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Thrombosis is a serious medical complication because excessive thrombus for-

mation could lead to obstruction of blood vessels, resulting in tissue ischemia

or death. This study is aimed to understand the cell-biology and biophysics,

at the molecular level, of thrombosis in a blood vessel. We first review the bi-

ology underlying thrombosis and the previous mathematical models of throm-

bus formation (Chapter 1). In Chapter 2, mathematical modeling and sensitiv-

ity analysis were used to explore the mechanistic model of thrombus forma-

tion; the results support our working hypothesis that computationally derived

points of fragility of human relevant cascades could be used as a rational basis

for target selection despite model uncertainty. Chapter 3 focuses on the im-

pact of parametric sampling strategies of Monte-Carlo sensitivity analysis and

network structural uncertainty upon the assessment of the qualitative impor-

tance of molecular interactions in the coagulation network. While parametric

uncertainty can be partially overcome by sampling feasible parameter regions

using one of several strategies, structural uncertainty remains a critical deter-

minant of our ability to classify mechanisms as fragile or robust in networks

relevant to human health. The mathematical model was further extended to

describe platelet activation by other agonists besides thrombin and the intrinsic

pathway in Chapter 4. An ensemble of probable parameter sets were estimated

using nine experimental data sets from a cell-based model and then used to



predict the thrombin generation in experiments using patient-derived plasma

for coronary artery and hemophilia A patients. In Chapter 5, analysis of the

sensitivity results discloses that the intrinsic protease factor XI could be an ex-

cellent therapeutic target for thrombosis treatment with the advantage of not

affecting hemostasis. Chapter 6 describes the effect of flow on the initiation of

arterial clotting under conditions of exposed tissue factor (TF). Thresholds in

shear rates or TF patch sizes were observed for the initiation of clot formation;

the balance between the generation of active factors and the removal of those

factors by flow was possibly the reason for the threshold phenomena.



BIOGRAPHICAL SKETCH

Deyan Luan graduated from Beijing University of Aeronautics and Astronau-

tics, School of Materials Science and Engineering, Beijing, the People’s Republic

of China, in 2002 (B.Eng.). After that, she was offered a scholarship for studying

in the National University of Singapore (NUS). She graduated for the School

of Chemical and Biomolecular Engineering, NUS, Singapore, with a Master’s

degree in 2004. She worked as a QA/MSL (Quality Assurance/Materials Sci-

ence Lab) Engineer at Hitachi Global Storage Technologies (HitachiGST) in

Singapore before she joined the PhD program in the School of Chemical and

Biomolecular Engineering at at Cornell University in August 2005. Her PhD

research focused on the computational modeling and simulation of thrombus

formation.

iii



This document is dedicated to my beloved family.

iv



ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility

to complete this dissertation. I want to thank Professor Jeffrey D. Varner, who

is my advisor, for his continuous guidance during past four years. He is very

kind, patient, encouraging, open-minded and has great passion for science. I

am obliged to Professor Yong L. Joo, who is my co-advisor, for his help, stimu-

lating suggestions and encouragement in all the time. I am grateful to Professor

William L. Olbricht for his enlightening discussions, and for serving as one of

my committee members.

Special appreciations to the entire Varner and Joo group members, especially

Dr. Sang Ok Song, Satyaprakash Nayak, Tom Mansell, Ryan Tasseff, Anirikh

Chakrabarti, Michael Zai and Damien Kudela, for the timely and instructive

comments, and for broadening my research horizons; to all support staff, espe-

cially Shelby Clark-Shevalier and Carol Casler, for their help which allow me to

complete this project on schedule.

In addition to the technical assistance above, I received equally important

assistance from family and friends. My husband, Xiongwen (David) Lou, pro-

vided on-going support throughout the process of my PhD study; my parents,

Mingyuan Luan and Lizhi Shao, instilled in me, from an early age, the desire

and skills to obtain the advanced degrees.

Lastly but not the least, I would like to thank the Cornell University, the

Weill Cornell Medical Collage for the research scholarships awarded to me.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
1.1 Thrombus formation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The constitution of the blood . . . . . . . . . . . . . . . . . 3
1.1.2 Quality of the vessel wall . . . . . . . . . . . . . . . . . . . 8
1.1.3 Nature of the blood flow . . . . . . . . . . . . . . . . . . . . 9

1.2 Previous mathematical models . . . . . . . . . . . . . . . . . . . . 11
1.3 Computational systems biology and sensitivity analysis . . . . . . 15

1.3.1 Computational systems biology . . . . . . . . . . . . . . . 15
1.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 17

2 Computationally Derived Points of Fragility of a Human Cascade are
Consistent with Current Therapeutic Strategies 1 19
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 A review of the coagulation cascade . . . . . . . . . . . . . 23
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Thrombin activation in synthetic plasma in the presence
and absence of natural anticoagulants. . . . . . . . . . . . . 27

2.3.2 The fragility and robustness of the coagulation architecture. 32
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Formulation of the Model Equations. . . . . . . . . . . . . 42
2.5.2 Error Analysis of the Coagulation Simulations. . . . . . . . 44
2.5.3 Computation of the OSSCs. . . . . . . . . . . . . . . . . . . 44
2.5.4 Statistical analysis of the shifts in OSSCs. . . . . . . . . . . 46

3 False Negative Structural Uncertainty Destroys the Ability to Assess
the Robustness and Fragility of Molecular Interactions in a Human
Cascade 48
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 FXa and FIIa mediate fragile mechanisms in TF-FVIIa ini-
tiated coagulation. . . . . . . . . . . . . . . . . . . . . . . . 53

vi



3.3.2 The qualitative assessment of fragile and robust coagu-
lation mechanisms was invariant to parameter sampling
methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 The qualitative assessment of fragile and robust coagula-
tion mechanisms was sensitive to false negative but robust
to false positive interactions. . . . . . . . . . . . . . . . . . 56

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Formulation of the model equations. . . . . . . . . . . . . . 66
3.6.2 Computation of overall state sensitivity coefficients. . . . . 68
3.6.3 Statistical analysis of the shifts in overall state sensitivity

coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.4 Generation of structurally perturbed coagulation networks. 71
3.6.5 Calculation of protein and interaction connectivity. . . . . 73

4 A mathematical model successfully predicts thrombin generation in
patient-derived plasma 74
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 The model predicted thrombin generations in patient-
derived plasma. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Sensitivity analysis revealed the bypassing activity of
rFVIIa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 TF-FVIIa is a more potent activator of thrombin genera-
tion than FVIIa only. . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.1 Formulation and solution of the model equations. . . . . . 101
4.5.2 Error Analysis of the Coagulation Simulations. . . . . . . . 103
4.5.3 The Measurement of Thrombin Generation . . . . . . . . . 103
4.5.4 Computation of overall state sensitivity coefficients. . . . . 104
4.5.5 Statistical and clustering analysis of the shifts in overall

state sensitivity coefficients. . . . . . . . . . . . . . . . . . . 106
4.5.6 Coupling analysis . . . . . . . . . . . . . . . . . . . . . . . 108

5 Factor XI is a potential therapeutic target for thrombosis that maintains
haemostasis 109
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 A review of the coagulation cascade. . . . . . . . . . . . . . 113
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Thrombin generation in the presence and absence of fXI. . 116

vii



5.3.2 The fragility and robustness of the combined, intrinsic
and extrinsic coagulation pathways. . . . . . . . . . . . . . 119

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.1 Formulation of the model equations. . . . . . . . . . . . . . 134
5.5.2 Error Analysis of the Coagulation Simulations. . . . . . . . 135
5.5.3 Computation of overall state sensitivity coefficients. . . . . 136
5.5.4 Statistical and clustering analysis of the shifts in overall

state sensitivity coefficients. . . . . . . . . . . . . . . . . . . 137

6 Computational Analysis of the Effect of Flow on Blood Clot Formation140
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 The biology of clot formation and lysis: . . . . . . . . . . . 141
6.2.2 Review of flow effects on blood clot formation: . . . . . . . 144
6.2.3 Review of the mathematical models: . . . . . . . . . . . . . 147

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.1 Model validation against the formation of fibrin in the ab-

sence of flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.2 Threshold response to shear rate and the size of TF patch

for the generation of thrombin under the low to medium
shear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3.3 Attenuation of fibrin clot formation by flow mediate
transport of enzymes . . . . . . . . . . . . . . . . . . . . . . 154

6.3.4 Acceleration of clot time via SIPA under high shear . . . . 156
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.6 Limitations and Future Directions . . . . . . . . . . . . . . . . . . 165

6.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 168

A Chapter 1 Appendix 171

B Chapter 4 Appendix 178

Bibliography 183

viii



LIST OF TABLES

2.1 Quantification of model error. . . . . . . . . . . . . . . . . . . . . 30
2.2 The twenty most fragile coagulation mechanisms in the absence

of inhibitors.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Treatement cases considered in the sensitivity analysis. . . . . . 34
2.4 Ten example clinical trial for FXa and DTIs.3 . . . . . . . . . . . . 38

4.1 Quantification of model errors. The nomarlized standard errors
(SE) and the correlation (defined in the text) were calculated for
the mean simulated values of the ensemble versus the experi-
mental measurements. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Distribution of OSSCs for normal, hemophilia and treatment
cases 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 The distribution of the OSSCs for 106% and 1% fVIII cases. . . . 90
4.4 The distribution of the OSSCs for TF-FVIIa and FVIIa cases. . . . 96

5.1 Treatement cases considered in the sensitivity analysis. Case A
denotes the ‘Combined’ case, where species for both extrinsic
and intrinsic pathways are present, Case B denotes the ‘Extrinsic’
case while cases C and D denote the ‘Intrinsic’ case with two
different initial thrombin concentrations. . . . . . . . . . . . . . . 117

5.2 The distribution of the OSSCs for different cases 5. . . . . . . . . 121
5.3 Statistical results of the indices of shifted parameters in pairwise

comparison of different cases (Table 5.1). . . . . . . . . . . . . . . 125
5.4 Statistical results of the shifts in the rank of species OSSCs for

pairwise comparison of different cases 6. . . . . . . . . . . . . . . 130

6.1 Shear rate (γ̇), and its corresponding blood viscosity (η), shear
stress (τ = ηγ̇), critical exposure time (t), SIPA rate (r) 7. . . . . . . 157

A.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.2 Initial Conditions for different cases in Figure 2.2 . . . . . . . . . 173
A.3 Reactions and parameter values used in the extrinsic coagulation

model 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.1 Extended reactions and parameter values used in this coagula-
tion model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

ix



LIST OF FIGURES

2.1 Schematic of the coagulation cascade. (A) Upstream coagula-
tion factors are activated by substances exposed because of ves-
sel injury; chief among these factors is TF. Activated upstream
coagulation factors initiate a cascade of events that culminate in
the activation of platelets and the key protease thrombin (FIIa).
Thrombin forms an amplification loop by activating itself and
other coagulation factors as well as platelets. (B) Activated
platelets then aggregate to form platelet plugs, which serve as
scaffolds for fibrin clots. . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Model validation using published in-vitro datasets. (A) Throm-
bin concentration versus time as a function of TFPI concen-
tration following the addition of 1.25pM TF-FVIIa to synthetic
plasma. (B) Thrombin concentration versus time for different
combinations of TFPI and ATIII following the addition of 1.25pM
TF-FVIIa to synthetic plasma. (C) APC concentration versus
time as a function of TM concentration following the addition
of 1.25pM TF-FVIIa to synthetic plasma. (D) Thrombin con-
centration as a function of time as a function of TM concen-
tration following the addition of 1.25pM TF-FVIIa to synthetic
plasma. (E) Thrombin concentration versus time as a function
of TF-FVIIa initation strenght in synthetic plasma. (F) Frac-
tion of activated platelets and thrombin concentration as a func-
tion of time in the cell-based assay. The synthetic plasma assay
cases were reproduced from Mann and coworkers [108, 116, 117],
while the platelet activation data (panel F) was reproduced from
Roberts et al. [115]. The GraphClick software (Arizona Software,
www.arizona-software.ch) was used for data extraction where
a coefficient of variation (CV) of ±10 was added to the data to
account for extraction and experimental error. The initial condi-
tions are shown in the Appendix A Table A.2. . . . . . . . . . . . 28

x



2.3 Sensitivity analysis of the coagulation cascade. OSSCs were cal-
culated using randomly generated parameter sets constructed
by perturbing the nominal parameter set by up to ± 50% for each
parameter (N=100). (A-C): The x-axis denotes the trial index (in-
dex of the random parameter set), while the y-axis denotes the
fragility index. The fragility index is calculated by determin-
ing the parameter index of the rank-ordered the OSSC values
(The parameter index corresponding to the most fragile param-
eter has fragility index of 1; the next fragile is 2, while the most
robust parameter has a fragility index of 148). The fragility index
shows the robustness of a parameter; the smaller the fragility in-
dex, the more fragile the parameter. The parameter types are
color-coded (shown in the color bar) and organized by biolog-
ical function: 1-16, subendothelium interactions; 17-40, plasma
interactions; 41-62, platelet surface binding; 63-77, platelet ac-
tivation; 78-107, reactions on platelet surface; and 108-148, in-
hibitory reactions. (D-F) The OSSC values from TFPI, ATIII, and
TFPI+ATIII cases versus the control. . . . . . . . . . . . . . . . . 35

