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Materials with visually important heterogeneous subsurface scattering, in-
cluding marble, skin, leaves, and minerals, are common in the real world.
However, general, accurate and efficient rendering of these materials is an
open problem. In this short report, we describe the heterogeneous diffusion
equation (DE) formulation that solves this problem. This formulation has
two key results: an accurate model of the reduced intensity (RI) source, the
diffusive source boundary condition (DSBC), and its associated render query
function. Using there results, we can render subsurface scattering nearly
as accurately as Monte Carlo (MC) algorithms. At the end of this report,
we demonstrate this accuracy by comparing our new formulation to other
methods used in previous work.

1. INTRODUCTION

The subsurface scattering of light creates the distinctive appearance
of many ubiquitous materials, such as marble, skin, minerals and
leaves. For many of these materials, the diffusion equation (DE)
accurately approximates their scattering. However, to achieve this
accuracy, the diffusive rendering problem must be carefully derived.
This short technical report presents this derivation and demonstrates
that the resulting formulation produces accurate results.

Our derivation has two key results: the diffusive source boundary
condition (DSBC) and the render query function.

KEY RESULT #1: DIFFUSIVE SOURCE BOUNDARY CONDITION

The derivation of the DE makes three related approximations: the dif-
fusion approximation (DA) that simplifies scattering in the interior
of the scattering volume; a boundary condition (BC) that approxi-
mates the solution’s boundary behavior; and a reduced intensity (RI)
source model that approximates the radiance entering the scattering
medium. The BC and RI source model strongly affect the diffusive
solution on the boundary of the scattering domain. Because only the
boundary is visible in an image, these approximations effectively
determine the quality of the final rendering algorithm. Our first key
result, the DSBC (see Equation (11)), ensures that these approxi-
mations are as accurate as possible by combining an accurate BC
approximation with an improved RI source model.

KEY RESULT #2: RENDER QUERY FUNCTION

Though the DE and the DSBC fully define a diffusive scattering
approximation, rendering with this approximation requires convert-
ing their solution into exitant radiance. However, because of the
approximations of the DE and DSBC, this render query function
must be carefully constructed to ensure accuracy. Our second key
result, the render query function (see Equation (14)) provides an
accurate conversion.

The rest of this report has three sections. First Sections 2 and
3 derive our two key results and then Section 4 provides a short
analysis that demonstrates the accuracy of this formulation.

2. DIFFUSIVE SOURCE BOUNDARY CONDITION

The derivation of the diffusive source boundary condition (DSBC)
has three parts. First, we start with an accurate Fresnel boundary
condition discussed in previous work [Ishimaru 1978]. Next we
augment this condition with a new term that models a diffusive

boundary flux representing the reduced intensity (RI) source. Finally
we apply the diffusion approximation (DA) to convert the resulting
radiance constraint into a fluence constraint compatible with the
diffusion equation (DE).

2.1 Fresnel Boundary Condition

The most accurate diffusive boundary condition (BC) models the
behavior of the Fresnel boundary interface. At every boundary point
x, the basic condition forces the net inward flux of the solution
Γin
d (x) to equal the total flux of internal radiance reflected back

inward by the Fresnel interface Γref
d (x).

Γin
d (x) = Γref

d (x) (1)

Using Figures 1(a) and 1(b) as guides, these fluxes can be computed
by integrating over the small blue arrows in each figure1.

Γin
d (x) =

∫
(~n·~ω)<0

Ld(x, ~ω)(−~n · ~ω) d~ω (2)

Γref
d (x) = Fdr(η)

∫
(~n·~ω)<0

Ld(x,−~ω)(−~n · ~ω) d~ω (3)

In Equation (3), we approximate total reflected internal flux by
scaling the total exitant internal flux by Fdr(η), the average Fresnel
reflection coefficient.

2.1.1 Reduced Intensity Flux. Next, the RI source is added by
augmenting the basic condition with a third term.

Γin
d (x) = Γref

d (x) + Γs(x) (4)

The new term Γs(x) approximates the RI source from the integrated
surface radiance refracted into the material at x.

Γs(x) = e
−σa(x)
σs(x)

∫
(~n·~ω)>0

Ft(η, ~ω)L(x,−~ω)(~n · ~ω) d~ω (5)

In Equation (5), the exponential term approximates the absorption
that occurred as refracted radiance traveled in the medium before
scattering and becoming part of the RI source.

