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Diverse agricultural landscapes have been shown to support many ecosystem 

services including clean water, species conservation, and carbon sequestration.  

However, far less is known about the role of diverse agricultural landscapes in 

agricultural pest control.  This research investigated how diverse agricultural 

landscapes affect insect pest dynamics and evolution.  A comprehensive literature 

review of this subject revealed that direct effects of landscape diversity on insect pest 

control have been largely ignored.  Nevertheless, increases in pest mortality and 

decreases in fecundity are likely with increasing landscape diversification.  Field 

surveys of insect populations in agricultural landscapes of varying complexity across 

New York further illuminated landscape-insect relationships.  Surveys showed that 

populations of insect pests in field corn were generally lower and that natural enemy 

populations were generally higher as agricultural landscapes increased in their 

diversity.  Spatially-explicit modeling further explored landscape-insect relationships 

and considered pests with varied life histories and the influence of crop rotation and 

economic thresholds.  Model results suggested that insect diet breadth and regional 

crop management play pivotal roles in landscape-insect relationships.  Furthermore, 

pest management may be more intense in highly agricultural than in diverse 

landscapes, which may reduce apparent pest control benefits of landscape 

diversification.  Finally, the role of diverse landscapes in slowing the evolution of 



 

insect resistance to Bt crops was explored.  A detailed study of the European corn 

borer’s host utilization, fecundity, and U.S. distribution indicated that diverse 

agricultural landscapes are not likely to substantively slow the evolution of resistance 

to Bt corn for this pest.  Together, this research supports pest control as an important 

ecosystem service of diverse agricultural landscapes.  Additionally, it highlights the 

roles that insect life history and regional pest management play in shaping landscape-

insect relationships. 
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CHAPTER 1 

 

INTRODUCTION 

 

Research Statement and Justification 

This research advances our knowledge of plant-insect interactions in 

agricultural systems.  I apply basic ecological and evolutionary theories to questions of 

applied pest management.  Specifically, I investigate the hypotheses that diverse plant 

communities support lower densities of specialist herbivorous insects and that plant 

diversity can slow insect adaptation to plant defenses.   I apply these ideas to 

agriculture by asking whether diverse landscapes suppress crop pests and whether 

landscape diversity can substitute for structured Bt corn refuges to slow the evolution 

of European corn borer resistance to transgenic corn. 

There are fundamental differences between natural and agricultural systems 

that warrant investigation into whether ecological theories are applicable to the latter.   

One such difference, examined here, is the spatial scale of plant diversity.  In natural 

systems, it is common that plant species and genotypes are well mixed.  In industrial 

agricultural systems, large monocultures of a single plant genotype are the norm.   

However, beyond individual fields, agricultural landscapes can be quite diverse with 

many crops and non-crop habitat. Therefore, it is necessary to ask whether plant-insect 

interactions that occur in natural systems translate to agricultural systems, despite 

differences in the spatial scales of plant diversity.     

 

Study System 

In my research, I have focused on how landscape diversity affects insects in 

corn (Zea mays).  Corn systems offer a number of advantages for agro-ecological 
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research: corn is very economically important, it is prevalent across the globe, and 

there is already an extensive background literature.  The economic import and 

prevalence of corn increase the applied impacts of research while the detailed 

knowledge available for several corn insects is invaluable for experimental design and 

interpretation.  Corn is also particularly amenable to landscape-scale ecological 

research.  Since farmers maintain relatively uniform monocultures of corn across 

diverse natural environments, this creates pseudo-experimental landscapes that are 

useful for isolating the effects of landscape-scale habitat features.    

 

Research Approach 

I used field surveys to determine patterns of plant-insect interactions and a 

variety of analytical techniques to determine the mechanisms underlying those 

patterns and to generalize field observations.  These techniques included GIS, stable 

carbon isotope analysis, and simulation modeling.  GIS was used to quantify 

agricultural landscapes to relate to surveyed insect densities.  Stable carbon isotope 

analysis was used to determine the host utilization of corn pests.  Simulation modeling 

was used to make general predictions about how agricultural landscapes affect insect 

pests with varying life histories.          

 

Thesis Organization 

This thesis contains four research papers that were written for publication in 

ecological journals.  The first three focus on the relationships between landscape-scale 

habitat diversity and agricultural insect populations.  The fourth paper, which was 

accepted for publication into the journal Ecological Applications in September 2009, 

explores the influence of landscape-scale habitat diversity on insect pest adaptation to 
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Bt crops.  The objectives of each paper and the data they contain are summarized 

below and are labeled by their thesis chapter. 

Chapter 2:  Agricultural diversification at local and landscape scales:  a 

review of the direct and indirect effects on insect pests by Megan E. O’Rourke.  

This chapter provides an introduction to the literature on habitat diversity-insect 

relationships.  In it, I review the evidence for pest suppression by agricultural 

diversification at local and landscape scales.  I focus the review on the direct effects of 

plant diversity on herbivores as well as the indirect effects via natural enemies.  I 

explore how mechanisms underlying direct and indirect effects differ when habitat 

diversity is incorporated at local or landscape scales.  I identify mechanisms of pest 

suppression in diverse landscapes that deserve further investigation.     

Chapter 3:  The landscape context of insect pest and predator densities in 

field corn by Megan E. O’Rourke, Kaitlin Rienzo-Stack, and Alison G. Power.  In this 

chapter, we document patterns of landscape-insect relationships.  We quantify relative 

densities of the most economically important pests of corn in North America, the 

western corn rootworm (WCR), the northern corn rootworm (NCR), and the European 

corn borer (ECB), and two generalist predator lady-beetles, Coleomegilla maculata 

(Cmac), and Propylea quatuordecimpunctata (P14) in corn fields throughout upstate 

New York.  We also quantify habitat types on the perimeters, in 1km radius areas, and 

in 20km radius areas surrounding sampled fields.  We then determine the correlations 

between land-use at different scales around corn fields and insect densities within 

fields. 

Chapter 4:  Diverse agricultural landscapes and pest management:  an 

empirical and modeling approach to understanding ecosystem services by Megan 

E. O’Rourke and Laura E. Jones.  We develop general predictions of landscape-

herbivore relationships based on insect life history.  We begin by contrasting empirical 
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landscape-herbivore relationships detailed for Diabrotica virgifera and Ostrinia 

nubilalis in chapter 2.  We attempt to explain these different landscape-herbivore 

relationships by examining host specialization and nation-wide management of the 

two pests.  We seek to support the empirical data and to generalize landscape-insect 

relationships with a spatially explicit model of insect population dynamics.  The model 

predicts spatially explicit insecticide use and population dynamics of herbivores that 

vary in their reproductive capacities, utilization of alternative habitats/hosts, and 

maximum dispersal distances.   

Chapter 5:  Managing resistance to Bt crops in a genetically variable 

herbivore, Ostrinia nubilalis by Megan E. O’Rourke, Tom W. Sappington, and Shelby 

J. Fleischer.  We investigate the importance of unstructured refuges for slowing the 

evolution of resistance to Bt corn by O. nubilalis (ECB).  We first investigate host 

utilization by the two pheromone races of ECB in New York to determine the 

proportion of each that develops on non-corn hosts.  We also look at how developing 

on non-corn hosts affects their body mass and fecundity.  Finally, we compile data on 

the geographic distributions of ECB pheromone races in the US.  These data are used 

to recommend whether non-corn habitat can adequately substitute for non-Bt corn as 

refuge for production of ECB susceptible to Bt corn.   

 

Co-Author Contributions 

Each paper has involved different sets of collaborators.  Alison (“Sunny”) 

Power is Professor of Ecology and Evolutionary Biology at Cornell University and has 

served as my major advisor.  She has provided intellectual support throughout this 

thesis, particularly with regard to the design and analysis of my field work.  Kaitlin 

Rienzo-Stack was an undergraduate research fellow at Cornell who helped to quantify 

landscape-natural enemy relationships for chapter three.  Laura Jones is a Senior 
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Research Associate of Ecology and Evolutionary Biology and field member of 

Applied Mathematics at Cornell University.  Laura drafted the simulation model and 

provided extensive guidance for chapter four.  Tom Sappington is a Research 

Entomologist with the USDA-ARS Corn Insects and Crop Genetics Research Group 

in Ames, Iowa.  Tom supported the intellectual development of Chapter five and 

provided guidance for stable carbon isotope analysis of ECB.  Shelby Fleischer is 

Professor of Entomology at Penn State University.  He provided extensive, 

unpublished data on distributions of ECB pheromone races in the United States for 

chapter five.     
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CHAPTER 2 

 

AGRICULTURAL DIVERSIFICATION AT LOCAL AND LANDSDCAPE 

SCALES:  EXPLORING THE DIRECT AND INDIRECT EFFECTS ON INSECT 

PESTS 

 

Megan E. O‟Rourke 

 

Abstract   

The „resource concentration hypothesis‟ and the „enemies hypothesis‟ are well 

studied mechanisms by which local plant diversity (i.e., growing polycultures) can 

reduce insect pests in agriculture both directly and indirectly, respectively.  Despite 

the potential benefits of polycultures for pest control, they are not widely utilized in 

industrial agricultural countries, and it is unclear whether the pest control benefits of 

observed in small-scale polyculture experiments would scale up across a landscape.   

Consequently, increasing attention is being paid to the potential benefits of landscape-

scale agricultural diversity for pest management.  Here, I compare the evidence for 

direct and indirect pest control when habitat diversity is incorporated into agriculture 

at local and landscape scales.  Diversity at either scale can have similar effects in 

reducing herbivory indirectly by enhancing natural enemy populations.  However, the 

direct effects of plant diversity on herbivores differ at local and landscape scales.  

Whereas local plant diversity tends to disrupt host plant cues and reduce herbivore 

residency, landscape-scale agricultural diversity tends to increase herbivore mortality 

and to reduce herbivore fitness.  To date, the direct effects of landscape-scale 

agricultural diversity on insect pests have largely been ignored and clarifying these 

mechanisms will reveal fruitful directions for future landscape-herbivore research.  By 
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understanding the mechanisms behind landscape-herbivore relationships, we can 

better assess and predict pest control as an ecosystem service provided by diverse 

agricultural landscapes.   

 

Introduction 

In his 1973 monograph, Root classically proposed the „resource concentration 

hypothesis‟ and the „enemies hypothesis‟ to explain how some herbivores can 

dominate insect communities and reach higher densities in monocultures than 

polycultures (Root 1973).  The resource concentration hypothesis posits that plant 

diversity directly reduces densities of specialist herbivores by reducing immigration 

into and increasing emigration out of polycultures.  Polycultures can reduce 

immigration by obscuring the visual and volatile chemical cues of hosts that 

herbivores use for host location.  The morphology and chemistry of plants, which 

affects host location and acceptance, also may differ in polyculture and monoculture.  

As insects forage in polycultures, low mobility larvae may die while searching for a 

host, while more mobile pests will encounter non-hosts, which can stimulate 

emigration (Bernays and Chapman 1994, Altieri and Nicholls 2004).   

Root‟s „enemies hypothesis‟ describes how plant diversity indirectly 

suppresses herbivore populations by increasing natural enemy populations (Root 

1973).  More natural enemies presumably exert greater top-down control on 

herbivores through increased predation and parasitism rates.  Polycultures benefit 

natural enemies by providing a greater diversity of food resources, which may be 

available for more of the year than is typical in monocultures.  Also, the physical 

habitat of polycultures is often more favorable than monocultures, with milder 

microclimates and shorter periods of bare soil (Altieri and Nicholls 2004).   
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Both the „resource concentration hypothesis‟ and the „enemies hypothesis‟ can 

simultaneously act to suppress pests in diverse plant assemblages.  To date, there have 

been hundreds of studies examining the effects of local plant diversity on insect 

communities and agricultural pests (Risch et al. 1983, Sheehan 1986, Andow 1991, 

Bommarco and Banks 2003).  These studies are directly applicable to pest control in 

polyculture agriculture, which is quite common in some places (Altieri 1995).  

However, their applicability to industrial agricultural systems dominated by 

monocultures is questionable. 

As an alternative to polycultures, diversity can be incorporated into agricultural 

systems at landscape scales.  With landscape-scale agricultural diversity, individual 

fields are still monocultures of one species, but there is a greater diversity of crops, 

more leys and fallows, and/or more non-cropped habitat in a region.  The possibility 

that landscape-scale agricultural diversity can suppress insect pests has received 

increasing attention over the last decade (Bianchi et al. 2006).  However, landscape-

herbivore research is still an emerging area of study compared with polyculture-

herbivore research.  Most landscape-herbivore studies have documented relationships 

between landscapes and insects with relatively little focus on the mechanisms 

underlying those patterns.  Where mechanisms have been investigated, studies have 

focused almost exclusively on the indirect effects of landscape diversity on herbivores 

via effects on natural enemies.  In other words, most studies have essentially extended 

the „enemies hypothesis‟ to the landscape scale.  In contrast, investigations into the 

direct effects of landscape diversity on herbivore pests, a landscape-scale extension of 

the „resource concentration hypothesis,‟ are virtually missing from the literature. 

In this paper, I examine how the „resource concentration hypothesis‟ and 

„enemies hypothesis‟ scale up with landscape-scale agricultural diversity (Figure 2.1).  
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Figure 2.1.  A Comparison of the direct and indirect mechanisms by which habitat 

diversity at local and landscape scales may affect agricultural herbivores. A) An 

example of a locally diverse agricultural habitat with multiple plant species planted 

together as a polyculture within one field. B) An example of a diverse agricultural 

landscape where individual fields may be monocultures, but many different crops 

(represented by different colored rectangles) and natural habitats (represented by 

trees and grass) are integrated in the landscape. 
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I begin by briefly summarizing the polyculture research and the relative importance of 

the „resource concentration hypothesis‟ and „enemies hypothesis‟ for pest control in 

polycultures.  I then summarize the literature from landscape-scale diversity studies 

and compare research emphases within the polyculture and landscape-scale diversity 

literatures.  This provides the background for a detailed analysis of the direct and 

indirect effects of landscape-scale agricultural diversity on insect pests.  While the 

indirect effects of diverse agricultural landscapes on insect pests appear to follow 

closely the „enemies hypothesis,‟ the direct effects differ from those of the „resource 

concentration hypothsis.‟  From empirical, modeling, and evolutionary studies, I 

propose that landscape-scale diversity directly suppresses specialist agricultural pests 

by increasing mortality during dispersal among host patches and by reducing fitness 

(Figure 2.1 B).   

 

Local Diversity  

Reviews of the polyculture literature generally support suppression of 

herbivore pests by polycultures.  In 1983, Risch et al. reviewed 150 studies of 198 

herbivores (Risch et al. 1983) and found that 53% of the species were found to be less 

abundant, 29% showed no or variable response, and 18% had increased densities in 

polyculture.  In 1991, Andow expanded on the previous review and summarized 

results from 209 polyculture studies that included 287 herbivore species (Andow 

1991).  The additional studies confirmed the previous review, and he found that 

herbivore densities were lower, variable or unchanged, or increased in 52%, 33%, or 

15% of species, respectively.  In 1994, Tonhasca & Byrne conducted a meta-analysis 

on 21 studies from 1984-1994 and found that herbivore densities were significantly 

reduced in polycultures, with an average effect size of 0.35 (Tonhasca and Byrne 
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1994).  In many instances when pest suppression was not detected in polycultures, the 

pests were polyphagous (Andow 1991).  

The presumption of larger natural enemy populations and greater biological 

control in polycultures than monocultures is generally supported by the literature.  In 

1989, Russell (1989) reviewed mortality rates of herbivores by natural enemies in 

polycultures and found nine studies reporting increased mortality, two reporting 

decreased mortality, and two reporting no change.  In 1991, Andow summarized 

research covering 130 natural enemies species and found that 53%, 39%, or 9% of 

natural enemies reached  higher, variable or unchanged, or lower densities in 

polycultures, respectively (Andow 1991).  In 2004, Langellotto and Denno (2004) 

conducted a meta-analysis on 32 studies where habitat complexity was increased 

through polyculture, intercropping, and no-till mowing and found a significant average 

increase in natural enemy densities with an effect size of 0.69. 

The numerous polyculture studies beg the question as to which mechanisms 

are most important for suppressing pest populations in agriculture: direct effects 

described by the „resource concentration hypthesis‟ or indirect effects described by the 

„enemies hypothesis‟.  Reviews by Risch et al. and Andow, which share many but not 

all the same references, both suggest that direct effects of plant habitat on herbivores 

are more important than natural enemies for lowering herbivore populations in 

polycultures (Risch et al. 1983, Andow 1991).  The strongest support for this 

conclusion is that monophagous herbivores are suppressed in polycultures more often 

than polyphagous herbivores.  We would expect the direct effects of habitat 

diversification to suppress monophagous herbivores more than polyphagous 

herbivores that can feed on many plants within a polyculture.  However, if plant 

diversity causes a large increase in enemies that exert top-down control of herbivores, 

then monophagous and polyphagous herbivores should be equally suppressed in 
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polycultures.  Since Risch et al. (1983) found that 61% of monophagous and 27% of 

polyphagous herbivores were suppressed in polycultures, and Andow (1991) similarly 

found that 61% of monophagous and 24% of polyphagous herbivores were suppressed 

in polycultures, the mechanisms associated with the „resource concentration 

hypothesis‟ seem to offer the best explanation for reduced herbivore densities in 

polycultures.   

 

Landscape Diversity 

Despite the promise of polycultures for pest suppression, there are important 

practical and theoretical questions concerning its relevance for industrial agricultural 

systems.  Socio-economic and agronomic factors limit the adoption of polycultures, 

despite pest control benefits (Vasey 1992).  Furthermore, it is not clear whether pest 

control would still occur if polycultures were scaled up over large tracts of land 

(Bergelson and Kareiva 1987, Bommarco and Banks 2003, Prasifka et al. 2005).  

Bommarco & Banks (2003) reviewed 66 polyculture experiments based on plot size 

and found that pest suppression and natural enemy benefits were reduced with 

increasing plot size and that no effects of polycultures were detected in plots larger the 

256m
2
.  If the scale of experimental treatments is small relative to insect dispersal, 

then insects may simply be exhibiting habitat preferences in small-plot polyculture 

experiments.  In general, polyculture studies have been hampered by ignoring long-

term population dynamics and the dispersal scales of insects. 

Increasing landscape-scale agricultural diversity offers a possible solution to 

the practical barriers and issues of scale associated with the adoption of widespread 

polycultures.  With landscape-scale diversity, individual fields can still be 

monocultures, which suits agronomic practices typical of industrial agriculture.  Also, 

the positive effects of landscape-scale diversity on natural enemy populations are 
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likely to reflect demographic processes, while polycultures may simply act to 

concentrate local natural enemies in specific locations.  By providing undisturbed 

overwintering habitat, diverse landscapes support multi-generational conservation of 

natural enemies (Figure 1B) (Landis et al. 2000).  Therefore, increasing attention has 

been paid to the potential pest control benefits of diverse agricultural landscapes.   

 

Trends in Landscape-Insect Studies 

In contrast to the polyculture literature, there have been far fewer 

investigations into the effects of landscape-scale diversity on agricultural pests and 

natural enemies.  The emphasis on pattern rather than process also differs from the 

polyculture literature in which Root‟s (1973) proposed „resource concentration 

hypothesis‟ and „enemies hypothesis‟ helped to launch the field.  When mechanisms 

are examined, there is a general assumption in the landscape-insect literature that 

diverse landscapes indirectly suppress pests by enhancing natural enemy populations 

(Bianchi et al. 2006).  This is effectively an extension of the „enemies hypothesis‟ to 

the landscape scale.  However, we do not see the „resource concentration hypothesis‟ 

extended to the landscape scale to examine possible direct effects of landscape 

diversity on herbivores.    

Despite the limited number of studies, landscape-insect research is beginning 

to show that pest suppression is characteristic of diverse agricultural landscapes.  In 

2006, Bianchi et al. published the first analytical review of data from landscape-scale 

diversity studies, which showed that natural enemies were generally enhanced and 

herbivores were generally suppressed in complex landscapes (Bianchi et al. 2006).  