3.1 Parametric uncertainty studies using random and latin hyper-
cube sampling strategies. (A) OSSC values for TF-FVIIa ini-
tiated coagulation generated using the random sampling over
the small perturbation family (N=100;±50%). (B) Comparison
of OSSC results for TF-FVIIa initiated coagulation for random
versus latin hypercube sampling strategies for the small pertur-
bation family (N=100;±50%). (C) Comparison of OSSC results
for TF-FVIIa initiated coagulation for random versus latin hy-
percube sampling strategies for the large perturbation family
(N=100;±2-orders of magnitude). (D) Comparison of OSSC re-
sults for TF-FVIIa initiated coagulation for small versus a large
random sampling strategy (N=100) . . . . . . . . . . . . . . . . . 55

3.2 Impact upon the qualitative classification of interactions because
of single and multiple false-positive structural defects. (A) Pro-
tein connectivity versus the Spearman rank correlation between
structurally perturbed and control networks as a function of the
number of false positive interactions. (B) Protein connectivity
versus the Spearman rank correlation between structurally per-
turbed and control networks as a function of protein species for
30 false positive interactions. . . . . . . . . . . . . . . . . . . . . . 57

3.3 Impact upon the classification of coagulation interactions follow-
ing the introduction of single pairwise false-negative structural
defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



3.4 Impact of multiple false-negative structural defects upon the
qualitative classification of interactions in the network. The
coagulation cascade was partitioned into 2, 4 or 8 connected
subnetworks using hMetis and screened for fragile and robust
mechanisms using a random parameter family (N=100; ±50%
perturbation). The partitioned subnetworks were compared to
the unpartitioned control over the same family of random pa-
rameter sets; the 45o dashed-line indicates perfect correlation.
(A) OSSC values for the unpartitioned control versus the 2-
partitioned subnetwork. (B) OSSC values for the unpartitioned
control versus the 4-partitioned subnetwork. (C) OSSC values
for the unpartitioned control versus the 8-partitioned subnet-
work. (D) Spearman rank correlation as a function of the number
of partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Pairwise Spearman Rank Correlation for the estimated OSSC
distributions calculated for ten different 4-partitioned coagula-
tion networks over the same family of random parameter sets. . 61

4.1 Comparison of model simulations versus training data from a
cell-based model. The dashed lines in each case denote the mean
simulated value over the ensemble of model parameters while
the shaded regions denote one ensemble standard deviation (N
= 437). Experimental data are shown with error bars (10% of
the experimental values). The quantified errors are shown in Ta-
ble 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Predicted time course of thrombin generation versus experimen-
tal measurements using patient-derived plasma. The dashed
lines in each case denote the mean simulated values over the
ensemble of model parameters while the shaded regions denote
one ensemble standard deviation. (A) The experiments were
conducted using plasma from 4 patients with coronary artery
disease (on aspirin); the generation of thrombin was initiated
using 1 pM TF. Experimental data are shown with error bars,
which were calculated as one standard deviation of the 4 dif-
ferent patient data sets. (B-F) The experiments were conducted
using plasma from healthy or hemophilia A patients; the levels
of fVIII concentration with respect to the normal concentration
(0.3 nM) were shown in the corner. The generation of thrombin
was initiated using 5 pM TF. Experimental data are shown with
error bars, which were 10% of the experimental values. . . . . . 83

4.3 The normalized ranks of the OSSC values calculated over the
selected parameter ensemble (N = 100) were compared in pairs
among different cases. . . . . . . . . . . . . . . . . . . . . . . . . 86

xii



4.4 Model prediction and sensitivity analysis of TF-FVIIa and FVIIa
initiated thrombin generation. (A) and (B): Predicted time course
of thrombin generation versus in vitro experimental measure-
ments [200]. Thrombin generation was initiated either by 25 pM
TF-FVIIa (we assumed TF binds with FVIIa to form TF-FVIIa
complex immediately) or by 120 nM FVIIa in the presence of
physiological concentrations of pro- and anti-coagulants. Dif-
ferent phases of thrombin generation were noted: Phase I: initi-
ation; Phase II: propagation; Phase III: degradation. The dashed
lines in each case denote the mean simulated values over the
ensemble of model parameters while the shaded regions de-
note one ensemble standard deviation (N = 437). Experimental
data are shown with error bars (10% of the experimental val-
ues). (C) The normalized ranks of the OSSC values calculated
over the selected parameter ensemble (N = 100) were compared
between TF-FVIIa and FVIIa cases. (D) The normalized ranks of
the species sensitivity values calculated over the selected param-
eters ensemble (N = 100) between TF-FVIIa and FVIIa cases. . . . 94

4.5 Comparisons of the parameter sensitivities (the normalized
ranks of the OSSC values) in different phases with respect to that
of the whole time span. (A-C) Normalized ranks of the OSSC
values in different phases in thrombin generation versus that of
the whole time span for TF-FVIIa case. (D-F) Normalized ranks
of the OSSC values in different phases in thrombin generation
versus that of the whole time span for FVIIa case. . . . . . . . . . 95

5.1 Schematic illustration of the coagulation cascade. . . . . . . . . . 115
5.2 Model predictions of thrombin generation versus time as a func-

tion of TF, FVIIa, fXI and thrombin and experimental measur-
ments from a cell-based model. (A-D) Thrombin generation in
the case A, B, C and D in Table 5.1, respectively. The experimen-
tal thrombin generation assay was reproduced from Wielder et
al [15]. An ensemble of parameter sets (N = 437) was generated
using nine training data sets. The dotted lines denote the mean
thrombin concentrations calculated from the parameter ensem-
ble and the shadow areas denote one standard deviation of the
ensemble. The normalized standard errors (SE) and the correla-
tions between the mean simulation values of the ensemble are re-
ported in the corner of each panel. In the experiments, recalcified
PRP was incubated with different concentrations of FVIIa, fXI
and thrombin (see Table 5.1) in the presence of collagen. Throm-
bin generation was initiated by TF or small amount of thrombin. 120

xiii



5.3 The pairwise parameter OSSC values calculated from sensitivity
analyses for different cases in Table 5.1. Among the generated
parameter ensemble, 100 parameter sets with a CV of 2 were se-
lected for the sensitivity analyses. The mean and standard devi-
ation of all parameter sets were shown in the figure. . . . . . . . 124

5.4 The connectivities of species ranked as the top ten most sensitive
species for different cases in Table 5.1. The x-axis denotes the
average ranks of the top ten most sensitive species in different
cases, the y-axis denotes the corresponding connectivities of the
species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 The pairwise species OSSC ranks calculated from sensitivity
analyses for different cases in Table 5.1. The connectivity matrix
S (193 × 301) was used to rearrange the parameter OSSC values
to the species OSSCs. The rank orders of the species OSSCs were
used to access the fragility of different species in the model. The
mean and standard deviation of the ranks for species OSSC val-
ues (100 sets) were shown in the figure. . . . . . . . . . . . . . . . 128

6.1 Model validation against experimental observations of the for-
mation of fibrin in the absence of flow. (A) Computational simu-
lation (solid line) is consistent with experimental observation of
fibrin generation in time (shown as circles). The fibrin concen-
tration was determined in diluted plasma samples by the ELISA
[257]. (B-D) The fibrinolysis in time by tPA, uPA and plasmin
(PLA) in the presence and absence of TAFI [258]. The fibrin con-
centrations were scaled by the maximum in each corresponding
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xiv



6.2 Model simulations of thrombin formation in normal pooled
plasma (NPP). (A) and (B): Computational simulations are con-
sistent with experiment observations that clot time in NPP dis-
played a threshold response to shear rate at a constant patch size
of 200 µm (from 600 to 800 µm) (A) and to patch size at a con-
stant shear rate of 40 s−1 (B) [256]. Clot time was determined
as the time point at which ≥ 0.1 nM thrombin was generated
in the simulation. In the experiment, the generation of throm-
bin was detected by fluorescence microscopy and the clot time
was the time point when a burst of thrombin was generated or
the initial formation of cross-linked fibrin appeared [256]. (C)
and (D): Thrombin concentrations versus time and position with
shear rates of 5 s−1 (C) and 40 s−1 (D) at a patch size of 200 µm.
(E) Thrombin concentrations versus position at 0 and 300 sec at a
shear rate of 5 s−1 and a patch size of 200 µm. Consistent with ex-
periments at 300 sec [256], thrombin generation did not initiate
at a shear rate of 40 s−1 (D), but did initiate at a shear rate of 5 s−1

(C and E). (F) Thrombin concentrations versus time and position
at a shear rate of 40 s−1 and a patch size of 800 µm (from 600 to
1400 µm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Model simulations of clot formation in platelet rich plasma
(PRP). (A) Computational simulations are generally consistent
with experiment observations that clot time in PRP displayed
a threshold response to shear rate at a constant patch size of 200
µm [256]. The bright-field microscopy was used to detect the for-
mation of fibrin mesh and aggregation of platelets [256]. In sim-
ulation, the clot time was calculated as the time point at which
≥ 0.1 nM fibrin was generated. (B) and (C) Fibrin concentrations
versus time and position with shear rates of 80 s−1 (B) and 20 s−1

(C). (D) Thrombin concentrations versus time and position at a
shear rate of 20 s−1. (E) and (F): Fibrin and thrombin concentra-
tions versus position at time of 0 and 300 sec at a shear rate of
20 s−1 and a patch size of 200 µm. Although TF patches located
between 600 and 800 µm, the maximum fibrin and thrombin con-
centrations at 300 sec were found at downstream of the patches. 155

xv



6.4 Model simulation of clot formation in high shear conditions. (A)
Computational simulations of clot times under high shear con-
ditions at a constant TF patch size of 200 µm. (B) Computational
simulations and experimental observation of percentage platelet
activation after exposed to shear rates of 100, 800, 1500 or 3000
s−1 for 1 minute. The simulations were conducted over 200 µm
collagen patches with or without TF. The scaled platelet activa-
tion was calculated as all activated platelet (AP) concentrations
scaled by the maximum AP concentration for simulation without
TF. The experimental observations of platelet deposition over
collagen were also scaled by its maximum amount of deposited
platelets [241]. (C) and (D): Fibrin and AP concentrations versus
time and position with a shear rate of 100 s−1 . (E) and (F): Fib-
rin and AP concentrations versus time and position with a shear
rate of 1500 s−1. The AP concentrations shown here were for the
movable AP only. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5 Illustration of the capillary with TF patch. . . . . . . . . . . . . . 166
6.6 Thiele modulus numbers for all species in the model. . . . . . . 167

xvi



CHAPTER 1

INTRODUCTION

Cardiovascular diseases are predicted as the leading cause of death for the fu-

ture two decades by the World Health Organization in 2008 [1]. Central to car-

diovascular diseases is Arteriosclerosis, the thickening or hardening of the arter-

ies. Arteriosclerosis is caused by aging, high blood pressure, cigarette smoke,

and high cholesterol levels. One particular kind of arteriosclerosis that con-

tributes to cardiovascular diseases is Atherosclerosis, which is characterized by

a buildup of plaque within the arteries. Plaque, which is formed from fatty sub-

stances, cholesterol, cellular waste, calcium, and fibrin, may partially or totally

block blood flow through arteries leading to chronic conditions, e.g., cardio-

vascular diseases. However, plaques are also linked with acute events such as

Myocardial Infarction (MI) or Ischemic Stroke (IS); plaques become fragile and

can rupture leading to clot or thrombus formation [2, 3, 4].

