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Understanding the mechanism by which cellulases catalyze cellulose hydrolysis 

can greatly contribute to the development of biofuels. The thermophilic bacterium 

Thermobifida fusca, a major degrader of plant cell walls in certain environments, 

secretes seven different cellulases including exocellulase Cel6B. This cellulase acts by 

an inverting mechanism; however, its catalytic acid and base residues had not been 

identified. Biochemical approaches confirmed D274 to be the catalytic acid residue. A 

single catalytic base residue could not be determined, as sodium azide assays showed 

no activity rescue for any single mutations of candidate residues. However, a double 

mutation of D226A and S232A knocked out enzymatic activity and its activity was 

partially rescued by sodium azide. We therefore propose a novel hydrolysis 

mechanism for T. fusca Cel6B involving a proton-transferring network to carry out the 

catalytic base function. 

T. fusca exocellulase Cel6B was also engineered to gain knowledge on the 

relationship between processivity and synergism as these properties are important for 

hydrolyzing crystalline cellulose. Mutations of several residues in the active site 

tunnel of Cel6B gave higher processivity. This improvement was confirmed by two 

assays: the ratio of soluble/insoluble reducing sugars as well as the ratio of 

oligosaccharide products. Surprisingly, the mutant enzyme, which has the highest 

processivity, showed the least synergism in mixtures with endocellulases, suggesting 



 

 

that improving exocellulase processivity might not always be an effective strategy for 

producing improved cellulase mixtures for biomass conversion. 

The highly processive Cel6B mutant enzymes were successfully fluorescently 

labeled, so these species can be used to visualize binding and track their movement on 

cellulose. The catalytic domains of Cel6B was found to bind non-productively to other 

polysaccharides; therefore, the balance between specific binding and non-specific 

adsorption should be always considered when engineering cellulases for hydrolyzing 

complex substrates. Using immuno-precipitation, Cel6B was demonstrated to 

contribute greatly to the hydrolysis of crystalline cellulose by T. fusca. 
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CHAPTER ONE 

CELLULASES 

Section 1.1. Cellulose 

Cellulose is the most abundant organic polymer in the biosphere. The conversion of 

cellulose to ethanol or butanol is of great interest because it provides renewable 

energy, reducing dependence on fossil fuel and decreasing the volume of waste, thus 

beneficially improving our environment [1] . Cellulose is a linear unbranched polymer 

of D-glucose with β-1,4 glycosidic linkages, which are highly stable and resistant to 

chemical attack because of the high degree of hydrogen bonding with other chains of 

cellulose to form crystalline regions [1]. All glycosyl hydroxyl groups are oriented 

equatorially; therefore, the glucopyranose ring tends to be hydrophilic at the edge 

while being hydrophobic at the α and β faces [2]. Individual cellulose molecules 

possess two different ends: a non-reducing end with a free C4 hydroxyl group and a 

reducing end with a free C1 hydroxyl group (Figure 1.1).  

The crystallinity of purified celluloses varies depending on the source and 

pretreatment; for instance, cellulose from Valonia is considered as 100% crystalline 

[3] while swollen cellulose is 0% crystalline [4].  

 
Figure 1.1: Representative structure of a cellulose strand. 
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Section 1.2. Cellulases and cellulase engineering 

Cellulases are specialized enzymes catalyzing the hydrolysis of β-1,4-glycosidic 

linkages. These enzymes are produced not only by bacteria and fungi in the soil and in 

the ruminating chambers of herbivores, but also by insects (termites and wood 

roaches) and plants for leaf and flower abscission, ripening of fruits, differentiation of 

vascular tissue and cell wall growth [5].  

Cellulases are mainly categorized into endocellulases (EC 3.2.1.4), which cleave 

cellulose chains internally, generating products of variable length with new chain 

ends, and exocellulases or cellobiohydrolases (EC 3.2.1.91), which act from the ends 

of cellulose chains, processively cleave off cellobiose as the main product [5-7]. 

Cellulases do not simply cleave glycosidic bonds but during the process of hydrolysis, 

they also extract and hold part of a single polysaccharide chain to separate it from the 

other molecules [8].  

Cellulases are additionally categorized as processive or non-processive groups. 

Processive enzymes continue to bind and hydrolyze a single polysaccharide strand 

after hydrolyzing the first bond while non-processive cellulases hydrolyze a bond, 

disengage and rebind at a different site. Exocellulases are often highly processive 

while endocellulases are generally non-processive. However, there are a few cellulases 

with properties of both types; for instance, Thermobifida fusca Cel9A, a processive 

endocellulase, which cleaves a cellulose strand internally and then cleaves many 

bonds before disengaging [9,10].  

There is a strong interest in engineering cellulases for higher activity as they show 

really low hydrolysis rate. T. fusca exocellulase Cel6B hydrolyzes cellulose at a rate of 

as many as 2 bonds per minute [11] while a protease can cleave up to one million 

peptide bonds per second [12]. A number of factors limit cellulases’ rate of hydrolysis: 
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adsorption of cellulases onto the substrate, the separation of a single cellulose chain 

from the matrix, threading of the chain into the active site, conformational changes in 

the active site, processivity (if exocellulases) and desorption of cellulases from the 

substrate (if endocellulases) [13]. It should be noticed that cellulose is a very difficult 

substrate; the half life of cellulose at room temperature and pH 7.0 is millions of years 

[14]. Therefore, substrate-pretreatment is crucial for hydrolysis as it modifies cellulose 

crystallinity, degree of polymerization, accessible surface area [15]. The rate of 

hydrolysis can drop by two to three orders of magnitude at high degrees of conversion 

[16]. 

1.2.1. Modular structures of cellulases 

Cellulases often consist of distinct domains including a catalytic domain and one or 

more carbohydrate-binding modules (CBMs). Based on sequence alignment and 

secondary structure prediction, the catalytic domains of cellulases were categorized 

into 11 glycoside hydrolases (GH) families (families 5 - 10, 12, 26, 44, 45, 48) 

(www.cazy.org) [17]. These domains are linked by linkers, which are rich in glycine, 

proline, serine and threonine residues, and are often O-glycosylated [18]. Figure 1.2 

shows a modular structure of Thermobifida fusca Cel6B, which contains two 

functional domains, a C-terminal family-6 catalytic domain, linked to an N-terminal 

family-2 CBM through a Pro-Ser rich linker [11]. A number of cellulases have 

additional domains with unknown functions, for instance the FnIII modules in T. fusca 

Cel9A and Cel48A [10,19].  
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Figure 1.2: Gene structure of Thermobifida fusca exocellulase Cel6B (Sig – signal 

peptide, CBM2 – family-2 carbohydrate binding module). 

 

Figure 1.3: The arrangement of the domains and modules of T. fusca cellulases. 

The position of CBMs may vary. A family 2 CBM is located at the N-terminus of 

Cel5A, Cel6B and Cel48A and at the C-terminus of Cel6A, Cel9A, and Cel9B in T. 

fusca (Figure 1.3). The family-2 CBMs in T. fusca cellulases were found to be 

important for crystalline cellulose degradation. Removal of this CBM had little effect 

on hydrolysis of soluble cellulose, but reduced enzymatic activity on crystalline 

substrates such as bacterial microcrystalline cellulose and filter paper [20]. 

The crystal structures of many cellulase catalytic domains have been published [21-

25]. Structural analysis showed that the active sites of the exocellulases are enclosed 

by two long loops, forming a tunnel while the endocellulases have an open active site 

Sig CBM2 Linker Family6-catalytic domain N C

38aa 104aa 31aa 423aa 

CBM2 Cel5A

CBM2Cel6A

CBM2 Cel6B

CBM2 Cel9A CBM3c FnIII 

CBM2 Cel9Bβ-barrel CBM4 

CBM2 Cel48AFnIII 

CBM3 Cel5B
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groove (Figure 1.4). The catalytic domains of several T. fusca cellulases also showed 

non-productive adsorption to α-chitin [26].  

 
 

Figure 1.4: Van der Waals surface representations of the exocellulase Humicola 

insolens Cel6A (left) and the endocellulase T. fusca Cel6A (right) (modified from 

[23]). 

1.2.2. Catalytic mechanisms 

Enzymes from the same GH family are not necessarily all endo- or exocellulases; 

however, a property that is conserved in all members of most families is the 

stereochemistry of cleavage: inverting or retaining [27]. For instance, all family-6 GH 

members catalyze hydrolysis with inversion of the anomeric carbon configuration. 

Both catalytic mechanisms are proposed to require two catalytic carboxylate 

residues. In the inverting mechanism, the catalytic base such as a deprotonated Asp or 

Glu removes a proton from a water molecule, making it a better nucleophile to directly 

attack at the anomeric C1 carbon, breaking the covalent bond between C1 and the 

glycosidic oxygen, thus inverting the linkage from β to α [5] while the catalytic acid 

residue is protonated, donating its proton to the glycosidic oxygen of the leaving group 

(Figure 1.5). Water molecules then change the protonation of the catalytic residues to 
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allow them to hydrolyze another bond.  

In retaining GHs, a general acid/base catalyst works as an acid and base in two 

different steps: glycosylation and deglycosylation, respectively. In the first step, it 

facilitates departure of the leaving group by donating a proton to the glycosyl oxygen 

atom while the nucleophile forms an enzyme sequestered covalent intermediate. In the 

second step, the deprotonated acid/base acts as a general base to activate a water 

molecule that carries out a nucleophilic attack on the glycosyl-enzyme intermediate, 

retaining the stereochemistry at the anomeric center (Figure 1.5). 

 

Figure 1.5: Proposed inverting (a) and retaining (b) catalytic mechanisms. AH: a 

catalytic acid residue, B-: a catalytic base residue, Nuc: a nucleophile, and R: a 

carbohydrate derivative. HOR*: an exogenous nucleophile, often a water molecule. 

As more glycosyl hydrolases are studied, exceptions to these catalytic mechanisms 
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have been discovered. In retaining GHs, the presence of a nucleophile is important as 

it directly attacks the anomeric center to form a glycosyl-enzyme intermediate. 

However, the carbonyl oxygen of the 2-acetamide group in the substrate of GH-18 

chitinases [28], GH-20 hexosaminidases [29], GH-56 hyaluronidases [30], GH-84 O-

GlcNAc-ases [31], GH-85 endo-β-N-acetylglucosaminidases [32,33], and GH-103 

lytic transglycosylases [34] has been shown to act as the nucleophile to form an 

oxazoline intermediate. 

Knowledge of the catalytic residues of glycoside hydrolases has been applied to 

engineer these enzymes for new functions. Removal of the catalytic base in inverting 

enzymes [35,36] or the nucleophile in retaining enzymes [37] forms a new enzyme 

class, glycosynthases, which catalyze the synthesis of glycosides from activated 

glycosyl donors such as glycosyl fluorides. Glycosynthases are getting more attention, 

particularly for the synthesis of glycosides of pharmaceutical interest [38]. 

1.2.3. Enzymology of cellulases 

The variable structural complexity of cellulose and the mixed specificities of 

individual enzymes make the study of cellulase activity difficult. Therefore, enzyme 

assays are usually conducted on modified substrates, which could be categorized into 

four types: purified insoluble substrates approximated to a native substrate, modified 

insoluble substrates, soluble modified polysaccharides and soluble oligosaccharides 

[39]. Enzymatic activity is often quantified by the soluble products, particularly the 

reducing sugars. Two popular approaches for measuring reducing sugars are the 3,5-

dinitrosalisylic acid (DNS) [40] and p-hydroxybenzoic acid hydrazide (PAHBAH) 

methods [41]. 

Soluble oligosaccharide substrates are well developed for kinetic measurements in 

mechanistic studies of enzyme action [39]. Oligosaccharides could be coupled with a 
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chromophoric aglycon such as methylumbelliferyl, which is useful for studying ligand 

binding into the active site using fluorescence titration [42]. 

1.2.4. Processivity 

Exocellulases and processive endocellulases such as T. fusca Cel6B and Cel9A 

display the ability, known as processivity, to continue hydrolyzing a cellulose chain 

without disassociation. In this way, the enzyme remains close to the detached chain 

and prevents the chain from re-associating with the crystalline matrix. The ratio of 

soluble to insoluble reducing sugars is one criterion to evaluate the processivity of 

cellulases, as processive enzymes cleave many times along a cellulose chain to 

produce more soluble reducing sugars [43]. This measurement is helpful to distinguish 

between exocellulases and endocellulases [43]. However, soluble and insoluble 

reducing sugars can be separated easily only when crystalline cellulose such as filter 

paper or Avicel is used. 