Their review included 28 studies published from 1966 through 2005 with 18 studies 

reporting only on natural enemies, 6 reporting on both pests and natural enemies, and 

4 reporting solely on pests.  They found that pest pressures were reduced, unaffected, 



 

14 

or enhanced by landscape diversity in 45%, 40% and 15% of cases.  Natural enemies 

were enhanced, unaffected, or reduced by landscape diversity in 74%, 21%, and 5% of 

cases.  Studies published since the review continue to support ideas of pest 

suppression and enhanced natural enemy communities in diverse landscapes.  In cases 

when pests were not suppressed in diverse landscapes, this was often associated with 

species that utilize multiple habitats (Bianchi et al. 2006, Zaller et al. 2008). 

 

Mechanisms of Pest Suppression in Diverse Agricultural Landscapes 

 While the data are promising that landscape-scale diversity can suppress 

agricultural pests, the continued emphasis on landscape-natural enemy relationships 

and the limited number of systems studied limits the generality of results.  Nearly 

three quarters of the studies reviewed in 2006 focused exclusively on landscape-

natural enemy relationships and half of the landscape-herbivore studies were on aphids 

(Bianchi et al. 2006). Since then, the emphasis on landscape-natural enemy 

relationships, rather than on landscape-herbivore relationships relevant to pest 

management decisions, has continued.  Of the additional studies published since the 

Bianchi et al. (2006) review, only 2 quantify herbivore populations (Geiger et al. 2005, 

Zaller et al. 2008).   

Pest control, as an ecosystem service of diverse landscapes, can be better 

understood by applying ideas from polyculture research to landscape-insect research 

(i.e. from small-scale to large-scale diversity studies).  In particular, focusing on the 

mechanisms underlying landscape-insect relationships will increase our ability to 

predict the effects of landscape-scale agricultural diversification on pest management.  

Whereas polyculture studies indicate that both direct and indirect effects of habitat 

diversity help to suppress herbivore pests and that direct effects might be most 
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important, only the possibility of indirect effects has received attention in landscape-

scale studies.   

If landscape-scale diversity, indeed, only affects herbivores indirectly through 

its effects on natural enemies, this has important implications for landscape-herbivore 

relationships.  For example, we would predict that pests with depauperate natural 

enemy communities, common with invasive pests (Barbosa and Schultz 1987), are not 

strongly affected by landscape diversification.  Also, pests with relatively sessile 

natural enemies, such as nematodes (Toepfer et al. 2009), would be expected to 

respond more to within-field management than to landscape characteristics.  On the 

other hand, if diverse landscapes also directly suppress herbivore pests, these 

predictions do not hold.   Therefore, understanding the processes that create 

landscape-herbivore relationships is necessary to correctly predict those relationships.  

In the following sections, I conceptually extend the „enemies hypthesis‟ and „resource 

concentration hypothesis‟ to the landscape scale and specify the mechanisms by which 

landscape diversity may indirectly and directly affect herbivore populations and 

provide pest control services.   

 

Indirect Effects of Landscapes 

With landscape-scale diversification, the mechanisms whereby natural enemy 

populations are increased are probably similar to those underlying the „enemies 

hypothesis‟ at the polyculture scale.  Namely, diverse landscapes offer diverse food 

resources and habitats with superior microclimates.  An added benefit of landscape-

scale habitat diversity is the increased availability of overwintering sites for natural 

enemies.  However, in contrast to polycultures, resources are spatially segregated in 

diverse landscapes.  Therefore, in order for diverse landscapes to enhance biological 

control, natural enemies must be able to access these segregated resources through 
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dispersal.  Examining natural enemy dispersal and distributions in different habitats 

can provide insight into the indirect effects of diverse landscape on agricultural pests. 

Natural enemies can be classified as species that:  1) are restricted to 

undisturbed, or natural, habitats, 2) favor natural areas but spill over into disturbed 

habitats, 3) utilize both disturbed and undisturbed habitats, often at different life 

stages, or 4) are restricted to disturbed habitats  (Duelli et al. 1990, Burel et al. 2000).  

For biological control purposes, it is optimal for natural enemies to be in categories 

three or four.  These types of natural enemies are dispersive enough to locate and prey 

upon herbivore pests where infestations begin (Wiedenmann and Smith 1997).   

However, landscape-scale diversification is likely to benefit natural enemies in 

categories two and three.  These types of insects use both undisturbed and disturbed 

habitats, which are available in diverse landscapes.  Therefore, knowing which natural 

enemies fall into these two categories would be useful for predicting the effects of 

landscape diversification.  Category three natural enemies are most of the biological 

control species commonly studied in annual cropping systems and include many 

spiders, predatory insect species of Heteroptera, Homoptera, Neuroptera, and 

Coleoptera predatory insects, as well as Hymenopteran and Dipteran parasitoids 

(Wissinger 1997, Marino et al. 2006).  Natural enemies that disperse between annual 

crops and more stable habitats are common.   In pre-agricultural times, these species 

probably inhabited grassland-forest ecotones and were already adapted to utilizing 

resources from habitat mosaics (Wissinger 1997).   

Insects with limited propensity to disperse into crop fields, category two 

natural enemies, are expected to be more sensitive to the particular configuration of 

diverse landscapes than category three natural enemies.  Their presence in disturbed 

habitats would presumably increase in diverse landscape with small fields and high 

perimeter to area ratios.  However, predicting which natural enemies fall into this 
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category is complicated.  Similar to category three natural enemies, which are more 

likely to disperse into crop fields, category two natural enemies include a wide array 

of arthropod taxa with varied life histories.  In general, spiders appear more restricted 

to undisturbed habitat boundaries than insects (Duelli et al. 1990, Samu et al. 1999), 

although there are exceptions to this rule (Lemke and Poehling 2002).   Beyond 

contrasting spiders and insects, comparing different functional groups such as 

predators or parasitoids, dispersal modes such as aerial or cursorial, or size provides 

no obvious trends in natural enemy distributions in agricultural fields (Duelli et al. 

1990, Dennis and Fry 1992, Marino and Landis 1996, Fournier and Loreau 1999, 

Holland et al. 2005).   For example, some large, epigeal carabids are increasingly 

abundant near field edges while others are ubiquitous throughout agricultural fields 

(Holland et al. 2005).  Likewise, some small, aerially dispersing parasitoids show edge 

effects while others do not (Marino and Landis 1996). If there are predictive profiles 

for natural enemies that are fairly restricted to the proximity of natural habitats, they 

are likely based on complex suites of factors. 

Despite the difficulties in predicting which natural enemy species most benefit 

from landscape-level diversification, it seems clear that extra-field habitat diversity 

reliably increases the number of natural enemy species within annual crop fields.  In 

his studies of natural enemies in cereals versus less disturbed grasslands and wetlands, 

Duelli (1990) determined that 60% of spider, 16% of carabid, and 22% of staphylinid 

species present in wheat would have been absent without the surrounding semi-natural 

areas.  Similarly, Dennis and Fry (1992) found that 45% of the natural enemy groups 

they collected in pitfall traps showed edge effects within 50m of field boundaries.  In 

irrigated wheat fields surrounded by desert in Israel, 60% of spider species in the 

wheat were thought to have spilled over from the surrounding landscape (Gavish-

Regev et al. 2008).  In general, species richness should increase with landscape-level 
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diversification, and small fields with high perimeter-area ratios are more likely to 

receive dispersing natural enemies throughout fields than are large fields with low 

ratios. 

 

Direct Effects of Landscapes  

Whereas the mechanisms of the „enemies hypothesis‟ seem to apply to diverse 

landscapes so long as natural enemies can disperse among habitat patches, the major 

mechanisms of the „resource concentration hypothesis‟ do not.  The structural and 

chemical complexities of plant mixes that directly suppress herbivores by decreasing 

pest immigration and increasing pest emigration into and out of polycultures do not 

exist in diverse landscapes that still harbor large monocultures of hosts.  However, in 

diverse landscapes, the distances among suitable crop fields and the number of habitat 

boundaries between host crops is increased, on average.  This can lead to direct effects 

on herbivore populations by increasing mortality during dispersal and by reducing 

fitness.  In the following sections, I combine evidence from empirical, modeling and 

evolutionary studies to support the thesis that diverse landscapes directly increase 

herbivore mortality and decrease fitness.   

 

Direct Effects: Dispersal Mortality 

Insect mortality can be high during dispersal and may increase in diverse 

landscapes with fewer host patches.  This is especially true for passively dispersed 

insects.  Insects dispersing above their flight boundary layer in the atmosphere have 

little control over their displacement and are carried downwind.  In aircraft-net 

surveys, 18 orders of insects have been collected at altitudes between 200-5000 feet 

(Gatehouse 1997).  Even wingless arthropods, such as gypsy moth larvae (Lymantria 

dispar), Douglas-fir tussock moth larvae (Orgyia pseudotsugata), eastern spruce 
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budworm larvae (Choristoneura fuminferana), and many spiders and mites engage in 

aerial movement with adaptive behaviors for passive wind dispersal on silks (Pedgley 

1982).  After downwind displacement, passive dispersers are then faced with the 

challenge of locating hosts.  Of the many aspects of insect dispersal, “The termination 

of migration is the least understood” (Reynolds et al. 2006). However, mortality 

during descent and host location can be quite high.  There are various accounts of 

small insects landing in inappropriate places such as lawns (Kisimoto and Sogawa 

1995) and mountaintop snowfields (Edwards 1986).  Many insects also die after being 

blown out to sea (Chapman et al. 2004), or over the Great Lakes (Reynolds et al. 

2006).  Also, when airborne insects are deposited by rain, small insects probably 

drown in large numbers (Reynolds et al. 2006).   

While observations indicate that many insects die during dispersal, there are 

few examples of precise dispersal mortality estimates.  However, the existing 

estimates are high.  Mortality of the bird cherry-oat aphid leaving grasses and 

searching for overwintering hosts in England was calculated at 99.4% between 1984-

1992 (Ward et al. 1998).  Others have even speculated the percentage of aphids dying 

during dispersal to be as high as 99.999% (Johnson 1969).  Recent estimates of 

western spruce budworm dispersal mortality in a Douglas-fir region in southern 

British Columbia, Canada varied between 35-63% over 5 years of observation (Nealis 

and Regniere 2009).  Notwithstanding the dearth of specific estimates of insect 

mortality during dispersal, there is reason to suspect that it is high, especially for 

passively dispersed insects, and could be increased by reducing the prevalence of 

suitable habitat in diversified agricultural landscapes. 

For strong flyers that can actively direct their search for hosts, it is less clear 

how landscape diversification would affect mortality during the search for new host 

patches.   Many insects utilize visual and olfactory cues in host discovery (Bernays 
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and Chapman 1994).  However, even for strong flyers, these cues may be more 

difficult to detect in diverse landscapes with less hosts and more habitat boundaries.  

For example, some butterflies turn around upon encountering habitat boundaries 

(Charrier et al. 1997, Ries and Debinski 2001).  More habitat boundaries in diversified 

landscapes may, therefore, make it more difficult for these species to find hosts.  Even 

if changes in landscape structure do not completely prohibit host location, they likely 

will result in greater search times.  More time searching for hosts means a greater 

chance of being carried away by weather fronts (Sparks et al. 1985).  Increased host 

searching time may also increase the probability that herbivore pests will be attacked 

by natural enemies.  Thus, while mortality of strong flyers during dispersal is far from 

being understood, there is reason to believe it will increase, to some degree, with 

landscape diversification. 

 

Direct Effects: Reduced Fecundity & Host Discrimination 

In addition to the likelihood of increased mortality during dispersal, there 

would likely be fitness consequences for successful dispersers if their hosts became 

less prevalent with landscape diversification.  Fueling dispersal is energetically costly 

and can reduce the energy reserves available for reproduction.  Zera & Denno (1997) 

reviewed the trade-offs between dispersal and fitness in wing polymorphic insects and 

highlighted the high energetic costs of triglyceride biosynthesis to fuel extended 

dispersal.  During dispersal, the metabolic rates of insects can be 20-100 times higher 

than when resting (Rankin and Burchsted 1992).  Energy devoted to dispersal may 

mean energy unavailable for reproduction.  Work on soybean aphids supports 

dispersal-fecundity trade-offs.  Zhang et al. (2009) found that soybean aphids that flew 

more than 0.5km in flight mill studies had significantly lower fecundity and longevity 

than aphids that flew less than 0.5km.  Interestingly, this fitness reduction was also 
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transferred to the next generation and offspring of long distance dispersers also had 

reduced fecundity.  Presumably, lipid depletion during long-distance dispersal affected 

provisioning of the developing oocyte, resulting in reduced fitness a generation 

removed from the dispersal event (Zhang et al. 2009).    

Additional fitness consequences may be incurred in diverse landscapes if 

herbivores accept lower quality hosts than they would in simple landscapes.  Various 

studies have shown that increased dispersal or depleted energy reserves are related to 

decreased host discrimination.  For example, fruit flies that were starved for 24hrs 

were more likely than fruit flies that had not been starved to accept rotting oranges, 

despite the fact that successful progeny development on oranges was only half that on 

apples (Hoffmann and Turelli 1985).   Similarly, Kareiva (1982) observed that flea 

beetle discrimination of collard host quality decreased as distances between host 

patches increased.  Theoretical investigation into animal movement and host 

discrimination also predicts reduced discrimination with increasing distances between 

patches (Walsh 1996).  If herbivore dispersal increases with landscape diversification, 

more herbivores may accept low-quality hosts, which would reduce their fitness.   

 

Direct Effects: Modeling Evidence 

Another line of evidence that herbivore mortality may be higher in diverse 

landscapes, with increased dispersal distances among patches, than in simple 

landscapes comes from population models of butterflies. Models that incorporate the 

assumption that mortality increases with dispersal distance have proven accurate in 

predicting insect population dynamics.  In 2000, Ilka Hanski and colleagues (Hanski et 

al. 2000) published their Virtual Migration Model in which the probability of dispersal 

mortality decreases with the connectedness of habitat patches.  Connectedness, in turn, 

depends on the distances among habitat patches and insect dispersal behavior.  In 
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other words, when habitats are not connected, there is high mortality.  When the 

Virtual Migration Model was fitted to mark-recapture data on the false heath fritillary 

butterfly, Melitaea diamina, in Finland approximately 17% were estimated to have 

died during dispersal (Hanski et al. 2000).  The model was also fitted to mark-

recapture data on the bog fritillary butterfly, Proclossiana eunomia, in Belgium where 

12% were estimated to have died during dispersal (Petit et al. 2001).  When 

demographic parameters of P. eunomia were derived for populations inhabiting four 

landscapes across Finland and Belgium that varied in the percentage of suitable 

habitat, there were large differences in the estimates of dispersal mortality.  Estimates 

varied from approximately 5% in a landscape with 48% suitable habitat to over 30% 

in landscapes with either 13% or 0.4% suitable habitat (Mennechez et al. 2003).  

While these studies provide only indirect evidence for insect mortality during 

dispersal, they do appear to describe butterfly dynamics in patchy landscapes.  These 

models describing empirical data indicate that dispersal mortality would increase for 

insect pests whose hosts are less prevalent in diverse agricultural landscapes.     

 

Direct Effects:  Evolutionary Evidence 

Evolutionary trends also indicate the risks to insects during dispersal; risks that 

may increase if agricultural landscapes were diversified so that suitable habitat was 

reduced.  First, there is evidence that dispersal ability is lost in stable habitats.  Roff 

(1990) found that in stable habitats such as woodlands, the ocean, various freshwater 

habitats, and caves, flightlessness was more prevalent than expected within many 

insect orders.  Furthermore, studies of wing polymorphism within species, where some 

individuals are winged and some are not, also confirm that winglessness is associated 

with habitat stability (Zera and Denno 1997).  This has also been observed with 

species of spider mites, in which populations in orchards were less dispersive than 
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populations in corn (Margolies 1995).  Reduced dispersal in stable habitats appears to 

be an adaptation for the risks associated with dispersal.   

A second evolutionary indication that dispersal is risky is that dispersive 

species of insects often possess greater reproductive capacity than less dispersive 

species.  In a comparison of life history strategies of congeneric insects, Dingle (1981) 

found that the more dispersive species consistently exhibited higher intrinsic rates of 

increase.  Higher reproductive rates in dispersers indicate a possible compensation for 

mortality during dispersal.  It is worth noting that evolutionary evidence initially 

appears to contradict empirical evidence concerning dispersal-fecundity relationships 

in insects.  Evolutionary evidence indicates that more dispersive species have higher 

fecundities while empirical evidence indicates that dispersal reduces herbivore 

fecundity.  However, there are likely differences between an evolved adaptation for 

dispersal and the costs to a species whose habitat is rapidly diversified.  If landscape 

diversification occurs over short time periods, agricultural pest are likely to experience 

fitness costs associated with increased energy expended to disperse among disparate 

host patches.  However, over evolutionary time, an insect may evolve higher fecundity 

in response to increased risks associated with dispersal in diverse landscapes.   

 

Future Research 

To better understand the direct effects of landscape-scale diversity on 

agricultural pests, it will be fruitful to design studies that compare herbivore mortality 

and fitness in different landscapes (Figure 2.2).  Life table analyses of pests in 

different landscapes could be conducted to estimate differences in dispersal mortality 

and fecundity.  Behavioral studies of pest dispersal at habitat boundaries could provide 

useful information about whether locating new habitat patches is more difficult in 

diverse landscapes.  Field studies comparing pest populations in simple and diverse 
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Figure 2.2.  Proposed research agenda to further understand possible mechanisms, namely 

increased dispersal mortality and reduced fitness, by which diverse agricultural landscapes 

may directly affect herbivore populations. The bulleted list describes methods for 

quantifying these direct effects. 
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landscapes could be expanded to also measure indicators of pest fitness.  For instance, 

one could compare the biomass, lipid and carbohydrate reserves, and/or egg loads of 

pest immigrants in different landscapes.   Differences in host discrimination by pests 

in simple and diverse landscapes could also be measured to assess fitness 

consequences of landscape diversification.  Together, these types of studies will help 

to create a mechanistic understanding of the direct effects of landscape diversification 

on agricultural insect pests.   

 

Summary / Conclusions 

Diversifying agriculture at both local- and landscape-scales can help to 

suppress pest herbivores in agriculture.   Much of the polyculture literature has 

followed from Roots 1973 monograph in which he proposed the „resource 

concentration hypothesis‟ and „enemies hypothesis‟, which outline how plant diversity 

both directly and indirectly contributes to reduced pest populations.  Polycultures can 

directly reduce herbivore loads by masking the visual and chemical cues involved in 

host location and by changing properties of the host plant.  Polycultures can indirectly 

reduce herbivore loads by enhancing natural enemy populations that benefit from the 

increased diversity and duration of food as well as an improved microclimate.  

