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FRANÇOIS ROUEFF, GENNADY SAMORODNITSKY, AND PHILIPPE SOULIER

Abstract. We study the asymptotic behavior of empirical processes generated by measur-
able bounded functions of an infinite source Poisson transmission process when the session
length have infinite variance. In spite of the boundedness of the function, the normalized
fluctuations of such an empirical process converge to a non-Gaussian stable process. This
phenomenon can be viewed as caused by the long-range dependence in the transmission pro-
cess. Completing previous results on the empirical mean of similar types of processes, our
results on non-linear bounded functions exhibit the influence of the limit transmission rate
distribution at high session lengths on the asymptotic behavior of the empirical process. As
an illustration, we apply the main result to estimation of the distribution function of the
steady state value of the transmission process.

1. Introduction

We consider the infinite source Poisson transmission process defined by

X(t) =
∑
`∈Z

W` 1{Γ`≤t<Γ`+Y`}, t ∈ R ,(1)

where the triples {(Γ`, Y`,W`), ` ∈ Z} of session arrival times, durations and transmission
rates satisfy

Assumption 1. (i) The arrival times {Γ`, ` ∈ Z} are the points of a homogeneous Poisson
process on the real line with intensity λ, indexed in such a way that · · · < Γ−2 < Γ−1 <
Γ0 < 0 < Γ1 < Γ2 < · · ·

(ii) The durations and transmission rates {(Y,W ), (Y`,W`), ` ∈ Z} are independent and
identically distributed random pairs with values in (0,∞) × [0,∞) and independent of
the arrival times {Γ`, ` ∈ Z}. The random variables Wj are positive with a positive
probability. The session lengths Yj have finite expectation and infinite variance.

(iii) There exist a measure ν on (0,∞] × [0,∞] such that ν((1,∞] × [0,∞]) = 1 and, as
n→∞,

nP
((

Y

a(n)
,W

)
∈ ·
)

v−→ ν ,
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where v→ denotes vague convergence on (0,∞] × [0,∞], and a is the left continuous
inverse (1/F̄ )← of 1/F̄ . Here F is the distribution function of Y , and F̄ = 1− F is the
corresponding survival function.

Assumption 1 (iii) implies several things, listed below. See Heffernan and Resnick (2007).

• The survival function F̄ is regularly varying with index −α for some α > 0. The
function a is then regularly varying with index 1/α.
• The limiting measure ν is a product measure:

(2) ν = να ×G ,

where να is a measure on (0,∞) satisfying να((x,∞)) = x−α for all x > 0, and G is
a probability measure on [0,∞].
• We have the following weak convergence on [0,∞], as t→∞,

(3) P (W ∈ · | Y > t) w−→ G .

We will assume that the exponent α satisfies

(4) 1 < α < 2 .

Under Assumption 1, the process (1) is well defined and stationary, see e.g. Faÿ et al. (2007).
Under additional moment assumptions, it is shown in this reference that the autocovariance
function of the process X is regularly varying at infinity with index 2H − 2 ∈ (−1, 0), where
H = (3 − α)/2. Such slow rate of decay of the covariance function is often associated with
long range dependence.

We are interested in studying the large time behavior of the empirical process

(5) JT (φ) =
∫ T

0
φ
(
Xh(s)

)
ds, T > 0,

where h > 0, Xh(s) = {X(s+t) , 0 ≤ t ≤ h}, and φ is a real valued measurable function defined
on the space D([0, h]) endowed with the J1 topology, see for instance Kallenberg (2002).
We notice that the D([0, h])-valued stochastic process

(
Xh(s), s ∈ [0, T ]

)
is continuous in

probability and, hence, has a measurable version, see Cohn (1972). In particular, JT (φ) above
is a well defined random variable, as long as the function φ satisfies appropriate integrability
assumptions, e.g. when the function φ is bounded.

The case h = 0 and φ(x) = x has been considered in Mikosch et al. (2002) with Wi ≡ 1
and by Maulik et al. (2002) in the present context of possible dependence between the session
lengths and the rewards (transmission rates). These references consider the case where the
intensity of the point process of arrivals is possibly increasing, which gives rise to the slow
growth/fast growth dichotomy. In the slow growth case, which includes the case of constant
intensity, the limit of the partial sum process is a Lévy stable process, whereas in the fast
growth case, the limiting process is the fractional Brownian motion with Hurst index H =
(3−α)/2. Here we consider a fixed intensity for the sessions arrival rate, hence are restricted
to the slow growth case. On the other hand we take φ arbitrary (but bounded) and thus
obtain what appears to be the first result on the asymptotic behavior of the empirical process
for this type of long range dependent shot noise process. The limit process depends on the
intensity λ, the tail exponent α and the limit transmission rate distribution G defined in (3).
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As an illustration, we apply the main result to the estimation of the distribution function of
the steady state value of the transmission process. Moreover we allow h > 0. Other potential
applications of our main result (e.g. to estimation of the multivariate distribution function)
can be handled in a similar way, but we do not pursue them in this paper.

Our main result is stated as a a functional central limit theorem in the Skorohod M1

topology. A convergence result in this topology was obtained in Resnick and van den Berg
(2000) for a similar traffic model, but with h = 0 and φ(x) = x. Our result can be viewed as a
heavy traffic approximation of the content of a fluid queue fed with input φ(X(s)). It shows,
in particular, that even for φ boundedd (e.g. with φ(x) = x ∧ b with b denoting a maximal
allowed bandwidth), the fluctuations of the asymptotic approximation of the queue content
has an infinite variance. See also (Resnick and van den Berg, 2000, Section 5).

2. Notation and preliminary results

We now introduce some notation and derive certain useful properties of the empirical
process (5) stated in several lemmas whose proofs are provided in Section 5.

We employ the usual queuing terminology: a time point t is said to belong to a busy period
if X(t) > 0; it belongs to an idle period otherwise. A cycle consists of a busy period and the
subsequent idle period.