Improvement of processivity is a difficult task; for instance, processivity in T. fusca 

Cel9A requires coordination between the sliding of the substrate into the cleavage site 

and the release of the products. The R378K mutant enzyme showed the highest 

improvement in processivity among single mutations in the catalytic domain of 

Cel9A; however, a double mutant enzyme containing R378, which has two hydrogen 

bonds to Glc(+1) O2, and D261, which is located near Glc(-4), dramatically decreased 

processivity [44]. 

1.2.5. Synergism 

Synergism can be defined as the ability of a mixture of cellulases to give higher 

activity than the sum of the individual activities. Synergism does not require a direct 

interaction between individual cellulases; however, two cellulases give synergism only 
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when they attack different sites on a cellulose chain and they produce new sites for 

each other [20]. Therefore, two exocellulases give synergism only when they are from 

different classes: non-reducing end or reducing end-directed exocellulases. Pre-

treatment of crystalline cellulose with an endocellulase produces a better substrate for 

exocellulases; however, pre-treatment with an exocellulase does not create the same 

effect for endocellulases [20]. The activity of endocellulases also are increased in 

synergistic mixtures of endocellulases and exocellulases [43].  

Section 1.3. Cellulase-producing organisms 

There are two major cellulase systems, complexed and non-complexed [6]. Most 

anaerobic cellulase-producing organisms such as Clostridium thermocellum [45] and 

C. cellulovorans [46] produced exocellular, high molecular-weight complexes with 

full complement of hydrolytic enzymes, called cellulosomes. These cellulosomes are 

attached to the surface of the microorganism, allowing the microorganism to retain the 

hydrolyzed products efficiently. Aerobic organisms such as filamentous fungi and 

actinomycetes secrete individual hydrolytic enzymes, a non-complexed hydrolytic 

system [6]. Besides these systems, several other less studied mechanisms are also used 

by cellulolytic microorganisms such as the aerobic bacterium, Cytophaga hutchinsonii 

and the anaerobic bacterium, Fibrobacter succinogenes [47,48], these bacteria code 

only endocellulases, not processive endocellulases and exocellulases [49]. 

Our laboratory studies Thermobifida fusca, formerly known as Thermomonospora 

fusca, an actinomycete of the suborder streptosporangineae, as a model organism [50]. 

T. fusca is a Gram positive, spore-forming, filamentous soil bacterium. It is a 

moderately thermophilic, cellulolytic bacterium with an optimum growth temperature 

around 50oC [51]. 

The genome of T. fusca (3.7Mb) was sequenced in 2000 by the Department of 
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Energy [20], which facilitated the discovery of a number of T. fusca enzymes 

participating in the hydrolysis of plant cell walls. An intracellular enzyme (a β-

glucosidase) and several extracellular enzymes including seven different cellulases, 

two low-molecular weight cellulose binding proteins, one xylanase and one 

xyloglucanase have been cloned, purified and characterized [20,52]. The genes for 

four extracellular cellulases including endocellulases Cel5A, Cel6A and Cel9B, as 

well as a processive endocellulase Cel9B were cloned by screening Escherichia coli 

colonies containing T. fusca DNA inserts on carboxymethyl cellulose (CMC) overlay 

assays. The genes for two exocellulase Cel6B and Cel48A were detected by screening 

plasmid libraries with labeled oligonucleotides complementing the N-terminal 

sequence of each protein [20]. T. fusca Cel5B has recently been detected by 

zymogram analysis [52]. 
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CHAPTER TWO 

IDENTIFICATION AND BIOCHEMICAL CHARACTERIZATION OF 

CATALYTIC RESIDUES IN T. FUSCA CEL6B* 
 

Section 2.1. Introduction 

As presented in the preceding chapter, T. fusca produces a mixture of functionally 

distinct cellulases, which act synergistically. One of these cellulases, Cel6B is very 

important for achieving the maximum activity of synergistic mixtures, although its 

activity alone is relatively weak on all polysaccharide substrates [11]. T. fusca Cel6B 

is an exocellulase (EC.3.2.1.91) that processively hydrolyzes a number of β-1,4-

glycosidic bonds from the non-reducing end of cellulose molecules before 

dissociation. The enzyme has higher thermostability and a broader pH optimum than 

the homologous fungal exocellulase Trichoderma reesei (also known as Hypocrea 

jecorina) Cel6A, which is present in most commercial cellulase preparations [11].  

The three-dimensional structures of the catalytic domains of five family GH-6 

cellulases have been determined. Humicola insolens Cel6A [23] and T. reesei Cel6A 

[21] are exocellulases while T. fusca Cel6A [22], H. insolens Cel6B [24] and 

Mycobacterium tuberculosis Cel6 [25] are endocellulases. The difference in the modes 

of action of these enzymes is clearly reflected in their structures. The active sites of 

the exocellulases are enclosed by two long loops forming a tunnel while the 

corresponding loops in the endocellulases are shorter, opening the active sites (Figure 
                                                 

* Reproduced in part with permission from “The absence of an identifiable single catalytic base residue 

in Thermobifida fusca exocellulase Cel6B” Thu V. Vuong and David B. Wilson, FEBS Journal, 276 

(14), p.3837-3845 © 2009 Federation of European Biochemical Societies. 
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1.4). Increasing knowledge of cellulase structures and improvement of modeling 

software [53] have greatly facilitated rational protein design to study the catalytic 

mechanism of cellulases. 

Members of glycosyl hydrolase family-6 were shown to utilize an inverting 

mechanism [27] (Figure 1.5). However, the detailed catalytic mechanism of family 

GH-6, particularly the existence of a catalytic base is still in doubt. Based on site-

directed mutagenesis, residue D392 in Cellulomonas fimi Cel6A, corresponding to T. 

reesei Cel6A D401, H. insolens Cel6A D405, H. insolens Cel6B D316, T. fusca 

Cel6A D265 and T. fusca Cel6B D497 (Table 2.1), was concluded to be a classical 

Brønsted base [54]. However, crystallographic and kinetic studies in T. reesei Cel6A 

suggested that D175, not D401 was the catalytic base [55]. The H. insolens Cel6A 

D405A and D405N mutant enzymes still retained approximately 0.5-1% activity [56]. 

Although mutation of D316 in H. insolens Cel6B to alanine or asparagine led to an 

inactive enzyme [56], the three-dimensional structure determination showed that D316 

is likely to be correctly positioned to act as a base only if a conformational re-

arrangement of the -1 subsite sugar ring occurs [24]. In T. fusca Cel6A, D265 was not 

directly involved in hydrolysis, but participated in substrate binding [57]. Therefore, it 

is interesting to investigate the catalytic residues in T. fusca Cel6B and other family-6 

GH members. 

Recently, activity rescue of catalytic mutants by sodium azide has been 

demonstrated to be a useful tool for identification of the catalytic base in both 

retaining [58] and inverting GHs [59]. This approach distinguished the actual catalytic 

base from other catalytic residues in the inverting cellulase T. fusca Cel9A [44]. 
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This chapter describes the work done to identify the catalytic residues, particularly 

the catalytic acid and catalytic base of T. fusca Cel6B and to determine whether the 

enzyme acts by the typical inverting mechanism.  

Section 2.2. Experimental procedures 

Strains and plasmids - Escherichia coli DH5α and BL21 RPIL DE3 (Agilent 

Technologies, CA, USA) were used as the host strains for plasmid extraction and 

protein expression, respectively. The entire Cel6B gene in plasmid pSZ143 [60], 

which was constructed from the pET26b+ vector (Novagen), was used as the template 

for mutagenesis. A plasmid (pTVcd), which contains only the catalytic domain of 

Cel6B, was constructed using NotI, then ligated and transformed into E.coli DH5α. 

This plasmid was used as the template to produce the D274A catalytic domain 

(D274Acd) mutant enzyme. 

Site-directed mutagenesis - Complementary primers were designed using 

PrimerSelect, Lasergene v.8.0 (DNASTAR, WI, USA) to incorporate the desired 

mutations. High purity salt-free primers were then synthesized by Eurofins MWG 

Operon (AL, USA). PCR was performed for 18 cycles at 95oC x 1min, 60oC x 50s and 

68oC x 7min, using the QuikChange method (Agilent Technologies). The methylated 

DNA template was hydrolyzed by DpnI. The PCR products were transformed into E. 

coli DH5α. Plasmids were then isolated and purified using the Qiagen Plasmid 

Miniprep Kit (Qiagen, CA, USA). Mutant plasmids were checked by both restriction 

enzyme digestion and DNA sequencing (Applied Biosystems Automated 3730 DNA 

Analyzer, Cornell University Life Sciences Core Laboratories Center, NY, USA). 

Mutant plasmids with the correct sequence were transformed and expressed in E. coli 

BL21 RPIL DE3.  
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Protein expression - The expression of proteins in E. coli BL21 RPIL DE3 was 

tested at different growth temperatures (30-37oC), cell density before induction 

(OD600nm 0.5-1.0) and length of induction (16-24hrs) with isopropyl-thio-β-D-

galactosidase, IPTG. Proteins produced in the supernatant and shock fluid were 

compared by Western blotting. 

Western blotting - Proteins were separated on SDS-polyacrylamide gels and 

electrophoretically transferred to an Immobilon-P membrane (Millipore, MA, USA). 

The primary antibody was rabbit polyclonal antiserum raised against Cel6B and the 

secondary antibody was goat anti-rabbit IgG alkaline phosphatase conjugate (Bio-Rad, 

CA, USA). Westerns blots were developed using nitro-blue tetrazolium and 5-bromo-

4-chloro-3-indolyl phosphate (Bio-Rad protocol). 

Enzyme purification - E. coli BL21 RPIL DE3 strains were grown at 37oC 

overnight in 30mL of Luria broth with 60µg/mL kanamycin before being transferred 

into 1L of M9 medium with 0.5% glucose and 60µg/mL kanamycin. Cells were grown 

at 30oC until OD600nm is about 0.8, then IPTG was added to 0.8mM and the culture 

was grown at 30oC for 20hrs. The supernatant was collected and Cel6B enzymes were 

purified using published chromatographic techniques [11], first on a CL-4B Phenyl-

Sepharose column, and then on a Q-Sepharose column. Enzyme purity was assessed 

on SDS gels. Enzymes were buffer exchanged and concentrated using Vivaspin 30kDa 

MWCO centrifugal concentrators (Sartorius, NY, USA), and then filtered through 

Costar ® Spin-X centrifuge tube filters (0.45μm nylon membrane). The enzyme 

concentrations were calculated based on absorbance at 280nm and the corresponding 

molar extinction coefficients determined from the predicted amino acid compositions. 

All proteins were prepared at the same concentration with 5mM NaOAc pH5.5 plus 

10% glycerol, and stored at -70oC. 
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Polysaccharide assay - As recommended by Ghose (1987) [40], polysaccharide 

assays were conducted using a series of enzyme concentrations above and below the 

target for each substrate for a fixed time with saturating substrate. Activities of wild-

type and mutant enzymes were determined on 2.5mg/mL bacterial microcrystalline 

cellulose (BMCC), 2.5mg/mL phosphoric acid-treated swollen cellulose (SC), 

2.5mg/mL phosphoric acid-treated cotton (PC), and 10mg/mL carboxymethyl 

cellulose (CMC). PC was prepared using a previously described method for swollen 

cellulose [61]. All assays were run in triplicate for 16hrs at 50oC in 50mM NaOAc 

pH5.5 at the final reaction volume of 400μL. Reducing sugars were measured using 

dinitro-salicylic acid (DNS) [40]. The DNS method fits the assay range well and does 

not require a protein blank. Nanomoles (nmol) of protein used were plotted versus the 

A600nm, and KaleidaGraph (Synergy Software, PA, USA) was used to fit the curve to 

determine the amount of enzyme required for 6% substrate digestion of BMCC, SC 

and PC, and 1.5% digestion of CMC. If the activity was too weak to achieve the target 

digestion, activity was calculated at a high concentration of enzyme (1.5μM). Mutant 

enzyme activities were determined concurrently with wild-type.  