Landscape-scale diversity studies are far fewer than polyculture studies and there has 

been less emphasis on parsing out the mechanisms underlying patterns of pest 

suppression.  In particular, there has been little exploration of the direct effects of 

landscape diversity on pest populations.  Whereas mechanisms of the „enemies 

hypothesis‟ appear applicable to landscape-scale diversification so long as natural 

enemies can disperse among segregated resources, the mechanisms underlying the 

„resource concentration hypothesis‟ appear somewhat less applicable.  However, direct 

effects of landscape diversification seem likely and include increased mortality and 
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reduced fitness as insects expend more energy dispersing among habitat patches and 

possibly accept hosts of inferior quality.  Future research into the mechanisms 

controlling landscape-herbivore relationships will hone our predictions of the pest 

control services supported by diverse landscapes.
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CHAPTER 3 

 

THE LANDSCAPE CONTEXT OF INSECT HERBIVORE AND NATURAL 

ENEMY DENSITIES:  A MULTI-SCALE APPROACH 

 

Megan E. O’Rourke, Kaitlin Rienzo-Stack, and Alison G. Power  

 

Abstract 

Landscapes are important regulators of ecosystems services, including 

agricultural pest management.  However, relationships between land-use and 

agricultural insect pests are not well understood and investigators have not considered 

many possible complexities in the relationships.  We tested the hypothesis that 

landscape-insect relationships can be better understood by considering multiple scales 

of land-use simultaneously, and by considering land-use at scales much larger than are 

typical.  We tracked densities of three specialist herbivore pests, the European corn 

borer (Ostrinia nubilalis), the western corn rootworm (Diabrotica virgifera), and the 

northern corn rootworm (Diabrotica barberi), and two generalist predator lady 

beetles, Coleomegilla maculata, and Propylea quatuordecimpunctata, in field corn 

and determined their relationships to three scales of land-use: perimeter, 1km-, and 

20km-radius areas.  Predicted relationships between pest densities and scales of land-

use were quite different when scales were considered individually or together in 

analyses.  A mutli-scale approach indicated that pest densities were either higher (D. 

virgifera and D. barberi) or unchanged (O. nubilalis) in landscapes with more corn 

while natural enemy densities were either lower (C. maculata) or unchanged (P. 

quatuordecimpunctata).  These relationships were not always straightforward and 

1km-radius or perimeter scale land-use had more effect on D. virgifera and C. 
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maculata densities, respectively, when the larger landscape had high amounts of corn. 

The 20km radius land-use scale was a significant predictor of D. virgifera densities 

and our data indicate that pests may respond to land-use at larger scales than natural 

enemies.   Interactions among scales and the significance of 20km radius areas for 

predicting insect densities underscore the complexities of landscape-insect 

relationships.  Government policies that affect habitat diversity on agricultural lands 

may have unexpected effects on insect pest control, depending on the scales of land-

use they influence.  

 

Introduction 

 Evidence suggests that increasing agricultural diversity can enhance ecosystem 

services including biological control and insect pest suppression (Bianchi et al. 2006, 

Gardiner et al. 2009).  Diverse landscapes can enhance natural enemy densities and 

species richness by providing more overwintering sites (Sarthou et al. 2005) and prey 

(Landis et al. 2000).  These natural enemies, in turn, prey upon pests. Additionally, 

diverse landscape may directly suppress herbivore populations.  While direct 

mechanisms are far less studied than indirect mechanisms, there is evidence that 

herbivore mortality may increase and fecundity may decrease in diverse landscapes 

because pests must disperse farther than in simple landscapes to find suitable habitat 

(Fahrig and Paloheimo 1988, Schneider 1999, den Belder et al. 2002, O'Rourke 2010).    

 While most studies support the idea that natural enemy populations are 

enhanced and that herbivore pests are suppressed in diverse agricultural landscapes, 

there are exceptions.  Usually, these exceptions can be related to insect life history.  

For example, herbivore pests that use multiple hosts or that overwinter in non-crop 

habitat may actually benefit from diverse landscapes (Bianchi et al. 2006, Zaller et al. 

2008).  However, landscape-insect studies may also produce confusing results due to 
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particulars of experimental design.  Specifically, considering only one scale of land-

use at a time and not considering large enough scales may confound landscape-insect 

research.       

A “concentric circle” approach is commonly used to explore landscape-insect 

relationships. In these types of studies, insect densities within sample fields are related 

to land-uses in circular regions of increasing radii around fields  (Tscharntke et al. 

2005, Westphal et al. 2006).  This can create statistical issues.  If land-uses at different 

spatial scales are correlated, examining individual scales of land-use may indicate that 

insects are positively correlated to a landscape scale when they are, in fact, negatively 

correlated (Figure 3.1).  Indeed, while these results were not discussed, Bianchi et al. 

(2005) found that linear regression estimates between land-use at different scales and 

biological control of Mamestra brassicae eggs in cabbage could be quite different and 

could even change sign when scales of land-use were tested individually or together.   

 Empirical evidence also indicates that land-use at multiple scales concurrently 

affects insects.  For example, Tscharntke et al. (2002) found that parasitism of rape 

pollen beetles was lower at the centers than the edges of fields only in simple 

landscapes dominated by agriculture and not in diverse landscapes.  Brewer et al. 

(2008) found that the effects of field-scale landscape modifications depended on the 

regional landscape context.  In their study, adding sunflower strips to wheat–fallow 

strip cropping systems increased rates of wheat aphid parasitism more in simple 

regional landscapes dominated by grasses than in diverse landscapes with more non-

grass habitat.  Both of these examples support the idea that the regional landscape 

context determines the effectiveness of local landscape manipulations and that local 

land-use matters more when the regional landscape is not already diverse (Tscharntke 

et al. 2005).
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Figure 3.1.  Relationships among insect densities, local-, and landscape-scale 

agricultural land use with hypothetical data to illustrate how multivariate analyses 

should be used when two landscape factors are correlated.  Univariate regression 

between insect density and local agricultural land use indicates a significant 

positive relationship (slope = 0.50; P = 0.046) while multivariate analysis reveals a 

significant negative relationship (slope = -0.93; P < 0.0001). 
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Insect dispersal behavior provides further support for examining the effects of 

multiple scales of land-use concurrently in landscape-insect studies.  Insects typically 

have different dispersal behaviors and habitat requirements at different life stages, 

such as reproduction, overwintering, and foraging (Johnson 1969).  For example, 

many insects, including species of aphids and lady-beetles, rely on non-crop habitats 

for overwintering while relying on agricultural habitats for food (Moran 1992, Hodek 

and Honek 1996).  They may undergo relatively long-distance migrations traveling to 

and from overwintering sites.  However, when searching for food, the same insects 

may typically take shorter “appetitive” flights and will settle in agricultural areas with 

abundant food (Johnson 1969). Thus, when insects require natural areas to overwinter, 

their populations may correlate positively to natural habitat at large scales, but their 

distributions when sampled during growing seasons may be positively correlated to 

agricultural food sources (i.e. negatively correlated to natural habitat) at local scales.  

Even insects that are habitat specialists may fly long distances to lay eggs while 

making shorter flights to search for food (Johnson 1969, Spencer et al. 2005). In this 

case, the larger landscape may determine population dynamics while local 

distributions may result from interactions of local land-use and species-specific 

foraging behaviors.  

 Increasing the scale at which we measure land-use may also be an important 

step towards better understanding landscape-insect relationships.  In previous studies, 

the largest landscapes usually did not exceed 5km radius areas, (den Belder et al. 

2002, Bianchi et al. 2005, Bianchi et al. 2008), and were usually much smaller.    

These small scales may suffice for insects that disperse over short distances 

(Tscharntke et al. 2005).  However, insect dispersal is poorly understood, and often 

underestimated (Johnson 1969).  Furthermore, larger landscapes are probably 

important to strong dispersers, including many agriculturally adapted species 
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(Peterson and Denno 1998).  Indeed, the few studies that have examined regional land-

use suggest it may be an important predictor of agricultural insect populations.  Elliott 

et al. (1999) measured landscapes in 24 x 24 km areas in South Dakota and found that 

patterns of land-use at large scales may affect insect predator abundances.  In 

Germany, Clough et al. (2005) studied spiders in three different regions measuring 

400-500km
2
, and found that abundances of the majority of species were variable 

among the regions.  However, they did not attempt to discern attributes of the regions 

possibly responsible for these differences. 

In this study, we designed field surveys to test the relationships between land-

use and densities of insects in field corn (Zea mays) in upstate New York.  Surveys 

were specifically designed to include large, regional scales of land-use, which were 

20km radius circular areas around sample fields (1257km
2
).  They were also designed 

to test for simultaneous effects of multiple scales of land-use on insect densities.  

Therefore, we measured land-use at the 1km radius (3km
2
), and perimeter (land-use 

bordering sample fields) scales around sample fields, in addition to the 20km radius 

scale.    

We sampled both herbivore and natural enemy species of insects in corn.  The 

herbivores were three of the most economically important corn pests in the United 

States:  the northern corn rootworm (Diabrotica barberi, Coleoptera: Chrysomelidae), 

the western corn rootworm (Diabrotica virgifera, Coleoptera: Chrysomelidae), and the 

European corn borer (Ostrinia nubilalis, Lepidoptera: Pyralidae). In New York, 

rootworm adults typically lay eggs during autumn at the base of corn plants.  In spring, 

eggs hatch and larvae feed on corn roots if corn has been planted there again (Levine 

and Oloumi-Sadeghi 1991).  European corn borer adults lay eggs on corn during 

summer and their larvae burrow into leaves and stalks (Mason et al. 1996).  In addition 

to their economic importance in agriculture, D. barberi and D. virgifera herbivores 
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were specifically included in this study because insect natural enemies are not thought 

to play important roles in their population dynamics (Levine and Oloumi-Sadeghi 

1991).  Thus, relationships between landscapes and Diabrotica densities are likely due 

to the direct effects of habitat configuration rather than to indirect effects via changes 

in natural enemy populations. We also sampled two generalist predator lady-beetles, 

Coleomegilla maculata (Coleoptera: Coccinellidae), and Propylea 

quatuordecimpunctata (Coleoptera, Coccinellidae).  C. maculata and P. 

quatuordecimpunctata larvae and adults feed on a variety of soft-bodied insects, and 

corn pollen is an important food source for C. maculata.  Both species can live 

multiple years and overwinter as adults in perennial habitat.  C. maculata is native to 

the United States while P. quatuordecimpunctata is a non-native, introduced species 

(Hodek and Honek 1996).   

In concurrence with the prevailing views of landscape-insect relationships, we 

hypothesized that herbivore densities would be higher in simple agricultural 

landscapes with more corn and that, conversely, natural enemy densities would be 

lower in simple landscapes with less alternative prey and overwintering sites.  

However, we further hypothesized that multiple scales of land-use affect insect 

densities.   Specifically, we expected that herbivore and natural enemy populations 

would be more affected by local land-use where the regional landscape was dominated 

by corn than where it was already diverse.  We also expected that insect densities 

could exhibit opposite relationships with local and regional scales of land-use.   

 

Materials & Methods 

Study Region and Landscapes  

 Sampling was conducted in 2006 and 2007 in upstate New York, which 

contains a range of agricultural land-use intensities.  All sampling was conducted in 
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first-year corn (Zea mays) fields that were planted with non-Bt varieties, and were 

rotated from a variety of different crops grown the previous year.   Sampling only 

first-year corn ensured that any rootworm and European corn borer adults in those 

fields were immigrants from the surrounding landscape.  Furthermore, sampling only 

non-Bt corn ensured that the offspring of European corn borer immigrants could 

survive and cause detectable damage in sampled fields.  Additionally, no aerial 

insecticides were applied to sample fields.  However, in some fields, clothianidin 

insecticidal seed treatments or tefluthrin soil insecticides were applied to control for 

various seed and seedling insect pests, not including the insects we sampled.  Weeds 

were managed independently by farmers in each field and were controlled through 

conventional herbicides.  Planting dates ranged from May 15-June 15. 

 Thirty corn fields were sampled in 2006 and 36 different corn fields were 

sampled in 2007.  The centers of fields were at least 2km apart.  In 2006, the 30 fields 

were distributed within four regions with four to ten fields per region.  In 2007, the 36 

fields were evenly distributed within 6 circular regions.  Each region was a circular, 

20km radius area and the centers of regions were located at least 40km apart in a given 

year of study (Figure 3.2).   

 Landscapes surrounding sample fields were measured at three spatial scales: 

perimeter, 1km radius, and 20km radius circular areas.  At the 20km scale, the 

percentage of land in row crops was determined from the 2001 National Land Cover 

Database with 30m
2
 resolution raster data (http://www.mrlc.gov/) using ArcGIS 9.0 

software.  Direct field observations were used to determine the percentage of land in 

corn at the 1km and perimeter scales surrounding sample fields.  Observed land-use 

was then digitized into vector maps over TerraServer aerial photographs 

(http://terraserver-usa.com/) using Manifold 8.0 software.  Percent corn at the 1km 

scale was calculated using all observed corn except the sample field.  Percent corn at

http://www.mrlc.gov/
http://terraserver-usa.com/
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Figure 3.2.  Three scales of land-use measured around first-year corn fields where 

insects were sampled in 2006 and 2007. A)  Twenty kilometer radius regions in 

upstate New York. Grey, black, and grey/black dashed circles indicate regions 

sampled in 2006, 2007, and in both 2006 and 2007, respectively.  Magnified view 

of one large region showing how multiple sample fields were nested within each 

20km radius region.  The six black circles represent sample fields surrounded by 

1km radius regions.  Black pixels represent field crops.  C)  Magnified view of one 

corn field with its perimeter highlighted in white and the surrounding land-use 

within a 1km radius region.  Black polygons represent corn fields.   
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the perimeter scale was calculated as the percentage of a sample field’s edges abutting 

a corn field or a road that was bordered by a corn field. 

 

Insect Sampling 

 Densities of two herbivores (western corn rootworm, Diabrotica virgifera, and 

northern corn rootworm, Diabrotica barberi) and two generalist predator lady beetles 

(Coleomegilla maculata and Propylea quatuordecimpunctata) were monitored in corn 

fields using sticky cards. .  Ostrinia nubilalis (European corn borer) was monitored by 

measuring percentages of plants with holes in the stalks caused by larvae.  

 Insects were monitored at 6 sub-sample locations per field, along two transects.  

Transects were at least 30m from each other and 30m from the parallel edges of fields.  

Insects were sampled along transects at the third corn row, at 75m, and at 150m into 

fields.  Beetle densities were monitored using Olson yellow sticky traps wrapped 

around and nailed to corn stalks at ear height according to Hein & Tollefson (1984).  

Sticky cards were monitored and replaced approximately once a week and beetle 

densities were recorded four times per field between July 31 and Sept 1 in 2006, and 

six times per field between July 24 and Sept 6 in 2007.  ECB densities were estimated 

once per year, concurrent with the last sticky-card sampling, by recording the number 

of plants with holes in the stalks of 10 plants at each of the six sub-sample locations 

per field (60 plants per field). 

 

Statistics 

 Prior to analyses, the appropriateness of using all landscape variables together 

in multiple regression models was explored by calculating correlations between 

landscape variables and their Variance Inflation Factors (VIF) proc REG in SAS 9.1 

(SAS/STAT 2003).  The effects of land-use patterns on insect densities were tested by 
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manual reverse step-wise regression using proc GLMMIX in SAS 9.1.  Each insect 

species was analyzed separately and the models began with the fixed effects: time 

(year; week for some species), 20km, 1km, and perimeter landscape variables, and all 

two and three way interactions between landscape variables.  Interactions with the 

largest P values above 0.05 were sequentially removed from the models.  Random 

effects partitioned the model variance so that fields within 20km regions were pooled 

to test for effects of 20km scale landscapes.  Models for D. virgifera and C. maculata 

included week as categorical variables and data from the same fields over weeks were 

treated as repeated measures.  For P. quatuordecimpunctata, due to low sample size, 

data were averaged across weeks per year prior to analysis.  For D. barberi, due to 

even lower sample size, data were averaged across weeks and then transformed to 

three categories (D. barberi densities card
-1

 field
-1

 year
-1

 = 0; = 0 to .1; and  > .1), 

which each included approximately 1/3 of the data.  Data for D. virgifera, C. 

maculata, and P. quatuordecimpunctata densities as well as % plants damaged by O. 

nubilalis were transformed (ln[species+1]) prior to analyses and were analyzed using 

normal distributions.  D. barberi data were analyzed using a multinomial distribution.  

Partial regression plots were used to illustrate the relationships between land-use and 

insect densities in Figures 3.3 & 3.5 (Kutner et al. 2005). 

 

Results 

Landscapes 

Landscapes surrounding sample fields were highly variable.  However, land-

uses at different scales were correlated, indicating that a field with little corn on its 

perimeter was likely to have little corn surrounding it at the 1km and 20km scales.  

Despite these correlations, multiple regression analyses between insect densities and 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 3.1.  Summary of the scales of agricultural land-use surrounding first-year 

corn fields where insects were scouted in 2006 and 2007. 
 

†
Number of independent sampling units at different scale over 2006 and 2007 

±
Variance Inflation Factors < 10 indicate acceptable collinearity for multiple 

regression (Philippi 1993) 
**

Pearson’s pairwise correlations significant at P ≤ 0.001 
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Table 3.2.  Relationships between insect densities and land-use highlighting 

significant scales of land-use (statistics in bold), and land-use parameters that differ 

in significance when examining multiple scales of land-use simultaneously or 

singly in general linear mixed models (parameter names in bold). 
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¥
Multiple landscape predictors were tested simultaneously in general linear mixed 

(GLMMIX) models. 
β 

Untransformed means of # beetles sticky card
-1

 week
-1

 year 
-1

; P. 

quatuordecimpunctata data are the “mean for 2006; mean for 2007”. O. 

nubilalis mean is the untransformed percentage of plants damaged year
-1

. 
€
GLMMIX models tested one landscape measurement at a time along with year 

and/or week predictor variables. 
ŧ
Insect density data (except for D. barberi) were natural log transformed prior to 

analyses (i.e. ln[insect s+ 1]). 
†
GLMMIX models for D. barberi used multinomial distributions; prior to analyses 

data were transformed:  0=2; 0 to .1=1; >.1=0. 
±
Positive estimates indicate that insect populations were larger in 2007 than 2006. 

£
Statistics were variable in different models. 

Ŧ
Multiple estimates were generated because week was a categorical variable. 

§
Not applicable-interactions could not be tested. 

¤
Beta estimates of GLMMIX models that predict transformed values of insect data.  

Land-use parameters are scaled as proportions corn or row crops (range = 0 

to 1) in the models. 
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Figure 3.3.  Contrasting relationships between D. virgifera (WCR) densities and 

land-use when land-use scales are tested individually (A,B,C) or together (D,E) in 

regression analyses. Relationships between D. virgifera densities in field corn and 

land-use at the 20km radius (A), the 1km radius (B), and the perimeter (C) scales.  

D)  Interaction between 1km corn and 20km row crops and D. virgifera densities 

with the predicted effects of the 20km scale depicted by three regression lines 

(solid=33% row crops, dashed=20%, dotted=10%).  Data points represent residual 

D. virgifera densities when perimeter and year estimates are taken into account.  

Filled circles, open circles, and crosses show data where row crops within the 20km 

radius surrounding regions were 32-35%, 20-22%, or  9.5 -10.5% of total land-use, 

respectively.  E)  Regression of D. virgifera residual densities against the 

percentages of sample fields’ perimeters bordered by other corn fields accounting 

for sampling year and agricultural land-use at 20km, 1km, and 20km x 1km scales.   
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Figure 3.4.  Ordinal logistic regression plot showing how the probability that D. 

barberi densities will fall within three different categories (0; 0 to .1; >.1) varies 

with the amount of corn within 1km radius regions surrounding sample fields. 
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Figure 3.5.  Contrasting relationships between C. maculata (C. mac) densities and 

land-use when land-use scales are tested individually (A,B,C) or together (D,E) in 

regression analyses. Relationships between C. maculata densities in field corn and 

land-use at the 20km radius (A), the 1km radius (B), and the perimeter (C) scales.  

D) Regression between residual C. maculata densities and row crops within 20km 

radius regions around sample fields with sampling year, 1km, perimeter, and 1km 

x perimeter scales of agricultural land-use taken into account.  E)  Interaction 

between 1km and perimeter scales of corn and C. maculata densities with the 

predicted effects of the perimeter scale depicted by two regression lines 

(solid=40% corn, dashed=10% corn).  Data points represent residual C. maculata 

densities when 20km scale row crops and sampling year are taken into account.  

Filled and open circles represent sample points where corn was >20-46% or 0-

20%, respectively, of total land use. 
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multiple scales of land-use were still appropriate, as indicated by low variance 

inflation factors for each land-use scale (Table 3.1).   

