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This thesis describes work on using atomic transition-based stabilization to yield

high precision, high stability systems for micro- and nano-scale systems. After dis-

cussing the fundamentals of atomic precision and control loops, compact low power

radio frequency plasmas are described for use in passive rubidium atomic clocks. A

self-powered implementation is then described, using a radioactive isotope as the

power source. Next, an atomic beat clock is described as a low power atomic fre-

quency source. The ultimate precision in laser frequency stability due to quantum

phase fluctuations is discussed. Next, a nanometrology optical ruler imaging sys-

tem is described which uses an atomically frequency-stabilized laser. Simulations

and experimental results are described. Finally, scanning probe nanofabrication

of highly ordered pyrolytic graphite using an electrochemical etching process is

described, where a feedback control system allows for fabrication of a large array.
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5.1 Schematic of NORIS. Section 1 shows the atomically stabilized
laser. An external cavity laser is stabilized to the hyperfine struc-
ture of 85Rb, to a stability of a few parts per billion by saturation
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generate a diffraction pattern. The wafer has a suspended thin film
metal aperture array, which diffracts and forms the optical ruler.
The optical ruler projects above the manufacturing wafer, or any
region of space where the nanometrology is to take place. The aper-
ture array thin film is temperature controlled by a thermo-electric
cooler. A camera mounted on an actuator is used to image the
optical ruler, which allows the system to detect its position. Here,
the camera is shown attached to a scanning tunneling tip. Section
4 shows the digital signal processing required to run the system
and control the position. Cross correlation methods must be used
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has been calculated in finite element method simulations of har-
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frequency noise introduced through the table, but its movements
would not excite the high frequency modes in the optomechanics. 74
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fications of the input signal. The change in amplification causes
different intensities to be measurent. Taking measurements at one
amplifiation biases an ADC measurement due to the discretization
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5.4 Figure 5.3 showed the different ADC intensities that were measured;
by taking the combined information, the system can converge to
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5.9 Schematic of NORIS with quasiperiodic pattern. SEM shows holes
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5.10 a. Calculated images of optical ruler, generated by 780 nm Fraun-
hoffer diffraction from the quasiperiodic, 9662, 3µm diameter holes
distributed over 2 mm, sampled at a distance of 25.4mm. Note
high density of features across the whole image, as was confirmed
in the real image in Fig. 5.9. b. Same conditions as a., but of a
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CHAPTER 1

INTRODUCTION

Standards of measurements has a broad range of impact including business,

technology, and science. Measurement standards enables of intra- and international

trade. In the United States, the National Institute of Standards and Technology –

an agency of the Department of Commerce – develops and maintains a set of na-

tional standards that the private sector can use for its weights and measurements.

It has been estimated that in 1998, weights and measurement regulation impacted

some $4.5 trillion of the $8.51 trillion U.S. GDP [33]. The Bureau International

des Poids et Mesures creates standards and metrology on the international scale,

maintaining the Système International d’Unités (SI). Historically, improvements in

metrology and standards have paved the way for tremendous improvements in both

the quality and quantity of industrial output. The development of interchange-

able parts and mass production in the nineteenth and early twentieth century

were catalyzed by precise dissemination of the mil (0.001 inch) using gauge blocks

and vernier calipers [26]. The current explosion in computing, sensing, and ac-

tuation devices based on microfabrication is enabled by precise metrology at the

micron and sub-micron scales due to mechanical actuators and especially laser-

based interferometric systems. Fundamental science benefits from improvements

in metrology as well. For example, it has been proposed that the fine structure

constant α = e2/~c4πε0 ≈ 1/137 has relatively changed 4.5×10−8 over the last two

billion years [37], a change of 7.1347×10−25 per second. The value of the fine struc-

ture constant is of great interest in physics, since it is a nondimensional constant

and therefore the same value in all systems of units, and also appears in many

physical relationships such as atomic spectra. Its measurement, however, requires
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experiments using standardized units: their high precision and definition allows

precise measurements of the fine structure constant based on empirical data. It is

also expected that sensitive predictions of General Relativity will be measured as

well.

In micro- and nanoscale systems, precision in length and time are of primary

concern, although the complete SI base units now includes mass (kilograms), elec-

tric current (amperes), thermodynamic temperature (Kelvins), amounts of sub-

stance (moles), and luminous intensity (candela) in addition to meters and kilo-

grams. The definition of the meter traces back to 1799 as 10−7 of a quadrant of

the earth. In 1889, platinum-iridium bar meter-length standards were used. In

such cases, the standard is traceably transferred around the world while the actual

standard remains permanently placed at one location. The current definition of

the meter is the distance traveled by light, in vacuum, in 1/299792458 seconds.

The definition of time was astronomical for most of its history. It was first defined

as 86,400th of the mean solar day, then based on the tropical year 1900. It was

only in 1967 that the second was defined as the duration of 9,192,631,770 periods

of the radiation of the hyperfine splitting in the ground state of the cesium 133

atom, later confirmed to be at rest at 0 K.

These two examples stress the importance of several aspects of standards. Stan-

dards are only useful insofar as they can be disseminated or recalibrated in labs

around the world. Therefore, standards are, at best, as good as their definitions.

The meter definition based on the quadrant of the earth was off inherently off by

0.2 mm due to a miscalculation of the reference ellipsoid shape of the earth as it ro-

tates. In addition, every level of dissemination will lead to a decrease in precision.
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The use of prototypes can also lead to time dependent loss of standards precision:

prototypes of the kilogram standard have drifted some 50 µg over a century. It

is not known which samples have gained or lost mass, or by how much, and new

standards for the kilogram are being developed.

The ultimate standards, then, are based on atomic systems. Atoms are both

ubiquitous and identical: for example, the cesium isotope used in the definition

of time is the only naturally occurring isotope of cesium. In addition, atoms

are governed by quantum mechanics yielding several quantized physical properties

which are exploited for standards. Packaging options are diverse with atomic

systems as well, ranging from microfabricated gas cells to table-top systems.

While standards are important for disseminating accuracy, the high precision

of systems are required. Precision is the amount of variation in a measurement.

A ruler that can disseminate a meter as 1.05 m ± 250 µm has a lower precision

than a vernier calipers which disseminate a meter as 1.1 m ± 5 µm. However, the

accuracy of the ruler is higher because the measurement of dissemination of 1.05

m is closer to the desired value of 1 m than the dissemination of 1.1 m by the

calipers.

As pointed out by Schattenburg, historically the rise of highly productive mas-

sive production grew with and as a result of new capabilities in metrology. The

industrial revolution in the nineteenth and early twentieth centuries were a result

of precision metrology on the order of the mil=0.001 inches (≈25µm). Household

appliances and Ford automobiles were mass produced with interchangeable parts

machined with single-mil precision and disseminated by vernier calipers. The semi-
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conductor revolution since the second half of the twentieth century is enabled by

precision lithography down at the micron scale (and now down to tens of nanome-

ters) and thin films grown to even higher precision and quality. In addition, the

introduction of atomic resonance physics in the fifties and sixties spurred tech-

nologies in high precision timing: atomic fountain clocks today would lose one

second over thirty million years. Schattenburg claims a new nanotechnology rev-

olution starting in the twenty-first century (although apparently lasting only fifty

years), where higher precision lithography and bottom-up self assembly will result

in nanometer precision to enable a fountain of nanotechnology benefits.

However, while technologies are able to fabricate at smaller and smaller sizes

that is not to say that metrology has actually kept up. Consider that in some

two hundred years the highest fabrication resolution has gone from 25µm down to

tens of nanometers, a reduction of three orders of magnitude. Yet the precision in

manufacturing is worse. Thin film processing includes variations in actual versus

expected etch rates, aspect ratios, etc. A large amount of process engineering is

required when a few nanometers results in ten percent change in W/L ratios. In

addition, metrology has not kept pace with the progress in resolution. For example,

one could not break down a photolithography step into two separate masks and

still get the same device characteristics.

The reason, of course, is that while micro- and nanotechnology allows us to

manipulate things at smaller and smaller dimensions, it is not possible to do so well

over very large areas. Sub-micron manufacturing is based on calibrated or post-

testing-adjusted manufacturing (i.e., modifying the photomask based on device

performance rather than the reverse). In addition, the 45 nm CMOS technology
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node does not place two transistors at opposite ends of the chip within 45 nm,

but rather fabricates devices that have features approximately 45 nm in size. As

a result, nanofabrication precision is actually on the order of percents or parts

of percents, rather than 45 nm over a wafer- or chip-size. Nanofabrication is

done with local precision attached to feature-insensitive interconnects, rather than

actual wafer-scale precision.

The aim of this work is to develop the same long- and short-scale precision that

is available in atomic timing technologies for atomic length metrology for micro-

and nanotechnology. In atomic clocks, a local oscillator provides high precision

for integration times up to minutes or a few hours. A physics package can lower

the precision and accuracy of the clock down to 10−12 or 10−14 at an hour or more

integration because of the unambiguous frequency stability of the atomic physics

package. The high precision in the optical timing period corresponds to a high

level of precision in its wavelength λ = c/ν, where c has been defined to be exactly

299 792 458 meters per second, which can be used to generate a precise, long term

stable distance standard.
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CHAPTER 2

PRECISION AND ACCURACY IN ATOMIC SYSTEMS

Using atomic systems for metrology alleviates the problems of calibration trace-

ability and standards dissemination. Atomic systems are a plentiful source of per-

fectly identical calibration-free prototypes that are easily accessible around the

world. It is perhaps more appropriate to regard the atom itself as the “atomic

clock”.

In this chapter the quantum mechanics and interactions with the atom are

useful for using the atom as a standard reference are discussed, and also the effects

that result in a loss of precision and accuracy.

2.1 Quantization in atoms

This section reviews generally the derivation of the states of the canonical hydrogen

atom[66]. The Hamiltonian is,

Ĥ =
p̂2

2µ
− Ze2

|̂r|
p̂2

2µ
=
p̂2
radial

2µ
+

L̂2

2µr2
, (2.1)

where p̂ is the linear momentum operator, µ is the effective mass, Z is the atomic

number, e is the electron charge, and the linear momentum operator is decomposed

in terms of a radial momentum operator and an orbital momentum operator. So-

lutions are found to the time-independent Schrödinger equation, or energy eigen-

value problem, by separating the wave function into its radial and angular parts:
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< r, θ, φ >= R(r)Yl,m(θ, φ). The radial part of the energy eigenvalue problem

yields the principal quantum number n=1+l+nr, where l is the azimuthal quan-

tum number and nr is the radial quantum number, and subsequently quantization

of the bound state energy,

En = −µc
2Z2α2

2n2
, (2.2)

where c is the speed of light and α is the fine structure constant. The quantization

in Eq. 2.2 is degenerate with respect to l, the so-called accidental degeneracy. The

degeneracy is lifted by the fine structure produced by the spin-orbit coupling of the

electron spin and the proton. The perturbative spin-orbit Hamiltonian (including

the Thomas factor) is,

ĤSO =
Ze2

2m2
ec

2r3
L̂ · Î. (2.3)

This fine structure, for example, leads to the D1- and D2- lines of alkali atoms.

Often, the spin-orbit coupling is stronger than the hyperfine coupling (described

next), so that the angular momenta are coupled as the sum of the orbital and spin

momenta (also called L-S or Russell-Saunders coupling, as opposed to jj-coupling).

In hydrogenic atoms, the quantum number j of the total angular momentum opera-

tor Ĵ = L̂+Ŝ is found to be equal to l+1/2 and l−1/2, thereby splitting the degen-

eracy of the orbital angular momentum, so that ESO = mec2Z4α4

4n3l(l+1/2)(l+1)
(×l,×−(l+1))

for (j = l+ 1/2, j = l− 1/2). The first-order and fine structure yielded resonances

at X-ray and down to optical frequencies. However it is the hyperfine structure

allows RF probing of the atoms thereby enabling atomic precision in electronics.

The hyperfine Hamiltonian is due to two terms,

Ĥhfs = AhfsÎ · Ĵ +Bhfs

3(Î · Ĵ)2 + 3
2
(Î · Ĵ)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(2.4)
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so that

∆Ehfs =
1

2
Ahfs +KBhfs

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
, (2.5)

where the two terms correspond to magnetic dipole and electric quadrupole in-

teractions; the constants Ahfs and Bhfs can found from empirical data and

K = F (F + 1)− I(I + 1)− J(J + 1) [3, 64].

2.1.1 Loss of precision in atomic systems

Three sources of loss of precision in atomic systems are discussed: power broaden-

ing, collision or pressure broadening, and Doppler broadening. The latter two are

the more dominant sources of line broadening.

Power or saturation broadening is caused by the saturation of the absorption

rate of the atoms. Consider an atom with a ground state and an excited state

coupled by an electromagnetic field at resonance [58]. Let the ground state and

excited states be 1 and 2, respectively. Then, W is the stimulated transition rate

between 1 and 2 and w12/w21 = exp(−~ω0/kT ) be the ratio of the 1 → 2 to the

2 → 1 relaxation rates, stemming from the Boltzmann distribution at thermal

equilibrium. With the equilibrium populations,

dN1

dt
= −dN2

dt
= −(W + w12)N1 + (W + w21)N2, (2.6)

and the thermal equilibrium population,

∆N0 ≡ N10 −N20 =
w21 − w12

w21 + w12

N, (2.7)
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the population difference is,

d

dt
∆N =

d

dt
(N1 −N2) = −2W∆N − (w12 + w21) (2.8)

×
(

∆N − w21 − w12

w12 + w21

N

)
= −2W∆N − ∆N −∆N0

T1

,

where it is defined that 1/T1 ≡ w12 +w21 to be the relaxation time. Then at steady

state, d
dt

∆N = 0 and

∆N = ∆N0
1

1 + 2WT1

, (2.9)

whose form implies,

α ∝ 1

1 + (I/Isat)
, (2.10)

where α is the atomic absorption coefficient. Recalling that the atomic lineshape

is Lorentzian, the frequency dependence can be added by adding the expected

Lorentzian form into the last equation. The result is that the Lorentzian linewidth

is modified by the saturation term, resulting in a linewidth of the form,

∆ωpb =
√

1 + I/Isat∆ωLz, (2.11)

where the power broadened linewidth ωpb is increased over the original Lorentzian

linewidth ωLz. Note that the atomic linewidth is not itself changed. Rather, the

saturation of the absorption near the middle of the atomic line at higher powers

creates the appearance of linewidth broadening because of the decreased absorption

in at line center and normal absorption towards the tails.

Pressure or collision broadening is due to the interactions between atoms in

gaseous form, which perturbs their otherwise isolated interaction with the prob-

ing electromagnetic field. A semiclassical theory [15] yields pressure broadening

estimates that may be accurate to 10% [38]. Resonance self-broadening is the in-

teraction between atoms of the same species only where either the upper or lower
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energy levels has an electric dipole transition to the ground state.. Its Lorentzian

full width at half maximum is ∆λself ≈ 8.6 × 10−30(gi/gk)
1/2λ2λrfrNi; λ is the

observed wavelength, λr and fr are the wavelength and oscillator strength of the

resonance line (to the ground state); gk and gi are the statistical weights of the up-

per and lower states (resonance lines), respectively; and Ni is the number density

of the ground state. Wavelengths are in Angstroms and densities are in per cubic

centimeters.

In addition, Van der Waals interactions occur between the dipole moment of

an excited atom with the induced dipole moment of atoms in the ground state.

For hydrogen-like atoms such as the alkali atoms typically used here, the linewidth

is approximately ∆λ ≈ 3.0 × 1016λ2C
2/5
6 (T/m)3/10N , where λ is the wavelength,

T is the temperature, m is the mass, N is the density; and C6 is the interaction

coefficient ≈ Ck−Ci, where Ci(k) = 1.64×10−13(3IH/4E∗)[IH/(I−Ei(k))]
2, where

IH is the ionization energy of hydrogen, I is the ionization energy of the radiating

atom, E∗ is the energy of the first excited level of the perturbing atom, and Ei(k)

are the energies of the upper and lower levels, respectively. Wavelengths are in

Angstroms, energies in cm−1, temperatures in Kelvin, and densities are per cubic

centimeters.

Doppler broadening is an inhomogeneous broadening of the absorption

linewidth of an ensemble of atoms. Because of their kinetic energy, the population

is distributed in velocities as described by the Maxwell-Boltzmann distribution. In

the rest frame of any one atom, the wavelength of the probe beam will be Doppler

shifted away from the set wavelength of the laser beam in the laboratory rest

frame. At room temperature, the ensemble of atoms will be Doppler broadened by
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hundreds of MHz. Doppler broadening is by far the largest source of broadening,

but can be removed or decreased by introducing a buffer gas (Dicke narrowing) or

by saturation spectroscopy.

2.1.2 Saturation spectroscopy

Saturation spectroscopy or hole burning is considered as a means of linewidth nar-

rowing for improved frequency stability by eliminating Doppler broadening. The

analysis is semiclassical, similar to the Bloch equations. By eliminating Doppler

broadening, it is possible to see the lifetime-broadened linewidths of alkali atoms.

In saturation spectroscopy or hole burning, a pump beam is used to excite or

burn ‘holes’ of excited atoms in its path. A weaker, counterpropagating beam

(at the same wavelength as the pump beam) probes the same population. An

atom with zero net velocity along the beam axes will absorb both the pump and

probe beams at resonance, so that the probe beam will experience almost no

absorption because the pump beam has excited the atoms. An atom with some

velocity along the axes, however, cannot absorb both the pump and probe beams

because it is blue-shifted to one beam but red-shifted to the other: it is no longer

in resonance with both wavelengths. Therefore, if beams are off resonance, atoms

that have the correct Doppler shift will not be excited by the pump beam, but will

absorb the probe beam. This saturation or hole burning leads to a small dip in

the absorption spectrum. This small dip enables a tighter lock on the individual

hyperfine states if a featuer narrower than Doppler broadening is required . This

effect can also be used to linewidth narrow a broad laser. If a laser linewidth is
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less than the Doppler broadened linewidth of the absorption cell, only the holes of

the absorption spectrum will be passed through the cell.