MI is a thrombotic event triggered by atherosclerosis plaque rupture. The

exposed procoagulant materials, e.g. collagen, tissue factor (TF), etc, following

plaque rupture lead to the activation of platelets and the formation of thrombin,

resulting in thrombosis or thrombus formation. Thrombosis is a serious medical

complication because excessive thrombus formation can lead to obstruction of

blood vessels, resulting in tissue ischemia or death. In addition to occluding the

blood vessel where it was formed, it is also possible for a thrombus to break free

(embolize) and lodge somewhere downstream in the microcirculation, the most

deleterious possibility being a brain infarction if it finds its way into a cerebral

artery or being a heart attack if it blocks a coronary artery. The specific aims of

this study are to understand the cell-biology and biophysics, at the molecular
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level, of thrombosis in a blood vessel. In particular, we will focus upon the

processes underlying thrombus formation in ruptured plaques: thrombin gen-

eration, platelet adhesion, activation and aggregation in the absence or presence

of an arterial flow field. We will employ tools from Systems Biology, Computa-

tional Fluid Dynamics (CFD) and High-Performance Computing (HPC) to con-

struct and validate a first-principles mathematical model of disease progression

which can be employed in a treatment planning context to improve the effective-

ness of current therapies in community practice, to better understand primary

and secondary prevention issues and to computationally screen novel therapeutic

strategies at a molecular level. It is hoped that this will one day lead to im-

proved computational design strategies for understanding the mechanisms and

the development of new drugs for thrombosis.

1.1 Thrombus formation

Although unraveling the many complex and intertwined chemical and biologi-

cal processes that lead to thrombus formation is a continuing challenge for mod-

ern medical research, the primary factors governing thrombosis were identified

nearly 150 years ago by the German pathologist Rudolf Virchow (1821-1902) [5].

Decades following his death, a consensus was reached proposing that thrombo-

sis is the result of “abnormalities of blood constituents”, “abnormalities of blood

vessel wall”, and “abnormalities of blood flow”, which are the three elements of

the well-know “Virchow’s triad” [6]. The contributions of each element of the

triad to the thrombotic process are described below.
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1.1.1 The constitution of the blood

The constituents of the blood are many and varied, but soluble coagulation fac-

tors, such as factor I (fI or fibrinogen) and factor II (fII or prothrombin), and

cells, such as platelets, are clearly important [6]. The blood elements primar-

ily responsible for coagulation are the coagulation factors, typically identified

by Roman numerals I – XIII. Most of the coagulation factors are synthesized

in the liver. In addition, factor VIII (fVIII) is synthesized in a large number of

other tissue. Other important factors in the coagulation process include pro-

thrombin, factor VII (fVII), factor IX (fIX), factor X (fX) and factor XI (fXI); these

proteins are synthesized in precursor form, which are biochemically termed as

zymogens. These zymogens are precursor enzymes that are converted to active

enzymes by the cleavage of one or in some instances two peptide bonds dur-

ing blood coagulation. There are two protein cofactors, factor V (fV) and fVIII,

that also play an important role in blood coagulation by binding to activated

platelets surface and forming a focal point for the organization of certain pro-

tein complexes. The corresponding active forms of these proteins are denoted

as FVa, FVIIa, FVIIIa, FIXa, FXa and FXIa, respectively.

Blood coagulation cascades

Clotting can be achieved via either of two coagulation cascades, or via platelet

aggregation and deposition. However, all three feed into and depend upon one

another, meaning none usually occurs independent of the others. What follows

is a brief overview of these complex processes. More detail can be obtained from

any basic physiology text, e.g. Guyton & Hall [7], and the references therein.

Upon plaque ruptures, the exposed collagen is one of the most thrombogenic
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materials because it supports platelet adhesion and it is a strong platelet ago-

nist. The collagen-activated platelet membranes expose receptors which bind

circulating fibrinogen to their surfaces. An aggregation of platelets and fibrino-

gen build up to form a soft plug. This is often called primary hemostasis, which

is normally short lived. If flow is allowed to increase, the soft plug could be

sheared from the injured surface, possibly creating emboli. Secondary hemosta-

sis or blood coagulation is responsible for stabilizing the soft clot and maintain-

ing vasoconstriction. The soft plug is solidified through complex interactions

that bring about the generation of thrombin and the formation of fibrin from

fibrinogen. Thrombin cleaves fibrinogen into fibrin monomers and these fib-

rin monomers polymerized to form fibrin mesh on and between the soft plug,

resulting in the formation of the stable fibrin clot [8, 9].

The intrinsic and the extrinsic pathways of coagulation are involved in the

generation of thrombin; each is activated by a different trigger, although they

share many steps in the course of thrombin generation. It is generally believed

that the extrinsic pathway is the main mechanism in vivo. The extrinsic blood co-

agulation cascade is thought to be triggered when tissue factor (TF) is exposed

as a consequence of vascular damage or plaque rupture. TF activates fVII to

activated FVIIa, and with which it forms an enzymatic complex TF-FVIIa. TF-

FVIIa complex activates fX and fIX. FIXa in complex with its cofactor, FVIIIa,

activates fX at an ≈50-fold higher rate than the factor TF-FVIIa complex [10].

FXa and FVa in turn form a complex on the surface of activated platelets which

converts prothrombin (fII) to thrombin (FIIa). The terminal protease thrombin

plays a key role in the activation of upstream factors and platelets [8, 9, 11].

The intrinsic or contact pathway of coagulation consists of a group of plasma

proteins which are activated by interaction with exogenous negatively charged
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surfaces such as glass or kaolin. This pathway has been described as a series

of enzymatic reactions which starts with the formation of activated factor XIIa

(FXIIa). FXIIa activates fXI to FXIa, which could cleave fIX to FIXa. The intrin-

sic pathway of coagulation joins with the extrinsic at this point. The reactions

of this pathway have been well characterized in vitro; however, the physiologic

activator of fXII has not been identified. Furthermore, individuals with fXII defi-

ciencies have developed no significant bleeding diathesis; however, individuals

have been identified with fXI deficiencies do have significant episodes of bleed-

ing complications associated with surgical challenges [12]. Some investigators

have reported that FXIa could also be activated by thrombin as complement to

the extrinsic pathway when the extrinsic pathway is shut down by inhibitors

[13, 14, 15, 16, 17, 18, 19].

To maintain normal hemostasis, it is necessary to have the appropriate bal-

ance between pro- and anti-coagulant constituents in the blood. There are three

major anti-coagulants in the blood that sever as control points in the cascade

to inhibit thrombin formation. Tissue Factor Pathway Inhibitor (TFPI) down-

regulates FXa formation catalyzed by TF-FVIIa by sequestering free FXa and

the TF-FVIIa-FXa complex. Antithrombin III (ATIII) neutralizes all serine pro-

teases generated during the coagulation response, making it perhaps the most

powerful control element in the cascade. Thrombin itself plays an inadvertent

role in its own inhibition by binding to thrombomodulin which is constitutively

expressed on normal vasculature. The binding of thrombin with thrombomod-

ulin in turn activates Protein C (PC) to activated PC (APC) which attenuates the

coagulation response by the proteolytic cleavage of fV/FVa and fVIII/FVIIIa

[20, 21, 22, 23].
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Hemophiliacs

Defects in the balance of blood constituents can result in either thrombotic of

bleeding tendencies. Some genetic deficiencies in the sex-linked, X chromo-

somes may lower blood plasma clotting factor levels of coagulation factors

needed for a normal clotting process and result in bleeding disorders [24].

Hemophilia is a group of hereditary genetic disorders that impair the body’s

ability to control blood clotting or coagulation. In its most common forms,

hemophilia A and B are congenital bleeding disorders caused by deficiencies

of the coagulation factors fVIII and fIX, respectively [24]. Hemophilia A occurs

in about 1 in 5,000-10,000 male births, while hemophilia B occurs at about 1 in

about 35,000-50,000 male births [25]. Hemophilia C, caused by deficiency in fXI,

is a mild form of hemophilia affecting both sexes. In the USA it is thought

to affect 1 in 100,000 of the adult population, making it 10% as common as

hemophilia A [26]. The concept of mild bleeding disorders has evolved in con-

trast to severe hemophilia A and B to indicate less severe disorders [27]. A

hemophilia patient do not bleed more intensely than a normal person, but for a

much longer amount of time. In severe hemophiliacs even a minor injury could

result in blood loss lasting days, weeks, or not ever healing completely. The crit-

ical risk here is with normally small injuries which, due to missing coagulation

factors, take long times to heal. In areas such as the brain or inside joints this

can be fatal or permanently debilitating. The bleeding with external injury is

normal, but incidence of late re-bleeding and internal bleeding is increased, es-

pecially into muscles, joints, or bleeding into closed spaces. Major complications

include hemarthrosis, hemorrhage, gastrointestinal bleeding, and menorrhagia.

Though there is no cure for hemophilia, it can be controlled with regu-
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lar infusions of the deficient clotting factor, i.e. fVIII in hemophilia A or fIX

in hemophilia B. Replacement therapy markedly improves the management

of bleeding of most patients with hemophilia. However, fVIII and fIX in-

hibitors have developed in 18-32% and 2-3% of hemophiliacs A and B in re-

sponse to fVIII and fIX, respectively [28] and those inhibitors make the sub-

sequent management of patient, using coagulation factor concentrates, diffi-

cult. In the 1980s, activated prothrombin complex concentrates (APCCs) from

pooled plasma were developed for hemophiliacs with inhibitors, assuring ‘fVIII

bypassing activity’ [29, 30]. However, APCCs induce disseminated intravascu-

lar coagulation syndromes or acute MI [31]. Recently, recombinant factor VIIa

(rFVIIa) was developed as a new bypassing agent, and its clinical efficacy and

safety have been established [32, 33]. However, because of its short half-life,

therapy with rFVIIa requires frequent administration (at intervals of 2-3 h) to

achieve hemostasis [28]. Therefore, the search for a novel therapeutic agent for

hemophilia with inhibitors is still ongoing.

Fibrinolysis

Fibrinolysis is the process wherein a fibrin clot, the product of coagulation, is

broken down. The set of enzymatic reactions that constitute fibrinolysis is ini-

tiated when thrombin and fibrin, formed during coagulation, activate endothe-

lial cells resulting in enhanced production of tissue plasminogen activator (tPA)

or urokinase-like plasminogen activator (uPA) [9]. tPA and uPA catalyze the

transformation of plasminogen into the active form plasmin, which cuts the fib-

rin mesh at various places, leading to the production of circulating fragments

that are cleared by other proteases or by the kidney and liver. Plasminogen con-
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tains secondary structure motifs known as kringles, which bind specifically to

lysine and arginine residues on fibrin(ogen). When converted from plasmino-

gen into plasmin, it functions as a serine protease, cutting C-terminal to these

lysine and arginine residues. tPA and uPA are themselves inhibited by plas-

minogen activator inhibitor-1 and plasminogen activator inhibitor-2 (PAI-1and

PAI-2) [34]. Plasmin activity is also reduced by thrombin-activatable fibrinoly-

sis inhibitor (TAFI), which modifies fibrin to make a less potent cofactor for the

tPA-mediated plasminogen [35].

