying the exact role of these biomolecules in the nacre 

biomineralization process.  Previously, few in vitro studies have investigated multi-

component systems, but instead looked at one or two components at a time.45, 54, 76, 97, 

98 This thesis systematically investigates more complex systems, which will help 

elucidate the roles and interactions among the different components in the 

biomineralization process, including biology’s polymorphic control. 

1.4.2 Bio-inspired Materials Synthesis 

Studies that utilize ideas from biomineralization, but do not explore the 

specific matrix components, are considered bio-inspired materials syntheses and not in 

vitro models. While synthetic analogs do not help to gain understanding about the 

exact role of specific biomolecules in vivo, they do provide a synthetic platform for the 
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creation of new materials with materials properties similar to their biogenic 

counterparts. 

Bio-inspired materials synthesis is a fast growing scientific field that has 

produced an almost unmanageable amount of literature. In vitro studies using natural 

and synthetic molecular systems have shown that matrix control of crystal morphology 

is possible.1, 33, 42, 60, 99-103 Biologically inspired calcium carbonate synthesis has been 

carried out with a range of additives and on a range of organic substrates. Additives 

can change crystal morphologies by modifying surface energies via preferential 

adsorption on crystal surfaces. Fewer studies have been able to show control over 

polymorph.42, 60, 104 Researchers have utilized the addition of many additives in 

solution (both synthetic and biological) including polymers,102, 105-107 amino acids,108-

111 and other low molecular weight additives112, 113 to favor the nucleation of the less 

stable polymorphs, vaterite and aragonite. 

 Highly ordered surfaces, such as Langmuir-Blodgett and self-assembled 

monolayers (SAMs), have been employed as synthetic models for crystallization.89, 104, 

114-124 These studies exploit the interfacial molecular recognition between the SAM 

terminal functionality and the forming crystal nuclei at the organic-inorganic interface. 

Many of these systems are able to orient calcite crystals, but fewer are able to control 

polymorph without the addition of other soluble additives. Vaterite formation seems to 

be the most common metastable phase on disordered, rough, and/or high charge 

density monolayers,104, 125-127 though ACC,99, 128 and aragonite15, 129 may also form.  

By combining a nucleating surface, with soluble additives, crystal orientation 

as well as morphology and polymorph can be better controlled. The synthetic matrix 

can act as an organic template by orienting crystals (functionalized surfaces) and by 

affecting morphology/growth rates (additives). When SAMs are combined with 

soluble additives, such as magnesium, it is also possible to control the morphology of 
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the crystals as a function of the nucleating surface.130 Another synthetic system, which 

coupled an agarose hydrogel on top of a carboxylate-terminated SAM, was able to 

simultaneously control calcite shape and orientation.89 Yet another system, exploits 

the cooperative templating affect between the organic components and aragonite by 

using either poly(acrylic acid) or poly(aspartate) additives with a poly(vinyl alcohol) 

or SAM functionalized substrate.131-134 Together, the components are successfully able 

to control polymorph by forming poly-crystalline aragonite thin films.  

Besides using biological systems as inspiration for synthetic mineralization, 

mineralization in synthetic systems can also provide insight into possible mechanisms 

in biomineralization processes.  For example, the previously mentioned application of 

SAMs to orient CaCO3 nucleation can act as a synthetic model for understanding the 

process of organic-matrix mediated nucleation in mollusk shells (see Chapter 4). Also, 

the use of various additives to affect both crystal morphology and polymorph in vitro 

is similar to the role of the soluble additives in the nacre organic matrix. Therefore, the 

mechanisms learned through additive controlled crystallization can be applied to the 

understanding of nacre formation in vivo. The use of synthetic systems to understand 

in vivo processes is an important realization, as it is generally easier to identify 

mechanisms for controlled synthetic systems than it is for in vivo experiments.  

 

 1.5 Summary and Outlook 

Gaining understanding of the molecular interactions occurring at the interface 

between inorganic mineral and a macromolecular organic matrix is still a scientific 

challenge in biomineralization.  Biogenic crystal formation, such as the aragonite 

tablets of nacre, serve as an example of the importance of such interfaces. While the 

components of the nacre organic matrix are well characterized, the exact function of 
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individual components in controlling crystal growth are still being explored. 

Continued research is needed to elucidate key biological questions such as: what 

makes a “good” organic matrix, what gives the proteins structure in the organic 

matrix, which amino acid motifs determine polymorph selectivity, and what happens 

at biological interfaces (i.e., organic-organic or organic-inorganic interfaces) and how 

are they important to mineralization? To be able to fully utilize nature’s control over 

mineral formation in vitro (i.e., polymorph, orientation, morphology), continued 

efforts in fundamental biomineralization research is required. 

 

1.6 Outline of the dissertation 

In this dissertation, I developed an in vitro model of nacre biomineralization. 

To study the control of polymorph selectivity I systematically built up the complexity 

of an experimental assay to understand the structure and function of the in vivo 

organic matrix responsible for nacre formation. My synthetic organic matrix is formed 

from biologically relevant components to probe biological control over mineralization 

in vitro. I utilized silk fibroin hydrogels to replace the silk-like proteins in vivo, and 

nucleating surfaces, such as the biologically relevant β-chitin, or SAMs with similar 

functionalities as the insoluble framework matrix. I also substituted short, nacre-

specific peptides for the full, complex soluble protein matrix, to better understand their 

biological control on the molecular level.   

The first part of this dissertation (Chapter 2) focuses on the function of 

surfaces and additives; specifically looking at the interaction between a nacre specific 

peptide, n16N,72 with the insoluble organic matrix substrate, β-chitin.79 Chapter 3 

introduces silk fibroin hydrogels, the space filling protein within the organic matrix, 

and how purification method can affect the properties of the resulting gels. The last 
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part applies the silk hydrogel to the in vitro assay to look at the gel with respect to its 

structure at surfaces (Chapter 4) and in the entire synthetic matrix construct for 

calcium carbonate crystallization (Chapter 5).  
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CHAPTER 2 

MATRIX INTERACTIONS IN BIOMINERALIZATION: ARAGONITE 

NUCLEATION BY AN INTRINSICALLY DISORDERED NACRE 

POLYPEPTIDE, N16N, ASSOCIATED WITH A β-CHITIN SUBSTRATE*

 

2.1 Abstract 

Previous literature by Falini et al. suggests that the cooperation between β-

chitin, proteins, and a silk fibroin-like hydrogel determines polymorph selectivity 

within the nacreous layer of mollusk shells (favoring aragonite over calcite formation). 

Here I present an in vitro assay in which I combine functionalized organic surfaces 

with soluble peptides to probe the role of surface-peptide interactions in calcium 

carbonate polymorph selectivity. Specifically, I combined n16N (a 30 amino acid 

peptide from the Japanese pearl oyster Pinctada fucata) and its sequence variants, 

n16Ns (randomly scrambled) and n16NN (global Asp → Asn, Glu → Gln 

substitution),
 
with different forms of chitin (α and β). I found that the combination of 

n16N adsorbed onto β-chitin leads to the formation of aragonite in vitro as well as 

demonstrated chitin binding ability. Negative controls, including sequence modified 

versions of n16N (n16Ns and n16NN) exhibit variation in β-chitin binding and the 

ability to nucleate aragonite. The peptide + α-chitin combination exhibits very little 

chitin binding, and nucleates exclusively calcite with minor morphological effects. 

The n16N and n16Ns peptides used in this study are considered intrinsically 

disordered and have previously been shown to interact with calcium carbonate. I 

propose n16N’s intrinsically disordered structure also allows the peptide to interact 

                                                 
* Portions reproduced with permission from E. C. Keene, J. S. Evans, and L. A. Estroff, Crystal Growth 
and Design, 2010, 10 (3), 1383-1389. Copyright 2010 American Chemical Society. 

 35 
 

 



with the substrate creating a new organic matrix interface. The cooperation between 

the peptide and substrate may explain the polymorph specificity among these samples.  

 

2.2 Introduction 

As described in Chapter 1, the invertebrate mollusk represents an important 

model materials system due to the presence of a bilayer shell in some bivalves that is 

comprised of two different polymorphs of calcium carbonate (the calcitic prismatic 

and the aragonitic nacre layers).1
 
 The materials properties of each shell layer are 

different and these properties arise in part from the presence of biomacromolecules in 

each layer.2  A challenge to the materials science community is to establish how these 

biomacromolecules facilitate polymorph selection and materials properties. In order to 

develop molecular principles for the synthesis of new materials, based upon mollusk 

shells, we need to identify how proteins and polysaccharides assemble to form 

chemical environments that lead to polymorph selectivity. Here, I present a synthetic 

system with which to assay interactions among different matrix components and to 

evaluate which of these interactions lead to the selective nucleation of aragonite. 

Extracting, purifying, and characterizing individual macromolecules is 

difficult, but can lead to information regarding the nucleating capabilities of specific 

macromolecules. Experiments have investigated the function of the total organic 

matrix assembly extracted from the mollusk shell.1, 3, 4 These experiments have tried to 

distinguish between different protein functions in the assembly by isolating individual 

matrix components, and the results suggest that a subset of the macromolecules are 

important for polymorph selectivity.5, 6  

Over the years, many nacre specific proteins have been identified and 

characterized, all of which are species specific.7-11 Nacre specific proteins are often 
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hydrophilic and charged, while their specific functions are still being explored. One 

particular nacre specific protein, n16, from the dorsal region of the Japanese pearl 

oyster Pinctada fucata, is thought to be an aragonite promoter protein.9 With the 

addition of n16, when grown in combination with magnesium and the water insoluble 

matrix from P. fucata, spherical or plate-like crystals form, and under certain 

conditions aragonite mineral deposits were observed.9 The full protein is a 108 amino 

acid, acidic (pI 5.1), non-glycosolated protein rich in Gly, Tyr, Asn, and Cys.9 A 30 

amino acid N-terminal fragment of the n16 protein, n16N has been prepared to 

elucidate the effects of this protein on CaCO3 nucleation and growth.12-14 The peptide 

n16N is unfolded under “normal” conditions, but folds into a β-strand conformation 

under other conditions (i.e., concentration and solvent).12, 13 Due to this property 

(unfolded in the monomeric state, but can undergo folding upon interaction with a 

“target”) n16N is considered an intrinsically disordered peptide (IDP).13, 15-19   

In previous in vitro mineralization studies with n16N, calcite crystals with 

“staircase” structures, in which both acute and obtuse edges of calcite were affected (a 

phenomenon not previously seen with other nacre proteins) promoting non-

rhombohedral calcite geometries.12, 14 NMR studies have found that n16N can form 

complexes with Ca2+ and its metal ion analogues (i.e., CdCl2, LaCl3, EuCl3) indicating 

the presence of metal binding sites within the peptide sequence such as Asp and Glu 

residues.13 Solid state 13C-CP/MAS NMR experiments detected the presence of bound 

n16N peptide on geological calcite crystals “rescued” from overgrowth assays (the 

bound peptide could not be removed with successive washings).13  Experiments with 

x-ray adsorption near edge spectromicroscopy (XANES) further explored the n16N-

calcite association.20 This experiment indicated that n16N undergoes significant 

peptide side chain rearrangement when adsorbed to the mineral, as compared to n16N 

in solution. From both the XANES and NMR experiments, it is as of yet unknown 
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whether n16N is localized exclusively at exposed organic-mineral interfaces, or if the 

n16N becomes occluded within the crystal during mineral formation. However, some 

recent n16N crystallization work, characterized with x-ray photoelectron emission 

spectromicroscopy (X-PEEM), found small amounts of lamellar aragonite (5%), 

where the layers are interspersed with organic material (n16N).21 

Amino acid substitutions (global Asp → Asn and Glu → Gln substitution, 

n16NN) or sequence scrambling (n16Ns) of n16N were made to determine the 

participation of single residues in the mineralization process.14, 22 The change in 

peptide sequence affects in vitro mineralization activities associated with each native 

polypeptide sequence. The scrambled sequence, n16Ns, still possessed the ability to 

affect calcite growth with the “staircase” structure, but to a smaller degree compared 

to the native n16N.14 This type of mineralization activity, however, is absent from 

n16NN assays, but instead a “biofilm” coating forms over some rhombohedral calcite 

crystals.22  It appears that n16NN may self-assemble to form thin films that become 

mineralized in vitro. The loss of mineralization activity is a result of the loss of Ca2+ 

binding sites (i.e., Asp and Glu) as NMR studies find that n16NN no longer forms 

metal-peptide complex as the native n16N.22  

Here, I present an in vitro assay in which I combine functionalized organic 

surfaces with n16N (and its mutants) to probe the role of this particular peptide-

surface interaction in calcium carbonate polymorph selectivity. Previous studies have 

shown that n16N interacts with calcium carbonate,12, 14 but an interaction between 

peptide and chitin, to form a new matrix interface, has not previously been identified. 

My results demonstrate that the intrinsically disordered n16N sequence is responsive 

to multiple targets (i.e., mineral and polysaccharide) and preferentially nucleates 

aragonite once it is bound to β-chitin. 
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2.3 Results  

2.3.1 Effect of nacre peptide sequence on polymorph selection.   

My approach was to combine n16N and its sequence variants (Table 2.1), 

n16Ns (randomly scrambled) and n16NN (global Asp → Asn, Glu → Gln 

substitution),22
 
with different forms of chitin (α and β) to establish the effects of 

different polysaccharide scaffolds and n16N on the formation of calcium carbonates. 

The chitin substrates were regenerated α-chitin (from reacetylated chitosan films),23, 24 

and β-chitin from purified squid pen1, 23, 25 (see experimental for further details). The 

resultant polysaccharide + peptide combinations utilized in the experiments are 

summarized in Table 2.1. The n16N variants (n16Ns and n16NN) are peptide controls 

to determine the role of peptide sequence (n16Ns) and charge (n16NN) in the function 

of n16N. Crystallization and fluorescence microscopy experiments investigated 

different peptide-chitin assemblies and their role in determining polymorph selectivity. 

 The β-chitin + n16N combination yielded poly-crystalline aragonite, compared 

to negative control assays containing β-chitin alone, which resulted in rhombohedral 

calcite single crystals (Figures 2.1A, B and 2.2; Table 2.1). Aragonite crystals were 

identified by morphology (needle-like clusters) and verified by x-ray diffraction and 

Raman spectroscopy (Figure 2.2). Parallel assays were also run, using samples where 

n16N was initially adsorbed onto a β-chitin surface and subsequently rinsed to remove 

adventitiously bound peptide.  Here, I observed the formation of aragonite and a 

minority vaterite component (Figure 2.3). This result indicates that residual n16N still 

remains bound to the β-chitin substrate after the washing procedures. Hence, I 

conclude that the n16N + β-chitin two-component system is capable of favoring the 

nucleation and growth of aragonite over calcite. 
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Table 2.1 Peptide-Substrate Interactions: Polymorph and Peptide Binding Results 

Peptide Substrate Polymorph1 Peptide Binding2

n16N β-chitin Calcite 3% 

Aragonite 89% 

Vaterite 10% 

Strong fluorescence 

 

 α-chitin Calcite 97% 

Aragonite 0% 

Vaterite 3% 

No fluorescence 

n16NN β-chitin Calcite 7% 

Aragonite 71% 

Vaterite 11% 

Moderate fluorescence 

 α-chitin Calcite 91% 

Aragonite 2% 

Vaterite 7% 

No Fluorescence 

n16Ns β-chitin Calcite 55% 

Aragonite 34% 

Vaterite 11% 

Weak Fluorescence 

 α-chitin Calcite 93% 

Aragonite 1% 

Vaterite 6% 

No fluorescence 

1 The mineral phase percentages determined by counting more than 250 crystals from SEM images, 

over the triplicate experiments. Polymorph in bold highlights the majority mineral phase. 

2 Peptide binding was assessed by fluorescent labeling studies with a BODIPY maleimide dye. 

Fluorescence levels are described by pixel brightness levels: strong >200, moderate 100-200, and 

weak <100. 
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Figure 2.1 SEM micrographs of crystallization studies on β-chitin substrates with A) 

no additives (control), B) n16N, C) n16NN, and D) n16Ns. All crystals are calcite in 

(A). Vaterite crystals are designated by V’s in (B & C) while all other crystals are 

aragonite (majority phase) and aragonite crystals are designated by A’s in figure D 

while all other crystals are calcite. All peptide concentrations were 10 µM, and Ca2+ 

concentrations were 10 mM. 
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Figure 2.2 (A) Raman spectra of CaCO3 crystals grown in the presence of n16N on α- 

and β-chitin substrates. These spectra correspond to calcite and aragonite, 

respectively. (B) XRD plot of CaCO3 crystals grown on β-chitin in the presence of 

n16N. Smaller indices written on plot index the β-chitin structure. Indices preceded by 

an A index aragonite and a V index vaterite.  

 

 

 

 

 

 

 

 

Figure 2.3 SEM micrograph of a piece of β-chitin that was incubated with 5 µM 

n16N, rinsed, then used for crystallization studies. Both aragonite and vaterite 

polymorphs are present, vaterite crystals are designed by white V’s; all other crystal 

aggregates are aragonite. 
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The β-chitin + n16NN crystallization assays produce similar results to those 

obtained with n16N (Table 2.1).  Here, the majority of the crystals formed are 

aragonite, with a minority of vaterite and some calcite as well (Figure 2.1C). 