In our analysis, the 5S1/2 is the ground state and 5P3/2 F = 2, 3, 4 are the

excited states of 85Rb. The Hamiltonian is the sum of the atomic energy states

and the interaction between the atom and the electromagnetic radiation,

H = Hatom +Hem. (2.12)

Hem is diagonal with respect to the individual atom states, and the elements

are of the form ~ωi. Hem couples the ground and excited states through the

atomic dipole moments. The terms of Hem are of the form of a pump beam and a

counterpropagating probe beam,

HI = Pε+ cos(ωt− kz) + Pε− cos(ωt+ kz), (2.13)

where ε+ is for the pump beam and ε− is for the probe beam. The total Hamilto-

nian, then, is,

H = HI



0 1 1 1

1 hfg2e2/HI 0 0

1 0 hfg2e3/HI 0

1 0 0 hfg2e4/HI


, (2.14)

where the atomic states are defined by,

g2(5S1/2)

e2(5P3/2, F = 2)

e3(5P3/2, F = 3)

e4(5P3/2, F = 4)


. (2.15)
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The density matrix formalism is used. The density matrix ρ, where the diagonal

elements are the state populations and the off-diagonal terms are the coherence

between states, evolves as,

i~
∂ρ

∂t
= [H, ρ]. (2.16)

The density matrix elements are defined so that the off-diagonal elements are in

the rotating frame (ρij = ρ̃ije
−iωt, i 6= j), removing all time dependence, and the

difference of the diagonal elements are used (σig2 = ρii − ρg2g2). Then,

σ̇e2g2 = −2αif+(k, z) Im {2 ˜ρg2e2 + ρg2e3 + ρg2e4} − γ (σe2g2 + 1) (2.17)

σ̇e3g2 = −2αif+(k, z) Im { ˜ρg2e2 + 2ρg2e3 + ρg2e4} − γ (σe3g2 + 1) (2.18)

σ̇e4g2 = −2αif+(k, z) Im { ˜ρg2e2 + ρg2e3 + 2ρg2e4} − γ (σe4g2 + 1) (2.19)

˙̃ρg2e2 = ρ̃g2e2 (i∆ωoe2 − γ/2)− iαf−(k, z)σe2g2 (2.20)

˙̃ρg2e3 = ρ̃g2e3 (i∆ωoe3 − γ/2)− iαf−(k, z)σe3g2 (2.21)

˙̃ρg2e4 = ρ̃g2e4 (i∆ωoe4 − γ/2)− iαf−(k, z)σe4g2, (2.22)

(2.23)

where

f+(k, z) = ε+e
ikz + ε−e

−ikz, (2.24)

f−(k, z) = ε+e
−ikz + ε−e

ikz, (2.25)

the ∆ω are between the ground state and the indicated excited state, γ is a phe-

nomenological excited state decay rate, α = P/2~ where P is the atomic electric

dipole moment, and the ˙ = v ∂/∂x, since time dependence has been removed. For

modes of enikz for integers n, the functions f+ and f− couple the modes of ρ and

σ. It is seen that the nth modes of ρ couple to the n ± 1 modes of σ, and the

nth modes of σ couple to the n± 1 modes of ρ. Then all the modes of ρ are even
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and all the modes of σ are odd, or vice versa. Equations 2.17, 2.18, and 2.19 have

a constant term on the right hand side (−γ), so it must be that the σ’s are even

modes and the ρ’s are odd modes of enikz. The equations above are solved for the

0th order of σ and the ±1 orders of ρ, resulting in fifteen equations. The linear

system to be solved is,

M X = B, (2.26)

where,

M =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 γ
2

0

0 0 0 0 γ
2

0 0 0 0 0

αεminus 0 0 kv −∆ωoe2 0

0 αεminus 0 0 kv −∆ωoe3

0 0 αεminus 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

αεplus 0 0 0 0

0 αεplus 0 0 0

0 0 αεplus 0 0
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· · ·

0 2αεminus
γ

αεminus
γ

αεminus
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0 γ
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2

0 0
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2

0
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2



(2.27)
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X =



σ
(0)
e2

σ
(0)
e3

σ
(0)
e4

Re{ρ(1)
e2 }

Re{ρ(1)
e3 }

Re{ρ(1)
e4 }

Im{ρ(1)
e2 }

Im{ρ(1)
e3 }

Im{ρ(1)
e4 }

Re{ρ(−1)
e2 }

Re{ρ(−1)
e3 }

Re{ρ(−1)
e4 }

Im{ρ(−1)
e2 }

Im{ρ(−1)
e3 }

Im{ρ(−1)
e4 }



, B =



1

1

1

0

0

0

0

0

0

0

0

0

0

0

0



. (2.28)

The solution desired is the sum of the real parts of the ρ(−1)’s, where the e−ikz

matches the spatial distribution of the probe beam. The current solution returned

by Mathematica is long and will need to be simplified, for example, by eliminating

negligible terms. In addition, a Maxwell’s distribution will need to be added to

account for the distribution of particle velocities.

The absorption is then given by,〈
E
d

dt
P

〉
, (2.29)

where

P = Trace
(
ρP̂
)
, (2.30)
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Figure 2.1: Expected calculated transmission spectrum for our VCSEL
setup, as calculated in the text. The saturated spectrum shows
the three spectral holes, corresponding to the three resonances
that were assumed. Two of the spectral holes overlap.

where ρ is the density matrix and P̂ is the polarization operator: the result is a

sum over the non-diagonal elements of the density matrix.

The resulting calculated absorption spectrum is shown in Fig. 2.1, where the

width of the Figure is 6 GHz. As derived in the previous section, there are three

main resonances from the ground state to the three excited states, two of which

overlap. Note that this model shows several sources of precision noise. First,

the propagating terms in Equation 2.13 will yield Doppler broadening; the finite

lifetimes of the excited states cause a Lorentzian linewidth in the frequency domain;

and modeling of excitation and decay rates will yield some power broadening as

well. The sources of saturated absorption broadening serves as a frequency stability

baseline when stabilizing lasers to a saturated absorption line. In this case, the

broadening results in the overlap between two the saturation absorption lines. As
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Figure 2.2: Experimental setup for saturation spectroscopy using external
cavity laser. ND filters act as beam splitters, but are selected to
allow different probe and pump powers.

will be seen, in this method the natural linewidths are the minimum linewidths,

which can be achieved by tuning the setup.

2.1.3 Hole burning experiments

Hole burning experiments have been done with a Littrow-configuration external

cavity laser with a 7 MHz linewidth (Toptica Photonics DL100). A setup similar

to that of McIntyre, et al. [11] is used (see Fig. 2.2). Fig. 2.3 shows hole burning

with a 42 mW pump beam and a 220 µW probe.
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Figure 2.3: Saturation spectroscopy of 85Rb with a 42 mW pump beam and

a 200 µW probe beam, using setup in Fig. 2.2. As in Fig. 2.1,
two of the holes overlap each other due to their broad linewidths.

Note that, as in Fig. 2.1, two of the saturation absorption lines overlap. The

lines are broad due to the power broadening. The power broadening can be reduced

by reducing the power of the pump and probe beams. By doing so, the fine

structure resolving the different F states are visible, thereby resulting in lifetime-

limited absorption lines that will lead to more precise laser frequency stabilization.

In order to study hole burning of 85Rb at low powers, a linear polarizer is

included between the laser and the first ND filter. By rotating the polarizer,

it is possible to vary continuously the laser power that is used for the pump /

probe beams; the external cavity laser is linear polarized to begin with. First

the absorption from the F=2 ground state is studied, which has less absorption

than that from the F=3 ground state. The wavelength is at 7800 Å, which is the

transition between the 52S1/2 and the 52P3/2 states. Fig. 2.4 shows hole burning
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with a 9 mW probe beam with a 210 µW probe beam at the photo detector.

The numbers in the topside portion show the hyperfine structure in frequency.

The theoretical numbers are extracted from [7], and the fit numbers are found as a

linear fit to the linearly increasing frequency sweep of the cavity laser. The numbers

show general agreement. The ground state F=3 state couples to the excited F=2,

3, and 4 states due to dipole selection rules. In this case, it is possible to see all

the crossover resonances. They are labeled by “CO” in Figure 2.4.

The saturation absorption spectrum from the F=2 ground state is shown in Fig.

2.5. The selection rule states that the F=3 ground state will couple only with the

F=1, 2, and 3 excited states. All three resonances are visible in the Figure. The

crossover resonances are not apparent, although there is enough spectral resolution

to do so. The transitions from the F=2 ground state has consistently been void of

crossover resonances.

21



F1: 3      2’

F3

CO3
CO2

F2
CO1

60.38

62.30

31.69

29.57
32.01

28.68
31.69

30.71

31.69

theo freq (MHz):

 

 

tr
an

sm
is

si
o

n
 (

a.
u

.)

frequency (a.u.)

fit freq (MHz):

28.24

F1

CO1: 3      2’,

          3      3’

F2: 3      3’

CO2: 3      2’,

          3      4’

CO3: 3      3’,

          3      4’

F3: 3      4’

Figure 2.4: Similar data as in Fig. 2.3, but at 9 mW probe beam with a 210
µW probe beam; the structure is for the excitation from the F=3
ground state. The structure is better resolved, and the cross-over
resonances are visible. The theoretical frequency splittings are
from [7]. The experimental frequencies are found by a linear fit
of the spectral hole frequencies, finding general agreement.
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Figure 2.5: Same setup as in Fig. 2.4, but for excitation from the F=2 ground
state. The F=2 and F=3 ground state hyperfine splitting in 85Rb
is 3.036 GHz. The cross over resonances are not visible here.
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Figure 2.6: Demonstration of low power saturation spectroscopy, especially

relevant for the use of low power semiconductor lasers. The pump
beam power is decreased to 190 µW, and the probe beam is re-
duced to 240 nW. Curve shows absorption from the F=3 ground
state. Due to the lower beam powers, the atomic vapor temper-
ature is also reduced. As in Fig. 2.4, the cross over resonances
are visible.

The data in Figures 2.4 and 2.5 use a very strong pump beam, almost 50 times

larger than the probe beam. The ratio of the pump beam intensity to the probe

beam intensity can be decreased at a cost, most prominently as the visibility of

the fine structure will decrease. At lower pump beam intensities, the percentage

of the atom population in the excited state will decrease, and those that are not

excited cannot undergo saturation spectroscopy and contribute to the spectral hole

burning.

In Figure 2.6, the pump beam is decreased significantly from 9 mW to only

190 µW, resulting in a probe beam that is 240 nW. This is the absorption from
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Figure 2.7: The spectral hole can be used to effectively narrow a laser
linewidth as well. In this Figure, the pump probe is 1.9 mW
but the probe beam is only 480 nW. The probe beam is weak.
It is almost completely absorbed by the atomic vapor, except at
the narrow 6 MHz spectral hole. This spectrum is captured by a
Fabry-Perot cavity (Thor Labs SA200).

the F=3 ground state. In order to accommodate the lower pump and probe beam

intensities, it is also necessary to lower the population of probed atoms. This is

done by reducing the atomic vapor heater temperature from 60 ◦C to 40 ◦C. As

in Figure 2.4, the fine structure and cross over resonances are seen.

Saturation spectroscopy can be used to frequency stabilize a laser, that is to

increase the accuracy of the laser center frequency to a constant of nature (the

atomic resonances). In Figure 2.7 it is shown that this tool as well can be used

to actually narrow the laser frequency as well. The same set up as in 2.2 is used,

with a cell temperature of 60 ◦C. However, the pump to probe intensities are

greatly skewed so that the pump probe is 1.9 mW, but the probe beam is only
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480 nW (a ratio of almost 4000). The probe beam is so weak that it is completely

absorbed by the low population of atoms that were not excited by the pump

probe. However, the spectral holes still exist and the wavelengths at the spectral

holes pass through easily with high signal to noise (compared to the low 480 nW

probe power). Outside the spectral hole, the probe beam is much too weak to

make its way through the atomic vapor. The result is that the portion of the

laser beam that is passed through the spectral hole acts as a narrowed, atomically

accurate laser of 6 MHz width. Note that a feedback loop is not as important

here. Whatever portion of the laser overlaps the spectral hole, that will create the

desired transmitted laser line. This appears to be similar in concept to atomic

line filters. One could imagine, therefore, using a poor high power but broadband

diode laser and using a similar setup to generate a narrow, stabilized wavelength.

2.1.4 Hole burning with low power VCSELs

Finally, saturation spectroscopy is demonstrated with very low power vertical cav-

ity surface emitting lasers (VCSELs). Holes were burned using 200 µW VCSELs.

The setup is shown in Fig. 2.8. The quarter wave plate and linear polarizers are

required to protect the VCSEL from the reflected power. Because of their low

photon cavity density, the VCSEL is much more sensitive to the reflected power

which can cause chaotic behaviour in its lasing behaviour. Such a condition causes

both the frequency and the intensity of the laser to randomly change rapidly. In

addition, the system is extremely sensitive to mechanical noise, for example, if the

laser beam return mirror is vibrated.
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Figure 2.8: Experimental setup for hole burning with VCSELs. A linear
polarizer and quarter wave plate act as a directional filter, so
that laser power does not reflect act to the VCSEL. Due to the
low cavity power of the VCSEL, their oscillation is especially
sensitive to extra noise.

Fig. 2.9 shows hole burning in the D2-line from the F=2 ground state, and Fig.

2.10 shows hole burning from the F=3 ground state. Rather than picking up the

three lines as in Fig. 2.3, a single peak in the hole transmission spectrum is found.

This is due to the large (>100 MHz) linewidth of the VCSEL, which causes the

absorption spectrum to be convoluted with all three holes of the hyperfine lines,

resulting in a single, large (>100 MHz) linewidth hole. It should be noted that

the actual spectrum will still contain three distinct burnt holes.
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Figure 2.9: Experimental setup for hole burning with VCSELs, excitation

from F=2 ground state. These data only show a single spectral
hole. This is due to the > 100 MHz linewidth of the VCSEL, so
that the observed transmission is a convolution of the two and
appears to be one single spectral hole.
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Figure 2.10: Similar data as in Fig. 2.9, but from the F=3 ground state.

Just as in Fig. 2.9, the fine structure appears to be a single
spectral hole due to the large linewidth of the VCSEL.
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Figure 2.11: In Fig. 2.8, the linear polarizer and quarter wave plate were

used to prevent feedback to the VCSEL to prevent chaotic os-
cillations in the lasing cavity. By using a piezo-mounted mirror,
the feedback can be used to narrow the VCSEL linewidth. Here,
the linewidth has been narrowed from > 100 MHz to 15 MHz,
measured using a Fabry Perot cavity.
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Figure 2.12: Setup for narrowing VCSEL linewidth. The piezo-mounted mir-
ror is necessary to carefully adjust the phase of the feedback to
the VCSEL. The ND filter adjusts the feedback power.

Finally, although uncontrolled feedback into the VCSEL can cause chaotic be-

haviour in its lasing and therefore frequency characteristics, controlled feedback

can result in reduced line width (i.e., modified Schawlow-Townes linewidth). The

same strategy is used in external cavity lasers. The linewidth of the VCSEL has

been measured to be 108MHz; this has been observed at least as low as 15 MHz

using feedback. The linewidth is measured by using a scanning Fabry Perot cavity.

See Figs. 2.11 and 2.12.
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CHAPTER 3

SELF WAVELENGTH CALIBRATED OPTICAL SOURCES FOR

ATOMIC CLOCKS

In the next two sections, optical sources that are self calibrated are discussed.

In the first case, a plasma of rubidium atoms are excited by inductive coupling. The

rubidium atoms emit photons that are charcteristic of their quantum mechanically

defined transitions, resulting in spectra that are wavelength calibrated. In the

second case, xenon atoms are excited by the energetic electrons of the β-decay of the

radioisotope 63Ni. Again, the atoms emit photons that are quantum mechanically

defined and the resulting spectra are wavelength calibrated to these transitions.

In the latter case, the photoemission is self powered by the radioactive thin film

63Ni.

3.1 Compact, low power radio frequency rubidium plasma

for passive rubidium atomic clocks

The work in this chapter describes the scaling down of large, high power (>10 W)

Rb plasmas for Rb-based passive atomic vapor clocks. The clock starts with a

Rb87 lamp filtered by a Rb85 cell. The lamp consists of Rb87 gas which radiates

its D2- and D1- lines (5 2P3/2 - 5 2S1/2 @ 780 nm and 5 2P1/2 - 5 2S1/2 @ 794.7

nm, respectively). The hyperfine structure in the upper states are masked by the

Doppler broadening, but the splitting in the ground states (F=2 and 1) results in

both the D2- and D1-lines emitting a pair of hyperfine split wavelengths: in Rb87,

the ground state is split by 6.835 GHz. One of these lines, specifically the transition
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to the upper F=2 hyperfine state, can be filtered by a Rb85 cell. A lucky coincidence

occurs whereby the upper hyperfine state, at F=3, of Rb85 nearly lines up with

the F=2 hyperfine state of Rb87. Since the upper states are close and Doppler

broadened, the F=3 hyperfine state of Rb85 state can absorb light emitted by a

transition to the F=2 state of Rb87. On the D2-line the two hyperfine states are

separated by 1020 GHz, and on the D1-line they are separated by 780 MHz. The

Rb85 filter cell can incorporate argon buffer gas to increase the Doppler broadening

and shift the two hyperfine states together, increasing the wavelength overlap and

therefore the absorption. At this point, the light from the Rb87 lamp consists

only of radiation from the upper state to the F=1 hyperfine state of the ground

state. When this radiation illuminates a cell of Rb87, the F=1 state is depopulated

and the atoms are population inverted so that the upper hyperfine F=2 state is

populated. A buffer gas, such as argon or xenon, is also typically used. Then by

applying an RF resonant field at the ground state hyperfine splitting frequency, the

population inversion is modulated and the transmission of the Rb87 lamp radiation

can be monitored to detect atomic resonance.