Let {Sj , j ∈ Z} denote the successive starting times of the cycles such that · · · < S−2 <
S−1 < 0 < S0 < S1 < . . . and let Cj = Sj − Sj−1 for all j ∈ Z. Hence S0 is the starting time
of the first complete cycle starting after time 0 and Sn = S0 +

∑n
j=1Cj . For T > 0, let MT

denote the number of complete cycles initiated after time 0, and finishing before time T .

The following facts about M/G/∞ queues will be useful. The regenerative property of the
cycles and (6) can be found in Hall (1988). The tail property of C1 is proved in Section 5.

Lemma 1. Suppose that Assumption 1 holds. Then {(Cj , X(· + Sj−1)1[0,Cj)), j ≥ 1} is an
i.i.d. sequence of random pairs with values in (0,∞)×D([0,∞)), C1 has a regularly varying
tail with index α and

E[C1] = eλE[Y ]/λ ,(6)

lim
t→∞

tP(C1 > a(t)x) = eλE[Y ]x−α .(7)

Let φ be a measurable function defined on D([0, h]), satisfying appropriate integrability
conditions for the integral in (5) to be well defined (e.g. bounded). We decompose JT (φ)
using the cycles defined above. Let us denote

Zj(φ) =
∫ Sj

Sj−1

φ(Xh(s)) ds, j = 1, 2, . . .(8)

Then (Zj(φ))j≥1 is a stationary sequence, but, if h > 0, it is not an i.i.d. sequence. Neverthe-
less, it is easy to see that it is strongly mixing. Define sigma-fields Fj = σ(X(Sj+h−s), s ≥ 0)
and Gj = σ(X(Sj + t), t ≥ 0) and mixing coefficients (αk)k≥1 by

αk = 2 sup{|cov(1A,1B)|, A ∈ Fj , B ∈ Gj+k , j ≥ 1} .
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Then, for all k ≥ 2,

αk ≤ 2P(Sj+k − Sj+1 ≤ h) ≤ P(max(Cj+2, . . . , Cj+k) ≤ h) = FC(h)k−1 .(9)

where FC denotes the distribution function of C1. Since FC(h) < 1 for any h, the mixing
coefficients αk decay exponentially fast, independently of φ. This property will be a key
ingredient to the proof of our result since it implies that, in many aspects, the sequence Zj(φ)
has the same asymptotic properties as an i.i.d. sequence.

We will denote

E(w, φ) = E[φ(w +Xh(0))], w ∈ [0,∞) ,(10)

whenever the latter expectation is well defined, which is always the case if φ is bounded. It
follows from the elementary renewal theorem that that E[Zj(φ)] = E[φ(Xh(0)]/E[C1]. This
identity is stated formally in the following lemma, which also contains another result that
will be needed later.

Lemma 2. Suppose that Assumption 1 holds. Let h ≥ 0 and φ be a bounded measurable
function defined on D([0, h]). We have

(11) E [Z1(φ)] = E(0, φ)E[C1] = E[φ(Xh(0)]E[C1] .

Moreover, for any p ∈ (1, α), there exists a constant C > 0 and a positive function g depending
neither on φ nor on T such that g(x)→ 0 as x→∞ and

P

(
sup
t∈[0,T ]

|Jt(φ)− E[Jt(φ)]| > x‖φ‖∞

)
≤ CT 1−p + C T x−p + g(x) .(12)

For all ε, t > 0 let Nε,t be the number of sessions of length greater than εa(t) arriving
and ending within the first complete cycle [S0, S1). Further, we let Yε,t be the length of the
first session starting at or after S0 with length greater than εa(t) and let Γε,t and Wε,t be,
correspondingly, its starting time and the transmission rate. The following lemma shows that,
when Nε,t ≥ 1, the process {φ(Xh(s)) , s ∈ [S0, S1)} can be, in certain sense, approximated
by the step function {E(Wε,t, φ̄)1[Γε,t,Γε,t+Yε,t)(s) , s ∈ [S0, S1). (Note that by definition, if
Nε,t ≥ 1, then S0 ≤ Γε,t ≤ Γε,t + Yε,t ≤ S1).

Lemma 3. Suppose that Assumption 1 holds. Let h ≥ 0 and φ be a bounded measurable
function defined on D([0, h]). Let η > 0. We have, for all ε > 0 sufficiently small,

P

(
sup

v∈[S0,S1]

∣∣∣∣∫ v

S0

{φ(Xh(s))− E(Wε,t, φ)1[Γε,t,Γε,t+Yε,t)(s)}ds
∣∣∣∣ > ηa(t) ;Nε,t ≥ 1

)
= o(t−1) .

(13)

LetW be a closed subset of [0,∞] such that P(W ∈ W) = 1. (Note that by (3) this implies
G(W) = 1.) We introduce the following assumption.

Assumption 2. We have

(14) G (D(E(·, φ),W)) = 0 ,

where D(E(·, φ),W) denotes the set of discontinuity points of the function E(·, φ) restricted to
W ∩ [0,∞), and containing the point ∞ if ∞ ∈ W and E(w, φ) does not converge as w →∞
with w ∈ W. (The notation E(∞, φ), when used in the sequel, refers to the continuous
extension of E(w, φ), and will be used only when such an extension exists.)



THE EMPIRICAL PROCESS 5

Remark 1. If the distribution of W is supported by a closed set consisting of isolated points
in [0,∞) (which would be the case, for instance, if W was a nonnegative integer-valued
random variable), then D(E(·, φ),W) is either empty or equal to {∞}. In the latter case, if
G({∞}) = 0, then Assumption 2 is verified.

The next lemma, which may be of independent interest, states the multivariate regular
variation property of the empirical process over a cycle.

Lemma 4. Suppose that Assumption 1 holds. Let h ≥ 0 and φ1, . . . , φd be bounded measurable
functions defined on D([0, h]) satisfying Assumption 2 with G defined by (2). With E(w, φi) =
E[w + φi(Xh(0))], i = 1, . . . , d, w ≥ 0, we let

Z =
[∫ S1

S0

φ1(Xh(s)) ds, . . . ,
∫ S1

S0

φd(Xh(s)) ds
]T

.