Crystallization studies conducted with n16Ns + β-chitin, however, exhibit a majority 

phase of calcite with the minority being aragonite (Figure 2.1D).  Regions of high 

nucleation density contain exclusively calcite, while regions of lower nucleation 

density have a mixture of aragonite and calcite. This spatial variation in polymorph 

selectivity suggests that the n16Ns may still interact with the β-chitin surface, but not 

as effectively as native n16N. These control experiments (n16NN and n16Ns) show 

that the replacement of anionic residues with amide counterparts and the random 

scrambling of the n16N sequence led to a reduction in the ability of the two-

component system to produce aragonite, although residual polymorph selectivity is 

still retained in spite of the amino acid sequence changes (Table 2.1).  

Two other nacre-specific peptides, AP7N26, 27 and AP24N,26 along with a 

simple anionic polypeptide, poly-L-glutamic acid (p-Glu), were also tested in the β-

chitin assay. For all three additives, only calcite forms (Figure 2.4). While there were 

interesting morphological effects with p-Glu, there was no polymorph selectivity 

(Figure 2.4A).  
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Figure 2.4 Calcium carbonate crystallization on β-chitin (A) SEM micrograph with 

magnified inset of crystals grown with p-Glu. (B) Raman spectrum of crystals grown 

with p-Glu. Characteristic calcite peaks are designated by C’s on the graph. SEM 

micrographs (C) with 10 μM AP7N and (D) with 10 μM AP24N. 
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2.3.2 Effect of the molecular structure of the substrate on polymorph selection.   

To investigate the specificity of the surface for determining polymorph 

selectivity, I ran parallel assays using α-chitin + n16 peptide combinations (Table 2.1, 

see Figure 1.7 for the structure of α- versus β-chitin).  Compared to the parallel repeat 

structure of β-chitin, α-chitin features an anti-parallel chain repeat.  Using α-chitin, I 

observed that the majority of crystals grown in the presence of all three n16 peptides 

are calcite, with many calcite crystals being elongated along the c-axis (Figure 2.5).  

As compared to the β-chitin surfaces, α-chitin nucleated very few crystals. In addition 

to the calcite crystals, I observed small mineral particles on the α-chitin surfaces, 

which are presumably amorphous calcium carbonate (ACC), that were not observed 

on β-chitin (Figure 2.5B).  As further controls for surface functionality, self-assembled 

monolayers (methyl and carboxylate-terminated SAMs) of alkanethiols on gold were 

also tested within this experimental assay.  All combinations of the nacre-specific 

peptides and SAMs yielded randomly oriented calcite, whose rhombohedral 

morphologies are comparable to control calcite crystals (Figures 2.6, 2.7, and 2.8) 

while p-Glu results in polycrystalline calcite (Figure 2.8C). 
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Figure 2.5 SEM micrographs of crystallization studies on α-chitin substrates with (A) 

no additives (control), (B) n16N, (C) n16NN, and (D) n16Ns. All crystals are calcite, 

except smaller mineral particulates in (B) may be amorphous calcium carbonate. All 

peptide concentrations were 10 µM, and Ca2+ concentrations were 10 mM. 
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Figure 2.6 SEM micrographs of crystallization studies with n16N and SAMs with the 

following functionalities: (A) control (without n16N and functionality) (B) none (C) 

carboxylic acid and (D) methyl. All peptide concentrations are 10 µM. 

 

 

 

 

 

 47 
 

 



 

 

 

 

 

 

  

 

Figure 2.7 XRD spectra of crystals grown on a carboxylic acid terminated SAMs with 

and without the addition of the n16N peptide. 

 

Figure 2.8 SEM micrograph of crystals grown on a carboxylic acid terminated SAM 

with the addition of (A) AP7N, (B) AP24N, and (C) p-Glu. All peptide concentrations 

are 10 µM. 

 

2.3.3 Peptide – polysaccharide binding studies.   

To investigate the binding of n16N to both α- and β-chitin, fluorescence 

labeling was used to image the peptides bound to the different surfaces (Figure 2.10 

and Table 2.1). The peptides were adsorbed onto the surfaces, washed, and labeled 

using a maleimide fluorescent dye, BODIPY FL. BODIPY was chosen for the 
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experiments due to its ability to selectively bind to the Cys groups in the peptide and 

not to the chitin surface. In addition, BODIPY is a neutrally charged dye, which will 

minimally affect the pI of the peptide as well as limit any non-specific labeling due to 

charge interactions between the peptide and the dye.28 

Prior to labeling, the α- and β-chitin substrates were imaged by fluorescence 

microscopy to quantify substrate auto-fluorescence (Figure 2.9).  After labeling, the β-

chitin surface incubated with n16N peptide fluoresces at all brightness levels above 

the auto-fluorescence level of β-chitin (>50 pixel brightness level, Figure 2.10), 

indicating that n16N binds to the β-chitin substrate. The peptide variants n16NN and 

n16Ns bind to lesser degrees. The n16NN has a similar mid-range fluorescence (100-

150 pixel levels) as n16N, but does not have the brighter regions present in the n16N 

samples (>175). The n16Ns peptide does not fluoresce as brightly as either the n16N 

or n16NN and, therefore, it is likely that n16Ns does not bind as effectively to the 

chitin substrates.  All α-chitin samples have little to no fluorescence, suggesting poor 

binding interactions between the peptides and this polysaccharide surface as compared 

to β-chitin (Figure 2.10).  

 

Figure 2.9 Histograms quantifying the auto-fluorescence of β-chitin (A) and α-chitin 

(B) without the adsorption of any peptide or dye. 
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Figure 2.10 Representative fluorescence micrographs and summed histograms 

compiled from triplicate experiments of chitin substrates incubated with n16N (A & 

E), n16NN (B & F), n16Ns (C & G), and BSA (D & H). The left column (A, B, C, and 

D) are β-chitin and the right column are α-chitin (E, F, G, and H). All images were 

taken at the same exposure time and camera gain. 
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In parallel assays, bovine serum albumin (BSA) was used as a negative 

control; with proper washing techniques, BSA should be removed from β-chitin 

surfaces (Figure 2.10D and H).8, 29, 30  I found that after treatment of α- and β-chitin 

with BSA, both substrates fluoresce weakly (barely above the auto-fluorescence of the 

substrate itself, Figure 2.9).  This result suggests that most of the BSA has been 

removed from the substrates during the washing procedure. While it does appear that 

some non-specifically bound BSA is still present on the chitin surface after washing,  

note that the n16N fluorescence on β-chitin is much greater compared to the BSA 

fluorescence signal.  The reader should be aware that BSA has 35 Cys residues 

compared to the 3 Cys found in n16N and its variants.  Thus, even if trace amounts of 

BSA do survive the washing procedure, a significant background signal will still be 

detected. To check this, another nacre protein sequence, AP24N (contains 1 Cys 

residue/30 AA)31 was utilized in my peptide-chitin adsorption/washing experiments.  

Here, I found that AP24N does not fluoresce on either chitin substrate and, therefore, 

does not have a significant binding ability (Figure 2.11). 

 

Figure 2.11 Histograms of fluorescence data of β-chitin (A) and α-chitin (B) 

incubated with AP24N. 
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2.4 Discussion 

This study demonstrates that cooperative interactions between an insoluble 

matrix (i.e., β-chitin) and a hydrophilic nacreous matrix protein sequence (i.e., n16N) 

lead to polymorph selectivity in vitro.  The binding of n16N to β-chitin and the 

resultant nucleation and growth of aragonite, suggests that the n16 protein is an 

interactive matrix protein, which may promote the growth of aragonite crystals in the 

nacreous layer of the mollusk shell.  In the experiments presented here, the 

combination of β-chitin + n16N is required for polymorph selectivity; the separate 

components alone are not capable of nucleating aragonite. It has been shown that β-

chitin has the correct epitaxial match with aragonite but not the correct chemistry,32, 33 

therefore, n16 is necessary to interact with chitin to form a new molecular interface 

capable of controlling polymorph selectivity. 

The intrinsic disorder of the n16N sequence13 is probably a key factor that 

allows this peptide to simultaneously interact with β-chitin and the nucleating mineral 

phase.  It is known that intrinsically disordered protein (IDP) sequences can bind to 

multiple targets15-19 and in some cases the conformation of the protein sequence is 

target-dependent.  Previous work has demonstrated that n16N modulates the growth of 

calcite by changing its morphology, and thus can interact with calcium carbonates.12, 14 

This work now establishes that n16N is capable of a second interaction: with β-chitin.  

The specificity of n16N for β-chitin (over α-chitin) suggests that this IDP sequence 

can discriminate between polysaccharide chains.   

I suggest that the unstable, partially unfolded structure of n16N facilitates 

interactions with β-chitin, such that internal stabilization (i.e., folding) of the n16N 

sequence occurs upon binding.  Subsequently, the binding of n16N to β-chitin could 

trigger a polypeptide disorder-to-order transition,15-19 which may then lead to a 

rearrangement of the n16N side chain groups.  In turn, this new arrangement of 
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chemical groups may favor the nucleation of aragonite.  The fact that n16N undergoes 

side chain rearrangement upon binding to calcite20 lends support to this proposal.  

Whether the n16N peptide becomes ordered on the β-chitin surface, and the 

arrangement of n16N polypeptide chemical groups required to nucleate aragonite is 

currently not known. 

The two n16N variants, n16NN and n16Ns, were useful for studying the 

effects of charge and sequence of the peptide, respectively, on polymorph selectivity.  

These variants also shed light on the molecular requirements for β-chitin binding and 

inorganic phase selection.  The Asn and Gln substituted n16NN variant, which has an 

α-helical structure,22 retains the β-chitin binding capability but not at the same level as 

the random-coil/β-strand n16N.  This result suggests that the peptide’s secondary 

structure, which is influenced by the anionic groups, plays a role in mediating the 

binding interaction between the peptide and the β-chitin. Crystallization studies 

conducted with n16NN + β-chitin show a reduction in aragonite nucleation, 

accompanied by the appearance of vaterite and calcite crystals, as compared to the 

matrix formed with the n16N. This result suggests that the absence of anionic groups 

(though crystallization results with p-Glu on β-chitin demonstrated that more than a 

negative charge is necessary for polymorph selectivity) and the loss of intrinsic 

disorder in the n16NN peptide reduce the ability of this peptide to selectively nucleate 

aragonite over calcite and vaterite. 

The random coil n16Ns + β-chitin matrix primarily leads to the growth of 

calcite, which is consistent with previous mineralization studies with n16Ns.14, 22 This 

loss of polymorph selectivity, coupled with the observed reduction in n16Ns affinity 

for β-chitin, also indicates that the linear arrangement of amino acids is critical for 

IDP – target interactions.  Given that n16Ns is disordered, similar to n16N,22 I 

speculate that the loss of chitin binding and polymorph selectivity may be attributed to 
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sequence scrambling affecting n16Ns’ IDP disorder-to-order transformation (or lack 

thereof) upon chitin binding.15-19 Alternatively, since the linear positions of the Cys 

residues have changed in n16Ns compared to n16N, it is possible that the labeling 

efficiency of n16Ns by the fluorescence dye may have been altered relative to n16N, 

resulting in decreased fluorescence signal for the n16Ns + β-chitin combination. The 

change in Cys positions, though, would have no effect on polymorph selectivity. 

To date, only two macromolecules from mollusks have been characterized to 

possess β-chitin binding capability: Prismalin-14 and Prisilkin-39.8, 30 This work 

demonstrates that n16 can be added to this list. I have shown that n16N interacts more 

favorably with β-chitin than α-chitin, and that this interaction leads to aragonite 

nucleation on β-chitin only. The binding of n16N to β-chitin may help to explain the 

role of the full length protein, n16, in polymorphic control over calcium carbonate 

nucleation and growth. As previously discussed, n16N is an IDP and I speculate that 

there is a disorder-to-order transformation upon binding to the β-chitin, such that the 

chitin structures the protein and exposes anionic functional groups with the proper 

arrangement/orientation to nucleate aragonite. The new interface (with the n16N 

peptide), however, is not structured enough to produce oriented aragonite crystals, as 

observed in nacre. A recent report suggests that n16 is part of a larger protein complex 

and it is possible that other components from this cluster are responsible for the 

oriented growth.6 

In summary, I have demonstrated that a 30 AA N-terminal nacreous protein 

sequence, n16N, exhibits β-chitin binding activity and aragonite phase selectivity in 

vitro without the need for additional additives other than β-chitin.  The n16N + β-

chitin complex presents a molecular interface that is able to promote the preferential 

formation of aragonite. Further studies will establish the orientation and structure of 

n16N on β-chitin, as well as the side chain groups responsible for aragonite selectivity 
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and β-chitin - peptide affinity. This in vitro system can be further increased in 

complexity to probe the role of other matrix components in controlling not only 

polymorph, but also crystal morphology and orientation. The interaction of other 

matrix elements (i.e., silk fibroin hydrogels), in this system, will be explored in 

subsequent chapters. 

 

2.5 Materials and Methods 

2.5.1 Peptide Synthesis and Purification 

  The 30-mer polypeptide, n16N, representing the 1-30 AA domain of native 

n16 (Table 2, was synthesized using the protocol described in earlier work.12-14 The 30 

AA randomly scrambled version of n16N (n16Ns), and the globally substituted Asp 

→ Asn, Glu → Gln version, n16NN were also synthesized and purified as described 

(Table 2.2).22 All three peptides were synthesized in the C-amide “capped” form. 

Poly-L-glutamic acid (Sigma-Aldrich) was used without further purification. 

Table 2.2 Nacre n16 polypeptide sequences 

Designation Primary Sequence1

n16N AYHKKCGRYSYCWIPYDIERDRYDNGDKKC 

n16Ns EPRYCKWCDNKHGDRAGCKYSIDYYKIRDY 

n16NN AYHKKCGRYSYCWIPYNIQRNRYNNGNKKC 

1For clarity cationic amino acid residues are highlighted in blue, anionic residues are highlighted in red, 

and Cysteine residues are highlighted in green.  

 AP7N (DDNGNYGNGMASVRTQGNTYDDLASLISYL) and AP24N 

(ADDDEDASSGLCNQYNQNVTTRPNNKPKMF) were synthesized using the 

protocol described in earlier work.26 Poly-L-glutamic acid (Sigma-Aldrich) was used 

without further purification. 
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2.5.2 Chitin Purification/Preparation 

 The β-chitin from the pen of the Loligo species of squid was purified by 

refluxing the pen in 1M sodium hydroxide (NaOH) solution for 3 days, changing the 

NaOH purifying solution daily.1, 23, 25 The polysaccharide was then extensively washed 

with DI water and stored dry until use. The β-chitin substrates were rehydrated in 10 

mM CaCl2 solutions for a minimum of 2 hours prior to crystallization studies.1  

For studies involving α-chitin, chitosan films were obtained by evaporation of 

a solution of 1.25 w/v% chitosan (medium molecular weight, Sigma) in 1% acetic 

acid.23, 24 The solution was filtered and placed on glass cover slips and air dried at 

room temperature. Films were immersed in a solution of dilute ammonia in methanol 

(15 mL NH4OH 33%, 35 mL DI water, 500 mL methanol) for 1 hour to regenerate the 

free amino form of chitosan.24 The chitosan films were then reacted with 1 M acetic 

anhydride in methanol for 6 hours on a rocking table at room temperature to acetylate 

the chitosan to form regenerated α-chitin.23 The reaction was terminated by removal of 

the films from the reaction solution, washing with methanol, then water, and air 

drying. N-acetylation of chitosan was verified by FTIR (not shown).34 Films were 

stored dry at room temperature until use. 

2.5.3 Crystallization experiments 

 Crystal growth experiments were carried out using a 24 well plate (Nunc, non-

treated multi-dishes) mini-desiccator via the vapor diffusion method. Solid ammonium 

carbonate ((NH4)2CO3, Sigma) was placed in one corner of the plate and covered with 

crystallization tape (Fisherbrand Adhesive Plate Seals) with one small hole poked in 

the center. Solid, anhydrous calcium chloride (CaCl2, Sigma) as well as aqueous, 7 

mM CaCl2 (high purity calcium chloride dihydrate was used for solution crystal 

growth, Sigma) were placed in between the carbonate source and the crystallization 

experiment wells to slow diffusion and prevent condensation from forming within the 
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sealed 24 well plate. 1 cm2 substrates were put in the bottom of the crystallization 

wells and covered with 0.5 mL of solution of 10 mM CaCl2 and 10 µM peptide 

(controls are without the presence of peptide). The plate perimeter was then sealed 

with Parafilm®. Crystallization experiments were carried out at room temperature for 

24 hours, after which substrates were removed, rinsed with DI water, and dried before 

characterization. All crystallization experiments were done in triplicate, in 3 separate 

mini-desiccators. 

 2.5.4 Morphology and Polymorph Analysis 

 The morphology of the grown crystals was examined via scanning electron 

microscopy (SEM, Leica Stereoscan 440, 15 kV, 900 pA) after they were coated with 

a thin layer of Au/Pd. For each set of conditions, greater than 250 crystals were 

counted from SEM images among the 3 experiments, and the percentage of each 

polymorph calculated. The polymorph of the crystals was determined via Raman 

(Renishaw InVia micro-Raman system, 785 nm excitation frequency) and x-ray 

diffraction (Bruker General Area Detector System, transmission mode, 40 kV, 40 mA 

or Scintag Theta-Theta Diffractometer, CuKα radiation, 45 kV, 40 mA, 4.00 deg/min 

scan rate). 