 

Landscapes and Herbivores 

 Densities of two herbivores, D. barberi and D. virgifera were significantly 

related to land-use surrounding first-year corn fields.  In contrast, the percentage of 

plants damaged by O. nubilalis was unrelated to land-use.  Densities of D. virgifera 

immigrants ranged from 0.2 to 101 insects week
-1

 sticky card
-1

.  D. barberi abundance 

was much lower in both years of study and ranged from 0 to 2.2 insects week
-1

 sticky 

card
-1

 and no individuals of this species were trapped in 30% of surveyed fields.  O. 

nubilalis damage was detected in 94% of fields surveyed and affected up to 56% of 

plants.   

For D. virgifera, linear regressions between insect densities and individual 

scales of land-use showed significant relationships at the 1km and 20km scales, but no 

relationship at the perimeter scale (Table 3.2; Figure 3.3 A, B, & C).  More row crops 

at the 20km scale and more corn at the 1km scale were related to higher densities of D. 

virgifera adults immigrating into corn fields.  Analysis of the simultaneous effects of 

multiple scales of land-use on D. virgifera densities showed that the effect of corn at 

the 1km scale depended on land-use at the 20km scale (Figure 3.3 D).  D. virgifera 

densities showed no predicted increase with increasing corn at the 1km scale where 

only 10% of land was planted to field crops at the 20km scale.  However, with 33% 

row crops at the 20km scale, fields surrounded by 50% corn at the 1km scale were 

predicted to have nearly nine times higher densities of D. virgifera immigrants than 

fields with no corn in the surrounding 1km scale landscape.  When accounting for corn 

at the 1km scale and row crops at the 20km scale, increasing amounts of corn on the 

perimeter of first year corn fields was related to lower densities of D. virgifera (Figure
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3.3 E).  Regressions between D. virgifera densities and individual or multiple scales of 

land-use suggested different relationships at every scale of land-use (Table 3.2; Figure 

3.3).   

For D. barberi, logistic regression that included only one scale of land-use 

indicated that at the 1km scale, the percentage of corn significantly predicted the 

probability of D. barberi immigrants.  Additionally, more corn bordering sample 

fields was related to higher densities of D. barberi (Table 3.2).  Logistic regressions 

that included more than one scale of land-use showed that more corn was related to 

higher densities of D. barberi only at the 1km scale.  In fields with no corn in the 

surrounding 1km radius areas, there was approximately a 50% probability of D. 

barberi immigrants. In contrast, there was greater than 90% probability of D. barberi 

immigrants into fields where the surrounding 1km radius areas were comprised of 

50% corn (Figure 3.4).   

 

Landscapes and Ladybeetles 

 In contrast to the herbivorous beetles, more corn in the landscape was related 

to lower densities of C. maculata.  P. quatuordecimpunctata lady-beetles were less 

abundant than C. maculata and exhibited weaker relationships with land-use.  C. 

maculata were trapped in every field sampled and ranged from 0.75 to 23 insects 

week
-1

 sticky card
-1

.  P. quatuordecimpunctata were less abundant, ranging from 0 to 

1.8 insects week
-1

 sticky card
-1

, and were not trapped in 6% of fields. 

Like D. virgifera, predictions of C. maculata densities based on land-use 

varied when land-use scales were considered singly or together (Table 3.2).  With 

regressions between C. maculata and individual scales of land-use, more row crops at 

the 20km scale or more corn at the 1km scale was consistently related to lower C. 

maculata densities (Table 3.2; Figure 3.5 A & B).  Corn bordering sample fields had 
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no effect on C. maculata densities when the effect of perimeter scale corn was 

considered in isolation from other scales of land-use (Table 3.2; Figure 3.5).  When 

multiple scales of land-use were used as predictor variables in a single analysis of C. 

maculata densities, there was a significant interaction between 1km scale and 

perimeter scale corn.  Where there was more corn bordering sample fields, increasing 

corn at the 1km scale was less detrimental to C. maculata populations than where non-

corn habitat predominated on field borders (Figure 3.5 E).   Accounting for 1km and 

perimeter corn, more row crops in the landscape at the 20km scale was not 

significantly related to lower C. maculata densities (Figure 3.5 D).   

P. quatuordecimpunctata densities were only weakly, if at all, related to 

surrounding landscapes.  In regression analyses with only single scales of land-use as 

predictors of P. quatuordecimpunctata densities, only the perimeter-scale was 

significant with more corn bordering sample fields related to higher densities (Table 

3.2).  When multiple scales of land-use were considered together in analysis, no scale 

was predictive of P. quatuordecimpunctata densities.   

 

Discussion 

Our data indicate direct suppression of specialist herbivore densities in diverse 

landscapes.  In agreement with our original hypothesis, we found that densities of both 

corn pests, Diabrotica barberi and Diabrotica virgifera, were generally higher in corn 

fields surrounded by simple agricultural landscapes with more corn than by diverse 

landscapes with less corn.  . Pest suppression in diverse landscapes typically has been 

attributed to increased natural enemy densities and biological control (Thies and 

Tscharntke 1999, Thies et al. 2003).  However, for D. barberi and D. virgifera, which 

are not expected to be controlled by natural enemies (Levine and Oloumi-Sadeghi 

1991), the direct effects of habitat fragmentation in regions with low corn acreage may 
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suppress their populations.  Den Beler et al. (2002) also found evidence for direct 

suppression of onion thrips in diverse landscapes and hypothesized that woodlots 

acted as dispersal barriers for the pest.  While there are many examples where habitat 

fragmentation reduces abundances of species in natural habitats (Debinski and Holt 

2000), this research suggests that fragmentation of agricultural habitat, through 

landscape diversification, can also directly suppress pests.  Therefore, habitat 

diversification could be exploited as a cultural management tool for pests, even in the 

absence of strong control by natural enemies.   

While land-use diversity was correlated with lower densities of D. barberi and 

D. virgifera, we did not find any relationship between land-use and corn damage by O. 

nubilalis.  We consider dispersal and diet breadth to be likely reasons for this result.  

There is evidence that O. nubilalis can disperse long distances (Showers et al. 2001, 

Krumm et al. 2008, Kim et al. 2009) and populations may respond to land-use at 

scales larger than 20km radius.  Alternatively, O. nubilalis may not be as much of a 

habitat specialist as D. barberi and D. virgifera.  There is evidence that O. nubilalis 

has a wide diet breadth (Hodgson 1928) and may use alternative hosts in regions 

where corn is not abundant (Losey et al. 2001, O'Rourke et al. in press).   

In contrast to corn herbivores, abundance of the lady beetle Coleomegilla 

maculata was generally lower in simple landscapes with more corn than in diverse 

landscapes with less corn.  This is consistent with our original hypothesis that 

densities of natural enemies that rely on diverse food sources or habitats are lower in 

simple landscapes with more corn.  C. maculata forages in many crops besides corn 

and prefers to overwinter at the base of dominant trees  (Hodek and Honek 1996).  In 

contrast, we did not see an effect of landscape on densities of the lady beetle Propylea 

quatuordecimpunctata when multiple scale of land-use were considered together in 

analysis, even though it is also a generalist predator that overwinters in natural 
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habitats.  Low densities of P. quatuordecimpunctata may have made it difficult to 

detect relationships with land-use.  Alternatively, the fact that P. 

quatuordecimpunctata is invasive in the U.S. may explain these results.   Previous 

studies have shown that another invasive lady beetle, C. semptempunctata, showed no 

relationship (Elliott et al. 2002), or even a negative relationship (Kriz et al. 2006) to 

landscape diversity.  Since most introductions of non-native lady beetles for biological 

control do not result in successful establishment (Obrycki and Kring 1998), the non-

native species that have become established are presumably well-adapted to 

agricultural habitat.   

Investigating relationships between insects and land-use at multiple scales 

concurrently is a novel aspect of this research and has provided new insights.  We 

hypothesized that farm-scale land-use has a greater effect on insect densities where the 

regional landscape is simple and dominated by agriculture (Tscharntke et al. 2002, 

Brewer et al. 2008).  Data for C. maculata confirm this hypothesis (Fig 5b).  Where 

there was little corn at the 1km scale, C. maculata densities tended to be high in all 

fields, regardless of the habitat on field borders.  However, where the 1km scale 

landscape was simplified with high amounts of corn, field borders mattered.  In these 

cases, corn fields with lots of bordering corn supported higher densities of C. maculata 

than fields with alternative habitats on their perimeters.  If we assume that a 

homogenous, single-crop habitat is detrimental to generalist predator densities, this 

result initially seems non-intuitive.  However, corn pollen constitutes an important part 

of C. maculata’s diet.  Furthermore, clusters of corn fields may foster high densities of 

aphids, which can concentrate C. maculata populations near their prey (Hodek and 

Honek 1996).  Previous studies also showed that C. maculata densities increased with 

more row crops and alfalfa at the 0.5km radius scale (Kriz et al. 2006) and with more 

corn in 0.5 x 0.5km square landscapes (ColungaGarcia et al. 1997).  However, their 
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densities increased with more woods at the 4.8 x 4.8km scale in South Dakota (Elliott 

et al. 2002).  

These earlier studies suggest that clusters of corn fields at very local scales can 

concentrate C. maculata populations but that diverse land-use at broader scales 

supports larger C. maculata populations.  Our research expands on this previous work 

by suggesting, in a single study, that medium and regional scale landscapes dominated 

by corn suppress C. maculata populations, but that these lady beetles tend to 

congregate in corn fields that are clustered near one another.  This type of interaction 

between multiple scales of land-use would have been missed in a single-scale study.  

Examining multiple scales of land-use has also revealed the complexity of 

landscape relationships with herbivore pests.  We provide the first data showing that 

farm-level land-use matters more to pest populations where the regional landscape is 

dominated by agriculture.  D. virgifera densities were low everywhere the 20km scale 

landscape was already diverse.  However, with one third of the 20km scale landscape 

in row crops, diverse 1km scale landscapes had lower D. virgifera densities than 

simple 1km scale landscapes (Fig 3a).  This indicates that farm-scale diversification 

efforts to control pests may only have a measurable effect if there is a large regional 

pest population supported by a simple, agricultural regional landscape.  However, the 

scale of local diversification matters.  Fields with less corn on their borders actually 

had higher D. virgifera densities than fields with more neighboring corn (Figure 3E).  

Meanwhile, fields surrounded by less corn at the 1km scale had lower densities of D. 

virgifera (Figure 3D). These seeming contradictions of scale may by understood by 

considering D. virgifera dispersal and foraging behaviors.  For D. virgifera, regional 

landscapes with high percentages of corn may facilitate successful dispersal among 

habitat patches (Onstad et al. 2003), supporting large pest populations, while 

neighboring corn fields may dilute populations at the field scale.  Adult D. virgifera 
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feed on corn pollen and silks and pollinating corn fields attract D. virgifera adults 

away from adjacent, non-pollinating fields (Darnell et al. 2000).  As with C. maculata, 

these complex relationships between land-use and D. virgifera could only be pieced 

together by considering multiple scales of land-use simultaneously.   

Beyond the complexities of landscape-insect relationships, our data also show 

some simple differences between the land-use scales relevant to insect pests and 

natural enemies.  In multiple regression analyses with multiple scales of land-use, the 

two pest species, D. virgifera and D. barberi, were related to larger scales of land-use 

than the generalist lady-beetles, C. maculata.  D. virgifera densities were related to 

landscapes at all scales up to 20km, and D. barberi densities were related to 1km scale 

corn, while C. maculata densities were related to 1km and perimeter scales of corn.  

Specialist herbivores become pests in agriculture specifically because of their high 

success in tracking continuously shifting habitat mosaics.  On the other hand, 

generalist natural enemies such as lady beetles do not need to precisely track the 

shifting agricultural landscape because they can survive in many habitats.  Thus, 

agricultural pests that are habitat specialists, by definition, may be expected to be 

highly dispersive and respond to landscapes at large scales compared to generalist 

natural enemies.  This pattern, where pests are affected by larger landscape scales than 

natural enemies has also been observed in studies in clover and wheat with aphid, 

midge, and weevil pests and parasitoids (Kruess and Tscharntke 1994, Thies et al. 

2005).  However, this research strengthens the prediction that pests respond to 

landscapes at larger scales than natural enemies by providing evidence from a new 

system with new insect guilds.      

This study also provides a novel opportunity to examine the assumption put 

forth by many landscape-insect studies that  scales of land-use most correlated to 

insect densities are indicative of their dispersal abilities (Tscharntke et al. 2005, 
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Westphal et al. 2006).  Due to the economic importance of corn systems, there are 

population genetic (Krafsur et al. 1993, Krafsur et al. 1995, Kim and Sappington 2005, 

Krafsur et al. 2005, Krumm et al. 2008),  mark-recapture (Showers et al. 2001, 

Qureshi et al. 2006, Toepfer et al. 2006), and flight mill studies (Naranjo 1990) from 

which we can infer the dispersal abilities of our study species. These studies indicate 

their relative dispersal abilities to be:  O. nubilalis > D. virgifera, > D. barberi, ≥ C. 

maculata, ≥ P. quatuordecimpunctata.  If we assume that no relationship was found 

between land-use and corn damage by O. nubilalis because O. nubilalis responds to 

landscapes at scales larger than 20km radius, then the scales at which these insects 

most strongly correlate to the landscape (Table 3.2) generally follow the same rank-

order as their dispersal abilities.  Thus, while this study highlights that landscape-

insect relationships are complex, it also suggests that general insights into insect 

dispersal can be obtained through these types of studies.   

In conclusion, our data suggest that diverse agricultural landscapes support 

pest management as an ecosystem service by directly suppressing pests and by 

enhancing natural enemy populations.  However, these relationships are not simple.  

Densities of some pests and natural enemies are more related to land-use than others.  

Insect densities and land-use may be positively related at one scale and negatively 

related at another scale.  Furthermore, landscape-insect relationships at one scale may 

depend on land-use at another scale. Detailed information about insect life history, 

including diet breadth, overwintering behavior, dispersal ability, and invasiveness may 

help to interpret and predict landscape-insect relationships.  In general, farm-scale 

changes in land-use appear to have more effect on insect populations where the larger 

landscape is very agricultural than where it is diverse.  Also, it appears that pests 

respond to land-use at larger scales than natural enemies.  
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Farm policies aimed at enhancing agricultural diversity at local scales, by 

encouraging such things as beetle bank construction and hedge row conservation, may 

be most important for enhancing natural enemies and biological control.  Moreover, 

farmers adopting these practices may see the largest effect on insect communities in 

regions that are dominated by agriculture.  On the other hand, farm policies that 

transform regional cropping patterns, by encouraging integrated crop-livestock 

systems, cover cropping, and land fallowing may also contribute to pest control 

through direct suppression of pests.   
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CHAPTER 4 

 

A SPATIALLY EXPLICIT MODEL OF INSECT PEST DYNAMICS IN 

AGRICULTURAL LANDSCAPES   

 

Megan E. O’Rourke and Laura E. Jones 

 

Abstract 

Diverse agricultural landscapes help to support ecosystem services, including 

pest management.  However, due to the intrinsic difficulties of landscape-scale 

research, landscape-insect relationships are still poorly understood.  Here we combine 

empirical data with a spatially explicit model of herbivore population dynamics to 

clarify the role of landscapes in agricultural pest management.  We found that 

densities of the western corn rootworm, Diabrotica virgifera, were lower in diverse 

landscapes whereas damage to maize by the European corn borer, Ostrinia nubilalis, 

was unrelated to land-use.  Stable carbon isotope analysis showed that D. virgifera 

developed exclusively on maize whereas 11% of O. nubilalis developed on non-maize 

hosts.  We also found that in states with less corn, a smaller percentage of corn was 

treated with insecticide and a smaller percentage of corn was Bt to control these pests.  

Given these data, we hypothesized that landscape diversification affects populations of 

specialist insects more than generalists.  We also hypothesized that to maintain similar 

pest densities, a smaller percentage of corn fields need to be treated with insecticides 

in diverse than in simple landscapes.  We designed a spatially-explicit model of 

herbivore dynamics in agricultural landscapes to see if we could predict our empirical 

observations and support our hypotheses.  Our model predicted that diet breadth was, 

indeed, a strong factor in whether landscape diversification suppressed pests.  The 
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model also predicted less insecticide use in diverse landscapes, which reduced 

apparent pest suppression.  We also predicted that populations of specialist herbivores 

with relatively low reproductive rates are very sensitive to landscape diversification.  

These predictions can be used to guide future landscape-insect research and can 

provide insights into pest management as an ecosystem service of diverse agricultural 

landscapes.   

 

Introduction 

Habitat diversity in agricultural landscapes affects the ecosystem services they 

can support (Burel et al. 1998, Tscharntke et al. 2005).  Agricultural landscapes are 

dynamic, and habitat diversity within those landscapes can increase or decrease 

(Primdahl et al. 2003, Landis et al. 2008).  For example, we have seen a general 

increase in farm and field sizes and concurrent decrease in unmanaged habitat on 

farms in the United States and Europe since World War II (Vasey 1992).  However, in 

some regions, we have also seen increases in natural habitat.  In the northeastern 

United States, farm abandonment has increased old field and forest areas (Flinn and 

Vellend 2005), and agri-environmental legislation has increased hedge rows, fallows, 

and conservation land on some European farms (Kleijn and Sutherland 2003).  In the 

future, we expect agricultural landscapes will continue to change with advances in 

technology, population growth, rising demand for biofuels, and climate change 

(Nelson 2005).  Therefore, it is imperative that we understand the ecosystem services 

provided by diverse agricultural landscapes, which could be lost as landscapes 

continue to change. 

Diverse agricultural landscapes have been linked to a variety of ecosystem 

services including insect pest suppression and reduced insecticide use (Tscharntke et 

al. 2005, Landis et al. 2008).  However, the link between agricultural landscape 
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diversity and pest suppression remains an emerging area of research and a general 

synthesis of how changes in agricultural landscapes affect the spectrum of agricultural 

insect pests is still lacking.  In fact, few studies have directly linked agricultural 

landscape diversity with insect pest control.  Most landscape scale studies have 

focused on natural enemies, and when pests are directly measured, results have been 

mixed.  A 2006 review of the literature cited 24 studies relating agricultural 

landscapes to natural enemies, which are assumed to exert top-down control on insect 

pests, while only 10 studies directly quantified relationships between agricultural 

landscapes and insect pests (Bianchi et al. 2006). Of these ten studies, half were on 

aphids and the results were highly variable. In diverse landscapes, 45% of herbivore 

observations indicated suppression, 40% indicated no effect, and 15% indicated 

increased pest pressures (Bianchi et al. 2006).  Studies published thereafter have 

continued to emphasize landscape-natural enemy relationships over landscape-

herbivore relationships, with the few relevant studies showing varied relationships 

(Geiger et al. 2005, Zaller et al. 2008).   

 When diverse agricultural landscapes fail to suppress insect pests, the results 

have often been attributed to herbivore life history characteristics, especially wide diet 

breadth and utilizing multiple habitats.  For example, Thies et al. (2005) found that 

densities of cereal aphids were similar in wheat surrounded by diverse and simple 

landscapes.  Underlying this neutral effect was higher aphid immigration accompanied 

by higher parasitism rates of aphids in wheat fields surrounded by diverse than by 

simple landscapes.   It was hypothesized that higher immigration rates of aphids into 

wheat surrounded by diverse landscapes may be due to overwintering on perennial 

grasses or trees common in diverse agricultural landscapes.  Similarly, Roschewitz et 

al. (2005) found that densities of the same aphid species were higher during wheat 

ripening in diverse than in simple landscapes in the same region of Germany studied 



71 

by Thies et al. (2003).  When Zaller et al. (2008) found that densities of stem weevils 

and pollen beetles were higher and that densities of pod midge were the same in winter 

oilseed rape fields surrounded by diverse than simple landscapes, they also 

hypothesized that feeding or overwintering on alternative hosts may explain why pest 

suppression was not detected in diverse landscapes.     