In a typical macroscale vapor clock, the Rb87 lamp will consume much power.

A miniature, low power atomic clock will require a reduction in size and power

of the lamp. These experiments used natural Rb gas cells prototyped by FEI,

Inc to be much smaller than their counterparts in their production lines. These

cells were typically only about one to two centimeters in length and about one

millimeter or one centimeter in diameter, containing both rubidium and a buffer

gas of xenon. Coils of different shapes were made by hand using 0.5 mm diameter

copper magnetic wire. The RF was applied to the coil, a 1 Ω resistor, and a

matching capacitor in series. The frequency at which a minimum applied amplitude

33



b.a.

Figure 3.1: Images of miniature rubidium plasma and the bulb. a. rubidium
plasma excited by an RF coil, the purplish color showing the
optical emissions from excited rubidium atoms. b. The glass
bulbs were filled with rubidium and some xenon as a buffer gas,
custom made by the glass blowers at FEI, Inc.

was required to ignite the plasmas was found, and also the frequency of maximum

observed optical emission. The lowest power for sustaining a plasma was 48 mW

using coil type #5.

3.1.1 Spectral response of compact, low power radio fre-

quency rubidium plasmas

Once the plasma is initiated, the power and/or frequency can be tuned to change

the output spectrum of the miniature rubidium plasma lamp. Due to the presence

of xenon buffer gas, the xenon may emit energy as well although in practice it

is desired that only the rubidium emits light. Higher coil frequencies cause both
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Table 3.1: Coil types for RF plasma drive of glass Rb cells. N refers to
number of winds, d to the diameter or side length, L to the length
along the glass tube, and OIF to the optimum ignition frequency
– the frequency of ignition with lowest applied power.

transverse shape N d (mm) L (mm) OIF (MHz)

1 circular 23 10 20 410

2 square 30 6 18 440

3 square 19 10 16 380

4 quad circle

4 2 2

450
7 12 7

8 2 3

12 12 14

5 split circle 7 2 4.5 250

6 split circle 5 2 2.6 290

7 split circle 2 2 1 290

xenon and rubidium emission lines to appear. By lowering the frequency further,

the xenon emission lines get weaker until they suddenly disappear. The effect is

seen in Figure 3.2: as the applied frequency decreases, the xenon lines get weaker

until they disappear, and only the D1- and D2- lines of rubidium are strong. The

Figure labels the strongest emission lines, and the corresponding transition and

wavelengths are numbered and tabulated in Table 3.2 as well[56, 55]. At higher

frequencies it is possible to excite several resonances in the xenon atoms, and the

rubidium lines are not visible. As the frequency of operation goes below 320 MHz,

the resonances switch to excite only the rubidium atoms and the xenon emission

lines are no longer visible. The spectra in Fig. 3.2 have been normalized, but it

is clear that as the resonance switch from xenon to rubidium the spectral lines of
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Figure 3.2: Spectra taken of the RF excited miniature bulbs of rubidium
gas. The bulbs are filled with both rubidium and xenon. The
dominance of one set of excitation over the other is seen as a
function of the frequency of the RF drive. At 298 MHz, the
rubidium lines are dominant in the spectrum. As the RF drive
frequency increases past 300 MHz, the xenon spectra begins to
dominate until the rubidium lines are not visible at all.

xenon are brighter as well.

The switch from xenon to rubidium resonances can be seen by measuring the

ratios of the resonance lines of the two atoms. Several ratios are measured. First

is the ratio between the 780 nm and 823 nm lines. These lines are labeled Rb

1 and Xe 1 in Table 3.2, respectively. They are two of the strongest resonances

in rubidium and xenon. The ratio of these two lines will indicate the ratio of

excitation of the two atoms in the plasma bulb.

First the ratio of lines as a function of the plasma excitation frequency is

studied. Figure 3.3 shows a plot the ratios of the 780 nm and 795 nm lines in

rubidium (Rb 1 and Rb2), and of the 882 nm and 823 nm lines of xenon (Xe 3 and

Xe 1). The ratio of these lines are fairly consistent. This indicates that the changes
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Table 3.2: Identification of spectral lines see in Figure 3.2 [56, 55].

Spectral Lines of Rb I, Xe I in plasma bulb (Å) Transition

Rb 1 7800 52S1/2 - 52P3/2

Rb 2 7948 52S1/2 - 52P1/2

Xe 1 8231 6s[3/2]2 - 6p[3/2]2

Xe 2 8280 6s[3/2]1 - 6p[1/2]0

Xe 3 8819 6s[3/2]2 - 6p[5/2]3

Xe 4 8952 6s[3/2]1 - 6p[3/2]2

Xe 5 9045 6s[3/2]2 - 6p[5/2]2

Xe 6 9163 6s[3/2]1 - 6p[3/2]1

Xe 7 9800 6s[3/2]2 - 6p[1/2]1

Xe 8 9923 6s[3/2]1 - 6p[5/2]2

in the frequency does not affect the states to which the atoms are excited, so that

when they decay and emit their resonances the ratios remain fairly constant. This

data covers the range from 35 MHz to 500 MHz. Figure 3.4 shows the ratio of the

823 nm (Xe 1) and 780 nm (Rb 1) lines over the same frequency range. From 318

MHz to 378 MHz, the plasma bulb shows a transition from emitting the rubidium

lines to emitting the xenon lines. The ratio changes from 0.8 to 62 over a range of

60 MHz. It would be most sensitive to frequency variations when one set of lines is

just visible, for example when the ratio is near 43 (avoiding the region where the

ratio is insensitive to the frequency). Conservatively assuming 25% sensitivity to

the ratio yields a 5.6 kHz accuracy in the frequency, or an accuracy of 5.6×10−6

at 1 GHz.
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Figure 3.3: Ratio of the intensities of the spectral lines as a function of the
RF drive frequency (see Fig. 3.2). The red line shows the ratio of
the 882 nm to the 823 nm, dominant lines of xenon. This ratio is
nearly flat; at lower frequencies, the xenon lines are barely visible
which causes the ratio to be variable. The ratio of the 780 nm
to the 795 nm lines are shown in blue, the lines of rubidium.
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Figure 3.4: Ratio of the line intensities of 823 nm to 780 nm, i.e. ratio of

xenon to rubidium (see Fig. 3.2). Near 300 to 350 MHz, there is
a sharp transition from rubidium domination to xenon.

The ratio of the lines are also studied as a function of the applied power. In

these data, the plasma is driven at 180 MHz and the applied power is swept from

-6 dBm to 8 dBm. As in the data above, there is a transition as the plasma

introduces xenon or rubidium lines as a function of the applied power. Figure 3.5

shows the spectra at -6 dBm, -3 dBm and 0 dBm, the region where a transition

occurs whereby the xenon emission lines are visible then decrease in strength. At

low powers the rubidium lines and a weak seat of xenon lines are visible. As the

power is increased by 6 dBm, the xenon lines disappear and the rubidium lines

dominate the spectrum. The same lines are visible as identified in Table 3.2.
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Figure 3.5: Spectra of the miniature bulb rubidium plasma as a function of
the RF power. At lower powers at 180 MHz, both the rubidium
and a weak set of xenon line are visible. At higher powers, the
xenon lines get weaker and the rubidium spectral lines dominate
the spectrum.
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Figure 3.6: Data similar to Fig. 3.4: ratio of same-atom spectral lines, but
now as a function of RF drive power. See Fig. 3.5). As seen in
the frequency dependence, the ratio of the lines of rubidium in
red and the ratio of the lines of xenon in blue are fairly constant
over the range of applied RF power.
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Figure 3.7: Data similar to Fig. 3.3: ratio of 780 nm (rubidium) to 823 nm

(xenon), but now as a function of RF drive power (see Fig. 3.5.
At low powers, the xenon spectral lines are visible with respect
to the rubidium lines, but as the power is increased the rubidium
lines are dominant as the line intensities of xenon decrease.

Data shows the dependence of the line strengths on the applied power. As

before, the ratio of the 780 nm and 795 nm lines of rubidium, and the 882 nm

and 823 nm lines of xenon are shown in Figure 3.6. As compared to the frequency

dependence in Figure 3.3, the ratio of the lines per atom have less variation, as

the frequency is kept constant. Figure 3.7 shows the power dependence of the

ratio of the 780 nm to the 823 nm (Rb 1 to Xe 1) lines. As in the frequency data

above, there is a transition of the ratio. At lower powers the xenon lines are visible

along with the rubidium lines; the xenon lines are about 16% of the rubidium line

strengths. As the applied power is increased, the xenon lines start to disappear.

Starting from about 0 dBm and on to higher powers, the ratio of the 780 nm to

823 nm (Rb 1 to Xe 1) lines reaches a maximum of 50.
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3.2 Self-powered Self-Calibrated Photon Source

This is section is a reprint of a manuscript printed in Applied Physics Letters [77].

While the plasma lamps are very low power, applications for portable atomic

clocks or remote sensing require much lower power consumptions than are required

to drive the plasma. Therefore, self-calibrated photon sources powered by radioac-

tive thin films were studied.

Radioactive materials are attractive candidates for power in micro scale systems

due to their small size, integratability, and high power densities. Electrical power

generation has been demonstrated [40]; this work demonstrates a photon source

powered by the beta decay from Ni63 with an endpoint energy of 67 keV. Simply,

xenon gas is exposed to the radioactive nickel. The beta rays excite the xenon

atoms, which then emit their decay lines. Since these lines are atomically precise,

the photons are at certain characteristic wavelengths. Hence, this system can be

used as a self-powered, self-calibrated photon source.

Electromechanical and betavoltaic power generation using radioactive thin films

have been studied as power sources for microelectromechanical systems[36, 40,

17]. Radioactive power is attractive at the micro-scale because of the potential

for high energy density and long life using isotopes with half-lives as long as a

hundreds of years, which could eliminate frequent replacement in a portable device.

Certain metallic radioactive sources are easy to integrate into a device because

these metals, specifically 63Ni, can be conveniently plated. 63Ni also has a very long

half-life of approximately 100 years and produces only low-energy β decay, making
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it relatively easy to shield. In addition to generating electromechanical power, it is

feasible to use radioactive materials to provide a low-intensity self-powered photon

source[25] for micro-scale devices. It should be noted that some commercially

available products such as emergency exit signs use radioactive materials combined

with phosphors and scintillators for self-powered illumination. Directly excited by

β decay from radioactive 63Ni, gases and scintillators can produce optical emission

as they relax. For gases, this is a nearly direct conversion of the radioactive power

to optical output, and the sharp nature of atomic spectra can be used as a zero-

power wavelength standard for application in calibrating microsystems. In this

letter, the near-IR scintillation of xenon gas due to excitation by the β decay of

63Ni was studied. Intensity measurements of xenon IR emission due to 241Am α

decay have been reported by others[8, 73].

The radioactive source used for these experiments was a plate of aluminum with

dimensions 5 mm by 5 mm, onto which a 4 mm by 4 mm area was electrolessly

plated with 37 MBq of radioactive 63Ni. The 63Ni source was placed inside a

windowed chamber which was pumped down to approximately 10−4 Pa. After

the chamber was sealed off from the pump, research-grade natural xenon was

bled into the chamber. For direct imaging, the optical emission was observed

by a cooled, avalanche-gain charge-coupled device (CCD) camera (Photometrics

Cascade 512B). The CCD array has a working range from 350 nm to 1000 nm.

The images were taken such that the normal vector of the source plate is parallel

to the image plane, so that the images are viewed from the side.

Intensity contour plots of direct images of the optical emission taken at 20 kPa

and 100 kPa are shown in Fig. 3.8. The grayscale implies the intensity. The
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Figure 3.8: Observed xenon scintillation contour plot of direct images at (a)
20 kPa and at (b) 100 kPa. The 63Ni is located at the bottom of
each plot. They are qualitatively similar, but the higher xenon
density at 100 kPa increases the xenon-electron interactions per
unit distance, leading to a larger gradient of the optical intensity
in (b).

total emission, including that not collected by the CCD, is approximately 2× 105

photons/sec at 20 kPa and 1× 105 photons/sec at 100 kPa. These numbers were

calculated using the quantum efficiency of the CCD provided by the manufacturer

(60 %), the gains associated with the electronics of the CCD camera (160), and

extrapolation to 4π of solid angle. This is a low intensity of 10−10 W/m2 at a

distance of 5 mm for 4π of solid angle, and can be increased by using a larger

amount of 63Ni or a radioactive material with higher specific activity.

Spencer’s theory of electron penetration in an infinite medium[62] calculates the

electron flux and energy deposition for an infinite plane source of monoenergetic

electrons using Lewis’ equation of electron transport[39] and a function-fitting

method. Summarizing the analysis begins with Spencer’s form of Lewis’ equation
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of electron transport,

−∂I
∂r

+ cos θ
∂I

∂z
=

∫
dΩ′Nσ(r,Θ){I(r, θ′, z)− I(r, θ, z)}

+(4π)−1δ(z)δ(r − r0). (3.1)

The electron flux between θ and θ + dθ with residual range between r and r + dr

at a point z away from the electron source is 2πI(r, θ, z) sin θdθdr. In the integral,

σ(r,Θ) is the scattering cross section and N is the number of atoms per unit mass

of the scattering medium. The last term defines the electron source, here as an

isotropic source; r0 is the residual range of the scattering medium at the source

energy. Equation (3.1) is expanded in spherical harmonics and spatial moments of

the electron flux are defined by,

Iln(t) =

∫ 1

−1

dxxnIl(t, x), (3.2)

where t and x are the scaled residual range and z, respectively. After calculating

the spatial moments of the electron flux using Eq. (19) of Ref.[62], the spatial

moments of the energy dissipation curve are calculated by,

Jn(t) =

∫ 1

0

dt(dT/dt)I0n(t, x), (3.3)

where dT/dt is the stopping power of the scattering medium. The integration

is simplified by approximating dT/dt by a sum of powers in t, as in Eq. (23) of

Ref. [62]. Then the energy dissipation curve is approximated by a sum of a fitting

function,

J(x) ≈
∑
i

aiF (βi, x)γ, (3.4)

F (β, x)γ = β−1

(
1− x

β

)γ
exp

{
−Ax
β − x

}
, 0 ≤ x ≤ β

= 0, x > β, (3.5)
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where F (β, x)γ is a suggested fitting function given in Eq. (33) of Ref. [62] and A

is calculated using Eq. (34) of Ref. [62]. The coefficients ai and parameters βi are

calculated by solving the equations of spatial moments of the energy dissipation

curve,

Jn =
∑
i

aiFn(βi). (3.6)

The electron energy dissipation curve calculated from Spencer’s theory was

compared to the optical emission data at 100 kPa. Even though the spectrum

of the radioactively-pumped xenon has several peaks, their energies are less than

7 % different. Then the energy dissipated by the electrons and the number of

photons emitted by the xenon should correlate, and it is expected that the energy

dissipation curve will sufficiently describe the optical intensity. Four terms of the

fitting function in Eq. (3.5) were used with γ=1. Stopping-power and range data

for xenon were acquired from the NIST ESTAR database, and slight changes to

the power series approximation of dT/dt were made accordingly. The differential

elastic scattering cross-sections were calculated by using the tables of Bullard and

Massey[10], where Born’s approximation was applied to the Thomas-Fermi theory

of atoms; past experiments show good agreement at electron energies as low as 800

eV[4].

It is also necessary to sum over the spectrum of energies of the β decay. The

63Ni atoms undergo β− decay, whereby a neutron decays into an electron and

an antineutrino. The decay energy is distributed as kinetic energy between the

electron and antineutrino, resulting in a broad spectrum of energies for the ejected

β particle. The endpoint energy of 63Ni, the maximum energy of the β decay,

is 67 keV and the spectrum peaks around 14 keV, the statistical mode. The
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Figure 3.9: Optical intensity profile at 100 kPa, as indicated by sectional

arrows in Fig. 3.8. Line shows result from Spencer’s theory
using isotropic angular distribution of β decay.

theoretical energy spectrum is described by the Fermi theory of β decay[34, 18], and

experiments have shown good agreement for 63Ni[2, 20]. Other experiments have

shown disagreement at lower energies, even differing among similar samples[32,

29]. For the calculations presented here, the theoretical allowed β spectrum was

summed in steps of 5 keV up to 50 keV, above which negligible change in the

energy dissipation curve was seen.

Fig. 3.9 shows the profile of the optical emission at 100 kPa as a function of

distance from the 63Ni face, extracted from the direct image in Fig. 3.8. The

curve calculated using Spencer’s theory shows moderate agreement with the data.

It is interesting to note the decrease in total optical intensity as the pressure was

raised from 20 kPa to 100 kPa. The data show a decrease by a factor of two, while

Spencer’s theory predicts a factor of three.
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Figure 3.10: Spectra at 20, 50, and 80 kPa. Insets show less prominent

peaks between 890 nm and 920 nm. Six peaks are labeled by
the letters at the top of the figure.

Spectral data were taken using a 0.300 m Czerny-Turner monochromator using

a grating with a blaze wavelength of 750 nm. The spectrum was detected by the

CCD camera. Due to the low intensity of the radioactively-pumped xenon, the

setup aimed to maximize signal strength at the cost of spectral resolution. As

in the direct images, the emission was viewed from the side: emission through

a 4 mm-thick sample of radioactively-pumped xenon was captured by the CCD,

compressed into a slit-like image less than 2 mm wide. Using a simple compound

microscope system, f/1.18 lenses collected about 0.18 π of solid angle. A large 1

mm slit width was used to increase the optical throughput. Finally, the low dark

current of the CCD allowed for eleven-minute integration times.
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Table 3.3: Spectral lines identified between 810 nm and 925 nm[55]. 1: Due
to proximity of adjacent lines, identification was also based on
published line intensities.