2.5.5 Adsorption experiments 

 Chitin substrates were incubated with 5 µM solutions of n16N or bovine 

serum albumin (BSA, Fisher Scientific) on a rocking table at room temperature for 24 

hours to allow the peptide/protein time to adsorb from the solution onto the chitin 

substrate. After 24 hours, substrates were washed with DI water, saline solution (0.2 

M NaCl), buffer (10 mM Tris, pH 7.2), and finally DI water again to remove any 

unbound peptide/protein. Substrates were immediately used for crystal growth or 

fluorescence experiments.  
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2.5.6 Fluorescence experiments 

 Substrates with adsorbed peptide were reacted with BODIPY FL N-(2-

aminoethyl) maleimide (Invitrogen) according to manufacturers instructions with the 

following modifications: nitrogen purged 10 mM Tris buffer (pH 7.2) and 1 µM Tris 

(2-carboxy-ethyl) phosphine hydrochloride (TCEP, Sigma) was added to each sample 

and reacted for 30 minutes to reduce any disulfides prior to the addition of the 

maleimide dyes. After 30 minutes, 1 µM dye is added to the reaction solution and 

reacted for 2 hours at room temperature on a rocking table. All dyeing steps were 

performed in a dark, oxygen minimum environment to reduce the chance of disulfide 

formation as well as photobleaching of the dyes before fluorescence imaging could be 

carried out. After the reaction was complete, the samples were extensively rinsed to 

remove excess dye and imaged.  

Specimens were imaged via fluorescence microscopy (Olympus BX51 

equipped with a Roper Cool Snap CCD Camera, 100 msec exposure time). A mercury 

lamp with a “green” filter (λex = 460-500 nm, λem = 510-560 nm, Dichroic filter = 505 

nm) was used for fluorescence imaging. A neutral density filter was used to reduce the 

intensity of the mercury lamp by 25%. All images were recorded in grayscale (12 bit 

image, capture area 1394 x 1040 pixels, gain of 1, and 1 x 1 binning) and were scaled 

to the same intensity values using the Image Pro imaging software package. 

Histograms were made in ImageJ to quantify fluorescence brightness distributions 

among grayscale sample images, white was assigned 256 and black was assigned 0 by 

ImageJ with all levels of gray in between. All fluorescence experiments were done in 

triplicate.  
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CHAPTER 3 

HYDROGELATION OF SILK FIBROIN: THE EFFECT OF PURIFICATION 

METHOD 

 

3.1 Abstract 

This chapter evaluates hydrogel formation by silk fibroin solutions purified 

from silkworm cocoons by three purification methods: deionized water (pH 6.5), 5 

w.v% Marseilles soap (pH 8.25), and 0.02 M Na2CO3 (pH 10.5). The primary aim of 

the purification is to remove silk sericin, the main contaminate, with minimal 

hydrolysis to the silk fibroin protein. Depending on the purification method used, the 

kinetics of hydrogel formation and the rheology of the final hydrogels varied. The 

fibroin purified with Marseilles soap and water produced the stiffest hydrogels with 

higher yield stresses than the Na2CO3 purified material. These two gels also formed 

more quickly than the gel formed from Na2CO3 purified silk. The macroscopic 

kinetics of gelation, as monitored by CD spectroscopy, is correlated with a random 

coil to β-sheet transformation of the fibroin protein chains. The morphological and 

structural characteristics of freeze dried gel samples were assessed by SEM and XRD 

respectively. Possible explanations for variations among the samples are that the three 

purification methods differ in the amount of sericin removed (quantified by mass loss 

and Direct Red 80 Staining) and the degree of degradation of the fibroin protein 

(assessed by SDS-PAGE): water was ineffective at removing sericin but does minimal 

damage to the fibroin protein; Na2CO3 removed all of the sericin but also hydrolyzed 

the fibroin into shorter protein chains; Marseilles soap was as effective at removing 

sericin as Na2CO3 but with less hydrolysis of the fibroin. Based on these trends, I 

conclude that the purification method of silk fibroin is a key variable in determining 
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the characteristics of the resulting silk fibroin hydrogels. This work suggests that for 

applications involving silk fibroin hydrogels, the choice of purification method is a 

key factor in determining the final properties of the gel.  

 

3.2 Introduction 

As discussed in Chapter 1, a silk fibroin-like protein hydrogel plays an 

important role in the formation of nacre. Therefore, to clarify the role of this 

biomolecule in biomineralization, reproducible silk fibroin hydrogels with specific 

properties (i.e., secondary structure or viscoelasticity), must be utilized in synthetic 

systems. 

Silk fibroin from Bombyx mori (silkworms) is processed into a variety of 

structures including fibers, films, and hydrogels. This versatility leads to diverse 

applications of silk in textiles, medical implants,1-3 tissue engineering,1, 4, 5 and 

biomineralization.6-10 Aqueous solutions of silk readily form hydrogels under a variety 

of conditions including heat,11 application of shear stress,12, 13 treatment with 

methanol,14, 15 or decreasing pH.16-18  The hydrophobic regions of random coil silk 

fibroin assemble in aqueous solutions via hydrophobic interactions and organize into 

β-sheets, physically cross-linking the hydrogels.17, 19  These hydrogels are viscoelastic, 

polymer networks whose biocompatibility,1, 2 biodegradability,20 and mechanical 

properties21-23 make them ideal candidates as biomaterials. In this chapter I examine 

the effect of three different purification methods of silk fibroin on the properties of the 

resulting hydrogels for later use in in vitro experiments discussed in subsequent 

chapters. 

Silkworm cocoons are composed of silk fibroin (a hydrophobic protein) and 

silk sericin (a mixture of hydrophilic polypeptides), which account for approximately 
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75 and 25 wt% of the native silk, respectively.24 The structure of silk fibroin has been 

extensively studied using X-ray diffraction,25-27 electron diffraction and microscopy, 
11, 28, 29 infrared spectroscopy,16, 25-28 NMR spectroscopy,25-27 and circular dichroism 

spectroscopy.30-34 Silk fibroin, extracted in vivo from silk-producing glands in 

silkworms, contains heavy and light polypeptide chains, of ~350 kDa and ~25 kDa, 

respectively, connected together by disulfide linkages. The heavy chain is largely 

constructed from repeating sequences of glycine, alanine, and serine (GAGAGS), 

along with a high tyrosine content.25, 35  

Before silk fibroin is used for most applications (especially biomedical 

purposes) the immunogenic sericin is removed to improve the properties as well as the 

biocompatibility of the silk materials.2 Silk sericin content has previously been shown 

to influence the characteristics of regenerated silk fibers by retarding the 

crystallization process of silk fibroin, increasing the total β-sheet content of the 

regenerated silk, and increasing the tensile strength of individual fibers.36, 37  

There are many methods, which require harsh chemical conditions, to degum (remove 

the sericin) and to solubilize the silk fibroin from silkworm cocoons.9, 11, 28, 35, 38-41 

Typically, cocoons are boiled in an alkaline degumming solution, sometimes with the 

addition of surfactants, to remove the silk sericin. Sericin removal is thought to occur 

via several mechanisms including base hydrolysis of the sericin polypeptides and 

solubilization of the sericin by surfactants.38, 40 The use of different purification 

methods can cause inconsistencies among reports regarding the characteristics of the 

silk fibroin (e.g., molecular weight and β-sheet content) 11, 17, 39 and characteristics of 

the resulting hydrogels (e.g., kinetics of gelation and rheology).26, 35, 42 

Here I report a comparison of three representative degumming methods: a 

neutral solution (water, pH 6.5), a weakly alkaline solution with surfactant (5 w/v% 

Marseilles soap, pH 8.25), and a strongly alkaline solution with no surfactant (0.02 M 

 64



Na2CO3, pH 10.5). The clean silk fibroin fibers are then dissolved using chaotropic 

reagents (usually 9.3 M LiBr), followed by dialysis to remove the salts. In this chapter, 

gels are formed from the purified silk solutions by heating. I focus on comparing the 

kinetics of gelation and rheological properties of the resulting gels, and found that the 

gel properties vary with purification method. These variations may be due to the 

effectiveness of sericin removal and the degradation of the fibroin protein chains 

during purification.  

 

3.3 Results and Discussion 

3.3.1. Characterization of Silk Hydrogels 

3.3.1.1. Gelation 

 Hydrogels were prepared from solutions of purified silk fibroin (~5 w/v %). 

Two different gelation methods were investigated: gelation at room temperature and in 

a 60º C hot water bath.11 The length of time it takes for the silk solution to gel is 

dependent on the purification method and the temperature (Table 3.1). Room 

temperature gelation is slower for all samples as compared to incubation at 60º C. At 

60º C, W-gel (gel formed from water purified, method 1, silk solutions) formed the 

fastest of the three samples, while SC-gel (gel from sodium carbonate, method 3, silk 

solutions) formed the slowest. At room temperature, the W-gel formed faster than the 

MS-gel (gel from Marseilles soap, method 2, silk solutions), while the solution from 

method 3 did not gel, even after 15 days. Upon gelation, the macroscopic appearance 

of the hydrogels depends on the temperature: solutions that were incubated at 60º C 

resulted in clear gels, while solutions kept at room temperature formed opaque gels.  
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Table 3.1 Gelation times and gelation rates as a function of purification method. 
Preparation 

method 
degumming 

agent 
Gel 

name 
60º C 

gelation 
time 

(days)a

Room 
temperature 

gelation 
time (days)a

rate’β-sheet,  
(mdeg mg-1 

hr-1)b,c

rate’’β-sheet, 
(mdeg mg-1 

hr-1)b,c

1 water W-gel < 1 2 62.5 ± 11.2 4.5 ± 1.4 
2 5 w/v % 

Marseilles 
soap 

 
MS-gel 

 
2 

 
9 

 
38.9 ±   9.8 

 
4.3 ± 0.6 

3 0.02 M 
Na2CO3

 
SC-gel 

 
4 

 
> 15 

 
4.2 ±  1.1 

 
1.0 ± 0.5 

           a All silk solutions were 5 ± 0.5 mg/mL 
         b Silk (20 μg/mL) incubated at 60º C  in the CD spectrometer. 
      c Slope coefficient values of ellipticity/milligram at 217 nm versus time  ± range of 

        values from 2-3 trials calculated by Equation 3.1.    

3.3.1.2. CD spectroscopy  

Changes in the protein secondary structure during gelation were investigated 

by variable temperature circular dichroism (CD) spectroscopy. CD spectroscopy 

measures the differences in the adsorption of left- and right-handed polarized light, 

which arise due to structural asymmetry within a molecule. Protein secondary 

structure can be determined by CD in the far UV region (190-250 nm). The CD signal 

arises from the protein chromophore, the peptide bond. Each secondary structure (α-

helix, β-sheet, random coil) has a characteristic shape spectrum, and like all 

spectroscopic techniques, the CD signal represents an average of the total secondary 

structure present.43 

All CD spectra were recorded for diluted (~20 μg/mL) fibroin solutions to 

obtain good signal to noise ratios. Immediately after dialysis, the CD spectra of all 

three fresh silk fibroin samples are similar with minima at 195 nm, indicating a 

random coil conformation (Figure 3.1). Upon gelation, either at room temperature or 

at 60º C, the CD spectra change to have maxima at 195 nm and minima at 217 nm, 

indicating the formation of β-sheets (Figure 3.2).  
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Figure 3.1 CD spectra of fresh silk fibroin samples at 25º C. Water purified fibroin 

(method 1, 25 μg/mL, ---), Marseilles soap purified fibroin (method 2, 21 μg/mL, ____), 

and Na2CO3 purified fibroin (method 3, 22 μg/mL, .....). 
 

 

 

 

 

 

 

 

Figure 3.2 Overlay of a diluted silk fibroin heated at 60º C (solid line) for 48 hours 

and a mature gel aged at 60º C for 48 hours diluted to the same concentration (dashed 

line). Both samples are Marseilles soap purified silk (20 μg/mL).  

 

CD spectra of fresh, diluted silk solutions (~20 μg/mL), at 60º C, were 

recorded every hour for 24 hours to monitor the conformational changes of silk fibroin 

as a function of time (Figure 3.3A). Over time, the conformation changes from a 

random coil to a β-sheet structure. There is an isosbestic point at 210 nm indicating 

that there is a two-state transformation from a random coil to a β-sheet structure. 
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Previous CD studies of fibroin have shown similar results.32-34   The CD spectrum of a 

diluted sample, heated in the CD, was compared to the CD spectrum of a mature gel, 

diluted to the same concentration. These two spectra had similar β-sheet signals 

(mdeg/mg) which indicates that the diluted and the concentrated solutions underwent 

similar conformational transformations over time at 60º C (Figure 3.2). The diluted 

solutions, however, do not form a gel inside of the cuvette.         

   

Figure 3.3 (A) Representative CD spectra over time, samples were held at 60º C; 

Marseilles soap purified silk (method 2), 20 µg/mL, spectra taken every hour for 24 

hours. (B) Kinetic experiments at 60º C with method 1 silk (19 µg/mL), method 2 silk 

(20 µg/mL), and method 3 silk (23 µg/mL) tracing the absolute value of the CD signal 

at 217 nm over time as the sample is heated at 60º C. Green lines indicate the best fits 

to region 1 (rate’
β-sheet) and the blue lines indicate best fits to region 2 (rate”

β-sheet). 

                                                                                                                                                         

When the evolution of the 217 nm peak is plotted versus time, two distinct rate 

regimes are evident: fast (region 1) and slow (region 2) (Figure 3.3B).44 The value of 

the CD signal (mdeg/mg) at 217 nm is proportional to the concentration of protein 

with β-sheet character present in solution. From this assumption, the rate of random 
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coil to β-sheet conversion is proportional to the slope of a linear best fit to each region 

of Figure 3.3B (equation 3.1).     

 

[ ]
timesheet

sheetsloperate −
≈∝−

β
β [3.1] 

Region 1 is hypothesized to be associated with the random coil to β-sheet 

transformation, while region 2 is associated with the slower aggregation of β-sheets 

into extended networks (Figure 3.4). This mechanism is supported by literature,17, 32, 45 

as well as the kinetic spectra that show two distinct transition regimes. During the 

slower phase (region 2), the positive absorbance at 197 nm continues to increase 

indicating that further processes are occurring (Figure 3.3A). The rates of 

conformational change in dilute solutions (Table 3.1) follow the same trends as the 

macroscopic gelation times observed for concentrated solutions: W-gel forms the 

fastest while SC-gel forms the slowest. This correlation between rates further supports 

the relationship between β-sheet formation and gelation.17, 46-48 

 

 
Figure 3.4 Schematic of proposed transformation of silk solutions to gel. Initial 

structure of protein is entirely random coil, then over time transforms into β-sheet 

which later aggregate together in anti-parallel β-sheet stacks. 
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3.3.1.3 X-ray diffraction 

Powder x-ray diffraction was used to further investigate the molecular 

arrangement of the silk hydrogels (Figure 3.5). All freeze dried hydrogels, prepared 

from silk fibroin solutions (60º C gelation), show two sharp peaks at 9.4º and 28.4º, 

one broad peak around 20º, and a shoulder around 24º.  The 9.4º, 20º, and 24º peaks 

are indicative of the β-sheet crystalline structure of silk fibroin and correspond to 9.4 

Å, 4.3 Å, and 3.7 Å spacing, respectively.11, 26, 27  The 28.4º peak indicates that there is 

also another silk structure present which is sometimes seen in the random coil or silk I 

structure.30 This peak suggests that the β-sheet content never reached 100% such that 

there is still residual unfolded (random coil) silk remaining in the hydrogel.  

 

 
Figure 3.5 X-ray diffraction patterns of freeze dried silk fibroin hydrogels prepared 

from aqueous silk fibroin solutions at 60º C.  
 

3.3.1.4. Rheology  

Rheology was used to characterize the mechanical properties of the gels 

formed from silk fibroin purified by different methods. Constant stress measurements 

(frequency sweeps) were performed in the linear viscoelastic region of each gel. These 

measurements (Figure 3.6) show that the storage and loss moduli (G’ and G”, 

respectively) are independent of angular frequency at low frequencies (<10 rad/s), and 
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over the entire range of frequencies G’ > G”. Both of these behaviors are characteristic 

of gel-like, elastic solids.49 The absolute values of G’, or stiffness of the material, 

demonstrate that the MS-gel is the stiffest gel (~50 Pa) while the SC-gel is the least 

stiff gel (~6 Pa).  

 

 

 

 

 

 

 

 

Figure 3.6 Representative frequency sweep of 5 wt% silk fibroin hydrogels at 25º C. 

Solid shapes denote G’ data and empty shapes denote G” data. ▲∆ is water purified 

gel (W-gel), ●○ is Marseilles soap purified gel (MS-gel), ■□ is Na2CO3 purified gel 

(SC-gel). 

 

The yield stress of a gel is a measure of the robustness of a gel under applied 

shear.50 To determine the yield stresses of the three different silk fibroin hydrogels, I 

performed creep experiments, which monitor the evolution of deformation in the 

hydrogels over time. In a log-log plot of the viscosity of the gels as a function of shear 

stress, the yield stress is defined as the stress at which shear thinning begins (Figure 

3.7). For the silk fibroin hydrogels, the yield stress is dependent on purification 

method. W-gel and MS-gel both have a constant viscosity at low stresses (zero-shear 

viscosity). At the point of shear thinning (yield stress), both the W-gel and MS-gel 

yield by several orders of magnitude. The plot for the SC-gel is different from the 
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other two and does not have an obvious zero-shear viscosity or yield stress. Instead, 

the SC-gel gradually yields to the applied stress. A possible explanation for this 

behavior is that its zero-shear viscosity occurs at much lower stresses (below the range 

of the rheometer).49  

 

 

 

 

 

 

 

 

Figure 3.7 Representative log-log plots of viscosity versus shear stress of 5 wt% silk 

fibroin hydrogels at 25º C. ● water purified silk gel (W-gel),  ■ Marseilles soap 

purified silk gel (MS-gel), and ▲ Na2CO3 purified silk gel (SC-gel).  