Then Z is multivariate regularly varying with index α. More precisely, the following vague
convergence holds on [−∞,∞]d \ {0} as t→∞,

tP
(

Z
a(t)

∈ ·
)

v−→ eλE[Y ]

∫ ∞
y=0

P
(
y[E(W ∗, φ1) . . . E(W ∗, φd)]T ∈ ·

)
α y−α−1 dy ,(15)

where W ∗ is a random variable with values in [0,∞] and distribution G.

3. Main result

As observed in Resnick and van den Berg (2000), since the limit is discontinuous, the
convergence of the sequence of processes {ZT (φ, t), t ≥ 0} in Theorem 5 cannot hold in
D([0,∞)) endowed with the topology induced by Skorohod’s J1 distance. We shall prove that
the convergence holds in D([0,∞)) endowed with the topology induced by Skorohod’s M1

distance.

Theorem 5. Suppose that Assumption 1 holds. Let h ≥ 0 and φ be a bounded measurable
function on D([0, h]) satisfying Assumption 2 with G defined by (2). Then, as T → ∞, the
sequence of processes ZT (φ, ·) defined by

ZT (φ, u) =
1

a(T )

∫ Tu

0
{φ(Xh(s))− E[φ(Xh(0))]} ds , u ≥ 0 ,(16)

converges weakly in D([0, h]) endowed with the M1 topology to a totally skewed to the right
strictly α-stable Lévy motion

(
Λ(φ, u), u ≥ 0

)
satisfying

EeitΛ(φ,u) = exp
{
−u|t|αλ cαE

∣∣∣E(W ∗, φ)− E(0, φ)
∣∣∣α{1− iβsgn(t) tan(πα/2)}

}
(17)

for u ≥ 0 and t ∈ R, where cα = −Γ(1− α) cos(πα/2), W ∗ is as in Lemma 4, and

β =
E
[∣∣∣E(W ∗, φ)− E(0, φ)

∣∣∣αsgn
(
E(W ∗, φ)− E(0, φ)

)]
E
∣∣∣E(W ∗, φ)− E(0, φ)

∣∣∣α .
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Remark 2. For applications of Theorem 5 it is sometimes useful to represent the limiting Lévy
motion

(
Λ(φ, u), u ≥ 0

)
in the form

Λ(φ, u) =
∫ u

0

∫
W
{E(w, φ)− E(0, φ)}Mα(ds, dw) , u ≥ 0 ,(18)

where Mα is a totally skewed to the right α-stable random measure on (0,∞) × W with
control measure λ cαLeb×G; see Samorodnitsky and Taqqu (1994). The representation (18)
is linear in φ, and this allows, for example, handling more than one function φ at a time.

Specifically, if Assumption 1 holds, and F is a class of bounded measurable functions sat-
isfying Assumption 2, then, by linearity, Theorem 5 implies that, for any n ≥ 2 and bounded
measurable functions φ1, . . . , φn on D([0, h]) satisfying Assumption 2, the family of Rn-valued
processes (ZT (φ1, ·), . . . , ZT (φn, ·)) converges weakly to the process (Λ(φ1, ·), . . . , Λ(φn, ·))
in D([0,∞))n endowed with the M1 topology, where the limiting process is understood as to
be defined by (18). Clearly, this limiting process is an Rn-valued α-stable Lévy motion.

For another application of (18), we can write the one-dimensional weak convergence pre-
scribed by Theorem 5 at u = 1 in the form

ZT (φ, 1)⇒ Λ1(φ) :=
∫
W
{E(w, φ)− E(0, φ)} M̃α(dw) ,(19)

where this time M̃α is a totally skewed to the right α-stable random measure on W with
control measure λ cαG. Again, the representation of the limit in the right hand side of (19)
is linear in φ, allowing us to handle more than one function φ at a time.

4. An application: the empirical process

Suppose we want to estimate the distribution function K of X(0). For this purpose we
consider the family of empirical processes

ET (x) = T−1

∫ T

0
1{X(s)≤x} ds, x > 0 .

Let D denote the set of discontinuity points of the distribution function K restricted to
W ∩ [0,∞). The following is an immediate corollary of Theorem 5 and (19).

Corollary 6. Let X be the collection of x > 0 such that G(x−D) = 0. Then(
T a(T )−1

(
ET (x)−K(x)

)
, x ∈ X

)
⇒
(
D(x), x ∈ X

)
in the sense of convergence of the finite-dimensional distributions, where

D(x) =
∫
W
{K(x− w)−K(x)}M̃α(dw), x > 0 .

Remark 3. Note that the set D is at most countable, and the set of atoms of G is at most
countable as well. We immediately conclude that the set X misses at most countably many
x > 0.

Further, if the distribution of W is supported by a closed set consisting of isolated point
in [0,∞), we have D = ∅ (see Remark 1), and so X = (0,∞),
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Finally, X(0) is an infinitely divisible random variable with Lévy measure µ satisfying

µ
(
(a,∞)

)
= λE

(
Y 1(W > a)

)
, a > 0 .

Therefore, if W does not have positive atoms, then the distribution function K has a single
atom, at the origin, implying that D = {0} and X misses some of the atoms of G, specifically
those atoms that are not isolated points of W.

Observe that Corollary 6 shows that “the usual”
√
T -rate of convergence of an empirical

process does not hold in the present situation, since the actual rate of convergence is Ta(T )−1,
which is regularly varying with index 1− α−1 ∈ (0, 1/2). This should not be surprising since
presence of long range dependence has been known to yield slower rates of convergence of
the empirical process. However we note that in our case the empirical process behaves quite
differently from the empirical process for other long memory processes, see e.g. Taqqu (1979);
Surgailis (2004).

