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A major goal in genetics is the identification of loci that contribute to dis-

eases and other traits. With my Ph.D. research, I have developed methods that

address two important challenges in this search: First, I addressed the chal-

lenge of choosing an appropriate disease model by developing a Gibbs sampler

and an elimination algorithm to perform linkage analysis for categorical traits.

Second, I addressed the challenge of population stratification due to admixture

by developing a Principal Components-based approach to the assignment of

ancestry at local regions along the genome of phased haplotypes in admixed

individuals.

Choosing an appropriate disease model is critical for maximizing power to

detect disease loci. Many complex heritable diseases feature nominal or ordinal

phenotypic measurements for which traditional methods of linkage analysis,

which model traits as binary or continuous, are not well-suited. To address

this challenge, I developed a Gibbs sampling approach (LOCate) and an elim-

ination algorithm approach (LOCate2) to assess linkage for categorical traits. I

validated the methods on simulated data and found that my approaches have

increased power versus existing methods for ordinal linkage analysis. I also

used these methods to analyze several data sets of categorical traits in humans

and dogs, and found increased LOD scores at candidate loci when the traits

were treated as categorical rather than binary. This will be useful for mapping



genes for many complex traits.

Identifying ancestry along each chromosome in admixed individuals is of

interest for admixture mapping, understanding the population genetic history

of admixture events, and identifying recent targets of selection. I developed a

Principal Components-based forward-backward algorithm for determining lo-

cal ancestry from a high-density, genomewide set of SNP genotypes of admixed

individuals. Simulations show that the method is robust to misspecification of

ancestral populations and the number of generations since admixture. I also

applied my method to assess 3-way European, Native American, and African

admixture among four Latino populations, and identified regions of extreme

levels of African and Native American ancestry which may have experienced

selection during admixture. This method is fast, accurate, and applicable to

phased haplotypes with admixture from two or more populations.
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4.4 Accuracy under different assumptions about the ancestral pop-

ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Regions showing extreme ancestry proportions in multiple

Latino populations. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1 Additional trichotomous penetrance models used to analyze
Panic Disorder data. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



LIST OF FIGURES

1.1 Gelman-Rubin statistics for the Markov chain in Table 1.2. . . . . 13
1.2 Population structure can produce false positives in association

mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Admixture mapping identifies correlations between phenotypes

and ancestry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 The HMM for ancestry assignment. . . . . . . . . . . . . . . . . . 23
1.5 SVD of genotype or haplotype data. . . . . . . . . . . . . . . . . . 25

2.1 The graphical model for the Gibbs sampler. . . . . . . . . . . . . . 30
2.2 Lag-k autocorrelation with and without simulated tempering. . . 34
2.3 Gelman-Rubin statistics for the likelihood of a simulated pedigree. 35
2.4 The Linear Regression estimator of P (X | θ). . . . . . . . . . . . . 37
2.5 Examples of simulated pedigrees. . . . . . . . . . . . . . . . . . . 39
2.6 LinReg and RLR estimators of LOD(θ). . . . . . . . . . . . . . . . 42
2.7 Estimated LOD curves for simulated pedigrees with binary traits. 44
2.8 Accuracy of LOCate. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Treating trichotomous traits as binary. . . . . . . . . . . . . . . . . 46
2.10 ROC plot from simulated linkage studies. . . . . . . . . . . . . . . 48
2.11 LOD scores from simulated linkage studies. . . . . . . . . . . . . 49

3.1 A sample pedigree with a full-sib mating. . . . . . . . . . . . . . . 59
3.2 Example of a large simulated pedigree with inbreeding. . . . . . 60
3.3 Pedigree of Labrador Retrievers used for segregation analysis of

juvenile hereditary cataracts. . . . . . . . . . . . . . . . . . . . . . 64
3.4 Pedigrees of German Shepherd dogs affected by cardiac arrhyth-

mia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 LOD curve for the inbred pedigree in Figure 3.1. . . . . . . . . . . 70
3.6 Power vs. Type I error of our method on large simulated pedigrees. 71
3.7 Power vs. Type I error on simulated small pedigrees with an

ordinal trait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 Power vs. Type I error on simulated small pedigrees with a nom-

inal trait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 Lower power to detect QTLs in small families than large families,

for a constant sample size. . . . . . . . . . . . . . . . . . . . . . . . 74
3.10 LOD scores plotted by marker. . . . . . . . . . . . . . . . . . . . . 76
3.11 LOD scores plotted by penetrance model. . . . . . . . . . . . . . . 77

4.1 Estimation of average ancestry proportion for a haplotype. . . . 84
4.2 Ancestry segments assigned to simulated chromosomes using 2

SNPs per window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Posterior probabilities for a simulated chromosome under differ-
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CHAPTER 1

INTRODUCTION

Recent years have seen an explosion of research into the genetic causes of

diseases and other traits, with many successes, including the identification of

Complement Factor H as a contributor to age-related macular degeneration [17],

BRCA1 and 2 as factors in breast cancer [32, 75], and IGF1 as a factor in small

body size in dogs [65]. However, there is still a great deal to be discovered: With

the exception of Mendelian traits such as sickle-cell anemia [53, 38] or Hunting-

ton’s disease [30], most identified loci explain only a small fraction of the heri-

tability their traits exhibit. For example, human height has a heritability of 80%,

meaning that the correlation between the average of parents’ height and the

height of the child (conditional on the child’s gender) is r = .8, a highly predic-

tive correlation. Yet the 54 loci that have been identified to contribute to height

explain only 5% of this heritability [46]. Clearly, there is a need for additional

research and improved methods to enhance the search for causative loci.

In this thesis, I present three new methods to aid in the search for loci that

contribute to diseases and other traits. The rest of this introduction gives an

overview of linkage analysis, categorical traits, and admixture. Chapters 2 and

3 describe approaches for linkage analysis for categorical traits. Chapter 4 de-

scribes a method for assigning ancestry along chromosomes in admixed indi-

viduals.
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1.1 Linkage Analysis

Linkage analysis refers to the identification of co-transmission within a pedigree

of a trait and a genetic marker or markers in order to identify genetic linkage be-

tween the genetic markers and the quantitative trait locus (QTL), or the genetic

location that directly affects the trait. Linkage analysis has been used to identify

loci linked to traits as diverse as breast cancer [32], macular degeneration [17],

and hip dysplasia [85]. The use of pedigree data affords protection against the

reduced power and high type I error rate that can be the result of genetic hetero-

geneity and population stratification in association mapping studies. For this

reason, investigations of loci contributing to a trait often first employ linkage

analysis to identify candidate regions, which may be followed by association

mapping to obtain finer resolution in candidate regions.

Single Marker Analysis (SMA) is a form of linkage analysis which uses infor-

mation from one genetic marker at a time. The goal is to infer θ, the probability

of recombination between the marker and the QTL. θ can range from 0 to .5.

With a map that aligns genetic and physical distances, such as [22], θ can be

used as a proxy for the physical distance between the marker and the QTL. To

find the maximum likelihood estimate of θ, we compute P (X | θ), the probabil-

ity of the observed data (marker genotypes and phenotypes) conditional on θ.

To do this, we use the equation

P (X | θ) = ΣY P (X, Y | θ) (1.1)

where Y is the set of possible configurations of unobserved QTL genotypes on

the pedigree. However, |Y | grows exponentially with n, the number of individ-

uals in the family (|Y | is approximately 3n, ignoring the fact that some of these

2



configurations will involve Mendelian inconsistencies). Therefore, it is impor-

tant to perform this summation in an efficient way, for example, through the use

of Elston-Stewart peeling [18].

Many software programs are available to conduct linkage analysis for bi-

nary and quantitative traits. Superlink [21] uses the Elston-Stewart (peeling by

nuclear families) and Lander-Green (peeling by locus) algorithms to eliminate

variables, in order to perform single marker analysis (SMA) and interval map-

ping (IM) for binary traits. Merlin [1] performs SMA and IM for binary and

quantitative traits, using the Lander-Green algorithm on systematically con-

densed binary trees describing the gene flow through the pedigree. SOLAR

[2] uses a variance-components analysis to perform IM for quantitative traits.

Loki [35] is a Markov chain Monte Carlo (MCMC) method for estimating the lo-

cations and number of quantitative trait loci (QTL) affecting a continuous trait

with normally distributed residuals.

1.2 Categorical Traits

Categorical traits are those in which phenotypes fall into more than two dis-

crete categories. The categories may be ordered, such as “mild,” “moderate,”

or “severe,” or unordered, such as color. The former are also known as ordinal

traits, and the latter are known as nominal traits. Many traits of interest, from

pathogen resistance in plants [77] to panic disorder in humans [23], have a nat-

ural means of classification as categorical traits. Methods designed for binary or

quantitative traits are not expected to be effective for categorical traits. Assign-

ing the categories of a categorical trait to the dichotomy of a binary trait involves

3



a loss of information, so binary-trait methods are likely to suffer from reduced

power when used to search for loci affecting a categorical trait [12, 20]. Methods

designed for quantitative traits assume that the phenotype is normally, or oth-

erwise continuously, distributed conditional on the genotype, which is a poor

model for the discrete categories of ordinal data. Therefore, continuous-trait

methods are also likely to suffer from reduced power for ordinal traits.

Most previous work done on family-based mapping of categorical traits has

been restricted to particular types of pedigrees; these include backcross [31, 42,

78] and F2 designs [81, 42, 78, 34], 4-way experimental crosses [60, 77, 80, 79],

and sets of independent nuclear families [59, 82, 74]. Many of these can more

appropriately be classified as family-based association testing, as they rely on

equal levels of relatedness among tested individuals, and their logical exten-

sions involve applying the methods to populations of unrelated individuals,

not to extended pedigrees. Recent methods by Zhang et al. [83], Dupuis et al.

[16], and Diao and Lin [15] allow linkage analysis for ordinal traits on arbitrary

pedigrees.

QTLlink [16] is designed for continuous quantitative traits, but with a score

statistic that is more robust [69] to the departures from normality presented by

categorical traits, compared to traditional LOD (log of odds) score calculations.

It uses a variance-component model, which models the expectation of individ-

uals’ phenotypes as E(Y |X) = m + aX , where Y is the vector of phenotypes,

m is the mean phenotype, and X is the set of observed covariates . The co-

variance matrix of Y | X depends on α = σ2
a + σ2

d, the variance components

due to a particular locus. (α may contain additional terms if testing for inter-

actions between loci.) The goal of the variance-components approach is to test

4



whether α = 0, that is, whether a particular locus has an effect on the pheno-

typic variance. QTLlink does this with a score statistic, taking the derivative

of the likelihood with respect to α at α = 0, and normalizing by the square

root of the variance. The variance is computed conditional on the phenotypes,

which Tang and Siegmund [69] found to make the score statistic more robust

to departure from normality. Under the null model (true α = 0), we expect the

likelihood to be maximized at α = 0, so we expect that its derivative at α = 0

will equal 0. Therefore, a score statistic significantly different from 0 is taken as

evidence that the locus is linked to the trait. This approach reduces the number

of parameters that must be estimated, compared to using a likelihood ratio test,

as the expectation and covariance of the phenotypes must be estimated only at

α = 0.

Diao and Lin [15] present another variance-component model, which is

specifically designed for ordinal traits, by the use of a liability threshold. Un-

like QTLlink, Diao and Lin use a likelihood ratio test instead of a score statis-

tic. They use a quasi-Newton method to obtain the maximum likelihood esti-

mate for the parameters. Diao and Lin’s model also incorporates between- and

within-family association components, which allow for joint association map-

ping.

LOT [83] does not use a variance-component approach; it models gene trans-

mission through the pedigree via inheritance vectors as in Genehunter [41]

rather than via a covariance matrix that depends on kinship coefficients. It uses

a proportional-odds logistic model that is similar to the liability threshold model

of Diao and Lin, though the latter uses a probit model. Like the method of Diao

and Lin, LOT incorporates a family-specific environmental effect, though this

5



effect contributes to the trait mean instead of its variance. (Here, “environmen-

tal” refers to any unobserved covariate or genetic background effect on the trait.)

LOT uses a likelihood ratio test to assess linkage, like Diao and Lin, and uses an

expectation-maximization (EM) algorithm to identify the maximum-likelihood

estimates of the parameters. The EM algorithm typically converges more slowly

than Newton-type methods such as those used by Diao and Lin. (The accuracy

of the EM algorithm is linear in the number of iterations [14], versus quadratic

for Newton’s method (p. 207 of [50]).) Unlike Newton’s method, however, iter-

ations of the EM algorithm never decrease the likelihood of the estimates [14],

so the EM algorithm is guaranteed to converge to a local maximum or saddle

point, while Newton’s method can fail to converge.

The proportional-odds logistic model used by LOT means that if there are no

covariates or family-specific environmental effect, the penetrances (probabilities

of each phenotype) follow the model

logit(P (Y i
j ≤ k)) = αk − γU i

j (1.2)

where Y i
j is the phenotype of individual j in family i, αk is a trait level-specific

intercept, γ is the effect of the locus, and U i
j is the individual’s genotype at the

locus (0, 1, or 2 copies of the disease allele). This means that the penetrance

matrix looks like that shown in Table 1.1.

αK=max k = ∞, so the probability of having phenotype less than or equal to the

maximum is 1. γ does not depend on the trait level k, which is what makes the

model a “proportional-odds” model: The odds (probability/(1-probability)) of

having a phenotype larger than a given value k, given U copies of the disease

allele, is eγ times the odds given U − 1 copies of the disease allele, for all k =

1, 2, ...K and U = 1, 2. This is a sensible model for ordinal traits because the
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Table 1.1: Penetrance matrix for a proportional-odds logistic model.

qq, Qq, and QQ represent the genotype at the disease locus.

qq Qq QQ
P (Y = 1 | genotype) eα1

1+eα1

eα1−γ

1+eα1−γ
eα1−2γ

1+eα1−2γ

Y = 2 eα2

1+eα2
− eα1

1+eα1

eα2−γ

1+eα2−γ − eα1−γ

1+eα1−γ
eα2−2γ

1+eα2−2γ − eα1−2γ

1+eα1−2γ

... ... ... ...
Y = K 1− ΣK−1

k=1
eαk

1+eαk
1− ΣK−1

k=1
eαk−γ

1+eαk−γ
1− ΣK−1

k=1
eαk−2γ

1+eαk−2γ

trait is parameterized according to an underlying “severity” that is a function

of Uγ, which must exceed the threshold αk to produce a phenotype at least as

severe as k. The ordering of α1 < α2 < ... < αK reflects the ordered quality of

the trait categories. In contrast, a nominal trait has no ordering to its phenotypic

categories and thus no restrictions on its penetrance matrix.

The proportional-odds quality of ordinal trait models makes it convenient to

characterize these models in terms of odds ratios (ORs). The odds ratio is the

ratio of the odds of an event (in this case, the phenotype being larger than k)

given a risk factor, to the odds of the event without that risk factor. We are in-

terested in the risk factor of having one disease allele (genotype Qq) compared

to having no disease alleles (genotype qq), and in the risk factor of having two

disease alleles (genotype QQ) compared to having only one. Proportional odds

means that the OR will be the same for both of these comparisons, as well as for

each phenotype level k, so the penetrance model can be characterized in terms

of a single OR, which depends on γ (but not on α). In contrast, a 3-level nom-

inal trait has 4 (potentially) distinct ORs: Odds(Y >1|Qq)
Odds(Y >1|qq) , Odds(Y >2|Qq)

Odds(Y >2|qq) , Odds(Y >1|QQ)
Odds(Y >1|Qq) ,

Odds(Y >2|QQ)
Odds(Y >2|Qq) . Odds ratios are a way of describing the strength of the correlation

between the risk factor and the phenotype. With all other factors (such as sam-

ple size) being equal, traits with ORs that are very different from 1 will be easier
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to map to genes.