 

3.3.2 Characterization of Purified Silk Fibroin 

The rates of gelation and β-sheet formation, as the silk converts from a 

solution to a gel, depend on purification method. A gel forms when a polymer in 

solution can cross-link with other segments (covalently or non-covalently), either on 

the same chain or other chains.51 The rate of gelation will depend on the concentration 

of the polymer solution and the molecular weight of the polymer, which will affect the 

degree of chain entanglement and number of cross-links. For example, in fibroin gels, 

β-sheet formation physically cross-links the gels.17 The presence of residual sericin 

has been shown to increase β-sheet content in regenerated silk fibers and, therefore, 
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may also act as a cross-linker and accelerate gel formation.37 In another study, high 

molecular weight, undegraded silk fibroin has been shown to gel almost 

instantaneously.39  

The yield stresses of the silk fibroin gels also vary with purification method. 

The rheological properties (i.e., stiffness and yield stress) of a gel depend on the 

degree of entanglement of the chain networks, which is itself dependent on the number 

of cross-links, chain length, molecular weight, and concentration of the polymer in 

solution. 23, 49, 51  The presence of residual sericin has been proven to increase the 

mechanical strength of silk fibers in comparison to pure silk fibroin (no silk sericin), 37 

and thus may also increase the strength of silk fibroin hydrogels. To the best of my 

knowledge, no studies to date have addressed the relationship between silk fibroin 

molecular weight and gel strength.  

To interpret the kinetic and rheology results in the context of previous studies, 

I quantified sericin removal by mass loss and Direct Red 80 staining and the degree of 

degradation of the fibroin protein by SDS-PAGE and light scattering, as a function of 

purification method.  

3.3.2.1. Sericin Removal  

I assessed the effectiveness of the three purification methods at removing silk 

sericin by determining the mass lost during the purification process. The mass lost 

from degumming includes sericin as well as any dirt associated with the cocoons. 

When the degummed mass loss was 25 wt%, the silk sericin was considered 

completely removed.37, 39 Method 1 removes 18 wt%, while methods 2 and 3 remove 

~25 wt% of the original cocoon mass (Table 3.2). During degumming, some small 

fibers detached from the silk mass and were observed in solution. These fibers were 

recovered by centrifugation and accounted for in the total mass loss calculation. 
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Method 3 resulted in a significant amount of recovered fibers (up to 30% of the total 

mass was recovered fibers) from solution as compared to the other two methods (a few 

percent). I also used Direct Red 80 (DR 80, a sericin selective dye) to stain the silk 

fibers and found similar trends to the mass loss data (Figure 3.8, Table 3.2).40, 52, 53 The 

concentration of DR 80, determined by UV spectroscopy after dyed silk fibers were 

dissolved with 9.3 M LiBr to solubilize the stained sericin, is directly related to the 

amount of silk sericin present in solution (Table 3.2). All samples were compared to 

stained, untreated cocoons to determine the amount of sericin removed by each 

degumming treatment. While micro-molar concentration of dye is reported in Table 

3.2, the exact amount of sericin removed is unknown. Therefore, DR80 is used to 

qualitatively see sericin removal and determine relative trends in comparison with 

mass loss calculations (Figure 3.8). 

 

 

 

 

 

 

 

 

Figure 3.8 Representative Direct Red 80 dyed silk fibroin fibers and dissolved 

solutions. From left to right are dyed silk fibers of: unpurified, methods 1, 2, and 3.   
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Table 3.2 Silk sericin removal as a function of purification method. 
Preparation 

method 
“degumming” 

agent 
Total 

mass loss 
(%)a

Concentration 
DR 80 (μM)b, c

cocoons - - 51.2 ± 5.5 
1 water 18.4 ± 2.5 32.3 ± 1.3 
2 5 w/v% 

Marseilles 
soap 

25.0 ± 3.5 12.4 ± 0.5 

3 0.02 M 
Na

24.6 ± 2.0 11.8 ± 2.1 
CO2 3

a Average values ± range of values from 3 trials 
b Average values ± range of values from 2-3 trials 
c A silk sericin selective dye

 

The presence of more sericin in the W-gel may explain why the W-gel forms 

more quickly than either the MS- or SC-gel. The faster gelation of the MS-gel, as 

compared to the SC-gel, and the lack of gelation of the SC-gel at room temperature, 

however, cannot be explained by different amounts of residual sericin; mass loss after 

degumming shows that these samples have equal amounts of sericin (Table 3.2). The 

yield stresses and the zero-shear viscosities, of the three hydrogels also do not 

correlate with the amount of residual sericin since the W-gel and the MS-gel show 

similar mechanical behavior but have different amounts of residual sericin. 

3.3.2.2. Protein Degradation 

Another possible explanation for the observed differences among the hydrogels 

is the molecular weight of the silk fibroin protein itself. The high temperatures (~100º 

C) and alkaline solutions (pH > 8) used in the purification process can promote 

hydrolysis of the native protein. The degradation of the silk fibroin after the 

purification processes was evaluated by SEM (condition of the fibers) and by SDS-

PAGE and static light scattering (the molecular weights of the fresh silk solutions).  
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There are qualitative differences in the appearance of the fibers among the 

three samples (Figure 3.9). Fibers purified with water alone (method 1) are uniform in 

size, but appear rough, possibly due to residual silk sericin contaminants (Figure 3.9A, 

white arrows). Cocoons that were boiled in a Marseilles soap solution (method 2) 

resulted in fibers that were smooth, but were different diameters (Figure 3.9B). The 

fibers purified by method 3 appear split and damaged without any apparent silk sericin 

contamination (Figure 3.9C). 

Figure 3.9 Representative SEM micrographs of silk fibers. (A) Silk fibers purified 

with water (method 1) contaminated by silk sericin as indicated by white arrows, (B) 

silk purified with Marseilles soap (method 2), (C) silk fibers purified with 0.02 M 

Na2CO3 appear damaged (inset: magnification of damaged fiber) (method 3). Scale 

bars in A, B, C: 30 μm, and inset: 10 μm. 

 

SDS-PAGE gel electrophoresis was used to characterize the molecular weight 

of the silk fibroin proteins after purification (Figure 3.10). In agreement with previous 

studies on silk fibroin purified from cocoons, broad protein bands were observed for 

proteins from all purification methods.35, 39, 54 These broad bands correspond to 

mixtures of polypeptides with wide distributions of molecular weights. Figure 3.10 

shows that all protein fragments from method 3 have molecular weights below 350 

kDa (the molecular weight of the heavy native protein chain), while the largest 
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fragments from methods 1 and 2 are approximately 350 kDa. The lower molecular 

weights (<350 kDa) observed for Method 3, as compared to the other two methods, 

suggests that the high pH (pH 10.5) of the sodium carbonate solution (method 3) 

coupled with the refluxing solution, leads to more hydrolysis of the silk fibroin chains 

than the other methods with lower pH values.39  Interestingly, literature values from 

light scattering techniques give molecular weights for silk fibroin that vary by orders 

of magnitude (3.7 x 105 – 1.6 x 107 Da).45, 55-57 This variability could be the result of 

the purification methods used in the different studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Representative SDS-PAGE analysis of reduced samples, stained with 

silver. Labeled version on the right with white lines indicating molecular weight 

distribution range of silk fibroin. Key: H2O (method 1), MS = Marseilles soap purified 

silk (method 2), and Na2CO3 (method 3). 
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My static light scattering (SLS) data agrees with reported variability as well as 

with the SDS-PAGE data. Method 3 has the lowest molecular weight and method 1 

the largest (Figure 3.11). For more details regarding experimental molecular weight 

calculations, based on SLS measurements, refer to the Materials and Methods section 

(3.5.9). The molecular weight calculations produced large standard deviations among 

samples. The error is most likely from variations in the molecular weights within a 

single solution (also seen by SDS-PAGE gels) as well as possible protein aggregation 

during the time scale of the measurements.  

 

 

 

 

 

 

 

 

Figure 3.11 Calculated molecular weights of the three silk purification methods by 

static light scattering measurements. 

 

Differences in the molecular weights of polymer chains can lead to different 

degrees of entanglement of the chains 49, 51 and may explain the observed differences 

in the kinetics of gelation and yield stresses among the three samples. The kinetics of 

β-sheet and gel formation correlate directly with the observed trends in molecular 

weight of the fibroin chains. Methods 1 and 2 produce silk fibroin with the largest 

observed average molecular weight (Figure 3.10 and 3.11). Long chains readily 

entangle, which can explain the observed rapid gelation of W-gel, as compared to the 
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other purification methods (Table 3.1). Method 3 has the lowest observed molecular 

weight and the SC-gel forms the slowest. The observed shear stresses and the zero-

shear viscosities also correlate with the observed molecular weight distributions of the 

polymer chains in the three fibroin samples. The molecular weight distributions of the 

W- and MS-gels are similar to each other (and higher than the SC-gel), as are the zero-

shear viscosities and the yield stresses. The SC-gel has the lowest average molecular 

weight (from SDS-PAGE and SLS, Figure 3.10 and 3.11) and the lowest inferred yield 

stress (Figure 3.7), of the three samples.  

3.4 Conclusion 

There is a tradeoff between effective sericin removal (required for 

biocompatibility of the resulting hydrogels) and minimal hydrolysis of the fibroin 

peptide chains during the purification of silk fibroin from silkworm cocoons. 

Depending on the tolerance for silk sericin in the final application, gels with different 

properties can be obtained. Boiling water alone (method 1) is insufficient to remove 

sericin from the silk fibers. The two alkaline degumming solutions are equally 

effective at removing sericin (~100% removed), despite the difference in pH (method 

2, pH 8.25 versus method 3, pH 10.50). The lower pH of the soap solution (method 2) 

is either sufficiently alkaline to solubilize the sericin, and/or the presence of the 

surfactant assists in dissolving the sericin.  While silk sericin contamination may 

partially contribute to the observed differences in rheology and gelation kinetics, MS- 

and SC- gels have equal amounts of silk sericin contamination (within error) and yet 

have drastically different properties. MS- and SC-purified silk fibroin also differs in 

both the highest molecular weight and the range of molecular weights of the peptide 

chains. Longer polymer chains should lead to faster gelation times and larger yield 

stresses due to the higher degree of chain entanglement and cross-linking.14, 23 
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Consistent with this prediction, the MS- and W-gels form faster and have higher yield 

stresses when compared with the SC-gel.  

Chapters 4 and 5 use silk fibroin that has been purified with a combination of 

Marseilles soap and sodium carbonate. Marseilles soap is used for the majority of the 

purification time due to the gentle purification method, while sodium carbonate is used 

for a short time (30 minutes) at the end to ensure optimal sericin removal. The 

combination method produces gels with properties similar to those purified with 

Marseilles soap alone, but gels take longer to form. The slower β-sheet formation is 

advantageous because I then have more time flexibility to use the aqueous, random 

coil silk in experiments prior to gelation. This work suggests that for applications 

involving silk fibroin hydrogels, the choice of purification method is a key factor in 

determining the final properties of the gel.  

 

3.5 Materials and Methods 

 3.5.1 Purification  

Bombyx mori cocoons were cut into approximately 1.5 cm pieces and any 

insect remnants were manually removed. The cocoon material (0.5 g) was boiled in 

500 mL of one of the following solutions: 1) deionized water28 (18.2 MΩ, Barnstead 

EASYpure RoDI), 2) 5 w/v % Marseilles soap solution (an olive oil based soap from 

Marseilles, France),9or 3) 0.02 M sodium carbonate 11 (Na2CO3, J.T. Baker) for 2 

hours, changing the solution every 15 minutes to solubilize and remove the silk 

sericin. After boiling, the silk was rinsed with copious amounts of water to remove 

excess salts or surfactants.  The resulting silk mass was dissolved overnight, at room 

temperature, in 9.3 M lithium bromide (LiBr, Reagent Plus ≥99%, Sigma-Aldrich). 

The concentration of the resulting silk solution was approximately 25 wt%. The 
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solubilized silk was then filtered (Whatman filter paper) and dialyzed (Slide-a-Lyzer 

dialysis cassettes, Pierce, MWCO 3,500). Silk solutions (30 mL) were dialyzed against 

DI water (3 L) for three days at room temperature, changing the water twice daily.  

The resulting silk solutions are approximately 5 wt%, which was determined by 

weighing the remaining solid after air drying.  

3.5.2 Degumming mass loss  

Air dried silk fibers were massed before and after degumming (as described 

above before dissolution in 9.3 M LiBr). After degumming, the solution containing the 

fibers was centrifuged. The fibers were removed from the supernatant, copiously 

rinsed with DI water and air dried. Mass loss values are based on the average of 3 

trials.   

3.5.3 Direct Red 80 staining 

Dry, degummed silk fibers were stained in a 1 wt% aqueous solution of Direct 

Red 80 (DR 80, Fluka) at 100º C for 1 minute.52 Fibers were then copiously rinsed 

with DI water to remove all excess stain.  Stained fibers were dissolved in 9.3M LiBr 

to give a 5 wt% solution of the dyed silk, and then centrifuged at 500 g for 10 minutes 

to remove any undissolved fibers. Solutions were then analyzed in a UV transparent 

96 well plate (Costar) with a Spectramax Plus 384 Spectrophotometer at room 

temperature. A calibration curve of various concentrations of DR 80 (9 μM - 0.5 mM) 

in 9.3 M LiBr was constructed to determine the molar absorptivity of DR 80 in 9.3 M 

LiBr at 490 nm using the Beer’s Law (Equation 3.2).  

    lcA ε=                [3.2] 

Concentration values based on the average of 2-3 trials. 

 3.5.4 Gelation  

Fresh aqueous silk solutions (3 mL), in capped glass test tubes, were either 

incubated in a hot water bath at 60º C or kept at room temperature to gel.  A sample 
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was considered a gel when the vial was inverted and the solution did not fall after 30 

seconds.11 A water purified silk hydrogel will be referred to as a W-gel, a Marseilles 

soap purified hydrogel as a MS-gel, and a Na2CO3 purified hydrogel as a SC-gel.  

3.5.5 Circular Dichroism (CD)  

Spectra were recorded using a Model 400 Aviv spectrometer with a Peltier 

thermocouple temperature control. The spectra were recorded from 190 to 250 nm 

with a 1 nm step for all wavelength experiments. Kinetic experiments recorded theta 

values at 217 nm over time. For both wavelength and kinetic experiments, samples 

were held at 60º C and spectra were recorded every hour for 24 to 48 hours. Rates, 

from kinetic experiments, were determined by averaging slope coefficients from 2 to 3 

trials. Fresh silk solutions or gels were used for all experiments. A quartz cuvette 

(Helma Worldwide) with a 1 cm path length was used for measurements, and was 

capped to prevent evaporation. Silk samples were diluted with DI water to a 

concentration of ~20 μg/mL for the best signal to noise ratio. Background spectra (DI 

water) were recorded and subtracted from each sample. Background subtracting and 

spectra smoothing were all done within the CD software. All theta values are reported 

as millidegree per milligram (mdeg/mg). 

3.5.6 X-Ray Diffraction  

The measurements were performed using a Scintag Theta-Theta 

Diffractometer with CuKα radiation at 45 kV and 40 mA. Freeze dried silk fibroin 

hydrogels were placed on the no background beryllium sample holder. Each sample 

was scanned over a 2θ range of 5-40º with a step size of 0.02º and a scan rate of 2.40 

degrees/minute. 

3.5.7 Rheology  

Rheological measurements were obtained on a Paar Physica Modular Compact 

Rheometer (MCR 300). A cone and plate measurement system was employed with a 
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25 mm diameter and 4.5º cone angle. Rheological measurements were conducted on 

samples with protein concentrations of ~5 wt%. To ensure complete β-sheet 

transformation, all gel samples were aged for 7 days at 60° C before rheological 

testing.17 Samples were allowed to equilibrate to room temperature for 1 hour prior to 

loading into the rheometer. All samples (0.4 mL) were slowly added to the rheometer 

plate, using a syringe, to prevent the buildup of bubbles. A small amount of mineral 

oil was added to the rim of the cone-and-plate setup to slow the evaporation of water. 

Frequency sweep experiments were performed within the linear viscoelastic region.  

All flow curves were taken using creep experiments, where a constant stress is applied 

and the strain of the gel is measured as a function of time. Age of the hydrogel is not a 

determining factor; measurements were reproducible on the same gel sample after 

several days.  

3.5.8 Scanning Electron Microscopy (SEM)  

Degummed fibers were mounted on an SEM stub with double-sided carbon 

tape. To increase conductivity, the samples were sputtered with a thin layer of Au-Pd. 

The images were obtained using a Leica 440 SEM at 25kV. 

3.5.9 Gel Electrophoresis  

Samples were run on a 3-8% NuPAGE Novex Tris-Acetate Gel (Invitrogen) 

for molecular weights between 40-500 kDa. The solutions contained 6.5 μL fresh silk 

solution, 2.5 μL NuPAGE sample buffer (Invitrogen), and 1 μL NuPAGE Reducing 

Agent (Invitrogen). The solutions were mixed and then loaded into the gel. The gel ran 

at 150V for 1.25 hours. HiMark Pre-Stained High Molecular Weight Protein Standard 

(Invitrogen) was used. Gels were stained with a silver stain kit (SilverQuest Silver 

Stain, Invitrogen) and then scanned (Canon CanoScan 4200 F) to record. 
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3.5.10 Static Light Scattering 

 Static light scattering measurements were performed at room temperature in a 

Malvern Zetasizer NanoZS equipped with a 4 mW HeNe laser light source at a 

wavelength of 633 nm. Measurements were made on silk solutions of varying 

concentrations (5 mg/mL to 0.05 mg/mL) by diluting the initial stock solution with DI 

water. All experiments were input from lowest concentration to highest to ensure large 

aggregates from more concentrated samples would not contaminate weaker dilutions. 