2.1.2 Substitution of the Diffusion Approximation. Next, using
an identity from previous work [Ishimaru 1978],∫
(~s·~ω)>0

Ld(x, ~ω)(~s · ~ω) d~ω = 1
4

[
φ(x)− 2κd(x)(~s · ~∇)φ(x)

]
(6)

we can express Equations (2) and (3) in terms of fluence by
substituting the

1When creating these expressions, one must be careful to use a consistent
definition of ~ω and ~n to ensure that resulting boundary condition has the
correct signs. To be consistent throughout this section, we have chosen to
always: define ~n as pointing out of the material and define ~ω as pointing
away from x.
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Fig. 1: Diagrams illustrating the three components of the diffusive source
boundary condition (DSBC) (Equation (11)). The condition forces Γin

d (x),
the internal inward flux at the boundary, to be equal to the sum of Γref

d (x),
the internal flux reflected at the boundary, and Γs(x) the exterior light
refracted into the material.

DIFFUSION APPROXIMATION

Ld(x, ~ω) =
1

4π
φ(x) +

3

4π
~E(x) · ~ω (7)

where

φ(x) =

∫
4π

L(x, ~ω) d~ω and ~E(x) =

∫
4π

L(x, ~ω) · ~ω d~ω

for Ld(x, ~ω) and simplifying.

Γin
d (x) = 1

4

[
φ(x) + 2κd(x)(~n · ~∇)φ(x)

]
(8)

Γref
d (x) = 1

4
Fdr(η)

[
φ(x)− 2κd(x)(~n · ~∇)φ(x)

]
(9)

Finally, substituting Equations (8) and (9) into Equation (4) and then
using the average Fresnel transmission ratio A(η)

A(η) =
1 + Fdr(η)

1− Fdr(η)
(10)

to simplify the resulting expression yields

KEY RESULT 1: DIFFUSIVE SOURCE BOUNDARY CONDITION

φ(x) + 2A(η)κd(x)(~n · ~∇)φ(x) =
4

Fdt(η)
Γs(x) (11)

3. QUERY FUNCTION

Given the diffusive source boundary condition (DSBC), we have a
complete diffusive scattering approximation. But to complete our
rendering formulation, we derive our second key result, the render
query function. This function converts the solution fluence into exi-
tant radiance. Due to the approximations of the diffusion equation
(DE) and the DSBC, an accurate query function must address two
computational issues. First, as the isotropy condition of the diffusion
approximation (DA) breaks down, the DE solution can begin to con-
tain erroneous angular variation. To avoid these errors, this variation
must be averaged. Since, as the DA becomes more accurate, the
true solution and the average solution converge [Ishimaru 1978],
this averaging tends to remove artifacts without considerably in-
creasing overall error. Second, ultimately the solution to the DE and
DSBC will be computed numerically. Since for most algorithms, the
numerical approximation of φ(x) is more accurate than a derived
approximation of the fluence gradient ~∇φ, analytically removing
gradient terms improves accuracy.

Together the above issues define our query function. To smooth
the erroneous angular variation, the initial query averages the sub-

surface radiance refracted outward from the scattering material.

L(x, ~ω) =
Ft(η, ~ω)

π

∫
(~n·~ω)>0

Ld(x, ~ω)(~ω · ~n) d~ω (12)

Next, this initial radiance query is converted to a fluence query by
substituting DA (Equation (7)) and simplifying with Equation (6).

L(x, ~ω) =
Ft(η, ~ω)

4π

[
φ(x)− 2κd(x)(~n · ~∇)φ(x)

]
(13)

Finally, we use the DSBC (Equation (11)) to remove the less
accurate gradient term yielding:

KEY RESULT 2: QUERY FUNCTION

L(x, ~ω) =

Ft(η, ~ω)

4π

(1 +
1

A(η)

)
φ(x)− 4

Fdt(η)A(η)
Γs(x)

 (14)

4. RESULTS

To end this short report, we demonstrate that this formulation renders
accurate images. This section has three parts. First, we describe the
rendering environment used to produce these results. Second, we
demonstrate that our formulation produces nearly exact solutions
by comparing our results to images produced with a Monte Carlo
(MC) path tracer. Finally, we discuss how this solution can be used
to correct errors found in the recent previous work by Wang et al.
[2008].