5. Proofs

Proof of Lemma 1. By the definition of a and regular variation of the tail of F ,

F̄ (a(t)) = P(Y > a(t)) ∼ t−1 as t→∞;

recall, further, that a is regularly varying at infinity with index 1/α. We will use the notation
Nε,t, Yε,t, Γε,t and Wε,t introduced just before Lemma 3 above. Applying Lemma 1 in Resnick
and Samorodnitsky (1999) and the regular variation of F̄ , we get

lim
t→∞

tP(Nε,t ≥ 1) = lim
t→∞

P(Nε,t ≥ 1)
F̄ (εa(t))

F̄ (εa(t))
F̄ (a(t)

= eλE[Y ]ε−α .(20)

Imagine, for a moment, that all sessions of the length exceeding εa(t) are discarded upon
arrival, and do not contribute to a busy period. Let Bε,t denote the length of the first busy
period starting at or after time S0 and generated by the remaining sessions, those of length
not exceeding εa(t). Then by (Resnick and Samorodnitsky, 1999, Proposition 1), there exists
a constant D independent of ε such that

(21) P (Bε,t > εDa(t)) = o(t−1) .

We immediately conclude that

lim
t→∞

tP(C1 > εDa(t) ;Nε,t = 0) = 0(22)

(keeping in mind that an idle period has an exponential distribution).

We consider now the case Nε,t ≥ 1, in which case we use the decomposition

(23) C1 = {Γε,t − S0}+ Yε,t + {S1 − (Γε,t + Yε,t)} .
By the definition of Bε,t, we have, on {Nε,t ≥ 1},

Γε,t − S0 ≤ Bε,t .
Hence, by (21), for any η > 0, choosing ε > 0 sufficiently small, we have

(24) P (Γε,t − S0 > a(t)η;Nε,t ≥ 1) = o(t−1) as t→∞ .

Further, denote by Γ̃ε,t the completion time of the last session with length greater than εa(t)
before time S1. Notice that the infinite source Poisson process (1) is time reversible, in the
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sense of switching the direction of time, declaring Γ` + Y` to be the arrival time of session
number ` and Γ` to be its completion time. Therefore, by time inversion, the difference
S1− Γ̃ε,t has the same exponential distribution with the mean (λF̄ (εa(t)))−1 as Γε,t−S0 + I0,
where I0 denotes the idle period preceding S0. Further, on the event {Nε,t = 1}, the random
variables Γε,t + Yε,t and Γ̃ε,t coincide. We conclude that, for all η, ε > 0,

P (S1 − (Γε,t + Yε,t)) > a(t)η ;Nε,t = 1) = P
(
S1 − Γ̃ε,t > a(t)η;Nε,t = 1

)(25)

≤ P (Γε,t − S0 + I0 > a(t)η) = o(t−1) as t→∞ .(26)

Next, by Lemma 2 in Resnick and Samorodnitsky (1999), we also have

P(Nε,t ≥ 2) = o(t−1) as t→∞ .(27)

Applying (22), (23), (24), (25) and (27), we get, for any x > η > 0, choosing ε small enough,

(28) lim inf
t→∞

tP(Yε,t > a(n)x ; Nε,t ≥ 1) ≤ lim inf
t→∞

tP(C1 > a(t)x)

≤ lim sup
t→∞

tP(C1 > a(t)x) ≤ lim sup
t→∞

tP(Yε,t > a(n)(x− η) ; Nε,t ≥ 1) .

Note that the distribution of Yε,t is the conditional distribution of Y given {Y > εa(t)}. and
that the event {Nε,t ≥ 1} is independent of Yε,t, so that (20) yields, for any x > 0,

tP(Yε,t > a(n)x ; Nε,t ≥ 1) ∼ eλE[Y ]ε−αP(Y > a(t)x | Y > εa(t))→ eλE[Y ]x−α

as t→∞. Applying this statement to (28) and letting η → 0 gives (7). �

Proof of Lemma 2. Observe that the process {X(t), t ∈ R} is a regenerative process (it re-
generates at the beginning of each busy period), hence it is ergodic. Therefore, T−1JT (φ)→
E(0, φ) a.s.; see e.g. Resnick (1992). On the other hand, as seen earlier, the sequence

(
Zj(φ)

)
is strongly mixing, hence also ergodic, and so n−1

∑n
j=1 Zj(φ) converges almost surely to

E[Z1(φ)]. Since MT /T converges almost surely to 1/E[C1], we also obtain

1
T

MT∑
j=1

Zj(φ)→ E[Z1(φ)]/E[C1] , a.s.,

and (11) follows.

Denote φ̄ = φ − E(0, φ). Observe that JT (φ̄) is centered and ‖φ̄‖∞ ≤ ‖φ‖∞ + |E(0, φ)| ≤
2‖φ‖∞. We have

(29) sup
t∈[0,S0]

∣∣Jt(φ̄)
∣∣ ≤ S0‖φ̄‖∞ .

For t ≥ S0 we use the decomposition

Jt(φ̄) = JS0(φ̄) +
Mt∑
j=1

Zj(φ̄) +
∫ t

SMt

φ̄(Xh(s))ds .

Now, using ‖φ̄‖∞ ≤ 2‖φ‖∞, (29) and that, for all k = 1, . . . ,MT + 1,

sup
u∈[Sk−1,Sk]

∣∣∣∣∣
∫ u

Sk−1

φ̄(Xh(s))ds

∣∣∣∣∣ ≤ ‖φ̄‖∞Ck ,
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we get, for any T > 0,

P

(
sup
t∈[0,T ]

∣∣Jt(φ̄)
∣∣ > 5x‖φ‖∞

)
≤ P(S0 > x) + P

 sup
t∈[0,T ]

∣∣∣∣∣∣
Mt∑
j=1

Zj(φ̄)

∣∣∣∣∣∣ > x‖φ‖∞


+ P

(
max

k=1,...,MT+1
Ck > x

)
≤ P(S0 > x) + 2P(MT > 2T/E[C1])

+ P

 max
1≤k≤2T/E[C1]

∣∣∣∣∣∣
k∑
j=1

Zj(φ̄)

∣∣∣∣∣∣ > x‖φ‖∞


+ (2T/E[C1] + 1)P (C1 > x) .