1.1.2 Quality of the vessel wall

Blood vessels are lined with endothelial cells which, in their normal state, ex-

press anticoagulant activity and do not support platelet adhesion [36]. Exposure

of the subendothelial surface by injury, however, initiates coagulation. This is

due both to exposure of tissue factor, which activates the extrinsic cascade, and

to the presence of collagen, which not only activates platelets, but also avidly

supports their adhesion [9]. In addition, biomaterial-induced blood coagulation

remains a major impediment to the successful use of implantable and periph-

eral medical devices [37]. When the blood-contacting surface is a foreign mate-

rial, the interactions are mediated by blood proteins. Within seconds of blood

contact, proteins begin to adsorb to the foreign surface. Once adsorbed, the pro-

teins can change their conformations to interact more strongly (or in some cases,

weakly) with cells and platelets than their bulk counterparts do [38]. In terms of

thrombosis, adsorption of high-molecular-weight kininogen (HMWK) can lead

to activation of fXII and initiation of the intrinsic coagulation cascade, while

adsorption of fibrinogen or von Willebrand factor (vWF) will support platelet
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adhesion via the GpIIbIIIa and GpIb receptors, respectively, with aggregation

and thrombus formation following thereafter [39, 40].

1.1.3 Nature of the blood flow

The last leg of the triad is the one that ties everything together. Clearly, in order

for platelets and coagulation factors to reach an artificial surface or the site of an

injury, they must be transported there. Hemostasis, atherogenesis and throm-

bosis are processes which occur in flowing blood. Hence, the flow behaviour

of blood may partly explain the localisation and morphology of arterial, intrac-

ardiac and venous thrombi within the human circulation [41]. Furthermore, it

may partly explain why increases in hematocrit, fibrinogen and other macro-

molecules and rigid blood cells may increase the risk of ischaemic events [42].

The rheological behavior of normal whole blood is dominated by red blood

cells (RBCs), which typically account for about 40% of the total blood volume

and 99% of the volume of particulate matter [43]. Largely due to their deforma-

bility, an excess of RBCs develops in the central core of a steady tube flow, while

an RBC-depleted layer develops near the wall; this is the well-known “Fahraeus

effect” [44]. Due to the crowding of RBCs in the center of the vessel, platelets

are expelled to the near-wall region, where an excess which has been observed

to be as high as nine times the bulk concentration can develop [45]. RBC col-

lisions and rotational motions also enhance mixing and transport of platelets

near the vessel wall, where they are strategically placed for adhesion and acti-

vation. In streamline (laminar) flow, shear stresses are maximal at the vessel

wall, and affect endothelial cell morphology and function. Endothelial cells
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elongate and align in the direction of flow. Furthermore, high shear forces at

the vessel wall may activate platelets and increase their vWF-induced adhe-

sion to exposed subendothelium. However, high wall shear forces also increase

removal of platelet aggregates, thrombin and fibrin monomer; hence stasis (in-

duced by internal or external pressure) is required to allow fibrin formation and

secondary hemostasis.

Atherogenesis occurs preferentially at arterial bifurcations and bends, at

which sites flow separation results in areas of low-flow, low-shear recirculation

of blood cells and proteins, in contact with the vessel wall [41, 42]. Such flow

conditions may favour adhesion of platelets and monocytes, as well as infiltra-

tion of plasma components such as low density lipoprotein (LDL) cholesterol

and fibrinogen. Rheological variables such as wall shear stress, and blood vis-

cosity and its determinants (hematocrit, fibrinogen, LDL) have been correlated

with the extent of ultrasonic carotid artery intima-media thickening (IMT) [46].

This may partly account for the predictive value of blood viscosity for stroke in

the same study [46]. Blood viscosity has also been associated with the extent of

coronary and peripheral atherosclerosis.

Arterial thrombosis usually follows rupture of atherosclerotic plaques, and

is the commonest pathophysiological process in acute coronary syndromes, MI

or IS. High intra-stenotic shear stresses may be one factor promoting arterial

plaque rupture, and through high-shear activation of blood platelets they may

also promote the initial platelet-rich “white head” of arterial thrombi. Distal to

the atherothrombotic stenosis, low-shear stresses may promote the subsequent,

fibrin-and red-cell-rich “red tail” [3]. Low post-stenotic perfusion pressure may

also promote the ability of blood viscosity (which increases under low shear
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conditions, due to red cell aggregation), platelet microemboli, and activated

leucocytes to reduce microcirculatory blood flow, promoting infarction. These

rheological mechanisms may explain the associations of blood and plasma vis-

cosity, hematocrit, erythrocyte sedimentation rate (ESR; which reflects red cell

aggregation), white cell count, fibrinogen and von Willebrand factor with the

risk and the outcome of myocardial, cerebral and limb infarction [47].

1.2 Previous mathematical models

Complexity of blood coagulation and flow has been an obstacle and a simulat-

ing challenging factor for theoretical research in hemostasis and thrombosis for

decades. Recent decades witnessed an explosion of mathematical modeling and

computer-simulation-based research in all areas of biochemistry and biology,

including coagulation. Two possible reasons could be suggested to explain the

popularity of theoretical methods. First, efficient theoretical analysis is possible

only when a sufficient amount of empirical information is collected. Second,

the complexity of biochemical objects makes analysis of mathematical models

extremely complicated without computer simulation. Thus the role of mathe-

matical and computer modeling gradually becomes more and more important

in the selection of the most effective experimental approaches, and blood coag-

ulation is not an exception in this sense.

The function of the complex reaction network of coagulation is to provide

thrombin where and when it is needed to form the fibrin. Understanding the

roles of the system components (feedback loops, inhibitors, platelets functions,

etc) in this regulation is important for a therapeutic control of thrombotic and
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bleeding disorders. Initial theoretical studies of the system structure were stim-

ulated by the hypothesis that reactions of coagulation form a cascade [48]. The

study of Levine [49] analyzed the kinetics of a simple enzymatic cascade consist-

ing of second-order reactions, with each enzyme being inhibited in a first-order

reaction. The system response (kinetics of the bottom enzyme of the cascade)

was a pulse with an amplitude proportional to the degree of stimulation, and

the steepness of the initial kinetics increased with the increase of the number of

stages in the cascade. Thus, the amplification role of the cascade was demon-

strated. Later, rapidly increasing volume of experimental knowledge about the

coagulation system induced modifications of this model. Models of greater

complexity, which brought together the kinetics of various sets of reactions and

included feedback loops and inhibitors under different reaction conditions (like

flow, extent of stimulus, etc.), emerged towards the late 1980s [50, 51]. Jones and

Mann [52] presented an early large scale model for thrombin generation via the

extrinsic pathway, and extended it to include the role of inhibitors [53]. Leipold

and coworkers [54] developed a linear system of ordinary differential equations

(ODEs) to simulate the generation of thrombin and compared with published

experimental results without the adjustment of any parameter value.

Within the context of this historical trend, individual research groups have

focused on certain important questions related to the coagulation response. Bel-

trami and Jesty [55] focused on the threshold response of simple representa-

tive systems of the enzyme cascade, and found that the activation threshold of

these systems was affected by flow rate, the size of the patch/injury, initial con-

centrations of active enzymes, etc. Basmadjian and coworkers investigated the

possible steady states of their models, and also studied the regulation of the

activation threshold by flow rate, surface area (of injury), and the type of sur-
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face [56, 57, 58]. Khanin and coworkers presented one of the earliest models

of thrombin generation in plasma that integrated five zymogen conversion re-

actions, and investigated the regulation of the activation threshold by levels of

stimulation of VII and XII [50], and the sensitivity of clotting time to concen-

trations of zymogens [59]. These models primarily described spatially homoge-

nous systems, i.e., ODEs were used. Kuharsky and Fogelson [60] also reported

a threshold manner to changes in the availability of binding sites for surface

bound enzyme complexes. They included the role of bulk flow in controlling

the mass transfer of reactants to and from a thin shell where they were well

mixed and also with different levels of binding site densities; such study elim-

inated the role that convection and diffusion may in all probability play in clot

formation and, especially, clot dissolution but remain significant in view of the

insight into the coagulation pathway that they offer.

In addition, numerous empirical studies have shown [61, 62], platelet aggre-

gation [63] and clot formation can be highly spatially variable, especially when

flow disturbances or highly reactive surfaces are present. Predicting such varia-

tions may be important if one is to accurately determine where clinically signif-

icant thrombi will form [64]. Studies on the growth of clots upon the activation

of a series of enzymatic reactions, chosen to represent various features of the

coagulation pathway, have emerged since late 1980s. Basmadjian used classical

fluid dynamical correlations to estimate critical ranges of thrombus height and

fluid shear rate which predisposed to embolization [65]. He also predicted that

thrombus porosity and fluid inertial effects have relatively less effect on throm-

bus stability than drag forces. Ataullakhanov and coworkers studied the growth

and termination of clot formation in spatially inhomogenous unstirred systems

primarily due to contact activation (intrinsic pathway) by means of a mathemat-
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ical model [66, 67]. Post-activation, the growth of the fibrin clot into the blood

zone was studied in one spatial dimension. In a similar study, Ataullakhanov et

al. [68] described and corroborated a slightly improved version of this model,

and again investigated the spatial growth of a clot on a segment. Sorensen et

al. [69, 70] proposed a set of coupled convection-reaction-diffusion equations

to govern 6 components that the authors believed were crucial to the processes

governing platelet activation and deposition in flowing human blood. They,

however, incorporated these reactions as taking place in a Newtonian (Navier-

Stokes) fluid, and solved the equations governing the platelets and platelet ago-

nists while ignoring the effect of the growing thrombus on the flow field. Similar

models which specifically attempt to predict spatially varying platelet deposi-

tion in the presence of two-dimensional disturbed flow have been published

by David et al. [71], who consider stagnation-point flow, and Wootton et al.

[72], who simulated axisymmetric stenoses. Both models used steady-state two-

dimensional convection-diffusion equations to model platelet transport, with

adhesion simulated by a non-saturating surface-flux boundary condition whose

rate constant was the only adjustable parameter in the model. And surprisingly,

both models showed the poorest agreement between predicted and experimen-

tal results in the downstream, fully-developed-flow regions of their geometries,

rather than in the disturbed flow regions.

While in almost all the mathematical models that have been published thus

far decoupled the complex reactions in the coagulation cascade from the rheo-

logical aspects of the local environment. In these studies, the coagulation net-

work was either simplified or only activities of platelets were considered in the

flowing blood. In addition, scant attention has been paid to the role of the fib-

rinolytic mechanisms or shear stresses in clot formation, growth and dissolu-
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tion [9]. Thus in this study, we developed, to the best of our knowledge, the

most detailed model of thrombus formation in both normal and pathological

conditions; we further studied the effect of flow and wall shear stresses on the

formation and dissolution of thrombi.

1.3 Computational systems biology and sensitivity analysis

Computational systems biology, a term coined by Kitano in 2002 [73], is a field

that aims at a system-level understanding by analyzing biological data using

computational techniques [74]. As the need for a complete quantitative part list

in biology is recognized, the understanding develops that living systems, e.g.,

cells, tissues, and organisms, cannot be understood by studying just individual

parts. Under the guiding vision of systems biology, sophisticated computational

methods, e.g. mathematical modeling and sensitivity analysis, are currently be-

ing developed to analyze the data generated by this new technology in a sys-

tematic fashion.