Because LOT and the method of Diao and Lin use ordinal models, they are

apt to suffer reduced power when used to analyze traits which are nominal

rather than ordinal. I demonstrate this for LOT in chapters 2 and 3. (I was un-

able to test Diao and Lin’s method, as these authors did not respond to requests

for copies of their software.) As I show in chapter 3, LOT also experiences re-

duced power when analyzing an ordinal trait with incomplete linkage between

the marker and trait locus, as LOT does not offer the option of computing link-

age scores at ungenotyped loci. QTLlink’s robust score statistic is well-powered

for analysis of ordinal traits, but experiences reduced power for nominal traits,

as I show in chapter 3. In chapters 2 and 3, I present two alternative approaches

which allow a unified approach to linkage analysis for ordinal and nominal

traits. These approaches have excellent power to analyze nominal traits as well

as ordinal traits.

1.2.1 Markov Chain Monte Carlo and Gibbs Sampling

Markov Chain Monte Carlo (MCMC) refers to a broad class of methods for gen-

erating simulations from a desired probability distribution. An MCMC algo-

rithm is a stochastic process in which each element of the process (i.e., each

assignment of values to the set of random variables) depends stochastically on

the previous element–hence, a Markov chain–in such a way that if Xi, the set

of random variables on iteration i, was drawn from the desired probability dis-

tribution, then the marginal distribution of Xi+1 will also be the desired prob-

ability distribution. When this condition is met, the desired distribution is the
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stationary distribution for the chain. If the chain is ergodic, then the stationary

distribution is unique and is the limiting distribution for the chain. That is, as

the number of iterations i goes to infinity, Xi will converge in distribution to the

stationary distribution [61].

In practice, MCMC chains are typically run for a burn-in period, which al-

lows the distribution of the first sampled element, Xn, to become close to the

stationary distribution P ∗, independent of the starting value of the chain:

P (Xn | X0)→ P ∗(Xn) as n→∞.

The length of the burn-in period required depends on how well the chain

“mixes”. Chains in which the correlation between successive iterations is low

are said to mix quickly, and they require shorter burn-in periods than chains

with higher levels of autocorrelation. Determining whether a given length of

burn-in is sufficient will be discussed below.

After the burn-in period, the chain is sampled. A wide variety of properties

of the distribution P ∗ can be estimated by taking the mean of the property over

the sampled values:

f̂(Y ) = ΣN+n
i=n+1

f(Xi)

N
, (1.3)

where f is a function and Y is a random variable with distribution P ∗ (denoted

Y ∼ P ∗). By the Ergodic theorem [61], if the Xis are drawn from an ergodic

Markov chain with stationary distribution P ∗ and

EP ∗(f(Y )) <∞,

where

EP ∗(f(Y )) = Σjf(j)P ∗(j),
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then f̂(Y ) converges to EP ∗(f(Y )) with probability 1 as the number of samples

N →∞. Therefore, samples from the MCMC chain allow estimation of proper-

ties of P ∗. It is not necessary that the samples be independent for this estimator

to be valid, although chains with lower autocorrelations typically require fewer

iterations to produce a good estimate. As I will discuss in chapter 2, the like-

lihood P (data | θ) cannot be conveniently formulated as the expectation of a

function of the unobserved random variables, so it is not amenable to direct

estimation by Equation 1.3. However, the conditional probability P (Yi | X, θ),

where Yi is a configuration of the unobserved variables and X is the observed

data, can be formulated as

P (Yi | X, θ) = EP ∗(IY=Yi)

where

IY=Yi =


1 if Y = Yi

0 else.

Therefore, I employ Equation 1.3 in the estimation of the likelihood, via the

estimation of P (Yi | X, θ).

To be ergodic, a Markov chain must meet three conditions. First, it must be

aperiodic, meaning that the sequence of iterations on which it is possible (prob-

ability > 0) to visit any state i must have a greatest common divisor of 1. In

practice, this is not a problem if there are many transition probabilities strictly

between 0 and 1, which is typically the case in MCMC. Second, the chain must

be positive recurrent, meaning that the expected number of iterations required

to return to any given state is finite. If the number of possible states is finite, then

positive recurrence is guaranteed by irreducibility. This is the case discussed in

Chapter 2, where the states consist of configurations of unobserved genotypes,
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a number that can be large, depending on the size of the pedigree, but is always

finite. Finally, the chain must be irreducible, meaning that from any given start-

ing state, any other state has positive probability of being reached at some point

in the future. This is the condition of greatest concern in chapter 2, as Markov

chains on pedigrees with more than two marker alleles can be reducible if there

are individuals with missing marker genotypes, as described in [72, 73]. The

problem of reducibility is an extreme case of the problem of slow mixing, in

which the Markov chain requires an excessive number of iterations to transi-

tion from one part of the sample space to another, and successive samples from

the chain are highly correlated. In chapter 2, I address this problem using the

technique of simulated tempering.

As mentioned above, MCMC chains are typically run for an initial “burn-in”

period, during which no samples are collected, to allow the chain to converge to

its stationary distribution. There are several ways to assess whether a burn-in

period has been sufficient (reviewed in pp. 370-374 of [50]); the most common of

these is the use of Gelman-Rubin statistics, which compare the variance across

several chains to the variance within one chain. If the variances are similar, as

measured by a ratio close to 1, then the chains are considered to be from the

same distribution, and thus the burn-in period was sufficient for the chains to

reach their stationary distribution. If the burn-in period was insufficient, then

the variance across chains will be larger than the variance within chains, and

the ratio will be larger than 1.

To illustrate the meaning of Gelman-Rubin statistics, consider the simple

Markov chain shown in table 1.2. There is only one variable, x, which takes

values 1 through 6. The probability that x = j on iteration t + 1, given that
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x = i on iteration t, is given by the entry in the ith row, jth column of the tran-

sition matrix. Note that the states fall into two sets: {1, 2, 4} and {3, 5, 6}, and

the probability of transitioning between these sets is very low (.01 if x = 3 or 4,

0 otherwise). Starting one chain at x = 1 and another at x = 6 produces very

different results for the first 200 iterations (Figure 1.1a), producing a Gelman-

Rubin statistic of R̂1/2 = 1.42. The Gelman-Rubin statistic is much greater than

1, indicating that 200 iterations is not a sufficient burn-in period for the chains to

converge to their stationary distribution. In contrast, running the same chains

for 1000 iterations produces the results shown in Figure 1.1b. The chains now

have similar distributions, independent of the starting value of x. The Gelman-

Rubin statistic is R̂1/2 = 1.02, indicating that a burn-in of 1000 iterations is suf-

ficient. However, the chains still look “blocky”; the values of x on successive

iterations are highly correlated. This slow mixing is due to the low rate of tran-

sitions between the sets x ∈ {1, 2, 4} and x ∈ {3, 5, 6}.

Table 1.2: Transition matrix for a simple Markov chain.

1 2 3 4 5 6

1 .5 .25 0 .25 0 0

2 .25 .5 0 .25 0 0

3 0 0 .33 .01 .33 .33

4 .33 .33 .01 .33 0 0

5 0 0 .25 0 .5 .25

6 0 0 .25 0 .25 .5
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A

B

Figure 1.1: Gelman-Rubin statistics for the Markov chain in Table 1.2.

A. After 200 iterations, the pair of chains has a Gelman-Rubin (R̂1/2) statistic of
1.42. B. After 1000 iterations, the pair of chains has R̂1/2 = 1.02.
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Metropolis-Hastings and Gibbs sampling

The most common form of MCMC is the Metropolis-Hastings algorithm [33].

In the Metropolis-Hastings algorithm, a new state y is proposed according to

an arbitrary proposal distribution Q(y | xi), which may depend on the current

state xi. The new state is accepted with probability

α = P (xi+1 = y | xi) = min(1,
P ∗(y)Q(xi | y)

P ∗(xi)Q(y | xi)
). (1.4)

With probability 1− α, the new state is rejected and xi+1 = xi. Here P ∗(y) is the

probability of y under the desired distribution. This probability may be difficult

to calculate, which is a common reason to want to sample from the distribution

instead. Fortunately, the Metropolis-Hastings algorithm relies on the ratio P ∗(y)
P ∗(xi)

,

so there is no need to compute the normalizing constant for P ∗(y).

To see that the Metropolis-Hastings algorithm has the desired distribution,

P ∗, as its stationary distribution, first note that the transition probability,

p(xi+1 | xi), is reversible with respect to the desired distribution P ∗:

P ∗(xi)p(xi+1 | xi) = P ∗(xi)Q(xi+1 | xi)α(xi+1 | xi) (1.5)

= P ∗(xi)Q(xi+1 | xi) min(1,
P ∗(xi+1)Q(xi | xi+1)

P ∗(xi)Q(xi+1 | xi)
)

= min(P ∗(xi)Q(xi+1 | xi), P ∗(xi+1)Q(xi | xi+1))

= P ∗(xi+1)Q(xi | xi+1) min(
P ∗(xi)Q(xi+1 | xi)
P ∗(xi+1)Q(xi | xi+1)

, 1)

= P ∗(xi+1)Q(xi | xi+1)α(xi | xi+1)

= P ∗(xi+1)p(xi | xi+1)
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Then

Σxip(xi+1 | xi)P ∗(xi) = Σxip(xi | xi+1)P ∗(xi+1) by reversibility (1.6)

= P ∗(xi+1)Σxip(xi | xi+1)

= P ∗(xi+1) · 1

This implies that if xi ∼ P ∗, then xi+1 ∼ P ∗. Therefore, P ∗ is the stationary

distribution.

Gibbs sampling [25] is a subcategory of the Metropolis-Hastings algorithm

in which each transition step updates a subset of the variables, and the proposal

distribution Q is the desired stationary distribution P ∗, conditioned on all other

variables: Q(xt+1
j | xt) = P ∗(xj | x−j), where t is the current iteration, j is the

subset of variables being updated, and −j refers to the complement of j. The

acceptance rate is then

α = min(1,
P ∗(xt+1)Q(xt | xt+1)

P ∗(xt)Q(xt+1 | xt)
) (1.7)

= min(1,
P ∗(xt+1)P ∗(xtj | xt+1

−j )Ixt−j=x
t+1
−j

P ∗(xt)P ∗(xt+1
j | xt−j)Ixt+1

−j =xt−j

)

Using the fact that xt+1
−j = xt−j , then

α = min(1,
P ∗(xt+1)P ∗(xtj | xt+1

−j )

P ∗(xt)P ∗(xt+1
j | xt−j)

) (1.8)

= min(1,
P ∗(xt+1

j , xt+1
−j )P ∗(xtj | xt+1

−j )

P ∗(xtj, x
t
−j)P

∗(xt+1
j | xt−j)

)

= min(1,
P ∗(xt+1

j | xt+1
−j )P ∗(xt+1

−j )P ∗(xtj | xt+1
−j )

P ∗(xtj | xt−j)P ∗(xt−j)P ∗(xt+1
j | xt−j)

)

= min(1,
P ∗(xt+1

j | xt−j)P ∗(xt−j)P ∗(xtj | xt+1
−j )

P ∗(xtj | xt+1
−j )P ∗(xt−j)P

∗(xt+1
j | xt−j)

)

= min(1, 1)

Therefore, Gibbs sampling is a form of Metropolis-Hastings sampling in which

the acceptance rate is 1. In chapter 2, I apply Gibbs sampling to sample disease
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locus genotypes in families. I also apply the Metropolis-Hastings algorithm to

explore different “temperatures” in my implementation of simulated temper-

ing.

1.2.2 The Elimination Algorithm

The elimination algorithm (reviewed in [39]) is an efficient means of summing

probabilities over possible states at nuisance variables to compute the exact total

probability of observed data. When applied to linkage analysis, as I have done

in chapter 3, the nuisance variables are the unknown disease locus genotypes

of each member of the family. In this situation, the elimination algorithm can

be thought of as a generalized form of the Elston-Stewart algorithm [18], which

“peels” information within each nuclear family that is a subset of the larger

pedigree onto one member of the nuclear family. The elimination algorithm is

more general because it allows this “peeling” even in pedigrees with inbreeding

loops. The elimination algorithm can greatly speed up computation in large

pedigrees because, by marginalizing over one variable at a time, it reduces the

number of terms required for the total summation. An example of this can be

found in the Appendix “Supplementary information for chapter 3”.

1.3 Admixture

Admixed individuals are those who have ancestry from two or more distinct

populations. For example, African Americans are admixed individuals because

they have ancestry from Africa and Europe. This admixture results in distinct
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blocks of DNA from each population within their genomes. Identifying these

distinct blocks, or “ancestry tracts”, is useful for identifying loci associated with

traits that occur at different frequencies in the two ancestral populations, via

admixture mapping, and for answering population genetic questions about the

ancestral populations and the admixture event.

1.3.1 Admixture Mapping

Association mapping refers to identifying loci that are statistically associated

with a trait by identifying correlations between individuals’ phenotypes and

their genotypes at the loci. Association mapping commonly involves studies

of unrelated individuals (though family-based association tests are also in prac-

tice). Two of the most common approaches are Fisher’s exact tests for binary

traits and linear regression for continuous traits. It is well-known that popula-

tion structure can introduce false positives in association mapping: If a trait is

more frequent in one subpopulation than another, then any locus with different

allele frequencies in the two subpopulations will appear to be associated with

the trait if subpopulation membership is not taken into account (Figure 1.2).

This can be a particular challenge when mapping loci in admixed populations,

as subpopulation membership is not composed of individuals, but of portions

of individuals’ genomes.
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Figure 1.2: Population structure can produce false positives in association
mapping.

In this example, the M allele (solid circles) appears to be associated with the
disease (“cases”), because both the M allele and the disease are more frequent

in European samples.
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One way to account for subpopulation membership in this situation is ad-

mixture mapping [9]. This refers to identifying correlations between individ-

uals’ phenotypes and their ancestry at particular loci (Figure 1.3). In order to

do this, it is necessary to identify the ancestry at particular points along the

genome.

Figure 1.3: Admixture mapping identifies correlations between pheno-
types and ancestry.

In this example, European ancestry in the region between the black lines is
correlated with the disease phenotype.
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1.3.2 Population Genetics of Admixture

Identifying ancestry along the genome is also of interest for population genetic

questions. By identifying an individual’s segments of ancestry from a partic-

ular population, those segments can be used as samples from that population,

and the distribution of allele frequencies and stretches of linkage disequilibrium

(LD) can contribute to inferences about population size and natural selection.

The number of heterozygous sites can be used to infer the time to the most

recent common ancestor [70] of the lineages contributing each of the individ-

ual’s haplotypes. This could be used to infer population divergence times from

genomic regions where the individual has mixed ancestry. Finally, the length

of the admixture tracts themselves provides information about the number of

generations since admixture occurred, as recombination tends to break up long

ancestry tracts [55].

1.3.3 Methodology

There are many excellent methods available for assigning ancestry along the

genome, including structure [57, 19], SABER [67], HAPMIX [56], ADMIXMAP

[36], LAMP [63], ANCESTRYMAP [52], HAPAA [64], and the principal compo-

nents analysis (PCA) based method of Bryc et al. [7].