Applying (11), we see that Zj(φ̄) is centered. Moreover |Zj(φ̄)| ≤ 2Cj‖φ‖∞. Let p ∈ (1, α).
Applying the mixing property (9), Lemma 1 and Rio (2000, Chapitre 3, Exercice 1), there
exists a constant c which depends only on the distribution of C1 and p such that

E

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

Zj(φ̄)

∣∣∣∣∣∣
p ≤ c‖φ‖p∞n .(30)

Finally we bound P(MT > 2T/E[C1]) by noting as usual that MT > n if and only if Sn+1 ≤ T .
Thus, denoting by m the smallest integer larger than or equal to 2T/E[C1], we have, for some
constant c only depending on the distribution of C1 and p,

P(MT > 2T/E[C1]) ≤ P(Sm ≤ T ) ≤ P(Sm −mE[C1] ≤ −T ) ≤ cT 1−p ,(31)

where the last inequality follows from the Markov and Burkhölder inequalities. Gathering
the three previous displays and using P (C1 > x) ≤ E[Cp1 ]x−p for any p < α, we obtain (12)
with g(x) = P (S0 > x). �

Proof of Lemma 3. We will bound the function

∆(v) =
∫ v

S0

{φ(Xh(s))− E(Wε,t, φ)1[Γε,t,Γε,t+Yε,t)(s)} ds

on the event {Nε,t ≥ 1} successively for v ∈ [S0,Γε,t], v ∈ [Γε,t,Γε,t+Yε,t] and v ∈ [Γε,t+Yε,t, S1].

Step 1 For v ∈ [S0,Γε,t] we have

|∆(v)| =
∣∣∣∣∫ v

S0

φ(Xh(s))ds
∣∣∣∣ ≤ (Γε,t − S0)‖φ‖∞ .

Hence, using (24), for any η > 0, choosing ε > 0 sufficiently small, we have

(32) P

(
sup

v∈[S0,Γε,t]
|∆(v)| > a(t)η;Nε,t ≥ 1

)
= o(t−1) .
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Step 2 For v ∈ [Γε,t,Γε,t + Yε,t], we write

|∆(v)| ≤ |∆(Γε,t)|+ |∆(v)−∆(Γε,t)|

≤ sup
v∈[S0,Γε,t]

|∆(v)|+ sup
y∈[0,Yε,t]

∣∣∣∣∫ y

0
{φ(Xh(Γε,t + s))− E(Wε,t, φ)} ds

∣∣∣∣ .(33)

For s > 0, X(Γε,t + s) can be expressed as

X(Γε,t + s) = Wε,t + X̌(s) +R(s) ,

where R(s) is the sum of all transmission rates of the sessions that started before time Γε,t
and are still active at time s, and {X̌(s), s ≥ 0} is defined by

X̌(s) =
∑
`∈Z

W`1{Γε,t<Γ`≤s+Γε,t<Γ`+Y`} .

Since each session that arrives after time S0 but before time Γε,t has a length not exceeding
εa(t), we conclude that R(s) = 0 for s > εa(t). Using the notation X̌h(s) = {X̌(s + v) , 0 ≤
v ≤ h}, we, therefore, obtain

(34) sup
y∈[0,Yε,t]

∣∣∣∣∫ y

0
{φ(Xh(Γε,t + s))− φ(Wε,t + X̌h(s))}ds

∣∣∣∣ ≤ 2‖φ‖∞εa(t) .

Observe that the process X̌ is independent of (Yε,t,Wε,t,1Nε,t)≥1). We preserve this inde-
pendence while transforming X̌ into a stationary process, with the same law as the original
process X in (1) by defining

X̂(s) =
∑
`≤0

W ′` 1{Γ′`≤s<Γ′`+Y
′
` } + X̌(s) , s ∈ R ,

where {(Γ′`, Y ′` ,W ′`), ` ∈ Z} is an independent copy of {(Γ`, Y`,W`), ` ∈ Z}. Clearly,

sup
y∈[0,Yε,t]

∣∣∣∣∫ y

0
{φ(Wε,t + X̌h(s))− φ(Wε,t + X̂h(s))} ds

∣∣∣∣ ≤ 2‖φ‖∞ sup
`≤0

(Γ′` + Y ′` ) ,

where X̂h(s) = {X̂(s+ v) , 0 ≤ v ≤ h}. The random variable in the right hand side above is
finite with probability 1 and independent of Nε,t. Therefore, it follows from (20) that for any
u > 0,

P

(
sup
`≤0

(Γ′` + Y ′` ) > a(t)u ; Nε,t ≥ 1

)
= o(t−1) .

The last two displays and (34) give that, for any η > 0 and 0 < ε < η/(2‖φ‖∞),

(35) P

(
sup

y∈[0,Yε,t]

∣∣∣∣∫ y

0
{φ(Xh(Γε,t + s))− φ(Wε,t + X̂h(s))} ds

∣∣∣∣ > a(t)η;Nε,t ≥ 1

)
= o(t−1) .

The event {Nε,t ≥ 1} is, clearly, independent of (Yε,t,Wε,t). Furthermore, the latter pair
has the conditional distribution of (Y,W ) given that {Y > εa(t)}. Since X̂ has the same law
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as X, we get for any x > 0,

(36) P

(
sup

y∈[0,Yε,t]

∣∣∣∣∫ y

0

{
φ(Wε,t + X̂h(s))− E(Wε,t, φ)

}
ds
∣∣∣∣ > x ; Nε,t ≥ 1

)

= P

(
sup

y∈[0,Y ]

∣∣∣∣∫ y

0
{φ(W +Xh(s))− E(W,φ)} ds

∣∣∣∣ > x | Y > εa(t)

)
× P(Nε,t ≥ 1) ,

where the pair (Y,W ) in the right hand side is taken to be independent of the process X.

Recall that E(w, φ) = E[φ(w + Xh(0))], that for any w ≥ 0, ‖φ(w + ·)‖∞ ≤ ‖φ‖∞ and,
for any y ≥ 0, E[Jy(φ(w + ·))] = yE(w, φ). It follows from these observations and (12) in
Lemma 2 that, for any x > 0,

sup
w≥0

P

(
sup
y∈[0,u]

∣∣∣∣∫ y

0
{φ(w +Xh(s))− E(w, φ)} ds

∣∣∣∣ > x‖φ‖∞

)
≤ C u1−p + C ux−p + g(x) ,

for p ∈ (1, α), some constant C > 0 and g(x) → 0 as x → ∞. Integrating in (w, u) with
respect to the distribution of (W,Y ) in (36), this bound yields, for any u > 0 and A > 0,

P

(
sup

y∈[0,Y ]

∣∣∣∣∫ y

0
{φ(W +Xh(s))− E(W,φ)}ds

∣∣∣∣ > uA | Y > A

)
≤ C E[Y 1−p | Y > A] + C ‖φ‖p∞ (uA)−pE[Y | Y > A] + g(uA/‖φ‖∞) .