2,4-DNPC assay -  2,4-dinitrophenyl-β-D-cellobioside (2,4-DNPC) was a gift from 

Dr. Stephen Withers (University of British Columbia, Vancouver). Reactions were 

carried out at 50°C in 50mM NaOAc pH 5.5, using 1.5µM enzyme and initial 

substrate concentrations of 20, 40, 80, 150 and 600µM. The change in absorbance at 

400nm, measured for every 10min minus the blank, was used as the activity for the 

substrate concentration at the beginning of the next time point. The concentration of 

2,4-dinitrophenol was determined at A400nm, using an extinction coefficient of 

10,900M-1.cm-1 [62]. 
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Azide rescue assay - Different concentrations of sodium azide, up to 3M, were 

added to mixtures of 0.75-1.5µM enzyme and corresponding substrates (CMC or SC). 

The reaction tubes were incubated at 50°C in 50mM NaOAc, pH 5.5 for 16hrs and 

reducing sugars were measured with DNS.  

Substrate binding assays - BMCC, SC and PC are insoluble cellulose, which can be 

used for substrate binding assays. Binding of 4µM enzyme to 0.1% BMCC, SC or PC 

was determined in 50mM NaOAc buffer pH5.5 and 10% glycerol in Eppendorf® 

Protein LoBind tubes (Eppendorf, NY, USA). Reactions were incubated for 1hr on a 

Nutator rocking table (Clay-Adams, MD, USA) at 4°C to limit hydrolysis. The 

insoluble substrate was separated from the supernatant by centrifugation at 16,000g 

for 5min, and the A280nm of the supernatant was measured to determine the amount of 

unbound protein. CMC binding was evaluated by the relative migration of enzymes on 

native gels containing 0.5% CMC. 

CMC viscosity - Viscometric activity was measured according to the method of 

Irwin et al. [43].  

pH profile - Enzymes were assayed with SC as above, but in 12 different pH 

buffers mixed from 50mM citric acid, 50mM boric acid and 50mM NaH2PO4. All 

enzymes were normalized by their activity at pH5.5. 

Thin layer chromatography - Thin layer chromatography was performed as 

previously described by Jung et al. [63]. Briefly, oligosaccharide products were 

separated by a solvent mixture of ethyl acetate: water: methanol (40:15:20, v/v) on 

Whatman® LK5D 150-A silica gel plates (Whatman, NJ, USA), and then visualized 

by dipping in a color-developing mix (100mL of acetic acid plus 1mL p-anisaldehyde 

plus 1mL of concentrated sulfuric acid) before being heated for 1hr at 95oC. 
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Fluorescence quenching titration - Dissociation constants, Kd, for the binding of 4-

methylumbelliferyl β-cellobioside (MUG2) to wild-type and mutant enzymes were 

determined by direct fluorescence titration at 5.5oC using an Aminco SLM8000C 

spectrofluorimeter (SLM-Aminco, IL, USA) as described [42]. The initial 

concentration of MUG2 was 1.7µM in 903µL of 50mM NaOAc pH5.5, and 53.7µM 

enzyme was added at 3.5µL/min. Excitation was at 316nm and emission was 

measured at 360nm. 

Circular dichroism analysis - Spectra of 10µg/uL protein were recorded from 190 

to 290nm on an Aviv CD400 Spectrometer (AVIV Biomedical Inc., NJ, USA) at a 

scanning rate of 1nm/s at 4oC. 

Section 2.3. Results 

Cel6B structural model - A structural model of the Cel6B catalytic domain was 

built based on the X-ray structures of H. insolens Cel6Acd (1OCB) and T. reesei 

Cel6Acd (1QK2) using the Swiss-Model Workspace to choose the residues for 

mutation. The reliability of the model was evaluated by the WhatCheck program to 

check a battery of physico-chemical constraints [64]. Energy minimization was 

computed by the Swiss-Model Workspace [53], and the final total energy of the model 

was -3641 KJ/mol.  

Selection of amino acids for mutation - All highly conserved aspartic and glutamic 

residues including D226, D274, D497 and E495, which are approximately 6Å away 

from the -1 and +1 subsites, were mutated to alanine. Figure 2.1 shows the position of 

potential Cel6B catalytic residues and Table 2.1 shows the corresponding residues in 

four other family-6 GHs. 
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Figure 2.1: Location of T. fusca Cel6B putative catalytic residues, modeled to both H. 

insolens Cel6A (1OCB) and T. reesei Cel6A (1QK2). The model was built with 

Swiss-Workspace; dashed lines indicate hydrogen bonds, dotted lines indicate the 

distance in angstroms.  

D274 was expected to be the catalytic acid, as shown in other family-6 cellulases  

[55,57,65]. D226 corresponds to a residue in T. reesei Cel6A that forms a carboxyl-

carboxylate pair with the catalytic acid to increase its pKa [66]. D497 is a candidate for 

a catalytic base, as it is located in the -1 subsite and almost opposite to the putative 

catalytic acid D274. The E495 side chain appears to be near the -3 subsite; however, 

as the structures of exocellulases are known to be somewhat flexible [67], this residue 

could also be a catalytic base. 

S232 was chosen as it is positioned near the -1 subsite and the residue hydrogen-

bonds to D226 OD2, thus might participate in a proton transferring network as has 

been postulated in T. reesei Cel6A [55]. The residue corresponding to Y220 in T. 

fusca Cel6A (Y73) was found to be essential for hydrolysis [68,69]. In retaining 
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enzymes of GH families 33, 34 and 83, a tyrosine was showed to act as a catalytic 

nucleophile [70]. 

Table 2.1: Amino acids chosen for mutation. The gene sequences were aligned and 

analyzed using Megalign (DNASTAR-Lasergene) 

Corresponding residue in: T. 

fusca 

Cel6B 

(exo) 

Glycosyl 

subsite 

location 
Proposed role 

H. insolens 

Cel6A 

(exo) 

T. reesei 

Cel6A 

(exo) 

C. fimi 

Cel6A 

(endo) 

T. fusca 

Cel6A 

(endo) 

Y220 -1 Substrate 

distortion 

Y174 Y169 D210 Y73 

D226 -1 Increase of pKa D180 D175 D216 D79 

S232 -1 Proton network S186 S181 G222 S85 

D274 +1 Catalytic acid D226 D221 D252 D117 

E495 -3 Catalytic base E403 E399 E390 E263 

D497 -1 Catalytic base/ 

Substrate binding 

D405 D401 D392 D265 

Enzyme expression and purification - Western blotting analysis suggested that the 

expression strains secreted the Cel6B enzymes into the supernatant most efficiently 

when grown at 30oC, induced by 0.8mM IPTG at OD600nm of 0.8 for 20hrs (data not 

shown). All mutant enzymes were expressed with a yield of 10-12mg/L and they all 

behaved similarly to wild-type Cel6B during purification. Circular dichroism spectra 

of all mutant enzymes were identical with that of wild-type (data not shown), 

indicating that the global secondary structure of the mutant proteins remained intact. 
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Enzyme activity - The activities of the mutant enzymes on different polysaccharides 

were determined and compared to those of wild-type Cel6B (Table 2.2). BMCC is a 

crystalline substrate with a degree of polymerization (DP) >1000 [2]. SC and PC are 

amorphous celluloses with DP ranging 1500-2600 (Jessica Hatch, personal 

communication) while CMC is soluble cellulose with random carboxylmethyl 

substitutions and a DP of 250-500 [71]. 

D274 mutation - The D274A mutant enzyme could not achieve the target digestion 

on any polysaccharide substrate, suggesting that it is essential for catalysis (Table 2.2). 

The substrate 2,4-DNPC has an excellent leaving group, which does not require a 

catalytic acid, thus an alanine mutation of the catalytic acid still has 2,4-DNPC activity 

[54]. The data from the 2,4-DNPC assays fit the Michaelis-Menten equation well. The 

kcat of the D274A enzyme on 2,4-DNPC was more than 6-fold higher than that of wild-

type Cel6B (Table 2.3). 

The D274A mutant enzyme and its catalytic domain bound more to both BMCC 

and SC than wild-type and the wild-type catalytic domain, respectively (Figure 2.2). 

The percentage of D274Acd bound to BMCC was around 65% while only 20% of 

wild-type was bound. A previous study [60] showed that the fluorescence emission of 

4-methylumbelliferyl ligands was strongly quenched upon binding to Cel6B and the 

enzyme did not hydrolyze these ligands. Therefore, fluorescence titration could be 

used to investigate ligand binding affinity of the active sites. Fluorescence titration 

showed that D274A bound 4-methylumbelliferyl β-cellobioside (MUG2) 

approximately the same as wild-type. The Kd of the D274A enzyme and wild-type for 

MUG2 were 1.5x10-8 and 3.6x10-8M, respectively (Table 2.2), showing that the 

D274A mutation did not impair ligand binding. 
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Table 2.2: Polysaccharide activity and ligand binding of the T. fusca Cel6B enzymes.  

 Activity (µmole cellobiose min-1  µmole-1 

enzyme) 

 BMCC SC PC CMC 

Kd (µM) for 

MUG2 (x 10-2)

Cel6B 0.93 2.25 3.37 0.57 3.6 ± 0.3

Y220A --(0.02a) --(0.02a) nd nd 57 ± 4

D226A --(0.10a) --(0.17a) 0.67 0.63 25 ± 1

S232A 0.57 1.78 4.14 --(0.25a) 3.2 ± 0.3

D274A --(0.01a) --(0.06a) --(0.05a) --(0.10a) 1.5 ± 0.2

E495A --(0.13a) 0.87 2.46 0.37 ~ 900b

D497A --(0.12a) 1.26 2.90 --(0.12a) ~ 13,000b

D226A-S232A --(0.03a) --(0.06a) --(0.05a) --(0.08a) 73 ± 2

Activity was calculated at 6% digestion for BMCC, SC and PC and 1.5% digestion for 

CMC. The average coefficients of variation were 4, 5, 5.5 and 2.5 for BMCC, SC, PC 

and CMC, respectively. Kd was determined by fluorescence titration of 53.7µM 

enzyme to 1.7µM of 4-methylumbelliferyl β-cellobioside (MUG2). a Target digestion 

could not be achieved; activity was calculated at 1.5µM enzyme; nd- not detected.  
bValue is approximate as titration curve did not fit well due to poor binding. 
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Table 2.3: 2,4-DNPC kinetics of the T. fusca Cel6B wild-type and mutant enzymes. 

Initial 2,4-DNPC concentrations of 20-600µM were hydrolyzed by 1.5µM enzyme. 

 kcat (min-1) Km (µM) kcat/Km  (min-1 µM-1) (x10-3)

Cel6B 0.34 ± 0.06 2.3 ± 1.9 146 ± 122 

Y220A 0.09 ± 0.04 161 ± 37 0.56 ± 0.28 

S232A 0.03 ± 0.01 44 ± 13 0.68 ± 0.30 

D226A 0.11 ± 0.05 6.5 ± 1.3 16.9 ± 8.4 

D274A 2.26 ± 0.14 1.5 ± 0.2 1,507 ± 186 

D497A 0.006 ± 0.001 214 ± 65 0.03 ± 0.01 
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Figure 2.2: Binding of T. fusca Cel6B wild-type, the D274A enzyme and their 

catalytic domains (cd) to BMCC and SC. Substrate binding was conducted using 4µM 

of enzymes in 50mM NaOAc pH5.5 for 1hr at 4oC. 
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D226 mutation - The D226A enzyme had very low activity on insoluble cellulose 

(BMCC, SC and PC) (Table 2.2). TLC analysis indicated that Cel6B wild-type 

completely hydrolyzed cellotetraose, cellopentaose and cellohexaose within 20min 

while only a trace of products were produced by the D226A enzyme after 16hrs 

(Figure 2.3). The D226A protein bound more than wild-type to BMCC and SC (data 

not shown) and its Kd for MUG2 only slightly reduced, suggesting that activity loss on 

these substrates was not caused by loss of substrate binding. 