Background standards (toluene and DI water) were first referenced for initial 

background scattering. Molecular weight (Mw) and the 2nd Virial Cofficient (A2) were 

determined by applying the Rayleigh equation (Equation 3.3) at different sample 

concentrations.  

    [3.3] (θ
θ

PCA
MR

KC

W
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 221 )

 

The intensity of scattered light (KC/RθP(θ)) is measured by the instrument where Rθ is 

the ratio of the scattered light to the incident light of the sample (known as the 

Rayleigh ratio), K is an optical constant which is dependent on the wavelength of the 

light source as well as the refractive index as a function of concentration change, and 

P(θ) is the angular dependence of the sample scattering intensity.  

 Debye plots of the intensity of the scattered light (KC/RθP(θ)) versus sample 

concentration (C) were plotted. The intercept of the line extrapolated to zero 

concentration gives the reciprocal molecular weight (1/ Mw) and the gradient of the 

line gives the 2nd Virial Coefficient (A2). A2 is a property describing the interaction 

strength between particles and the solvent. 
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CHAPTER 4 

INVESTIGATION OF ORGANIC MATRIX INTERFACES OF NACRE: SILK 

FIBROIN ADSORPTION AND CALCIUM CARBONATE MINERALIZATION ON 

FUNCTIONALIZED SURFACES*

 

4.1 Abstract 

Assemblies of organic matrices, and the interface between the various 

components, are essential to many biological processes. This study describes an in 

vitro model for the organic matrix of nacre by investigating organic-organic (silk – 

chitin) and organic-inorganic (silk – chitin – mineral) interfaces. Self-assembled 

monolayers (SAMs) of alkanethiols on gold were used as substrates for calcium 

carbonate mineralization to model the chitin-protein interface. In the presence of silk, 

there was a loss of calcite orientation as well as a change in crystal nucleation density 

as compared to control surfaces, as characterized by x-ray diffraction and SEM 

analysis. To further understand the in vitro mineralization results, as well as gain 

insight into the structure of the in vivo organic matrix in nacre, I carried out protein 

adsorption studies of silk fibroin (aqueous and hydrogel) and BSA (control) on SAMs. 

The roles of protein starting conformation (random coil, β-sheet, and α-helix, as 

confirmed by CD spectroscopy and FTIR), protein state (aqueous versus hydrogel), 

and surface functionality (methyl-, carboxylate-, ethylene glycol-terminated SAMs, 

and bare gold) were examined. Grazing angle Fourier transform spectroscopy 

(GAFTIR) was used to verify surface functionality, determine protein secondary 

structure on the surface, and determine relative amounts of protein adsorbed on the 

surfaces by monitoring both amide I (1600-1700 cm-1) and amide II  (1500-1600 cm-1) 

                                                 
* E. C. Keene, A. M. Richter, V. Ravichandran, and L. A. Estroff, in preparation. 

 90



peak positions. The random coil, aqueous silk fibroin adsorbed the most to all 

surfaces, while the β-sheet silk fibroin hydrogel adsorbed the least. Across surfaces, 

the bare gold (unfunctionalized) substrate adsorbed the most protein. These results 

demonstrate the importance of surface chemistry and protein starting conformation on 

protein adsorption.  

 

4.2 Introduction 

Understanding the role of the organic-inorganic and organic-organic interfaces 

within biological systems (such as nacre) has implications for synthesis of new 

materials based upon the interactions among functionalized surfaces, 

biomacromolecules, and mineral. Here I present a synthetic system to probe the 

organic-organic matrix interface, between functionalized gold surfaces and the protein 

silk fibroin, and the organic-inorganic interface between protein/surfaces and mineral, 

and their implications for nacre formation (Figure 4.1). 

Figure 4.1 Schematic of experimental design. The interface between the SAM and the 

protein is referred to as the organic-organic interface. The growth interface (mineral-

protein) and the nucleating interface (mineral-SAM) are both referred to as the 

organic-inorganic interface.  
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Histochemical studies of decalcified nacre have shown that carboxylate and 

sulfate groups are localized on an organic substrate (interlamellar chitin sheets 

between nacre tablets) to form possible nucleation sites for CaCO3.1, 2  Chapter 2 

demonstrated a nacre specific peptide, n16N, specifically binds to β-chitin.3 This 

interaction creates a new organic matrix interface (chitin + bound peptide together are 

a new organic substrate for crystal nucleation) that selectively nucleates aragonite over 

calcite. While the structure/orientation of the peptide on the chitin substrate is 

unknown, Chapter 2 suggests that the interface between the insoluble organic matrix 

(β-chitin) with the other organic matrix components is a complex molecular interface 

worthy of further study.3, 4  

A recent study by Weiss et al. looked at the relationship between chitin and 

proteins in the insoluble shell organic matrices of the bivalve Mytilus galloprovincialis 

of both adult and larval mollusk development.5 Based on data from mass spectroscopy 

they proposed that there is an “intimate link” between the two separate phases (β-

chitin and silk-like proteins). The data demonstrated a significant change in the surface 

activity of the chitin-protein complex as compared to pure chitin. They also suggested 

the chitin-silk complex is crucial for mollusk shell biomineralization, as the complex 

is present in both adult and larval development stages. Therefore, based upon these 

studies, further investigation of silk at interfaces, analogous to the β-chitin – silk-like 

protein in nacre, is necessary. In this study, I focus on protein-surface interactions (i.e., 

protein conformation and amount adsorbed) of silk fibroin, and the effects the 

adsorbed protein have on calcium carbonate mineralization.  

Self assembled monolayers (SAMs), of ω-functionalized alkanethiols on 

metals (typically gold), have become a universal model surface to study the structures 

and properties of organic surfaces and their influence on protein adsorption12 as well 

as control over crystal growth.6, 7 SAMs on gold are well-characterized and form 
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stable organic layers on metal surfaces with various terminal functional groups.8 

Extensive work by Aizenberg and others, have shown that surface chemistry and 

orientation of the terminal functional group determines the crystallographic orientation 

of calcium carbonate crystals nucleated on SAMs.7, 9-12 To further extend the SAM 

model to biomineralization, proteins can also be introduced into the SAM-

mineralization assay. The chemical nature of the surface and its properties (charge, 

hydrophobicity, etc.) may affect protein adsorption,13-21 as well as, the conformation of 

the adsorbed protein layer.17, 19, 20, 22-24 Therefore, the presence of protein may affect 

the ability of the surface to template the nucleation of calcium carbonate crystals.  

 To characterize the protein-SAM system, I chose Fourier transform infrared 

spectroscopy (FTIR) as a widely available, well-established tool for the 

characterization of protein secondary structure 25 (including both silk fibroin26-28 and 

BSA17, 29, 30). Grazing angle FTIR (GAFTIR) is a surface sensitive technique that can 

non-destructively look at monolayer functionalities on reflective surfaces (i.e., gold), 

such that after analysis, the surface can then be used for other experiments (i.e., crystal 

growth) unlike XPS or AFM. While many techniques have been utilized to measure 

protein adsorption on SAMs (FTIR,17, 22, 26, 29-32 SPR,14, 16, 18, 33 QCM,17, 34 

ellipsometry,13, 14, 35 contact angle,14, 32 AFM,23, 36 and XPS13, 16, 35), only FTIR is 

sensitive to protein secondary structure. Sample characterization by FTIR is both a 

qualitative and quantitative technique. It can verify surface chemical functionalities 

(qualitative),37-40 while based on peak positions it can determine protein secondary 

structure (qualitative)25, 26 as well as relative amounts of protein adsorbed based on 

peak areas (semi-quantitative).41 

 

 

 93



4.3 Results and Discussion 

4.3.1 Crystallization of calcium carbonate on Self Assembled Monolayers with silk 

fibroin 

I examined CaCO3 growth on 4 surfaces (bare gold, methyl,37 carboxylic 

acid,38 and ethylene glycol39, 40 terminated SAM functionalities) in the presence and 

absence of silk fibroin gels (Figure 4.2). Calcite orientation and nucleation density on 

SAMs were determined. For further tangential crystallization experiments with silk 

fibroin, see Appendix 3.  

4.3.1.1 Crystal Orientation 

In agreement with literature,7, 42, 43 calcite crystals grown on a carboxylic acid 

terminated SAM are (012) oriented, as demonstrated by SEM and x-ray diffraction 

results (Figure 4.2A and C). Calcite grown on bare gold, methyl, and PEG-terminated 

SAMs, however, are randomly oriented (Figure 4.3). Initial attempts to combine silk 

fibroin and carboxylate SAMs, to model nacre formation, resulted in a loss of crystal 

orientation and a change in crystal morphology (Figure 4.4). Previous results have 

shown that carboxylate-terminated SAMs retain their control over orientation in the 

presence of an agarose hydrogel.44 The loss of calcite orientation on this SAM, when 

combined with silk, suggests the protein is binding to the surface and masking the 

carboxylate functionality or altering its configuration. Proteins may have a greater 

affinity for the SAMs than the polysaccharide agarose hydrogel.  
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Figure 4.2 Calcite crystallization studies on SAMs. (A) Control crystallization on       

-COOH (B) Crystallization on –COOH after β-sheet silk adsorption (C) XRD spectra 

of calcite crystal orientations. Control calcite (top spectra) grown on SAMs show 

preferred (012) orientation, while calcite grown on SAMs with adsorbed silk (middle) 

are randomly oriented.  
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Figure 4.3 SEM micrographs of calcite on (A) bare gold, (B) methyl-, and (C) PEG 

terminated SAMs. (D) XRD plot of randomly oriented calcite. All labels on graph are 

calcite reflections, unless otherwise noted. 
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Figure 4.4 Calcite crystallization on carboxylate-terminated SAMs with 2.5 wt% silk 

fibroin (A) aqueous random coil (crystals are elongated along the c-axis) and (B) β-

sheet hydrogel (poly-crystalline). 

 

To investigate the nature of the protein-SAM interaction, SAMs were 

incubated with β-sheet silk (hydrogel), rinsed and used for crystallization (without the 

addition of other additives). These surfaces also lead to randomly oriented crystals 

(Figure 4.2B and C). Similar effects on crystallization are seen with surfaces that have 

been exposed to random coil, aqueous silk fibroin, as well as α-helical BSA (Figure 

4.5).  
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Figure 4.5 SEM micrographs of –COOH SAMs with adsorbed (A) random coil silk 

fibroin and (B) α-helix BSA. (C) XRD plot of randomly oriented calcite. All labels on 

graph are calcite reflections, unless otherwise indicated. 
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4.3.1.2 Nucleation Density 

The presence of silk during crystallization also affects the nucleation density of 

calcite on SAMs. Methyl and carboxylate SAMs were compared for nucleation 

density studies (Table 4.1, Figure 4.6). In agreement with previous crystallization 

results,7 control crystallization (without protein) on carboxylate SAMs promotes 

nucleation of calcite, while methyl SAMs inhibits nucleation. However, with the 

addition of silk (either random coil or β-sheet conformation) to the crystallization 

assay, the nucleation density on methyl SAMs surpasses the carboxylate surface 

suggesting a change in the organic-inorganic interface (i.e., silk adsorption may 

present advantageous functional groups for interaction with crystal nuclei).  

 

Table 4.1 Crystal nucleation density on methyl and carboxylate SAMs 
SAM 

Functionality 

Protein 

present?

Protein 

conformation 

Nucleation 

density 

(crystals/mm2)a

Area 

fraction 

 (%)a,b

-CH3 No 

Yes 

Yes 

--- 

Random coil 

β-sheet 

143 ± 72 

4291 ± 1568 

138 ± 48 

3 ± 2 

23 ± 6 

10 ± 1 

-COOH No 

Yes 

Yes 

--- 

Random coil 

β-sheet 

1923 ± 192 

2556 ± 2475 

105 ± 21 

16 ± 7 

16 ± 5 

6 ± 1 
 a± standard deviation over a minimum of six images across three samples 

bArea fraction accounts for total area covered by crystals (i.e., crystal sizes) over the entire 

sample area. 

 

 

 

 

 99



Figure 4.6 Low magnification images of calcite nucleation density studies. (A, C, E) 

are methyl –terminated SAMs and (B, D, F) are carboxylate-terminated SAMs. (A & 

B) are controls with no protein additives, (C & D) are with random coil silk fibroin, 

and (E & F) are with β-sheet silk fibroin.  
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 In nacre, despite the periodic layering of chitin and silk-like proteins within 

nacre, how the interface is defined between the two different layers is unknown. Early 

XRD studies by Weiner and Traub proposed that the silk has a β-sheet conformation.45 

More recently, environmental SEM and cryo-TEM studies of nacre have suggested 

that the silk-like protein is a hydrogel.46, 47  To provide insight into the nacre organic 

interface in vitro, as well as to explain the loss of crystal orientation on the carboxylate 

SAM, and change in crystal nucleation density with the addition of protein, protein 

adsorption on various SAMs was further characterized.  

4.3.2 Protein-SAM characterization 

I examined three different starting protein conformations (random coil and β-

sheet silk fibroin; α-helix bovine serum albumin (BSA)). BSA is a commonly used 

control protein for many adsorption assays, as it is the “standard” for non-specific 

protein adsorption on both hydrophobic and hydrophilic surfaces.48, 49 The random coil 

silk was an aqueous solution, whereas the β-sheet silk forms a hydrogel.50, 51 Proteins 

were adsorbed onto SAMs (methyl,37 carboxylic acid,38 and ethylene glycol39, 40 

functionalities) and bare gold surfaces (see experimental section for further details). 

Before protein adsorption, the SAM functionalities were confirmed by GAFTIR 

(Figure 4.7). Each SAM was then incubated with protein and subsequently 

characterized by GAFTIR to quantify protein adsorption on the SAMs, as well as, any 

change in protein conformation due to surface adsorption. 
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Figure 4.7 GAFTIR spectra of self assembled monolayers on gold (-CH3, -COOH, -

PEG) before protein adsorption. Expected chemistries for each surface are observed 

and consistent with literature spectra.37-40 

 

4.3.2.1 Bulk protein conformation 

 The secondary structure of all three proteins was confirmed prior to protein 

adsorption studies. The solutions and gels were analyzed by circular dichroism (CD) 

spectroscopy (Figure 4.8), and protein films (see experimental for film preparation 

details) were analyzed by FTIR (Table 4.2). In agreement with literature, both 

techniques confirmed aqueous silk fibroin as random coil, silk fibroin hydrogels as β-

sheet, and aqueous BSA as primarily α-helical.  
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Figure 4.8 Representative CD spectra of aqueous silk fibroin (dashed line, random 

coil), gelled silk fibroin (solid line, β-sheet), and BSA (dotted line, α-helix) used for 

SAM incubation experiments. Spectra were taken of 20 μg/mL protein solutions. 
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Table 4.2 Amide IR peak positions (cm-1) and area ratios of adsorbed proteins on 

functionalized gold surfaces 
 

Random coil 

(silk) 

Amide I 

position 

(cm-1)d

Amide I 

area 

ratiosc

Amide II 

position 

(cm-1)d

Amide II 

area 

ratiosc

Gold 1676 ± 0.7 1.00 1543 ± 2.3 1.00 

-CH3 1670 ± 1.3 0.85 1544 ± 1.1 0.96 

-COOH 1673 ± 0.4 0.78 1544 ± 3.2 0.75 

-PEG - -  - 

Filma 1644  1520  

β-sheet (silk)     

Gold 1673 ± 2.1 0.17 1542 ± 1.7 0.32 

-CH3 1668 ± 2.3 0.21 1543 ± 0.8 0.38 

-COOH 1667 ± 4.9 0.10 1542 ± 0.4 0.16 

-PEG - - - - 

Filma 1620  1520  

α-helix (BSA)     

Gold 1671 ± 0.6 0.41 1541 ± 1.7 0.47 

-CH3 1669 ± 1.0 0.20 1544 ± 0.6 0.33 

-COOH 1670 ± 1.1 0.40 1543 ± 2.6 0.41 

-PEG - - - - 

Filmb 1653  1538  
 aValues from spectra taken using dried silk films on a diamond ATR 

 bValues for reference29 

 cPeak areas normalized to random coil silk - gold surface for each peak 

 d±standard deviation over a minimum of three measurements 
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4.3.2.2 Protein coverage 

GAFTIR show that protein adsorbs on all SAMs except the PEG functionality, 

a known non-fouling surface (Figure 4.9).35, 52 The underlying SAM functionality 

remains after incubation with all three proteins. From these results, the exact protein 

arrangement (i.e., packing density or orientation) on the surface is not known but 

relative amounts of protein adsorbed can be compared (semi-quantitatively) based on 

peak areas. Peak areas were analyzed to account for all protein conformations which 

may contribute to the amide I band (i.e., peak width and height).41, 53 Since the amount 

of protein adsorbed on each surface could be related to the chemistry at the protein-

SAM interface, peak areas for amide I and II were monitored for each protein 

conformation and surface chemistry. Amide peak areas are represented as ratios 

normalized to the random coil, aqueous silk fibroin on bare gold substrates for amide I 

and amide II, respectively (Table 4.2). Comparing amide I and II peak areas, bare gold 

and methyl-terminated SAMs adsorb the highest amount of silk fibroin (random coil 

or β-sheet), while the bare gold and carboxylate- terminated SAM adsorb the most 

BSA. Random coil, aqueous silk fibroin adsorbed the most of all three starting 

conformations for all surface chemistries, while the β-sheet silk hydrogel adsorbs the 

least. 
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Figure 4.9 GAFTIR spectra of silk (random coil or β-sheet) and BSA (α-helix) 

proteins, represented by solid, dotted, and dashed lines respectively, adsorbed on 

functionalized gold surfaces.  