Structure [19] uses MCMC to infer each individual’s average ancestry pro-

portions and the “chunk size” of ancestry blocks, which relates to the recombi-

nation rate, and then uses a Hidden Markov Model (HMM) to assign ancestry

to blocks of the genome. It does not require samples from the ancestral popula-

tions.
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SABER accounts for linkage disequilibrium between every pair of adjacent

loci via a Markov-Hidden Markov model to model each observed allele as de-

pendent upon the current ancestral state and, if the previous allele was gener-

ated by the same ancestral state, upon the previous allele.

ADMIXMAP and ANCESTRYMAP are designed specifically for trait map-

ping in admixed populations. ADMIXMAP uses a generalized linear model to

relate a trait value to an individual’s level of admixture at the loci, while AN-

CESTRYMAP uses MCMC to perform inference on the parameters of average

ancestry proportion and recombination rate, and an HMM to assign ancestry.

Both of them work with a restricted number (. 3000) of ancestry-informative

markers.

HAPAA uses an HMM that models linkage within haplotypes. After using a

forward-backward algorithm to infer ancestry blocks, it filters the blocks based

on length and performs a second HMM to eliminate ancestry blocks that are too

short.

Unlike most other methods, LAMP does not use an HMM; instead, it clusters

genotypes within windows of Single Nucleotide Polymorphisms (SNPs) and

uses a majority vote system to assign the ancestry of individual SNPs based on

the windows to which they belong.

HAPMIX models each ancestral genotype as a mosaic of haplotypes from

two ancestral populations. It assumes that the ancestral population data are

fully phased, but accepts phased or unphased data from the admixed popula-

tion. If the admixed data are unphased, HAPMIX averages over possible phas-

ings.
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Bryc et al. developed a method that uses Principle Components Analysis

(PCA; see page 24) SNP loadings to weight SNPs based on their informativeness

about population distinction, then uses an HMM to assign ancestry to segments

of individuals’ unphased genomes. In chapter 4, I extend this approach to a

haplotype-based method that allows high-accuracy assignment of ancestry to

multiple populations from dense genomewide data.

Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic process in which certain vari-

ables are unobserved (or “hidden”) and form a Markov chain, and other vari-

ables are observed and depend on a single hidden variable apiece. In the context

of chapter 4, the hidden variables are the ancestral states (say, African or Euro-

pean) of the windows of SNPs along a chromosome and the observed variables

are the window scores, which are determined by the genotypes of that (phased,

haploid) chromosome within the window and the PC loadings of the SNPs; that

is, how much each SNP contributes to the separation between the populations

(Figure 1.4). Conditional on the ancestral state of a window, the score of that

window is conditionally independent of all other windows. The ancestral states

form a Markov chain because each window’s ancestry depends on the ancestry

of the previous window, with the strength of the dependence determined by the

probability of a recombination between the two windows.

We are interested in the posterior probability of the ancestry at each window,

given the window scores at all of the windows. The standard way to compute

this in an HMM is with the forward-backward algorithm [4]. For each i from 1

to the number of windows, we compute fij = P (x1, ..., xi, zi = j), where xi is the
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Figure 1.4: The HMM for ancestry assignment.

Observed variables are in blue; hidden variables are in white.

observed window score at window i and zi is the hidden state at window i. This

is the “forward” part of the algorithm, because dynamic programming enables

fij to be computed rapidly by summing over possible states k for the previous

window: fij = eijΣkfi−1,kakj , where eij is the emission probability P (xi | zi = j),

and akj is the transition probability P (zi = j | zi−1 = k). The “backward” part of

the algorithm involves computing bij = P (xi+1, xi+2...xL | zi = j) (where L is the

number of windows) by summing over possible states k for the next window:

bij = Σkajkei+1,kbi+1,k. Then

fijbij = P (x1, ...xi, zi = j)P (xi+1, ...xL | zi = j) = P (~x, zi = j) (1.9)

and

Σjfijbij = ΣjP (~x, zi = j) = P (~x), (1.10)

so
fijbij

Σjfijbij
=
P (~x, zi = j)

P (~x)
= P (zi = j | ~x), (1.11)

which is the posterior probability in which we are interested. In chapter 4, I did

these computations in logspace to avoid overflow due to very large Gaussian

densities.
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Principal Components Analysis

Principal Components Analysis (PCA) is a linear algebra technique for identi-

fying the vectors that describe the greatest amount of variation in a set of data.

We take the eigenvalue decomposition of the covariance matrix of the SNPs:

XXT = V S2V T , where X is the matrix of data, with each column correspond-

ing to a data point (in chapter 4, the data points are haploid individuals) and

each row corresponding to a dimension of information (in chapter 4, these are

SNPs). The rows of V T (equivalently, the columns of V ) are the eigenvectors

of XTX . Because covariance matrices are symmetric, the eigenvectors are or-

thogonal. Each column of V T is the coordinates of one data point in the basis

of eigenvectors. S2 is a diagonal matrix where each element is an eigenvalue of

the covariance matrix, and is proportional to the amount of variance explained

by that principal component.

PCA applied to the covariance matrix of X is equivalent to Singular Value

Decomposition (SVD) ofX : X = USV T , whereX is the data, S is a diagonal ma-

trix of the singular values (the square roots of the elements of S2), the columns

of U are the left singular vectors of X , and the rows of V T are the right singular

vectors. Each column of U gives the SNP loadings for one principal component,

which describe how much each dimension (SNP) contributes to that principal

component (Figure 1.5).

24



Figure 1.5: SVD of genotype or haplotype data.

When PCA is applied to genetic data from multiple populations, the first

few principal components commonly correspond to variation due to genome-

wide differences in allele frequency that are due to geographic separation, as

for example in [51]. In chapter 4, I utilize this fact to employ PCA in identify-

ing which SNPs contribute most strongly to the ability to distinguish between

potential ancestral populations.
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CHAPTER 2

BAYESIAN LINKAGE ANALYSIS OF CATEGORICAL TRAITS FOR

ARBITRARY PEDIGREE DESIGNS1

2.1 Abstract

Pedigree studies of complex heritable diseases often feature nominal or ordinal

phenotypic measurements and missing genetic marker or phenotype data. We

have developed a Bayesian method for Linkage analysis of Ordinal and Cate-

gorical traits (LOCate) that can analyze complex genealogical structure for fam-

ily groups and incorporate missing data. LOCate uses a Gibbs sampling ap-

proach to assess linkage, incorporating a simulated tempering algorithm for fast

mixing. While our treatment is Bayesian, we develop a LOD (log of odds) score

estimator for assessing linkage from Gibbs sampling that is highly accurate for

simulated data. We demonstrate that LOCate exhibits better performance than

LOT, an alternative method for ordinal linkage analysis on complex pedigrees,

when analyzing simulated data with no family-specific environmental effect.

We use our method to analyze a candidate locus for panic disorder in humans,

and find evidence that an ordinal model is a better fit to the data than the binary

model previously used.

1Brisbin, A., M.M. Weissman, A.J. Fyer, S.P. Hamilton, J.A. Knowles, C.D. Bustamante, J.G.
Mezey. Submitted to PLoS One. PLoS One is an Open Access journal; if accepted, this paper
will be freely reproducible with attribution.
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2.2 Introduction

Many heritable traits, from pathogen resistance in plants [77] to panic disor-

der in humans [23], are described using discrete categories such as color or

are quantified using discrete, ordered scales such as “mildly,” “moderately,”

or “severely” affected. When performing linkage analysis of categorical traits, it

is well appreciated that recoding measurements as binary can lead to decreased

power [12, 20]. Recoding measurements as continuous can lead to the same

problem. Use of the most widely applied software for linkage analysis such

as Superlink [21], Merlin [1], Genehunter [41], and LOKI [35] that do not em-

ploy categorical trait models is therefore not the most appropriate strategy for

analyzing categorical diseases.

Most previous work done on family-based mapping of categorical traits has

been restricted to particular types of pedigrees. These include backcross [31, 42,

78] and F2 designs [81, 42, 78, 34], 4-way experimental crosses [60, 77, 80, 79],

and sets of independent nuclear families [59, 82, 74]. Recent methods by Zhang

et al. [83], Dupuis et al. [16], and Diao and Lin [15] allow linkage analysis for

ordinal traits on arbitrary pedigrees. To date, there is no Bayesian framework

for ordinal and nominal linkage analysis on pedigrees with inbreeding loops

and missing data.

In this paper, we develop a Bayesian statistical framework for linkage anal-

ysis of a categorical trait with a user-specified penetrance function of arbitrary

form. We implement this framework in the software LOCate (Linkage for Or-

dinal and Categorical traits). Our method can analyze an ordinal or nominal

trait with any number of categories, can handle missing genotype and pheno-

27



type data, and can analyze pedigrees with inbreeding loops. In our analysis,

we compare the performance of our method to LOT [83], the method of Zhang

et al., on simulated pedigrees. We also demonstrate the use of our method to

reanalyze a study of panic disorder in humans previously analyzed as a binary

trait [23].

2.3 Methods

In our linkage analysis framework, we seek the probability of a pedigree con-

ditional on θ, the recombination rate between a single marker locus and the

unknown disease locus:

P (X | θ) = ΣY P (X, Y | θ),

where the observed data X consists of individuals’ phenotypes and unphased

marker genotypes, and the unobserved data Y consists of all individuals’ dis-

ease locus and phased marker genotypes, as well as any unobserved pheno-

types and unphased marker genotypes. As the number of individuals in the

family increases, the sum over all possible genotype assignments Y can grow

unwieldy. Instead of considering all possible values of Y , Gibbs sampling is

used to randomly explore the space of genotype configurations, emphasizing

those configurations Y which have the highest values of P (X, Y | θ), and there-

fore contribute the most to the summation. Below, we describe the model,

demonstrate the use of simulated tempering to improve the mixing of the Gibbs

sampler, and introduce a novel estimator for the likelihood of the data from

Gibbs sampling.
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2.3.1 The Model

Figure 2.1 shows the graphical model for our Gibbs sampler. Following this

model, the joint probability of the observed data (X) and unobserved data (Y ),

conditional on the recombination rate θ, is as follows:

P (X, Y | θ) ∝ [Πi∈foundersP (Qfi, Qmi | HWE) · P (Mfi,Mmi | HWE)] (2.1)

· [Πi∈nonfoundersP (Qfi, Qmi | parents, selectors)

· P (Mfi,Mmi | parents, selectors)

· P (selQ | selM , θ) · P (selM)]

· [Πi∈allP (Mobs |Mfi,Mmi) · P (di |
−→
Qi, penetrance)]

· [ΠmissingP (Mfi) · P (Mmi)]

· P (penetrance)

where Qfi, Qmi are the disease alleles individual i received from its father and

mother; Mfi,Mmi are the marker alleles i received from its father and mother;

selQ and selM are “selector” variables that tell whether i received the grand-

paternal or grandmaternal allele from each parent at the disease locus and the

marker, respectively; Mi,obs is i’s observed, unphased marker genotype; di is i’s

phenotype; and penetrance refers to the matrix of Pr(phenotype | genotype)

used to model the disease. HWE refers to the genotype frequencies assuming

the founders are drawn from a population under Hardy-Weinberg Equilibrium.
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Figure 2.1: The graphical model for the Gibbs sampler.

All variables shown here are involved in updating the information for
individual i. Filled-in variables are typically observed, and held constant

throughout the run of the sampler. Mfi,Mmi = marker alleles that i received
from its father and mother. Qfi, Qmi = disease locus alleles that i received from

its father and mother. Mi,offspring=j , Qi,offspring=j = marker and disease locus
alleles that individual i passed to its jth offspring. (Only one offspring is
shown for illustration.) di = individual i’s phenotype. selM,fi = Selector
variable: tells whether i’s paternal marker allele comes from its paternal

grandfather or grandmother. Mi,observed = i’s unphased marker genotype. Mf ,
Mm = marker genotype vectors of i’s mother and father. If i is a founder,
replace by a constant node describing the population allele frequencies.

Penetrances = matrix of the probabilities of each phenotype, conditional on
disease genotype. The penetrances are held constant.
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We derived a Gibbs sampler to sample genotype configurations Y in propor-

tion to the probability in equation 2.1. In our Bayesian implementation, we used

a uniform prior on the marker genotypes of individuals with missing data. We

also used P (selM) = .5, which assumes unbiased inheritance; e.g., no meiotic

drive. With the availability of additional information, it would be straightfor-

ward to change these priors. The penetrance parameters, which describe the

probability of each phenotype category conditional on each disease locus geno-

type, are assumed to have a point prior, that is, to be fixed. We used a grid of

values for θ in the current implementation.

The Gibbs sampler updates each set of variables conditional on its Markov

blanket [39]. For example, individual i’s marker alleles and selectors Mfi, Mmi,

selmarker,fi, selmarker,mi are updated by a draw from the distribution

P (Mfi,Mmi, selmarker,fi, selmarker,mi |Markov Blanket) ∝ (2.2)

P (Mfi |Mf , selmarker,fi) · P (Mmi |Mm, selmarker,mi)

·P (Mi,obs |Mfi,Mmi)

·P (selQ,fi | selmarker,fi) · P (selQ,mi | selmarker,mi)

·Πoffspring=jP (Mij |Mfi,Mmi, selmarker,ij)

where Mf indicates the vector of marker alleles held by i’s father in the current

iteration.

Here,

P (Mi,obs |Mfi,Mmi) =



0 if Mi,obs is not a permutation of Mfi,Mmi

1 if Mfi = Mmi (i is a homozygote)

1/2 if Mfi 6= Mmi (i is a heterozygote)

1 if Mi,obs is unobserved.

(2.3)
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In setting P (Mi,obs | Mfi,Mmi) = 1 if Mi,obs is unobserved, we assume that

this individual’s genotype had probability 1 of being unobserved, independent

of the individual’s true phased genotype. If another model for gene dropouts

were available, it could be employed here.

The calculation of P (Mij |Mfi,Mmi, selM,ij) for each of i’s offspring is analo-

gous to this.

Also,

P (Mfi |Mf , selmarker,fi) =


1− µ if Mfi matches Mf,sel

µ if they do not match

where the mutation rate µ depends on the current “temperature” of sim-

ulated tempering (see below). If individual i’s parents are not included in

the pedigree, then i is a founder, and P (Mfi | Mf , selmarker,fi) is replaced by

P (Mfi) = 1/m, where m is the number of distinct marker alleles.

2.3.2 Improving the Speed of the Method

Slow mixing is a chronic problem in Gibbs samplers for linkage analysis [71, 73].

This can result in inadequate exploration of the sample space and excessively

long times to reach the stationary distribution. Even more of a concern is the

fact that in cases with missing marker data and more than two possible marker

alleles, the Markov chain may be reducible, rendering portions of the sample

space inaccessible from a given starting point [72, 73].

To ameliorate this problem, we implemented simulated tempering [27, 28] in

our Gibbs sampling algorithm. In simulated tempering, the Markov chain is run
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at several different “temperatures” λ, ranging from λ = 0, at which the chain’s

stationary distribution is the desired probability distribution, to λ = 1, at which

the chain’s distribution is very “relaxed,” or smoothed, to increase the chance of

the chain traversing regions of low probability density to reach different modes

of the distribution. The most common way of relaxing the probability distribu-

tion is to raise the distribution to a power; however, this method is ineffective

when some states to be traversed have zero probability. Geyer and Thompson

[1995] performed simulated tempering by varying the disease penetrances at

different values of λ. We extended their approach to a more general parameter

relaxation, in which each value of λ features its own penetrances, recombination

rate, mutation rate, and disease-allele frequency (see supplement). This greatly

improved the mixing of our Gibbs sampler (Figure 2.2). Without simulated tem-

pering (black line), distantly separated iterations of the Gibbs sampler remained

highly correlated. With simulated tempering, the autocorrelation reached near-

independence (< .05, below blue line) for k > 15, demonstrating improved

mixing of the Gibbs sampler. Simulated tempering also reduced the time to sta-

tionarity of our Gibbs sampler (Figure 2.3). Without simulated tempering (blue

bars), the Gelman-Rubin statistics at a burn-in of 64000 iterations were signif-

icantly greater than 1, indicating that the chains had not reached stationarity.