 

Figure 2.3: TLC analysis of cellopentaose and cellohexaose hydrolysis by Cel6B 

wild-type and D226A 
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In the absence of a catalytic base, an exogenous nucleophile such as sodium azide 

can partially rescue enzyme activity [58]. The activity of the D226A enzyme on SC 

was not improved by sodium azide even at 3M (Figure 2.4). 

Surprisingly, the D226A enzyme had slightly higher activity on CMC than the 

wild-type. The mutant enzyme reduced the viscosity of a CMC solution faster than the 

wild-type although the decrease was much lower than that of a typical endocellulase 

(Figure 2.5). D226A required up to 10hrs while the endocellulase T. fusca Cel6A 

required only 20min to reduce the outflow time to 150s [43]. However, TLC analysis 

and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis 

of the CMC digestion products of D226A did not show cellobiose, the major product 

of wild-type Cel6B, or carboxymethyl cellobiose (Figure 2.6). The MALDI-TOF 

spectra showed cellotriose, cellotetraose, cellopentaose, cellohexaose, and their 

carboxymethyl derivatives.  

To investigate the production of insoluble reducing sugars from CMC, TLC bands 

corresponding to the loading spot, cellotriose and cellobiose were eluted and reducing 

sugars from each fraction were measured. The majority of reducing sugars produced 

by the D226A enzyme were found at the loading spot while wild-type Cel6B produced 

primarily cellobiose (data not shown). To test whether the cleavage of CMC by 

D226A was dependent on the carboxymethyl groups of CMC, the enzymes were 

assayed on hydroxyethyl cellulose (HEC), which does not contain charged groups as 

does CMC. The D226A enzyme had several-fold higher HEC activity than wild-type 

(data not shown). CMC-native gels showed that D226A bound CMC as tightly as 

wild-type (data not shown). 
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Figure 2.4: Sodium azide rescue test for D226A activity on SC; WT- wild-type. 

Sodium azide was added to 1µM enzyme and 0.25% SC. 

 

100

150

200

250

300

350

0 5 10 15 20

CMC
Cel6B
D226A

Incubation (hr)

O
ut

flo
w

 ti
m

e 
(s

ec
)

 

Figure 2.5: Ability of T. fusca Cel6B wild-type and the D226A enzyme to reduce the 

viscosity of CMC. 
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Figure 2.6: MALDI-TOF spectra for CMC products of the D226A enzyme. G3, G4, 

G5 and G6 are cellotriose, cellotetraose, cellopentaose and cellohexaose, respectively. 

*Supposed position of cellobiose (G2, experimental mass or EM= 365); neither G2-

CH2COOH (EM= 423) nor G2-CH2COOH-CH2COOH (EM= 504) were detected. 

Peaks 273.09 and 288.33 are matrix artifacts. 
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D497, E495, S232 and Y220 mutation - The D497A and E495A mutant enzymes 

had reduced activity on all substrates, particularly on crystalline BMCC (Table 2.2). 

The Kd for MUG2 of these enzymes decreased significantly (Table 2.3). The activity 

of the D497A enzyme on 2,4-DNPC was nearly 60-fold lower than that of the wild-

type; whereas its Km was over 90-fold higher.  

The S232A mutant enzyme retained near wild-type activity on most substrates, but 

CMC activity was drastically reduced (Table 2.2). The HEC activity of the S232A 

enzyme was also lower than that of the wild-type (data not shown). 

The Y220A mutant enzyme could not reach target digestion on either BMCC or 

SC, and no PC or CMC activity was detected (Table 2.2). The enzyme showed a 

slightly lower Kd for MUG2 than wild-type (Table 2.2) indicating good binding. 

However, the kcat of Y220A on 2,4-DNPC was approximately 26% of wild-type and 

the Km increased 70-fold (Table 2.3). 

None of these four mutant enzymes was rescued by sodium azide (data not shown). 

To test whether any mutation caused a change in the pKa of the catalytic acid 

eliminating activity rescue by sodium azide, the mutant enzymes, except for Y220A 

due to its extremely low activity, were normalized by activity at pH 5.5 and assayed 

for PC activity for 16hrs over the pH range from 2-12. None of the pH profiles showed 

a significant difference from wild-type (Figure 2.7). 

D226A-S232A double mutation - The double mutation knocked out activity on all 

polysaccharides and slightly decreased ligand binding (Table 2.2). Binding to BMCC 

and SC by the mutant enzyme was similar to wild-type (Figure 2.8). Excitingly, CMC 

activity of the mutant enzyme was partially rescued at low concentrations of sodium 

azide (Figure 2.9). 
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Figure 2.7: PC activity of Cel6B wild-type and mutant enzymes as a function of pH. 

All enzymes were normalized according to their activity at pH 5.5. Activity of Y220A 

and the double mutation D226A-S232A was too low to be assayed. 
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Figure 2.8: Binding of the wild-type and the double mutant enzyme D226A-S232A to 

BMCC and PC. Substrate binding was conducted using 4µM of enzymes in 50mM 

NaOAc pH5.5 for 1hr at 4oC. 
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Figure 2.9: Sodium azide rescue for wild-type and D226A-S232A activity on CMC. 

Wild-type (0.75µM) and the D226A-S232A mutant enzyme (1.5µM) were added with 

different concentrations of sodium azide and assayed on 1% CMC in 50mM NaOAc 

pH5.5. Reducing sugars were measured after 16-hr incubation at 50oC. 
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Section 2.4. Discussion 

Key residues - The results of this study show the essential roles of D274 and 

Y220A as mutation of either residue resulted in nearly inactive T. fusca Cel6B. D274 

functions as the catalytic acid since the D274A mutation increased activity on 2,4-

DNPC, which does not require a catalytic acid. A drastic increase in the Km for 2,4-

DNPC together with a slightly lower Kd for MUG2 supports a role for Y220 in 

distortion of the glycosyl unit in subsite -1 rather than in simple binding. The Y220 

equivalents, Y73 and Y169 in T. fusca Cel6A and T. reesei Cel6A, respectively have 

been shown to cause substrate distortion in the -1 subsite [42,69,72]. Structures of 

family-6 GHs [65,73] show no direct hydrogen bond between the residues 

corresponding to T. fusca Cel6B Y220 and bound substrates.  

Absence of a single catalytic base - T. fusca Cel6B appears to lack a classic 

Brønsted base, as none of the single mutations in any aspartic and glutamic residues 

(D226A, D497A and E495A), which are within 6Å of the -1 and +1 subsites, 

abolished activity on all polysaccharide substrates, and none of the mutant enzymes 

showed activity rescue by sodium azide. Similarly, azide rescue assays on SC for T. 

fusca Cel6A mutations including all four highly-conserved aspartic residues (D79A, 

D117A, D156A, and D265A) did not show activity rescue (unpublished data). It 

should be noted that T. fusca Cel6A is an inverting endocellulase with short loops, 

providing a more open active site cleft for substrates and sodium azide; additionally T. 

fusca Cel6A showed nearly 300-fold higher SC activity than T. fusca Cel6B [74], thus 

even a subtle change in T. fusca Cel6A activity on SC by sodium azide could be 

detected easily.  

None of the T. fusca Cel6B mutations significantly altered the pKa of D274, even 

D226, corresponding to residue D175 in T. reesei Cel6A, which affected the 
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protonation of the catalytic acid [55]. Among aspartic mutations in T. fusca Cel6A, 

only the D156A mutation drastically raised the pKa of the catalytic acid [57]. 

However, the corresponding residue in Cel6B, D323, is buried and least 7Å away 

from the substrate and the D274 side chain.  

The retention of nearly 90% of wild-type activity on PC eliminates D497A as a 

Brønsted base, which had been suggested for the corresponding D392 in C. fimi Cel6A 

[54]. This result is also consistent with the elimination of D401 as a catalytic base in 

T. reesei Cel6A [55]. The drastic decrease in 2,4-DNPC and MUG2 binding to D497A 

supported a role for residue D497 in substrate binding, as seen for the T. fusca Cel6A 

D265A mutant [57]. The carboxylate group of T. reesei Cel6A D401 was seen to 

interact with the O3 hydroxyl of the glucosyl unit in the -1 subsite, and loss of this 

interaction may account for decreased binding [55].  

Crystallographic analysis of the T. reesei Cel6A structure indicated that the residue 

corresponding to Cel6B E495 is a key sugar binding residue [66]. The E495A enzyme 

bound weakly to MUG2, showing the importance of the hydrogen bonds between 

residue E495 and the sugar hydroxyl group in the -3 subsite. When the residue was 

replaced with Asn or Asp, BMCC activity was partially retained [60]. 

The only published evidence for a catalytic base in GH family 6 is the loss of 

activity of the C. fimi Cel6A D392 mutant enzyme [54]. However, sodium azide 

rescue and substrate binding were not reported for D392A and there was no direct 

evidence for the correct folding of this mutant enzyme. 

Proton transferring network - The activities of the D226A and S232A mutant 

enzymes were substrate-specific, in that they reached target digestion on only certain 

substrates. Although this finding eliminates these residues as single catalytic bases, it 

does not exclude the participation of these residues in the activation of the catalytic 
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water molecule via a proton transferring network, which acts as the catalytic base. 

Depending on the structure of substrates and the position of the network components, 

their significance in the network for hydrolysis might vary. When both residues were 

mutated, the network could not function, causing activity loss on all substrates. The 

success of sodium azide rescue for the double mutant enzyme, but not for the single 

mutant enzymes, further supports the model where a network of D226 and S232 acts 

as the catalytic base. In T. reesei Cel6A, based on structural analysis and simulations, 

D175 was suggested to act as the catalytic base via a water chain between D175 and 

S181 (D226 and S232 in T. fusca Cel6B) [55]. The nucleophilic water is fixed by the 

D497 backbone carbonyl (Figure 2.10); therefore, removal of either S232 or D226 

side chains might not completely remove this water molecule from the proper position 

to interact with C1. 

 

Figure 2.10: A snapshot of a molecular dynamics simulation in T. reesei Cel6A [55], 

where the residues were numbered using T. fusca Cel6B residues. Important hydrogen 

bonds are shown as green dots, and the interaction between water and C1 is shown in 

orange. 
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The participation of a non-acidic residue in a proton transferring network was 

reported in a Bifidobacterium bifidum GH-95 inverting α-fucosidase [75], where an 

asparagine can serve as an intermediate in the network, leading to activation of a 

catalytic water molecule. Analysis of the first structure of a GH-55 family member, 

Phanerochaete chrysosporium laminarinase did not identify a catalytic base residue 

[76], even though a candidate for the nucleophilic water was found. There are no 

acidic residues, but the side chains of Ser204 and Gln176 and the main chain carbonyl 

oxygen of Gln146 interact with this water molecule [76]. 

Reducing sugars would not be measured by DNS if azide adducts were formed, 

suggesting the azide ion act indirectly via a water molecule to perform hydrolysis. 

Furthermore, in another inverting T. fusca glycosyl hydrolase Lam81A, MALDI-TOF 

analysis showed no peak of azide sugar adduct in chemical rescue assays [77]. 

Cleavage of internal linkages - The unexpected exclusively internal cleavage of 

CMC by the D226A mutant enzyme is very interesting. This provides the first 

example of a mutant exocellulase, which could hydrolyze a soluble substrate with 

wild-type activity to produce mainly large soluble oligosaccharides and insoluble 

products, but could not hydrolyze crystalline substrate and oligosaccharides, nor 

produce cellobiose. Under the same experimental conditions, the CMC activity of the 

corresponding D79 mutation in T. fusca Cel6A was only 1% of wild-type [57]. As 

high activity was seen on both charged CMC and uncharged HEC, the activity with 

CMC is unlikely due to a substrate-assisted catalysis [78]. This mechanism currently 

has been shown only in GH retaining enzymes that cleave substrates having an 

acetamido group [70]. 

The increase in large oligosaccharide products caused by the D226A mutation may 

be explained by the smaller side chain, allowing modified glucose residues to bind in 
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the active site and thus the mutant enzyme may be able to move along a CMC 

molecule until it finds a group of unmodified glucose residues, where it can carry out 

internal cleavage. A study in a GH-18 enzyme [79] showed chitinase can processively 

move along the substrate without hydrolysis. Cleavage probably occurs at a lower rate 

than wild-type, but the great increase in potential cleavage sites due to the ability to 

move through modified residues compensates for this. This modification did not 

change the global conformation of the enzyme as circular dichroism did not reveal any 

global change; however, a local structural modification cannot be excluded. 