 In addition to considering herbivore life histories when trying to predict when 

landscape diversification will suppress pests, it is also important to consider how 

regional pest management affects herbivore population dynamics.  Insecticides are 

very effective at reducing pest densities and area-wide management programs 

suppress regional insect pest populations (Koul et al. 2009).  If more insecticides are 

applied in simple than diverse landscapes, herbivore densities may be artificially 

suppressed in simple landscapes.  Thus, insecticide use that varies with landscape 

diversity may confound results of landscape-scale research, obscuring natural pest 

suppression in diverse agricultural landscapes.  However, landscape-level studies 

rarely include data for regional insecticide use or discuss its influence on research 

results.   

 A modeling approach coupled with empirical investigations can help to clarify 

when diverse agricultural landscapes serve to suppress insect pests (Levins 2006).  By 

systematically manipulating insect life-history attributes in models, we can tease apart 

which factors make agricultural pests most susceptible to control by land-use 

diversification.  Furthermore, models can be used to control for pest management 

practices and to understand how regional insecticide use affects empirical measures of 

natural pest management as an ecosystem service of diverse agricultural landscapes.  

Landscape-scale studies are also particularly amenable to model investigations 

because of the intrinsic hurdles in the scale of research.  Unlike plot-scale plant 

diversity studies, which can be carefully controlled in research facilities, landscape-
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scale studies usually consist of observational correlations between existing landscapes 

and insects.  Furthermore, landscape-scale studies are challenging because of the 

coordination typically required between researchers and many private land-owners.  

Models can be used to synthesize our knowledge of landscape-herbivore systems and 

to make predictions about how changes in land-use will affect a variety of agricultural 

pests.  These predictions can then be compared with current research findings and can 

guide future empirical studies.   

 In this research, we combined empirical and modeling approaches to develop 

predictions about which types of agricultural insect pests may be controlled by 

landscape diversification.  We monitored two of the most economically important 

maize pests (Tollefson and Calvin 1994), the western corn rootworm (WCR), 

Diabrotica virgifera, and the European corn borer (ECB), Ostrinia nubilalis, in 

landscapes of varying habitat diversity.  We then interpreted the insect surveys in light 

of data on the insects’ host utilization and regional management for the pests.  We 

developed a spatially explicit, agent-based model of herbivore population dynamics to 

test whether our assumptions about herbivore-landscape interactions and pest 

management could predict trends in our empirical data.  The model was further used to 

make general predictions about which types of insects, which varied in host 

specificity, dispersal, and reproduction, may be suppressed by diverse agricultural 

landscapes.      

We began with a number of hypotheses for our empirical work and 

assumptions for our model of landscape-herbivore interactions.  In the field, we 

expected densities of some herbivore pests to be more related to land-use than others.  

We further expected these differences to be due to insect life history attributes, 

especially host specialization.  Specialist insects should be more suppressed in diverse 

landscapes than generalists.  We also expected management for corn pests to vary with 
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land-use and that less insecticide is used per field in diverse landscape.  For our model, 

we assumed that we could predict trends in our empirical studies by incorporating 

simple pest management rules (crop rotations and economic thresholds) and basic 

insect life history attributes (dispersal, reproduction, and diet breadth).  We expected 

our model to yield insights into complex interactions between land-use, insect life 

history, and pest management. 

 

Materials and Methods 

 

Empirical Herbivore-Landscape Survey 

 Western corn rootworm (WCR), Diabrotica virgifera virgifera, densities, and 

European corn borer (ECB), Ostrinia nubilalis, damage to maize was measured in 66 

1
st
 year maize fields in upstate New York in 2006 and 2007.  Fields were located in 

seven, non-overlapping, 20km radius circular regions.  The proportion of each region 

planted to row crops was determined from the 2001 National Land Cover Database 

(http://www.mrlc.gov/).  The relationships between proportions of row crops within 

20km regions and maize pests were analyzed using standard least squares regressions 

in JMP 7.0 (JMP 2007).  Details about the management of maize fields, insect 

sampling, landscape analysis, and statistical procedures can be found in chapter three 

of O’Rourke (2010).  In this paper, we present averaged densities of insects from all 

fields within the 20km scale regions.  

  

Observed Host Specificity 

Stable carbon isotope analysis of ECB and WCR adults was conducted to 

determine their host utilization of C4 and C3 plants (Deniro and Epstein 1978, 

Tallamy and Pesek 1996, Ponsard et al. 2004b).  Since few plants besides maize are 
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C4 in New York, stable carbon isotope content (δ
13

C) of ECB and WCR can largely 

determine whether they have developed on maize or alternative hosts (Uva et al. 1997, 

Ponsard et al. 2004a).  ECB sampling methods can be found in chapter five of 

O’Rourke (2010).  WCR were collected from a single, first-year maize field in Cayuga 

County, NY in 2007 using a Pherocon CRW kairomone trap baited with the 

western/northern lure and stun bait.  Insects were dried at 55
o
C for at least one week 

prior to analysis.  The wings of 68 E and 71 Z race ECB (two distinct pheromone 

strains of ECB), randomly sampled from collections, and the wings of 20 WCR were 

analyzed.  The δ
13

C contents of samples were determined using a Thermo Delta Plus 

isotope ratio mass spectrometer (IRMS) interfaced to a NC2500 elemental analyzer at 

the Cornell Isotope Laboratory (COIL).  δ
13

C signatures were converted to categories 

of host history by scoring individuals with δ
13

C values < -20‰ as having a C3 host 

history, while δ
13

C values > -15‰ were scored as having a C4 host history (Tallamy 

and Pesek 1996, Ponsard et al. 2004a).  Differences in diet between ECB and WCR 

were determined using loglinear ratio tests implemented in JMP 7.0 (JMP 2007). 

 

National Maize Pest Management 

 Insecticide usage and maize acreage were determined from research reports 

published by the United States Department of Agriculture.  The percentage of maize 

per state treated with insecticide, and the percentage of maize per state rotated with 

other crops came from the 2004 and 2006 Agricultural Chemical Usage Reports 

(USDA 2004, 2006a).  The only insecticide used in maize that was not registered for 

use against rootworms was propargite, which was applied to less than 0.5% of maize 

acreage in 2004 and 2006 (NPIRS 2009).  Therefore, insecticide data were considered 

as effective against rootworms.  Data on the percentage of maize per state that was Bt 

targeting ECB and/or WCR came from Acreage reports (USDA 2008).  Maize acreage 



75 

grown per state in 2003, 2005, 2007, and 2008 came from crop production summary 

reports and included the areas planted to corn for grain and for silage (USDA 2006b, 

2009).  The proportion of non-maize habitat per state was derived by dividing maize 

acreage per state by the total area of each state and subtracting from one.  Data were 

analyzed with JMP 7.0 software using standard least squares regression procedures 

(JMP 2007).  Specifically, our statistical models related the proportion of maize 

treated with insecticide per state to the predictor variables: year, maize rotation rate, 

and the percentage of the state in non-maize habitat.  For the proportion of maize 

planted to Bt varieties per state, we tested the predictor variables: year, and the 

percentage of the state in non-maize habitat.    

 

Herbivore-Landscape Model 

We created a single-species, spatially explicit population dynamics model 

using the basic package of R version 2.8.1 (R 2008).  The organisms modeled 

represent generic, univoltine, herbivorous insects that specialize on a preferred crop 

but can accept hosts in alternative habitats.  Insect populations were controlled using 

integrated pest management (IPM) methods that included crop rotation and economic 

thresholds (Norris et al. 2003). The input parameters of interest in the model were: 

proportion of alternative habitat in the landscape (HA), maximum insect dispersal 

distance (Disp.), ability to reproduce in alternative habitat (Diet), and reproductive rate 

in preferred habitat (r0) (Table 4.1).    

 

Landscape 

The simulated landscape was designed as a 128 x 128 matrix of habitat patches 

with each patch measuring 1km
2
.  There were three types of patches: preferred habitat, 

agricultural alternative habitat, and non-agricultural alternative habitat.  Initial 
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locations of patch types were randomly assigned. Crop rotation was simulated with 

preferred habitat and agricultural alternative habitat patches randomly redistributing 

amongst themselves while keeping their proportions equal each year. This created a 

crop rotation scenario where preferred habitat had a 50% probability of rotating to 

another crop each year.  Non-agricultural alternative habitat remained fixed in space 

throughout simulations.  At the beginning of simulations, herbivores were randomly 

seeded onto 5% of the landscape with seeded patches receiving a mean and standard 

deviation of 100 and 30 insects, respectively.   

 

Dispersal  

During each year of the model, all insects dispersed.  Insects did not 

discriminate between patch types during dispersal.  Dispersal distances were chosen 

from a probability distribution calculated from an equation describing female ECB 

dispersal (Qureshi et al. 2005):  

 

 
 

where N represents the numbers of insects and x represents dispersal distances in 

meters.  This equation was converted to a discrete probability function by dividing the 

vector N as a function of all x (meters) by the sum of all values of N.  The maximum 

value of x in each simulation was the parameter Disp. (Table 4.1).  There was equal 

probability of dispersing in all directions.  The boundaries of the landscape were 

absorbing and all insects dispersing beyond the landscape matrix were assumed to 

have dispersed out of it.   
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Reproduction 

After dispersal, insects reproduced according to input parameters r0, if 

individuals landed in preferred habitat, or Diet, if individuals landed in alternative 

habitat (Table 4.1).  Reproduction in preferred habitat followed the logistic growth 

equation: 

 

 
 

where Nt represents the population of insects in a preferred habitat patches at time t, 

and K is the carrying capacity of preferred habitat patches, set at 5000.  Insects in 

alternative habitat patches reproduced according to: 

 

tt NDietN *1    

 

where Diet = 0 means that no offspring were produced, and Diet = 0.75 means that 

Nt+1 will be only 75% the size of Nt.   

 

Pest Management and Economic Threshold 

Preferred habitat patches with populations above an economic threshold 

(Higley and Pedigo 1996), were treated with insecticide.  The insecticide efficacy in 

any given patch was chosen from a uniform distribution ranging from 0.8 to 0.99.  

Pesticides reduced populations from their post-reproduction size. The economic 

threshold was set at 500 insects per preferred habitat patch.  As the density at which 

farmers are supposed to gain more from saved yields than they spend on insecticides 

to control pests, an economic threshold of 500 insects per farm field is obviously not a 

realistic economic threshold.  However, it represented a compromise between 


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
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capturing spatial dimensions of insect behavior and running the model within a 

reasonable amount of time.   

 

Sensitivity Analysis 

 Sensitivity analysis was conducted to determine the influence of model 

parameters on simulated metrics of insect density (Density) and insecticide use 

(Insecticide), defined below.  Analyses were conducted on 750 model simulations 

using a latin hypercube sampling scheme over the ranges of input parameters (Ellner 

and Guckenheimer 2006).  Density was calculated in a two-step process.  First, the 

numbers of insects in preferred habitat patches at the beginning of each year, scaled as 

a proportion of the economic threshold, were averaged over space.  Spatially averaged 

insect densities were then averaged over time for the last 10 years of model 

simulations to create a single Density metric for each set of model parameters.  

Insecticide was calculated similarly.  However, in this case, we were interested in the 

proportions of preferred habitat patches receiving insecticide.  The sensitivity of 

Density and Insecticide to model parameters was determined using standard least 

squares multiple regression.  Specifically, we tested the sensitivity of Density or 

Insecticide to changes in the proportion of alternative habitat in the landscape (HA), 

yearly net reproductive rate in non-maize patches (Diet), maximum insect dispersal 

distance (Disp.), the yearly net reproductive rate in alternative habitat (r0), and all two-

way interactions with HA.  We reported scaled regression estimates, which are 

regression coefficients derived from analyses with the input parameters scaled to 

means of zero and ranges of two (JMP 2007).  The main parameters in our sensitivity 

analyses can be interpreted as the predicted increase (positive estimate) or decrease 

(negative estimate) in Density or Insecticide when HA or an insect life history 

characteristic was increased by one half its range (Table 4.1).  HA
2
  indicates non-
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Table 4.1.  Descriptions and ranges of input parameters to the model. 
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linearity between Insecticide or Density and HA.  Interaction terms between HA  and 

insect life history characteristics mean that an increase in the life history parameter 

results in HA  having a stronger (estimate has same the sign as the HA  estimate) or 

weaker (estimate has the opposite sign as the HA  estimate) effect on Insecticide or 

Density than average.     

 

Results 

Empirical Herbivore-Landscape Survey   

WCR densities were correlated with land-use in upstate New York while ECB 

damage to maize was not.  WCR densities ranged from 1.7 to 12.9 WCR sticky card
-1

 

week
-1

 region
-1

 and the proportion of maize damaged by ECB varied from 0.08 to 0.23 

of maize per region.  Increasing amounts of non-row crop habitat was strongly related 

to suppressed WCR densities (R
2
 = 0.75; F1,5 = 14.9; P = 0.01) (Figure 4.1B). In 

contrast, regional land-use was not related to ECB damage to maize (R
2
 = 0.0; F1,5 = 

0.01; P = 0.9) (Figure 4.1A).    

 

Observed Host Specificity  

More ECB developed on non-maize hosts than WCR (χ
2

1,159 = 4.3; P = 0.04) 

(Figure 4.2).  According to δ
13

C analysis, 11% percent of the ECB tested developed on 

C3 plants whereas none of the WCR developed on C3 plants.   The range of δ
13

C 

values for ECB designated as developing on C4 hosts was -10.25 to -13.98‰ and on 

C3 hosts was -23.75 to -31.04‰.  The δ
13

C content for all WCR ranged from -10.38 to 

-14.69‰, indicative of development on C4 hosts.  
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Figure 4.1. Relationships between insects sampled in maize and the proportions of 

20km radius regions in non-row crop habitat in upstate New York.   A)  No 

relationship was found between the percentages of plants damaged by European 

corn borer larvae and non-row crop areas (F1,5 = 0.009; P = 0.9).  B)  

Diversification away from row crops was highly predictive of reduced WCR adults 

immigrating into first-year maize fields (F1,5 = 14.9; P = 0.01). 
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Figure 4.2.  The proportions of ECB and WCR collected in New York that 

developed on C3 or C4 species of plants, as determined from δ
13

C analysis.  

Numbers in parenthesis are sample sizes. 
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Figure 4.3.  Partial residual plots between insecticide use and Bt maize acreage and 

the proportions of states in non-maize habitat.  A)  In states with more non-maize 

land use, a smaller proportion of maize is treated with conventional insecticides 

(not including transgenic Bt maize)(F1,30 =6.2; P = 0.02). B)  In states with more 

non-maize land use, a smaller proportion of maize is a Bt transgenic variety (F1,23 = 

13.7; P = 0.001). 
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Figure 4.4.  Characteristic simulations through time of A) insect densities measured 

as proportions of economic threshold (Density) and B) proportions of preferred 

habitat receiving insecticide (Insecticide).  Eight different insects are modeled, with 

life histories described in the figure legend.  Diet is yearly net reproductive rate in 

alternative habitat, Disp. is maximum dispersal distance, and r0 is yearly net 

reproductive rate in preferred habitat. 
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Figure 4.5.  Simulations of eight insect pests that vary in Diet, Disp., and r0, in 

landscapes with increasing amounts of non-crop habitat.  Diet is net yearly 

reproduction in alternative habitat, Disp. is maximum dispersal distance, and r0 is 

yearly net reproductive rate in preferred habitat.  A) Density predictions for four 

habitat specialist insects that can only reproduce in maize (Diet = 0) and that vary 

in r0 and Disp. as indicated in the legend   B) Density predictions for four insects 

that are relative habitat generalist utilizing alternative habitats for marginal 

reproduction (Diet = 0.75) and that vary in r0 and Disp. as indicated in the legend 

C) Predicted Insecticide, proportions of preferred habitat treated with insecticide, 

against the four habitat specialist insects modeled in panel A.  D)  Predicted 

Insecticide, proportions of preferred habitat treated with insecticide, against the 

four habitat generalist insects modeled in panel B. 
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National Maize Pest Management 

In the U.S., lower proportions of maize fields were treated with insecticides 

and lower proportions of maize were Bt varieties in states with more non-maize 

habitat.  In 2003 and 2005, the proportions of maize treated with insecticides 

decreased as non-maize habitat per state increased (F1,30 = 6.2; P = 0.02) (Figure 

4.3A).  Crop rotation and year of study were also marginally predictive of insecticide 

use; more corn acreage rotated to other crops was related to lower proportions of 

maize treated with insecticides (F1,30 = 3.6; P = 0.07), and more corn was treated with 

insecticides in 2003 than 2005 (F1,30 = 4.0; P = 0.05).  In 2007 and 2008, the 

proportions of maize planted to Bt varieties decreased with increased non-maize 

habitat per state (F1,30 = 6.2; P = 0.02) (Figure 4.3B).  Also, more Bt maize was 

planted in 2008 (57%) than 2007 (49%) in states surveyed by USDA (F1,30 = 6.2; P = 

0.02).   

 

Herbivore-Landscape Model 

During the first 10 to 20 years of model simulations, insects dispersed to all 

their preferred habitat patches and characteristic Density and Insecticide levels were 

reached (Figure 4.4).  Despite stochasticity in the precise locations of preferred and 

alternative habitats, Density and Insecticide were highly predictable based on input 

parameters.  For example, we replicated 32 model scenarios four times each, and 

found that the average standard deviation of Density across replicates was only 0.1%.  

Model predictions of Density and Insecticide could be summarized quite well through 

linear regressions with model parameters and all two-way interactions with alternative 

habitat (HA), capturing 91% and 99% of the variance in predictions, respectively. 

Specific scenarios illustrate the behaviors of our model and relationships 

between Density and Insecticide (Figure 4.5).  We simulated Density and Insecticide 
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in increasingly diverse landscapes that were infested with eight insects that had 

contrasting life histories.  Four insects were habitat specialists that only reproduced in 

preferred habitat (Diet = 0; Figure 4.5A & C) and four could reproduce in alternative 

habitat but at very low rates (Diet = 0.75; Figure 4.5B & D).  The insects also differed 

in their maximum dispersal distances (Disp. = 5 or 12) and reproductive rates in 

preferred habitat (r0 = 6 or 12).  Simulations showed that Disp. had little effect on 

model predictions.  Increasing Diet decreased pest suppression in diverse landscapes 

and increased Insecticide.  Higher r0 generally resulted in lower Density because of 

correspondingly high values of Insecticide.  Density of a model insect that subsisted in 

alternative habitat (Diet = 0.75) and had a high reproductive rate in its preferred 

habitat (r0 = 12) (Figure 4.5B, squares), changed little with landscape diversification.  

However, Insecticide for this same pest was predicted to decrease with landscape 

diversification (Figure 4.5D, squares).  

 

Model Sensitivity Analysis 

Sensitivity analysis shows how model parameters affected simulated insect 

densities (Figure 4.6).  It also shows that not all types of insects were equally 

suppressed by landscape diversification in our model.  In simulations, herbivores that 

subsisted in multiple habitats (high Diet) and had high reproductive rates in preferred 

habitat (r0) were less affected by habitat diversification than habitat specialists (low 

Diet) with low reproductive rates (r0).  In Figure 4.6, this is shown by estimates for the 

interaction terms HA * Diet and HA * r0 having opposite signs than HA. Alternative 

habitat (HA) had a strong influence on model predictions and, on average, increasing 

HA resulted in a non-linear decrease in Density.  This is shown by the large negative 

estimates for HA
2
.  Insect life history parameters from most to least important in the 

model, as illustrated by the relative sizes of their estimates, are r0, Diet, and Disp.  On 
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Figure 4.6.  Sensitivity analysis of insect densities at the beginning of the growing 

season (Density) to model input parameters.  A)  Scaled estimates from multiple 

regression analysis of model parameters HA, alternative habitat, Diet, yearly net 

reproductive rate in alternative habitat, Disp., maximum dispersal distance, r0, 

yearly net reproductive rate in preferred habitat, and two-way interactions between 

HA and model parameters.  B,C,D)  Interaction plots of the relationship between 

alternative habitat, HA, and insect density, Density, with minimum (solid lines) and 

maximum (dashed lines) values of Diet, Disp. and r0, as noted in Table 4.1. 
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Figure 4.7.  Multiple regression analysis between the proportions of preferred 

habitat sprayed with insecticide and model parameters for 750 model simulations.  