Spectral Line of Xe I Transition

(a) 823.16336 6s[3/2]2 - 6p[3/2]2

(b) 828.01162 6s[3/2]1 - 6p[1/2]0

(c) 881.94106 6s[3/2]2 - 6p[5/2]3

(d) 895.225091 6s[3/2]1 - 6p[3/2]2

(e) 904.54466 6s[3/2]2 - 6p[5/2]2

(f) 916.565201 6s[3/2]1 - 6p[3/2]2

The optical emission that is viewed by the CCD camera is spatially asymmetric

and broad, as seen in Fig. 3.9. This results in a spectrum with broad peaks. How-

ever, each peak of the xenon spectrum is nearly monochromatic and will disperse

equally in the monochromator. Then the shape of the optical emission should be

the same for all the spectral lines. The raw data was cross-correlated with the

zeroeth-order image of the optical emission,

ξ(λ) =

∫ ∞
−∞

S(λ+ λ′)Z(λ′)dλ′, (3.7)

where S is the raw spectrum, Z is the zeroeth-order image, and λ is the wavelength.

This sharpened the peaks and corrected a small offset in their wavelengths, and in-

creased the signal-to-noise ratio from five, helping bring out several weaker spectral

lines.

The processed spectrum from 810 nm to 925 nm for a range of pressures is shown

in Fig. 3.10, each spectrum representing two sets of data. The maximum resolution

of the system is approximately 0.5 nm and the Doppler broadening is expected to
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be less than 0.001 nm, but the data reflect a much lower 2.8 nm resolution. The

three large peaks were found to be the only prominent features within the working

range of the CCD. Three weaker lines were also found in this region and have been

included, for completeness, in the identification of the spectral lines in Table 3.3.

The data suggest that despite electron energies up to tens of keV, very little of

the xenon atoms ionize. The strong lines of singly-ionized xenon are in the visible

region of the spectrum, around 500 to 700 nm. Those identified in Table 3.3 are

for neutral xenon. These lines also indicate the formation of metastable states.

The 6s[3/2]2(3P2) state is a highly metastable state, relaxing to the ground state

through a magnetic quadrupole decay. Depending on the isotope, the lifetime of

this state can be between several or upwards of forty-three seconds, as has been

measured by Walhout, Witte, and Rolston using a magneto-optical trap[72].

3.2.1 Alternative sources and applications

It is also possible to excite other sources for different applications. For example,

detection of carbon typically relies on its IR vibrational and rotational spectra.

In Fig. 3.11, the presence of carbon was detected by its excitation by 63Ni. The

lowest wavelengths of the simplest vibrational bands start at several micrometers,

which is beyond the range of the CCD imager used. It is likely that UV to visible

wavelengths are being detected by the CCD camera. Optical emission in sub-IR

has been observed previously [19, 60], attributed to transitions between higher

order vibrational states. The detectable image may also be a result of resonances

in ionized carbon dioxide CO+
2 , which forms as a result of the energetic beta decay

from the 63Ni [67]. Therefore, it is found that radioisotopes can be used to detect
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Figure 3.11: Excitation of CO2 by 63Ni.

more complex molecules, in addition to simpler atomic gases. Detection of CO2,

for example, could be for a low power greenhouse remote gas sensor.

In addition, Fig. 3.12 shows that GaAs can be excited by 63Ni. The high energy

63Ni electrons excite the direct band gap GaAs. The band gap limits to mininum

energy, or highest wavelength, photon that is detected. The photon spectrum

does not extend higher than 870 nm, the GaAs band gap at room temperature.

This suggest that excitation of semiconductor materials for optical applications is

possible using 63Ni as well. For instance, radioisotopes could be used to power

stimulated emission optical amplifiers in long term applications, such as intercon-

tinental underwater optical communication channels that are not easily accesible.

Therefore, it is seen that there are a number of possible applications of 63Ni ex-

cited materials. Such possibilities include optical sources, gas sensors, and optical
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Figure 3.12: Excitation of GaAs by 63Ni, and spectrum. The broad spectrum

stops short of the band gap of 870 nm (at 300K).

amplifiers and devices.

3.3 Focusing by thin magnetic plates: design by evolution-

ary algorithms

The beta decay from radioactive 63Ni, by its nature, covers much of its phase space.

When a 63Ni decays, one of its nuclear neutrons undergoes a β− decay,

n→ p+ + e− + ν̄e +KE, (3.8)

where the neutron decays into a proton, electron, antineutrino, and kinetic energy,

respectively. This processes must conserve both energy and momenta (from the

rest frame of the neutron and proton). Without the antineutrino, the energies of
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the electron would be separately fixed (α decay, for example, has a nearly mo-

noenergetic spectrum). However, the presence of the antineutrino underspecifies

the conservation of energy and momenta whereby the daughter particles can have

a range of kinetic energies. For 63Ni, the energy spectrum for the β particle is

mostly decided by the statistical part, dictated by the equal probability of energy

distribution between the electron and the antineutrino. There is a slight correc-

tion due to the Fermi function, caused by the electrostatic interaction between

the charged particles as the electron moves away. The beta decay in 63Ni has an

endpoint energy of 67 keV, that is to say there is 67 keV energy that is shared be-

tween the electron and antineutrino. In addition, there is no preferential direction

to the weak force-mediated beta decay (although there is a weak magnetic field

dependence in direction). Thus, as found in the theoretical work in the previous

section, the beta decay is very nearly isotropic. As a result the beta decay covers

a large portion of phase space. While Louiville’s theorem dictates that it is not

possible to unambiguously decrease the phase space distribution, it is possible to

narrow the distribution in its spatial distribution. In an optical application, for

example, it may be desired to focus the beam spatially to generate a large amount

of light at a small point to generate a very bright source. Here, a monte carlo

nonrelativistic finite difference time domain model of 63Ni beta decay is used to

simulate the spatial focusing using rotationally symmetric shapes cut into thin

ferromagnetic films. By using evolution algorithms, an increase in the focusing up

to 11.3% of the total beta decay into a 500µm radius spot is possible.

The magnetization of the 2.5mm-thick ferromagnetic film is assumed to be

perpendicular to its surface (through its thickness direction). A rotationally sym-

metric hole is cut into the magnet, which serves as a focusing tunnel or lens. The
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Figure 3.13: Geometry of thin film magnet focusing of 63Ni beta decay. A
rotationally symmetric curve is cut into the ferromagnet, which
is magnetized along the direction of propagation.

shape of the hole is evolved to maximize the fitness, here defined to be the number

of electrons that escape within the 500µm at the end of the hole.

At each step of the evolution, the magnetic field of each agent is calculated by

first calculating the surface currents on the wall of the hole due to its magnetization,

its corresponding vector potential field ~A, then numerically calculating the elliptical

integrals to calculate the corresponding magnetic field. The electron trajectory

is calculated in cylindrical coordinates and using a rotating coordinate system

that follows the electron as its rotational angle changes. The starting point of an

electron is randomly positioned, its energy is chosen from its theoretical energy

spectrum, and its initial vector is chosen to be isotropically oriented.

In these simulations, five agents were evolved simultaneously. The shapes are

randomly designed initially, each described by ten parameters. At each step, the

agents who have a fitness greater than the average fitness survive to the next

step. Then, each agent has a probability of 1/2-1/2cosπF of surviving, where F

is the fitness of the agent. Next, agents are propagated by a probability equal

to (1/2-1/2cos πF1)×(1/2-1/2cosπF2), where F1 and F2 are the fitnesses of the
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Figure 3.14: Results of a Monte Carlo nonrelativistic finite difference time
domain model of 63Ni beta decay to simulate the spatial focusing
using rotationally symmetric shapes cut into thin ferromagnetic
films. All four runs show qualitatively similar results. First,
there are about 25 to 30 iterations where the fitness is three
percent. Then there is a sudden increase in the fitness of an
agent, who by the rules of propagation generates a progeny.
Efficiency can be as high as 11.3%. There is some variation as
the agents continue to mutate and mix, but the overall fitness
does not seem to increase.
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two agents. If they propagate, the shape of the progeny is determined by using

the average of the ten parameters that describe the magnet shape. New agents

are then generated if required. Finally, there is all agents undergo a 1% chance of

mutating, where one of the ten shape parameters is changed randomly. Random

numbers for all parts of the simulations were generated by the MT19937 Mersenne

Twister (with a period of 21̂9937-1) developed by Makoto Matsumoto and Takuji

Nishimura.

The results from four runs are shown in Fig. 3.14. Agents are first tracked when

their efficiency reaches above 1%, which may take up to 30 or 50 steps of evolution.

All four runs show qualitatively similar results. First, there are about 25 to 30

iterations where the fitness is three percent. Then there is a sudden increase in the

fitness of an agent, who by the rules of propagation generates a progeny. Often,

this agent will overwhelm the rest of the population and the whole population

jumps to fitness values up to 11.3%. There is some variation among the agents

after this happens, probably as a result of a high amount of mutation and mixing

among the agents. While the simulation continues to run, the populations do not

seem to be able to further improve their fitness.

It is found, therefore, that passive ferromagnetic thin films can be used to en-

hance the current density of the β-decay of radioactive thin films. Rather than

the electrons isotropically leaving the thin film, a magnetic thin film helps capture

some of these electrons by effectively focusing them onto a small spot. In the case

of radioactive istropic sources which occupy a large region of phase space, it is dif-

ficult to analytically design an appropriate magnetic thin film structure, requiring

effectively a numerical guessing method. Here, this was implemented by an evo-
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lutionary algorithm. This focusing enhances the power output of radioactive thin

films which, although they have high energy densities, have low power densities.

The passive focusing allows the distribution in the phase space to be skewed to

increase the number of electrons that pass through the target area, although the

resulting cost is a larger spread in electron energies as they pass through this tar-

get region. The increase in electron density is especially important when using low

count radioactive sources, which may easily be down to only thousands of electron

decays per second.
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CHAPTER 4

LOW-POWER BEAT CLOCK

In this section, the quantum phase noise limit of semiconductor lasers is first

presented, then derive the minimum Allan deviation as a result. Next, a modest

performance low-power beat clock is presented and, based on this result, show

that an atomic lock to a Doppler broadened atomic resonance can achieve enough

frequency stability to reach the quantum phase noise limit of the Allan deviation.

The results are used to compare semiconductor laser Allan deviation data from

the literature.

First, the Allan deviation limit due to phase fluctuations as a function only of

the laser linewidth is derived. This result was incorrectly derived by Yamamoto

[75], differing by a factor of π. Ohtsu et al. estimated the Allan deviation limit but

as a function of a number of parameters [47], some of which are not necessarily

known in literature or in product specifications. The analysis can be used to

compare semiconductor laser hetrodyne systems. For example, harmonic frequency

chains and optical frequency combs bridge the optical and microwave frequency

domains and allow precise measurements of optical frequencies, and measurements

of laser stabilization often involve a hetrodyne stage [57, 68, 14, 76].

The phase fluctuations in the optical field of a VCSEL caused by spontaneous

emission events are first considered [27]. Each event i at time ti with random phase

θi at an average spontaneous emission rate Rsp causes a phase fluctuation in the

lasing field of ∆φi = I−1/2 (sin θi − α cos θi) so that the phase change at some time
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t′ is,

∆φ(t′) =
1√
I

∑
ti∈(0,t′)

(sin θi − α cos θi) , (4.1)

where I is the number of photons in the cavity and α is the linewidth enhance-

ment factor. Relaxation oscillations are ignored, which die out on the order of

nanoseconds [28, 69]: this transient behaviour is inconsequential when calculating

the phase over a sampling time τ � nanoseconds. The relaxation oscillations add a

peak in the spectral density of frequency fluctuations near the relaxation resonant

frequency ωR [69], but from Eq. 4.9 it is clear that it contributes little to the Allan

deviation unless the sampling time τ � 1/ωR ≈ nanoseconds. The autocorrelation

is then,

RφEE (∆φ(t1)∆φ(t2)) =
1

I
E [

∑
ti∈(0,t1)

(sin θi − α cos θi)×
∑

ti∈(0,t2)

(sin θi − α cos θi )],

(4.2)

where E [ ] is the expected value. If t2 > t1,

RφEE (∆φ(t1)∆φ(t2))

=
1

I
E [

∑
ti∈(0,t1)

(sin θi − α cos θi)
2 +

∑
ti∈(0,t1)

(sin θi − α cos θi) (4.3)

×
∑

ti∈(t1,t2)

(sin θi − α cos θi )]

=
1

I
E [

∑
ti∈(0,t1)

(sin θi − α cos θi)
2 +

∑
ti∈(0,t1)

∑
tj∈(t1,t2)

(sin θi − α cos θi) (4.4)

× (sin θj − α cos θj )]

(4.5)

The sin2 θi and cos2 θi terms have expected values of one half, and all other terms

are zero. The summation yields the average number of spontaneous emission events
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Rsp t1 so that,

RφEE (∆φ(t1)∆φ(t2)) =
Rsp t1

2I
(1 + α2) for t2 > t1. (4.6)

Similarly,

RφEE (∆φ(t1)∆φ(t2)) =
Rsp t2

2I
(1 + α2) for t1 > t2. (4.7)

Now, with ω(t′) = ∂φ(t′)
∂t′

, RφEE(∆ω(t1)∆ω(t2)) = ∂2

∂t1∂t2
RφEE(∆φ(t1)∆φ(t2)) =

Rsp(2I)−1(1 + α2)δ(t2 − t1). Then the Wiener-Khinchin theorem yields the power

spectrum of frequency fluctuations S∆ω = Rsp(2I)−1 (1+α2) = ∆ω, where the last

equality comes from Henry’s form of the modified Schalow-Townes formula [27].

Our result differs from the derivation of Yamamoto [75] by a factor of π, but agrees

with the result of Vahala and Yariv [70] who calculated the field equations and

included a Langevin noise source. In addition, y = ∆ω/ω0 so that Sy = S∆ω/ω
2
0 =

∆ω/ω2
0.

So far only the autocorrelation of a single laser has been considered. Since the

beat frequency is being measured, the phase of the intensity field is of interest. For

two lasers with a beat of ε and random phases ∆φ1 and ∆φ2 the intensity field is,

E∗E = [exp (iωt) exp (i∆φ2) + exp (i(ω + ε)t) exp (i∆φ1)]

× [exp (−iωt) exp (−i∆φ2) + exp (−i(ω + ε)t) exp (−i∆φ1)]

= 2 + 2 cos (εt+ ∆φ1 −∆φ2), (4.8)

so that ∆φ = ∆φ1−∆φ2. But R(∆φ(t)∆φ(t+τ)) = E [(∆φ1(t)−∆φ2(t))(∆φ1(t+

τ)−∆φ2(t+τ))] = E [∆φ1(t)∆φ1(t+τ)]+E [∆φ2(t)∆φ2(t+τ)]−E [∆φ1(t)∆φ2(t+

τ)]−E [∆φ2(t)∆φ1(t+τ)]. The last two expected values are both zero, since φ1 and

φ2 are uncorrelated. Each of the first two terms is the autocorrelation of any single
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laser, so the autocorrelation of the intensity is just twice the autocorrelation of the

electric field of a single laser, RφII = 2RφEE, and S∆ω must be doubled. That

is to say that the electric field is being used as the frequency standard, except

the presence of two laser cavities leads to twice as many spontaneous emissions.

Simply doubling the spontaneous emission rate, Rsp → 2Rsp, leads to the same

factor of two to appear in our calculations.

Finally σ2
y(τ) =

∫∞
0
Sy(f) 2

[
sin4 (πτf)

]
(πτf)−2df [12, 54] so that,

σ2
y,sp(τ) = 2

∫ ∞
0

∆ω

ω2
0

2 sin4 (πτf)

(πτf)2
df

=
∆ω

ω2
0

1

τ
=

∆f

f0
2

1

2πτ
. (4.9)

Therefore the Allan deviation of the beat frequency due to the spontaneous

emissions in the lasing cavities is,

σy(τ) =
1

f0

√
∆f

2πτ
(4.10)

The beat frequency source setup is shown in Fig. 4.1. Two VCSELs at the

top and bottom of the Figure are locked to two D2 hyperfine lines. A single-mode

780nm VCSEL with a linewidth ≈ 100 MHz (U-L-M Photonics ULM780-01-TN-

S46FOP) is temperature stabilized and injection current modulated sinusoidally

with a frequency dither of 200 MHz. The frequency modulation amplitudes are

matched by comparing the hyperfine splittings measured by the two VCSELs and

by minimizing the change in the beat frequency. The injection current to the

VCSELs is approximately 1.5 mA and stabilized with 150 µF shunt capacitors,
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Figure 4.1: Beat frequency source setup. A VCSEL is locked onto a 85Rb
transition using a proportional-integral feedback loop. The laser
is then mixed with another VCSEL at the other hyperfine split
frequency, and the beat frequency is detected by a photodetector.

with a resulting optical power ≈ 100 µW at the beat frequency photodetector. The

signal generated at the photodetector is approximately -62 dBm peak (at 1 MHz

bandwidth). The laser absorption through a 85Rb gas cell (55 oC) is measured,

and the signal is transimpedance amplified and its derivative is fed to a lock-in

amplifier with a time constant of 100 µs. Proportional and integral error signals

are fed back to a summing junction at the VCSEL, resulting in a lock of the VCSEL

to a D2 hyperfine absorption line of 85Rb.