Section 2.5. Conclusion 

The data presented in this chapter as well as data obtained from other family-6 

cellulases are consistent with the role of D274 as the catalytic acid of T. fusca Cel6B, 

and roles for E495 and D497 in substrate binding. Residue Y220 probably plays an 

important role in substrate distortion. Mutation of all putative catalytic base residues, 

within 6Å of the -1/+1 glucose binding subsites did not reveal a single catalytic base. 

Therefore, T. fusca Cel6B may function via a novel inverting mechanism without the 

aid of a single Brønsted base residue, but via a proton transferring network. 
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CHAPTER THREE 

T. FUSCA CEL6B LOOP RESIDUES AFFECTING SUBSTRATE 

SPECIFICITY, PROCESSIVITY AND SYNERGISM* 

 

Section 3.1. Introduction 

The previous chapter provides new knowledge about the catalytic mechanism of T. 

fusca Cel6B. This chapter investigates residues that might help to improve this 

enzyme for industrial applications.  

Processivity and synergism are important properties of cellulases. Processivity 

indicates how far a cellulase molecule proceeds and hydrolyzes the substrate chain 

before dissociation. Processivity can be measured indirectly by the ratio of soluble 

products to insoluble products in filter paper assays [43]. 

Synergism between cellulases in the hydrolysis of cellulose was first demonstrated 

by Gilligan and Reese [80]. Four types of synergism have been demonstrated within 

cellulase systems: synergism between endocellulases and exocellulases, between 

reducing and non-reducing end-directed exocellulases, between processive 

endocellulases and endo- or exo-cellulases; and between β-glucosidases and other 

cellulases [81]. Synergism is dependent on the quality (physicochemical properties) of 

the substrate [82,83], the ratio of the individual enzymes [83], and the substrate 

saturation [84]. The degree of synergism increases with the crystallinity of cellulose; 

the synergism was high on highly crystalline cellulose, low in amorphous cellulose 
                                                 

* Reproduced in part with permission from “Processivity, synergism and substrate specificity of 

Thermobifida fusca Cel6B” Thu V. Vuong and David B. Wilson, Applied and Environmental 

Microbiology, 75 (21), p. 6655-6661 © 2009 American Society for Microbiology. 
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and absent on soluble cellulose [81]. Besides intra-organism synergism, synergism of 

mixtures from fungal and bacterial organisms or cross-synergism has been also 

observed [43,85].  

Although cellulolytic mixtures have commercially applied in industrial processes, 

the rate of enzymatic hydrolysis of cellulose is relatively low [86]. Random 

mutagenesis approaches such as directed evolution [87] and rational protein design 

such as site-directed mutagenesis have been used to engineer cellulases to understand 

the hydrolysis mechanism [55,57,77] as well as to try to improve both the catalytic 

domain and carbohydrate-binding module [44,86].  

There is some evidence for loop movement in exocellulases [23,24]. A comparison 

of native H. insolens Cel6A and its complexes with oligosaccharide ligands revealed 

the movement of two loops together so as to optimize the contacts between the 

enzyme and substrates [65]. The structures of T. reesei Cel6A in complex with 

different oligosaccharides have shown substantial mobility of a tunnel-forming loop, 

resulting in a breathing tunnel [73]. Loop movement can greatly influence enzymatic 

activity [24,56,60] and exocellulases might demonstrate transient endocellulolytic 

activity as a result of disrupting amino acids in tunnel-forming loops [88].  

This chapter presents the results from engineering non-catalytic, loop residues of T. 

fusca Cel6B to obtain insight into the role of these residues in processivity and 

substrate specificity, as well as the relationship between processivity and synergism. 

Section 3.2. Experimental procedures 

Site-directed mutagenesis, enzyme purification and substrate binding assays - The 

protocols were the same as those presented in Chapter 2.  

Polysaccharide hydrolysis assays - Activity measurement on CMC, BMCC, SW 



 

 38

and PC was presented in the previous chapter. Cel6B wild-type and mutant enzymes 

were also tested with Whatman filter-paper No.1 (FP) at 8mg/mL. All assays were run 

in triplicate for 16hrs at 50oC in 50mM NaOAc pH5.5 at the final reaction volume of 

400μL. Reducing sugars were measured using the DNS method [40]. 

Processivity assays - 1.5µM of enzyme was incubated with FP for 16hrs at 50oC in 

50mM NaOAc pH5.5. The filter paper circle was separated from the supernatant and 

washed with the buffer three times, and then the reducing sugar content of the 

supernatant (soluble) and the filter paper (insoluble) was determined by the DNS 

reagent. The ratio of soluble/ insoluble reducing sugars was used to calculate 

processivity [43]. 

HPLC analysis - HPLC was run on Shimadzu HPLC equipment consisting of a LC-

20AD pump, a SIL-20A autosampler and a RID-10A refractive index detector. 

Separation was achieved on an Aminex® HPX-87P analytical column (300mm x 

7.8mm, Bio-Rad), equipped with Micro-Guard® deashing cartridges (Bio-Rad). The 

column oven temperature was 84oC. 50pmol of enzyme was incubated with 3.2mg of 

FP or 500nmol of cellotriose (Megazyme, Wicklow, Ireland) for 16hrs, or with 

10nmol of cellohexaose (G6) (Megazyme) for 10min in 400µL of 50mM NaOAc 

pH5.5 at 50oC.  The samples were filtered through Millipore® 5K NMWL membrane 

filter devices before being injected at 0.6µL/min. Data were analyzed using OriginPro 

v.8.0 (Origin Lab, MA, USA).  

Synergism assay - Synergism assays for wild-type and selected mutant enzymes 

were run in the presence of T. fusca Cel5A and/or Cel48A on FP and PC at different 

molar ratios. Synergism was measured based on the amount of enzyme needed to 

achieve 5% digestion on FP or 6% digestion on PC in 16hrs at 50oC. The synergistic 

effects were calculated using the activity of the mixture divided by the sum of the 
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individual activities.  

Thermostability assay - Cel6B wild-type and select mutant enzymes were pre-

incubated in 50mM NaOAc pH 5.5, at temperatures from 45oC to 70oC for 16hrs, and 

then 1.5µM enzyme was assayed on SC at 50oC for 16hrs to calculate T50, the 

temperature where activity dropped by 50%.  

Circular dichroism (CD) analysis - Spectra of 10µg/uL protein were recorded from 

190 to 290nm on an Aviv CD400 Spectrometer (AVIV Biomedical, INC.) at a 

scanning rate of 1nm/s at 4oC. The CD spectra were analyzed for percent secondary 

structure using CDNN CD spectra deconvolution software, which was developed by 

Böhm et al. [89]. 

Section 3.3. Results 

Selection of mutations – Based on the structural models presented in the previous 

chapter, a number of loop residues were chosen for mutation (Table 3.1). N282 and 

R180 are located at the +2 and -4 glucose subsites, respectively whereas L230 is 

located in a turn on the top of the tunnel (Figure 3.1). The two potential sugar binding 

residues N282 and R180 were mutated to investigate the role of residues near the 

tunnel entrance and exit on processivity. W464, which corresponds to W371 in H. 

insolens Cel6A was suggested to participate in substrate binding (Figure 3.2) [56] 

while residues D512 and M514 might affect loop flexibility. 
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Figure 3.1: Location of T. fusca Cel6B residues for mutation, modeled to H. insolens 

Cel6A (1OCB, 1.75Å resolution) by the Swiss-Model Workspace. (A): 1D-view, 

dashed lines show hydrogen bonds; (B): 3D-view, showing the active site tunnel with 

two molecules of fluoresceinylthioureido-derivatized tetrasaccharide (for neatness, the 

+4 glycosyl residue was removed). 
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Table 3.1: Amino acid residues chosen for site-directed mutagenesis. 

Corresponding residue in: Residue Location Subsite 

T. reesei H. insolens

R180 On the top of the tunnel exit -4 K129 E131 

L230 On a turn, top of the tunnel  +1 L179 A184 

N282 In an α-helix, near the top of tunnel 

entrance 

+2 N229 N234 

W464 Side wall of the tunnel +1 W367 W371 

D512 On the top of the tunnel +1/-1 D412 D416 

M514 Side wall of the tunnel +1 H414 H418 
 

 

Figure 3.2: Interaction of residue W464 with a substrate as modeled by Ligand 

Explorer (dash - hydrophobic interaction) using the structure of H. insolens Cel6A 

(2BVW). 

Enzyme activity and processivity - All mutant enzymes behaved like wild-type 

Cel6B during purification. The circular dichroism spectra of all mutant enzymes, 

except M514A and M514Q (Figure 3.3) were identical with that of wild-type, 

indicating that the global secondary structure of the mutant proteins remained intact.  
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Figure 3.3: Circular dichroism analysis of the wild-type and mutant Cel6B. (A) 

Circular dichroism spectra of the wild-type, M514A and M514Q mutant enzymes. (B) 

Relative amount of each type of secondary structure of each enzyme. The error bars 

represent the standard deviation for three independent trials. 
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The purified enzymes were assayed on five polysaccharides, and their activities 

were expressed as percentage of wild-type activity to facilitate comparison (Table 

3.2). Besides cellulose substrates presented in the previous chapter, the enzymes were 

also assayed on filter paper (FP), which is a crystalline substrate, made from long-fiber 

cotton pulp, with a degree of polymerization (DP) >1000 [2]. 

Mutant enzymes in residues near the tunnel exit (R180K and R180A) and the 

tunnel entrance (N282A and N282D) had on average a 2-fold increase in processivity 

(Table 3.2). The L230A mutation slightly increased processivity, and increased PC 

activity over 250% (Table 3.2). HPLC was used to investigate the production of 

oligosaccharides by the N282A and L230A enzymes on FP. While cellobiose (G2) is 

the main product, small amounts of cellotriose (G3) and glucose (G1) were also 

produced (Table 3.3). As cellobiose is the repeating unit of cellulose (5), it is thought 

that the first hydrolytic step can produce either G3 or G2, but the subsequent steps 

yield only G2. TLC and HPLC of the products of G3, G4, G5 and G6 hydrolysis 

showed G4, G5 and G6 were completely hydrolyzed within minutes while a small 

amount of G1 was detected from G3 hydrolysis after 16hr-incubation (data not 

shown). Therefore, the (G2-G1)/(G3+G1) ratio can provide an assay of processivity. 

Both N282A and L230A produced approximately 2.5-fold more oligosaccharides than 

wild-type, and their (G2-G1)/(G3+G1) ratios were 1.8-fold higher (Table 3.3). 

However, when hydrolyzing G6, the N282A enzyme was less active and produced a 

lower ratio of G2/G3 than the L230A enzyme (Table 3.3).  
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Table 3.2: Activities and processivity of the Cel6B mutant enzymes on 

polysaccharide substrates.  

Activity (µmole cellobiose min-1  µmole-1 enzyme)a  

BMCC SC PC CMC FPb 
Processivity

Wild-type 0.93 2.25 3.37 0.57 0.22 7.2 

 Percentage of wild-type activity  

Mutant enzymes for processivity 

R180A 85 125 130 96 91 16.4 

R180K 59 123 180 104 100 13.6 

L230A 108 137 252 126 159 9.9 

N282A 105 86 313 196 145 20.9 

N282D 116 110 323 158 145 13.1 

Mutant enzymes for substrate specificity 

W464A 26 86 368 718 132 7.9 

W464Y 54 79 159 195 114 8.9 

D512A 34 174 240 568 95 5.7 

M514Ac 131 131 -- 151 91 5.9 

M514Qc 125 128 -- 174 118 9.1 
aActivity was calculated at 6% digestion for BMCC, SC and PC and 1.5% digestion 

for CMC. The average coefficients of variation were 4, 5, 5.5, 2.5, 3 and 4% for 

BMCC, SC, PC, CMC, FP, and processivity (soluble/insoluble reducing sugars), 

respectively. bActivity was calculated at 1.5µM of enzyme. cActivity was measured 

right after purification when PC had not been prepared. 
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Table 3.3: Oligosaccharide production on filter paper (FP) and cellohexaose (G6) by 

the Cel6B wild-type (WT) and mutant enzymesa. 