1.3.1 Computational systems biology

These days it is well recognized that the many mechanisms involved in the pro-

liferation of complex diseases such as cancer cannot be understood solely on

the basis of knowing all of their molecular components. However, a lack of

system-level understanding of cellular dynamics has prevented any substantial

increase in the number of new drugs available to the public and any increase

in drug efficacy or eradication of any specific diseases. In contrast, pharma-
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ceutical companies are currently lacking criteria for selecting the most valuable

targets, research-and-development expenses skyrocket, and new drugs rarely

hit the market and often fail in clinical trial, while physicians face an increasing

wealth of information that needs to be interpreted intelligently and holistically

[75]. Analysis of this dilemma reveals primary difficulties due to the enormous

biomolecular complexity, structural and functional unknowns in a large portion

of gene products, and a lack of understanding of how the concert of molecular

activities transfers into physiological alterations and disease.

We are at a very important turning point in biology, in that the ever-

increasing quality and quantity of molecular data now provides the basis for

building mathematical models of biological processes with increasing complex-

ity. The general focus of biomedical research needs to change from a primarily

steady-state analysis at the molecular level to a systems biology level capturing

the characteristic dynamic behavior. Such concepts will likely transform cur-

rent diagnostic and therapeutic approaches to medicine [75]. Assmus et al. and

others maintained that analysis of the dynamics of human relevant networks

using predictive computer models and high-throughput data generation would

play an increasingly important role in medical research and the elucidation of

disease mechanisms [76, 77].

The multitude of computational tools needed for systems biology research

can roughly be classified into two categories [78]: system identification and be-

havior analysis. Once the system has been identified and a model constructed,

the system behavior can be studied, for instance, by numerical integration or

sensitivity analysis against external perturbations. In molecular biology, sys-

tem identification amounts to identifying the regulatory relationships between
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genes, proteins, and small molecules, as well as their inherent dynamics hidden

in the specific kinetic and binding parameters. System identification is arguably

one of the most complicated problems in science. Whereas behavior analysis is

solely performed on a model, model construction is a process tightly connected

to reality.

1.3.2 Sensitivity analysis

Sensitivity analysis is an essential part of analyses for complex systems [79].

Specifically, sensitivity analysis refers to the determination of the contributions

of individual uncertain analysis inputs to the uncertainty in analysis results. A

number of approaches to sensitivity analysis have been developed, including

differential analysis [79], Monte Carlo analysis [80], and variance decomposi-

tion procedures [81]. Overviews of these approaches are available in several re-

views [82, 83]. The focus of this study is on Monte Carlo (i.e., sampling-based)

approach to sensitivity analysis, which is both effective and widely used [82, 80].

Analyses of this type involve the generation and exploration of a mapping from

uncertain analysis inputs to uncertain analysis results. The underlying idea is

that analysis results y(x) are functions of uncertain analysis inputs x. This leads

to the question: How important are the individual elements of x with respect to

the uncertainty in y(x)? The goal of sensitivity analysis is to answer the ques-

tion.

Sensitivity analysis has also been used to explore the robustness and fragility

of metabolic and signaling networks. Robustness, the ability to maintain system

performance in the face of perturbation and uncertainty, is a desirable feature
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in both biological as well as man-made networks, machines and systems [84].

Conversely, fragility, i.e., extreme sensitivity to small perturbations, is a very un-

desirable trait that could lead to catastrophic system failure following seemingly

innocuous perturbations, e.g., a Boeing 777 crashing because of minor software

failures or microscopic alterations in a few integrated chips [85]. Stelling et al. re-

viewed several examples of robustness in biological networks [84], while Leibler

first computationally predicted and later experimentally verified robust features

of chemotaxis control networks [86, 87]. Bullinger and coworkers explored the

robustness of models of programmed cell death or apoptosis [88], while Stelling

et al. computationally identified points of robustness and fragility, using Monte

Carlo sensitivity analysis and overall state sensitivity coefficients, in models of

circadian rhythm [89]. In this study, the sensitivity analysis was used to extract

qualitative information about the critical elements, i.e., sensitive mechanisms,

in the process of blood clotting, and these mechanisms could serve as a rational

basis for therapeutic target selection.
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CHAPTER 2

COMPUTATIONALLY DERIVED POINTS OF FRAGILITY OF A HUMAN

CASCADE ARE CONSISTENT WITH CURRENT THERAPEUTIC

STRATEGIES 1

2.1 Abstract

The role that mechanistic mathematical modeling and systems biology will play

in molecular medicine and clinical development remains uncertain. In this

study, mathematical modeling and sensitivity analysis were used to explore the

working hypothesis that mechanistic models of human cascades, despite model

uncertainty, can be computationally screened for points of fragility, and that

these sensitive mechanisms could serve as therapeutic targets. We tested our

working hypothesis by screening a model of the well-studied coagulation cas-

cade, developed and validated from literature. The predicted sensitive mech-

anisms were then compared with treatment literature. The model, composed

of 92 proteins and 148 protein-protein interactions, was validated using 21 pub-

lished datasets generated from two different quiescent in-vitro coagulation mod-

els. Simulated platelet activation and thrombin generation profiles in the pres-

ence and absence of natural anticoagulants were consistent with measured val-

ues, with a mean correlation of 0.87 across all trials. Overall state sensitivity

coefficients, which measure the robustness or fragility of a given mechanism,

were calculated using a Monte Carlo strategy. In the absence of anticoagu-

lants, fluid and surface phase factor X/activated factor X (fX/FXa) activity and

thrombin-mediated platelet activation were found to be fragile, while fIX/FIXa

1Deyan Luan, Michael Zai and Jeffrey D. Varner, PLOS Computational Biology, 2007 3(7),
1347-1359. Open Access: No permission is required from the authors or the publishers.
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and fVIII/FVIIIa activation and activity were robust. Both anti-fX/FXa and di-

rect thrombin inhibitors are important classes of anticoagulants; for example,

anti-fX/FXa inhibitors have FDA approval for the prevention of venous throm-

boembolism following surgical intervention and as an initial treatment for deep

venous thrombosis and pulmonary embolism. Both in-vitro and in-vivo experi-

mental evidence is reviewed supporting the prediction that fIX/FIXa activity is

robust. When taken together, these results support our working hypothesis that

computationally derived points of fragility of human relevant cascades could

be used as a rational basis for target selection despite model uncertainty.

2.2 Introduction

The role that mechanistic mathematical modeling and systems biology will play

in molecular medicine and clinical development remains uncertain. Kitano sug-

gested that understanding of critical questions in biology required the integra-

tion of experimental and computational research [73]. Assmus et al. and others

maintained that analysis of the dynamics of human relevant networks using

predictive computer models and high-throughput data generation would play

an increasingly important role in medical research and the elucidation of disease

mechanisms [76, 77]. However, parametric and structural uncertainty remains

an open challenge to mechanistic modeling in medicine.

Strategies that integrate experimental and computational techniques have

had success at elucidating network structures. Arm and Arkin reviewed ex-

perimental and computational techniques to uncover molecular interaction net-

works [90]. The central experimental advancements in the area of protein-
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protein network identification have been the yeast two-hybrid system [91, 92]

and quantitative mass spectrometry proteomic techniques to determine protein

complexes [93, 94]. Young and coworkers explored proteinDNA interactions

using the chromatin immunoprecipitation technique [95] where likely transcrip-

tion factor binding sites were determined using a combination of chromatin im-

munoprecipitation chips and DNA microarrays. Time-lagged correlation matri-

ces [96, 97], genetic programming techniques [98], and network decomposition

strategies have also been used with time-series concentration measurements to

estimate reaction network structures [99].

Sensitivity analysis has been used to integrate model identification and dis-

crimination with optimal experimental design and knowledge discovery. Cho

et al. used sensitivity analysis to study TNF-αmediated NF-κB signalling where

parametric uncertainty was addressed using Monte Carlo sensitivity analysis;

using the best-guess parameter set, a family of random parameter sets was gen-

erated where sensitivity coefficients were calculated for each member of the ran-

dom family [80]. Cho et al. went on to develop a unifying framework, building

upon the earlier work of Kholodenko et al. and Sontag et al. to unravel the func-

tional interactions in biomolecular networks using a stimulus-response strategy

and metabolic control analysis [100, 101, 102]. Kremling et al. investigated the

benchmark problem of growth of a microorganism in a continuous bioreactor

subject to feed shifts using sensitivity-based model identification and discrim-

ination strategies; they determined optimal experimental design and perturba-

tion strategies to identify and discriminate between rival model formulations

[103]. Gadkar et al. identified signal transduction models from time-course mea-

surements using a nonlinear scheme to estimate missing protein measurements

from measured values [104]. They went further and proposed strategies to cal-
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culate D-optimal experimental designs that maximized the experimental infor-

mation used to identify signal transduction models as well as an iterative strat-

egy to explore model structure [104, 105]. Sensitivity analysis has also been used

to explore the robustness and fragility of metabolic and signaling networks. Ro-

bustness, the ability to maintain system performance in the face of perturba-

tion and uncertainty, is a desirable feature in both biological as well as man-

made networks, machines and systems [84]. Conversely, fragility, i.e., extreme

sensitivity to small perturbations, is a very undesirable trait that could lead to

catastrophic system failure following seemingly innocuous perturbations, e.g.,

a Boeing 777 crashing because of minor software failures or microscopic alter-

ations in a few integrated chips [85]. Stelling et al. reviewed several examples of

robustness in biological networks [84], while Leibler first computationally pre-

dicted and later experimentally verified robust features of chemotaxis control

networks [86, 87]. Bullinger and coworkers explored the robustness of models

of programmed cell death or apoptosis [88], while Stelling et al. computation-

ally identified points of robustness and fragility, using Monte Carlo sensitivity

analysis and overall state sensitivity coefficients, in models of circadian rhythm

[89].

In this study, we use tools from systems biology, namely mathematical mod-

eling and sensitivity analysis, to explore the working hypothesis that mecha-

nistic models of human relevant cascades, despite model uncertainty, can be

computationally screened for points of fragility, i.e., sensitive mechanisms, and

that these mechanisms could serve as a rational basis for therapeutic target se-

lection. We test our working hypothesis by computationally screening a mech-

anistic model of the well-studied coagulation cascade developed and validated

from literature sources. After model validation, using 21 published datasets
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generated from two different quiescent in vitro coagulation models, we use

Monte Carlo sensitivity analysis to computationally screen the model for sen-

sitive mechanisms in the presence and absence of natural anticoagulants. We

then contrast the predicted fragile mechanisms with literature to determine if

they are consistent with experimental investigation, thereby proving or disprov-

ing our working hypothesis. While the current development is restricted to co-

agulation, the broader strategy is general and could be applied to an arbitrary

network.

2.2.1 A review of the coagulation cascade

Coagulation, mediated by a family of serine proteases (factors) and a key group

of blood cells (platelets), both of which are normally inactive in the circulation,

is directly relevant to human health and has been suggested by Somogyi and

Greller to be an ideal candidate for in silico drug discovery [106]. Insufficient

coagulation is manifested in disorders such as hemophilia A (1 in 5,000 live

births), hemophilia B (1 in 30,000 live births), or von Willebrand disease (1 in

1,000 live births) [107, 24]. Conversely, unwanted clotting can be a serious com-

plication following surgical intervention and is directly involved in coronary

artery diseases, which collectively account for 38% of all deaths in North Amer-

ica [4].

The salient features of the coagulation cascade included in our model, shown

schematically in Figure 2.2.1 and presented in detail in Appendix A Table A.3,

are reviewed here. Several extensive reviews of the underlying biochemistry

and cell biology of coagulation can be found elsewhere [108, 109, 110, 111].
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Figure 2.1: Schematic of the coagulation cascade. (A) Upstream coagula-
tion factors are activated by substances exposed because of ves-
sel injury; chief among these factors is TF. Activated upstream
coagulation factors initiate a cascade of events that culminate
in the activation of platelets and the key protease thrombin
(FIIa). Thrombin forms an amplification loop by activating it-
self and other coagulation factors as well as platelets. (B) Ac-
tivated platelets then aggregate to form platelet plugs, which
serve as scaffolds for fibrin clots.