A beam splitter diverts one laser beam to be mixed with another VCSEL with

a similar setup, generating the beat frequency. The linear polarizations of the two

VCSELs are aligned. The beat frequency is detected by a photodetector (Electro-

Optics Technology ET-4000A). To accommodate the time interval counter and

high gain amplifier, it was then necessary to mix the signal with a 2.4 GHz radio

frequency source down to less than 1 GHz. The intermediate frequency was then
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Figure 4.2: Allan deviation data. The red points with error bars are ex-
perimental data, and the blue line is calculated by Eq. 4.10.
Numbers along top axis denote sample size. Around τ=1 sec,
the Allan deviation flattens out due to flicker noise at the mixer.
Inset shows the power spectrum of the beat signal at the hyper-
fine frequency. Black dots show data; the red line shows fit to a
pseudo Voigt profile (cf., [71]).

amplified by a 60dB amplifier (MITEQ AM-1646).

The VCSELs are locked to the two hyperfine-split D2 (5 2S1/2 - 5 2P3/2) Doppler-

broadened transitions of 85Rb. There is hyperfine structure in both the ground and

excited states, and as a result the beat frequency could be between 2.822 and 3.100

GHz [3] depending on the absorption strengths of the different transitions. The

measured beat frequency was 2.849 GHz. The beat between the F = 4,3 and F =

2,2 transitions is 2.852 GHz, which are the strongest hyperfine transitions [7].

Measured Allan deviations and Eq. 4.10 are shown in Fig. 4.2. Note that f0
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= 2.85 GHz since the microwave, not the optical, frequency is being used as the

oscillator frequency. It is found that contributions to the frequency deviation due

to the control circuit, e.g. current shot noise in the VCSELs, are negligible and

not included.The Allan deviation suffers for integration times below milliseconds,

which are time scales shorter than the time constant of the lock-in amplification.

The Allan deviation continues to follow Eq. 4.10 until it flattens out around τ ≈

1 sec. This is a result of flicker noise at the output of the mixer. It is noted that

similar flicker noise starting at τ ≈ 1 sec can be duplicated by replacing the beat

frequency photodetector with a low-power RF source, but is removed as the power

is increased.

Reported Allan deviations of lasers can reach as low as 10−15 or lower due to

the high quality factor and large resonance frequencies. In addition, linewidths

can be narrowed with higher power and larger cavities [27], yielding improved

Allan deviation at the cost of power and size. Using Eq. 4.10, the performance

of the frequency stability of hetrodyne measurements of semiconductor lasers can

be compared taking into account such factors. For example, micro- and nano-

mechanical resonator performance is often characterized by the fQ product; here,

the semiconductor optical resonator performance is characterized by its σf/
√

∆f .

In Fig. 4.3, the Allan deviations of several published works are compared[6, 5, 1,

43, 78], including the work here in Fig. 4.2. However, the Allan deviations are

normalized using Eq. 4.10. As expected, the saturation sub-Doppler limited and

cavity-locked systems perform better than Doppler-limited or cavity-free systems.

Overall, a direct comparison of the Allan deviations shows a factor of 107 among

the data sets shown here. However, the phase noise limit metric reveals that

performances vary by about 104. In particular, the comparison of data sets c and f
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Figure 4.3: Comparison of normalized Allan deviations, i.e. Allan deviation
divided by the phase noise limit Allan deviation in Eq. 4.10.
Sources and laser power, linewidth, and locking limit are a: 3
mW, 21 kHz, sub-Doppler limited and cavity stabilized[6]; b: 5
mW, 30 MHz, Doppler limited[5]; c: 3 mW, 300 kHz, Doppler
limited [1]; d: this work, 100 µW, 100 MHz, Doppler limited;
e: unknown, 0.5 Hz, cavity stabilized[43]; f : 0.2 MHz and 3
MHz, 7 mW and 4.5 mW, sub-Doppler limited[78]; g: 3mW, 300
kHz, sub-Doppler limited[1]. It is noted that that sub-Doppler or
cavity stabilization can yield lower normalized Allan deviations
(e, f, g) over Doppler limited stabilization, as expected. Inset:
While it is clear from the normalized Allan deviation that a sub-
Doppler limited system (f) yielded better results than a Doppler
limited system (c), their actual Allan deviations are similar due
to more inherent phase noise in f.

are highlighted in the inset of Fig. 4.3. Set c[1] is a Doppler-limited system, while

f[78] is a saturation, sub-Doppler limited system. A direct comparison of their

Allan deviations in the inset appears nearly identical. However, a comparison of

their Allan deviations normalized by Eq. 4.10 shows that given the quality of their

semiconductor lasers and feedback systems, the saturation, sub-Doppler limited

system[78] is in fact performing better.
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CHAPTER 5

NANO OPTICAL RULER IMAGING SYSTEM FOR

NANOMETROLOGY

The work so far described has developed wavelength and timing precision based

on atomic stability. The work here describes a new type of nanometrology, espe-

cially suitable for scanning probe microscopes. The nanometrology is for position-

ing. The SI unit of length is based on the electromagnetic radiation. It is defined

to be the distance traveled by light (in vacuum) in 1/299792458 second: that is,

the speed of light has been defined to be 299792458 meters per second, where

the second is defined by the ground state hyperfine splitting in Cesium atoms.

From an engineer point of view, direct metrology of this can be difficult for very

high resolution. A 10 GHz counter, for example, could only resolve 3 cm and a

resolution of just 100 µm would require a 3 THz counter. Therefore, the only

practical way so far to engineer high precision, accuracy, and resolution metrology

is to measure an optical standing wave. The standing wave is a function of its

wavelength, which is in turn related to the speed of light constant c=νλ. The

wavelength can be well known by atomic resonances. A distance can be measured

by confining light into an optical mode, for example in a Fabry-Perot cavity, where

resonances and antiresonances occur at geometric distances that are some function

of the optical wavelength. A simple example is a Michelson interferometer, where

the differential position can be measured as the difference in optical path lengths

between the two mirrors. In that case, the optical intensity at the output would

go as 1+cos(2πδL/λ), where δL is the optical path length difference. There are

several types of nanometrology tools currently available. The simplest are linear

optical encoders. Along the travel of a stage (usually a stepper stage to allow for
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large travel), an actual ruler of sorts is attached. This track will have apertures

cut into it to allow light to pass through. The metrology is done by measuring the

transmission through the track; as the stage moves, the number of holes passed

is counted as a square wave at the optical detector and the distance is measured

from the fabricated distance between holes. More than one aperture track can be

cut wit different duty cycles, resulting in distance calculation by detecting multiple

channels. These optical encoders are often fabricated down to parts of a micron,

limited by fabrication limits, and interpolation of the optical signal may result in a

precision down to tens nanometers or more. While optical encoders are cheap and

easy, the precision depends entirely on how well the track is fabricated and how

well it is stabilized in a dynamic environment. Often these encoders will measure

the stage translation to no better than a percent or so over the whole translation

motion. On a four inch wafer, this can be as high as millimeter. The common al-

ternative for precision nanometrology of large travel stages (e.g. for writing photo

masks) is an interferometric system.

In addition, flexural piezo stages are required for nanoscale work that requires

positioning below the often 100 nm or greater resolution of stepper motors. For

example, piezoelectric tubes are a necessity in scanning probe microscopes. Metrol-

ogy for piezo actuators is especially important because they can suffer greatly from

hysteresis, creep, and drift. This a result of the transduction of the piezoelectric

material, which requires a large electric field and great strain, which results in

charge, mechanical creep, etc. The primary method of nanometrology for piezo-

electric actuators is a simple calibrated transfer function between the applied volt-

age and the displacement. This conversion can be calibrated by scanning a known

calibration sample. This calibration can work fairly well for small regions of dis-
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placement, but do nothing to account for hysteresis, creep, and drift. The result

is that even moving a few microns can result in buildup of positioning errors. As

an alternative, flexural piezo stage can be fabricated with extra metrology. Ca-

pacitive sensors measure the capacitance between a flat surface of the stage and

a fixed reference plate. These can provide very high precision, down to less than

a nanometer, but capacitance is a highly nonlinear phenomenon and has a very

low range. The capacitance, varying inversely to the distance, will have very high

sensitivity at small gaps and have quadratically decreasing sensitivity as the gap

increases. Strain gauge sensors are low cost solutions and can have precision down

to nanometers, but suffer from even smaller ranges (before the strain sensor would

yield) and have poor linearity and temperature sensitivity.

This work concentrates primarily on nanometrology for scanning probe micro-

scopes. In addition to the metrology shortcomings described above, there are some

practical issues related to the combination of metrology and stage technologies as

well. A mechanical problem lines in the large masses that are moved. In a stepper

motor, the stage which holds the sample is up to ten inches per side covering at

least its maximum travel range. With a significant thickness, the stage will have

considerable mass. Systems with XY interferometeric metrology will also require

a large reflective block to be mounted along two edges of the stage, further adding

mass. The high mass results in a low mechanical bandpass of the stage. This

means a stage cannot move quickly around the wafer to different points. A fast in-

terferometer, for example, may be able to run at ten meters per second (16 MHz at

632 nm), but stages do not reach those speeds because the acceleration is not high

enough. In wafer-scale nanofabrication or device testing, this can become a heavy

cost in time. On a six inch wafer, for example, a possible grid of 10 nm squares
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for access by a scanning probe microscope would have 1015 addressable positions.

In addition, the separate metrology of the large travel stage and the continuous

actuation piezoelectric element results in a saturation of the net nanometrology.

The actual position of the scanning probe tip over the sample is as poor as both

the nanometrology of the piezo head (high precision locally) or the nanometrology

of the stepper stage (poor).

The system described here aims to eliminate or reduce many of these problems.

The nano optical ruler imaging system (NORIS) generates a precise optical ruler

in space using the diffraction pattern from a microfabricated grating generated by

an atomically stabilized laser. The schematic is shown in Fig. 5.1. The section

1 shows the stabilized external laser cavity. The laser is atomically stabilized as

discussed in section 2.1.2, stabilized to a tens of ppb. Section 2 shows some optical

path length, which is used to allow the laser beam to diffract and increase its beam

width. Section 3 shows the generation of the diffractive aperture array. A wafer

is microfabricated with an aperture array of a reflective thin film. The thin film

pattern acts as a diffractive element, creating an optical pattern in space which is

used as a nano-precise optical ruler. Its pattern in a two dimensional slice shown as

a number of red spots in the plane of the scanning probe. The scanning probe, here

shown as a scanning tunneling tip, is attached to a imaging camera. The camera

captures an image of the optical ruler, then uses that information to calculate its

position using sub-pixel digital image processing techniques, identified as section

4.

It is instructive to find first approximations to noise sources and how they may

affect the performance of the system. For example, a 1 nm precision over a six
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Figure 5.1: Schematic of NORIS. Section 1 shows the atomically stabilized
laser. An external cavity laser is stabilized to the hyperfine struc-
ture of 85Rb, to a stability of a few parts per billion by satura-
tion spectroscopy. In section 2, the laser beam is propagated and
its beam width is increased slightly by allowing it to traverse a
path length. Section 3 shows the optical transfer wafer, which
is used to generate a diffraction pattern. The wafer has a sus-
pended thin film metal aperture array, which diffracts and forms
the optical ruler. The optical ruler projects above the manufac-
turing wafer, or any region of space where the nanometrology
is to take place. The aperture array thin film is temperature
controlled by a thermo-electric cooler. A camera mounted on an
actuator is used to image the optical ruler, which allows the sys-
tem to detect its position. Here, the camera is shown attached
to a scanning tunneling tip. Section 4 shows the digital signal
processing required to run the system and control the position.
Cross correlation methods must be used to detect the position:
a fully programmable gate array is shown, which would be a fast
method of calculating cross correlations.

71



inch wafer requires a precision of 6×10−9. The precision in section 1 is determined

by the linewidth and the atomic locking of the laser. The laser linewidth is 100

kHz, which is a precision δλ/λ of 3×10−10. The D2-line at 780nm is used, which

is the transition from the transition 52P3/2 excited state. The natural lifetime is

26.2 ns [9, 59, 53], or a linewidth of 38 MHz. A good lock to the atomic transition

can yield a sweep of one tenth of the linewidth, which results in δλ/λ=1×10−8.

This could well be reduced yet again by clocking the diffraction image. As learned

in 4, while the frequency of the laser may dither up to tens of MHz (in that case,

up to 500 MHz), the frequency stability of the laser while it’s dithering can still

lead to low phase noise. Therefore, this last figure may be reduced up to an order

of magnitude or more by clocking the illumination of the diffraction grating only

when the laser is at the line center of the saturated absorption line of rubidium.

The gross optomechanics of the system are considered, namely the air lifted

table and the many optics of the system, in order to isolate our experiment from

the uncontrolled environment. It is best to learn from the work in mechanical iso-

lation for scanning tunneling microscopes, which are able to run experiments with

sub Angstrom resolution [49]. The general strategy is to use the vibration isola-

tion of the table to low pass filter mechanical noise, then build the scanning probe

microscope (and the optics, etc) with very high mechanical resonances. Mechani-

cal noise is reduced by having minimal overlap between these two pass bands. In

systems such as scanning probe microscopes where there is some mechanical move-

ment inherent in the system (and thereby may excite vibrations in the system),

the strategy is to build those parts in-between the two passbands, so that it will

not be excited by noise passed through the air lifted table, nor excite modes in

turn of the optics and related systems thereby diminishing the performance of the
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complete system. This idea is seen in Figure 5.2. The table has a low pass corner

frequency of 30 Hz, and the optomechanics are estimated from finite element mod-

eling to have resonance frequencies of no less than 250 Hz. This creates a stability

window between 30 and 250 Hz where the system can be moved with high stabil-

ity. A mechanical working frequency of 250 Hz is low compared to, for example,

commercial scanning probe microscopes but is a result of the large system with

which this works. From this the approximate error can be estimated that will be

acquired by the optomechanics, which causes a change in the laser frequency. Note

that as long as the diffraction grating is uniformly illuminated, there is no change

in the optical ruler image. The frequency error ∆f=dφ/dt ≈ FnoiseIwidthT
2/mQ,

where Fnoise is the noise force, m is the system mass, Iwidth is the spectral width

of the noise, Q is the quality factor, and T is the transmission of the bandpass. It

is estimated that the error produced is δL/L=10−10.

Errors from the optical wafer are estimated. First, the spontaneous emission in

the laser beam can cause spurious phase noise in the laser wave front which causes

a relative phase shift between the apertures resulting in a shifting of the position

of features in the optical ruler. By estimating that sqrt(hνvgαm/2P0)=10−3 [27],

the error δL/L will be less than -z δφλ / x L 2π N, where N is the number of

apertures, = 10−9. The wavelength noise calculated above also yields an error in

the optical ruler, δL/L = -z2δλ/xλ N = 10−9.

The NORIS system is especially insensitive to variations in temperature at the

diffractive aperture. This is due to its small size. Interferometric blocks made

of special Zerodur, for example, have thermal expansion coefficients as low as

2×10−8/◦C but may cost at least a thousand dollars for a sizable, optically flat
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Figure 5.2: Optimizing NORIS by considering the mechanical frequency re-
sponses. The pneumatically lifted optical table acts as a low pass
filter; PVC curtains minimize other, external, acoustic sources of
mechanical noise from entering the system. The optomechanics
are designed to have high mechanical resonance frequencies. In
this Figure, the table specification of a 30 Hz corner frequency
for the table is used, and a 250 Hz corner frequency of optical
components has been calculated in finite element method simu-
lations of harmonic modes. The resulting pass band shows the
best frequency spectrum to actuate NORIS: the system would be
unaffected by low frequency noise introduced through the table,
but its movements would not excite the high frequency modes in
the optomechanics.

piece. The diffractive aperture can be temperature controlled very easily because

of its small size; it therefore has a small thermal mass and high conductance over

a very small region. With a thermal coefficient of as much as 10−6, it is estimated

that a stability of δL/L=10−8 is possible.

Finally, the CMOS imager samples a large portion of the optical ruler, which

results in an increased precision in position calculation. If only in the imager itself
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is considered, the noise is uncorrelated and the standard deviation will sum in

quadrature and it is estimated that δx/x = (∂I/∂xSNRIx
√
Npixels)

−1=10−8.

The resulting precision from the noise sources considered here yields 4×10−8,

which is below 10−7=10 nm / 50 mm.

5.1 Image processing

In addition to the optics and optomechanics, the NORIS precision depends on the

digital image processing that occurs after taking the image of the optical nanoruler.

This section discusses some of the aspects of the image processing.

5.1.1 Reducing noise in analogue to digital conversion

Analogue-to-digital conversion of pixel intensity is ubiquitous to most sensors, but

can be detrimental to a precision system like NORIS where an undistorted image of

the optical ruler is required for proper image processing. Unfortunately, the ADC

conversion is limited by the imager hardware and cannot be changed. In modest

CMOS imagers, for example, the ADC conversion may be a single byte, or eight

bits. The resulting discretization error is 1/256 or 4×10−3. In order to decrease

this source of error, a method is developed that results in decreased discretization

noise.

Consider a single pixel with 8-pixel ADC whose nominal intensity measurement
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is I0=161.803 at a gain of 256. The ADC will convert the intensity value to 162.

Averaging will still result in a mean value of 162. Note that if more noise can be

added to the system so that the intensity value will vary at least by one pixel value

(i.e. down to 161 and up to 163), the discretization error can be reduced. Similar

to stochastic resonance, the mean value will better approximate the nominal value

I0, since a proportionate number of values will be 161, 162, and 163 due to the

noise but averaging towards the mean value of 161.803.

By changing the gain before the ADC, the discretization noise can be reduced.

Since most CMOS imagers also use digital control of the analog gain, only in-

tegral gain settings will be considered. At a gain of 256, the ADC will again

read a intensity of 162. Now, at a gain of 255 the ADC will see an intensity of

round(161.803×255/256)=161; then the calculated intensity is 161×256/255, or

161.631. Next at a gain of 254 the ADC will see an intensity of 161 again, but

the intensity is now calculated to be 162.268. At different gain settings, the calcu-

lated gain will differ slightly depending on the gain used, as seen in Figure 5.3. In

order to calculate a precise value for the intensity, these calculated intensities are

averaged. The result is seen in Figure 5.4.