FP hydrolysis (16hr-incubation) 
G6 hydrolysis (10min-

incubation) 
Enzyme 

G1 G2 G3 G1)(G3
G1)(G2

+
− Unhydrolyzed 

G6 G3
G2  

WT 0.22 ± 0.07 3.35 ± 0.07 0.16 ± 0.02 8.2 0.65 ± 0.13 0.97 ± 0.01

L230A 0.33 ± 0.09 9.22 ± 0.02 0.25 ± 0.02 15.3 0.51 ± 0.07 1.14 ± 0.04

N282A 0.22 ± 0.04 8.29 ± 0.04 0.34 ± 0.06 14.4 0.90 ± 0.04 0.86 ± 0.01
aOligosaccharides (nmol) were determined by HPLC. G1, G2 and G3 are glucose, 

cellobiose and cellotriose, respectively.  

Synergism with other T. fusca enzymes - Selected mutant enzymes including 

L230A and N282A were assayed in the presence of T. fusca endocellulase Cel5A to 

test for synergism in FP hydrolysis at a molar ratio of 4:1, which was previously found 

to be optimal [43,90]. Although the FP activity of those individual mutant enzymes 

were up to 150% of the wild-type activity, their mixtures with Cel5A did not give 

higher synergism than the wild-type mixture (Table 3.4). A similar pattern was 

observed for a range of incubation time (4-16hrs) (Figure 3.4), at two different molar 

ratios (9:1 and 19:1) and in mixtures with T. fusca Cel9A-68, a processive 

endocellulase (data not shown). The same result was observed for mixtures of Cel6B 

enzymes with Cel5A for PC hydrolysis (Table 3.5). Although the N282A mutant 

enzyme alone had over 310% of wild-type PC activity, the activity of the mixture was 

only 63% of that of the wild-type mixture (Table 3.5). Processivity on PC was not 

reported due to difficulty in measuring insoluble reducing sugars from this substrate. 
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Table 3.4: Synergism of Cel6B enzymes with T. fusca endocellulase Cel5A and 

exocellulase Cel48A in FP hydrolysis. 

Mixture 

Mol ratio 

in 

mixture 

Specific 

activitya 

% wild-

type/wild-

type mixture 

activity 

Synergism 

factorb 

Processivity

Cel6B   0.22 100  7.2 

L230A   0.35 159  9.9 

N282A   0.32 145  20.9 

Cel5A   0.93    

Cel6B+Cel5A 4:1 2.39 100 6.2 8.4 

L230A+Cel5A 4:1 2.41 101 5.5 7.6 

N282A+Cel5A 4:1 2.05 86 3.8 5.6 

Cel6B+Cel48A 1:1 1.24 100 2.0 7.3 

L230A+Cel48A 1:1 1.69 136 3.5 9.6 

N282A+Cel48A 1:1 1.45 117 2.8 12.9 

Cel6B+Cel48A+Cel5A 4:8:1 6.69 100 6.4  

L230A+ Cel48A+Cel5A 4:8:1 5.70 85 4.5  

N282A+ Cel48A+Cel5A 4:8:1 2.85 43 3.7  
aµmole cellobiose min-1  µmole-1 enzyme; the average coefficient of variation was 

4%. bActivity of the mixture divided by the sum of the activities of the mixture 

components. 
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Table 3.5: Synergism of Cel6B enzymes with T. fusca endocellulase Cel5A in PC 

hydrolysis. 

Mixture 

Mol 

ratio in 

mixture 

Specific 

activitya 

% wild-

type/wild-type 

mixture activity 

Synergism 

factorb 

Cel6B  3.4 100  

L230A  8.5 252  

N282A  10.6 313  

Cel5A  49.4   

Cel6B+Cel5A 4:1 460 100 3.3 

L230A+Cel5A 4:1 362 79 2.5 

N282A+Cel5A 4:1 289 63 2.2 
aµmole cellobiose min-1  µmole-1 enzyme; the average coefficient of variation was 

4%. bActivity of the mixture divided by the sum of the activities of the mixture 

components. 
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Figure 3.4: Time course of FP synergism of exocellulase Cel6B and endocellulase 

Cel5A mixtures. 

To test the correlation between processivity and synergism, the processivity of the 

mixtures was measured. Mixtures of mutant enzymes with Cel5A showed lower 

processivity than wild-type mixtures (Table 3.4). Cel6B mutant enzymes were also 

mixed with T. fusca Cel48A, an exocellulase that attacks the reducing end of cellulose. 

The Cel6B mutant enzymes, which individually showed higher processivity, gave 

higher synergism and processivity with Cel48A than the wild-type mixture (Table 

3.4).  

Substrate specificity - The W464A and W464Y mutant enzymes had reduced 

activity with BMCC, but had higher activity with PC and CMC (Table 3.2). The 

binding of the W464A enzyme to BMCC was lower than that of the wild-type enzyme 

(Figure 3.5). The activity of the W464A enzyme with CMC increased sevenfold, and 

that of the W464Y enzyme nearly doubled. The high CMC activity of the W464A 
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mutant enzyme was retained at lower concentrations of CMC (0.25 and 0.5%) (Figure 

3.6). TLC analysis confirmed the high CMC activity of this enzyme, and showed that 

the products were not changed by the mutation (data not shown). Residue D512 is 

structurally close to W464; its mutation to Ala also gave higher activity on PC and 

CMC (240 and 568%, respectively), but only 34% wild-type activity on BMCC (Table 

3.2). 

To test whether the high CMC activity of the W464A enzyme was due to higher 

binding, CMC binding assays were carried out. When the wild-type and W464A 

enzymes were run on native gels, they both migrated to the same position (Figure 

3.7A). However, only the W464A enzyme migrated in a CMC-containing native gel at 

4oC or at room temperature. T. fusca Cel5A, an endocellulase with five orders of 

magnitude higher CMC activity than Cel6B (data not shown) migrated as fast as the 

W464A enzyme (Figure 3.7B). Congo Red staining showed that both Cel5A and 

W464A produced yellow traces when running on CMC native gels at room 

temperature (Figure 3.7B), indicating hydrolysis of CMC. Because the CMC activity 

of the W464A enzyme was much lower than that of Cel5A, a yellow trace was 

observed only when a very high concentration of the W464A enzyme (0.9nmoles) was 

used.      
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Figure 3.5: Binding of the wild-type and W464A enzymes to BMCC. Substrate 

binding was conducted using 4µM of enzymes in 50mM NaOAc pH5.5 for 1hr at 4oC. 
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Figure 3.6: Activities of the W464A enzyme and the wild-type enzyme (WT) on 

different concentrations of CMC (0.25, 0.5 and 1%). 
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(A) 

 
 

(B) 

 
 

Figure 3.7: T. fusca Cel6B and Cel5A enzymes on a native gel (A) and a CMC-

containing native gel (B) at room temperature. (A): 0.09nmol of each enzyme loaded. 

(B): Left- Coomassie staining, 0.09nmol of each enzyme loaded; Right- Congo Red 

staining, from left to right, Cel6B (0.9nmol), Cel5A (0.009 and 0.0018nmol) and 

W464A (0.9nmol). 
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The BMCC activity of the two M514 mutant enzymes unexpectedly decreased with 

increasing storage time (in 5mM NaOAc pH 5.5 and 10% glycerol at -70oC). BMCC 

assays conducted right after purification showed that the mutant enzymes had slightly 

higher activities than wild-type (Table 3.2). Five months after the first enzymatic 

assay, the M514A specific activity decreased to approximately 2% of wild-type 

activity (data not shown). The loss of BMCC activity in the M514A enzyme correlated 

with increased CMC activity; and the loss of enzymatic activity of the M514A enzyme 

was always higher than that of the M514Q enzyme (data not shown). SDS-PAGE gels 

showed no difference in mobility or band pattern between boiled and unboiled 

samples of the wild-type and the mutant enzymes (data not shown), eliminating 

enzymatic degradation during storage. Both mutant enzymes were unstable at 55°C 

and above. Their T50 was 58°C while that of wild-type was 64°C (Figure 3.8). Circular 

dichroism analysis after two years of storage showed that the M514A enzyme 

spectrum, particularly from 207-228nm and the M514Q spectrum from 260-290nm are 

different from wild-type, indicating a structural modification of each enzyme (Figure 

3.3A). CD spectra analysis indicated the α-helix content of the M514A mutant 

enzyme was higher while the content of random coil was slightly lower than wild type 

(Figure 3.3B). 
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Figure 3.8: Thermostability of wild-type Cel6B and M514 mutant enzymes (right 

after purification). The enzymes were pre-incubated in 50mM NaOAc pH5.5 at 45-

70oC for 16hrs, then assayed on SC at 50oC for 16hrs. 
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Section 3.4. Discussion 

Effects of tunnel entrance and exit residues on processivity - Mutation of either 

N282 or R180, which are at opposite ends of the active site tunnel, to amino acids with 

shorter side chains increased the processivity of Cel6B, and mutation to the smallest 

side chain (Ala) gave the largest increase. Each subsite of a cellulase can 

accommodate both faces of the pyranoside ring and tolerate the C6 hydroxyl group 

when the substrate moves along the catalytic site [56]. The decrease in size of the side 

chains at these positions might allow the cellulose molecule more freedom to advance 

through the tunnel in case of N282A and facilitate the release of cellobiose for R180A. 

A study on Aspergillus niger endopolygalacturonases also showed that a region far 

away from the scissile bond (subsite -5) strongly influences processivity [91]. High 

processivity does not always indicate higher activity as is found for the FP activity of 

the R180 mutant enzymes. Processivity may be more about disassociation rather than 

the rate of hydrolysis. 

Increased processivity of the N282A mutant enzyme also was shown by its high 

(G2-G1)/(G3+G1) ratio. Although the processivity of N282A as measured by the ratio 

of soluble/insoluble reducing sugars was higher than that of L230A, their 

oligosaccharides ratios were close to each other. This might be due to a difference in 

their initial substrate binding preference. As very small amounts of G3 and G1 were 

produced, a small change in substrate binding, which might be detected by G6 

hydrolysis, could significantly affect the ratio of (G2-G1)/(G3+G1). The lower G2/G3 

ratio from G6 hydrolysis by N282A indicates that its true ratio of (G2-G1)/(G3+G1) in 

FP hydrolysis is higher than measured, consistent with its higher processivity from the 

ratio of soluble/insoluble reducing sugars. The similarity of the two approaches for 

measuring processivity is further supported by the L230A mutant enzyme. The higher 



 

 55

(G2-G1)/(G3+G1) ratio of L230A is due to its lower initial binding preference leading 

to G3 as it produced less G3 from G6. 

The ratio of oligosaccharides can not be used to assess processivity in mixtures 

with endocellulases, as G3 is produced by internal cleavage as well as in the initial 

hydrolysis step. A different ratio, G2/(G1+G3) was used to measure processivity for T. 

reesei exocellulase Cel7A [92] as G1 was assumed to be released only from the initial 

attack (G3 hydrolysis by Cel7A was not addressed in this study). High processivity 

means that the enzyme has been optimized for the movement of a cellulose chain in 

the active site; however, this change can reduce hydrolysis activity on easily diffusible 

soluble substrates [93], which is in agreement with the slow hydrolysis of G6 by 

N282A. 

A link between processivity and synergism - Although the individual mutant 

enzymes had higher FP activity than wild-type, their mixtures with T. fusca Cel5A did 

not show increased synergism on FP. Walker et al. [90] found that there was no 

binding competition between Cel6B and Cel5A. Jeoh et al. [94] found that substrate 

binding of Cel6B and Cel5A in mixtures was higher than that of the individual 

enzymes. A very low enzyme to substrate ratio was used here so that competition for 

adsorption is unlikely. The fact that the rate of hydrolysis of an exocellulase increased 

on endocellulase-pretreated cellulose [5] as well as the fact that synergism occurs 

between cellulases from unrelated organisms [43] shows that synergism does not 

require a direct interaction between the cellulases. A simple synergism model is that 

endocellulases act on accessible sites, producing new ends for the attack by 

exocellulases, which in turn open up new sites for endocellulases. However, our data 

suggested a more complicated synergism, in which a more active exocellulase does 

not give higher synergism even at low enzyme to substrate ratios. As endocellulase 
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Cel5A produces shorter cellulose chains, exocellulase mutants with increase in 

processivity are not needed for maximizing synergism. In contrast, these mutant 

enzymes did give increased synergism with the reducing-end attacking exocellulase 

Cel48A. 