There are two pathways that lead to activation of the master protease throm-

bin and eventually to a clotthe intrinsic and extrinsic cascades. It is generally

believed that the extrinsic cascade is the main mechanism of thrombinogenesis

in the blood [110, 111, 22]. Upstream coagulation factors are activated by ma-

terials exposed because of vessel injury chief among these tissue factors (TFs)

[112]; TF and activated factor VIIa (FVIIa) present in the blood form a complex

that activates factor X (fX) and fIX. FXa activates downstream factors, including

fV, fVIII, and fIX. FXa can also, along with FVa, form a complex on the surface of

activated platelets that converts prothrombin (fII) to thrombin (FIIa). TF-FVIIa

is not the only mechanism to activate fX; FIXa and FVIIIa can complex on the
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surface of activated platelets and catalyze the formation of FXa. Platelet localiza-

tion at the wound site occurs through specific interactions between the platelet

and the subendothelium, primarily through recognition of exposed materials

such as collagen, fibronectin, and von Willebrand factor. Localized platelets

are activated by external signals such as adenosine diphosphate and thrombin.

Thrombin irreversibly activates platelets through a family of transmembrane

receptors on the platelet surface called protease-activated receptors [113, 114].

Thrombin, in addition to playing a key role in platelet activation, catalyzes the

conversion of fibrinogen (secreted by activated platelets from internal stores)

to fibrin. Fibrin, with the help of FVIIIa, forms a cross-linked mesh inside the

platelet plug that stops blood flow. Thrombin also activates upstream coag-

ulation factors, thereby forming a strong positive feedback that ensures rapid

activation. Three control points that inhibit thrombin formation are considered

in the model. TF pathway inhibitor (TFPI) downregulates FXa formation and

activity by sequestering free FXa and TF-FVIIa in an FXa-dependent manner.

Antithrombin III (ATIII) neutralizes all serine proteases generated during the

coagulation response, making it perhaps the most powerful control element in

the cascade. Thrombin itself plays an inadvertent role in its own inhibition by

binding the surface protein thrombomodulin (TM), expressed on normal vascu-

lature [23]. The FIIaTM complex catalyzes the conversion of protein C (PC) to

activated PC (APC); APC attenuates the coagulation response by the proteolytic

cleavage of fV/FVa and fVIII/FVIIIa [23].
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2.3 Results

Simulations of TF-FVIIa initiated coagulation in the presence and absence of

anticoagulants were compared with 21 published datasets from two different in

vitro coagulation models [108, 115, 116]. The model parameters used in the val-

idation simulations (unless otherwise noted) were compiled from literature and

are shown in Appendix A Table A.3. Initial conditions for the validation sim-

ulations are given in the Appendix A Table A.2. To gauge the robustness and

fragility of each interaction in the cascade, overall state sensitivity coefficients

(OSSCs) were calculated for each of the 148 model parameters over a family

of random parameter sets (see Methods and Materials). Simulation results are

shown in Figure reffig-sim-results, and error quantification is reported in Ta-

ble 2.1. With the exception of PC and one TFPI case, the model explained the

time-resolved thrombin generation profile following TF-FVIIa addition to qui-

escent synthetic plasma. Platelet activation was assumed to be instantaneous

for the synthetic plasma simulations. To test the ability of the model to simul-

taneously describe platelet activation and thrombin formation, simulations of

TF-FVIIa initiated coagulation were compared with the in vitro cell-based assay

of Roberts and coworkers [115] (Figure 2.2F); both platelet activation and throm-

bin generation profiles were consistent with the cell-based assay after adjusting

three parameters used in the synthetic plasma simulations. Analysis of the sen-

sitivity results for the control (no inhibitors) revealed that thrombin formation

is controlled by both initiation and amplification mechanisms; the 25 most frag-

ile mechanisms for the control are reported in Table 2.2, and the rank-ordered

fragility results for 100 random parameter sets for the control, TFPI, and ATIII

cases are shown in Figure 2.3.2AC. Mechanisms involving fluid and surface
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phase fX/FXa and thrombin were found to be the most sensitive, while mech-

anisms involving fIX/FIXa and fVIII/FVIIIa were found to be robust. Binding

interactions were found to be the most sensitive group of interactions. Analysis

of the significant shifts in the overall state sensitivity coefficients (see Methods

and Materials) revealed both additive and synergistic effects when compared to

the control (Figure 2.3.2).

2.3.1 Thrombin activation in synthetic plasma in the presence

and absence of natural anticoagulants.

The predicted thrombin concentration profiles following the addition of TF-

FVIIa to synthetic plasma were quantitatively consistent with in vitro observa-

tions (Figure 2.2E). The fraction of variation explained by the model (Table 2.1)

was found to be inversely proportional to TF-FVIIa input strength. In the ab-

sence of inhibitor, thrombin generation was characterized by two regimes; at

first, FXa generated thrombin in the bulk fluid, and then subsequently, the

thrombin signal was amplified by activity of FVa-FXa surface complex (pro-

thrombinase). Decreasing the TF-FVIIa input prolonged the initiation phase as

it slowed the rate of generation of FXa and thrombin in the bulk. However, TF-

FVIIa input strength did not influence the maximal rate of thrombin formation

because this is surface dominated; this was observed by comparing the slope or

total net rate of thrombin generation across the TF-FVIIa cases.

TFPI and ATIII influenced both the initiation and amplification of the FIIa

signal (Figure 2.2A and 2.2B). Increased TFPI concentration lead to a longer

initiation delay and a decreased rate of FIIa amplification (Figure 2.2A). TFPI
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Figure 2.2: Model validation using published in-vitro datasets. (A) Throm-
bin concentration versus time as a function of TFPI concentra-
tion following the addition of 1.25pM TF-FVIIa to synthetic
plasma. (B) Thrombin concentration versus time for differ-
ent combinations of TFPI and ATIII following the addition of
1.25pM TF-FVIIa to synthetic plasma. (C) APC concentration
versus time as a function of TM concentration following the
addition of 1.25pM TF-FVIIa to synthetic plasma. (D) Throm-
bin concentration as a function of time as a function of TM
concentration following the addition of 1.25pM TF-FVIIa to
synthetic plasma. (E) Thrombin concentration versus time as
a function of TF-FVIIa initation strenght in synthetic plasma.
(F) Fraction of activated platelets and thrombin concentration
as a function of time in the cell-based assay. The synthetic
plasma assay cases were reproduced from Mann and cowork-
ers [108, 116, 117], while the platelet activation data (panel F)
was reproduced from Roberts et al. [115]. The GraphClick soft-
ware (Arizona Software, www.arizona-software.ch) was used
for data extraction where a coefficient of variation (CV) of ±10
was added to the data to account for extraction and experimen-
tal error. The initial conditions are shown in the Appendix A
Table A.2.
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delayed initiation through interaction with free FXa and TF-FVIIa in an FXa-

dependent manner; sequestering FXa reduced flux through the initial FXa-

dependent route of FIIa generation. Thrombin amplification was negatively im-

pacted by TFPI by reducing free FXa available for the formation of the FVaFXa

surface complex. On average, the model explained 95% of the TFPI dynamics;

one exception was the 2.5 nM TFPI case (Figure 2.2B), where the correlation be-

tween model and experiment was 0.90. In contrast, ATIII reversibly binds FIXa,

FXa, and TF-FVIIa, and irreversibly inactivates FIIa. ATIII produced a differ-

ent thrombin generation profile when compared with TFPI (Figure 2.2B). ATIII

influenced FIIa initiation by sequestering FXa (a mechanism similar to TFPI)

and inactivated FIXa, thereby decreasing the rate of formation of the FVIIIaFIXa

surface complex. However, unlike TFPI, ATIII directly inactivated FIIa, leading

to the decreasing FIIa concentration observed experimentally. While the model

captured the qualitative features of ATIII (3.4 µM) activity, the correlation be-

tween the model and experiment was 0.68, indicating that slightly more than

half of the FIIa dynamics were correctly described. The combination of TFPI (2.5

nM) and ATIII (3.4 µM), consistent with the experiment, completely quenched

FIIa formation following TF-FVIIa addition.

Simulations of APC generation and inhibition of thrombin formation in the

presence and absence of TM were qualitatively consistent with in vitro data

(Figure 2.2C and 2.2D). APC was generated from PC via TM-dependent and -

independent routes; the TM-dependent route catalyzes the conversion of PC to

APC at a rate 400-fold greater than the thrombin route alone [116]. Three dif-

ferent TM concentrations were simulated, and the time course of APC and FIIa

were compared with published data [116]. The correlation between model and

experimental data for APC was approximately 96% for TM values 1 nM. How-
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Table 2.1: Quantification of model error.

Simulation Normalized Standard Error Correlation r2

FVIIa-TF Simulations

5 nM 0.12 0.80

500 pM 0.08 0.93

50 pM 0.08 0.96

10 pM 0.07 0.97

5 pM 0.06 0.98

TFPI Simulations

0 nM 0.07 0.96

1.0 nM 0.06 0.98

2.5 nM 0.13 0.90

5.0 nM 0.06 0.96

ATIII and TFPI Simulations

No TFPI + No ATIII 0.03 0.99

2.5 nM TFPI + No ATIII 0.03 0.99

3.4 µM ATIII 0.21 0.68

2.5 nM TFPI + 3.4 µM ATIII ND ND

APC+TM Simulations

0 nM TM (APC) 0.07 0.95

1 nM TM (APC) 0.06 0.97

10 nM TM (APC) 0.29 0.49

0 nM TM (FIIa) 0.45 0.51

1 nM TM (FIIa) 0.19 0.82

10 nM TM (FIIa) 0.69 0.57

Platelet Activation and Thrombin Simulations

Platelet Activation 0.12 0.94

Thrombin 0.15 0.89
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ever, the average correlation between the predicted and measured FIIa profile

for TM 1 nM was 67%. Simulations of the TM 10 nM case failed to quantita-

tively capture both APC and FIIa formation; the correlation between model and

experiment for APC in the presence of 10 nM TM was 49%, while 57% of the

FIIa dynamics were correctly described.

In-vivo, amplification of the thrombin signal requires the surface of acti-

vated platelets. Preliminary simulations of simultaneous platelet activation and

thrombin formation (Figure 2.2F) were found to be consistent with the results

of the cell-based coagulation assay of Roberts and coworkers [115]. The corre-

lations between the measured and the simulated fraction of activated platelets

and thrombin were 0.94 and 0.89, respectively. In contrast with coagulation in

synthetic plasma, lag periods were observed for platelet activation and throm-

bin generation. Following the initial lag, the activated platelet concentration

increases rapidly to a plateau of ≈100% activation. The thrombin concentration

reaches a maximum of 55 nM at 30 min and then decreases to 0 nM at 70 min be-

cause of ATIII activity. Three parameter values were changed in the cell-based

assay simulations compared with synthetic plasma; the rate constant controlling

the activation of subendothelial bound platelets by thrombin was changed from

9.0 × 10−3 s−1 to 4.5 s−1, the activation of prothrombin by prothrombinase was

changed from 30 s−1 to 6 s−1, and the binding of ATIII to thrombin was changed

from 1.5 × 10−5 nM−1s−1 to 4.8 × 10−5 nM−1s−1.
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2.3.2 The fragility and robustness of the coagulation architec-

ture.