An example of one dimensional imaging is performed using this technique. A

Gaussian was imaged by a 400-level ADC, then its image was calculated by av-

eraging or processing a number of gain settings as discussed above. Figure 5.5

shows a sampling of the Gaussian. Five percent noise was introduced per pixel,

with a 1% error in the preamplification gain. The same number of images are

used to calculate both sets. While both methods show the same errors in the

middle region of the Gaussian where the intensity is high, the averaging method
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Figure 5.3: Figure shows the intensity ADC calculated at different preampli-

fications of the input signal. The change in amplification causes
different intensities to be measurent. Taking measurements at
one amplifiation biases an ADC measurement due to the dis-
cretization error.

develops errors about 40% out from the peak of the Gaussian. In this region,

the discretization error is worse at low intensities and image averaging, and the

result is an overwhelming increase in imaging error. In contrast, the gain sweep-

ing method preserves the Gaussian structure to 80% of its width, at which both

methods essentially see the same image. Figure 5.6 shows the effect of noise on

the image precision by measuring the average variance of the pixel intensity error.

Interestingly, a small amount of noise reduces the pixel error, akin to stochastic

resonance mentioned above. Note the greater error in the averaging scheme over

the gain sweeping method.
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Figure 5.4: Figure 5.3 showed the different ADC intensities that were mea-

sured; by taking the combined information, the system can con-
verge to the actual analog intensity value. The Figure shows the
calculated intensity by combining the information by sweeping
the gain from 256 to a setting shown in the abscissa. Even after
ten or eleven gain settings are used, the intensity is very nearly
close to its actual value, much improved over the value calculated
from just one gain setting (at 256).
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Figure 5.5: Calculated intensity error. A Gaussian function is sampled, then
its curve is sampled by an ADC. Teal graph shows the calculated
curve by taking a number of averages with a 400-level ADC. As
the curve approaches the low intensity pixels toward the tails of
the Gaussian curve, the quantization noise is too large and the
error is large. The gain sweeping method described here captures
these parts of the curve: this method has less noise for much more
of the curve, reproducing the curve with more precision having
taken the same number of images as just averaging them.
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Figure 5.6: Average variance per pixel comparing averaged versus gain swept
ADC images of Gaussian curve, as also shown in Fig. 5.5. The
gain swept method has about half as much variance as the av-
eraged images. The variance actually decreases as a function of
increased pixel noise, a phenomenon akin to stochastic resonance.
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Figure 5.7: Effective ADC sampling rate using gain sweep method, where
the gain is swept from the maximum value down to the starting
sweep gain value. When the starting sweep gain is half as much
as the starting sweep gain, all the gains are factors of higher
gains so that no new information is contributed to calculating
the image: the effective ADC sampling rate is seen to flatten
out. Improvements between 2 and 2.5 orders of magnitudes are
seen.
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Figure 5.8: Variance per pixel as a function of starting sweep gain value.

At high starting gain values, the variance decreases as the start-
ing gain value is decreased resulting in more information gained
about the image. The variance flattens out: as the starting gain is
lowered, the noise eventually overwhelms the quantization noise
and the variance increases again.

Finally, the question of what range of gain settings to use is considered. There

are two counter balancing trends to consider. The problem with a small range of

gain settings (i.e. gains 240 to 256) is that the resulting data set is small and less

information is gained about the intensity value, resulting in a small improvement

in the ADC measurement; see 5.4. However, it is not completely advantageous

to acquire every possible gain setting. The first problem is that the pixel noise

will eventually overwhelm the intensity measured at a low gain. For example, an

intensity measured to 1.6 only has to have a 6% intensity noise in order to switch

from an ADC of 2 to 1: at such a low gain setting, that actually results in a

50% ADC error. In addition, gains at lower settings have a higher probability of

generating extra information which does not increase the measurement results. For
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example, the gains with settings of 120 and 64 share the factors 23, and as a result

eight of their gains will share the same measured intensity (8,16,24,32,40,48,56,64)

for 64 and (15,30,45,60,75,90,105,120) for 120. The worst case is one gain is a

factor of the other, in which case no new information is acquired. At the least,

the possibility of one gain being a factor of the other and resulting in no new

information gained can be eliminated by using a gain sweep that extends from

the largest gain setting to a gain setting is just greater than half the largest gain

setting. Not considering common factors between gain factors and assuming a

maximum gain setting of M, the intensity can be resampled at 3 (M2+2 M)/8

effective ADC levels. The Figure 5.7 plots the effective sampling as a function of

the starting gain sweep setting. The algorithm used here acquires data just before

the point where no new information is gathered (half the maximum gain setting).

The result these two competing effects is seen in Fig. 5.8. When very low

starting gain values are used, the imager can be overwhelmed by noise and there

is no advantage over simply averaging many images. When high starting gains

values are used, not many gain settings are sampled and little extra information

is acquired by the system and there is also no improvement in imaging precision.

A medium region shows the best results. Note that the averaging method sees

improvement starting at low starting gain levels (i.e. just acquiring and averaging

more images), but the improvement is small and negligible compared to the gain

sweep method.
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5.2 Aperture array design

The design of the aperture array is important to establish the baseline character-

istics of the optical ruler.

5.2.1 Diffraction as a Fourier transform

Considering a diffracting surface in the (ξ, η) plane illuminated by an amplitude

U(ξ, η), the diffraction pattern at the (x,y) plane at a normal distance z from

the diffracting plane is calculated using the Huygens-Fresnel principle[22]. The

Huygens-Fresnel principle states that all points in a propagating wavefront are

sources of wavefronts themselves. The principle results in,

U(x, y) =
z

iλ

∫∫
dξdηU(ξ, η)

e(ikr)

r2
, (5.1)

where r=
√
z2 + (x− ξ)2 + (y − η)2. In the Fresnel approximation, r is binomi-

ally expanded to r ≈ (1 + 1/2(x− ξ)2/z2 + 1/2(y − η)2/z2) which yields,

U(x, y) =
eikz

iλz
ei

k
2z

(x2+y2)

∫∫
dξdη

{
U(ξ, η)ei

k
2z

(ξ2+η2)
}
e−i

2π
λz

(xξ+yη). (5.2)

In the Fresnel approximation (near-field), the diffraction can be calculated by

the Fourier transform of the diffraction plane amplitude with a phase factor, which
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is again multiplied by a phase factor. Furthermore, the Fraunhoffer approximation

leads to further simplification where z�k(ξ2 + η2)/2 resulting in,

U(x, y) =
eikz

iλz
ei

k
2z

(x2+y2)

∫∫
dξdηU(ξ, η)e−i

2π
λz

(xξ+yη). (5.3)

which is a Fourier transform of the diffracting plane with a phase factor. The

phase factors result in scaling of the Fourier transform / diffraction pattern as the

imaging plane moves away from the diffraction plane (i.e. as z increases), and

leads to decreased intensity of the pattern away from the axis center. However,

the features of the diffraction pattern are dominated by the Fourier transform.

The diffraction as a Fourier transform of the aperture array (assuming

monochromatic, planar wavefront illumination) means that certain designs should

be avoided. Periodic arrays, as are well studied in crystallography, lead to periodic

diffraction patterns. Periodicity implies that the pattern will have translational

symmetry, which in NORIS would result in non-unique positioning information.

Regular interferometeric systems suffer from translational symmetry, where the

measured intensity in a cavity arrangement is spatially symmetric at integer parts

of the wavelength of light. The symmetry then requires that the metrology system

count the fringes as the stage travels (although that is typically not the limiting

constraint for speed).

Patterns lacking translational symmetry, then, will require patterns that are

not periodic. In opposite contrast to the periodic structures are the amorphous or
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In Appendix B, micrographs of aperture arrays developed in chrome photomask

(aperture hole ≈3µm in diameter) and the corresponding diffraction pattern. As

desired, the diffraction pattern optical ruler extends out to several inches in radius,

which can be used for positioning across wafer-scale positions. While these show

large coverage and apparently some small features, such designs will have some

local translational symmetries (i.e. the patterns which are translations of some

pattern). The patterns which are formed by a rotation may lack translational

symmetry, but tend to lack have gaps in the middle of the optical ruler: a rotated

pattern loses aperture density (quadratically) from its center, so that it loses low

frequency features and therefore having less optical energy near the center of the

optical ruler.

5.2.2 Quasiperiodic patterns

Quasiperiodic or aperiodic patterns appear to be a perfect solution. Quasiperiod-

icity arises from infinite tilings of the plane which lack translational symmetry. By

inventing the first aperiodic tiling set, Roger Berger disproved Hao Wang’s con-

jecture that the so-called Domino problem of whether a set of tilings can fill the

plane is undecidable. There are several quasiperiodic tilings, some requiring up to

tens of thousands of tiles. Tilings with a deep connection to the physical sciences

are the Penrose tilings discovered by Roger Penrose and independently discovered

by Roger Ammann. They have been identified in medieval Islamic architecture

[41]. The P3 rhombus tilings are one of the most well-know, whose tilings are only

two tiles of rhombuses whose constituent triangles have edges of the golden ratio.

Quasiperiodic arrays are important for several reasons. Because they lack trans-
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lational symmetry their Fourier transform is very dense. Rather than filling the

k-space with peaks at the inverse of the periodicity, their quasiperiodicity maps all

the points map to different places in the k-space. The result is a set of very sharp

peaks at very many places in k-space. This is contrast to amorphous or otherwise

nonperiodic structures whose Fourier transforms will, rather than moving energy

into these Fourier peaks, will spread out that energy everywhere among the spec-

trum (showing no structure). However, the quasiperiodic arrays will densely fill

the diffraction plane as well which will allow high transmission of laser intensity

and therefore increase the optical signal-to-nose ratio at the optical ruler imaging

plane.

The advantage of using a quasiperiodic over a periodic pattern can be seen

by the simulated data shown here. Using the Fraunhoffer approximation, the

precision of the nanometrology was simulated. The sizes of the image is 2 mm

per side. The distance between the diffraction and imaging planes is 25.4 mm.

The laser wavelength is 780nm, with an incident plane wave with a homogenous

intensity across the diffraction plane. The aperture array is a set of 9662 holes

of separation constant 10 µm with holes of diameter 3µm. See Figure 5.10 that

shows a calculated Penrose tiling diffraction pattern optical ruler, and an optical

ruler from a simple square lattice. Note the high density of features in the Penrose

tiling diffraction pattern, as opposed to that for the square lattice.
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Figure 5.9: Schematic of NORIS with quasiperiodic pattern. SEM shows
holes in silicon-on-insulator silicon patterned as a Penrose tiling,
a periodic pattern (bar shows 100 µm). Image shows resulting
diffraction pattern optical ruler (bar shows 600 µm).

The quasiperiodic pattern generates an optical diffraction pattern that is trans-

lationally asymmetric, thus preventing positioning ambiguities in constrast to a

periodic pattern. Therefore, unlike other interferometric optical methods large

displacements can be measured without a half-wavelength ambiguity. In addition,

the quasiperiodic pattern has a Fourier transform that is dense in ~k-space, i.e. a

diffraction pattern that is dense in real space. The expected performance can be

estimated based on the mean square error (MSE) of the image registration of offset

r using the Cramer-Rao bound,

MSE (r) ≥ J−1 (r) , (5.4)

assuming an unbiased estimator, where the Fisher information matrix J is,
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b .a .
Figure 5.10: a. Calculated images of optical ruler, generated by 780 nm

Fraunhoffer diffraction from the quasiperiodic, 9662, 3µm di-
ameter holes distributed over 2 mm, sampled at a distance of
25.4mm. Note high density of features across the whole im-
age, as was confirmed in the real image in Fig. 5.9. b. Same
conditions as a., but of a periodic square lattice aperture array.

[J(r)]ij = −E
[
∂2(log f)/(∂ri∂rj)

]
, (5.5)

the negative expectation value of the partial derivatives of the log of the likelihood

function[51]. Having an optical ruler with dense features across the whole image

increases the Fisher information in Equation 5.5 through the partial derivatives

and decreases the lower bound of the MSE in Equation 5.4. This is in contrast

to an aperiodic structure, which would spread the optical energy across space

but without much structure, thereby increasing the MSE. In addition, periodic

structures have prominent features only in small regions. In the region of interest

studied numerically, it is found that even for the same number of apertures, the

quasiperiodic pattern has better MSE estimates. Its square root of the trace of the

J−1, as a prediction of the image registration performance, are five times better

than that for the periodic pattern.
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Figure 5.11: NORIS precision compared between a periodic and quasiperi-
odic aperture array. The periodic array performs up to 31 times
worse than the quasiperiodic array. The sampled portion of the
periodic array is particularly high in features so that the peri-
odic array precision will in general be much worse than shown
here.

A set of Penrose tilings with five-fold rotational symmetry is shown in 5.12,

both as a tiling and with the vertices used to generate the aperture array. The

rotational symmetry occurs only in one place in the infinite plane, indicated in the

graphs. This particular Penrose tiling can be constructed as the intersection of

five families of lines or equivalently as the projection into two dimensions of a six

dimensional cubic lattice [13].

Figure 5.13 shows a micrograph of the Penrose tiling fabricated in a photomask,

then the resulting diffraction pattern with a 632.8 nm laser.

In order to maximize the precision of the quasiperiodic patterns, it is important

to have a process flow with very good fabrication tolerances while being optically
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Figure 5.12: Left half shows Penrose tiling using the thin and thick rhom-
buses (P3). The thin rhombus has angles 36 and 144 degrees,
whereas the thick rhombuses have angles of 72 and 108 degrees.
Cutting these rhombuses in half to generate two congruent tri-
angles, these triangles have edges in ratios of the Golden ratio.
Right side shows the resulting vertices used to design the aper-
ture array. Circle shows center point: this is the only place in
the pattern with five-fold rotational symmetry.

transparent up to the diffracting thin film metal. Several process flows have been

used. See Figure 5.14. The left half of the figure shows a nirtide suspended version.

The substrate is a double side polished wafer. Between one and two µm of low

pressure chemical vapor deposition silicon nitride (Si3N4 is deposited. Then a thin

film of Al (300 - 400 nm) is e-beam evaporated onto the top side of the wafer. The

aluminum is patterned by photoresist with the desired quasiperiodic array, then

the aluminum is etched by a chlorine reactive ion etch. Then the backside nitride

is etched to form an etch window. A seven to eight hour 30% KOH etch at 70◦

makes a through-wafer etch up to the nitride, and forms a suspended optically

accessible thin film aperture array. The right half of the Figure shows a process

flow using a silicon-on-insulator wafer. First, 200 nm LPCVD nitride is deposited
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Figure 5.13: Prototypes of optical diffraction rulers can be made by fabri-
cating a photomask with the desired aperture pattern. The mi-
crograph on the left shows a back-illuminated photomask of a
Penrose tiling aperture pattern. Image on right shows resulting
diffraction pattern.

onto both sides of the wafer, but the top side nitride is removed in a fluorine

reactive ion etch. Then a 100 nm film of thermal oxide is grown, which does not

appear on the bottom side nitride. The desired aperture pattern is formed using

ebeam lithography, then the silicon oxide is patterned by a short fluorine reactive

ion etch. A high aspect ratio chlorine silicon etch etches the silicon device layer

down to the buried oxide. Then a window is opened into the backside nitride

by a reactive ion etch, then a through wafer etch is performed using KOH. The

structure is released in buffered oxide etch, then a 200 nm ebeam evaporation

of gold on the top side makes a reflective thin film. This method, though more

laborious, tends to make more precise patterns because of the ebeam lithography

and higher selectivity of the silicon device etch to the oxide mask. A simple metal-

on-fused silica with a lift-off resist is also possible, the advantage being that the
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pattern can be generated as points of metal rather than apertures, increasing the

transmission of the diffraction pattern.

5.3 Image registration

Image registration is used to process the optical ruler images to determine the

position of the camera with respect to the optical ruler. Image registration takes

a reference and sample image, then by comparing the image intensities intuits the

best position offset between the two images. The most basic method is a pixel-

by-pixel comparison. Consider two images IR(x,y) and IS(x,y), the reference and

sample images, respectively. The images extend from x=[1,xN ] and y=[1,yN ]. The

cross correlation is,

CC(x0, y0) =
∑∑

x,y

IR(x, y)× IS(x− x0, y − y0), (5.6)

which yields a xN by yN dataset of the cross correlation. The x0 and y0 denote

the trial offsets. The most likely image offset between the reference and sample

image, xML and yML, is the value of x0 and y0 when CC is maximal. However, the

cross correlation must be normalized. For example, a pixel with an extraordinarily

high intensity value will result in a term in the sum of Equation 5.6 that is also

extraordinarily high. That biases the calculation of the cross correlation, and an

incorrect image registration will occur. The normalized cross correlation is then,
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Figure 5.14: Two process fl6ws for making a wafer with an optically acces-
sible diffraction aperture array. Left shows single side polished
wafer with LPCVD nitride, thin film of Al etched by RIE for
precise patterning, and backside patterning and KOH through-
wafer etch to expose the thin film pattern to optical access.
Right side shows a silicon-on-insulator wafer. LPCVD nitride is
grown, then etched from device side in RIE; subsequent thermal
oxide grows only on top device side due to nitride on back side.
Due to thin thickness of oxide, precise electron beam lithogra-
phy can pattern the oxide. Pattern is transferred into device
layer Silicon by chlorine chemistry reactive ion etch. Backside
nitride is pattern, then through-wafer KOH etched to reach the
buried oxide. Then oxide is released by wet buffered oxide etch,
then a thin film of Cr/Au is evaporated from the top side to act
as the diffractive thin film metal: where holes were etched in
the device layer Si, no metal film is evaporated. For large area
aperture arrays, a simple process flow of gold thin-film metal
evaporated onto a fused silica wafer can be used.
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CCN(x0, y0) =
∑∑

x,y

{IR(x, y)− ĪR} × {IS(x+ x0, y + y0)− ĪS}
σIRσIS

, (5.7)

where the images are normalized by subtracting the mean and dividing by the

standard deviation.