With simulated tempering (red bars), a burn-in of 1000 iterations was sufficient

to achieve Gelman-Rubin statistics very close to 1.
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Figure 2.2: Lag-k autocorrelation with and without simulated tempering.

We show the correlation between Pr(X, Yi) (the joint probability of the
observed and unobserved data at iteration i) and Pr(X, Yi+k) (the probability k

iterations later), for the simulated pedigree in Figure 2.5a. Black line =
autocorrelation without simulated tempering; red line = autocorrelation with

simulated tempering; blue line = .05, “near-independence” level.
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Figure 2.3: Gelman-Rubin statistics for the likelihood of a simulated pedi-
gree.

Shown are the Gelman-Rubin statistics for the likelihood of the pedigree in
Figure 2.5d.
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2.3.3 Estimating the LOD Curve

While results of an analysis using our framework may be interpreted entirely

from a Bayesian perspective by assuming a prior over the grid values of θ, we

wished to provide a log of odds (LOD) score for convenient linkage assessment.

Likelihood-based parameter inference from Markov chain Monte Carlo is prone

to sampling bias [72, 45]. To avoid this bias, we developed a linear regression-

based estimator (LinReg) which takes advantage of the relation

P (X | θ) =
P (X, Y | θ)
P (Y | X, θ)

.

The numerator can be computed exactly (equation 2.1). We estimate the denom-

inator P (Y | X, θ) by the proportion of iterations which visit each configuration

Y . The LinReg estimator of P (X | θ) = L(θ | X) is the slope of the best fit

line (with intercept 0) through a plot of P (X, Y | θ) vs P̂ (Y | X, θ), as shown in

Figure 2.4.
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Figure 2.4: The Linear Regression estimator of P (X | θ).

X=observed data, Y=unobserved data. Shown is the estimator of P (X | θ) for
the pedigree structure in Figure 2.5c, but with a binary trait simulated

according to Table 2.1. P (X, Y ) is calculated using equation 2.1; P̂ (Y | X) is
estimated by the proportion of iterations which visit configuration Y, given the
observed genotypes X. The slope of the regression line (red) is an estimate of

P (X | θ).
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2.3.4 Simulations

We assessed the performance of our method using two sets of simulated data.

First, we tested the accuracy of LOD score estimation for single, small simu-

lated pedigrees. Since any errors that occur in the analysis of one pedigree will

be multiplied when multiple pedigrees are aggregated in a typical linkage anal-

ysis study, it is important that our method perform accurately when only a small

amount of data is available. The simulated pedigrees included from 4 to 18 in-

dividuals; some examples are shown in Figure 2.5. These included pedigrees

with missing genotype data and with inbreeding loops. Each pedigree has a

simulated binary or trichotomous trait. We computed the LOD scores for these

pedigrees using the disease penetrances in Table 2.1. For the simulated binary

traits, we compared the LOD scores estimated by our method to the LOD scores

calculated by Superlink [21]. For trichotomous traits, we compared our esti-

mated LOD scores to the theoretical LOD scores under a model of complete

penetrance. We also compared our estimated LOD scores to those obtained by

treating the trichotomous trait as binary (in Superlink) or continuous (in Merlin

and SOLAR [2]).

Table 2.1: Penetrance models used in our small-family simulations.

qq, Qq, and QQ represent the genotype at the disease locus.

Model Phenotype qq Qq QQ
Binary d = 1 .9991 .9989 .0008

d = 2 .0009 .0011 .9992
Trichotomous d = 1 .9764 .0228 .0020

d = 2 .0226 .9545 .0225
d = 3 .0010 .0227 .9755

For our second set of simulations, we assessed the ability of our method to
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Figure 2.5: Examples of simulated pedigrees.

Black=affected, white=unaffected, gray=moderately affected. Each
individual’s unphased marker genotype is listed below the individual. A, B,

and D are examples of simulated pedigrees with binary traits; C shows a
simulated pedigree with a trichotomous trait and an inbreeding loop.

detect linkage in cases where the pedigree(s) may be reasonably broken into a

large number of small family groups or where the study includes a large number

of small families. For these simulations, we considered linkage studies of 100

families, each family consisting of 2 parents and 2 offspring. We simulated a

trichotomous trait with penetrances as given in Table 2.2 (Model A). The trait

locus was either tightly linked (θ = .01) or unlinked (θ = .50) to the observed

marker locus. We required that each simulated family be informative for linkage

(at least one parent heterozygous) and exhibit at least 2 levels of the phenotype

among its 4 members. We simulated 100 such studies, and examined the power

vs. type I error of our method and that of LOT [83]. Because LOCate requires

an estimate of the penetrances as input, we tested our method with a range of

penetrances (Table 2.2, Models A, B, C).
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Table 2.2: Penetrance models used to analyze simulated linkage studies.

Model A was used to generate the simulations.

Model Phenotype qq Qq QQ
A d = 1 .99 0 0

d = 2 .01 .99 .01
d = 3 0 .01 .99

B d = 1 .8 .1 .1
d = 2 .1 .8 .1
d = 3 .1 .1 .8

C d = 1 .7 .3 0
d = 2 .3 .4 .3
d = 3 0 .3 .7

2.3.5 Application to Data

Panic disorder is a common illness in humans, characterized by periods of

intense anxiety. Because individuals exhibit varying degrees of symptoms of

panic disorder, this psychiatric illness is a natural choice for analysis as an or-

dinal trait. We used LOCate to perform ordinal linkage analysis on the Panic

disorder data set of Fyer et al. [23]. This dataset consists of 1591 individuals in

120 pedigrees, classified into six categories: definitely affected by panic disorder,

probably affected, possibly affected, any symptoms of panic, unaffected, or un-

known. The dataset has missing data among both phenotypes and microsatel-

lite marker genotypes. We used LOCate to analyze marker D2S1788, which

Fyer et al. found to have a two-point HLOD(.2)=3.20, allowing for heterogene-

ity, when treating the trait as binary (treating categories “definite”, “probable”,

and “possible” as affected).

We used LOCate to replicate the binary analysis of D2S1788 of Fyer et al., and

analyzed the trait under 4 trichotomous models (see page 114). Due to the expo-
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nential increase in the sample space with increasing pedigree sizes, we analyzed

a reduced set of 96 families. Table 2.3 shows the penetrances used in the binary

analysis of Fyer et al. [23], and the penetrances of our best-fitting trichotomous

model. This work involved a re-analysis of anonymous data on human subjects,

for which Institutional Review Board approval was not required.

Table 2.3: Penetrance models used in our analysis of Panic Disorder data.

Model Phenotype qq Qq QQ

Binary Unaffected .99 .5 .5

Definite, Probable, Possible .01 .5 .5

Trichotomous Unaffected .99 .5 .5

Possible, Any symptoms .005 .125 .125

Definite, Probable .005 .375 .375

2.4 Results

2.4.1 Estimating the LOD Curve

We compared our LinReg estimator to the Reverse Logistic Regression (RLR)

estimator of Geyer [1991]. The LinReg estimator is faster to compute than the

RLR estimator, because LinReg involves a simple linear regression, while RLR

requires a complex optimization over many values of θ. We used both estima-

tors to estimate the LOD curve for several simulated pedigrees, for 5 different

runs of our Gibbs sampler. We found that the two estimators have comparable
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mean squared error (Figure 2.6), and the error for both methods is very low.

Given the speed and accuracy of LinReg, we used this estimator for the rest of

the analyses described below.

Mean
Squared
Error



.10 .20 .30 .40

Figure 2.6: LinReg and RLR estimators of LOD(θ).

Shown are the empirical mean squared errors of the LinReg and RLR
estimators of LOD(θ) for the simulated pedigree in Figure 3.2b. We used

Superlink to compute the target value for each LOD(θ).
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2.4.2 Simulations

LOCate accurately estimated LOD curves for individual simulated pedigrees

with binary traits (Figure 2.7) and trichotomous traits (Figure 2.8). Previous

studies have shown that treating a categorical trait as binary leads to a loss of

power [12, 20]. Our results concur with this (Figure 2.9). We also examined the

effect of treating categorical traits as continuous by analyzing simulated pedi-

grees with Merlin [1] and SOLAR [2]. These methods’ continuous-trait models

were unable to estimate the LOD curves accurately, while LOCate succeeded

(Figure 2.8). Transforming the phenotypes using Merlin’s inverseNormal option

was also not effective in improving the fit of the continuous model.
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Superlink
Our method

A B

Figure 2.7: Estimated LOD curves for simulated pedigrees with binary
traits.

Shown are the LOD curves computed by our method (red) and by Superlink
(black) for (A.) the simulated pedigree in Figure 3.2a and (B.) a simulated

pedigree with the structure shown in Figure 3.2c and a binary trait simulated
according to the penetrances in Table 2.1.
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B

Figure 2.8: Accuracy of LOCate.

Shown are the results of linkage analysis on single, simulated pedigrees with
trichotomous traits: A. Simulated pedigree shown in Figure 3.2c; B. A pedigree
with 2 parents and 8 offspring (not shown), with trichotomous trait simulated

according to Table 2.1. Merlin (dashed blue) and SOLAR (solid blue) were used
for analysis as if the trait were continuous.
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Theoretical
Our method
Binary, 1= healthy
Binary, 1 or 2 = healthy

A B

Figure 2.9: Treating trichotomous traits as binary.

Shown are the results of linkage analysis on single, simulated pedigrees with
trichotomous traits: A. Simulated pedigree shown in Figure 3.2c; B. A pedigree
with 2 parents and 8 offspring (not shown), with trichotomous trait simulated

according to Table 2.1. Superlink was used for analysis as if the trait were
binary (solid and dashed blue).
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We present the results of our analysis of simulated 100-family linkage studies

in Figure 2.10, which compares the receiver operator characteristic (ROC) curves

for our method and for LOT. Our method has substantially higher power than

LOT for the three penetrance models. Therefore, we find our method retains

excellent discriminating power even when the penetrance model used is not the

true model. A highly inaccurate penetrance model does reduce the magnitude

of the estimated LOD scores, giving low power at a LOD threshold of 3 (Figure

2.11). This reinforces the value of considering alternative penetrance models

in situations when LOD scores are close to zero genomewide, especially when

analyzing categorical traits.
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Figure 2.10: ROC plot from simulated linkage studies.

Model A, B, and C refer to analyses done with our method using the
penetrance models in Table 2.2.
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A B

Figure 2.11: LOD scores from simulated linkage studies.

Shown are the frequencies of values of LOD(.01) for simulated sets of 100
4-person families. Red bars show the frequency of LOD scores for simulations

with a linked QTL; black bars show the frequency for simulations with an
unlinked QTL. Model A (Table 2.1) was used to generate the simulations. In

(A), model A was used to analyze the simulations; in (B), model C was used to
analyze the simulations.
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2.4.3 Application to Data

For the subset of pedigrees we used, LOCate’s estimated binary heterogeneous

LOD score (HLOD) at θ = .2 was 0.24 (LOD(.2)= −0.26); this value is lower

than the HLOD in Fyer et al. [2006] because we used a reduced subset of pedi-

grees for computational speed. Our best-fitting trichotomous analysis, using the

penetrances shown in Table 2.3, yielded HLOD(.2)=0.55 (LOD(.2)=0.19). This

HLOD is higher than that found for the binary analysis on the same subset of

pedigrees, suggesting that this trichotomous penetrance model is a better fit to

the data than the binary model.

2.5 Discussion

Bayesian methods for linkage analysis are useful because they allow for incor-

poration of prior information about allele frequencies, meiotic drive, and other

factors important to linkage calculations. This, along with LOCate’s versatility

for ordinal and nominal traits, makes our method a valuable complementary

tool to existing frequentist methods.

Even in a Bayesian framework, it is desirable to have a means of computing

LOD scores, as they are commonly used to assess linkage. We developed a new,

linear-regression based estimator for L(θ), which has similar mean squared error

to the RLR estimator, and is faster to compute. Our LinReg estimator will be

useful for parameter inference in any situation in which MCMC is used and

it is possible to calculate P (X, Y | θ), the joint probability of the observed and

unobserved data, conditional on the parameter. For example, it could be used in
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the problem of population structure [57] to infer K, the number of populations

represented by an observed sample of genotypes.

In our simulations, LOCate exhibits better power than LOT, and this is the

case even when only a rough estimate of the penetrances is used as input to

our method. The difference in power is likely to be partly due to the fact that

LOT estimates a within-family environmental effect, which we did not include

in our simulations. Our results demonstrate that when researchers do not ex-

pect a strong within-family environmental effect in their data, our method af-

fords better power. It is worth noting that LOT, which uses a proportional-odds

model, explicitly models traits as ordinal, and thus will gain power when the

data contain a strong signal of ordering among the phenotypes. In contrast, the

effectiveness of our approach is dependent upon the user-specified penetrance

matrix, and many such matrices inherently model the trait as nominal rather

than ordinal. In these cases, our method would not gain power in the presence

of a strong signal of phenotypic ordering, but neither will it lose power when

analyzing a truly nominal trait.

We used LOCate to perform ordinal linkage analysis on a dataset of humans

affected by panic disorder, which had previously been analyzed as a binary

trait. We found that a model which treats the trait as trichotomous is a better fit

to the data than the binary model. This is consistent with the ordinal quality of

the data and the well-demonstrated loss of power in treating a categorical trait

as binary [12, 20]. Further investigation of panic disorder as an ordinal trait is

warranted, including increasing the computational speed of LOCate to enable

analysis of the full set of pedigrees.

We have implemented our method in the software LOCate, available at
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https://sourceforge.net/projects/categorical. LOCate is an effective and versa-

tile approach for single marker analysis of nominal, ordinal, and binary traits

on arbitrary family-sized pedigrees, including those with inbreeding loops and

missing phenotypes and/or genotypes. While our method currently has scal-

ing limitations for larger pedigrees, we are developing extensions for LOCate

that make use of Elston-Stewart peeling to make the method available for the

analysis of arbitrarily sized linkage studies. Other potential extensions include

the random exploration of penetrance parameters and θ values within the Gibbs

sampler.
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CHAPTER 3

AN ELIMINATION ALGORITHM FOR CATEGORICAL LINKAGE

ANALYSIS2

3.1 Abstract

Pedigree studies of complex heritable diseases often feature nominal or ordi-

nal phenotypic measurements and missing genetic marker or phenotype data.

We have developed a fast method for linkage analysis of categorical traits (LO-

Cate2) that can analyze complex genealogical structure for family groups and

incorporate missing data. LOCate2 uses an elimination algorithm to com-

pute exact likelihoods efficiently, even in the presence of inbreeding loops. We

demonstrate that LOCate2 is able to analyze simulated 100-individual pedigrees

without pedigree cutting, which increases its power versus LOT, an alternative

method for ordinal linkage analysis, when used to analyze ordinal and nom-

inal traits on such large pedigrees. LOCate2 also exhibits better performance

than LOT and QTLlink, another method for ordinal linkage analysis analyzing

simulated nominal traits on large or small pedigrees. We use our method to

conduct a segregation analysis for a cataract trait in Labrador Retriever dogs,

and are able to reject the hypothesis of complete recessive inheritance efficiently

in a large pedigree. We also analyze candidate loci for cardiac arrhythmia in a

complex pedigree of German Shepherd Dogs, and find an increased LOD score

at FH2525 on chromosome 6.
2Brisbin, A., J. Cruickshank, N.S. Moı̈se, T. Gunn, A. Milano, C. D. Bustamante, J.G. Mezey.