Different effects of mutations on various substrates - CMC activity is not always a 

good indicator of higher activity on crystalline substrates. Soluble CMC is expected to 

bind readily in the active site; however, its high proportion of modified residues may 

cause CMC to bind in a distorted manner. The tunnel structure of H. insolens Cel6A 

restricts the polysaccharide strand in the tunnel  [65] so the increased CMC activity of 

the W464A enzyme might be due to easier movement of modified sugars through the 

tunnel after the removal of the bulky side chain. Increased CMC activity and 

decreased BMCC activity also have been seen in several T. fusca Cel9A mutations 

[44] when substrate binding Trp residues were mutated to smaller side chains.  

The decrease in both activity and binding to BMCC caused by the W464A 

mutation indicates that W464 helps to bind a cellulose chain into the active site and 

this function may not be required for binding of easy accessible substrates like CMC 

and PC. Structural analysis showed that the corresponding residue in T. reesei Cel6A, 

W367 interacts with the α-face of a glucosyl ring during productive binding of a 

cellulose chain [21] and the position of H. insolens Cel6A W371 was shifted upon 

ligand binding [56]. 

The specific loss of BMCC activity in the M514 mutant enzymes upon storage 

suggests that a change in structure occurs on storage that inactivates the rate limiting 

step for crystalline cellulose activity. Residue M514 is located in a tunnel-forming 

loop at subsite +1, next to residue C515, which forms a disulfide bond with residue 

C465 in this loop. The increased flexibility of this disulfide bond in the mutant 
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enzyme might cause a conformational change as shown by circular dichroism and 

reduced thermostability. 

Section 3.5. Conclusion 

Mutation of several residues located in the active site tunnel of Thermobifida fusca 

exocellulase Cel6B increased processivity on filter paper. Surprisingly, mixtures of 

these Cel6B mutant enzymes and a T. fusca endocellulase Cel5A did not show 

increased synergism or processivity, and the mutant enzyme which had the highest 

processivity gave the poorest synergism. This study suggests that improving 

exocellulase processivity might not always be an effective strategy for producing 

improved cellulase mixtures for biomass conversion. The inverse relationship between 

bacterial microcrystalline cellulose and carboxymethyl cellulose activities of many of 

the mutant enzymes indicated differences in the mechanisms of hydrolysis for these 

substrates, supporting the possibility of engineering Cel6B to target selected 

substrates. 
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CHAPTER FOUR 

ADDITIONAL EXPERIMENTS* 

 

Section 4.1. Introduction 

In the course of completing the experimental work presented in the previous 

chapters, several additional research projects were conducted to investigate other 

aspects of T. fusca exocellulase Cel6B. Each individual project is not large enough to 

deserve a separate chapter. However, together they provide experimental knowledge 

on fluorescence-labeling of T. fusca exocellulase Cel6B and non-productive binding of 

this enzyme to other polysaccharides. These experiments also provide more details 

about the role of Cel6B and other proteins in T. fusca supernatants. Therefore, they are 

included in this dissertation. 

Section 4.2. Fluorescence labeling of T. fusca Cel6B enzymes 

Chapter 3 has described several Cel6B mutant enzymes with higher processivity; 

however, it is unclear what causes dissociation of the processive enzymes. 

Fluorescence labeling of these enzymes to track their movement may answer this 

question while offering an optical approach for measuring binding and processivity. 

Tracking a quantum dot-labeled CBM2 from Acidothermus cellulolyticus using single-

molecule spectroscopy indicated a linear motion of this CBM along the cellulose fiber 

[95]. Therefore, the Cel6B wild-type and mutant enzymes with higher processivity 

including N282A and L230A were fluorescently labeled with amine-reactive Alexa 
                                                 

* Reproduced in part from “Engineering Thermobifida fusca cellulases: catalytic mechanisms and 

improved activity” Thu V. Vuong and David B. Wilson, accepted in: Protein Engineering. Nova 

Science Publishers, Inc. 
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Fluor 647® (AF647) succinimidyl ester (Invitrogen, CA, USA). 

4.2.1. Fluorescence-labeling protocol 

This labeling method was based on the method of Moran-Mirabal et al. [96]. The 

binding matrix is an 8:1 (w/w) mixture of CF11:BMCC at 32mg/ml in 50mM NaOAc 

buffer pH 5.5. 1mL of the matrix was pipetted into each Costar® 0.45µm nylon 

centrifugation tube, and centrifuged for 1min at 10,000g to remove the buffer.  The 

Cel6B enzymes were bound to the matrix for 1hr with end-over-end agitation at 4°C in 

300μL of the labeling buffer (35mM boric acid buffer and 50mM NaCl pH 8.3). 

Unbound enzymes were removed by two consecutive centrifugations (1min at 

5,000g). The fluorophore was added at a 100:1 molar ratio of fluorophore and enzyme. 

The mixture was incubated for 24hrs at 4oC without agitation. Unreacted dye was 

removed by six consecutive centrifugations (2min at 5,000g), followed by addition of 

500μL of the labeling buffer. The enzymes were recovered by 3 elutions with chilled 

ethylene glycol (EG). Two washes were done with the addition of 400μL EG, 

followed by incubation in ice for 10min, and centrifugation for 5min at 6,000g and 

8,000g, respectively. The third wash was conducted with 200μL EG and 

centrifugation for 10min at 10,000g. The flow-through of each wash was immediately 

diluted 7.5x with 20mM chilled MES buffer pH6.0, and loaded onto a Vivaspin 4 

(10kDa MWCO, Sartorius, NY, USA) columns before being centrifuged at 7,000g for 

10min at 4°C. 

Separation of labeled species was done by FPLC at 21°C with the MES buffer as 

mobile phase, using an ÄKTA Explorer 10S FPLC system and a Resource Q column 

(1ml, GE Healthcare, NJ, USA). The column was equilibrated with 250mM NaCl, and 

1ml labeling mixture was injected. Enzymes were eluted by applying a 250mM linear 

salt gradient (3ml/10mM NaCl) at 1.5ml/min flow rate. Absorbance was recorded at 
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280nm for proteins, and at 650nm for AF647. Eluted proteins were collected in 1ml 

fractions, and partitioned into labeled enzyme species according to the 

chromatograms. Fractions were collected, concentrated, and then buffer was 

exchanged with 50mM NaOAc pH 5.5 using Vivaspin 4 (10kDa MWCO) columns. 

Labeled species were divided into aliquots at a concentration of 200nM and stored at -

20oC. 

4.2.2. Labeled enzyme concentration  

Protein concentrations and degrees of labeling (DoL, or moles dye per mole 

protein) were calculated as followed: 

protein

dye

ε
DilutionC.F]Abs.Max[Abs.280

conc.(M) Enz.
××−

=
 

 

conc. Enz. ε
DilutionAbs.Max

protein  moleper  dye Moles
dye

dye

×

×
=

 

Where Abs.280 is the absorbance at 280nm, Abs.Maxdye is the absorbance at the 

fluorophore’s excitation wavelength, C.F is the fluorophore correction factor, and 

εprotein and εdye are the extinction coefficients of the protein and the fluorophore, 

respectively.  

4.2.3. Enzymatic activity of labeled enzymes 

The activities of selected labeled species were assayed with BMCC and PC. 

Costar® Spin-X 0.45μm nylon tubes were washed with MQ water by centrifuging 

5,000g for 5min. 300μL of 5mg/mL BMCC or PC along with a glass bead were added 

to the Spin-X tubes. The final concentration of each labeled species was 25nM and the 

final reaction volume was 600μL. The reaction was incubated at 50oC for 24hrs with 

360o rotation. The tubes were then centrifuged 5,000g for 5min. Cellulases were 
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removed by binding to washed BMCC for 1hr at 4oC, and the oligosaccharides were 

separated and quantified by HPLC, as described in Chapter 3. 

4.2.4. Labeled Cel6B characterization 

The Cel6B enzymes were successfully fluorescence-labeled with AF647 to 

different degrees of labeling (Figure 4.1). As the enzymes were bound to substrate 

before being labeled, fluorophores were unlikely to interact with key residues for 

catalysis. The AF647 fluorophore reacts only with accessible lysine residues to form 

stable dye-protein conjugates. There are four accessible lysine residues in Cel6B as 

calculated with a minimum of 30% surface exposure; therefore, the maximum 

expected DoL is 4. The highest DoL of labeled species was 3.4 (Table 4.1), indicating 

that the dye was able to interact with most of accessible lysine residues of each 

cellulase molecule. 

Labeled species were assayed on both BMCC and PC. Low degrees of labeling did 

not affect catalytic activity, but higher DoL did in some cases. The peak 11 of Cel6B 

wild-type, which has a DoL of 2.8 (Table 4. 1), showed lower activity on PC 

compared with wild-type enzyme (Figure 4. 2). A similar trend of labeled wild-type 

activity was observed on BMCC (data not shown). Surprisingly, the total amount of 

(G2 + G3) produced on PC by the peaks 1 and 6 of labeled L230A was about 30% 

higher than the unlabeled L230A enzyme. However, this increase in activity was not 

seen with BMCC. These labeled species also produced a high ratio of G2/G3 with PC 

(data not shown). Neither L230A nor N282A produced more oligosaccharides on PC 

than the wild-type enzyme (Figure 4.2). This variance might be due to the fact that we 

could not detect and measure glucose because of HPLC artifacts, thus glucose was not 

included in the calculation. 
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Figure 4.1: FPLC chromatogram showing thirteen fractions (1-13) of an AF647-

labeled Cel6B mutant enzyme (L230A) with different degrees of labeling, ranging 

from 1.0 to 3.3. Unlabeled protein (absorbance at 280nm) elutes earlier than labeled 

products (absorbance at 650nm).  
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Table 4.1: Fractions of the Cel6B wild-type and mutant enzymes with different 

degrees of labeling (DoL). The samples are denominated by the enzyme (wild-type, 

L230A or N282A), fluorophore (647), and peak number (PXX). 

Peak Name DoL Peak Name DoL Peak Name DoL

Wild-type 647 P1 1.1 L230A 647 P1 1.0 N282A 647 P1 1.1 

Wild-type 647 P2 0.9 L230A 647 P2 0.9 N282A 647 P2 0.9 

Wild-type 647 P3 1.3 L230A 647 P3 1.0 N282A 647 P3 1.1 

Wild-type 647 P4 1.8 L230A 647 P4 1.7 N282A 647 P4 1.8 

Wild-type 647 P5 2.0 L230A 647 P5 1.8 N282A 647 P5 1.9 

Wild-type 647 P6 2.1 L230A 647 P6 2.0 N282A 647 P6 2.0 

Wild-type 647 P7 2.9 L230A 647 P7 2.5 N282A 647 P7 2.7 

Wild-type 647 P8 2.6 L230A 647 P8 2.6 N282A 647 P8 2.5 

Wild-type 647 P9 2.5 L230A 647 P9 2.3 N282A 647 P9 2.4 

Wild-type 647 P10 2.6 L230A 647 P10 2.6 N282A 647 P10 2.7 

Wild-type 647 P11 2.8 L230A 647 P11 2.5 N282A 647 P11 3.3 

Wild-type 647 P12 3.1 L230A 647 P12 - N282A 647 P12 3.1 

Wild-type 647 P13 3.4 L230A 647 P13 2.7 N282A 647 P13 2.9 
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Figure 4.2: Total oligosaccharides produced by labeled Cel6B species (25nM) on PC. 

In future work, the labeled enzymes with low DoL will be assayed to compare their 

processivity, and their displacement and movement on cellulose can be tracked by a 

total internal reflection fluorescence microscope (TIRFM). Additionally, the labeled 

L230A peak 1 will be denatured, digested with trypsin, and analyzed by mass 

spectrometry (MALDI-TOF/TOF) to determine which lysine residue was labeled. 