Overall state sensitivity coefficients were calculated for treatment cases AD

shown in Table 2.3. The top 25 fragile mechanisms for the control (case A) are

shown in Table 2.2; four of the top five fragile mechanisms involve the binding

or activation of fX/FXa, with the fifth being platelet activation by FIIa. Other

sensitive mechanisms include the formation of the FVaFXa surface complex, the

activation of thrombin by the FVaFXa complex, and the activation of surface

or fluid phase fIX and fV. Fragility is spread across initiation and amplification

mechanisms; 14 of 25 fragile mechanisms were upstream of the FVaFXa or FVI-

IIaFIXa surface complexes, while the remaining 11 involved platelet activation,

FVaFXa activity, and FIIa inactivation. Binding interactions were found to be the

majority of fragile mechanisms; 21of 25 of the top fragile points were binding

interactions. Six paired binding interactions were found to be sensitive, indicat-

ing affinity was controlling in these cases; the exception was the TF-FVIIaX and

VaP5sXaP10s complexes, where on rate, catalytic turnover, and off rate were all

found to be sensitive. Of the predicted robust mechanisms, the most nonintu-

itive were the formation and activity of the FVIIIaFIXa surface complex respon-

sible for FXa amplification.

Statistically significant changes in overall sensitivity coefficients relative to

the control were used to gauge the importance of mechanisms in each treatment

case. For example, if the sensitivity of a binding interaction increased relative to

2A family of random parameter sets (N = 100) was generated by perturbing the nominal
parameter by up ±50%. OSSCs were calculated for each random family member where the
resulting OSSC values for each parameter were scaled by the maximum OSSC. Statitics of the
population of scaled OSSC values were computed and the mean OSSC value (µ) ± one standard
deviation (σ) is reported.
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Table 2.2: The twenty most fragile coagulation mechanisms in the absence
of inhibitors.2

µ ± σ Reaction Description

0.85±0.12 TF-FVIIa-Xa→ TF-FVIIa+Xa X activation by TF-FVIIa (catalytic)

0.85±0.21 X+P10s
 X-P10s X binding with platelet active sites (on)

0.85±0.21 X-P10s
 X+P10s X binding with platelet active sites (off)

0.83±0.22 Xa+P10s
 Xa-P10s Xa binding with platelet active sites (on)

0.77±0.17 PL-IIa→ AP+IIa Platelet activation by thrombin (catalytic)

0.62±0.18 X+TF-FVIIa
 X-TF-FVIIa X binding with TF-FVIIa (on)

0.57±0.28 II-P2s-Va-P5s-Xa-P10s→ IIa-P2s+Va-P5s-Xa-P10s IIa activation by prothrombinase (catalytic)

0.53±0.20 Xa+IX
 Xa-IX Binding of IX by Xa (on)

0.52±0.25 II-P2s+Va-P5s-Xa-P10s
 II-P2s-Va-P5s-Xa-P10s IIa interaction with prothrombinase (on)

0.50±0.18 Xa-IX
 Xa+IX Binding of IX by Xa (off)

0.48±0.19 X+TF-FVIIa
 X-TF-FVIIa X binding with TF-FVIIa (off)

0.38±0.17 IX+TF-FVIIa
 IX-TF-FVIIa Binding of IX by TF-FVIIa (on)

0.38±0.17 Va-P5s + Xa-P10s
 Va-P5s-Xa-P10s Formation of prothrombinase (on)

0.35±0.17 Va-P5s+Xa-P10s
 Va-P5s-Xa-P10s Formation of prothrombinase (off)

0.31±0.18 IIa+P2s
 IIa-P2s IIa binding with platelet active sites (off)

0.31±0.17 IX+TF-FVIIa
 IX-TF-FVIIa Binding of IX by TF-FVIIa (off)

0.23±0.19 V-P5s + IIa-P2s
 V-P5s-IIa-P2s Activation of V by IIa (on)

0.23±0.10 PL + IIa
 PL-IIa Activation of platelets by IIa (on)

0.22±0.10 TF-FVIIa
 TF + FVIIa Interaction of FVIIa with TF (off)

0.20±0.08 IX+P9s
 IX-P9s IX binding with platelet active sites (on)

0.20±0.08 IX+P9s
 IX-P9s IX binding with platelet active sites (off)

0.19±0.08 X+II
 X-II X binding with II (on)

0.19±0.13 II+P2s
 II-P2s II binding with platelet active sites (on)

0.18±0.10 IIa→ IIa IIa inactivation (catalytic)

0.18±0.15 IX-P9s+Xa-P10s
 IX-P9s-Xa-P10s IX binding with Xa on platelet surface (on)
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Table 2.3: Treatement cases considered in the sensitivity analysis.

Case FVIIa-TF (pM) TFPI (nM) ATIII (µM) PC (nM) TM (nM)

A 1.25 – – – –

B 1.25 2.5 – – –

C 1.25 – 3.4 – –

D 1.25 2.5 3.4 – –

the control (became more fragile), then that interaction assumed increased im-

portance in the treatment case. Conversely, a decrease in sensitivity relative to

the control (mechanism became more robust) indicated a decrease of the overall

impact of the mechanism. The anticoagulants TFPI and ATIII modulate throm-

bin formation by different mechanisms and have distinct regions of molecular

influence. Although ATIII and TFPI share a common target (FXa), only two of

15 significant OSSC shifts were shared between the treatment cases (cases B and

C) relative to the control (case A). TFPI was found to influence thrombin forma-

tion primarily through the FXa-specific interaction with TF-FVIIa; there were 13

mechanisms whose OSSC values changed significantly in response to TFPI (case

A versus case B), nine of which become more robust, while two become more

fragile (Figure 2.3.2B). TFPI reduced the fragility of the affinity of fIX and fX for

TF-FVIIa, the sensitivity of TF-FVIIamediated formation of FXa, the affinity of

FXa for fluid phase fIX, the stability of the TF-FVIIa complex, and the binding

of fX and FXa with free-platelet binding sites. Conversely, TFPI increased the

fragility of the off rate governing the disassociation of FXa from platelet binding

sites and the interaction of itself with FXa. While ATIII had a more pronounced

effect on FIIa generation than TFPI alone (Figure 2.2B), only four mechanisms

were significantly affected by ATIII (case A versus case C). ATIII influenced
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Figure 2.3: Sensitivity analysis of the coagulation cascade. OSSCs were
calculated using randomly generated parameter sets con-
structed by perturbing the nominal parameter set by up to ±
50% for each parameter (N=100). (A-C): The x-axis denotes the
trial index (index of the random parameter set), while the y-
axis denotes the fragility index. The fragility index is calculated
by determining the parameter index of the rank-ordered the
OSSC values (The parameter index corresponding to the most
fragile parameter has fragility index of 1; the next fragile is 2,
while the most robust parameter has a fragility index of 148).
The fragility index shows the robustness of a parameter; the
smaller the fragility index, the more fragile the parameter. The
parameter types are color-coded (shown in the color bar) and
organized by biological function: 1-16, subendothelium inter-
actions; 17-40, plasma interactions; 41-62, platelet surface bind-
ing; 63-77, platelet activation; 78-107, reactions on platelet sur-
face; and 108-148, inhibitory reactions. (D-F) The OSSC values
from TFPI, ATIII, and TFPI+ATIII cases versus the control.

thrombin formation through direct interaction with FXa and FIIa; ATIII reduced

the sensitivity of the affinity of FXa for fIX in the fluid phase, while the on rate

governing the binding of FXa and FIIa with ATIII was found to be of increased

importance.
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The predicted mechanism of action of anticoagulant combinations is not

equivalent to the union of the individual treatment cases. The combination

of TFPI + ATIII (case D) resulted in 14 statistically significant shifts relative

to the control. Initiation mechanisms, e.g., the affinity of TF-FVIIa for fX and

the affinity of FXa for fIX in the bulk fluid, were predicted to be less impor-

tant. Conversely, the sensitivity of the off rate governing FXa interaction with

the platelet surface was found to increase. Some amplification mechanisms

became more robust, while others became fragile. The activation of platelets

by FIIa via the protease-activated receptor family of surface receptors became

less important, but the retention of FXa and the affinity of the surface FVaFXa

complex increased in importance. Last, trivial interactions resulting from the

addition of TFPI and ATIII (the direct interactions of TFPI and TF-FVIIa in an

FXa-dependent manner and ATIII with FXa) were predicted to become fragile

relative to the control. Shifts in sensitivity coefficients were not additive across

treatment cases; e.g., the compilation of significant shifts resulting from TFPI

and ATIII addition was found not to be equivalent to the combination treat-

ment. Of the 14 significant shifts observed in the TFPI + ATIII case (relative to

the control), four mechanisms found to be sensitive in the individual cases were

missing in the combination, while three novel shifts were observed. Interac-

tion of fX/FXa with surface binding sites and the disassociation of the TFFVIIa

complex were found not to be significantly different than the control. The novel

shifts in the TFPI + ATIII combination were all amplification mechanisms; the

catalytic rate of IIa formation by FVa-FXa and the rate of platelet activation by

IIa were found to be less important in the ATIII + TFPI combination, while in-

teraction of surface-bound fV and FXa was found to increase in importance.
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2.4 Discussion

The predicted fragile mechanisms in the control are molecular targets in current

anticoagulation preclinical development, clinical therapies, and clinical trials.

Four of the top five fragile mechanisms involved fX/FXa or the activation of

platelets by FIIa. Anti-fX/FXa and direct thrombin inhibitors (DTIs) are two

important classes of anticoagulants (see Table 2.4 for a sampling of current clin-

ical trials involving anti-fX/FXa strategies and DTIs). Fondaparinux, a 1.7 kDa

pentasaccharide which selectively binds ATIII, is approved for the prevention of

venous thromboembolism following hip fracture surgery, total hip replacement,

total knee replacement, and major abdominal surgery in addition to the initial

treatment of patients with deep venous thrombosis and pulmonary embolism

[118, 119, 120, 121, 122]. Fondaparinux increases the natural inhibitory effect of

ATIII against FXa approximately 300-fold [123, 124]; selective inhibition of FXa

by fondaparinux interrupts thrombin generation and clot formation without in-

activating thrombin itself [125, 126]. Elalamy and coworkers showed in a whole-

blood in vitro assay that fondaparinux prolonged the lag time of prothrombin

activation for all concentrations explored, and for physiologically relevant con-

centrations (0.110.28 anti-FXa IU/ml), reduced the maximal rate of thrombin

formation to approximately 47%55% of its nominal value [127]. Herbert and

colleagues explored fondaparinux and the sulfated analog SANORG 32701 in

in vivo mouse, rat, and rabbit coagulation models [128, 129]; SANORG 32701

has a high affinity for ATIII (Kd = 3.7 0.7 nM) and shows more potent anti-FXa

activity (1,100 31 versus 850 21 U/mg for fondaparinux). DTIs have also been

explored as anticoagulants [130]. Thrombin activity is mediated by three protein

domains; an active site catalyzing protease activity and two exosites controlling
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Table 2.4: Ten example clinical trial for FXa and DTIs.3

Trial Identifier Treatment Purpose Target Mechanisms

NCT00412464 Fondaparinux Dose/PK study in thrombotic children ATIII-dependent FXa inhibitor

NCT00413374 Enoxaparin Outpatient treatment for DVT and/or PE ATIII-dependent FXa inhibitor

NCT00423683 Arixtra Clot prevention in cancer patients ATIII-dependent FXa inhibitor

NCT00245856 Fragmin Treatment of upper extremity DVT ATIII-dependent FXa/FIIa inhibitor

NCT00353678 YM150 Prevention of clot formation following HRS Direct FXa inhibitor

NCT00371683 Apixaban Prevention thrombosis following KRS Direct FXa inhibitor

NCT00180674 Ximelagatran Anticoagulation in liver fibrosis Direct II/IIa inhibitor

NCT00334464 Warfarin Establish pharmacogenetic warfarin dosing FVII, IX, X, and II inhibitor

NCT00206089 Melagatran Safety and efficacy of combination treatment Direct II/IIa inhibitor

NCT00206063 Ximelagatran Long-term tolerability of ximelagatran Direct II/IIa inhibitor

substrate binding [131]. Our sensitivity analysis predicts thrombin activation

of platelets is a key mechanism; Sarich et al. have explored the DTI ximelaga-

tran in healthy male volunteers [132]. Thrombin generation, platelet activation,

and the thrombinantithrombin complex were monitored in shed blood collected

from skin incisions in 120 healthy male volunteers following oral administration

of ximelagatran. Oral ximelagatran showed a rapid and statistically significant

decrease in all endpoints relative to control. When taken together, the fonda-

parinux, SANORG 32701, and ximelagatran results present a clinical basis in

both in vitro and in vivo coagulation studies for the prediction that fX/FXa and

IIa are fragile components of the coagulation architecture.