In preparation.
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3.2 Introduction

Many heritable traits, from pathogen resistance in plants [77] to panic disor-

der in humans [23], are described using discrete categories such as color or

are quantified using discrete, ordered scales such as “mildly,” “moderately,”

or “severely” affected. When performing linkage analysis of categorical traits,

recoding measurements as binary or continuous can lead to decreased power

[12, 20, 6]. Therefore, use of the most widely applied software for linkage anal-

ysis such as Superlink [21], Merlin [1], Genehunter [41], and LOKI [35] that do

not employ categorical trait models is not the most appropriate strategy for an-

alyzing categorical diseases.

Most previous work done on family-based mapping of categorical traits has

been restricted to particular types of pedigrees. These include backcross [31, 42,

78] and F2 designs [81, 42, 78, 34], 4-way experimental crosses [60, 77, 80, 79],

and sets of independent nuclear families [59, 82, 74]. Recent methods by Zhang

et al. [83], Dupuis et al. [16], and Diao and Lin [15] allow linkage analysis for

ordinal traits on arbitrary pedigrees. In a previous paper, we presented LOCate

(chapter 2), a unified method for linkage analysis of ordinal and nominal traits

on arbitrary pedigrees. LOCate, however, is a Gibbs sampling-based method

that suffered from long computation times for pedigrees with more than 10-20

individuals.

In this paper, we present LOCate2, which employs an elimination algorithm

to perform exact LOD score inference for single marker analysis of ordinal and

nominal traits. The elimination algorithm allows efficient summing of joint

probabilities, enabling us to analyze larger pedigrees and to examine multiple
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markers and penetrance schemes. We test our method on simulations and on

two real data sets consisting of large pedigrees of dogs.

3.3 Methods

3.3.1 Computational Model

In linkage analysis, we are interested in computing P (X | θ), the probability

of observed pedigree data X (phenotypes and marker genotypes) conditional

on the recombination rate θ between a marker and the disease locus. If Y is

a configuration of unobserved data (disease locus genotypes, as well as any

unobserved phenotypes or marker genotypes), then P (X | θ) = ΣY P (X, Y | θ).

However, the space of possible configurations {Y } can become quite large, even

for moderate-sized pedigrees. Therefore, to quickly compute P (X | θ) exactly,

an efficient means of summation is necessary.

To sum efficiently over all configurations Y , we used an elimination algo-

rithm [39], a generalized form of the Elston-Stewart algorithm [18] in which

inbreeding loops can be handled without cutting. By summing over the possi-

ble disease locus genotypes of one individual at a time, we can reduce the total

number of terms required. For an example of this, see the Appendix (page 115).

We implemented this algorithm in R. Each possible combination of marker

genotypes within a trio (for example, “offspring and one parent homozygous;

offspring inherited heterozygous parent’s first marker allele”) is represented by

a 3-dimensional table (Table 3.1), in which P (mi, qi|mparents, qparents), the prob-
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ability of individual i’s disease and marker locus genotypes, conditional on i’s

parents, is represented as a function of θ, the recombination rate between the ob-

served marker and the disease locus. In the case of missing marker genotypes,

we use tables with 4 or more dimensions, allowing one dimension to represent

the possible values for an individual’s missing marker genotype. Probabilities

of founders’ genotypes (assuming Hardy-Weinberg equilibrium) and the prob-

ability of each individual’s phenotype, conditional on his or her disease locus

genotype, are represented as 1-dimensional tables. We assume that there is no

mutation at the marker or disease locus.

Table 3.1: Elimination table for homozygous offspring and one homozy-
gous parent.

We suppose that the child’s marker genotype is (1,1) and the parents’ marker
genotypes are (1,1) and (1,2). (Note that (1,2) is considered different from (2,1).)
The probability of the child’s marker and disease locus genotype, conditional

on the parents’ genotypes, is a function of the child’s disease genotype (boxes),
the homozygous parent’s disease genotype (rows), and the heterozygous

parent’s disease genotype (columns).

Offspring Homozygous Heterozygous
genotype parent parent

genotype genotype
qq qQ Qq QQ

qq .5 1−θ
2

θ
2

0
qq qQ/Qq .25 1−θ

4
θ
4

0
QQ 0 0 0 0
qq 0 θ

2
1−θ

2
.5

qQ/Qq qQ/Qq .25 .25 .25 .25
QQ .5 1−θ

2
θ
2

0
qq 0 0 0 0

QQ qQ/Qq 0 θ
4

1−θ
4

.25
QQ 0 θ

2
1−θ

2
.5
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Our algorithm first initializes the tables for all individuals; the penetrance

and HWE tables are initialized based on the penetrances and disease allele fre-

quency chosen by the user. On each iteration of the algorithm, the program

eliminates one individual; the order is chosen in advance by the user (see be-

low). During each iteration, the program first identifies all tables that depend

in some way upon the individual i to be eliminated. It calculates a “pre-sum”

table which is the product of all these tables; for example, if tables f1(gi, gj, gk)

and f2(gi, gj) are the only tables that depend on individual i, then the algorithm

finds the pre-sum table

T : Ta,b,c = f1(gi = a, gj = b, gk = c)f2(gi = a, gj = b).

The algorithm then sums over the possible values for gi, producing a post-sum

table with one fewer dimension than the pre-sum table:

f3 : f3(b, c) = ΣaTa,b,c.

If the post-sum table has only 1 element, then no remaining individuals’ geno-

types are dependent upon i. The table now contains the marginal probability of

the phenotypes and marker genotypes of all individuals that were eliminated

in the process of producing this table. The value in the table is multiplied by the

current total probability for the pedigree, and the algorithm proceeds to the next

iteration. Alternatively, if the post-sum table has more than one element, this ta-

ble is saved (it is now a function of the individuals upon whom i depended) and

the algorithm proceeds.

Note that if individual i’s marker genotype is unobserved, it is represented

by an additional dimension in every table involving i. In this case, the variable

representing i’s marker genotype is eliminated immediately after eliminating

i’s disease locus genotype.
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3.3.2 Elimination Order

The choice of elimination order can have a profound effect on the speed of

the algorithm. The number of terms involved in the summation P (X | θ) =

ΣY P (X, Y | θ), and therefore the speed of the algorithm, depends on the the

size of the tables created during the elimination or, equivalently, the number of

individuals involved in each function fj(gA, gB, ...). Another way to interpret

this is to model the pedigree as a graph. Eliminating a variable i is equivalent to

deleting the vertex vi that represented i and adding edges between every pair of

vertices that were connected to vi. This creates a clique (complete subgraph) rep-

resenting the dependency among variables that were conditionally independent

given i. For example, in a nuclear family, siblings’ genotypes are conditionally

independent given their parents’ genotypes, so eliminating a sibling creates a

function f(gmother, gfather) that depends only on the parents.

However, eliminating a parent first would involve marginalizing over the

parent’s possible genotypes, removing the conditional independence. All

the siblings’ genotypes would then be interdependent, resulting in a table

f(gother parent, g1, ...gn) of dimension 1 + n, where n is the number of siblings. If

this table is large, subsequent calculations involving any of the siblings will be

slow. For example, the pedigree in Figure 3.1 can be analyzed in 30 seconds for 5

values of θ on a 2 GHz desktop computer if a good elimination order is chosen:

By first eliminating the siblings in the last generation, the largest clique size is 3.

In contrast, first eliminating one of the parents in the second generation results

in cliques as large as 11, which would take a predicted 23.5 hours to analyze.

In pedigrees without inbreeding loops, a good strategy is to eliminate first

those individuals without offspring and any founders with small numbers of
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Figure 3.1: A sample pedigree with a full-sib mating.

offspring, and work in to the center of the pedigree. The method can deal

exactly with inbreeding loops, provided the size of the cliques created by the

elimination order are not too large. In situations with multiple, large inbreed-

ing loops, it may be necessary to cut the loops to allow analysis in a reasonable

length of time. In our experience, for pedigrees with approximately 200 indi-

viduals, elimination orders with several cliques of size 5 will run in minutes to

hours on a desktop computer, depending on the amount of missing data and

the number of marker alleles. In contrast, elimination orders with even one

clique of size 7 will require hours to days. Elimination orders with a clique of

size 12 will require more memory than typical installations of R are equipped to

handle.

3.3.3 Simulations

To test this method, we simulated large pedigrees with inbreeding loops and

ordinal and nominal traits. To mimic the structures of the dog pedigrees we an-

alyzed in our data analysis, we simulated 10 pedigree structures with 100 mem-

59



bers each, of which 20% were founders and 70% were leaf individuals (had no

offspring). We did this by simulating pedigrees with 45 individuals in PyPedal

[10] and adding 55 leaf individuals, distributed uniformly at random among

mating pairs (Figure 3.2). For each pedigree structure, we simulated 50 sets of

disease genotypes, for a total of 500 simulated pedigrees. We then simulated

phenotypes based on the ordinal and nominal ”true penetrance” functions in

Tables 3.2 and 3.3 and simulated genotypes at a marker that was either linked

(θ = .10) or unlinked (θ = .50) to the disease genotype. We randomly combined

sets of 5 pedigrees to produce simulated 500-individual linkage studies, which

we analyzed using LOCate2, LOT [83], and QTLlink [16]. We allowed LOT

and QTLlink to estimate the penetrances from the data; since LOCate2 requires

that the penetrances be estimated in advance, we tested 3 models, as shown

in Tables 3.2 and 3.3: the true penetrance, a somewhat misspecified penetrance

model, and a very misspecified penetrance model.

unaffected
moderate
severe

Figure 3.2: Example of a large simulated pedigree with inbreeding.

Colored lines connect multiple representations of the same individual.
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Table 3.2: Penetrance models used to simulate an ordinal trait with
OR=4.95.

Shown are the penetrance models used to generate and analyze an ordinal trait
on our large and small simulated pedigrees. The model used to simulate the

ordinal trait is a proportional-odds logistic model with α = (.8, 2.8) and
γ = 1.6, producing an odds ratio of 4.95. The misspecified analysis model uses

γ = .7, giving OR=2.01. The “very misspecified” analysis model is a
nearly-complete codominant nominal model.

Analysis Model Phenotype P(pheno|qq) P(pheno|Qq) P(pheno|QQ)
true penetrance unaffected .6900 .3100 .0832

moderate .2527 .4585 .3181
severe .0573 .2315 .5987

misspecified unaffected .6900 .5250 .3543
moderate .2527 .3660 .4478

severe .0573 .1091 .1978
very misspecified unaffected .9000 .0500 .0500

moderate .0500 .9000 .0500
severe .0500 .0500 .9000

Table 3.3: Penetrance models used to simulate a nominal trait.

Shown are the penetrance models used to generate and analyze a nominal trait
on our large and small simulated pedigrees. The true penetrance model has a

codominant penetrance structure. The misspecified analysis model for this
simulation has a codominant structure with weaker penetrance, and the “very

misspecified” model is an ordinal model with OR=4.95.

Analysis Model Phenotype P(pheno|qq) P(pheno|Qq) P(pheno|QQ)
true penetrance unaffected .8000 .1000 .1000

moderate .1000 .8000 .1000
severe .1000 .1000 .8000

misspecified unaffected .6000 .2000 .2000
moderate .2000 .6000 .2000

severe .2000 .2000 .6000
very misspecified unaffected .6900 .3100 .0832

moderate .2527 .4585 .3181
severe .0573 .2315 .5987
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An odds ratio of 4.95, such as that used for our simulated ordinal trait, is

large, but not unheard-of: Various studies have found odds ratios larger than

this for a variety of traits, including coronary artery disease [3], susceptibility

to bacterial disease [44], diabetic Charcot neuroarthropathy [54], developmental

delay [29], and bipolar disorder [84]. We chose this large OR to best demonstrate

the use of our method on large, complex pedigrees for a sample size of 500. Our

method could also be used to analyze traits with smaller ORs if the sample size

were greatly increased. Because our method computes exact LOD scores, and

no loop-cutting was required to analyze these simulated pedigrees, the large OR

we chose represents the real need for strong evidence in order to identify loci

using linkage analysis, not a limitation of our method.

LOT was unable to analyze the full pedigrees, returning the error message

”Error: num aff> 16”. This error also occurred for some of the subpedigrees

when we used Pedcut [43] to split the pedigrees into subpedigrees with a max-

imum of 25 bits and 20 bits, where the bitsize of a pedigree is measured by

2∗the number of nonfounders minus the number of founders. When we used

a maximum of 15 bits and 10 bits, LOT froze. Instead, we split the pedigrees

into nuclear families for analysis in LOT. QTLlink was able to analyze the large

pedigrees when IBD calculations were performed with Loki [35].

We also tested the three methods on simulated small-family linkage studies,

such as might be used in humans. For each of 100 simulations, we simulated

100 families consisting of 5 individuals each: 2 parents and 3 offspring. The

sample size (500) is the same as in our large-family simulations. We simulated

phenotypes for these pedigrees according to the same models used for the large-

family simulations, plus an additional ordinal model with a larger odds ratio
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(Table 3.4).

Table 3.4: Penetrance model used to simulate an ordinal trait with
OR=12.06.

Due to low power to detect the ordinal trait in table 3.2 using small families,
we also simulated data under γ = 2.49, corresponding to an OR of 12.06. The

misspecified penetrances used to analyze this model followed an ordinal
model with OR=4.95, and the “very misspecified” model was a codominant

nominal model with weak penetrance.

Analysis Model Phenotype P(pheno|qq) P(pheno|Qq) P(pheno|QQ)
true penetrance unaffected .6900 .1558 .01507

moderate .2527 .4211 .0865
severe .0573 .4231 .8984

misspecified unaffected .6900 .3100 .0832
moderate .2527 .4585 .3181

severe .0573 .2315 .5987
very misspecified unaffected .6000 .2000 .2000

moderate .2000 .6000 .2000
severe .2000 .2000 .6000

3.3.4 Data Analysis

To illustrate the use of our method on a large, inbred pedigree, we used LO-

Cate2 to perform a segregation analysis on a pedigree of 177 Labrador Retriever

dogs (Figure 3.3) affected by juvenile hereditary cataracts, a binary phenotype

[49]. By visualizing the pedigree in GraphViz [24], we were able to choose a

tractable elimination order without cutting any loops. We performed segrega-

tion analysis by setting θ to 0 and all individuals’ marker genotypes to (1,1),

so that the “marker genotypes” were uninformative about disease locus inher-

itance. We analyzed the data under a completely penetrant recessive model

(P(affected | qq) = P(affected | Qq) = 0, P(affected | QQ) = 1), an incompletely

penetrant recessive model (P(affected | qq) = P(affected | Qq)), and a free model
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(no restrictions on penetrances). For the incomplete recessive and free models,

we used a grid of penetrance values from (0,0,0) to (1,1,1) in intervals of .1. For

all three models, we assumed that the frequency of the disease allele, Q, was

.25. This is a reasonable value for the pedigree, which was taken from a colony

of dogs in which the cataract phenotype segregates at relatively high frequency.

Figure 3.3: Pedigree of Labrador Retrievers used for segregation analysis
of juvenile hereditary cataracts.