Calculating the cross correlation by Equation 5.7 generates a value for xML, yML

that is a pixel value (e.g., position difference of (5,2) pixels). Achieving nanoscale

precision in NORIS requires sub-pixel image registration techniques, much less

than the micron sizes of most imager pixels.

Phase cross correlation is based on the Fourier shift theorem,

F [I(x+ x0, y + y0)] = ei(kxx0+kyy0)F [I(x, y)]. (5.8)

That is, an image that is translationally shifted (and assuming periodic boundary

conditions) yields a phase difference in the two images; the phase difference is a

plane in the x,y plane. Sub-pixel phase cross correlation finds the phase difference

kxx0+kyy0 to deduce the translated shifted x0 and y0. This method was tried using

the quasiperiodic NORIS optical ruler images, but the results have been mixed.

Rather, an upsampling method is used.

Images can be upsampled by padding the image with zeroes in-between the pixel

values that exist. After doing so, the pixel-by-pixel cross correlation method seen

in 5.7 can be used to determine the most likely offset, xML and yML. The single-

step DFT algorithm algorithm is used [24], where the cross correlation first finds a

small region of maximum probability, then does an upsampled cross correlation of
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that region. The cross correlation is easily implemented in software, but hardware

implementation using an FPGA, for example, is expected to greatly increase the

image processing speed.

In addition to the algorithm used for signal processing, the hardware will also

make a difference in the NORIS precision. Imaging cameras can be used with

higher pixel count and smaller pixel count to improve the precision, but it is at a

cost of increased signal processing times.

Simulations were performed to carry out comparisons of precision as a func-

tion of imager characteristics. The quasiperiodic optical ruler image calculated

in Figure 5.10 was used. First, Figures 5.15 and 5.16 consider the effect of

the pixel size. An imager with Npix=80 and Lpix varies from 1µm to 24µm at

(∆x,∆y)=(1µm,1µm), (2µm,2µm), (5µm,5µm), and (10µm,10µm). As expected,

precision is improved at smaller pixel size. However, the precision undergoes a sort

of phase transition where the precision is fairly flat up to 11 µm or 12 µm sized

pixels. Then, the precision error jumps high.
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Figure 5.15: NORIS precision as function of pixel width Lpix, in x direc-

tion. As in 5.17, the precision is flat until a critical value of
Lpix=11µm where the precision diverges up to 60% of the pixel
size.
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Figure 5.16: NORIS precision as function of pixel width Lpix, in y direc-

tion. As in 5.17, the precision is flat until a critical value of
Lpix=11µm where the precision diverges up to 60% of the pixel
size.

In the next set of data, the effect of the number of pixels on the NORIS error

is seen. By incorporating more pixels, an imager will sample a higher area of the

optical ruler gaining an increased sampling of spatial information. Every Fourier

component, and its phase, helps the cross correlation deduce the positioning of

a sampled image. Again, as expected, the error is reduced at higher numbers of

pixels. However, there is again a sort of phase transition where the error does not

reduce below a certain number of pixels.

Next, the errors are considered as a function of pixels per side, but by including

5% pixel noise. In the noise-free cases in the Figures 5.17 and 5.18, the transition

to good precision occurred around 80 pixels, but adding the 5% of pixel noise to
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Figure 5.17: NORIS precision as a function of Npix, the number of pixels

per side, in x direction. The error can reach as high as one
third of the pixel size at low Npix. At a critical Npix, the error
precipitously drops and decreases less than 50 nm for Npix = 80
to 124. The critical Npix increases as noise is added.

about 86 pixels. In addition, the precision before the transition is much less stable

and has higher errors as well.
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Figure 5.18: NORIS precision as a function of Npix, the number of pixels

per side, in y direction. The error can reach as high as one
third of the pixel size at low Npix. At a critical Npix, the error
precipitously drops and decreases less than 50 nm for Npix = 80
to 124. The critical Npix increases as noise is added.
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Figure 5.19: NORIS precision as a function of the number of pixels, but with

5% noise added, in x direction. In the noise-free cases in the
Figures 5.17 and 5.18, the transition to good precision occurred
around 80 pixels, but adding the 5% of pixel noise to about 86
pixels. In addition, the precision before the transition is much
less stable and has higher errors as well.
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Figure 5.20: NORIS precision as a function of the number of pixels, but with

5% noise added, in x direction. In the noise-free cases in the
Figures 5.17 and 5.18, the transition to good precision occurred
around 80 pixels, but adding the 5% of pixel noise to about 86
pixels. In addition, the precision before the transition is much
less stable and has higher errors as well.

In Figures 5.21 and 5.22, an imager with Npix=100 and Lpix=12µm is used

and moved the imager by (∆x,∆y)=(1µm,1µm), (2µm,2µm), (5µm,5µm), and

(10µm,10µm). The noise N is varied from 0% to 100% of the mean image intensity,

and the error in the calculated position in one direction is calculated. There is a

±500nm position error increase (1/24th of pixel size) per ten percentage point

increase in pixel noise; with no noise, the system measures the position to be

within 100nm (1/120th of pixel size). The mean position error is independent of

the position.
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Figure 5.21: NORIS precision as a function of N, the percentage of noise per
mean pixel intensity. The error is independent of offset, which is
a result of the high density of features in the diffraction pattern
of the quasiperiodic aperture array throughout the optical ruler.
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Figure 5.22: NORIS precision as a function of N, the percentage of noise per

mean pixel intensity. The error is independent of offset, which is
a result of the high density of features in the diffraction pattern
of the quasiperiodic aperture array throughout the optical ruler.
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This introduces edge effects, and the result is seen here as a
sinusoidal error in positioning.
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Finally, in Figure 5.23, the distance error (as opposed to error in x or y) are

plotted as a function of distance between the reference and sample images. An

imager with 12µm pixels, of a 100 by 100 pixel array, was used. Note the periodic

structure of the calculated position.

5.4 Empirical results

An external cavity laser in the Littrow configuration is used as the laser source. A

85Rb heater cell is heated to 45◦C, and as in 5.1, is positioned to provide saturation

spectroscopy. The laser is locked to the F=2 to 1 transition with a frequency sweep

of ¡10 MHz as measured by a Fabry Perot cavity. The laser beam travels some

152 cm until reflecting from three mirrors and to position the laser beam vertically

above a wafer manufactured using the SOI process shown in Figure 5.14. The

pattern was made to cover a 1 mm diameter area in the center of the wafer. The

laser beam is first angled to be perpendicular to the stage surfaces. Then the wafer

is placed in line with laser beam and the stage below. As per Babinet’s principle,

the reflection will generate the quasiperiodic pattern but reflected back towards

the laser source. Especially as the reflection is very high power, the feedback to

the laser can disrupt the lasing. As a result, it is often prudent to slightly misalign

the diffraction wafer. The diffraction pattern generates a very visible center point

with a plus-oriented cross (up-down and left-right) along the vertical and horizontal

directions of the Penrose vertices, it can be placed diagonally away from axis center

and be blocked by an aperture.

Certainly, the intensity of the optical ruler cannot be too late or else the imager
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will not be able to detect the signal with high signal-to-noise ratios. However, the

gain sweep method described above cannot be used properly if the gain is too

high: the pixel intensities will saturated even at slightly larger gains, and a large

sweep range will not be possible. Some care must be taken to find a suitable

laser intensity to satisfy both conditions. In addition, the optical table holding

the NORIS is surrounded by polyvinyl chloride curtains and, above, by fiberglass.

These reduce environmental acoustic noise.

As show in Figure 5.1, the diffraction wafer is illuminated by the laser light.

The optical ruler is imaged at a distance of 25.4 mm, as simulated above, then

positions were calculated using the methods described. The OV7670 CMOS imager

was used, with a VGA (640 by 480 pixel array) and an 8-bit ADC converter, with

an 8-bit (256 level) gain setting. The chip was mounted on a PC board that

contained all the passives required to run the CMOS imager, then mounted on an

nPoint XYZ100A which is a flexural piezo stage with capacitive sensors for precise

positioning over the stage range of 100 µm in the x-y directions. The piezo stage

was then mounted on a Newport ILS150PP stepper stage, with 500 nm resolution.

The first dataset demonstrate the mechanical stability of the NORIS system.

Figure 5.24 shows the position of the imager, idle, as calculated by NORIS over an

hour. Neither direction drifts more than 38 nm, with standard deviations of 27.1

and 23.8 nm.
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Figure 5.24: Long-term stability measurement of NORIS in x and y direc-

tions of an idle stage. The drift is less than 38 nm, with standard
deviations of 27.1 nm and 23.8 nm.
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Figure 5.25: Precision of a long travel stepper motor, corrected for angu-

lar misalignment. This data also demonstrates lack of half-
wavelength ambiguity in position measurement and the sub-
pixel positioning which allows for a continuous resolution over
long distances.
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Figure 5.26: Hysteresis of a long travel stepper motor. The position is mea-
sured after the stage traverse 10, 30, and 50 mm then returns
to its origin.

The dataset in Fig. 5.25 uses NORIS to examine the errors in positioning by

a long travel stepper motor. The data show the error as the stepper motor moves

30 µm, correcting for a small angular offset. The motor steps being 500 nm, the

stepper motor begins to pick up errors up to 1.6% of its travel distance. The data

also demonstrates the lack of half-wavelength ambiguity in NORIS and the path-

and actuator-independence of NORIS. Fig. 5.26 shows the hysteresis accumulated

by the stepper motor after it traversed tens of millimeters.

Fig. 5.27 shows the nanometer precision of NORIS. The piezoelectric stage

was moved in steps of 100 nm, measured by its precise capacitive sensors, and its

position calculated by NORIS. The system is accurate to within 50 nm, with a

mean error of 29 nm (1/124th of pixel size). The residuals exhibit an oscillatory
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Figure 5.27: Comparison of NORIS measured position to high precision
capacitive sensor stage position, showing sub-50nm precision
(mean offset 29nm = 1/124th of pixel size), a precision of
5×10−7 over four inches. The slight oscillatory behaviour is
due to the signal processing.

behaviour, which is a result of the signal processing. Note the oscillatory behaviour

of the positioning error; see Figure 5.23 above.

Figure 5.28 shows one method of integrating z-positioning into NORIS. The

cross correlation method does not suffice for z metrology because the shift in pixel

that is measured for x-y is not high enough to detect changes in z as well. Here,

a beam splitter was simply positioned on the PC board holding the imager, such

that the incoming frequency stabilized laser formed a standing wave between a

thin film of gold on the PC board, and the diffractive wafer. A resonance is set

up in the resulting Fabry Perot cavity, the Figure showing the detected intensity

as a function of the change in the distance between the imaging camera and the

diffraction wafer. As in the interferometric systems described above, this method

suffers from translation symmetry and thus a half wavelength ambiguity. In many
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Figure 5.28: Comparison of NORIS measured position to high precision

capacitive sensor stage position, showing sub-50nm precision
(mean offset 29nm = 1/124th of pixel size), a precision of
5×10−7 over four inches. The slight oscillatory behaviour is
due to the signal processing.

applications, in particular for scanning probes for which NORIS is best applied,

the z positioning is not a variable. For example, a sample will be fixed to a known

position and multiple z positions are not necessary for operation. In cases where

precise z positioning is required between the imaging surface and the diffracting

wafer, it is proposed that a Pound-Drever-Hall technique would suffice, whereby

the central lobe of the diffraction pattern would form a standing wave between the

diffracting wafer and a manufacturing wafer / imaging surface.
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CHAPTER 6

PRECISION PATTERNING OF GRAPHITE

Parts of this section have been submitted to Nanotechnology.

Graphene is receiving much attention for its extraordinary electrical and me-

chanical properties, c.f. [21]. Graphene discovered as recently as 2004, when it

was isolated by mechanical exfoliation [46]. The carbon atoms in graphene are

sp2 hybrid orbitals bonded to three neighboring carbon atoms, in addition to a

weakly interacting π bonds. The weakly interacting π bonds result in some of its

interesting characteristics, most importantly that single sheets of graphene can be

exfoliated from thick layers of graphite. One of the anticipated uses for graphene

is as a field-effect transistor. Graphene, however, lacks a band-gap until it is con-

fined by constraining its width. The resulting graphene nanoribbons have been

predicted to have single-atomic dependent properties with a periodicity of three

atoms: that is, for graphene nanoribbons fabricated with random widths two of

every three would have a band gap, while one in three would be metallic [61].

There is a need for graphene nanofabrication methods that are beyond e-beam or

photo-lithographic methods, which rely in resist molecules that are much larger

than a single carbon atom in the graphene lattice.

As a first example, Figure 6.1 shows etching of few layer graphene by a custom

made STM designed in combination with NORIS. A 3V bias was applied between

the tip and the sample, resulting in a 6000 Åetch; a subsequent drift in the image
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Figure 6.1: In custom scanning tunneling microscope fabricated with NORIS
optics, a few layer graphene sheet was etched with a small hole
by applying a voltage to the STM tip. After etching, the STM
was scanned to view the hole; a subsequent image shows drift in
the image.

scanning is also apparent.

Though single domains of graphene can be mechanically robust, it can be chem-

ically etched by an electrochemical etch.
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6.1 Graphite etching process

The process of graphite etching is due to an aqueous electrochemical oxidation and

removal of the surface carbon atoms. The water is supplied by the meniscus that

forms between the carbon surface and the scanning probe tip from the ambient

moisture. As a result, HOPG etching does not occur under vacuum. This is best

described by the Pourbaix diagram for carbon, which shows a narrow region of

stability at low potentials [50]. The main graphite etching reaction is the generation

of carbon dioxide [45, 44, 42],

C + 2H2O 
 4H+ + 4e− + CO2, (6.1)

which is essentially an irreversible reaction whose rate is increased at positive

carbon, or cathode, voltages. At high bias voltages, the carbon is etched rapidly.

At low bias voltages the carbon can be oxidized rather than etched: while the

Pourbaix diagram indicates the possibility of etching at low voltages, the chemical

kinetics favor the oxidation [35]. Graphene has been etched at voltages as small

as +2 V sample bias. At the reverse polarities, the Pourbaix diagram shows the

possibility of the generation of methane by combining carbon with four hydrogen

ions and four free electrons, but this is a highly unlikely reaction. This results in

the HOPG cutting only at a positive sample bias, as seen in Figure 6.2.

It is found that generally, the hydrogen ions and free electrons in Reaction 6.1

combine quickly during the etching process and disperse as hydrogen gas. First,

note that the electrochemical etching at the scanning probe involves etching carbon

with a small volume of solvent as the meniscus. Given the amount of carbon that

is typically etched and the resultant amount of ionic hydrogen, it would be possible

for the molal ionic strength to range up to tens of thousands. Even for a much
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Figure 6.2: When the sample bias voltage is positive with respect to the
scanning probe tip, the essentially irreversible reaction in Equa-
tion 6.1 etches the graphite. The opposite polarity results in no
etching of the graphite as the generation of methane requires the
carbon to react with four hydrogen ions and four free electrons.
The polarity-dependent etching of HOPG allows for electrochem-
ical cleaning of the probe and possibly graphite annealing.

smaller range, the activity coefficient for Reaction 6.1 would change by an order

of magnitude (cf. [48]). However, the etch profiles in Figure 6.3 shows that the

etch rate is linear, indicating that the reaction rate and therefore the activity

coefficient is constant. Second, it is possible to etch graphite without current, as

seen in Figure 6.3. Free charge is only seen at higher cutting voltages, where some

of the hydrogen ions and the free charge can be pulled to the tip and substrate,

respectively.

Operating the atomic force microscope (AFM) in the tapping mode, Figure

6.4 shows fine structure of HOPG etching that has previously been unobserved.

While contact mode images tend to show very smooth pits, the tapping mode
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Figure 6.3: Etch profiles at several sample bias voltages. Note the constant

etch rates, especially at +7 V and +8 V sample bias, which imply
a constant activity coefficient. The current is also measured as
the tip etches the carbon. At a bias of +5 V, the hydrogen ion
and free electron currents are not measured by the scanning probe
tip. However at a bias of +6 V, the tip and substrate capture
some of the current.

images typically show crevice structure inside the pit. Figure 6.4 (b) also shows a

tapping mode image of a smooth line cut by moving the tip along the surface. In

addition, by comparing tapping mode images to contact mode images it is found

that water is present after features are cut into the HOPG. This is confirmed as

the water can be removed by running the tip across the water under contact or

by pumping down the chamber to vacuum then reimaging the HOPG; see Figure

6.4 (a). The presence of the water is surprising, as HOPG is hydrophobic. This

may be a combined effect from surface modifications to the carbon and a change

in pH of the water due to the etching process. The etching process in addition to

removing carbon can also oxidize the carbon, which will decrease its hydrophibicity

[16]. Graphite’s wettability can also be raised by increasing the acidity [23] caused
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b .

a .

Figure 6.4: (a) Tapping mode image of large hole (scale bars show 50 nm)
showing some crevice structure. After imaging, three contact
mode scans were made of the hole. Subsequent tapping mode
image shows removal of water. (b) Tapping mode image of a
smooth line (scale bar shows 100 nm).

by the formation of carbonic acid and carbonates,

C + 3H2O 
 H2CO3 (6.2)

C + 3H2O 
 HCO−3 +H+ (6.3)

C + 3H2O 
 CO−−3 + 2H+, (6.4)

as evident in the Pourbaix diagram for carbon.

While it is expected that the reaction in Equation 6.1 to cleanly etch the car-

bon without residuals, energy dispersive x-ray spectroscopy with an electron beam

microprobe shows the presence of carbon on the AFM tip surface. After several

hundred hole etches, the deposited carbon is clearly visible in an SEM image of the

tip. The increased tip diameter results in poor imaging and lithographic resolution.