A)  Scaled estimates of model parameters HA, alternative habitat, Diet, yearly net 

reproductive rate in alternative habitat, Disp., maximum dispersal distance, r0, 

yearly net reproductive rate in preferred habitat, and two-way interactions between 

HA and model parameters.  B,C,D)  Interaction plots of the relationship between 

alternative habitat, HA, and proportions of preferred habitat treated with insecticide, 

Insecticide, against insects with minimum (solid lines) and maximum (dashed 

lines) values of Diet, Disp. and r0, as noted in Table 4.1. 
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average, increasing r0 decreased Density because of high insecticide use.  Increasing 

Diet increased Density because alternative habitat supplied immigrants into preferred 

habitat.   

Figure 4.7 shows how model parameters affected simulated proportions of 

preferred habitat receiving insecticide (Insecticide).  The relatively large negative 

estimate for HA and the relatively weak interactions between HA and life history 

parameters show that our model predicted Insecticide to decrease with landscape 

diversification for all types of insects (Figure 4.7B, C, & D).  The negative HA
2
 

estimate shows that Insecticide leveled-off at relatively high rates in simple landscapes 

and fell non-linearly with landscape diversification.   The effects of insect life history 

parameters on Insecticide are shown by estimates for Diet, Disp. and r0.  Changes in 

insect Diet and r0 strongly affected Insecticide while Disp. had little effect.  Increasing 

Diet or r0 over the modeled parameter ranges resulted in similar amounts of 

Insecticide increases.   

 

Discussion   

 Our field work has shown that some agricultural pests, such as the western 

corn rootworm (WCR), are suppressed in diverse landscapes while others, such as the 

European corn borer (ECB) are not.  We further determined that WCR is more 

specialized on maize than ECB. This supports the findings of others who have shown 

that in many cases where diverse landscapes did not suppress agricultural pests, the 

pests use multiple habitats either for overwintering or as alternative food (Thies et al. 

2005, Bianchi et al. 2006, Fiedler et al. 2008, Zaller et al. 2008).  While only 11% of 

ECB developed on non-maize hosts, our model suggests that even habitats that are 

demographic sinks and cannot support populations on their own can greatly increase 

pest pressures in diverse agricultural landscapes.  In diverse landscapes, the prevalence 
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of habitats that are poor quality to specialist herbivores may still play an important 

role in their population dynamics because even small numbers of dispersers from 

alternative to preferred habitats early in the growing season can greatly increase pest 

pressures throughout the growing season (Speight et al. 2008). 

 Our data showing how regional pest management may affect herbivore-

landscape relationships is a novel aspect of this research.  Data on management 

practices across the United States to control WCR and ECB show that fewer maize 

fields are managed with insecticide or Bt in diverse landscapes where maize is not 

prevalent.  Our model also predicted that fewer maize fields would be treated with 

insecticides in diverse agricultural landscapes.   Less insecticide use in diverse 

landscapes will tend to homogenize pest densities in simple and diverse landscapes.  

Therefore, regional patterns of insecticide use may provide a hypothesis, along with 

host specialization, for why some pests are not suppressed in diverse landscapes.  

While regional pest management has not been invoked in previous studies as a 

mechanism behind the poor suppression of some pests in diverse landscapes, our 

research shows that herbivore-landscape relationships cannot be properly understood 

without considering pest management.  Rather than focusing solely on suppression as 

the key ecosystem service of diverse landscapes in relation to agricultural pests, 

scientists should also address the potential ecosystem service of reduced insecticide 

use even in the absence of measured pest suppression.   

 Another novel aspect of this research is the combination of empirical and 

theoretical approaches to understanding herbivore-landscape relationships.  Due to the 

large scale of this type of research, the preponderance of studies document observed 

correlations between insect densities and surrounding land-use (Bianchi et al. 2006).  

However, with observational studies, it is difficult to isolate the processes underlying 

the patterns.  By coupling modeling to observed herbivore-landscape relationships, we 
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can test how well our assumptions about a system predict dynamics in the field.  In 

this study, we were able to model very simple assumptions about how agricultural 

pests behave and are managed to predict how densities of different insects and levels 

of insecticide use might change if agricultural landscapes become more or less diverse.  

We were able to correctly predict trends in the effects of land-use patterns on two of 

the most important maize pests, WCR and ECB, based on differences in diet breadth.  

We were also able to predict trends in regional pest management in maize.  Thus, 

coupling landscape-herbivore observations with modeling can provide compelling 

support for empirical data and can clarify the mechanisms underlying observations.   

 In addition to supporting our empirical data, our model makes general 

predictions about which types of insect pests will be suppressed by landscape 

diversification.  Insects that are habitat specialists with relatively low reproductive 

rates in their preferred crop will be better suppressed by landscape diversification than 

insects that use multiple habitats and have high reproductive rates in their preferred 

habitat.   However, the maximum dispersal distance of pests does not appear to be an 

important factor in regional pest dynamics.  While these predictions may not be 

intuitive, they can be understood by carefully considering the insect behaviors and 

agricultural system modeled.   

Our model prediction that maximum dispersal distance (Disp.) is not an 

important parameter affecting insect densities differs from other models (King and 

With 2002).  In our model, the range of Disp. and structure of the landscapes, together, 

made Disp. a relatively unimportant model parameter.  We assumed that even 

relatively poor dispersers could travel many fields from their natal site.  This allowed 

insects to quickly occupy all available patches in simulated landscapes, which were 

fine-grained relative to insect dispersal abilities.  The model then behaved like a well-

mixed model, which made Disp. relatively unimportant.  Since most agricultural pests 
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are adapted to ephemeral habitats and tend to be quite dispersive (Johnson 1969), 

assuming that pests can disperse at least a few fields from their natal habitat is 

justifiable.  If pests are able to reach unoccupied habitat, increasing their maximum 

dispersal distance may, indeed, have little effect on equilibrium population dynamics.   

Subsisting in alternative habitats (Diet) played a strong role in boosting 

modeled pest pressures for two major reasons:  large differences in reproduction 

between preferred and alternative habitat, and pest management.  Unlike most source-

sink systems where source populations are always large and sink populations 

contribute relatively little to sources (Dias 1996), pesticides severely reduce insect 

populations in otherwise good source habitat in agricultural systems.  Therefore, even 

though we modeled alternative habitats as demographic sinks, they could provide 

refuges from insecticide and contributed immigrants back into preferred habitat where 

reproductive rates were high.  Even when the ratio of sink to source dispersers was 

small, high reproductive rates in preferred habitat translated to large pest increases.  

Likewise, because of high reproductive rates in preferred source habitats, alternative 

sink habitats could be constantly replenished, which perpetuated the population 

cycling between demographic sources and sinks.  This potential for non-crop habitat to 

act as a reservoir for pests is why many agronomists have recommended managing 

field edges (Ruberson 1999).  However, since many studies have shown the benefits of 

non-crop habitat for conserving natural enemies of pests and enhancing biological 

control (Bianchi et al. 2006), the balance between non-crop habitat as a pest reservoir 

and as a natural enemy refuge deserves further attention.   

The prediction that pests with lower reproductive rates are more suppressed by 

landscape diversification than pests with higher reproductive rates may be surprising 

until pest management in the model is carefully considered.  In our model, insecticides 

severely reduced insect populations, but they were only used where pest densities 
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exceeded the economic threshold.  For insects with high reproductive rates, nearly all 

the preferred habitat in crop intensive landscapes exceeded the economic threshold 

and received insecticides.  This is equivalent to an area-wide pest management 

program, which can be effective at regionally suppressing pests (Koul et al. 2009).  

Thus, insects with high r0 are suppressed by insecticides in simple landscapes, leaving 

little potential for landscape diversification to suppress densities further.  However, 

insecticide use against insects with high r0 is still predicted to decrease with landscape 

diversification.  Again, this work supports reduced insecticide use as an ecosystem 

service of diverse landscape, even where pest control is not detected.  

A final assumption in our model, which deserves attention because of the large 

effect it has on predictions, concerns how insect dispersal behavior was modeled.  We 

made the simplifying assumption that insects are passive dispersers that do not “home 

in” on preferred habitat.  This means that the numbers of dispersers that located 

preferred habitat decreased with landscape diversification.  Of course, we know that 

insects discriminate among hosts (Bernays and Chapman 1994), but there is 

surprisingly little data on quantitative relationships between land-use and dispersal 

mortality.  However, we do know that insect mortality can increase, and that fitness 

and host specialization can decrease in diverse landscapes (Moeser and Vidal 2005, 

O'Rourke 2010).  Numerous studies also show that biological control increases in 

diverse landscapes (Bianchi et al. 2006, O'Rourke 2010).  Therefore, while we know 

our assumption of passive dispersal is not entirely correct, the negative relationship it 

created between the proportion of dispersers locating preferred hosts and landscape 

diversification roughly incorporates many known biological realities.  In modeling 

dispersal, we accept simplicity over reality (Levins 2006).  Inasmuch as our simple 

model correctly predicted observed WCR and ECB populations and pest management 

in different landscapes, we think that its simplicity is defensible. 
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Our combined empirical and modeling approach to herbivore-landscape 

research provides compelling evidence that pest suppression as an ecosystem service 

of diverse agricultural landscapes can be predicted by insect life history.  It also 

highlights that herbivore-landscape relationships in agro-ecosystems can only be 

understood in the context of regional pest management.  In addition to researching 

pest suppression, scientists should examine pesticide reduction as a possible 

ecosystem service provided by diverse agricultural landscapes. Our work indicates that 

diverse agricultural landscapes support pest suppression in addition to a variety of 

other ecosystem services including soil and water, biodiversity, and pollinator 

conservation (Tscharntke et al. 2005, Swinton et al. 2006, Jackson et al. 2007, Power 

et al. 2009).   



96 

REFERENCES 

 

Bernays, E. A., and R. F. Chapman. 1994. Host-Plant Selection by Phytophagous 

Insects. Chapman & Hall, New York, NY. 

Bianchi, F., C. J. H. Booij, and T. Tscharntke. 2006. Sustainable pest regulation in 

agricultural landscapes: a review on landscape composition, biodiversity and 

natural pest control. Proceedings of the Royal Society B-Biological Sciences 

273:1715-1727. 

Burel, F., J. Baudry, A. Butet, P. Clergeau, Y. Delettre, D. Le Coeur, F. Dubs, N. 

Morvan, G. Paillat, S. Petit, C. Thenail, E. Brunel, and J.-C. Lefeuvre. 1998. 

Comparative biodiversity along a gradient of agricultural landscapes. Acta 

Oecologica 19:47-60. 

Deniro, M. J., and S. Epstein. 1978. Influence of diet on distribution of carbon 

isotopes in animals. Geochimica et Cosmochimica Acta 42:495-506. 

Dias, P. C. 1996. Sources and sinks in population biology. Trends in Ecology & 

Evolution 11:326-330. 

Ellner, S. P., and J. Guckenheimer. 2006. Dynamic Models in Biology. Princeton 

University Press, Princeton. 

Fiedler, A. K., D. A. Landis, and S. D. Wratten. 2008. Maximizing ecosystem services 

from conservation biological control: The role of habitat management. 

Biological Control 45:254-271. 

Flinn, K. M., and M. Vellend. 2005. Recovery of forest plant communities in post-

agricultural landscapes. Frontiers in Ecology and the Environment 3:243-250. 

Geiger, F., F. Bianchi, and F. L. Wackers. 2005. Winter ecology of the cabbage aphid 

Brevicoryne brassicae (L.) (Homo., Aphididae) and its parasitoid Diaeretiella 



 

97 

rapae (McIntosh) (Hym., Braconidae : Aphidiidae). Journal of Applied 

Entomology 129:563-566. 

Higley, L. G., and L. P. Pedigo, editors. 1996. Economic Thresholds for Integrated 

Pest Management. University of Nebraska Press, Lincoln, NE. 

Jackson, L. E., U. Pascual, and T. Hodgkin. 2007. Utilizing and conserving 

agrobiodiversity in agricultural landscapes. Agriculture Ecosystems & 

Environment 121:196-210. 

JMP. 2007. Statistics and Graphics Guide in. SAS Institute Inc., Cary, NC. 

Johnson, C. G. 1969. Migration and Dispersal of Insects by Flight. Methuen & Co. 

Ltd., London. 

King, A. W., and K. A. With. 2002. Dispersal success on spatially structured 

landscapes: when do spatial pattern and dispersal behavior really matter? 

Ecological Modelling 147:23-39. 

Kleijn, D., and W. J. Sutherland. 2003. How effective are European agri-environment 

schemes in conserving and promoting biodiversity? Journal of Applied 

Ecology 40:947-969. 

Koul, O., G. W. Cuperus, and N. Elliott, editors. 2009. Areawide Pest Management 

Theory and Implementation. CABI, Cambridge, MA. 

Landis, D. A., M. M. Gardiner, W. van der Werf, and S. M. Swinton. 2008. Increasing 

corn for biofuel production reduces biocontrol services in agricultural 

landscapes. Proceedings of the National Academy of Sciences of the United 

States of America 105:20552-20557. 

Levins, R. 2006. Strategies of abstraction. Biology & Philosophy 21:741-755. 

Moeser, J., and S. Vidal. 2005. Nutritional resources used by the invasive maize pest 

Diabrotica virgifera virgifera in its new South-east-European distribution 

range. Entomologia Experimentalis et Applicata 114:55-63. 



 

98 

Nelson, G. C. 2005. Drivers of ecosystem change: summary chapter. in Millennium 

Ecosystem Assessments Reports. Island Press, Washington, DC. 

Norris, R. F., E. P. Caswell-Chen, and M. Kogan. 2003. Concepts in Integrated Pest 

Management. Prentice Hall, Upper Saddle River, NJ. 

NPIRS. 2009. National Pesticide Information Retrieval System.  Available at 

http://state.ceris.purdue.edu/. 

O'Rourke, M. E. 2010. Linking habitat diversity with spatial ecology for agricultural 

pest management. Dissertation. Cornell University, Ithaca, NY. 

Ponsard, S., M. T. Bethenod, A. Bontemps, L. Pelozuelo, M. C. Souqual, and D. 

Bourguet. 2004a. Carbon stable isotopes: a tool for studying the mating, 

oviposition, and spatial distribution of races of European corn borer, Ostrinia 

nubilalis, among host plants in the field. Canadian Journal of Zoology-Revue 

Canadienne de Zoologie 82:1177-1185. 

Ponsard, S., M. T. Bethenod, A. Bontemps, L. Pelozuelo, M. C. Souqual, and D. 

Bourguet. 2004b. Carbon stable isotopes: a tool for studying the mating, 

oviposition, and spatial distribution of races of European corn borer, Ostrinia 

nubilalis, among host plants in the field. Canadian Journal of Zoology 

82:1177-1185. 

Power, A. G., M. E. O'Rourke, and L. E. Drinkwater. 2009. Human-dominated 

systems: agroecosystems. Pages 597-605 in S. A. Levin, editor. The Princeton 

Guide to Ecology. Princeton University Press, Princeton, NJ. 

Primdahl, J., B. Peco, J. Schramek, E. Andersen, and J. J. Oñate. 2003. Environmental 

effects of agri-environmental schemes in Western Europe. Journal of 

Environmental Management 67:129-138. 

Qureshi, J. A., L. L. Buschman, J. E. Throne, and S. B. Ramaswamy. 2005. Adult 

dispersal of Ostrinia nubilalis Hubner (Lepidoptera : Crambidae) and its 

http://state.ceris.purdue.edu/


 

99 

implications for resistance management in Bt-maize. Journal of Applied 

Entomology 129:281-292. 

R. 2008. Research Development Core Team. R:  A language and environment for 

statistical computing, reference index version 2.8.1. in. R Foundation for 

Statistical Computing, Vienna, Austria. Available at:  http://www.R-

project.org   

Roschewitz, I., M. Hucker, T. Tscharntke, and C. Thies. 2005. The influence of 

landscape context and farming practices on parasitism of cereal aphids. 

Agriculture Ecosystems & Environment 108:218-227. 

Ruberson, J. R., editor. 1999. Handbook of Pest Management. Marcel Dekker, Inc., 

New York. 

Speight, M. R., M. D. Hunter, and A. D. Watt. 2008. Ecology of Insects Concepts and 

Applications, 2
nd

 edition. Wiley-Blackwell, Hoboken, NJ. 

Swinton, S. M., F. Lupi, G. P. Robertson, and D. A. Landis. 2006. Ecosystem services 

from agriculture: looking beyond the usual suspects. American Journal of 

Agricultural Economics 88:1160-1166. 

Tallamy, D. W., and J. D. Pesek. 1996. Carbon isotopic signatures of elytra reflect 

larval diet in Luperine rootworms (Coleoptera: Chrysomelidae). 

Environmental Entomology 25:1167-1172. 

Thies, C., I. Roschewitz, and T. Tscharntke. 2005. The landscape context of cereal 

aphid-parasitoid interactions. Proceedings of the Royal Society B-Biological 

Sciences 272:203-210. 

Thies, C., I. Steffan-Dewenter, and T. Tscharntke. 2003. Effects of landscape context 

on herbivory and parasitism at different spatial scales. Oikos 101:18-25. 

http://www.r-project.org/
http://www.r-project.org/


 

100 

Tollefson, J. J., and D. D. Calvin. 1994. Sampling arthropod pests in field corn. Pages 

433-474 in L. P. Pedigo and G. D. Buntin, editors. Handbook of Sampling 

Methods for Arthropods in Agriculture. CRC Press, Inc., Boca Raton, FL. 

Tscharntke, T., A. M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. 

Landscape perspectives on agricultural intensification and biodiversity - 

ecosystem service management. Ecology Letters 8:857-874. 

USDA. 2004. Agricultural chemical usage 2003 field crops summary.  National 

Agricultural Statistics Service.  Available at 

http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC//2000s/2004/AgriC

hemUsFC-05-20-2004.pdf.  

USDA. 2006a. Agricultural chemical usage 2005 field crops summary.  National 

Agricultural Statistics Service.  Available at 

http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC//2000s/2006/AgriC

hemUsFC-05-17-2006.pdf.  

USDA. 2006b. Crop production 2006 summary.  National Agricultural Statistics 

Service.  Available at 

http://usda.mannlib.cornell.edu/usda/nass/CropProdSu//2000s/2006/CropProdS

u-01-12-2006.pdf. 

USDA. 2008. Acreage. Washington, DC. United States Department of Agriculture. 

Available at: http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-30-

2008.pdf. 

USDA. 2009. Crop production 2008 summary.  National Agricultural Statistics 

Service.  Available at 

http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-

2009.pdf. 

http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC/2000s/2004/AgriChemUsFC-05-20-2004.pdf
http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC/2000s/2004/AgriChemUsFC-05-20-2004.pdf
http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC/2000s/2006/AgriChemUsFC-05-17-2006.pdf
http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC/2000s/2006/AgriChemUsFC-05-17-2006.pdf
http://usda.mannlib.cornell.edu/usda/nass/CropProdSu/2000s/2006/CropProdSu-01-12-2006.pdf
http://usda.mannlib.cornell.edu/usda/nass/CropProdSu/2000s/2006/CropProdSu-01-12-2006.pdf
http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-30-2008.pdf
http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-30-2008.pdf
http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2009.pdf
http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2009.pdf


101 

 

Uva, R. H., J. C. Neal, and J. M. DiTomaso. 1997. Weeds of the Northeast. Cornell 

University Press, Ithaca. 

Vasey, D. E. 1992. An Ecological History of Agriculture, 10,000 B.C.-A.D. 10,000. 

Iowa State University Press, Ames, IA. 

Zaller, J. G., D. Moser, T. Drapela, C. Schmoger, and T. Frank. 2008. Insect pests in 

winter oilseed rape affected by field and landscape characteristics. Basic and 

Applied Ecology 9:682-690. 