Black=affected, white=unaffected. Colored lines connect different
representations of the same individual.
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To demonstrate the effectiveness of our method for linkage analysis of a cate-

gorical trait, we analyzed a pedigree of 155 German Shepherd dogs (Figure 3.4a)

affected by ventricular cardiac arrhythmias [13]. This is a complex phenotype

which was measured as the number of single, double, triple, and “runs” of pre-

mature ventricular complexes a Holtered dog experienced in a 24-hour period.

In order to make the phenotype more tractable for analysis, we (Teresa Gunn,

Jenifer Cruickshank, and Sydney Moı̈se) combined these four values into an or-

dinal assessment of no arrhythmia, or “mild,” “moderate,” or “severe” arrhyth-

mia. Because this pedigree was highly complex, with large inbreeding loops,

our initial attempt at analysis resulted in clique sizes of up to 12, too large for

R to handle. We cut all inbreeding loops by duplicating 8 individuals (Figure

3.4b). We assigned elimination priorities by hand to produce a pedigree with

maximum clique size 5.
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unknown moderate
unaffected/mild severe

A

B

Figure 3.4: Pedigrees of German Shepherd dogs affected by cardiac ar-
rhythmia.

The original pedigree (a) and the same pedigree after duplicating individuals
to cut inbreeding loops (b). Colored lines connect different representations of

the same individual.
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We first used the elimination algorithm to conduct a segregation analysis

for the loop-cut version of the pedigree, to determine the maximum-likelihood

binary penetrance function (out of the 29 recessive and dominant functions al-

lowed by Superlink Online [21]). This was a dominant model with Pr(affected

| Qq) = Pr(affected | QQ) = .9 and Pr(affected | qq) = 0. For the binary analyses,

we treated phenotypes “moderate” and “severe” as being affected, and “mild”

or “no arrhythmia” as being unaffected. We chose to combine “mild” with the

unaffected class in both the binary and the trichotomous analyses because of the

small number (11, or 7.1%) of dogs that were truly unaffected. We used freq(Q)

= .25, as in the cataract analysis.

We used this penetrance model to perform a preliminary binary analysis on

all 302 microsatellites in the data using Superlink Online, for both the loop-cut

and the original versions of the pedigree. We selected the 11 markers with a

LOD score > .7 in either analysis to analyze using LOCate2 (Table 3.5). We ran

LOCate2 on the selected markers using 3 penetrance models, shown in Table

3.6, for 4 values of θ: 0, 0.1, 0.2, and 0.3, as well as 0.5, as this value is necessary

to convert Pr(data | θ) into LOD(θ). Of the 11 selected markers, 7 had 5 or

fewer alleles and 32 or fewer missing genotypes; these markers could be fully

analyzed for each penetrance model in a few hours. For the remaining markers,

we collapsed alleles with frequency < 10% into 1 category (markers 2, 9, 10) or

iteratively removed founder pairs with missing genotypes (markers 2, 3, 9) in

order to expedite analysis.
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Table 3.5: Markers tested for linkage with cardiac arrhythmia.

Shown are the markers that had LOD(θ) ≥ 0.7 for either binary analysis (i.e.,
with or without cutting inbreeding loops), with the maximum LOD score

achieved and the value of θ where it was achieved.

Marker # Chromosome Name θ LOD(θ) Pedigree version
1 6 FH2525 .3 .8918 original
1 6 FH2525 .2 1.8691 cut
2 11 FH2319 .3 .8490 cut
3 12 REN213F01 .2 .8939 cut
4 21 FH2441 0 1.0617 cut
5 21 REN37A15 .2 .7298 cut
6 21 FH2312 .1 .7167 cut
6 21 FH2312 .2 1.5506 original
7 36 REN179H15 0 .7271 cut
8 1 FH2793 .3 .7046 original
9 1 FH2294 .3 .9711 original

10 7 FH3972 .3 .7886 original
11 20 REN93E07 .3 .7450 original

Table 3.6: Penetrance models used to evaluate German Shepherd dog
pedigree.

Shown are the 3 trichotomous penetrance models we used to analyze the
German Shepherd dog pedigree. Model A is closely based on the

dominant(.9,.9) model we used for our binary analyses; model B is similar to
model A, but provides a more codominant approach to distinguishing the
moderate and severe phenotypes. Model C follows a proportional-odds

ordinal model.

Model Phenotype P(pheno|qq) P(pheno|Qq) P(pheno|QQ)
A unaffected/mild 1 .1 .1

moderate 0 .35 .35
severe 0 .55 .55

B unaffected/mild 1 .1 .1
moderate 0 .8 .1

severe 0 .1 .8
C unaffected/mild .8176 .3775 .0759

moderate .1350 .3535 .1931
severe .0474 .2690 .7310
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3.4 Results

3.4.1 Simulations

Figure 3.5 shows the LOD curve for the inbred pedigree in Figure 3.1, demon-

strating that our method computes exact LOD scores, even for pedigrees with

inbreeding loops. The method is also much faster than our previous, Gibbs

sampling-based approach, which required over 125 hours to approximate this

LOD curve on a 2 GHz desktop computer, as compared to 30 seconds by the

elimination algorithm. Figure 3.6 shows the power vs. type I error of LO-

Cate2, LOT, and QTLlink on the large simulated pedigrees (3.6a=ordinal trait,

3.6b=nominal trait). Our method, which is able to analyze the full pedigrees

without cutting, has excellent power, even when the penetrance model used for

analysis is only a rough approximation to the true penetrances. QTLlink also

has excellent power on the ordinal trait, but is outperformed by LOCate2 on

the nominal trait. In contrast, LOT suffers from reduced power due to neces-

sary pedigree cutting, as well as the poor fit of LOT’s ordinal trait model to

the nominal penetrances used to generate the simulations for Figure 3.6b. It is

also likely that LOT is hindered by the incomplete linkage (θ = .1) between the

marker and the simulated QTL, as, unlike LOCate2 and QTLlink, LOT does not

offer the option of calculating linkage statistics for ungenotyped locations.

Figures 3.7 and 3.8 show the power vs. type I error of the three methods

on the simulated small-family linkage studies. We found that there was lower

power to detect loci using many small families compared to few large families,

with a constant sample size (Figure 3.9), which agrees with previous results

[76, 40]. When the trait is ordinal (Figures 3.7 and 3.9), LOCate2 has similar
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Figure 3.5: LOD curve for the inbred pedigree in Figure 3.1.

The black line is the theoretical LOD curve, and the red line is the LOD curve
calculated by LOCate2.

power to QTLlink. LOCate2 and QTLlink outperform LOT on the ordinal trait

with OR=12.06. When the trait is nominal (Figure 3.8), LOCate2 outperforms

QTLlink and LOT when the penetrances are correctly specified or somewhat

misspecified, and has similar power when the penetrances are very misspeci-

fied.
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A

B

Figure 3.6: Power vs. Type I error of our method on large simulated pedi-
grees.

A. A simulated ordinal trait (Table 3.2). B. A simulated nominal trait (Table
3.3). Each simulation consists of 5 pedigrees, each containing 100 individuals,

as in Figure 3.2.
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Figure 3.7: Power vs. Type I error on simulated small pedigrees with an
ordinal trait.

Shown are the ROC curves for LOCate2, QTLlink, and LOT on an ordinal trait
with OR=12.06 (Table 3.4). Each simulation consists of 100 pedigrees, each

containing 5 individuals (two parents and three offspring).
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Figure 3.8: Power vs. Type I error on simulated small pedigrees with a
nominal trait.

Shown are the ROC curves for LOCate2, QTLlink, and LOT on a nominal trait
with OR=12.06 (Table 3.3). Each simulation consists of 100 pedigrees, each

containing 5 individuals (two parents and three offspring).

73



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type I Error

P
ow

er

LOCate2 large families
LOCate2 small families
QTLlink small families
LOT small families

Figure 3.9: Lower power to detect QTLs in small families than large fami-
lies, for a constant sample size.

Shown are the power vs. type I error of the three methods on simulated small
pedigrees (100 pedigrees x 5 individuals) with an ordinal trait with OR=4.95
(Table 3.2). The solid red line shows the power vs. type I error of LOCate2 on

simulated large pedigrees (5 pedigrees x 100 individuals) with the same
sample size and OR.
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3.4.2 Data Analysis

In our segregation analysis of the cataracts pedigree, the elimination algorithm

ran in 45 seconds for 1 penetrance function on a 2 GHz desktop computer. Cal-

culating the probability of the data under a free penetrance model (ranging from

Pr(affected | qq,Qq,QQ)=(0,0,0) to (1,1,1) in intervals of .1 for each term) there-

fore required 12.5 hours. We found that the probability of the data under the

completely penetrant recessive model was 6.38 ∗ 10−46, under the incomplete

recessive model was 1.995 ∗ 10−41, and under the free model was 3.096 ∗ 10−41.

Using a likelihood ratio test, we can reject the complete recessive model in favor

of the free model (p < .0001 by likelihood ratio test with 3 degrees of freedom),

but we cannot reject the incomplete recessive model (p = .3488, 1 degree of

freedom). This illustrates that our method can be used for efficient segregation

analysis on large, complex pedigrees.

In our trichotomous analysis of the cardiac arrhythmia data set, we obtained

the LOD scores shown in Figure 3.10. As expected, Model A (solid red line) gave

LOD scores very similar the binary loopcut analysis (dotted black line) for most

markers, as shown for marker 1 (FH2525) in Figure 3.10a. Markers 4 (FH2441)

and 9 (FH2294) were exceptions to this trend. The discrepancy between model

A and binary-loopcut for marker 9 may be due to the modifications we made to

expedite the analysis; however, the discrepancy at marker 4 is harder to explain.

As the LOD curves for marker 4 under models A and C are closer to that for

the binary-unloopcut analysis, it appears that the LOD(0)=1.06 we observed for

marker 4 in the loopcut analysis was an artifact of the loop-cutting, and this

marker is not really linked to a QTL contributing to the ordinal nature of this

trait.
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Figure 3.10: LOD scores plotted by marker.

Models A, B, and C are trichotomous models described in Table 3.6. Details of
the markers are shown in Table 3.5.

As shown in Figure 3.11, marker 1 shows the highest LOD score in all 3 pen-

etrance models, with LOD(.2)=2.066 under model A. This is perhaps not sur-

prising, as marker 1 had the highest LOD score in the binary loopcut analysis

(LOD(.2)=1.87). Since this marker’s LOD increased under the nominal pene-

trance model, we consider it an excellent candidate for future investigation.

The LOD curves under model C tend to be flatter than the LOD curves under

models A and B. This is not surprising: Model C has a lower odds ratio than

models A and B, so more of the phenotypic variation is attributed to random

noise rather than being used as evidence in favor of a particular value of θ.

(Model C, an ordinal model based on a proportional-odds logistic model, has

odds ratio = 7.39 for both phenotypes “severely affected” and “moderately or
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Figure 3.11: LOD scores plotted by penetrance model.

Shown are the LOD scores for the markers that had max LOD > .7 in the
binary analysis of the cardiac arrhythmia data after inbreeding loops in the

pedigree had been cut. Models A, B, and C are trichotomous models described
in Table 3.6. Details of the markers are shown in Table 3.5.

severely affected”, and the OR is independent of the genetic background onto

which the additional disease allele is placed; that is, the ratio is the same for

QQ vs Qq as for Qq vs qq. In contrast, models A and B have OR=∞ for either

phenotype set when comparing Qq vs qq.) Because we have reason to believe

this trait is ordinal rather than nominal, it would be valuable to explore other

ordinal penetrance models, as well as to compare nominal models with similar
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odds ratios.

3.5 Discussion

In this paper, we present a fast, exact method for linkage analysis of ordinal and

nominal traits. Our method is robust to missing data and computes the exact

likelihood of the recombination rate θ even in pedigrees with some inbreeding

loops. When used to analyze simulated large and small families, our method

performs as well as QTLlink and better than LOT on ordinal traits, and better

than both methods on nominal traits when the penetrances are correctly speci-

fied or somewhat misspecified.

When used to analyze real datasets, our method allowed efficient segrega-

tion analysis of a large, inbred pedigree of Labrador Retrievers. We also used

our method to perform linkage analysis on a large pedigree of German Shep-

herd Dogs, but found it necessary to cut inbreeding loops to achieve a com-

putationally feasible elimination order for this complex pedigree. Based on this

analysis, we found additional evidence for linkage at microsatellite FH2525, and

rejected the suggestion of linkage at FH2441 which was suggested by the binary

analysis of the loop-cut pedigree. In the future, it would be beneficial to per-

form additional tests to refine the penetrance model, as well as to perform a

trichotomous analysis on the other markers in this dataset, in case an important

disease locus was left out of our candidate set due to the reduction in power

that is expected when treating a categorical trait as binary.

In the future, this method could be enhanced by automating the choice

of elimination order. In general, choosing an optimal elimination order is an NP-
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complete problem, but a feasible elimination order can be identified efficiently by taking

advantage of the small treewidth [5] of graphs corresponding to pedigrees with few in-

breeding loops (or whose inbreeding loops have been cut). The method could also

be enhanced by embedding the elimination algorithm inside a Markov chain

Monte Carlo algorithm for Bayesian inference of θ.

We have implemented our method in the software LOCate2, available upon

request. LOCate2 is a fast, accurate, and versatile approach for single marker

analysis of nominal, ordinal, and binary traits on arbitrary pedigrees, including

those with inbreeding loops and missing phenotypes and/or genotypes.
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CHAPTER 4

PRINCIPAL COMPONENTS-BASED ASSIGNMENT OF ANCESTRY

ALONG EACH CHROMOSOME IN INDIVIDUALS WITH ADMIXED

ANCESTRY FROM 2 OR MORE POPULATIONS3

4.1 Abstract

Identifying ancestry along each chromosome in admixed individuals is of great

interest for admixture mapping, understanding the population genetic history

of admixture events, and identifying recent targets of selection. We present a

Principal Components-based forward-backward algorithm for determining an-

cestry along each chromosome from a high-density, genomewide set of SNP

genotypes of admixed individuals. We test our method on simulations which

show that the method is robust to misspecification of ancestral populations

and the number of generations since admixture. We apply our method to a

dataset of Hispanic/Latino populations and identify regions of shared ancestry

that may be recent targets of selection and could serve as candidate regions for

admixture-based association mapping.

4.2 Introduction

Identifying ancestry along each chromosome in admixed individuals is of great

interest for admixture mapping, understanding the population genetic history

of admixture events, and identifying recent targets of selection. Several methods

3Brisbin, A., K. Bryc, L. Omberg, J. Degenhardt, A. Reynolds, J.G. Mezey, C.D. Bustamante.
In preparation.
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for identifying ancestry along each chromosome have been developed, includ-

ing structure [57, 19], SABER [67], HAPMIX [56], and the principal components

analysis (PCA) based method of Bryc et al. [7].

The problem of identifying ancestry along each chromosome involves a

trade-off between speed and the number of parameters estimated. Methods

such as SABER [67], which accounts for linkage disequilibrium between every

pair of adjacent loci, and structure [57, 19], which estimates each individual’s

average ancestry proportions by Markov chain Monte Carlo, are too slow to be

run on dense genome-wide data. HAPMIX [56] is a more recent method which

is much faster; however, HAPMIX is not designed to assign ancestry to more

than 2 ancestral populations.