Labeled mutant enzymes with higher activity will be mixed with an endocellulase (T. 

fusca Cel6A or Cel5A) to test for synergism.  
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Section 4.3. Non-productive binding of T. fusca catalytic domains 

Plant cell walls consist of different polysaccharides integrated with each other; 

therefore, it is possible that cellulases bind non-specifically to other components of 

plant cell walls before they can locate and bind cellulose. Most substrate binding is 

due to carbohydrate-binding modules, but the catalytic domains of cellulases are found 

to play an important part in cellulose binding as well [44]. Besides productive binding 

on cellulose, the catalytic domains of several T. fusca cellulases also bind to α-chitin 

without hydrolysis [26].  

In this section, computational docking of oligosaccharides to the catalytic domain 

of T. fusca Cel6B and others was conducted to calculate their free energies of binding 

and dissociation constants, and then binding of the catalytic domains to 

polysaccharides was measured. 

4.3.1. Computational docking  

The structures of oligosaccharide ligands were obtained from different sources to 

prepare for docking. Laminaribiose (the PDB entry code: 2BN0), laminaritriose 

(2CL8) and laminarihexaose (1W9W) were found in the protein database of the 

Research Collaboratory for Structural Bioinformatics (RCSB, http://www.pdb.org). 

Laminaritetraose and laminaripentaose were created by MarvinSketch 5.1.3_2 

(ChemAxon) as their x-ray structures were not available. Xylooligosaccharides 

including xylobiose (1B3W), xylotriose (1UX7), xylotetraose (1UYZ) and 

xylopentaose (1UXX) as well as cellooligosaccharides: cellobiose (3ENG), cellotriose 

(1UYY), cellotetraose (1F9D), cellopentaose (2EEX) and cellohexaose (2EJ1) were 

from the Hetero-compound Information Centre - Uppsala 

(http://alpha2.bmc.uu.se/hicup/). 
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AutodockTools 1.5.2 revision 2 (http://autodock.scripps.edu/) running on Python 

2.5 was used to prepare ligands and enzymes for docking. Different pdbqt files of each 

oligosaccharide were set up ranging from zero rotatable bonds to several potential 

torsions in order to find the most suitable conformations. The x-ray structure of 

Cel6Acd [22] and the structural model of Cel6Bcd, which was presented in the 

previous chapters, were used for docking. The map files were centered at the active-

site clefts with grid boxes covering the entire clefts. The map files were created by 

Autogrid 4. The number of genetic algorithm runs was 10, with a population size of 

150. The maximum number of energy evaluations was 250,000, with the maximum 

number of generations of 27,000 and a rate of crossover of 0.8. A Lamarckian genetic 

algorithm was used for docking stimulation [97]. Docking files were generated by 

Autodock 4 and graphically viewed using AutodockTools.  

4.3.2. Enzyme production and binding assays 

The catalytic domains of two T. fusca endocellulases Cel5A and Cel6A as well as 

two exocellulases Cel6B and Cel48A were purified from the supernatants using a 

Phenyl-Sepharose column, followed by a Q-Sepharose column, as described in 

previous work [11,19,43,63]. Binding assays of these catalytic domains to pachyman 

(2mg/mL, Megazyme®), lichenan (1mg/mL, from Cetraria islandica, Sigma®) and 

xylan (2mg/mL, from Birchwood, Sigma®) were conducted like insoluble cellulose 

binding assays presented in Chapter 2. 

4.3.3. Oligosaccharide and polysaccharide binding 

Thirteen oligosaccharides were computationally docked to the active sites of T. 

fusca endocellulase Cel6A and exocellulase Cel6B (Table 4.2). The calculated Kd 

values of Cel6A with cellobiose and cellotriose, which are 167.8 and 3.4, respectively, 
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were much lower than the experimental ones, which are approximately 400 and 100, 

respectively [42]. This difference might be due to the fact that the torsion of ligands 

had been optimized for the best docking. Computational docking showed that both 

cellulases bound the most tightly to cellotetraose, suggesting that these enzymes have 

at least four glucose subsites. Structural analysis of T. fusca Cel6A identified four 

binding subsites, from -2 to +2 [69] while H. insolens Cel6A, a homolog of  T. fusca 

Cel6B, showed up to 6 binding subsites, from -2 to +4 [24]. These family-6 cellulases 

appear to have fewer binding subsites for non-cellulosic substrates, as they tend to 

bind more tightly to the trisaccharides from these substrates. Generally, exocellulase 

Cel6B with an active site tunnel bound oligosaccharides better than endocellulase 

Cel6A with an open active site cleft (Figure 4.3).  

Docking results suggested that the active sites can bind other oligosaccharides, 

besides cellooligosaccharides. Therefore, binding of catalytic domains to other 

polysaccharides including xylan (polymer of β-1,4-D xylose), lichenan (polymer of β-

1,3:1,4-D glucose) and pachyman (polymer of β-1,3-D glucose) was measured (Table 

4.3). Binding to these substrates by the catalytic domains is not similar. The 

endocellulases appeared to bind more to linear polysaccharides (xylan and pachyman) 

than did the exocellulases. Although computational docking suggested that the Cel6B 

active site bound more to xylooligosaccharides than Cel6Acd, experiments showed 

Cel6Bcd bound less xylan than the endocellulase catalytic domain (Table 4.3). It 

might be that small oligosaccharides could enter and bind the tunnel-shaped active site 

cleft of Cel6B more efficiently than their polymers. Binding of Cel6B to these 

polysaccharides is mostly non-productive, as the enzyme could not hydrolyze them 

(Figure 4.4).  

Therefore, the active sites of T. fusca Cel5A, Cel6A, Cel6B and Cel48A can bind 
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to other polysaccharides, besides cellulose. Competition binding with these 

polysaccharides and cellulose are required to know whether they bind to the same 

subsites in the active site clefts.  

Table 4.2: Calculated free energies of binding ΔGb and dissociation constants Kd of 

Cel6A and Cel6B catalytic domains. 

Cel6Acd Cel6Bcd 

Docked ligand Docked energy 

ΔGb (kcal/mol)

Kd (µM) Docked energy 

ΔGb (kcal/mol) 

Kd (µM)

Cellobiose -5.2 167.8 -6.4 21.2

Cellotriose -23.8 3.4 -9.1 0.2

Cellotetraose -13.6 0.1 -10.7 0.01

Cellopentaose -5.7 70.6 -6.2 27.8

Cellohexaose -4.1 989.2 - -

Xylobiose -5.3 136.9 -6.0 37.1

Xylotriose -5.7 71.5 -7.8 1.8

Xylotetraose -4.2 881.4 -9.5 0.1

Laminaribiose -5.3 123.6 -6.6 14.0

Laminaritriose -6.0 37.3 -8.9 0.3

Laminaritetraose -4.8 315.6 -7.3 4.2*

Laminaripentaose -4.0 1110 -6.0 42.6*

Laminarihexaose -3.9 1470 -3.9 1420*

(-): docking was unsuccessful; (*): unusual docking position. 
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Figure 4.3: Docking of cellotetraose (Kd of 0.1µM) to the open active site of T. fusca 

Cel6Acd (green sphere- backbone, side chain colored in CPK). 
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Table 4.3: Bound percentage of T. fusca catalytic domains to different 

polysaccharides. Binding was conducted at 4oC for 1hr. 

 Xylan (1,4) Pachyman (1,3) Lichenan (1,3:1,4)

Cel6Acd 52.5 ± 5.6 43.6 ± 3.0 40.6 ± 3.4

Cel5Acd 48.0 ± 5.0 43.3 ± 1.6 53.1 ± 3.6

Cel6Bcd 12.5 ± 2.8 14.3 ± 4.0 39.6 ± 5.6

Cel48Acd 24.9 ± 7.6 7.3 ± 4.8 44.8 ± 5.8
 

 

Figure 4.4: TLC analysis of xylan, pachyman and lichenan hydrolysis by the catalytic 

domains of T. fusca cellulases. 
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Section 4.4. Significance of individual cellulases in T. fusca supernatant 

T. fusca secretes a number of cellulases [20,52] as well as other cellulose binding 

proteins including E7 and E8 [98] to hydrolyze cellulose effectively. When cultures 

grown on Solka Floc, the level of the two T. fusca exocellulases Cel6B and Cel48A 

was 4 to 7 times higher than that of endocellulases [99], which is also consistent with 

the corresponding levels of transcription [100]. These secreted components were 

purified and characterized; however, their roles in T. fusca supernatants were not well 

understood.  

4.4.1. Immunoprecipitation assays 

T. fusca was grown on Solka Floc-switchgrass for 96hrs, and then 80uL of the 

supernatant (1.6mg/mL) was added to 200µL of protein antisera against T. fusca 

Cel5Acd, Cel6Acd, Cel6B, Cel9Acd, Cel9B, Cel48A, E7 and E8, plus 720µL of the 

TBS buffer (20mM Tris pH7.5 and 0.5M NaCl) in Eppendorf® Protein LoBind tubes 

(Eppendorf, NY, USA). The antibody blanks and substrate blank were always 

included. Reactions were incubated for 1hr at 37oC, and then 16hrs at 4oC. Pellets 

were removed by centrifuged at 16,000g for 10min, and different amounts of the 

supernatant were assayed with BMCC (5mg/mL) in 50mM NaOAc pH5.5 at 50oC for 

16hrs. Reducing sugars were measured by the DNS method. 

4.4.2. Specificity of the Cel6B and Cel9B antibodies 

Eight T. fusca proteins including Cel5A, Cel6A, Cel6B, Cel9A, Cel9B, Cel48A, E7 

and E8 were purified as described in previous work [11,19,43,63]. The mixture of all 

proteins was prepared in a molar ratio of Cel5A: Cel6A: Cel6B: Cel9A: Cel9B: 

Cel48A: E7: E8 of 5: 5: 20: 5: 3.5: 20: 3.5: 3.5. This mixture, along with mixtures 

without Cel6B or Cel9B was used for immunoprecipitation assays with the full-length 

Cel6B and Cel9B antibodies as presented above. 
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4.4.3. Effects of antibodies to supernatant activity 

Although activity of Cel6B on soluble and insoluble substrates is lower than T. 

fusca endocellulases [20], removal of this exocellulase from the T. fusca supernatant 

grown on Solka Floc + switchgrass drastically decreased activity of the supernatant 

(Figure 4.5). This effect was also seen when the amount of Cel6B antibody was 

reduced in half (data not shown). Cel6B and Cel48A have low activity on all 

substrates and both are abundant in the supernatant [99]; however, Cel6B seems to be 

more important than Cel48A for cellulose hydrolysis of T. fusca. 
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Figure 4.5: Effects of immunoprecipitation of T. fusca proteins in the supernatant on 

BMCC activity. The supernatant (SN) was incubated with the corresponding 

antibodies (Ab) or a pre-immune (PI) serum for 1hr at 37oC and then 16hrs at 4oC.  
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All T. fusca cellulases used in these experiments have a family-2 CBM; therefore, 

the specificity of the Cel6B and Cel9B antibodies was tested. The antibody of Cel6B 

showed a high binding specificity and it did not affect the enzymatic activity of the 

mixture without Cel6B (Figure 4.6). In contrast, the decrease in activity of the 

supernatant in the addition of Cel9B antibody unfortunately was due to the low 

specificity of this antibody (data not shown). 
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Figure 4.6: Specificity of the T. fusca full-length Cel6B antibody (Ab). Different 

amount (1xAb or 2xAb) of the antibody was incubated with a mixture of all eight T. 

fusca proteins (Full mix), a mixture of seven proteins excluding Cel6B (Mix-Cel6B), 

and only the Cel6B enzyme. 
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Future experiments will focus on investigating simultaneous removal of several 

components of the T. fusca supernatant, including removal of a pair of E7 and E8 and 

a pair of endocellulase Cel5A and endocellulase Cel6A. 

Section 4.5. Conclusion 

The Cel6B wild-type and mutant enzymes were fluorescently labeled. These 

labeled cellulases will be a helpful tool for tracking their binding and processivity. The 

catalytic domains of Cel6B bound non-productively to other polysaccharides; 

therefore, the balance between different types of binding should always be considered 

when design the enzyme for higher activity on complex substrates. Exocellulase 

Cel6B was found to play a very important role for T. fusca in hydrolyzing crystalline 

cellulose, although its specific activity on crystalline cellulose is low.  
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