102 

CHAPTER 5 

 

MANAGING RESISTANCE TO BT CROPS IN A GENETICALLY VARIABLE 

INSECT HERBIVORE, OSTRINIA NUBILALIS 

 

Megan E. O‟Rourke, Thomas W. Sappington, and Shelby J. Fleischer 

 

Abstract 

To slow the resistance evolution of the European corn borer (ECB) to Cry 

proteins expressed in transgenic Bacillus thuringensis (Bt) corn, the United States 

Environmental Protection Agency (EPA) has adopted an insect resistance management 

(IRM) plan that relies on a “high dose/refuge” strategy.  However, this IRM plan does 

not consider possible ecological differences between the two ECB pheromone races (E 

and Z).  Using carbon isotope analysis, we found that unstructured (non-corn) refuges 

contribute more to E race (18%) than to Z race (4%) populations of ECB in upstate 

New York.  Furthermore, feeding on non-corn hosts is associated with decreased body 

mass and reduced fecundity.  We also show that the geographic range of E race ECB 

is restricted within the range of the Z race and that E race ECB are increasingly 

dominant in regions with increasing non-corn habitat. While the proportion of E race 

ECB developing in unstructured refuges is higher than previously assumed, low rates 

of unstructured refuge use by the Z race, evidence for reduced fecundity when reared 

on non-corn hosts, and complete sympatry within the E race range all argue against a 

relaxation of current IRM refuge standards in corn based on alternative host use.  We 

also discuss implications of this research for integrated pest management in vegetables 

and IRM in Bt cotton. 
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Introduction 

 Insect races within a single species may have very different ecologies despite 

being morphologically indistinguishable (Ferrari et al. 2006, Bickford et al. 2007).  

This can have important implications for managing agricultural pest species that are 

composed of multiple races.  The European corn borer (ECB Ostinia nubilalis) is a 

classic example of an economically important agricultural pest for which management 

strategies and regulatory policies have largely ignored the potential differences 

between known host races.   

 Genetically modified corn (Zea mays) varieties that produce Bacillus 

thuringensis (Bt) derived protein toxins in vivo have proven very effective in 

controlling ECB feeding damage (EPA 2001) and are planted on nearly 20% of the 

world‟s corn acreage, and 50% of US corn acreage (James 2007, USDA. 2008).  To 

maintain the efficacy of transgenic Bt corn, and B. thuringensis insecticide sprays used 

by organic growers against ECB, an insect resistance management (IRM) plan has 

been adopted by the United States Environmental Protection Agency (EPA) to slow 

the evolution of resistance in ECB to Bt products (EPA 2001, Andow 2002).  The key 

component of the IRM plan is the “high-dose/refuge strategy.”  Models and data 

indicate that a high-dose of insecticide that is capable of killing any heterozygous 

resistant insects, combined with a non-Bt refuge that will produce homozygous 

susceptible insects, can significantly slow the evolution of resistance to Bt (Gould 

2000, Andow 2002, Qiao 2008). The expectation is that homozygous susceptible 

insects that develop in the refuge will mate with the rare homozygous resistant 

individual that survives in the Bt corn, and that the resultant heterozygous offspring 

will be killed by the high-dose of Bt toxin in transgenic corn.  As of 2006, the EPA 

requires farmers using Bt corn in non-cotton growing regions to plant a 20% non-Bt 
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corn refuge within 0.8km of Bt corn as a “nursery” for Bt susceptible ECB (EPA 

2006b). 

For polyphagous insects, unstructured refuges (including non-corn crops and 

non-cropped areas) potentially could substitute for the structured refuges (non-Bt 

corn) mandated by EPA (Bontemps et al. 2004, Andow and Zwahlen 2006, EPA 

2008).  In the case of ECB, there is uncertainty concerning its degree of polyphagy.  

Historical records of ECB indicate that the species is polyphagous, consuming over 

200 plant species (Hodgson 1928), and it is currently considered a pest on other crops 

including wheat, cotton, and numerous vegetables (Mason et al. 1996).  A recent 

laboratory study of ECB also supports a wide diet breadth, with neonates 

preferentially feeding on various weed species over corn (Tate et al. 2006).  However, 

studies commissioned by the EPA concluded that adult ECB could be produced from 

weeds and some grain crops, but in insufficient numbers to replace structured refuge 

mandates (EPA 2001).  Losey et al. (2001, 2002) also concluded that non-corn plants 

probably contribute little to adult populations of ECB.  

Differences in reported feeding behaviors of ECB may be related to different 

races.  There are two distinct pheromone races of ECB in the U.S that utilize different 

pheromone blends of Z and E isomers of 11-tetradecyl-acetate (Carde et al. 1978).  

Since the two ECB pheromone races are partially isolated genetically (Dopman et al. 

2005), Bt resistance may develop at different rates in the two races (Bontemps et al. 

2004).  It is possible that they differ in host use patterns, and it is imperative to know 

how the two races utilize unstructured refuges for IRM.  Research from France 

indicated that the E race „hop-mugwort‟ ECB indeed had very different host utilization 

than Z race ECB and generally segregated to non-corn hosts (Thomas et al. 2003, 

Bontemps et al. 2004).  However, recent genetic (Malausa et al. 2007) and taxonomic 

(Frolov et al. 2007) studies indicate that the French „hop-mugwort‟ race is better 
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characterized as another species, Ostrinia scapulalis, and that it is distinct from E race 

Ostrinia nubilalis.  Refuge utilization by E race ECB in the United States remains 

largely unknown and previous research assessing ECB development in unstructured 

refuges did not distinguish pheromone races (EPA 2001, Losey et al. 2001).  However, 

there is circumstantial evidence supporting differences in host utilization between 

races in the U.S. with reports from North Carolina suggesting that the E race is more 

likely to infest cotton and potato than the Z race (Sorenson et al. 2005).   

Here we use carbon stable isotope analysis to assess the contribution of 

unstructured refuges to populations of E and Z race ECB.  Plants that utilize the C4 

photosynthetic pathway sequester a significantly higher proportion of 
13

C to 
12

C, a 

ratio designated as δ
13

C, than plants utilizing the C3 pathway. The δ
13

C levels of an 

organism's tissues largely reflect the carbon signatures of its food, and thus can 

provide information on the feeding history of that individual (Deniro and Epstein 

1978).  Observations of ECB trapped in France and reared on diet derived from 

different plant material confirm that δ
13

C analysis of adult ECB can distinguish 

unambiguously between a C3 or C4 larval host history (Ponsard et al. 2004, Malausa 

et al. 2007).   In the northeastern United States, corn is by far the most common C4 

plant, though a small number of other C4 agricultural crop and plant species also exist 

(Uva et al. 1997, Ponsard et al. 2004).  Any ECB with a C3 host history must have 

developed on a non-corn host, and therefore in an unstructured refuge. 

In addition to providing data on proportions of E and Z race ECB development 

in unstructured refuges, we explore other ecological factors essential to the goals of 

IRM.  We have identified physiological consequences for ECB developing in 

unstructured refuges that may reduce their fecundity relative to ECB developing in 

structured non-Bt corn refuges.  Reduced fecundity would indicate that unstructured 

refuges may be less efficient than structured refuges in producing Bt susceptible 
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adults, which could increase the rate of resistance evolution (Ives and Andow 2002).  

We also have compiled extensive data on the geographic ranges of the two ECB 

pheromone races.  If the two races exhibit different utilization of unstructured refuges 

and are not entirely sympatric, then adjusting IRM refuge requirements in different 

regions may be warranted. 

 

Materials & Methods 

Isotope Experiments 

 ECB were collected weekly in upstate New York along the borders of sweet 

corn fields during 2006 in Scentry Heliothis traps baited with either E or Z race-

specific Pherocon pheromone lures.  While there is a small error rate in E and Z race 

males responding to the pheromone blend typical of the opposite race (Linn et al. 

1997), we assume that trap captures reflect the true race of the responding ECB.  

Random sub-samples of moths from each sampling location were dried at 55
o
C for at 

least one week, and were weighed individually.  The wings of 68 E and 71 Z race ECB 

were each analyzed for δ
13

C content using a Thermo Delta Plus isotope ratio mass 

spectrometer (IRMS) interfaced to a NC2500 elemental analyzer at the Cornell Isotope 

Laboratory (COIL) (Table S1 in Appendix). 

 A second δ
13

C stable isotope experiment was conducted on all ECB (n=138 E; 

206 Z) collected on one farm in Penn Yan, NY in 2006 to determine the relationships 

between adult weight, pheromone race, and host history.  Moths were dried and 

weighed individually.  Moths from the „large‟ and „small‟ tails of the weight 

distributions of each pheromone race were selected for isotope analysis.  The weights 

of individuals of each race were matched within size classes so that the mean weights 

of each category would be as similar as possible.  Eleven „large‟ E (mean + SD weight 

= 9.83 + 3.66mg), eleven „large‟ Z (10.92 + 1.97mg), seven „small‟ E (3.92 + 
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0.24mg), and 9 „small‟ Z moths (3.78 + 0.37mg) were analyzed.  Additionally, the 

four smallest moths collected (2.05 + 0.13mg), which were all E race, were analyzed 

for δ
13

C content.  Isotope analysis was conducted as described above.   

 δ
13

C signatures were converted to categories of host history by scoring 

individuals with δ
13

C values < -20‰ as having a C3 host history, while δ
13

C values > 

-15‰ were scored as having a C4 host history (Deniro and Epstein 1978, Ponsard et 

al. 2004).  For the first isotope experiment, a Fischer exact test was used to assess the 

relationship between pheromone race and ECB host history.  The relationship between 

sampling location and ECB host history was assessed for the E race, using likelihood 

ratio tests of chi square estimates.  The effects of host history and pheromone race on 

moth dry weight were tested using a standard least squares analysis of variance 

(ANOVA) of a full factorial model.  Contrasts were made to test the specific 

hypotheses that E and Z race ECB weigh the same when they develop on C4 plants, 

and that each race weighs less when they develop on C3 plants (JMP 2007).  For the 

second isotope experiment, the effects of moth size category („large‟ and „small‟) and 

pheromone race on host history were analyzed with an exact logistic regression using 

Stata
TM

 10.0 software (STATA 2008).  The relationship between pheromone race and 

host history within the different size categories was further investigated using Fischer 

exact tests of two-by-two contingency tables (JMP 2007). 

 

Female Size and Fecundity  

We examined the relationship between size and lifetime egg production of Z 

race ECB reared at the USDA-ARS Corn Insects and Crop Genetics Research Unit, 

Ames, IA.  The ECB colony was established in June 2007 from wild adults captured in 

light traps in central Iowa, and three cohorts representing three generations (N=66, 37, 

and 60 females) were tested during January-April 2008.  Insects were reared at 27⁰C, 
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16:8 (L:D), and 80% relative humidity, following standard procedures (Guthrie et al. 

1985).  Eggs were heat-treated to ensure a disease-free colony (Raun 1961).  

Female pupae were weighed to the nearest mg on the second day after 

pupation.  Pupae were held separately in small plastic cups and checked daily for adult 

emergence. On the day of eclosion, each female was transferred to a small wire-mesh 

cage (8.5 cm dia, 6 cm tall) containing two, 2-5 days old males for mating (Kira et al. 

1969).  The males remained in the cage throughout the life of the female, and were 

replaced with fresh males if the former died.  The mesh on the lid was wide enough to 

allow females to oviposit through it onto a wax paper disc held in place by the upper 

half of a glass petri dish.  The wax sheet was changed daily and the eggs were allowed 

to develop for two days. Fertile and infertile eggs were distinguished by color change 

associated with embryo development and were counted under a dissecting microscope.  

Total eggs laid, including both fertile and non-fertile from females laying greater than 

50% fertile eggs, was used in analysis.  The effect of female pupal size on fecundity 

was assessed by linear regression of total lifetime eggs laid on female pupal weight 

(Analytical-Software 2000).   

 

Geographic Distributions  

 ECB data from New England and Mid-Atlantic States were obtained from the 

Pestwatch database (Fleischer 2008).  Data from North Carolina were obtained from 

Sorenson et al. (Sorenson et al. 2005), data from South Carolina were obtained from 

Durant et al. (Durant et al. 1986), data from Ohio were contributed by C. Welty 

(unpublished data), and data from Iowa were contributed by D. Sumerford and T. 

Sappington (unpublished data). ECB data were consolidated by summing all E and Z 

moths collected over all years of record per county before further analyses (Table S2 

in Appendix).   
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Spatial information about ECB distributions and agronomic data were 

compiled and maps were created in Manifold
®
Systems 8.0 Geographic Information 

Systems (GIS) software (Manifold 2008).  Data on corn and vegetable acreages 

(including sweet corn) per county in the Pestwatch database and North Carolina, Ohio, 

and South Carolina were obtained from the 2002, 1992, and 1987 Census of 

Agriculture, respectively (USDA 2008).   The relationships between the proportion of 

E moths and longitude, field corn acreage, and vegetable acreage were analyzed using 

multiple regression (JMP 2007).  Prior to analysis, corn and vegetable acreages per 

county were normalized by the total area of each county.  Data from Iowa were 

excluded from this analysis to avoid skewing the results with an outlier data point.  

ANOVA was used to test whether E race ECB were significantly more abundant in 

counties in the eastern (east of the Hudson River: Maine, New Hampshire, Vermont, 

Massachusetts, Connecticut, and Long Island, NY), than western (west of the Hudson 

River: Pennsylvania, Maryland, Delaware, upstate New York) regions of the 

Pestwatch dataset (JMP 2007).   

 

Results 

Isotope Experiments 

All moths sampled had either a δ
13

C isotope signature reflecting larval feeding 

on C4 (N = 160, mean = -12.198‰, max = -10.254‰, min = -14.638‰) or C3 (N = 

26, mean = -27.901‰, max = -23.752‰, min = -31.041‰) plants.  Among the moths 

sampled, there was no evidence that any had a mixed diet of C3 and C4 type plants as 

larvae (Figure S1 in Appendix).   

E and Z race ECB utilize non-corn hosts at different rates (Fischer‟s exact 2-

tail test, N = 139, P = 0.013). Approximately 18% of the E race adults captured in 

pheromone traps throughout upstate New York developed as larvae on C3 plants (12 
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of 68) compared to only 4% of captured Z race moths (3 of 71).  However, rates of 

utilizing unstructured refuges were spatially very variable for the E race, ranging from 

0% to 40%.  Indeed, location significantly affected the rate that E race moths 

developed in unstructured refuges (χ
2
 = 16.496, df = 4, P = 0.0024) (Figure 5.1). 

Larval host plant had a significant effect on adult weight of E race ECB.  There 

was no significant difference in adult weight between the E and Z race when they 

developed on C4 plants (F = 3.69, df = 1,91, P = 0.06).  However, weights of E race 

ECB were significantly less when they developed on C3 (mean ± SD weight = 4.72 ± 

2.33mg) than C4 hosts (6.16 ± 1.53mg) (F = 6.33, df = 1,91, P = 0.01).  In contrast, 

there did not appear to be a decrease in weight for Z race ECB that developed in 

unstructured refuges (F = 0.59, df = 1,91, P > 0.5), but there were only two Z race 

ECB to test in this category (Figure 5.2). 

The second isotope experiment further supports a relationship between ECB 

pheromone race, adult weight, and host history (Table 5.1).  Small moths were 

significantly more likely to have developed on a C3 plant than large moths (odds ratio 

= 92.577, 95% C.I. = 3.5 to infinity, P < 0.0001).  Also, E moths were significantly 

more likely to have developed on a C3 plant than Z moths (odds ratio = 34.168, 95% 

C.I. = 8.8 to infinity, P = 0.0014).  Differences in host history between the two ECB 

races are especially apparent in small moths where the E race is much more likely than 

the Z race to have developed on C3 plants (Fischer‟s exact 1-tail test, N = 16, P = 

0.0007).  The four smallest E race ECB, which were the smallest of all the moths 

sampled at Penn Yan, NY, all had δ
13

C signatures indicative of a C3 host history. 

 

Female Size and Fecundity 

Lifetime egg production was positively related to female size, as indexed by 

pupal weight (F = 2.56, df = 1,161, P < 0.0001).  Female pupal weight explained 25% 
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Figure 5.1.  Proportions of adult ECB collected in pheromone traps in upstate New 

York specific to the A) E race or B) Z race whose δ
13

C signatures reflect larval 

feeding on C3 (black shading) and C4 (white shading) plants in upstate New York.  

Numbers above pie charts correspond to sample sizes. 
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Figure 5.2.  Dry weights (mg) of adult male ECB collected in E and Z pheromone 

baited traps in upstate New York.  Dark gray bars show mean weights of ECB that 

developed on C4 hosts.  Light gray bars show mean weights of ECB that developed 

on C3 hosts.  Error bars represent standard errors of sample means.  Numbers 

above bars indicate sample sizes.  Asterisks denote a significant difference (P = 

0.01) in the weights of E moths that fed on C3 or C4 plants. 



113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1.  Numbers of E and Z race adult male ECB of two size categories 

collected in pheromone traps in Penn Yan, NY that had δ
13

C signatures 

characteristic of either C3 or C4 larval host plants. 
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Figure 5.3.  Linear regression of lifetime eggs laid against female pupal weight for 

laboratory-reared Z-race European corn borers. 
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Figure 5.4.  Proportions of E (black shading) and Z (white shading) pheromone 

races of ECB in the Eastern and Central United States based on captures in 

pheromone traps.  See Appendix 5.1 for sources and details of samples. 
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of the variation in lifetime egg production.  Within the range of pupal weights 

examined, our regression model predicts that a threefold increase in pupal weight 

corresponds to a 3.5 fold increase in the number of eggs an ECB female will lay 

(Figure 5.3).   Lifetime percent fertile eggs laid per female averaged 86.6 (S.E. = 

0.08).   

 

Geographic Distributions  

On a county-wide scale, Z and E race ECB always co-occurred at the locations 

sampled in this study, except in Iowa where moths responded only to the Z pheromone 

(Figure 5.4).  However, the proportion of E moths expected in a county is significantly 

related to longitude, increasing from west to east (F = 21.04, df = 1,83, P < 0.0001).  

Counties east of Pennsylvania and upstate New York reported an average of 59% E 

moths, which is significantly more than the average 23% E race reported in the 

western Pestwatch region (F = 54.61, df = 1,73, P < 0.0001). In addition to longitude, 

land-use also appears to play a role in the distribution of ECB races.  The proportion 

of E race ECB per county is positively related to non-corn acreage (F = 4.98, df = 

1,83, P = 0.028).  Vegetable acreage was not significantly related to the distribution of 

E moths (F = 0.15, df = 1,83, P > 0.5).  

 

Discussion 

The differences in host use between E and Z race ECB found in this study have 

important implications for IRM in Bt-corn (Gould 1998).  Relatively high proportions 

of E race ECB developing on species other than corn indicate that unstructured refuges 

may contribute to slowing the development of resistance to Bt in the E race.  In 

contrast, our results indicate that only a very low proportion of Z race ECB develop in 

unstructured refuges in upstate New York, and that unstructured refuges probably 
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contribute relatively little to preventing Bt resistance evolution in this race.  The 

average 4% of Z race ECB that developed in unstructured refuges in this study 

concurs with data from France where only 3% of Z race O. nubilalis collected in 

pheromone traps had developed on C3 hosts (Bontemps et al. 2004).   Furthermore, 

since “mistaken” attraction to the lure of the opposite race can happen, especially in 

the case of E males responding to the Z pheromone blend (Linn et al. 1997), the 

proportion of Z race ECB developing in unstructured refuges determined in our study 

could be an overestimate. 

Previous research concluding that unstructured refuges are unlikely to 

contribute to adult populations of ECB may have been working primarily with Z race 

ECB, even though the race was not identified.  This is certainly true for studies in the 

Midwestern United States where the E race presumably is not present (EPA 2001) 

(Figure 5.3).  Additionally, research by Losey et al. (2001, 2002) on unstructured 

refuges and ECB was conducted in only one region in upstate New York and one in 

Pennsylvania.  While both pheromone races are present in these regions (Figure 5.3), 

farm to farm variability in the proportional abundance of E moths can be quite high 

(Sorenson et al. 2005), and the contribution by the E race was undetermined. 