In this paper, we expand upon the PCA-based method of Bryc et al. to pro-

duce PCAdmix, a method which uses phased genotype data to determine exact

posterior probabilities of ancestry along each chromosome. The method is ap-

plicable for populations with admixture from 2 or more populations. We test

our method on simulations which show that the method is robust to misspec-

ification of ancestral populations and the number of generations since admix-

ture. We also apply our method to assess 3-way European, Native American,

and African admixture among Puerto Ricans, Ecuadorians, Dominicans, and

Colombians in the NYULatino dataset [8] and identify 12 regions of extreme

ancestry levels shared among multiple Latino populations, which may have ex-

perienced selection during admixture.
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4.3 Methods

4.3.1 Haplotype Forward-Backward Algorithm

Our approach uses Principal Components Analysis (PCA) to identify how much

information each SNP contributes to distinguishing the ancestry of a region.

These PC loadings are used as weights in a weighted average of the allele val-

ues in a window of 10-20 SNPs, and the resulting window scores are used as the

observed values in a Hidden Markov Model (HMM) to assign posterior proba-

bilities to the ancestry in each window.

We first filtered out SNPs with high missingness, low minor allele frequency,

and high linkage disequilibrium (LD > .80) with other SNPs in the dataset.

The LD filtering step is not required, but was helpful in reducing the number

of short regions of spurious ancestry assignment when applied to simulated

chromosomes.

We used Singular Value Decomposition (the svd function) in R [58] to per-

form PCA on the phased genotypes of the ancestral representatives. The

HapMap data had too many SNPs for R to admit a matrix of all 22 chromo-

somes, even after LD filtering. Therefore, we performed PCA separately for

each chromosome. This approach has the advantage of not artificially combin-

ing haplotypes across chromosomes, as, in the absence of family data, such com-

bined haplotypes have no meaning. We projected the admixed individuals onto

the basis of principal components, and compute the observed ancestry “score”

for haplotype i in window j as the weighted average Ljgij , where gij is a column

vector of the haplotype’s alleles (coded as 0/1) in window j, standardized by
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the mean and standard deviation of that SNP in the ancestral populations, and

Lj is a matrix in which the entry in the kth row, lth column is the loading of SNP

l in window j on PC k.

For the forward-backward algorithm on our HMM, we used a haploid ver-

sion of the transition probabilities in the Viterbi algorithm of Bryc et al. [7]. It is

convenient to think of the probability of transitioning to a different ancestry as

the probability of a recombination, times the probability that the recombination

occurs with a chromosome from the target population, out of a “pool” of pos-

sible chromosomes in which the target population is represented with relative

frequency qj :

P (anci = j | anci−1 = k) =


qjπ if k 6= j

qjπ + (1− π) if k = j

(4.1)

where anci is the ancestry at window i, qj is the chromosome-wide proportion of

population j ancestry in this haploid chromosome, and π = 1−e−dĜ is the prob-

ability of a single recombination having occurred in the distance d (in Morgans)

between the midpoints of windows i − 1 and i, during the estimated Ĝ gen-

erations since admixture. We assume that the windows are sufficiently dense

that the probability of two or more recombinations is negligible, and this as-

sumption is borne out by our method’s robustness to mis-estimation of G, as

demonstrated below.

For a given haplotype, qj is estimated by dj
Σidi

, where dj is the distance from

the haplotype to the hyperplane containing the mean window scores of all an-

cestral populations other than j, as shown in Figure 4.1. In this way, a haplotype

which falls far from the mean of population j will have a small value for dj , and

a small estimated proportion of ancestry from population j. To ensure that all
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transitions are possible in the HMM, we restricted .01 ≤ qj ≤ .99 for all j.

Figure 4.1: Estimation of average ancestry proportion for a haplotype.

For k = 3 ancestral populations, the population A average ancestry proportion
of a haplotype (black square) is estimated by that haplotype’s distance from
the line connecting the PC1 and 2 means of the other two populations, as a
proportion of the haplotype’s total distance from all edges: P (A) = a

a+b+c
.

The haplotype emission probabilities are similar to those used for genotypes

in Bryc et al.: w | anci ∼ N(µi,Σi), where w is the vector of window scores for

an admixed haplotype; µi is a vector of length k − 1 (where k is the number of

ancestral populations), containing ancestral population i’s mean scores for this

window on the first k − 1 PCs; and Σi is the covariance matrix of the scores for

this window among population i. (In practice, each entry of Σi is the maximum

of the relevant empirical covariance and .0001. This prevents Pr(w) from going

to zero if, for example, all the sampled African haplotypes are identical within

a particular window.)

Using the transition and emission probabilities described above, we use a

forward-backward algorithm to find the posterior probability that the ancestry

of a given window in a particular haplotype is population 1, 2, ... k. We can
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work with these probabilities directly or make hard assignments of ancestry if

the posterior probability exceeds a calling threshold of .50, .90, or .99.

4.3.2 Simulations

We tested our method on simulated admixed individuals that were based on

data from the HapMap3 project [11]. We used G = 8, freq(African) ∼ Beta(12,

3) to generate ancestry breakpoints and then copied haplotype segments from

two ancestral individuals, one European (CEU) and one Yoruba (YRI). We an-

alyzed these simulated data using a set of HapMap CEU and YRI founders as

ancestral representatives, from which we had removed all individuals used to

generate the simulations. We used Ĝ=8, 20 SNPs per window, and LD< .80. We

also tested our method’s robustness to these parameters by allowing Ĝ to vary

from 1 to 128 and the number of SNPs per window to vary from 1 to 160. We also

tested our method by using various combinations of ancestral population repre-

sentatives, including the true populations (YRI and CEU), sets of 3 populations

(YRI, CEU, and Han Chinese and Japanese (CHB-JPT) or Italians (TSI)), and al-

ternative populations with varying levels of relatedness, using Luhya (LWK) or

Maasai (MKK) to represent YRI ancestry. The FST between Luhya and Yoruba is

.0080 and between Maasai and Yoruba is .0270 [11]. For each of these analyses,

we assessed the accuracy of our method, defined as the proportion of SNPs as-

signed to the correct (simulated) ancestry. We ignored SNPs that fell before the

first window on the chromosome or after the last window, and SNPs that fell

between windows assigned to different ancestries.

85



4.3.3 Application

We used our method to assign ancestry to chromosomal segments in individ-

ual NA19836, an African American individual in the HapMap3 [11] dataset.

We used the transmitted haplotypes from the individual’s parents from the

HapMap trio-phased data. We used haplotypes from CEU and YRI trio

founders as representatives of the ancestral groups. We ran the forward-

backward algorithm with Ĝ=4 and window size=20 SNPs.

We also used our method to assign ancestry in HapMap3 Mexican individual

NA19730. HapMap phasing was not available for this individual, so we phased

this individual’s parents using IMPUTE v.2.1.0 [37], using a set of unrelated

Mexican individuals from the HapMap phasing results as a reference panel. We

used the same IMPUTE parameters as in the HapMap project: 110 iterations, 10

iterations of burn-in, and 120 conditioning states. We then used trio information

to do deterministic phasing where possible, and used these SNPs to categorize

the parents’ haplotypes from IMPUTE as transmitted or untransmitted. The

transmitted strands were used as the phased haplotypes for NA19730.

We compared three sets of ancestral representatives for NA19730. In each

case, we assessed European vs. Native American ancestry, using HapMap3

CEU individuals as the European ancestral representatives. For the first set

of Native American ancestral representatives, we used Maya, Pima, Karitiana,

Surui, and Colombian individuals from the Human Genome Diversity Project

(HGDP) [62] which a FRAPPE [68] analysis found to have < 5% European an-

cestry. For the second set, we used Maya, Nahua, and Aymara individuals from

the Mao et al. data set [47] which a FRAPPE analysis found to have < 1% Euro-

pean ancestry. Because the Nahua individuals originated from the same general

86



part of Mexico as the HapMap3 Mexican samples, the Mao et al. data set is ex-

pected to be a more accurate set of ancestral representatives. Finally, we used

just the Nahua as the ancestral representative set. We phased the Native Amer-

icans using IMPUTE, using the same parameters as for phasing NA19730, but

without trio information for validation. We used Ĝ = 8 for NA19730 as well as

for the other Latino individuals we studied.

We examined 3-way European, Native American, and African admixture

in Hispanic individuals from the NYULatino project. We examined individ-

uals from Ecuador, Colombia, Puerto Rico, and the Dominican Republic. We

used CEU and YRI individuals from HapMap3 as European and African an-

cestral representatives, and Native Americans from HGDP as Native American

ancestral representatives (matching the HGDP Native Americans used to an-

alyze NA19730). Based on FRAPPE analyses and historical information, we

expected Dominicans to have the greatest proportion of African ancestry, and

Ecuadorians to have the greatest proportion of Native American ancestry [8].

We phased the Latino and Native American individuals in IMPUTE, and used

HapMap phasings for the CEU and YRI individuals. We then computed the

genomewide (autosomal) mean and standard deviation of the proportion of an-

cestry each Latino sample had from the African, European, and Native Amer-

ican ancestral groups, and normalized each window’s ancestry proportion by

the genomewide mean and standard deviation. Regions with ancestry propor-

tions falling more than 3 standard deviations from the mean were considered to

have “extreme” ancestry.
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4.4 Results

4.4.1 Simulations

Our method is highly accurate in assigning ancestry along simulated chromo-

somes (Table 4.1), with increasing accuracy at more stringent calling thresholds.

The method is robust to the choice of number of SNPs per window (Table 4.2),

with any window size between 15 and 80 SNPs having accuracy > 98%. This

demonstrates that we pick up on consistent signals in the data, not artifacts

of window subdivisions. Using fewer than 10 SNPs per window increases the

number of spurious short ancestry regions identified (Figure 4.2).

Table 4.1: Comparison of our method and HAPMIX on simulated data.

Accuracy of our method and HAPMIX on simulated data, at several different
probability thresholds.

Calling Threshold Our method HAPMIX
.5 98.1 99.2
.8 98.6 99.3
.9 98.8 99.3
.95 99.0 99.3
.99 99.2 99.5

.999 99.5 99.8
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Table 4.2: Accuracy of our method under different window sizes.

SNPs per window Accuracy (threshold=.5)

1 92.2

2 93.5

5 96.2

10 97.3

15 98.4

20 98.1

40 98.6

80 98.7

160 97.6
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Figure 4.2: Ancestry segments assigned to simulated chromosomes using
2 SNPs per window.

Simulated chromosomes were formed from segments of CEU and YRI
chromosomes (see text).
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Our method, like HAPMIX [56], is robust to estimation of G, the number of

generations since admixture (Table 4.3). This robustness is an advantage to re-

searchers interested in mapping ancestry tracts, but may prove a challenge for

fine-scale estimation of the timing of admixture events. We note that in our sim-

ulations, accuracy was slightly higher when G was somewhat underestimated

than when Ĝ = G. This is likely due to the improved smoothing over noisy

window scores. Figure 4.3 demonstrates the difference in posterior probabili-

ties calculated using Ĝ = G = 8, containing a “spike” of intermediate posterior

probability which would result in the incorrect inference of a short region of

European ancestry, compared to Ĝ = 1, where the lower transition probability

has smoothed the spike.

Table 4.3: Accuracy under different values of Ĝ.

The true value of G, the number of generations since admixture, for the
simulations was 8.

Ĝ Accuracy Accuracy
(threshold=.5) (threshold=.9)

1 98.6 99.1
2 98.5 98.9
4 98.2 98.9
8 98.1 98.8

16 97.7 98.7
32 97.4 98.6
64 96.7 98.3

128 95.7 98.1
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Figure 4.3: Posterior probabilities for a simulated chromosome under dif-
ferent values of Ĝ.

The bar at the top indicates the true simulated ancestry of each chromosomal
segment (red=YRI, blue=CEU). Red and dashed blue lines indicate the

posterior probability of YRI ancestry at that window, using Ĝ = 8 (red line)
and Ĝ = 1 (dashed blue) as the estimated number of generations since

admixture. The true value of G used for the simulation was 8. The black arrow
indicates a short region that has been incorrectly assigned to European

ancestry when Ĝ = 8.
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HAPMIX performed slightly better than our method (Table 4.1) due to a

lower number of incorrectly inferred short ancestry regions (Figure 4.4). How-

ever, it was also less sensitive to short regions of true ancestry (Figure 4.5, black

oval). It is interesting to note that HAPMIX agreed with our method in the two

longest tracts of incorrect ancestry assignment made by either method (one of

which is depicted in Figure 4.5), suggesting that the Yoruba individuals used to

simulate these segments may in fact have some European ancestry.
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Figure 4.4: Posterior probabilities computed by HAPMIX and our method
on simulated haplotype 8.

The bar at the top indicates the true simulated ancestry of each chromosomal
segment (red=YRI, blue=CEU). Red and dashed blue lines indicate the

posterior probability of YRI ancestry at that window, using our method (red
line) and HAPMIX (dashed blue).
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Figure 4.5: Posterior probabilities computed by HAPMIX and our method
on simulated haplotype 7.

The bar at the top indicates the true simulated ancestry of each chromosomal
segment (red=YRI, blue=CEU). Red and dashed blue lines indicate the

posterior probability of YRI ancestry at that window, using our method (red
line) and HAPMIX (dashed blue). The black oval indicates a short region of
European ancestry. The black arrow indicates a region where both methods

inferred European ancestry, although the segment was simulated from a YRI
haplotype.
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When the Luhya (LWK) or Maasai (MKK) were used as ancestral represen-

tatives for the Yoruba, our method’s accuracy was essentially unchanged (Table

4.4), despite FST values of .0080 and .0270 between the true ancestral popula-

tion and the population used to represent it. A simple Wright-Fisher simulation

shows that 97.9% of the time, the FST between a population with effective pop-

ulation size = 5000 and the same population after 100 generations of drift is

less than .027. This suggests that modern-day sampled individuals can be used

as representatives for ancestral populations from previous generations without

loss of accuracy due to genetic drift.

Table 4.4: Accuracy under different assumptions about the ancestral pop-
ulations.

Accuracy listed is for a calling threshold of .5 (for 2 ancestral populations) or
1/3 (for 3 ancestral populations). The true ancestry of the simulations was

YRI-CEU.

Tested ancestry Accuracy when Accuracy when Overall
True ancestry True ancestry Accuracy

= YRI = CEU
YRI-CEU 97.7 99.3 98.1

MKK-CEU 98.3 97.9 98.2
LWK-CEU 97.5 99.1 97.9

YRI-CEU-(CHB-JPT) 96.8 98.7 97.2
YRI-CEU-TSI 97.5 51.6 86.1
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Simulations show that our method can accurately assign ancestry to

continent-level population groupings even when one of the ancestral repre-

sentative groups is spurious, that is, when the admixed population contains

no admixture from that group. Our method retained excellent accuracy when

HapMap3 Han Chinese and Japanese (CHB-JPT) individuals were used as a

third, spurious ancestral population, with only two African American haplo-

types showing small regions assigned to CHB-JPT ancestry (Figure 4.6). In con-

trast, when the spurious ancestral population is closely related to one of the

true ancestral populations, as in the YRI-CEU-TSI analysis (FST(CEU-TSI)=.004

[11]), our method experiences reduced accuracy due to the expected “splitting”

of CEU ancestry into CEU and TSI assignments (Figure 4.7). The accuracy for

SNPs whose true background is YRI remains high (97.5% at a calling threshold

of 1/3, that is, assigning all SNPs; Table 4.4), but the accuracy for SNPs whose

true background is CEU is no better than random guessing (51.6% for calling

threshold=1/3), and is not improved by using a more stringent calling thresh-

old.
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YRI ancestry
CEU ancestry
CHB−JPT ancestry

Figure 4.6: Ancestry assignments of YRI-CEU simulated haplotypes when
analyzed using YRI, CEU, and CHB-JPT ancestral representa-
tives.