 

The differences in protein adsorption, as a function of starting conformation, 

may be explained by looking at the inherent structure and stability of the protein. The 

random coil protein is a labile structure, and can quickly change its structure to 

effectively lower its surface energy at the protein-SAM interface. In contrast, the β-

sheet structure is a folded, stable structure whose conformation is more difficult to 

change for interaction with a surface. Therefore, the fact that there is less β-sheet and 

α-helix protein adsorbing onto the various SAM surfaces correlates to the stability of 

the protein. Several studies within the literature have made similar correlations: less 

stable proteins attach to surfaces quicker and stronger (i.e., irreversible protein 

adsorption) than stable, folded structures.21, 54, 55 Another possible difference between 

the adsorption amounts of the two silk proteins is the phase; the random coil 
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conformation (which adsorbs the most) is in solution while the β-sheet (which adsorbs 

the least) forms a hydrogel. As a hydrogel, the mobility of the proteins may be limited 

and would be less able to change their conformation to interact with the underlying 

substrate.  

 4.3.2.3 Protein conformation on SAMs 

Protein-surface interactions play an important role in determining the 

conformation of the adsorbed proteins. The amide I region (1600-1700 cm-1) is widely 

used for IR protein conformation studies due to differences in the amide bond 

orientations within a protein backbone structure that give rise to different vibrational 

frequencies.25, 29, 30 The amide II region (1500-1600 cm-1)  contains information about 

the in-plane N-H bend and C-N stretch of the amide bond but is less sensitive to 

protein conformation.17, 26, 56 The amide III band (1200-1350 cm-1) is also sensitive to 

conformation,41  but was not analyzed in this work due to its weak intensity.  

Characteristic amide I peak positions for random coil, β-sheet, and α-helix 

protein conformations are 1648-1644 cm-1, 1632-1621 cm-1, and 1655-1650 cm-1, 

respectively.26 Independent of the starting protein secondary structure and surface 

functionality, all peak positions shift to higher wavenumbers upon protein adsorption 

(Table 4.2). The adsorbed protein amide I peak positions were the highest for random 

coil, aqueous silk fibroin and the lowest for β-sheet, hydrogel silk fibroin. Gold 

surfaces had the largest peak positions (absolute value)  for all three initial protein 

conformations. The amide I shift to higher wavenumbers may suggest that the proteins 

are denaturing (irregular secondary structure, ~1671 cm-1)57 or changing to a non-

native, aggregated, intramolecular β-sheet structure (1685-1663 cm-1)17, 25, 58 upon 

adsorption to the substrate. Amide II peak positions are similar for all surfaces and 

protein conformations. 
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My in vitro FTIR results on SAMs, showing an increase in protein disorder 

after surface adsorption, are in contrast to the early studies by Weiner and Traub (i.e., 

silk has β-sheet conformation in nacre).45 However, recent in vitro x-ray and electron 

diffraction studies of silk – chitin assemblies have not detected any β-sheet silk 

structure, even though silk is a major organic component.47, 59 The previous in vitro 

results, as well as those presented in this chapter, suggest silk is disordered at the 

chitin-silk interface. The increase in protein disorder could be due to the introduction 

of a functionalized substrate, causing a change in protein stability and structure.19, 30, 54, 

55, 60 The degree of conformational change of a protein adsorbed on a surface will be 

dependent on the protein-surface interactions and the strength of the internal bonds 

(i.e., H-bonding) holding the protein in its particular conformation.17 The β-sheet silk 

fibroin had the greatest shift in amide I on all surfaces, with the largest change on gold 

from 1620 to 1673 cm-1 (a change of 53 cm-1) indicating the greatest change in 

conformation upon bonding to the surface. The α-helical BSA had the smallest change 

in peak position on all surfaces, with the smallest shift on the methyl SAM. 

Interestingly, the already disordered random coil silk fibroin had a greater shift in peak 

position than the α-helical structure. The smaller peak shift suggests that BSA has a 

high surface affinity for each surface functionality based on its inherent secondary 

structure, whereas the already disordered random coil silk fibroin shows a larger 

amount of conformation change on bonding. These results indicate that adsorbed 

proteins rearrange to reach a minimum surface energy regardless of starting 

conformation.29, 61, 62   

Based upon literature trends, the interaction of proteins with hydrophobic 

surfaces is expected to be greater than with hydrophilic surfaces. Hydrophobic 

surfaces tend to denature adsorbed proteins by forcing proteins to expose internal, 

hydrophobic residues.17, 18 My results, however, do not show a clear trend with surface 
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hydropathy and protein denaturation. All samples have the greatest shift in peak 

position (i.e., denaturation/rearrangement) on bare gold surfaces, as opposed to methyl 

terminated SAMs. In addition, proteins adsorbed to all surfaces shift peak positions to 

higher values as compared to bulk, film values. This result suggests that the presence 

of a surface alone, regardless of the hydropathy, can cause a protein to change its 

conformation.  

Similar to my results, there are exceptions in literature to the generalization 

that proteins have a greater interaction with hydrophobic surfaces. For example, a 

recent study by Jeyachandran and co-workers found that BSA had 95% coverage on 

hydrophilic surfaces compared to 53% on hydrophobic polystyrene coated surfaces.30 

Other exceptions within the literature present similar exceptions for α-chymotrypsin, 

albumin, fibrinogen, and kininogen.48, 63, 64 These examples, coupled with my 

 results, indicate that each protein/surface pair needs to be studied individually 

rather than making broad assumptions regarding general protein interfacial behavior. 

4.3.2.4 Protein adsorption on β-chitin  

Previous attempts to obtain FTIR information, from demineralized nacre shell 

matrices, about the structure of the β-chitin – silk-like protein hydrogel interface have 

been unsuccessful since the chitin and protein amide peaks overlap making them 

indistinguishable from each other.59 In vitro protein adsorption on β-chitin was also 

investigated with FTIR in this study, but the amide stretches (1500-1700 cm-1) from 

the chitin overshadow any protein amide peaks making accurate protein analysis 

difficult (Figure 4.10). 
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Figure 4.10 FTIR of β-chitin (black) and random coil silk fibroin adsorbed on β-chitin 

(blue). 

4.3.3 Interpretation of Crystallization Results 

Based upon the characterization of the organic-organic interface results 

between silk fibroin and SAMs, the crystallization results (Figures 4.2, 4.3, 4.6, and 

Table 4.1) can be re-examined. 

 The higher amounts of silk adsorbed on the methyl SAMs (as compared to the 

carboxylate SAMs) may explain the observed increase in crystal nucleation density in 

the presence of silk gels. The silk adsorbs to the surface, which may expose new 

functional groups to promote crystal nucleation, as compared to control surfaces. 

Evidence of adsorbed silk on all surfaces can also explain the loss of crystal 

orientation on the carboxylate SAM. Even though the β-sheet silk adsorbed the least 

on all surfaces, there is still enough protein to affect calcite orientation. The presence 

of silk, even in small amounts, may shield or disrupt the carboxylate functionality such 

that it is no longer able to orient the calcite crystals.  
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In this study, however, silk fibroin may play a similar role to prisilkin-39, a 

mollusk prismatic protein with a repetitive amino acid sequence comparable to silk 

fibroin.65 Prisilkin-39 simultaneously interacts with both chitin and mineral to inhibit 

aragonite formation in vivo. Other acidic macromolecules, rich in carboxylic acid 

groups, are known to bind/adsorb onto the chitin surface, which may lead to oriented 

mineralization.47 The presence of preferentially adsorbed proteins (i.e., the carboxylic 

acid rich proteins) in vivo may minimize the silk interaction with the substrate. In this 

model system, other proteins are not present to prevent silk adsorption to the SAMs. 

The silk, therefore, adsorbs on the surface affecting crystal orientation in vitro. The 

crystallization results, coupled with surface characterization, suggest that studying the 

complex molecular interfaces (organic-organic and organic-inorganic) in vitro can 

lead to insight into the structure-function relationships of these interfaces in vivo. 

 

4.4 Summary 

The interaction of protein structure, conformation, and chemistry play an 

important role in understanding the nacre model system at the organic-inorganic and 

the organic-organic interfaces. This study highlights that protein adsorption changes 

the SAM-mineral interface, resulting in a change in calcite crystallization on SAMs 

with regards to crystal orientation and nucleation density. Upon surface adsorption, 

protein conformation changes regardless of the initial protein conformation and 

surface chemistry, whereas, the amount of surface adsorbed protein can be related to 

the initial protein conformation. Further understanding of these types of interactions at 

organic matrix interfaces is necessary to better model the origins of biological control 

over the mineralization process. 
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4.5 Materials and Methods 

4.5.1 Silk fibroin purification  

Silk fibroin from Bombyx mori cocoons were cut into approximately 1.5 cm 

pieces and any insect remnants were manually removed. The cocoon material (0.5 g) 

was boiled in 500 mL of 2 w/v % Marseilles soap (an olive oil based soap originating 

from Marseilles France) solution for an hour and a half (changing the solution every 

30 minutes) followed by 30 minutes in boiling 0.02 M sodium carbonate (Na2CO3, 

J.T. Baker) to solubilize and remove the silk sericin. This purification method was 

modified from previous procedures.50, 59 After boiling, the silk was rinsed with copious 

amounts of water to remove excess salts and/or surfactants.  The resulting silk mass 

was dissolved overnight, at room temperature, in 9.3 M lithium bromide (LiBr, 

Reagent Plus ≥99%, Sigma-Aldrich). The concentration of the resulting silk solution 

was approximately 25 wt%. The solubilized silk was then filtered (Whatman filter 

paper) and dialyzed (Slide-a-Lyzer dialysis cassettes, Pierce, MWCO 3,500). Silk 

solutions (30 mL) were dialyzed against DI water (3 L) for three days at room 

temperature, changing the water twice daily.  The resulting silk solutions are 

approximately 5 wt%, which was determined by weighing the remaining solid after air 

drying. Fresh aqueous silk solutions were either used immediately or capped in glass 

test tubes (3 mL of solution) and incubated in a hot water bath at 60º C to induce β-

sheet formation (resulting in silk gelation). A sample was considered a gel when the 

vial was inverted and the solution did not fall after 30 seconds.50  

 Silk films were made by drying silk solutions at room temperature. Films were 

either characterized after drying (for random coil conformation) or treated the films 

with methanol to induce β-sheet transformation. Dried films were also made from silk 

gels, but were more brittle and harder to handle.  
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4.5.2 Self-Assembled Monolayer formation 

Gold coated silicon (100) wafers (50 Å titanium adhesion layer then 1000 Å 

gold) were purchased from Platypus Technologies. The wafer was cut into 1 cm2 

pieces and plasma cleaned immediately before SAM preparation. Methyl (-CH3), 

carboxyl (-COOH), or poly-ethylene glycol (PEG) terminated SAMs were formed on 

gold substrates by exposing the surfaces to 10 mM solution of the thiol (1-

hexadecanethiol, 16-mercaptohexadecanoic acid, or (1-mercapto-11-

undecyl)tetra(ethylene glycol), Sigma) in absolute ethanol for 24 hours, followed by 

washing with ethanol, then DI water.7, 44, 66 The carboxylate SAM was formed using 

acidic ethanol (~pH 2) to increase ordering of the SAM surface by assuring that the 

carboxyl terminus is protonated during SAM formation, reducing multilayer 

formation. After rinsing, slides were transferred to petri dishes and immediately used 

for adsorption GAFTIR and/or crystallization studies. 

4.5.3 Protein Adsorption  

SAM coated or plasma cleaned bare gold slides were incubated in 5 mg/mL 

protein solutions (silk fibroin or bovine serum albumin (BSA, Fisherbrand, used 

without any further purification)) for 24 hours. To avoid variability among protein 

batches, four SAMs (one of each surface chemistry) was placed in a single petri dish 

and incubated with the same protein solution for 24 hours. After incubation, slides 

were removed, rinsed with deionized water, dried under nitrogen, and immediately 

characterized with GAFTIR.  

4.5.4 Circular Dichroism (CD)  

The secondary structures of silk fibroin and BSA were verified via CD 

spectroscopy before use for adsorption studies. Spectra were recorded using a Model 

400 Aviv spectrometer with a Peltier thermocouple temperature control. The spectra 

were recorded from 190 to 250 nm with a 1 nm step. A quartz cuvette (Helma 
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Worldwide) with a 1 cm path length was used for measurements, and was capped to 

prevent evaporation. All samples were diluted with DI water to a concentration of ~20 

μg/mL for the best signal to noise ratio. Background spectra (DI water) were recorded 

and subtracted from each sample. Background subtracting and spectra smoothing were 

all done within the CD software. All theta values are reported as millidegree per 

milligram (mdeg/mg). 

4.5.5 Grazing Angle Fourier Transform Infrared Spectroscopy (GAFTIR)  

Infrared analysis of SAM functionality and surface adsorbed protein was 

conducted using a Bruker Vertex 80v FTIR with a VeeMax II grazing angle accessory 

and a MCTA detector. The grazing angle was set to 75º and p-polarized light was used 

to obtain the best spectra for gold coated monolayers. A freshly plasma cleaned bare 

gold surface was used as the background for all spectra. A Pike Technologies Miracle 

Diamond ATR was used for control silk film characterization. 

The FTIR was vacuum purged for 15 minutes prior to spectra acquisition to 

ensure elimination of CO2 and water vapor. Spectra were recorded at 2 cm-1 resolution 

and 256 scans. Spectra were analyzed (peak fitting, position, area, and baseline 

subtracted) using Igor analysis software.  

4.5.6 X-Ray Diffraction (XRD)  

X-ray diffraction measurements were performed using a Scintag Theta-Theta 

Diffractometer with CuKα radiation at 45 kV and 40 mA. Each sample was scanned 

over a 2θ range of 20-50º with a step size of 0.02º and a count time of 0.3 seconds. 

4.5.7 Calcium Carbonate Crystallization  

Crystal growth experiments were carried out using a 24 well plate (Nunc) 

mini-desiccator via the vapor diffusion method. Solid ammonium carbonate 

((NH4)2CO3, Sigma) was placed in one corner of the plate and covered with 

crystallization tape with one small hole poked in the center. Solid, anhydrous calcium 
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chloride (CaCl2, Sigma) as well as aqueous, 7 mM CaCl2 (high purity calcium chloride 

dihydrate was used for solution crystal growth, Sigma) were placed in between the 

carbonate source and the crystallization experiment wells to slow diffusion and 

prevent condensation from forming within the sealed 24 well plate. 1 cm2 carboxylic 

acid functionalized gold substrates were put in the bottom of the crystallization wells 

and covered with 0.5 mL of solution of 10 mM CaCl2. Crystallization experiments 

were carried out at room temperature for 24 hours, after which substrates were 

removed, rinsed with DI water, and dried before characterization.  

Crystal nucleation densities were tabulated with the use of ImageJ. Grayscale 

images were thresholded and analyzed. Number of crystals, crystal areas, as well as 

area fraction (crystal coverage per sample area) was recorded. 
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CHAPTER 5 

SILK FIBROIN HYDROGELS COUPLED WITH THE N16N – β-CHITIN 

COMPLEX: AN IN VITRO ORGANIC MATRIX FOR CONTROLLING CALCIUM 

CARBONATE MINERALIZATION*

 

5.1 Abstract 

As demonstrated in Chapter 2, the nacre specific peptide, n16N, has a binding 

affinity for β-chitin. The n16N-chitin assembly is able to selectivity nucleate 

aragonite. Here, I present a more complex in vitro assay in which silk fibroin 

hydrogels are added to the experimental assay. Crystallization, with silk and n16N on 

β-chitin, results in metastable vaterite and amorphous calcium carbonate which form 

as flat deposits with hemispherical centers. X-ray diffraction suggests that the vaterite 

crystals may be oriented with respect to the β-chitin fibrils. Fluorescence imaging of 

bound peptide show that n16N binds to β-chitin in the presence of silk. My results 

demonstrate that, with the addition of the silk fibroin hydrogel, both orientation and 

morphological control of calcium carbonate can be achieved.  

 

5.2 Introduction 

As discussed in Chapter 2, the peptide, n16N, is an intrinsically disordered 

peptide that can fold upon interaction with a target. Previous studies have shown that 

n16N interacts with calcium carbonate1, 2 as well as β-chitin,3 and may also be part of 

a larger protein complex.4 Here I increase the complexity of my synthetic 

experimental assay with the addition of another organic matrix component, silk fibroin 

hydrogels, to the n16N – β-chitin system.  
                                                 
* E. C. Keene, J. S. Evans, and L. A. Estroff, in preparation. 
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Falini et al. demonstrated the importance of silk fibroin in an in vitro assay.5  

Calcium carbonate was grown on a substrate of β-chitin and silk fibroin with the 

addition of adsorbed soluble macromolecules from either the calcitic or aragonitic 

layers. The results suggest that polymorphic control (aragonite formation) was only 

possible with the complete substrate assembly (i.e., all three components).  