As A → ∞, we have both E[Y 1−p | Y > A] → 0 and E[Y | Y > A] → 0 since Y has a
regularly varying tail with α > 1. Since p > 1, we see that the 3 terms in the previous bound
converge to 0 as A → ∞. This, together with (36) and (20), yields that, for any ε > 0 and
η > 0,

P

(
sup

y∈[0,Yε,t]

∣∣∣∣∫ y

0

{
φ(Wε,t + X̂h(s))− E(Wε,t, φ)

}
ds
∣∣∣∣ > a(t)η ; Nε,t ≥ 1

)
= o(t−1) .

Finally, gathering the last display, (35), (33) and (32), we obtain

(37) P

(
sup

v∈[Γε,t,Γε,t+Yε,t]
|∆(v)| > a(t)η;Nε,t ≥ 1

)
= o(t−1) .

Step 3 If v ∈ [Γε,t + Yε,t, S1], we have on {Nε,t ≥ 1},

|∆(v)| ≤ |∆(Γε,t + Yε,t)|+

∣∣∣∣∣
∫ v

Γε,t+Yε,t

φ(Xh(s))ds

∣∣∣∣∣
≤ sup

v∈[Γε,t,Γε,t+Yε,t]
|∆(v)|+ {S1 − (Γε,t + Yε,t)} ‖φ‖∞ .(38)

Using (37) (38), (25) and (27), for any η > 0, we have

(39) P

(
sup

v∈[Γε,t+Yε,t,S1]
|∆(v)| > a(t)η;Nε,t ≥ 1

)
= o(t−1) .

�
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Proof of Lemma 4. Let f a Lipschitz function with compact support in [−∞,∞]d \ {0}, and
let L be its Lipschitz constant. Let c > 0 be small enough such that the support of f does
not intersect [−2c, 2c]d.

Using the fact that Z1(φi)| ≤ ‖φi‖∞C1 for each i = 1, . . . , d, the bound (22) implies that,
as t→∞,

P (|Z1(φi)| > ca(t) for some i = 1, . . . , d ; Nε,t = 0) = o(t−1)
as long as ε > 0 is small enough relatively to c. We will show that

(40) lim
ε→0

lim sup
t→∞

tE [f(Z/a(t)) ; Nε,t ≥ 1] = lim
ε→0

lim inf
t→∞

tE [f(Z/a(t)) ; Nε,t ≥ 1]

= eλE[Y ]

∫ ∞
0

E
[
f(y[E(W ∗, φ1) . . . E(W ∗, φ1)]T )

]
α y−α−1 dy ;

this will prove the required vague convergence in (15).

Write

(41) tE [f(Z/a(t)) ; Nε,t ≥ 1] = tE [f(Φ(Yε,t,Wε,t)/a(t)) ; Nε,t ≥ 1]

+ tE [{f(Z/a(t))− f(Φ(Yε,t,Wε,t)/a(t))} ; Nε,t ≥ 1] ,

where Φ(y, w) = y
[
E(w, φ1), . . . , E(w, φd)

]T . Choose 0 < η < c and observe that, on the the
event ∩i{|Z1(φi)− E(Wε,t, φi)Yε,t| ≤ ηa(t)},

|f(Z/a(t))− f(Φ(Yε,t,Wε,t)/a(t))| ≤ Lη 1
(
|E(Wε,t, φi)Yε,t| > ηa(t) for some i = 1, . . . , d

)
.

Letting g be a continuous function on [−∞,∞]d such that g(x) = 1 for all x /∈ [−c, c]d and
g(x) = 0 in a neighborhood of the origin, we obtain

tE [|f(Z/a(t))− f(Φ(Yε,t,Wε,t)/a(t))| ; Nε,t ≥ 1] ≤ Lη tE [g(Φ(Yε,t,Wε,t)/a(t)) ; Nε,t ≥ 1] +

2‖f‖∞
d∑
i=1

tP (|Z1(φi)− E(Wε,t, φi)Yε,t| > ηa(t) ; Nε,t ≥ 1) .

Recall that by Lemma 3,

lim
t→∞

tP (|Z1(φi)− E(Wε,t, φi)Yε,t| > ηa(t) ; Nε,t ≥ 1) = 0

for all ε > 0 small enough (relative to η). Therefore, for each η > 0 and ε > 0 small enough,

lim sup
t→∞

|tE [f(Z/a(t)) ; Nε,t ≥ 1]− tE [f(Φ(Yε,t,Wε,t)/a(t)) ; Nε,t ≥ 1]|

≤ Lη lim sup
t→∞

tE [g(Φ(Yε,t,Wε,t)/a(t)) ; Nε,t ≥ 1] .

We will prove below that for any ε > 0,

tP
(

Φ(Yε,t,Wε,t)
a(t)

∈ · ; Nε,t ≥ 1
)

v−→ eλE[Y ]
(
να;ε ×G

)
◦Φ−1(·) ,(42)

where the measure να;ε on (0,∞) is the restriction of the measure να in (2) to (ε,∞), i.e.
να;ε(x,∞) = min

(
x−α, ε−α

)
, x > 0. Assuming this has been proved, it will follow that

(43) lim sup
t→∞

|tE [{f(Z/a(t))− f(Φ(Yε,t,Wε,t)/a(t))} ; Nε,t ≥ 1]| ≤ CLη
∫
g ◦Φ d(να ×G)
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for some finite positive constant C independent of η and ε. Note that the last integral is
finite. Similarly, (42) will imply that
(44)

lim
t→∞

tE [f(Φ(Yε,t,Wε,t)/a(t)) ; Nε,t ≥ 1] = eλE[Y ]

∫
f◦Φ d(να;ε×G) = eλE[Y ]

∫
f◦Φ d(να×G)

for all 0 < ε < c/max ‖φ‖∞. We combine (41), (43) and (44) by keeping η fixed and letting
ε→ 0. This shows that

−C Lη
∫
g ◦Φ d(να ×G) + eλE[Y ]

∫
f ◦Φ d(να ×G) ≤ lim

ε→0
lim inf
t→∞

tE [f(Z/a(t)) ; Nε,t ≥ 1]

≤ lim
ε→0

lim sup
t→∞

tE [f(Z/a(t)) ; Nε,t ≥ 1] ≤ C Lη
∫
g ◦Φ d(να ×G) + eλE[Y ]

∫
f ◦Φ d(να ×G) ,

and (40) follows by letting η → 0.