The top line in each pair of chromosomes gives the simulated ancestry, and the
bottom line shows the ancestry estimated by PCAdmix, using a calling

threshold of .9. The black ovals indicate regions where our method incorrectly
inferred CHB-JPT ancestry.
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Figure 4.7: Ancestry assignments of YRI-CEU simulated haplotypes when
analyzed using YRI, CEU, and TSI ancestral representatives.

The top line in each pair of chromosomes gives the simulated ancestry, and the
bottom line shows the ancestry estimated by PCAdmix, using a calling

threshold of .5.
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4.4.2 Application

We were able to assign the ancestry of nearly all windows in the haplotypes of

the African American individual NA19836 with posterior probability > .9. Us-

ing this calling threshold, the concordance between our assignments and those

of a diploid analysis in HAPMIX was 98.5%. While most regions of African or

European ancestry spanned many windows (80% of the tracts were over 1 Mb in

length), some parts of the genome exhibited rapid switching of ancestry (Figure

4.8). Further investigation of these short segments is warranted; those which

persist across many values of Ĝ and many calling thresholds, and where HAP-

MIX and PCAdmix agree, are likely to represent real features of the data, which

may indicate recombination hotspots. In contrast, ancestry segments with only

intermediate posterior probability which disappear under analysis with lower

values of Ĝ (and therefore, lower transition probabilities) are more apt to be

artifacts of the analysis, due to the fact that the maximum marginal posterior

probability of ancestry for each window is not necessarily concordant with the

most likely ancestry “path” through the chromosome.
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Figure 4.8: Analysis of an African American individual (NA19836) using
HAPMIX and PCAdmix.

The bottom line of each chromosome is our method’s diploid ancestry
assignment of that chromosome; the top line is the assignment by HAPMIX.

We used a calling threshold of .9 for both assignments.
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Our analysis of the Mexican individual NA19730 revealed a large proportion

of Native American ancestry (Figure 4.9), which agreed with PCA results on

the unphased genotypes. The results using different Native American ancestral

representatives were similar (Figure 4.9), reflecting the robustness to ancestral

population misspecification we observed in our simulations. When we used the

Mao et al. Native Americans as ancestral representatives, we observed fewer

short regions of ancestry than with the HGDP Native Americans; however, it

is not clear whether this is due to the Mao et al. Native Americans’ being a

better ancestral proxy, or to the decreased resolution obtained due to the lower

number of SNPs in the combined HapMap3-Mao et al. data set.
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Figure 4.9: Analysis of a Mexican individual (NA19730) using different an-
cestral representative groups.

The bottom line of each chromosome uses HGDP Native Americans as the
Native American ancestral representatives; the middle line uses Native

Americans from the Mao et al. dataset; the top line uses only the Nahua from
the Mao et al. dataset.
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Our analysis of the NYULatino data confirmed our expectations about mean

ancestry proportions (Figure 4.10): Dominicans, followed by Puerto Ricans,

showed the largest proportion of African ancestry, and Ecuadorians, followed

by Colombians, showed the largest proportion of Native American ancestry. We

identified 12 regions having extreme levels of ancestry in more than one pop-

ulation (Table 4.5). In particular, regions on chromosomes 2, 6, and 8 showed

elevated levels of ancestry in three of the four Latino populations (Figures 4.11,

4.12, 4.13). In addition, we identified several other regions showing extreme lev-

els of ancestry in one population which warrant further investigation, perhaps

with larger sample sizes.

These regions may have reached their extreme levels of ancestry due to se-

lection during or after the initiation of admixture; it would be valuable to pur-

sue further investigation in these regions, including simulations of admixture

with and without selection, and a more detailed examination of haplotype di-

versity. The regions on chromosome 6 are especially intriguing, as Tang et al.

[66] also found a region centered at 28.8 Mb to have elevated African ancestry

in Puerto Ricans, and these regions are close to the human leukocyte antigen

(HLA) loci (around 30-32 Mb). The HLA plays an important role in immunity,

and may have undergone balancing selection favoring more-diverse African

haplotypes. Another potential explanation for the extreme levels of ancestry

is that the chromosome phasing was of lower quality in these regions, and the

apparently greater haplotype diversity due to poor phasing was attributed to

greater African ancestry; in particular, this may be a concern around the HLA

loci, where high levels of diversity could complicate phasing. This concern is

somewhat mitigated by the agreement between our findings and those of Tang

et al, whose method, SABER [67], computes ancestry tracts from unphased data.
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Nevertheless, it would be valuable to repeat this analysis on Latino individuals

from genotyped family trios, where the phasing can be more certain.
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Figure 4.10: Genomewide autosomal mean ancestry proportions in four
Latino populations.

COL = Colombian; DOM = Dominican; ECU = Ecuadorian; PRI = Puerto
Rican.
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Table 4.5: Regions showing extreme ancestry proportions in multiple
Latino populations.

All regions shown here exhibited ancestry proportions more than 3 standard
deviations above the genomewide mean for that population. YRI = Yoruba

(African); NAmer = Native American; COL = Colombian; DOM = Dominican;
ECU = Ecuadorian; PRI = Puerto Rican.

Chromosome Position (Mb) Ancestry Latino Populations
2 136.8-136.9 NAmer COL, DOM, PRI
6 27.3-28.8 YRI COL, ECU, PRI
6 31.4-31.5 YRI COL, ECU, PRI
8 10.8-10.9 NAmer COL, DOM, PRI
2 134.9-135.5 NAmer DOM, PRI
5 30.5-30.9 YRI COL, ECU
8 8.4-8.8 NAmer DOM, PRI

11 87.5-87.6 YRI COL, PRI
13 58.3-58.5 NAmer DOM, PRI
15 59.7-59.8 YRI ECU, PRI
15 60.8-61.0 YRI ECU, PRI
15 66.8-67.5 YRI COL, ECU
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Figure 4.11: Normalized proportions of Native American ancestry on
chromosome 2 in Latino populations.

The dashed lines indicate the values 3 standard deviations from the mean. The
black arrow indicates a region where Colombians, Dominicans, and Puerto

Ricans have extremely high proportions of Native American ancestry.
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Figure 4.12: Normalized proportions of African ancestry on chromosome
6 in Latino populations.

The black arrow indicates a pair of regions where Colombians, Ecuadorians,
and Puerto Ricans have extremely high proportions of African ancestry. See

Figure 4.11 for legend.
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Figure 4.13: Normalized proportions of Native American ancestry on
chromosome 8 in Latino populations.

The black arrow indicates a region where Colombians, Dominicans, and Puerto
Ricans have extremely high proportions of Native American ancestry. See

Figure 4.11 for legend.
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4.5 Discussion

In this paper, we have presented a Principal Components-based approach to

assigning ancestry along the genome in admixed individuals. Our approach is

highly accurate at assigning ancestry, and is applicable to admixture of 2 or more

populations. The approach is robust to the choice of window size, to misspeci-

fication of ancestral populations, and to the estimation of time since admixture.

We have implemented our method in the software PCAdmix, available upon

request.

In future, this method could be enhanced by the development of a wrapper

HMM to estimate the time since admixture based on length of ancestry tracts,

and by an investigation of “bootstrapping” results when ancestral representa-

tives are not available; as pointed out in [48], admixture proportions are de-

tectable even without source populations for up to 15 generations after admix-

ture. The method would also benefit from an implementation of the PCA por-

tion of the code in C, which would enable the simultaneous analysis of genome-

wide, rather than chromosome-wide, data sets.

We have demonstrated that our method is useful in identifying regions of

extreme ancestry proportions within populations, which may indicate sites of

selection during or after the process of admixture. Our method will also be valu-

able for admixture mapping on dense genomewide data and for understanding

the population genetic history of admixed populations.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR CHAPTER 2

A.1 Equations used in variable updates

The update for disease locus alleles Qfi and Qmi, jointly with selector variables

selQ,fi and selQ,mi, is analogous to that for Mfi and Mmi (equation 2.2), with the

substitution of P (di|Qfi, Qmi, penetrance) for P (Mi,obs|Mfi,Mmi):

(Qfi, Qmi, selQ,fi, selQ,mi | Markov Blanket) ∝

P (Qfi | Qf , selQ,fi) · P (Qmi | Qm, selQ,mi)

· P (di | Qfi, Qmi, penetrance)

· P (selQ,fi | selmarker,fi) · P (selQ,mi | selmarker,mi)

· Πoffspring=jP (Qij | Qfi, Qmi, selQ,ij)

Here,

P (selQ,fi|selmarker,fi) =


1− θ for selQ,fi = selmarker,fi

θ for selQ,fi 6= selmarker,fi

where θ is the probability of recombination between the marker and the disease

locus; that is, individual i’s disease locus and marker alleles come from different

haplotypes with probability θ.

For founders, P (Qfi|Qf , selQ,fi) is replaced by

P (Qfi) =


a if Qfi = Q

1− a if Qfi = q

where a is a constant describing the frequency of the disease allele in the founder

population.
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If the unphased marker genotype Mi,obs is unobserved, it is updated

according to the distribution P (Mi,obs|Mfi,Mmi) (equation 2.3). If the

phenotype di is unobserved, it is updated according to the distribution

P (di|Qfi, Qmi, penetrances), determined by the penetrance matrix.

A.2 Simulated Tempering

In our chain, at λ = 0, the penetrances, recombination rate, mutation rate, and

frequency of the disease allele are assigned their desired values (recombination

rate=θ, mutation rate=0, freq(Q) as set by user, penetrances as described in the

user-specified matrix). At λ = 1, all parameters are relaxed to uniform prob-

abilities to allow faster mixing (recombination rate=.5, disease locus mutation

rate=.5, marker mutation rate=m−1
m

, where m is the number of possible marker

alleles; freq(Q)=.5, P (di = j | g = k) = 1/n, where n is the number of lev-

els of the trait). At intermediate λs, each parameter pλ is a linear combination:

pλ = (1− λ) ∗ pλ=0 + λ ∗ pλ=1.

At each iteration, the temperature of the chain is updated according to

a Metropolis-Hastings algorithm. The first 50,000 iterations of each sampler

run are used to fine-tune the rate of temperature transitions according to the

Robbins-Munro method [27]. After this fine-tuning, the chain is sampled when-

ever λ = 0, when its stationary distribution coincides with the desired posterior

distribution P(Y | X, θ).

To assess whether simulated tempering was effective in improving the mix-

ing, we examined the lag-k autocorrelation of P (X, Y | θ) for runs of the Gibbs

sampler with and without simulated tempering, starting from the same ini-
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tial configuration. Whenever the tempered chain visited λ = 0, we recorded

P (X, Y ) for both chains. Figure 2.2 shows the correlation between P (X, Yi | θ =

.10) and P (X, Yi+k | θ = .10) for visits i and i + k to λ = 0, for 1 ≤ k ≤ 100. The

autocorrelation with simulated tempering (with 7 temperatures) quickly drops

to below .05, “near-independence” levels, while the autocorrelation for a run of

the sampler without simulated tempering remains above .3 even for k = 100.

This demonstrates that simulated tempering effectively improved the mixing of

our Gibbs sampler.

A.3 Application to Data

The three additional trichotomous models we tested are shown in Table A.1.

Table A.1: Additional trichotomous penetrance models used to analyze
Panic Disorder data.

We tested each of these models on the 96 subfamilies discussed in the
Application to Data section of chapter 2, in addition to the selected model

(model A) in Table 2.3.

Model Phenotype qq Qq QQ
B d = 1 .99 .3 .2

d = 2 .005 .4 .3
d = 3 .005 .3 .5

C d = 1 .9 .2 .05
d = 2 .05 .6 .15
d = 3 .05 .2 .8

D d = 1 .9 .05 .05
d = 2 .05 .9 .05
d = 3 .05 .05 .9
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APPENDIX B

SUPPLEMENTARY INFORMATION FOR CHAPTER 3

B.1 Elimination Algorithm Example

As an example of the elimination algorithm reducing the number of terms re-

quired to compute P (X | θ), consider a pedigree consisting of mother (A), father

(B), and two offspring (C and D). Letting Zi be the observed phenotype of indi-

vidual i, and gi be the joint genotype at the marker and disease locus, the joint

probability of the family’s phenotypes is

P (ZA, ZB, ZC , ZD) = ΣgAΣgBΣgCΣgDP (ZA | gA)P (gA | HWE) (B.1)

· P (ZB | gB)P (gB | HWE)

· P (ZC | gC)P (gC | gA, gB)P (ZD | gD)P (gD | gA, gB)

requiring 34 = 81 terms, because there are 3 possible genotypes to consider for

each individual’s portion of the summation, assuming the disease locus is di-

allelic. (Here, P (gA|HWE) is the probability of founder A’s genotype under

Hardy-Weinberg equilibrium, conditional on allele frequencies in the popula-

tion, which are assumed to be known.)

However, the above equation can be rewritten as

P (ZA, ZB, ZC , ZD) = ΣgAP (ZA | gA)P (gA | HWE)ΣgBP (ZB | gB)P (gB | HWE)

· ΣgCP (ZC | gC)P (gC | gA, gB)ΣgDP (ZD | gD)P (gD | gA, gB)

“Eliminating” individual D corresponds to computing

f1(gA, gB) = ΣgDP (ZD | gD)P (gD | gA, gB),

115



which requires 27 terms, because each of A, B, and D have 3 possible genotypes.

It is convenient to think of f1 as a 3x3 table which describes P (ZD | gA, gB) as a

function of A and B’s genotypes. We are left with the simplified formula

P (ZA, ZB, ZC , ZD) = ΣgAP (ZA | gA)P (gA | HWE)ΣgBP (ZB | gB)P (gB | HWE)

· f1(gA, gB)ΣgCP (ZC | gC)P (gC | gA, gB).

Eliminating C similarly requires 27 terms, leaving us with the formula

P (ZA, ZB, ZC , ZD) = ΣgAP (ZA | gA)P (gA | HWE)ΣgBP (ZB | gB)P (gB | HWE)

· f1(gA, gB)f2(gA, gB).

Eliminating B involves 9 terms, computing

f3(gA) = ΣgBP (ZB | gB)P (gB | HWE)f1(gA, gB)f2(gA, gB)

to obtain

P (ZA, ZB, ZC , ZD) = ΣgAP (ZA | gA)P (gA | HWE)f3(gA).

Finally, we eliminate A by summing 3 terms and giving the desired solution to

P (ZA, ZB, ZC , ZD). The total number of terms involved in this calculation is 27+

27+9+3 = 66, compared to 81 terms for the brute-force summation of equation

B.1. The elimination algorithm gains even larger computational savings over the

brute-force method in larger pedigrees, in which greater numbers of individuals

are conditionally independent, as the two offspring were in this example.

B.2 Simulations

We used PyPedal’s options simulate n=45, simulate ns=10, simulate nd=10,

simulate g=5, simulate ir=0, simulate mp=0, simulate fs=1, simulate po=1.
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These options create a pedigree of 45 individuals, of which 10 are founder sires

and 10 are founder dams. Simulate g controls the number of generations in

the simulated pedigree; however, changes to this parameter did not have much

effect on the structure of the pedigree. The ir and mp parameters disallow im-

migration and missing parents among individuals not counted in the founders

set, and the fs and po parameters allow full-sib and parent-offspring matings.

After simulation, we removed any individuals which were disconnected from

the pedigree. We then added “leaf” individuals to bring the pedigree size up

to 100 individuals, distributing the individuals as offspring of existing matings

randomly according to a uniform distribution.
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