It is found that this can be simply remedied by applying a large negative sample
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Figure 6.5: Schematic summary of modes of operation for AFM graphite
nanolithography: (a) Etching occurs at positive sample bias volt-
ages with a meniscus formed between the tip and the sample via
an electrochemical etch chemistry. While etching, carbon de-
posits form on the AFM tip. (b) Tip cleaning of carbon deposits
occurs at negative sample bias voltages. (c) Image scans are at
zero bias voltage.

bias, opposite in polarity from the voltages used in HOPG etching. As demon-

strated above, large reverse biases can be applied without etching the HOPG. This

process was used by Spinney, et al. [63] as a method of carbon deposition onto a

gold surface. It is found, however, that AFM images of the HOPG surface before

and after cleaning the tip are identical. Intermittently, the AFM probe is cleaned

in this manner to maintain a clean, sharp tip over several hundreds of writes. Ad-

ditionally the negative sample bias allows non-destructive current injection from

the tip into the graphite, which will anneal the graphite edges by Joule heating

[31]. The etching, cleaning, and scanning modes of operation are summarized in

Figure 6.5.

The lithographic feature size is determined by the size of the meniscus that
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forms between the scanning probe tip and the HOPG surface. The meniscus size

is mainly determined by the environment, probe parameters, and tip height [30].

The temperature dependence can be exploited to control the feature size. As the

temperature of the HOPG surface increases, the evaporation rate at the edges of

the meniscus increases, resulting in a narrower meniscus and smaller feature size.

The data is shown in Figure 6.6, where a 35 oC increase in HOPG temperature

results in a 24 % decrease in the full width half maximum of 24 nm deep holes.

The Arrhenius equation predicts an increase in the etching rate as the surface

temperature is elevated. Instead, the etching rate slows at higher temperature due

to increased instability of the meniscus. The thermally-reduced meniscus yields

smaller feature sizes but increased etch times. It is estimated that the average

etch rate decreases from a maximum 2×106 atoms/second to a minimum 2×105

atoms/second.

6.2 Precision writing of a line array

Scanning probe etching of HOPG is driven by the tip-substrate meniscus, and as a

result is sensitive to the tip shape and surface, tip-sample separation, environment,

applied bias, etch time, and temperature. Slight variations among tips might

require the applied bias to vary from six volts up to fifteen volts or more before

a given tip will etch HOPG. Even the same tip will etch inconsistently over time

due to changes in a variety of these parameters. In order to nanofabricate many

features consistently, it is necessary to incorporate a feedback control system. A

digital control system was implemented that monitored the AFM piezo height

position and controlled the applied bias voltage. Conductive AFM tips were used
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Figure 6.6: Temperature dependence of HOPG etching with VH=10.5 V,
VL=9 V. Top shows decrease in cutting rate as the temperature
of the HOPG is raised. A decrease in cutting rate can be offset
by increasing the sample voltage. Bottom shows improved lithog-
raphy resolution as temperature of HOPG is raised. Increased
temperature leads to increased volatility due to evaporation at
the edges of the meniscus, resulting in a smaller meniscus re-
sulting in a smaller etch feature size but also much slower etch
rates.

with a platinum thin film: platinum has been found to catalyze the electrochemical

corrosion of carbon [74, 52]. The control is shown in the inset of Figure 6.7, where a

voltage bias is applied to the substrate based on the cut depth. The cutting begins

at a larger voltage VH , typically more than +10 V. Higher biases consistently

initiates the carbon etching, and etch at a more rapid rate. However, fast etches

lasting less than a second result in inconsistent dimensions and more tip damage,

possibly due to more mechanical damage and deposited carbon. Therefore, the

bias voltage is decreased to a smaller voltage VL, typically one or two volts smaller

than VH , when the tip has reached 80 to 90 percent of the total desired etch

depth. Etching at VL results in slower, smoother cuts with well controlled etch
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dimensions. Etching at too small of a voltage impractically increases fabrication

times, and the increased time allows longer lateral drifts in the tip position resulting

in degraded feature quality. In addition, the graphite may undergo oxidation rather

than etching, as described above.

Using this feedback control loop, several examples of etches are shown in Figure

6.7. Etches (a), (b), and (c) all start with a three second tip cleaning by applying

a -10 V sample bias voltage. Etch (a) is an optimal etching profile. The etch starts

immediately after the tip cleaning, and etches quickly before slowing down just

before the desired etch height is reached. Etch (b) shows some variation from an

optimal etch profile. The etching begins very slowly (7 Å/sec) for 2.8 seconds until

the etch rate suddenly increases to a substantial rate. The etch also shows two

pauses, indicated by arrows. An etch will sometimes slow or even stop for several

seconds, then suddenly resume etching into the carbon surface. This slow decrease

and abrupt jump in etching rate may be a result of the loss and reformation of the

tip-sample meniscus. Etch (c) shows a large deviation from the etch profiles of (a)

and (b). The initial delay is slightly less than that of (b), but the overall etch rate

is lower. Etching ceases several times, once as long as five seconds, and in the end

its total etch time is twice as long as that for (a).

An array of trenches was fabricated to demonstrate the scalability of our pre-

cision HOPG-patterning technique. These lines were cut by measuring the HOPG

height at the endpoints, and linearly interpolating a desired cut depth along the

line. The lines are three or four pixel widths, where a pixel is about 40 nm wide.

The line length was chosen at random by the computer immediately before each

one was fabricated. The values for VH and VL were +11.5 V and +11 V, but
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Figure 6.7: Etch profiles using etch control depicted in inset with VH = +11.5
V and VL = +11 V; a three second tip cleaning at -10 V sample
bias precedes all the etches. (a) An optimal etching profile, where
the etching depth and deceleration are smooth. (b) The etch
begins very slowly for 2.8 seconds. Arrows indicate pauses during
etching, possibly due to disappearance and reappearance of the
meniscus. (c) Very slow etch with several etching pauses. Even
with the same parameters as (a) and (b), the etch time is twice
as the nominal etch in (a). Inset shows control feedback for
precision etching of graphite. The applied bias starts at a large
VH , rapidly initiating the cut and etching most of the desired
depth. The applied bias decreases linearly with etching depth,
until at some percentage of the desired etch depth the applied
bias is set to a low VL, typically a volt below VH . The VL yields
a well-controlled etch depth and width by slowing down the etch
rate.

123



- 1 5 0 - 7 5 0 7 5 1 5 0
5

1 0
1 5
2 0

l o n g  

 
lin

e d
ep

th 
(nm

)

d i s t a n c e  a l o n g  l i n e  ( n m )

s h o r t

2.5 mm

Figure 6.8: AFM image shows large array of 18.3±3 nm deep etched lines in
HOPG. Lines are randomly selected to be 136 nm and 183 nm,
yielding 6 nm (4.4 %) and 5 nm (2.7 %) precision, respectively.
Figure below shows sample cross sections of the short and long
lines.

offsets were added to these voltages during fabrication to keep the etch time for

each line at around 40 seconds. A -10 V sample bias was applied for three seconds

to clean the tip before etching each line.

In order to assess the precision of the fabricated lines, the depth and full-width

at half-maximum depths were measured using AFM scans. The result from a seven

by fifteen array of lines is 136±6 nm and 183±5 nm, with etch depths that are

18.3±3 nm. Figure 6.8 shows typical profiles of a long and a short line sampled

from this array. There is a consistent asymmetry in the edge slopes due to an

imaging artifact.
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6.3 Conclusion

Feedback-controlled nanofabrication of a 105 line array in HOPG has been demon-

strated, using some 370 etching operations on an atomic force microscope. The

lines were randomly selected to be of two lengths which were precise to within 4.4

% and 2.7 %, or 6 nm and 5 nm, respectively; the depths were measured to be

18.3±3 nm. The precision of nanofabrication was maintained by a bias voltage-

etch depth feedback control loop of the etching rate. In addition, etching results

in carbon build-up on the tip which reduces fabrication and imaging precision. A

negative sample bias was applied to remove carbon residuals from the tip without

sample damage. This work demonstrates that non-prototypical scanning probe

nanofabrication for carbon-based devices is possible.
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APPENDIX A

CONTROL LOOPS

This appendix discusses control loops. Control loops appear several times, both

explicitly and implicitly, in this thesis. Atomic locking requires a control loop

to fix the frequency laser to the atomic transition. A control loop is required

for thermal control in NORIS. A digital control loop is required for the precision

scanning probe nanofabrication of HOPG. While there has been much work on

control theory, experimental implementation of complicated theory is unnecessary

and probably not very effective. These systems are best controlled by sensitive

observation of the system dynamics and intuitive changes to the control loop.

A.1 Control loop stability

The data on the linewidth narrowing by the feedback of the VCSEL 2.11 brings to

light the need for control loops in atomically stabilized systems. In that case, the

linewidth narrowing naturally arose from the setup. As long as some of the laser

spectrum matched the spectral hole, the hole would filter the laser wavelength

and thereby narrow its linewidth. The center wavelength was not controlled, but

was a natural constant. Therefore the frequency of the laser did not have to

be strictly controlled to match the spectral hole. It is easy to see that most

systems will require some sort of control loop since rather than directly using

atomic properties as in this example, an external system will be controlled by

probing an atomic sample. Atomic clocks, for example, lock their local oscillators to

the physics package by measuring the error signal from a phase sensitive detector,
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Figure A.1: Schematic of feedback controlled system. The user inputs a de-
sired setpoint. At the summing junction, the system state is
subtracted from the desired setpoint. The error signal is fed
into a control algorithm, which calculates a response to the sys-
tem to correct for the error. The signal is applied to the system
to try to move its state to the desired setpoint.

then applying the error signal to the voltage controlled local oscillator. This way,

the local oscillator stays locked with the atomically defined RF frequency. Figure

A.1 is a schematic showing how a control system would run a system, just as an

atomic physics package controls a local oscillator or interferometry is used for stage

metrology. An error signal is generated as the difference between a desired setpoint

(i.e. output frequency), then a control algorithm uses the error signal to apply a

signal to the system which changes the system (i.e. frequency shift in oscillator

transduces change in atomic resonance), until the system state is found be the

same as the desired setpoint.

Control theory provides the basis for efficiently and accurately controlling our

systems[65]. Figure A.2 shows a schematic of a control loop. The transfer function

L(s) is the frequency response of the control loop which will control a system. First,

the stability of the control is determined using the Nyquist criterion. This is done

by studying the Nyquist plot. First, the simply connected closed contour Γ ∈ C
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Figure A.2: Schematic of a loop. The loop transfer function is denoted L(s),
and the negative feedback is summed back into the loop. The
blue line indicates the point of the loop where it is theoretically
broken and the stability can be calculated. As described in the
text, the poles can be calculated to deduce the loop stability.

is defined to be clockwise, extending infinitely from the negative purely imaginary

numbers up to the positive purely imaginary numbers, then forming a half-circle

that rotates clockwise from the positive back to the negative imaginary numbers.

The Nyquist plot consists of the transfer function L(s) along this closed contour Γ.

Inevitably, the transfer function L(s) goes to zero gain at infinite frequencies and

L(s) is studied where the values of s go from -inf to +inf. Recall that the stability

of a transfer function depends on its poles. Poles with positive, real parts implies

a positive, real part in its eigenvalue of the constituent differential equation. This

in turn implies that the response of the system will be to sustain or grow the mode

at the pole. Therefore, transfer functions with poles in the positive half of C will

generate unstable feedback loops, as each cycle of a signal through the loop will

increase its strength. The Nyquist criterion can easily find the number of poles and

zeroes of a loop transfer function by examining the Nyquist loop. In Figure A.2

note that the gain of the loop G=T(s)/(1+T(s)). Instability points are found at

the poles where 1+T(s)=0. The Nyquist criterion is based on Cauchy’s argument
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Figure A.3: A control loop for a MEMS oscillator. The MEMS oscillator is
modeled by a serial RLC tank and a feedthrough capacitance.

principle, where the difference between the number of poles and zeroes with the

region of a simply connected contour is reflected in the line integral along that

contour (cf. Cauchy integral theorem). The result is the Nyquist criterion:

Nyquist Criterion. The loop transfer function T(s), when s traverses the contour

Γ, will enclose the point -1, N times where N = Z - P, where Z is the number of

poles of the closed loop system in the positive real half of C (indicating closed loop

stability), and P is the number of poles enclosed by the loop transfer function T(s)

in the positive real half of C. A loop is stable iff Z=0.

As an example, a simple model for a MEMS resonator is considered with a

negative feedback loop. The mechanical resonator is modeled as a capacitor C1

in parallel to a series RLC, and a feedback gain G is added. See Figure A.3. The

open loop transfer function T(s) is,

T (s) =
Ls3 +Rs2 + (C1 + C)s

C1Ls2 + C1Rs+ C1C
. (A.1)
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Figure A.4: Nyquist plots. a. Nyquist plot for MEMS oscillator in Fig. A.3,
with G=5, R=2, L=4, C=2, C1=10. The Nyquist loop circles
-1+0i twice, i.e. N=2. Z=N+P=2, so that the loop is unstable.
b. Nyquist plot for G=5, R=3, L=1, C=5, C1=10. The Nyquist
loop no longer circles -1+0i, so that N=0 and therefore has no
unstable poles. The transition from instability to stability (no
oscillation) is a reflection of the decrease in the Q=1/R

√
L/C

of the resonator.

Two sets of parameters are considered. The first set has the values G=5, R=2,

L=4, C=2, C1=10. The Nyquist loop is plotted in Fig. A.4(a). The Nyquist loop

circles the point -1 twice clockwise, i.e. N=2. The open loop transfer function

has no poles in the real half of the complex plane so the closed loop will have

Z=N+P=2 poles and therefore be unstable. In contrast, consider a second system

with values G=5, R=3, L=1, C=5, C1=10. In Fig. A.4 (b) it is seen that the

Nyquist loop no longer circle the point -1, so that N=0. The open loop transfer

function still has no unstable poles, so P remains 0 so that Z=0. This loop is stable

and will not uncontrollably oscillate. The transition from instability to stability is

due to the increase in R and C, and decrease in L, which effectively lowered the

Q=1/R
√
L/C of the tank of the MEMS resonator.
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A.1.1 PID control

A common control algorithm is the proportional-integral-derivative (PID) con-

troller. In such a control system, the feedback signal is a sum of the P, I, and

D of the error signal. It can be said that the three terms correct based on past,

current, and future behaviour of the system. This is reflected in their spectral

response, where the I and D favor the lower and higher frequencies, respectively.

The PID control is written as Ki/s+Kp+Kds. Control loops can also use parts of

a PID. Here, PID control loops are used later in stabilizing a laser frequency to

an atomic saturated absorption line, but a P controller is used to control AFM

lithography and a PI controller has been used to control a homemade STM. Typi-

cally, the D is used at very low gains. The D feedback can reduce oscillations, but

can quickly become destabilizing as its frequency response Kds has a theoretically

infinite high frequency gain, which practically can cause great oscillations in the

system response. To prevent this, extra poles can be added to the D circuit to

attenuate the high frequencies: in other words, to transform it into a band pass

rather than a high pass frequency response. The I is especially important to re-

duce settling offsets. At s=0, the I term has infinite gain, so that the closed loop

gain is 1, so no offset error should exist. Setting the PID frequency responses and

gains depends on the system parameters, which are often unavailable, immeasur-

able, and/or dynamic. Therefore, setting PID gains is often a matter of trial and

error, especially as the systems here are not meant to combat large changes in the

system but small, Gaussian noise type disturbances. This is often done by setting

a medium P setting, then slowly increasing the I before the system begins to os-

cillate. D can be added as well. However, a common method for estimating the

ideal parameters have been developed by Ziegler and Nichols. Their step response
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method measures the step function response and aims to find the optimal settings.

In the steepest part of the step response, the variable a is its parameter change

and τ is its time delay, so that a/τ would be its steepest slope. Their tuning

rules are set for different controllers. For a P controller, the prescribed constant is

Kp=1/a; for a PI controller, the prescribed constants are Kp=0.9/a, Ki=3τ ; and for

a PID controller, the prescribed constants are Kp=1.2/a, Ki=2τ , and Kd=1/(0.5

τ). Ziegler and Nichols also devised constants for a frequency method, similar to

what was described earlier. First the controller is set to operate under P only,

and P is increased until the system begins to oscillate. At this setting, the critical

value of Kp is recorded as Kc, and the period of oscillations as Tc. Then for a P

controller, the prescribed constant is Kp=0.5 Kc; for a PI controller, Kp=0.4 Kc

and Ki=0.8 Tc; and for a PID controller, Kp=0.6 Kc, Ki=0.5 Tc, and Kd=0.125

Tc. There have been additional tuning rules developed by Tyreus and Luyben,

Marlin, and others. Practically, however, PID tuning requires trial-and-error and

empirical quantification of the system stability.
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APPENDIX B

NONPERIODIC APERTURE ARRAYS

This appendix shows some prototypes of nonperiodic aperture arrays fabricated

in a five-inch photomask, where holes are etched into a chrome thin film. A variety

of patterns were attempted: a Fibonacci spiral, a Golden spiral, a radial circular

pattern, and arrays of circular spirals. Since diffraction image scales with the

pattern image, so the actual length scales of the image versus the aperture array

are relative. In these data sets, the patterns shown are about 750 µm in size, and

the diffraction pattern image spans approximately three inches.
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Figure B.1: Fibonacci spiral design, where r ≈
√
θ.
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Figure B.2: Arrays of Golden spirals. Holes were placed approximately along
the Golden spiral, r = a exp bθ, where b = lnφ/(π/2) where φ is
the Golden ratio.
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Figure B.3: Radial structure of a circular pattern. Circles of apertures are
placed radially away from the center point.
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Figure B.4: Arrays of spiral of circles. Circle of apertures, whose radius de-
creases slowly around the circumference, are placed in an array.

Therefore, it is seen that a variety of nonperiodic structures can be used for

diffraction images.
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