Previous in vitro studies, including Falini’s assay (see section 1.4.1), do not 

use silk hydrogels but rather silk films or solutions. Cryo-TEM and environmental 

SEM studies of nacre, however, have shown that the silk-like protein is a weakly 

ordered β-sheet, hydrated gel.6, 7 In addition to the silk-like hydrogel in nacre, there 

are multiple other examples of gels in biomineralization including amelogenin gels 

associated with tooth enamel formation8 and collagen-like protein gels in otolith 

formation.9 While the exact role of silk fibroin in nacre growth is unknown, possible 

roles have been speculated.7 The environment in a hydrogel for crystallization differs 

from solution growth in diffusion rates, ion activities, and water “structure” (in 

hydrophobic gels). Hydrogels can also act as a site directing agent by suppressing 

crystallization and therefore, preventing uncontrolled crystallization until nutrients are 

in contact with the nucleating site or with already formed mineral. With the addition of 

a protein hydrogel to the n16N - β-chitin assembly, I can more accurately model the 

hypothesized organic matrix of nacre, as well as increase the complexity of the in vitro 

model. Therefore, we can build on our understanding of the complete nacre organic 

matrix.  
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5.3 Results 

5.3.1 Crystallization 

The addition of a silk hydrogel to the mineralization assay changes the 

microenvironment (i.e., organic-inorganic interface) for mineralization (Figure 4.1).  

Experimental controls, in the presence of silk, on β-chitin, form poly-crystalline 

calcite (Figure 5.1A). As reported in Chapter 2, crystals grown on β-chitin in the 

presence of n16N form randomly oriented, poly-crystalline aragonite crystals (Figure 

2.1C).3  With the addition of silk fibroin to the n16N – β-chitin complex, flat deposits, 

with a rounded, three-dimensional center, form (Figure 5.1B). Visually, the flat 

regions appear to be elongated along the chitin fibers. The chitin aligned mineral are 

similar to the polycrystalline calcite aggregates grown on β-chitin with p-Glu seen in 

Chapter 2 (Figure 2.4) 

Figure 5.1 SEM micrographs of calcium carbonate crystallization on β-chitin with 2.5 

wt% silk fibroin hydrogel (A) and 10 μM n16N (B). 

 

Under cross-polarizers (optical microscopy) the outer, flat regions remain dark, 

while the center three-dimensional regions remain bright suggesting amorphous and 
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poly-crystalline material, respectively (Figure 5.2). Raman spectra indicate that these 

crystals may be a mixture of amorphous calcium carbonate (ACC) and vaterite due to 

the relatively weak intensity of the characteristic peaks (peaks labeled in Figure 5.3).10 

General area x-ray diffraction (GADDs) shows vaterite reflections, and also a minor 

calcite component (Figure 5.4). GADDs data also shows some alignment of the 

vaterite reflections with the chitin (102) reflection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fgure 5.2 Optical microscope images of crystals grown on β-chitin with 2.5 wt% silk 

gel and 10 μM n16N. (A) Bright field image, (B) sample rotated 30° under cross-

polars, and (C) an overlay of the bright field and polarized image. Black arrows 

highlight the flat, outer regions that are dark under cross-polars. 
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Figure 5.3 Raman spectra of calcium carbonate grown on β-chitin. Top spectrum 

(control) = no additives, middle (silk) = 2.5 wt% silk fibroin gel, bottom (silk + n16N) 

= 2.5 wt% silk fibroin gel and 10 μM n16N. Crystal polymorphs, indicated by C and 

V, denote characteristic calcite and vaterite peaks, respectively. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 X-ray diffraction of crystals grown on β-chitin substrate with 2.5 wt % silk 

fibroin and 10 μM n16N. Relevant crystalline reflections are labeled with white 

arrows and indices on spectrum.  
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The complete organic matrix assembly has been shown to be crucial for the 

control of crystallization. By modifying the matrix, further information regarding the 

organic assembly can be gained. 

Crystals grown in the bulk gel (silk + n16N, no chitin) were isolated and 

characterized. The majority of the crystals are calcite with minor morphological 

affects (Figure 5.5).  Experiments were also performed with aqueous, random coil silk 

to study the affect of protein secondary structure and state (aqueous versus hydrogel). 

However, when n16N was mixed with aqueous silk, an insoluble precipitate forms. 

Therefore, experiments with random coil silk and n16N were discarded. When silk is 

added to a β-sheet hydrogel, this affect is not seen.  

 

V 

V 

 

 

 

 

 

 

 

 

Figure 5.5 SEM micrograph of isolated bulk gel grown crystals (2.5 wt% silk fibrion 

gel + 10 μM n16N with underlaying β-chitin substrate). The majority phase is calcite 

(V index minority vaterite phase). 

 

Both α-chitin and synthetic SAMs (carboxylate- and methyl-terminated 

alkanethiols on gold) were tested in place of β-chitin. Only polycrystalline calcite 
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forms (Figure 5.6) with similar morphologies to control crystals (no peptide) grown in 

the presence of silk gel (see Figure 4.4B for comparison).  

 

Figure 5.6 SEM micrographs, 2.5 wt% silk fibroin hydrogel with 10 μM n16N on a 

methyl-terminated SAM (A) and on α-chitin (B).  

 

Different water-soluble additives, to substitute for n16N, were also tested as 

modifications of the main assay. The n16N variants (n16NN and n16Ns),11 with the 

addition of silk fibroin and β-chitin, produce similar results as the native peptide 

(Figure 5.7). There is a flat, outer region with a rounded center, with similar 

characteristic vaterite/ACC Raman peaks seen in Figure 5.3. When n16N is substituted 

for a simple acidic polypeptide (p-Asp or p-Glu) with silk on β-chitin, crystals appear 

to grow into the chitin substrate (Figure 5.8A and B), while on synthetic SAMs poly-

crystalline calcite forms (Figure 5.8C). The flat structures formed with p-Glu + silk 

crystals on β-chitin are reminiscent of the flat ACC/vaterite crystals of Figure 5.1B, 

however, they are calcite (Figure 5.8D).  
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Figure 5.7 SEM micrographs of f crystals grown on β-chitin in the presence of 2.5 

wt% β-sheet silk fibroin gel and (A) 10 μM n16NN or (B) 10 μM n16Ns. 
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Figure 5.8 SEM micrographs of crystals grown in the presence of p-Glu and 2.5 wt % 

β-sheet silk fibroin gel on β-chitin (A and B) or on carboxylate-terminated SAM (C). 

Image magnification (B) shows crystals growing into the chitin substrate. Black 

arrows highlight β-chitin material. Raman spectra (D) of crystals grown on either a 

carboxylate-terminated SAM (top) or on β-chitin (bottom).  
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To learn more about the composition of the mineral deposits, etching and time 

dependent growth studies were carried out. Crystals were aged for 2 days (dry at room 

temperature). Visually, the samples appear more crystalline: the center regions have 

typical poly-crystalline, spherulitic morphologies (often seen with vaterite 

spherulites), while the flat regions appear to have a rougher texture (Figure 5.9).  

 

Figure 5.9 SEM micrographs of crystals aged, dry at room temperature, for 2 days. 

 

Samples were etched to investigate the possible amorphous materials, as ACC 

has a higher solubility than crystalline CaCO3.
12, 13

 
14 When samples were etched with 

DI water, and the outer, flat regions dissolved away first (Figure 5.10A). Sample 

magnification reveals that there is an indent in the chitin substrate where the flat 

material had been (Figure 5.10A, inset). Energy Dispersive X-ray (EDX) analysis of 

the etched crystals verifies the presence of calcium in the center region, while the 

outer flat deposits were completely etched away (Figure 5.11). Crystals were also 

etched with 1M KOH, believed to selectively etch ACC.14 Both flat and spherulitic 

regions become etched. The centers are more affected by the KOH etching process: 

the centers are completely dissolved (Figure 5.10B).  

 

 131



 

 

 

 

 

 

 

Figure 5.10 SEM micrographs of etched samples in (A) DI water for 20 hours or (B) 

1M KOH (to selectively etch ACC) for 8 hours. Figure insets are magnified regions of 

one structure each.  

 

Figure 5.11 EDX of mineral deposits in Figure 5.11A, inset. (A) Center region and 

(B) outer indented region. 

 

Timed growth experiments were utilized to monitor early mineral growth 

stages, when transient, metastable phases are often observed.15-18 Crystals grown for 

shorter time periods (4 and 6 hours) form the spherulitic regions first, followed by the 

flat regions (Figure 5.12).  
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Figure 5.12 SEM micrographs of crystals grown for (A) 4 hours or (B) 6 hours. 

 

Chapter 2 demonstrated n16N has a binding affinity for β-chitin. To 

investigate the effect of silk fibroin on the binding affinity of n16N, crystals were 

grown on chitin pieces that were incubated with silk fibroin and n16N. Unlike in 

Chapter 2, where aragonite selectivity remained after n16N incubation, with the 

addition of silk fibroin, both morphology and polymorph are lost. Only poly-

crystalline calcite forms (Figure 5.13).  

 

 

 

 

 

 

 

 

Figure 5.13 SEM micrograph (A) of β-chitin substrate with adsorbed n16N and silk 

fibroin. Raman spectrum characterizing crystal polymorph (B), where C denotes 

calcite. 
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5.3.2 Characterization of the organic assembly 

To investigate the organic-organic interface (chitin – protein/peptide, Figure 

4.1), further experiments were performed. Fluorescence labeling was used to 

investigate β-chitin - silk/n16N interface binding interactions. The fluorescence dye, 

BODIPY FL, binds to Cys groups of proteins or peptides.3 Control fluorescence 

experiments of β-chitin incubated with silk alone do not fluoresce, suggesting that 

either the silk does not become labeled in this fluorescence assay (there is less than 1% 

Cys content in silk fibroin19) or there is no bound silk (Figure 5.14A).  Another 

fluorescence control, silk and BSA incubated with β-chitin, show moderate 

fluorescence (<150 pixel brightness, Figure 5.14B). BSA is known to non-specifically 

bind to surfaces, and has Cys groups that can be labeled with BODIPY FL.3  The 

majority of non-specifically bound protein should be removed with the appropriate 

washing procedures.3, 20-22 

Figure 5.14 Summed histogram of BODIPY FL labeled chitin substrates incubated 

with 2.5 wt% silk fibroin hydrogel (A) and BSA (B). 

 

Fluorescence labeling of adsorbed silk/n16N on chitin was obtained under two 

conditions: first, with a mixture of adsorbed silk and n16N, and second, with silk 

incubation first, followed by n16N.  In both cases the chitin shows strong fluorescence 
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(> 200 pixel brightness), suggesting that the silk is not preventing n16N from binding 

to β-chitin (Figure 5.15). Chitin substrates incubated with a mixture of silk and peptide 

show a stronger fluorescence (more pixels at higher brightness levels) than the peptide 

adsorbed on chitin after silk.  

 

Figure 5.15 Representative fluorescence micrographs and summed histograms 

compiled from triplicate experiments of BODIPY FL labeled chitin substrates 

incubated with a mixture of n16N and silk fibroin (A) or incubation with n16N after 

silk fibroin incubation (B). 

 

5.4 Discussion 

This study demonstrates the importance of the complete organic matrix 

assembly from nacre for controlling crystal growth. XRD, Raman, and etching 

experiments all confirm the presence of metastable vaterite and ACC (Figures 5.3, 5.4, 

and 5.10). Ostwald’s rule of stages (Figure 1.1) states that the pathway to the final 

crystalline state will pass through all less stable states in order of increasing 

thermodynamic stability.23 ACC is a metastable phase and rapidly transforms into a 

crystalline phase without the addition of organic stabilizers.13 The use of amorphous 

material is widespread in biology, and recently, it has been demonstrated that the 
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formation of calcium carbonate crystals in biological systems (such as mollusks) may 

occur through the formation of ACC which later converts to a more stable phase.12, 24, 

25 Under biological control (i.e., biomacromolecules), the amorphous material 

crystallizes in a controlled manner to form the desired crystalline polymorph and 

morphology.26  

In this study, the conversion of ACC to a crystalline phase (vaterite), with silk 

fibroin and n16N, is not entirely unexpected. Aged samples (Figure 5.10) and timed 

growth experiments (Figure 5.12) suggest ACC forms at initial growth stages, and 

subsequently, slowly crystallize into vaterite. With these samples, a conversion to 

calcite is never seen.  In the case of p-Asp/p-Glu with silk, ACC converts to calcite 

(Figure 5.8). From the literature, an in vitro experiment with CAP-1, a crayfish 

protein, was able to nucleate unidirectionally oriented calcite thin films on α-chitin 

through an amorphous precursor phase.27 This protein, which has an α-chitin binding 

motif, is speculated to interact with both the chitin and the nucleating crystal.  

On chitin, CAP-1 and p-Asp/p-Glu with silk result in a conversion of ACC to 

the thermodynamically stable calcite. The peptide, n16N, in combination with β-chitin 

and silk, is different. Together, n16N and silk are able to stabilize a metastable phase 

(vaterite). However, no further recrystallization to aragonite is observed. The 

experimental assay could be modified further, such that with the appropriate organic 

modifiers (in addition to n16N, silk fibroin, and β-chitin), ACC may convert to 

aragonite. 

There are two possible organic matrix interactions affecting mineralization: 

silk and n16N may separately interact with the forming mineral (Figure 5.17A) or a 

silk – n16N complex may be forming (Figure 5.17B). 
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Figure 5.16 Two possible schematics of the complete organic assembly. Silk fibroin 

and n16N may interact with the growing crystals separately (A) or as a larger protein 

complex (B). 

 

It is known that n16N is an intrinsically disordered peptide (IDP).28 IDPs are 

unfolded in their monomeric state, but can undergo folding upon interaction with a 

“target”.29-33 The IDP nature of n16N may lead to different structures with and without 

the addition of the silk fibroin. In Chapter 2, I suggested that the unstable, partially 

unfolded structure of n16N facilitates interactions with β-chitin, such that internal 

stabilization (i.e., folding) of the n16N sequence occurs upon binding. This interaction 

with chitin may present certain functional groups at the organic-inorganic interface 

leading to aragonite selectivity.3 Silk fibroin may disrupt this interaction. The 

fluorescence results demonstrate that n16N still binds to chitin in the presence of silk, 

but the crystallization results suggest that the peptide conformation/structure may have 

changed since the aragonite selectivity is lost (Figure 5.16A).  Instead, two metastable 

phases, vaterite and/or ACC, form. It is possible that the silk fibroin, a known inhibitor 

of crystallization,7 is suppressing crystal growth causing the metastable phase(s) to 

form, as well as a change in crystal morphology. 
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Alternatively, the complete organic matrix (chitin + n16N + silk gel) may 

promote the metastable phases. A recent report suggests that n16 is part of a larger 

protein complex.4  If the n16N and silk fibroin hydrogel are forming a larger protein 

complex (Figure 5.16B), together they could play a similar role to prisilkin-39, a 

mollusk prismatic layer protein. Prisilkin-39 has a highly repetitive amino acid 

sequence reminiscent of silk fibroin and serves a dual role in prismatic layer 

formation.22 This protein binds tightly to chitin, as well as inhibits crystallization 

(especially aragonite formation, even in the presence of magnesium). The presence of 

the β-sheet silk fibroin hydrogel in nacre may interact with both the acidic 

macromolecules and as well as the chitin matrix. The presence of silk appears to help 

charged molecules penetrate the chitin.34, 35 The indent left in chitin, after the flat 

region is etched away by water (Figure 5.10A), suggests that mineral may have grown 

into the porous chitin substrate. Crystals grown with silk and p-Glu grow into the 

chitin substrate, on and around the chitin fibers (Figure 5.8). The intercalation of silk 

(and possibly other charged molecules) into the chitin matrix is consistent with 

previous results, which have suggested that silk penetrates the porous chitin 

framework.34, 35   

Crystal growth, in the presence of all three organic components, can affect 

crystal polymorph, morphology, and orientation.3-5  When the nucleating substrate is 

changed (α-chitin or SAMs) or removed (bulk gel crystal growth) only randomly 

oriented calcite crystals are observed, similar to control experiments. Previous 

fluorescence results demonstrated n16N does not have a binding affinity for α-chitin, 

and therefore does not selectivity nucleate aragonite (Chapter 2).3 The addition of silk 

to n16N – α-chitin/SAM does not change this result. However, in this chapter, 

fluorescence studies demonstrate that silk does not prevent n16N from binding to β-

chitin. GAFTIR results (from Chapter 4) demonstrate that silk adsorbs to various 

 138



surfaces. Therefore, when silk is adsorbed to chitin prior to n16N, there may be some 

non-specific binding of the silk to occupy sites that n16N could have become bound. 

When silk and n16N are incubated together, there is a stronger fluorescence, such that 

n16N may preferentially bind to chitin over silk. It is currently unknown whether 

n16N is structured or oriented on β-chitin, and whether the addition of silk changes 

this interface. 

In summary, by systematically increasing the complexity of a crystallization 

assay, the roles of individual macromolecules can become known, as well as further 

control over in vitro crystallization can be gained. More specifically, I found that with 

addition of a silk fibroin hydrogel to the n16N – β-chitin system, crystal orientation 

and morphological control could be gained. 

 

5.5 Materials and Methods 

5.5.1 Peptide Synthesis and Purification  

The 30-mer polypeptide, n16N, representing the 1-30 AA domain of native 

n16 (AYHKKCGRYSYCWIPYDIERDRYDNGDKKC), was synthesized using the 

protocol described in earlier work.1, 2, 28 The 30 AA randomly scrambled version of 

n16N (n16Ns, EPRYCKWCDNKHGDRAGCKYSIDYYKIRDY), and the globally 

substituted Asp  Asn, Glu  Gln version, n16NN 

(AYHKKCGRYSYCWIPYNIQRNRYNNGNKKC) were also synthesized and 

purified as described.11 All three peptides were synthesized in the C-amide “capped” 

form.  

Poly-L-aspartic and poly-L-glutamic acid (Sigma Aldrich) were used without 

further purification. 
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5.5.2 Silk fibroin Purification and Gelation 

  Silk fibroin from Bombyx mori (silkworm) cocoons were purified as previously 

described (see Chapter 3 and 4). Silk hydrogels were formed as described in Chapter 3 

and 4.   