Taken as a whole, our results do not support a relaxing of structured refuge 

requirements for ECB in Bt corn.  While our isotope survey shows that E race ECB 

develop in unstructured refuges at relatively high rates in New York, and correlations 

between non-corn habitat and E race ECB confirm that wide host utilization may 

occur throughout its range, other results indicate that adjusting structured refuge 

requirements for Bt corn would be unwarranted.  First, there seems to be a large 

amount of spatial variability in the proportions of E race ECB feeding on non-corn 

hosts.  Second, adult weights of ECB appear to be reduced by feeding on C3 hosts.  

Reduced weight of ECB females, in turn, was related to lower fecundity.  Because low 
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weight moths produce fewer lifetime eggs, the effective refuge size of non-corn hosts 

likewise is reduced and could increase rates of resistance evolution (Gould 1998, Ives 

and Andow 2002, Gustafson et al. 2006).  Finally, our compilation of E and Z race 

ECB distributions indicates that the Z race‟s range fully overlaps with that of the E 

race in the United States at a county-wide scale.  Where there is sympatry, IRM 

strategies should be conservatively based on the Z race, for which non-corn hosts 

appear to produce insufficient numbers of susceptible adults to serve as reliable 

unstructured refuges.   

Our research showing different rates of unstructured refuge utilization between 

ECB pheromone races also has important implications for IRM in Bt cotton.  Surveys 

of the major U.S. cotton pests, Heliothis virescens and Helicoverpa zea, indicate that 

both species utilize unstructured refuges at higher rates than we observed for ECB 

(Gould et al. 2002, Gustafson et al. 2006, Orth et al. 2007, Jackson et al. 2008).  These 

data have played important roles in the 2007 approval by EPA to eliminate structured 

refuge requirements in IRM plans for Bt cotton varieties pyramided with Cry1Ac and 

Cry2Ab2 genes in parts of the U.S. (EPA 2006a, 2008).  However, as with IRM plans 

for O. nubilalis, differences in host utilization between possible races of cotton pests 

have not been carefully considered.  Research indeed points to the possibility of 

pheromone races within H. armigera, the Old World sister species of H. zea 

(Tamhankar et al. 2003, Cho et al. 2008), and to variation in pheromone composition 

and male response in H. virescens (Groot et al. 2009).  Given the large differences we 

observed for unstructured refuge utilization between O. nubilalis pheromone races and 

the potential impacts on Bt resistance evolution and IRM, more research into possible 

races of cotton pests appears warranted.   

In addition to its implications for IRM, differences in feeding behaviors 

between E and Z race ECB are important for integrated pest management (IPM) in 
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vegetable crops.  Since vegetable processors have very low tolerances for ECB 

contamination, insecticides targeting ECB are often applied preventively based on 

ECB flight activity and plant growth stage (Mason et al. 1996).  However, our data 

indicate that adult ECB that have fed on C3 plants, including vegetables, are 

predominantly E race.  This result raises questions about the role of Z race ECB in 

vegetable systems other than sweet corn.  It is unclear whether Z race ECB lay eggs on 

vegetables but their larvae have low survival to adulthood, or whether the small 

percentage of Z race ECB that feed on C3 plants is sufficient to cause economic losses 

in vegetables.  Alternatively, the E race ECB may constitute the major contributor to 

vegetable damage.  If so, IPM programs for managing ECB in vegetables other than 

sweet corn should be focused on the flight activity of E moths, which is not 

necessarily in phase with that of Z moths (Sorenson et al. 2005). An increased focus 

on the biology and ecology of the E race could improve pest management and reduce 

insecticide use in vegetable crops.  

This research also provides general insight into the ecological differences 

between the ECB races.  We have shown through isotope analysis that E and Z moths 

have different host use patterns in New York. The large-scale geographic relationship 

that we found between non-corn habitat and proportions of E race ECB further 

indicates that development in unstructured refuges by E race ECB may be a general 

phenomenon throughout its range.  Our distribution map of ECB pheromone races also 

shows clear differences in their ranges.  The underlying reasons for the strong 

longitudinal trend are unknown, but a variety of hypotheses can be posited.  The E 

race was not recognized until 1972 (Roelofs et al. 1972) and its reduced range may 

simply be the result of its introduction after the Z race, since multiple introductions of 

ECB into the United States have been acknowledged (Brindley and Dicke 1963).  

Alternatively, the E race may be more ecologically constrained in North America than 
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the Z race.  They may be poorer dispersers resulting in slower range expansion, or less 

adapted to the climate in the Midwestern United States.   

Ecological differences between the pheromone races, along with evidence for 

restricted gene flow and independent evolution (Dopman et al. 2005) emphasize that 

ECB races should be clearly identified in future research.  This is especially true in the 

New England states where we found that the E race often predominates.  In addition to 

pheromone races, there are genetically distinct voltinism races that utilize the Z 

pheromone blend and differ in post-diapause development times (Coates et al. 2004, 

Dopman et al. 2005).  Although diapause response has been extensively studied 

among voltinism races (Calvin and Song 1994), little is known about the distributions 

or behaviors of the univoltine race. As with the pheromone races, they likely have 

unique evolutionary trajectories and should not be ignored.  In our research, since uni- 

and bivoltine Z race ECB are known to exist sympatrically in New York (Glover et al. 

1991), δ
13

C samples likely included both voltinism races.  However, their proportions 

in samples are unknown and we cannot definitively conclude that both Z voltinism 

races use unstructured refuges at very low rates.   

All the different races of ECB make the taxonomy of the species difficult.  

Until recently, studies from France indicated that E race ECB infested mainly hop and 

mugwort (Thomas et al. 2003, Bontemps et al. 2004).  However, Malausa et al. (2007) 

suggested the degree of reproductive isolation between the Z and E race ECB in 

France was high enough to justify species status.  Frolov et al. (2007) concluded that 

the E race populations in France actually belong to the sibling species Ostrinia 

scapulalis, though the existence of E race O. nubilalis in other parts of Europe is still 

recognized.  While we found that E race ECB from New York consumed non-corn 

plants at an average rate of 18%, this is very different from the E race „hop-mugwort‟ 

species (O. scapulalis) in France that infests C3 plants at a rate of 86% (Bontemps et 
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al. 2004).  Thus, our δ
13

C data on the host history of E race ECB in New York support 

the idea that they are E race O. nubilalis rather than E race „hop-mugwort‟ O. 

scapulalis studied in France.  However, the possibility remains that there is assortative 

mating within the E race between those that feed on corn and non-corn hosts, or that 

there is a combination of E races of O. nubilalis and O. scapulalis within the United 

States.   

This research has shown that utilization of unstructured refuges differs 

between the E and Z pheromone races of ECB in the United States, with important 

implications for IRM and IPM plans.  Where multiple races of a species have 

overlapping distributions, IRM strategies should be conservatively based on the race 

most likely to develop resistance, in this case the Z race of ECB.  This, of course, 

requires not only that we can identify the cryptic races, but also that we understand the 

basic ecological, behavioral, and evolutionary differences between them.  While 

unraveling the differences among members of race- or species-complexes can be 

difficult, we have shown how understanding them can have important applied 

economic and policy implications.  
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CHAPTER 6 

 

CONCLUSIONS 

 

Agro-ecosystems are much more complex than simply a collection of crop 

fields.  Rather, agro-ecological processes of key import, including insect population 

dynamics, are regulated by non-crop as well as by crop habitats.  In this thesis, we 

have demonstrated the importance of non-crop habitat in the population dynamics and 

evolution of key insects in corn fields.  The major conclusions from each research 

paper and the relationships between the chapters are summarized below. 

In chapter two, I focused attention on the gaps in landscape-insect research.  

To do this, I examined the literature on local plant diversity-insect relationships that 

proliferated following Dick Root‟s Ecological Monograph, “Organization of a plant-

arthropod association in simple and diverse habitats – fauna of Collards (Brassica-

Oleracea).”   I then compared that research to the relatively small and recent body of 

landscape-insect literature.  This revealed that most of the landscape-insect studies 

have pursued the „natural enemies hypothesis‟ put forth by Dr. Root, which predicts 

that diverse habitats reduce herbivore densities by increasing natural enemy densities.  

However, most landscape-insect studies ignore Dr. Root‟s „resource concentration 

hypothesis,‟ which predicts that specialist herbivore populations are directly reduced 

by diverse habitats.  I posited mechanisms by which diverse agricultural landscapes 

may directly reduce specialist herbivore populations.  Specifically, I argued that 

greater dispersal distances between suitable habitat patches in diverse landscapes 

decrease herbivore fecundity and increase mortality.   

In addition to a lack of research on the direct effects of agricultural landscapes 

on herbivores, research documenting relationships between agricultural landscapes 
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and herbivore densities is scarce.  Most research to date has focused on relationships 

between agricultural landscapes and natural enemies.  Therefore, in chapter three, we 

reported relationships between land-use patterns at multiple scales and densities of 

three herbivore pests of field corn.  We also quantified lady beetle densities in the 

same landscapes to test the hypothesis that diverse agricultural landscapes 

differentially affect specialist herbivore pests and generalist predator natural enemies.  

Our data showed that specialist pest densities were generally suppressed while 

generalist natural enemy densities were enhanced in diverse landscapes.  However, 

these relationships were complicated.  For example, relationships between landscape 

diversity and insect densities differed when diversity on the perimeter or in the county 

surrounding corn fields was considered.  Also, the strength of pest suppression or 

natural enemy enhancement in diverse agricultural landscapes varied from strong to 

undetectable, depending on the insect.  This research highlighted how multiple scales 

of land-use may affect insect populations and how insect life history may influence 

landscape-insect relationships. 

In chapter four, we attempted to address the issue of predictability in 

landscape-herbivore relationships and generated hypotheses about which types of 

herbivores, based on life history characteristics, are most suppressed by diverse 

landscapes.  We also introduced the issue of regional pest management and its impacts 

on landscape-herbivore relationships.  This chapter borrowed data about relationships 

between landscapes and herbivore populations from the previous chapter, and 

combined it with laboratory data on host specialization, literature data on national 

management of the pests, and predictions from a spatially-explicit simulation model of 

landscape-herbivore population dynamics.  We showed that insects that use alternative 

hosts, even at low rates, may not be suppressed by landscape diversification.  We also 

showed that insecticide use may be correlated to land use with less insecticide used in 
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diverse landscapes.   Within the context of regional pest management, we proposed 

that specialist herbivores with relatively low reproductive rates are more suppressed 

by landscape diversification than herbivores that use multiple hosts and have high 

reproductive rates. 

In the final research chapter of this thesis, chapter five, we examined the 

effects of landscape-scale habitat diversity on pest evolution.  Having quantified host 

utilization by corn pests for the previous thesis chapter, we began to think about the 

implications of host utilization for insect resistance management (IRM) to Bt crops.  

Specifically, in cases where pests utilize multiple hosts, we wondered whether diverse 

agricultural landscapes could substitute for structured, non-Bt refuges mandated by the 

US EPA to slow the evolution of resistance to Bt crops.  As a case study, we examined 

host utilization by the European corn borer (ECB) and detailed other aspects of ECB 

ecology that should be examined when considering relaxing Bt refuge policies.  We 

looked at differences in host utilization between the two ECB pheromone races, the 

effects of non-corn host utilization on ECB fitness, and the ranges of the two 

pheromone races.  We concluded that habitat diversity cannot substitute for Bt refuge 

requirements in IRM plans for Bt corn and that other factors besides host utilization by 

pests are important.  Possible cryptic insect races with different host utilization 

behaviors, and fitness on alternative hosts should also be considered along with host 

utilization when developing IRM refuge strategies.    

Together, this research has implications for both basic ecology and 

evolutionary biology as well as for applied pest management.  On the basic side, it 

helps to clarify the spatial context of plant-insect interactions and to explain why 

insect communities vary in different locations.  Land-use patterns may also help to 

explain why certain insect genotypes have evolved.  On the applied side, this research 

helps to predict pest pressures under government policies that promote land-use 



 

132 

change.  For example, we might expect densities of corn specialist pests and 

insecticide use to increase with expanding corn acreage to meet US government 

biofuel mandates.  Conversely, we may see suppression of specialist herbivores and 

more generalist herbivores in annual crops if perennial habitat expands with presumed 

advances in cellulosic ethanol technology.  Land-use patterns may also help to predict 

where insects will first evolve resistance to Bt crops and other pest management 

strategies. 

Nearly 40% of the world‟s inhabited countries are devoted to agriculture, 

which has huge impacts on global ecosystems.  In this research, we have shown the 

pest control benefits of integrating habitat diversity into agricultural landscape.  This is 

in addition to other known ecosystem services supported by diverse agricultural 

landscapes including wildlife, water, and soil conservation.  However, changing 

agriculture to incorporate more diversity is not a simple challenge.  Agricultural 

landscapes result from social and economic factors in addition to physical and 

biological constraints, and any attempts to change agriculture must consider these 

diverse variables.  Nevertheless, while directed changes may be difficult to catalyze, 

diversifying agricultural landscapes could provide huge ecosystem services benefits.  
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APPENDIX  

 

 

Table S1.  Proportions of E and Z race ECB sampled from upstate New York that 

developed on C3 hosts according to δ
13

C analyses. 

 

 Sample Size 
Geographic 
Coordinates

 
Proportion C3 

Nearby Town E Z X Y E Z 

Batavia -- 10 -78.2605 43.0148 -- 0.10 

E. Aurora -- 5 -78.6136 42.7678 -- 0.0 

Eden 15 15 -78.8592 42.6917 0.0 0.07 

Farmington 15 11 -77.2730 42.9671 0.0 0.0 

Hamlin 5 10 -78.0341 43.3500 0.40 0.0 

Lockport -- 5 -78.8439 43.2151 -- 0.0 

Penn Yan 19 10 -76.9826 42.6266 0.26 0.0 

Spencerport -- 5 -77.7500 43.1667 -- 0.0 

Williamson 14 -- -77.2318 43.2228 0.36 -- 
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Table S2. Total numbers of E and Z race moths trapped, the number of trap locations 

monitored, and the duration of trapping for each county mapped in Fig. 4.
* 

 

State
a 

County Trap pairs
b 

Beginning End Total e Total z  

CT Hartford 6 2002 2002 214 196 

CT New Haven 3 2002 2002 122 43 

CT Tolland 2 2002 2002 42 189 

DE Kent 1 2002 2002 12 290 

DE Sussex 1 2002 2002 15 178 

IA
c
 Story 3 2007 2007 0 439 

MA Berkshire 8 2002 2007 135 314 

MA Bristol 8 2002 2006 403 385 

MA Essex 6 2002 2006 508 299 

MA Franklin 10 2002 2007 2849 1093 

MA Hampden 7 2002 2007 357 452 

MA Hampshire 14 2002 2007 2760 2501 

MA Middlesex 11 2002 2007 550 453 

MA Norfolk 5 2002 2007 639 494 

MA Worcester 14 2002 2006 785 536 

MD Frederick 4 2007 2007 87 125 

ME Androscoggin 15 2002 2006 1759 872 

ME Cumberland 15 2002 2006 2112 572 

ME Franklin 5 2002 2006 276 136 

ME Kennebec 13 2002 2006 753 539 

ME Knox 3 2002 2004 165 29 

ME Lincoln 15 2002 2006 731 904 

ME Oxford 7 2002 2006 904 263 

ME Penobscot 11 2002 2006 81 625 

ME York 20 2002 2006 1524 377 

NC
d 

Chatham  6 1998 2000 88 378 

NC Franklin  6 1998 2000 378 687 

NC Henderson  3 1998 2000 2 87 

NC Randolph  6 1998 2000 172 961 

NC Wake 9 1998 2000 676 340 

NC Wayne  3 1998 2000 99 26 

NH Cheshire 3 2002 2007 271 49 

NH Hillsborough 13 2006 2007 863 105 

NH Sullivan 2 2002 2003 96 199 

NY Cattaraugus 3 2004 2006 13 183 

NY Cayuga 10 2001 2007 67 467 

NY Chautauqua 9 1999 2007 110 1057 

NY Erie 14 1999 2007 226 5273 

NY Genesee 18 1999 2007 251 2720 

NY Madison 8 1999 2007 426 226 

NY Monroe 18 1999 2007 1303 2849 

NY Niagara 9 1999 2007 218 1734 

NY Onondaga 7 2001 2007 979 550 

NY Ontario 18 1999 2007 3888 3235 

NY Orleans 11 1999 2007 361 1589 
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NY Suffolk 27 2000 2006 15731 931 

NY Tioga 13 1999 2007 260 1645 

NY Wayne 10 1999 2007 434 730 

NY Yates 10 1999 2007 1089 2490 

OH
e 

Adams 2 1991 1991 5 52 

OH Clark 3 1989 1989 2 45 

OH Pickaway 3 1989 1989 13 440 

OH Washington 4 1990 1991 11 153 

PA Adams 8 1999 2007 69 211 

PA Bedford 9 1999 2005 53 100 

PA Berks 3 1999 2007 247 69 

PA Blair 20 1999 2007 266 697 

PA Bucks 26 1999 2007 781 4177 

PA Butler 2 2007 2007 80 75 

PA Centre 19 1999 2007 1128 2336 

PA Clinton 8 2000 2007 170 812 

PA Cumberland 9 1999 2006 146 1105 

PA Dauphin 11 2000 2007 247 651 

PA Erie 13 1999 2006 126 650 

PA Fayette 7 2000 2006 38 117 

PA Franklin 18 2000 2006 235 872 

PA Huntingdon 2 2002 2007 144 410 

PA Indiana 26 1998 2007 45 3553 

PA Lancaster 34 1999 2007 2799 7642 

PA Lebanon 5 1999 2007 252 837 

PA Lehigh 9 1999 2007 371 3737 

PA Luzerne 22 1999 2007 1610 3813 

PA Lycoming 13 2000 2007 145 1351 

PA Mifflin 5 2003 2007 93 237 

PA Monroe 6 2000 2001 21 219 

PA Montour 3 2002 2007 12 247 

PA Northampton 8 2000 2007 164 1608 

PA Potter 4 2000 2001 3 92 

PA Schuylkill 22 1999 2007 418 2019 

PA Somerset 1 2007 2007 63 57 

PA Union 15 2000 2007 326 1792 

PA Washington 5 2002 2006 23 173 

PA Westmoreland 11 1999 2007 110 1211 

PA York 5 2003 2007 180 861 

SC
f 

Florence  4 1984 1985 108 7 

SC Pickens  2 1984 1985 14 33 

SC Sumter  2 1984 1985 85 18 

VT Bennington 2 2002 2003 67 372 

VT Windham 4 2002 2005 554 188 
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(Table S2 continued) 

 
a
All data are from the Pestwatch database unless otherwise noted 

b
One trap pair is equivalent to one E plus one Z race pheromone trap 

c
Iowa data are unpublished contributions from D. Sumerford and T. Sappington 

d
North Carolina data are from Sorenson et al. (2005)

 

e
Ohio data are unplublished contributions from C. Welty 

f
South Carolina data are from Durant et al. (1986) 

*
 Only farms in the Pestwatch database (Fleischer 2008) where both E and Z race ECB 

pheromone lures were deployed, and where cumulative catch exceeded 50 moths, 

were included in analyses. Extension educators have contributed data to Pestwatch 

since 1999 on ECB collected on vegetable farms using Scentry Heliothis nylon traps 

baited with Pherocon lures, or wire cone traps of the same size (TP-75-50) baited with 

lures from Hercon.  North Carolina data from Sorensen et al. (2005) include 1998-

2000 ECB sampling.  South Carolina data are from table 1 in Durant et al. (1986). The 

Ohio data spans 1989-1991 and was collected using Scentry Heliothis traps baited 

with E and Z race Scentry lures that were placed at least 30m apart along the edges of 

sweet corn fields.   
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Figure S1.  Histogram of δ
13

C values of all ECB analyzed. 