It remains to prove (42). holds. Since the event {Nε,t ≥ 1} is independent of (Yε,t,Wε,t),
whose distribution is the conditional distribution of (Y,W ) given that {Y > εa(t)}, we have,
as t→∞,

tP (Φ(Yε,t/a(t),Wε,t) ∈ · ; Nε,t ≥ 1) = tP (Nε,t ≥ 1)× P (Φ(Y/a(t),W ) ∈ · | Y > εa(t))

∼ eλE[Y ]ε−α P (Φ(Y/a(t),W ) ∈ · | Y > εa(t)) ,

by (20). Further, by Assumption 1 (iii),

P ((Y/a(t),W ) ∈ · | Y > εa(t)) v−→ εα να;ε ×G .

We extend Φ to (0,∞)× [0,∞] by

Φ(y,∞) = lim
w→∞

Φ(y, w) ,

when the limit exists, or by defining the value at infinity to be equal to 0 otherwise. Then
the set of discontinuities of Φ in (0,∞]×W is included in

(0,∞)×
⋃

i=1,...,d

D(E(·, φi),W) ,

which has να;ε ×G-measure zero by (2), since each function φi satisfies Assumption 2. Now,
since Φ(y, w)/a(t) = Φ(y/a(t), w), (42) follows from the continuous mapping theorem. �

Proof of Theorem 5. In order to prove convergence in D([0,∞)) it is to prove convergence in
D([0, a]) for any a > 0. For notational simplicity we present the argument for a = 1.

For any bounded interval [a, b] and real-valued functions x1 and x2 in D([a, b]) we denote
by dM1(x1, x2, [a, b]) the M1 distance between x1 and x2 on [a, b], and we write dM1(x1, x2)
if [a, b] = [0, 1]. We refer the reader to Whitt (2002) for details on the M1 and J1 Skorohod
topologies we use below.
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To simplify the notation we assume that E[φ(Xh(0))] = 0, i.e. that φ = φ̄. Define the
following processes:

ST (u) =
1

a(T )

[Tu]∑
j=1

Zj(φ) , ξT (u) =
1

a(T )
(MTu − Tu/E[C1]) ,

S̃T (u) = ST (MTu/T ) =
1

a(T )

MTu∑
j=1

Zj(φ) ,

R0,T =
1

a(T )

∫ S0

0
φ(Xh(s)) ds , RT (u) =

1
a(T )

∫ Tu

SMTu

φ(Xh(s)) ds

(recall the convention that, if u < S0, then Mt = 0 and, hence, S̃T (u) = 0). Then

ZT (φ, u) = R0,T + S̃T (u) +RT (u) .

We proceed through a sequence of steps. Specifically, we will prove that, as T →∞,

(i) ST converges weakly in D([0,∞)) endowed with the J1 topology to the Lévy α-stable
process (E[C1])1/αΛ(φ, ·), where Λ is defined by (17);

(ii) ξT converges weakly in D([0,∞)) endowed with the M1 topology to an α-stable Lévy
process;

(iii) S̃T converges weakly in D([0,∞)) endowed with the J1 topology to the Lévy α-stable
process Λ(φ, ·);

(iv) dM1(S̃T ,ZT )→ 0 in probability.

The statement of the theorem will follow from statements (iii) and (iv), by appealing to
Theorem 12.7.3 in Whitt (2002). It is interesting that the statement (iv) above holds even
though RT cannot converge to zero in either of the Skorohod topologies, since otherwise it
would, as a family of continuous processes, converge to zero uniformly, and this would imply
that ZT converges weakly also in the J1 topology, which is not possible since its limit is
discontinuous.

We now prove (i). In the case h = 0, the random variables Zj(φ) are centered and
their tail behavior is given by Lemma 4. The weak convergence in the space D endowed
with the J1 topology of the normalized partial sum process ST to the α-stable Lévy process
(E[C1])1/αΛ(φ, ·) is well know in this case; see e.g. Resnick (2007, Corollary 7.1). We reduce
the case h > 0 to the previous situation as follows. For j ≥ 1, we write Zj(φ) = Z1,j + Z2,j

with

Z1,j =
∫ (Sj−h)∨Sj−1

Sj−1

φ(Xh(s)) ds− E

[∫ (Sj−h)∨Sj−1

Sj−1

φ(Xh(s)) ds

]
.

Observe that the sequence {Z1,j} is i.i.d. and centered, while the sequence {Z2,j} is centered
and exponentially α-mixing by (9)). Furthermore, |Z2,j | ≤ 2‖φ‖∞h. Therefore, by the
maximal inequality for mixing sequences Rio (2000, Theorem 3.1), we obtain

E

 max
1≤k≤n

∣∣∣∣∣∣ 1
a(n)

k∑
j=1

Z2,j

∣∣∣∣∣∣
2 = O(na−2

n ) = o(1) .
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This implies that the family of processes a(n)−1
∑[n·]

j=1 Z2,j converges weakly to 0 uniformly on
compact sets. Since the random variables Z2,j are uniformly bounded, Z1,j has the same tail
as Zj . Thus, as in the case h = 0, the family of processes a(n)−1

∑[n·]
j=1 Z1,j converges weakly

in the space D endowed with the J1 topology to the α-stable Lévy process (E[C1])1/αΛ(φ, ·).
This proves (i).