4.1 Details of the Rendering Computation

All results were generated on a 8 x 2.66Ghz Xeon workstation with
8GB of RAM. All images are 640x480 pixels and each is 16x anti-
aliased. For all images, we compute the surface and single scattering
components separately using a combination of Multidimensional
Lightcuts (MDLC) [Walter et al. 2006] and an analytical single scat-
tering approximation [Hanrahan and Krueger 1993]. The multiple
scattering is solved by computing a numerical solution to our het-
erogeneous diffusion formulation. We use an accurate finite element
(FE) algorithm for this purpose.

4.2 Comparison with Monte Carlo

Demonstrating the quality of our algorithm, Figure 2 compares our
solution for a Dragon test scene with the same image produced by
an exact, MC path tracer. To facilitate the quality comparison, an
absolute error image is provided. Since these error images are nearly
black, a 4x magnified versions help reveal three differences. There
are two principle differences. First, particularly prominent in the tail,
the path tracer is able to capture highlights from caustic paths that
do not scatter within the material. However, since these caustic paths
are not part of the subsurface scattering, this is an error of our MDLC
surface render not our FE algorithm. Second, because the diffusion
equation (DE) treats all diffusive radiance as nearly isotropic, it tends
to overestimate the frequency of scattering in thin geometry and near
the surface and, as a consequence, it underestimates contributions
from low order scattering events. This slightly darkens regions when
they are lit from behind as in the optically thinner parts of the
Dragon. However, overall, these differences are small and result
from limitations in our diffusion approximation (DA). The new
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1x Difference

Our Solution Path Tracing 4x Difference

Fig. 2: Using our formulation produces images nearly identical to path traced references (see black difference images; right).

(a) FD original (b) FD corrected

(c) MC (d) 4x FD error

Fig. 3: Images of a constant scattering white bunny lit by two area lights, fill
below and key above: Figure 3(a) as described in Wang et al. [2008] with
negative radiance areas highlighted in red; Figure 3(b) corrected using our
formulation; Figure 3(c) MC reference; and Figure 3(d) 4x absolute error of
Figure 3(b).

elements of our formulation add little additional error and ensure
surprisingly accurate results.

4.3 Correction of Wang et al. [2008]

Next we demonstrate that this formulation corrects errors in the
solution used in the previous heterogeneous rendering algorithm by
Wang et al. [2008]. Since here our focus is accuracy, rather than
performance, we produced our test images using a software version
of their iterative finite difference (FD) algorithm. This software ren-
derer omits the multi-resolution approximation originally required

Photograph Path tracing

Fig. 4: Comparison of the photograph artificial stone slab captured by Wang
et al. [2008] to a path traced rendering of the resulting material parameters.

by their method to achieve interactive performance. We allow the
FD algorithm to update fully each step and iterate until the solu-
tion is converged thus maximizing their solution’s quality in our
comparison.

To facilitate our tests, Wang et al. [2008] kindly provided their
measured material data and a PolyGrid [Tarini et al. 2004] bunny
model. Using the PolyGrid, we created several images of the bunny
with a white, homogeneously scattering material (see Figure 3).
Because their solution uses an incorrect version of the diffusive
source boundary condition (DSBC) and render query function, their
original algorithm sometimes computes negative radiance values. As
demonstrated in red in Figure 3(a), this happens almost everywhere
on the homogeneous bunny. However, our new formulation can
correct this error. The rest of images in Figure 3 directly compare,
Wang et al.’s FD algorithm and a path traced reference (Figures 3(b),
3(c) and 3(d) respectively).

We believe that in the original work, this error was invisible
because their capture optimization corrects errors by altering the
computed material parameters. To test this hypothesis, we rendered
the artificial stone material captured by Wang et al. [2008] using a
path tracer and compared the result to a photograph of the original
material (see Figure 4). Though we are unsure of the exact mecha-
nism, the large difference between the two results indicates that the
measured parameters are not physically accurate.

5. CONCLUSION

In this technical report, we presented a high-quality rendering for-
mulation for the heterogeneous diffusion problem. Our formulation
has two key results: the correct boundary condition, the diffusive
source boundary condition (DSBC) (Section 2), and a query func-
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tion that converts the diffusion solution to exitant radiance (Section
3). We show that this new formulation can produce results nearly as
accurate as Monte Carlo (MC) solution (Section 4.2) and that it can
be used to improve the previous diffusion algorithm by Wang et al.
[2008] (Section 4.3).
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