5.4.3 Chitin Purification/Preparation  

Squid pen (β-chitin), from the Loligo species, was purified as described in 

Chapter 2. Before crystallization experiments, β-chitin pieces were rehydrated in 10 

mM calcium chloride (CaCl2) for a minimum of 2 hours. 

5.5.4 Crystallization Experiments  

Crystallization experiments were carried out via the vapor diffusion method (as 

described in previous chapters (Chapters 2 & 4) for 24 hours. Shorter crystallization 

times were also tested (4 and 6 hours). Bulk gel grown crystals were isolated by 

mixing bleach (sodium hypochlorite, Fisher) with the silk gel, after the chitin substrate 

had been removed. The bleach-silk mixture was then centrifuged (Eppendorf 

Centrifuge 5415C, 5 minutes, 8,000 g), supernatant removed, and rinsed with bleach 

followed by DI water. After last centrifugation, crystals were resuspended in ethanol 

and the ethanol-crystal mixture was placed on glass coverslips and air dried before 

characterization. All crystallization experiments were done in triplicate. 

5.5.5 Crystal Etching 

 The crystals were etched in deionized (DI) water for 20 hours. During this 

time, the samples were gently agitated on a rocking table. After etching, the samples 

were air dried and characterized. To selectively etch ACC, crystals were etched with 

1M KOH for 8 hours.14 

5.5.6 Morphology and Polymorph Analysis  

The morphology of grown crystals was examined via polarized light 

microscopy (Leica) and via scanning electron microscopy (SEM, Leica Stereoscan 
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440, 15 kV, 900 pA) after they were coated with a thin layer of Au/Pd.  Elemental 

composition was identified by Energy Dispersive X-ray analysis (EDX, detector: 

Kevex; analyzer and software: Evex). The polymorph of the grown crystals was 

determined via Raman (Renishaw InVia micro-Raman system, 785 nm excitation 

frequency) and via x-ray diffraction (Bruker General Area Diffraction Detector 

System, transmission mode, 40 mA, 40kV). Chitin x-ray structural parameters were 

assigned based upon literature values.35-37 

5.5.7 Adsorption experiments  

Similar to Chapter 2, chitin substrates were incubated with solutions of 5 µM 

n16N plus 2.5% β-sheet silk fibroin on a rocking table at room temperature for 24 

hours to allow the peptide/protein time to adsorb from solution onto the chitin 

substrate. Chitin samples that were incubated with silk and peptide separately were 

rinsed with DI water only between incubations. After 24 hours, substrates were 

washed with DI water, saline solution (0.2 M NaCl), buffer (10 mM Tris, pH 7.2), and 

finally DI water again to remove any unbound protein. Substrates were immediately 

used for crystal growth or fluorescence experiments.  

5.5.8 Fluorescence experiments 

Substrates with adsorbed peptide were reacted with BODIPY FL N-(2-

aminoethyl) maleimide (Invitrogen) according to manufacturer’s instructions with the 

modifications described in Chapter 2. Specimens were imaged via fluorescence 

microscopy (Olympus BX51 equipped with a Roper Cool Snap CCD Camera, 100 

msec exposure time) using the Image Pro imaging software package. All images were 

processed in ImageJ as described in Chapter 2. 
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CHAPTER 6 

CONCLUSIONS 

 

 This thesis presented a bio-inspired synthetic organic matrix for controlling the 

growth of calcium carbonate crystals.  My in vitro model systematically studied three 

organic matrix components of nacre (β-chitin, nacre-specific peptides, and a silk 

fibroin hydrogel) and their affect on mineralization. The results demonstrate that 

crystal form (polymorph and morphology) is controlled at the organic interface, and 

that there may be interfacial molecular recognition between the β-chitin and 

protein/peptide with the mineral.  

 In Chapter 2, studies with n16N (a nacre specific peptide) investigated its 

affects on calcium carbonate crystallization. Only in combination with a β-chitin 

substrate is the assay able to selectivity nucleate aragonite (separately, each 

component nucleates only calcite). The peptide, n16N, has a binding affinity for 

chitin, which results in the formation of a new organic matrix interface for interaction 

with crystal nuclei. This organic interface is capable of selectively growing aragonite, 

though this interface is not capable of controlling crystal orientation or morphology.  

Chapter 3 introduced a silk fibroin-like hydrogel, a major component of the 

nacre organic matrix, to the in vitro nacre model. This chapter discussed the 

preparation of silk fibroin hydrogels from Bombyx mori silkworm cocoons for use in 

various applications. These results demonstrate that purification method and gelation 

conditions affect the resulting hydrogel such as gel quality, protein conformation, as 

well as gel viscoelasticity.  

Chapter 4 utilizes the silk fibroin hydrogels for crystallization and interfacial 

studies on surfaces. With the addition of silk, crystallization results vary from solution 

controls on various self-assembled monolayers (SAMs) such that crystal orientation 
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and nucleation have changed. Further characterization of the protein-SAM interface 

found that protein adsorbed to the various surfaces, affecting the SAM-mineral 

interface. Upon adsorption, the silk fibroin changes to a more disordered secondary 

structure. 

 Chapter 5 further increases the complexity of the in vitro nacre model 

(established in Chapter 2). With the addition of the silk fibroin hydrogel to the chitin-

n16N system, further control over crystallization is achieved. Metastable ACC and 

vaterite structures, which are oriented with respect to the underlying β-chitin fibers, 

grow in the presence of n16N and silk fibroin hydrogels.  

 Based upon these studies, general principles regarding nacre formation in vivo 

are elucidated. This thesis has demonstrated that minimalistic in vitro models are not 

accurate to biology, and therefore multi-component systems are necessary to 

understand in vivo biomineralization processes. As discussed in section 1.5, further 

research is needed to answer other key biological questions such as: what 

combinations make “good” organic matrices? Chapter 2 demonstrated that n16N binds 

to β-chitin, and together are able to selectively nucleate aragonite. However, it is still 

unknown if this interface structures the peptide, and which amino acids are presented 

to effectively determine polymorph selectivity. Chapter 5 demonstrated that with the 

complete matrix assembly (β-chitin + peptide + silk hydrogel), crystal morphology 

and orientation could be controlled, but not polymorph. Is β-chitin + peptide + silk 

hydrogel a “good” combination (since aragonite selectivity is lost)? To regain 

aragonite formation, other combinations (such as other nacre-specific peptides, either 

substituted or added into the system) could also be tested to see if the new 

combination would give a similar or improved result, and thus increase the matrix 

complexity further.  
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 Biominerals have controlled structures, composition, shape, and organization. 

Studying their formation offers insight into control at inorganic-organic interfaces. 

Applying biomineralization concepts to other materials can inspire new synthetic 

techniques for creating materials with novel materials properties. To fully utilize 

Nature’s control over mineral formation in vitro, continued efforts in fundamental 

biomineralization research is needed. This thesis has provided a starting platform for 

future biomimetic crystal growth approaches for understanding and controlling 

polymorph selectivity, morphology, and orientation. 
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APPENDIX 1 

PROTEIN EXTRACTION FROM MOLLUSK SHELLS 

 

A.1.1. Mollusk shell preparation 

 American bluepoint oysters (Crassostrea virginica), Littleneck clams 

(Protothaca staminea), and zebra mussels (Dreissena polymorpha) were used for 

protein extraction experiments. Oysters and clams were obtained from the raw oyster 

bar at Maxie’s Supper Club (Ithaca, NY) and zebra mussels were scraped from rocks 

obtained from Onondaga Lake (Syracuse, NY). Zebra mussels were frozen to 

euthanize the mussels, then shells were split apart, and the internal tissue removed. 

 All split shells were washed with soap and water and any visible remaining 

organic material removed. Cleaned shells are soaked in 10% NH4OH at room 

temperature overnight to remove any remaining surface organics (i.e., algae etc.) then 

rinsed with copious amounts of DI water. Shells were rinsed and stored frozen (-20º 

C) until use. Shell pieces were defrosted and fractured (and in some cases ground into 

a powder) before immediate characterization or protein extraction.  

 

A.1.2. Shell characterization 

 Shells were characterized for polymorph, shell microstructure, and organic 

content. Mineral polymorph was characterized by FTIR with ground shell fragments 

made into a KBr pellets. Bluepoint oyster shells are composed entirely of calcite and 

zebra mussels and little neck clams are aragonite (Figure A1.1).   
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Figure A1.1 FTIR spectra of ground shell from the American bluepoint oyster 

(Crassostrea virginica), Littleneck clam (Protothaca staminea), and the zebra mussel 

(Dreissena polylmorpha). Indices label characteristic calcite (C) and aragonite (A) 

peaks. 

 

Shell fragments were imaged in the SEM to explore the microstructure of these 

two mollusk species (Figure A1.2). The oyster has a simple prismatic structure, while 

the zebra mussel has a more complex crossed lamellar structure, and clams have a 

monomodal growth pattern (large crystalline regions appear to grow out of one point).  
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Figure A1.2 SEM micrographs of shell microstructure of (A) Bluepoint oyster prisms 

(separated by bleach) and shell cross sections from the (B) zebra mussel and (C) 

Littleneck clam shells. 

 

Ground oyster shell samples were analyzed for organic content via 

thermogravimetric analysis (TGA, TA Instrumentas Q500, 5º C/min to 550º C from 

room temperature under a flowing air atmosphere).  Even after the temperature ramp 

is complete, the sample did not plateau indicating that there may be more organic that 

has not been removed (Figure A1.3, >1.5% intercrystalline organic material). 
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Figure A1.3 TGA curve of powdered oyster shell 

 

A.1.3. Protein characterization 

 Proteins were extracted using three different approaches from powdered shell 

material. The first method, suspends the powder in DI water with continuous stirring 

for 24 hours to solubilize the water soluble organic material.1 The solution was then 

filtered to separate out insoluble shell material (yields ~100 mg per 100 g starting shell 

material). This protein is denoted the water soluble matrix protein extraction. The 

second method dissolved the powdered shell in 10% EDTA (pH 8) for 24 hours at 

room temperature with continuous stirring followed by extensive dialysis (Spectrum 

Spectra/Por 3500 MWCO Cellulose tubing) against DI water to remove the EDTA.2 

This protein extraction is denoted EDTA soluble protein. The last method utilized 

cation exchange resin.3 Approximately 40 g of powdered shell was suspended in a 

dialysis tube (Spectrum Spectra/Por 3500 MWCO cellulose tubing). The dialysis tube 

was placed in a 1 L plastic bottle filled one quarter full with prewashed and 
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regenerated cation exchange resin (Dowex) and topped off with DI water. The bottle 

was continuously rotated at room temperature to keep the resin and powdered shell 

suspended. The outer DI water was changed once daily until complete mineral 

dissolution (approximately 1-2 weeks). This extraction method isolates both soluble 

and insoluble shell proteins and is denoted the “gentle” method (yields ~100 mg per 

40 g starting shell material). 

The resulting protein solutions (from all extraction methods) were lyophilized 

to concentrate the organic material. Lyophilized powders were stored dry in the 

freezer (-20° C) until use. Prior to lyophilization, the soluble and insoluble shell 

proteins and polysaccharides could be further separated via centrifugation (3000 g, 45 

minutes at 4° C). The supernatant is the soluble protein. 

 CD spectroscopy was used to analyze the protein secondary structure of the 

water soluble proteins.  Both clam and oyster proteins have a random coil 

conformation (Figure A1.4).  It is unknown whether the proteins are in a random coil 

conformation in vivo, or if the proteins denatured during the extraction process. 

 

 

 

 

 

 

 

 

  

 

Figure A1.4 CD spectra of extracted shell proteins. WS = water soluble proteins. 
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Samples of the water soluble matrix proteins were sent to Bio-Synthesis, Inc. 

(Lewisville, TX) for amino acid (AA) analysis. Analysis included separation, 

detection, and quantification (via hydrolysis and chromatographic instrumentation, 

Figure A1.5 and Tables A1.1 and A1.2). 

 

 

 

 

 

 

 

 

 

Figure A1.5 Liquid chromatography of extracted (A) oyster and (B) zebra mussel 

water soluble shell protein. Peptides labels correspond to column run times and 

assigned amino acids.  
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Table A1.1 Amino Acid Analysis Data for Water Soluble Oyster Shell Protein 

AA AA in sequence AA found in pmoles % recovered 

D/N 1 28.833 14.15 

S 1 17.977 6.73 

E/Q 1 30.828 16.99 

G 1 37.830 9.28 

H 1 3.611 2.13 

R 1 3.284 2.21 

T 1 11.790 5.13 

A 1 16.047 4.91 

P 1 20.825 8.70 

C 1 1.141 0.51 

Y 1 15.502 10.88 

V 1 10.081 4.30 

M 1 2.643 1.49 

K 1 7.412 4.09 

I 1 5.294 2.58 

L 1 7.494 3.65 

F 1 3.596 2.28 

W 0 0.000 0.00 
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Table A1.2 Amino Acid Analysis Data for Water Soluble Zebra Mussel Shell Protein 

AA AA in sequence AA found in pmoles % recovered 

D/N 1 20.255 9.98 

S 1 18.864 7.09 

E/Q 1 19.636 10.86 

G 1 37.520 9.24 

H 1 2.332 1.38 

R 1 7.849 5.29 

T 1 16.949 7.40 

A 1 26.044 7.99 

P 1 19.300 8.09 

C 1 2.493 1.11 

Y 1 17.543 12.36 

V 1 10.927 4.68 

M 1 3.882 2.20 

K 1 9.345 5.17 

I 1 4.885 2.39 

L 1 6.370 3.11 

F 1 2.601 1.65 

W 0 0.000 0.00 
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Crystals were grown with extracted proteins (water soluble and “gentle”) on 

glass coverslips to see the affect on crystal morphology and polymorph. All crystals 

are calcite with very little morphological affects.  

Figure A1.6 Optical microscopy images of calcium carbonate crystals on glass 

coverslips with (A) oyster water soluble shell protein, (B) clam water soluble shell 

protein, and (C) oyster protein from the “gentle” protein extraction method. All 

protein concentrations are 0.5 mg/mL. 
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APPENDIX 2 

SEM MICROGRAPHS OF VARIOUS BIOMINERALIZAION SPECIMENS 

 

Calcium Carbonate 

 Rigid pen shell (Atrina rigida) 

Figure A2.1 SEM micrographs of rigid pen shell (Atrina rigida). (A & B) Cross 

section of entire shell, top =  prismatic = calcite, bottom = nacre = aragonite. (C) 

Magnified region of aragonite nacre tablets. (D) Separated calcite prisms (prismatic 

layer soaked in bleach to removed intracrystalline organic material). Figure inset of an 

etched prism (5 minutes,1% acetic acid) to expose intercrystalline organic material. 
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Zebra mussel (Dreissena polymorpha) 

See Figure A1.2B 

 Littleneck clam (Protothaca staminea) 

See Figure A1.2 C 

 American bluepoint oyster (Crassostrea virginica) 

See Figure A1.2A 

 

Calcium Phosphate 

Juvenile Feline (Felis catus) Tooth 

Figure A2.2 SEM micrographs of a fractured and etched (30 seconds, 0.1% nitric 

acid) juvenile feline (Felis catus) tooth. (A) Cross section of tooth fragment, 

magnified regions of the (B) inner dentin layer, and (C) outer enamel layer.  

 159



 White-Tailed Deer (Odocoileus virginianus) Antler 

 

 

 

 

 

 

 

 

Figure A2.3 SEM micrograph of a cross section of the interior of a deer antler 

(spongy trabecular bone). Inset: optical micrograph of antler cross section with both 

the outer cortical bone and the inner trabecular bone visible.  

 

Silica 

 Freshwater Diatoms 

 

 

 

 

 

 

 

 

Figure A2.4 SEM micrograph of a freshwater diatom. Diatoms obtained from Beebe 

Lake/Fall Creek located adjacent to the Cornell Plantations Wildflower Garden. 
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APPENDIX 3 

MISCELLANEOUS SILK FIBROIN RESULTS 

 

A3.1 Etched crystals  

 To investigate possible silk fiber incorporation into calcium carbonate crystals, 

etching experiments in DI water were carried out. 

 

 

 

 

 

 

 

Figure A3.1 Solution (control) grown crystal on glass. Crystals were etched in DI 

water for 23 hours with minimal crystal dissolution. 

 

 

 

 

Figure A3.2 Crystals grown on a glass coverslip with aqueous, random coil silk (5 

wt%). Crystals were etched in DI water for 13 hours with minimal crystal dissolution. 
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Figure A3.3 Crystals grown in the presence of silk fibroin β-sheet hydrogel (5 wt%). 

(A, B) Crystals were etched in DI water for 4 hours. (C) TGA of gel grown crystals 

show minimal (<2%) gel incorporation within the crystal.  
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A3.2 Crystal growth on silk films 

 Drops of aqueous silk fibroin was deposited on glass or β-chitin substrates and 

air dried. Dried silk films were treated with methanol for 2 hours to induce β-sheet 

formation and film insolubility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.4 Crystals grown on silk films on glass with various additives. (A) Solution 

grown (no additives) (B) 2.5 wt % silk hydrogel (C) 10 μM p-Glu (D) 10 μM p-Glu + 

2.5 wt% silk gel. 
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Figure A3.5 Crystal grown on silk films on β-chitin with various additives. (A) 

Solution grown (no additives) (B) 10 μM n16N (C) 2.5 wt% silk hydrogel (D) 2.5 

wt% silk hydrogel grown crystals etched in DI water for 24 hours. 
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