By Lemma 1, Mt is the counting process associated with a renewal process whose interar-
rival times Cj are in the domain of attraction of a stable law with index α. More specifically,
by Lemmas 1 and 4, the tails of C1 and Z1(φ) are equivalent. Now (ii) follows from (Whitt,
2002, Theorem 4.5.3 and Theorem 6.3.1)).

We now prove (iii) by the J1-continuity of composition argument. Observe that S̃T =
ST ◦ [MT ·/T ]. Moreover, MTu/T = a(T )ξT (u)/T +u/E[C1] for all u ≥ 0. Since the supremum
functional is continuous in the M1 topology and a(T )/T → 0, we can use (ii) to see that
MT ·/T converges in the uniform topology on compact intervals to the linear function ·/E[C1]
in probability. By (i) and Theorem 4.4 in Billingsley (1968) we conclude that (ST ,MT ·/T )
converges weakly to

(
(E[C1])1/αΛ(φ, ·), ·/E[C1]

)
in the product space D([0,∞))×D([0,∞)),

where each of the components is endowed with the J1 topology on compact intervals. Since
the linear function is continuous and strictly increasing, we can use Theorem 13.2.2 in Whitt
(2002)) to conclude that S̃T converges weakly to

(
E[C1])1/αΛ(φ, ·/E[C1]

)
inD([0,∞)) endowed

with the J1 topology. By the self-similarity of centered Lévy stable motions, the latter process
has the same law as Λ(φ, ·). This gives (iii).

It remains to prove (iv). Define the process Z̃T by

Z̃T (t) = ZT (t)−ZT (S0/T ) = a(T )−1

∫ Tt

S0

φ(Xh(s)) ds .

Then

‖Z̃T −ZT ‖∞ =
∣∣∣∣ 1
a(T )

∫ S0

0
φ(Xh(s))

∣∣∣∣ ≤ ‖φ‖∞ S0

a(T )
= oP (1) .

Since S̃T (t) = 0 for all t ∈ [0, S0/T ], we also have

sup
t∈[0,S0/T ]

∣∣∣Z̃T (t)− S̃T (t)
∣∣∣ ≤ ‖φ‖∞ S0

a(T )
.

Next, we partition the random interval [0, SMT+1/T ] ⊇ [0, 1] into the adjacent intervals

[0, S0/T ] ∪ [S0/T, S1/T ] ∪ · · · ∪ [Si−1/T, Si/T ] ∪ · · · ∪ [SMT
/T, SMT+1/T ] .

Recall the following property of the M1 metric: of a < b < c and x1, x2 are functions in
D
(
[a, c]

)
, then

dM1

(
x1, x2, [a, c]

)
≤ max

[
dM1

(
x1, x2, [a, b]

)
, dM1

(
x1, x2, [b, c]

)]
.

We conclude that

dM1(S̃T ,ZT ) ≤ dM1(ZT , Z̃T ) + dM1(Z̃T , S̃T )

≤ ‖φ‖∞ S0

a(T )
+ max
i=1,...,MT

dM1(Z̃T , S̃T , [Si−1/T, Si/T ])

+ dM1(Z̃T , S̃T , [SMT
/T, 1]) .
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Notice that the last term in the right hand side is bounded by ‖φ‖∞CMT+1/a(T ), and the
finite mean of C1 implies that the CMT+1 converges weakly as T →∞ and, in particular, the
family of the laws of (CMT+1) is tight. Observe, further, that Z̃T continuously interpolates
S̃T at the points t = Si/T , i = 0, 1, 2, . . . . Hence, by (31), P(T > S0) → 1 and stationarity
we see that for any η > 0,

P
(
dM1(S̃T ,ZT ) > η

)
≤ 2T

E[C1]
P
(
dM1(Z̃T , S̃T , [S0/T, S1/T ]) > η/2

)
+ o(1) .

Henceforth we now only consider the process Xh(t) on [S0, S1]. We use the notation intro-
duced in Section 2. First of all,

dM1(Z̃T , S̃T , [S0/T, S1/T ]) ≤ sup
u∈[S0/T,S1/T ]

∣∣Z̃T (u)− S̃T (u)
∣∣

≤ a(T )−1 sup
v∈[S0,S1]

∫ v

S0

φ(Xh(s)) ds ≤ a(T )−1C1‖φ‖∞ .

Combining this with (22) we see that for any η > 0,

P
(
dM1(Z̃T , S̃T , [S0/T, S1/T ]) > η;Nε,T = 0

)
= o(T−1) ,

as long as ε > 0 is chosen to be small enough.

Next we consider the event {Nε,T ≥ 1}. Define

ŽT (t) = a(T )−1

∫ t T

S0

E(Wε,T , φ)1[Γε,T ,Γε,T+Yε,T )(s) ds .

Observe that ŽT is monotone on [S0/T, S1/T ] and piecewise linear and S̃T is constant on
[S0/T, S1/T ) with a step at the point S1/T . Using these properties it is not difficult to check
that

dM1(ŽT , S̃T , [S0/T, S1/T ]) ≤ C1

T
∨
∣∣∣S̃T (S1/T )− ŽT (S1/T )

∣∣∣ .
On the other hand, bounding by the uniform distance gives us

dM1(Z̃T , ŽT , [S0/T, S1/T ]) ≤ sup
t∈[S0/T,S1/T ]

|Z̃T (t)− ŽT (t)| .

Since, by Lemma 1, P(C1 > ηT ) = o(T−1), and S̃T (S1/T ) = Z̃T (S1/T ), the proof of the
theorem will be complete once we show that for any η > 0 and ε > 0,

P

(
sup

t∈[S0/T,S1/T ]
|Z̃T (t)− ŽT (t)| > η;Nε,T ≥ 1

)
= o(T−1) .

However,

sup
t∈[S0/T,S1/T ]

|Z̃T (t)−ŽT (t)| = 1
a(T )

sup
v∈[S0,S1]

∣∣∣∣∫ v

S0

{φ(Xh(s))− E(Wε,T , φ)1[Γε,T ,Γε,T+Yε,T )(s)}ds
∣∣∣∣ ,

and our claim follows from Lemma 3. �
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