Mechanisms involving fIX/FIXa, consistent with multiple lines of experi-

mental evidence, were predicted to be moderately robust. Feuerstein et al. ex-

3Clinical trial information was assembled on May 15, 2007, from http://ClinicalTrials.gov
using the search terms thrombosis and thromboembolism, where both open and closed trials were
accepted; the search generated 215 clinical trials for thrombosis and 51 studies for thromboem-
bolism. DVT, deep venous thrombosis; HRS, hip replacement surgery; KRS, knee replacement
surgery; PE, pulmonary embolism.
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plored inhibition of fIX/FIXa using a murine anti-fIX/FIXa antibody (BC2) in

a male Sprague-Dawley rat model [133]. The fIX/FIXa activity and the acti-

vated partial thromboplastin time (aPTT) endpoints were monitored ex vivo

following intravenous infusion of the BC2 antibody. Feuerstein et al. found that

fIX/FIXa activity could be reduced by as much as 2.5-fold before any significant

change in the aPTT was observed; only after > 90% of the fIX/FIXa activity was

eliminated was there a 3.5- to 4-fold increase in aPTT. Benedict et al. explored

the contribution of fIX/FIXa to intravascular thrombosis in a canine coronary

thrombosis model [134]. Animals received an intravenous bolus of saline (vehi-

cle), bovine glutamyl-glycyl-arginyl-FIXa (FIXai; a competitive inhibitor which

prevents the assembly of the FVIIIa-FIXa complex [135, 136, 137]), bovine fIX, or

heparin. Animals that received saline or bovine fIX developed a coronary occlu-

sion due to a fibrin/platelet thrombus in approximately 1 h; conversely, FIXai

decreased coronary thrombus occlusion in a dose-dependent manner. However,

FIXai administration was not accompanied by increased bleeding at abdominal

and chest-wall incision sites, leading Benedict et al. to conclude, consistent with

the earlier work of Weiss and Lages [138], that direct TF-FVIIamediated activa-

tion of fX may be the primary mechanism of fX activation in blood obtained

from bleeding wounds. While our prediction that FVIIIa-FIXamediated fX ac-

tivation is robust is consistent with Benedict et al., the robustness of fIX mech-

anisms should be further explored using in vivo animal models or cell-based

assays to control for artifacts introduced by the synthetic plasma model.

Overall state sensitivity coefficients and shifts in sensitivity provide insight

into the potential method of action of coagulation inhibitors, including synergis-

tic effects, but are not predictors of clinical performance. The naive perspective

that a specific inhibitor influences only its target and nothing else is not con-
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sistent with our sensitivity analysis. Consider the sensitivity results for TFPI;

13 different mechanisms were predicted to change significantly relative to the

control. These shifts included not only the direct interactions of TFPI with FXa

and TF-FVIIa, but also secondary effects like FXa interaction with fluid phase

fIX. Moreover, the direction of shift, i.e., toward sensitivity or robustness, gives

insight into the mechanism of action and the response of the network to the

anticoagulant. In the case of TFPI, parameters associated with fluid phase FXa

activity became more robust relative to the control, indicating these mechanisms

were of decreased importance. Conversely, the off rate governing the disassoci-

ation of surface-bound FXa became more fragile relative to the control; keeping

FXa bound became important as only fluid phase FXa binds TFPI in our model.

However, while shifts in sensitivity coefficients might be a useful predictor of

the network response, they are not predictors of clinical performance. No infor-

mation about practical issues in patients, e.g., bioavailability, therapeutic win-

dow, unexpected toxicities, etc., was gained from sensitivity analysis of the net-

work in isolation. Perhaps embedding the network into a pharmacokinetic or

physiologically based pharmacokinetic (PBPK) model and then exploring the

sensitivity profile of the augmented system could give insight into factors such

as bioavailability and therapeutic window.

Despite parametric and structural uncertainty, the model captured the bulk

of the thrombin generation dynamics resulting from TF-FVIIainitiated coagula-

tion in the presence and absence of natural anticoagulants. However, several

challenges remain before the model is relevant to in vivo phenomena. First, pro-

and antiplatelet activation mechanisms operating on the endothelium should

be refined and/or included in the model. Predicted thrombin and APC concen-

trations in the presence of TM were not consistent with in vitro synthetic plasma

40



measurements for TM concentrations > 10 nM. The discrepancy between IIa

and APC values remained despite changes in parameters indicating a potential

structural issue with the model. Also not considered was the active role played

by the endothelium; endothelial cells secrete anticoagulants (e.g., nitric oxide

[NO] and prostacyclin) and express surface proteins (e.g., CD39). CD39 inhibits

platelet activation by converting adenosine diphosphate, a potent inducer of

platelet activation, into adenosine monophosphate [139]; however, CD39 may

play a dual role, as Eniyoji et al. showed ∆CD39 mice had prolonged bleeding

times and decreased platelet activation [140]. Second, the predicted fraction of

activated platelets and the concentration of key complexes on the platelet sur-

face need to be quantified under a variety of conditions. Initial simulations of si-

multaneous thrombin formation and platelet activation were consistent with the

cell-based assay of Roberts and coworkers [115] (after changing three parameter

values). However, these simulations and the cell-based assay were conducted

assuming no flow and no regulatory input from the endothelium. Moreover,

given the role that activated platelets play in the amplification of the throm-

bin signal, the predicted concentration of key complexes on the platelet surface,

e.g., the FVIIIaFIXa and FVaFXa complexes, need to be validated. Third, the cell

biology of coagulation and clot formation must be embedded in a description

of physics occurring in clot formation. Several researchers have explored the

role that blood flow plays upon the formation of clots. Antaki and coworkers

developed a 2-D model of platelet deposition and activation in flowing blood

[69]. The Antaki model was able to describe the axial platelet deposition on col-

lagen under parallel-plate Poiseuille flow for a range of wall shear rates [70].

Diamond and coworkers have produced a rich body of work exploring the re-

action complexity of human blood, cell aggregation and adhesion under flow,
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the formation of key complexes on the surface of activated platelets under flow

conditions, establishing high-throughput techniques for real-time monitoring

of coagulation dynamics and have done stochastic modeling of the initiation of

coagulation [141, 142, 143, 144, 145]. These literature sources (and others) will

form the basis of our future development.

2.5 Methods

2.5.1 Formulation of the Model Equations.

The reactions considered in the coagulation model have been compiled from

literature and are given in Appendix A Table A.3. Mass balance equations are

written around each protein or protein complex yielding the set of differential

equations (vector-form):

dx
dt

= Sr (x,k) x (to) = xo (2.1)

The symbol S denotes the stoichiometric matrix (92 × 148), while x denotes

the 92-dimensional concentration vector of proteins or protein complexes and

r (x,k) denotes the 148-dimensional vector of reaction rates. Each row in S de-

scribes a particular protein or protein complex, while each column describes

the stoichiometry associated with a specific interaction in the network. Thus,

the (i, j) element of S denoted by σi j, describes how protein i is connected to

rate process j. If σi j < 0, then protein i is consumed in r j; conversely, if σi j > 0,

protein i is produced by r j, and if σi j = 0, there is no connection between pro-

tein i and rate j. We have assumed mass action kinetics for each interaction in

Appendix A Table A.3; under the mass action assumption the rate expression
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for the general reaction q:

∑
j∈{Rq}

σ jqx j →
∑

k∈{Pq}

σkqxk (2.2)

is given by:

rq

(
x, kq

)
= kq

∏
j∈{Rq}

x−α jq

j (2.3)

where {Rq} denotes the set of reaction q, {Pq} denotes the product set for reaction

q, kq denotes the rate constant governing the qth reaction, and σ jq, σkq denote

stoichiometric coefficients (elements of the matrix S). We have treated every

rate as nonnegative; all reversible reactions in Appendix A Table A.3 were split

into two irreversible reaction steps. Thus, every element of the reaction rate

vector r(x,k) takes the form shown in Equation 2.3.

The model equations were solved using the LSODE routine of the OCTAVE

programming environment (v2.1.71) on an Apple Computer MacOSX (Cuper-

tino, CA; v10.4.8) workstation. Model parameters and structure were compiled

from literature; see Appendix A Table A.3 and [52, 54, 60, 52, 146, 9, 8, 53]. Ini-

tial conditions were taken from each experiment and roughly correspond to in

vivo physiological conditions (see Appendix A Table A.2). While the model pre-

sented here was developed from literature (including other models), it is, to the

best of our knowledge, the only coagulation model to simultaneous describe

all 21 datasets, including coupled platelet and thrombin activation and the ac-

tivity of three different anticoagulants, using only minimal parameter variation

(three-parameter change for a single case).
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2.5.2 Error Analysis of the Coagulation Simulations.

The correlation between model simulations and experimental data and the

scaled standard error were used to quantify the simulation uncertainty. The

correlation between simulation and experimental observation was calculated

using the relationship:

r2 =

∑NT
k=1

(
Ym (tk) − Ȳ

)2

∑NT
k=1

(
Ȳ (tk) − Ym (tk)

)2
+

∑NT
k=1

(
Ym (tk) − Ȳ

)2 (2.4)

where Ym (tk) denotes the model value at time point k, Ȳ denotes the global av-

erage experimental value (average of experimental measurements over time),

Ȳ (tk) denotes the average experimental value at time point k (average of exper-

imental trials at single time point), and NT denotes the number of time points.

The numerator of Equation 5.4 is the variation in the experimental data ex-

plained by the model, while the denominator is the total variation; thus, Equa-

tion 5.4 describes the fraction of the dynamics explained by the model across all

time points. In addition to correlation, the scaled standard error was used to

measure the agreement between the model and the experiment:

sE =
1

maxk

(
Ȳ (tk)

)

∑NT

k=1

(
Ȳ (tk) − Ym (tk)

)2

NT


1/2

(2.5)

Both error metrics were taken from Spiegel [147].

2.5.3 Computation of the OSSCs.

The sensitive or fragile elements of the coagulation architecture were determined

by computing OSSCs [89]. Because each parameter corresponds directly to

a particular molecular interaction in the cascade, OSSC values were used to
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gauge which elements of the architecture influence thrombin formation; large

OSSC values for parameters relative to their peers indicates fragility or sensitiv-

ity, while small OSSC values indicates robustness. OSSC values were calculated

by first calculating the first-order sensitivity coefficients:

σi j (tk) =
∂xi

∂p j

∣∣∣∣∣∣
tk

(2.6)

which are solutions of the matrix differential equation:

ds j

dt
= A (t) s j + b j (t) j = 1, 2, , P (2.7)

subject to the initial condition s j(t0) = 0. In Equation 5.8, the quantity j denotes

the parameter index, P denotes the number of parameters, A denotes the Jaco-

bian matrix, and bj denotes the jth column of the matrix of first-derivatives of

the mass balances with respect to the parameter values (B) are given by:

A =
∂f
∂x

∣∣∣∣∣∣
(x∗,p∗)

B =
∂f
∂p

∣∣∣∣∣∣
(x∗,p∗)

(2.8)

where (x∗,p∗) denotes a point along the nominal or unperturbed system solution.

We solved Equation 5.8 for each parameter using the ODE15s routine of MAT-

LAB 2006b (The Mathworks, http://www.mathworks.com). The matrices A

and B were estimated at each time step using a generalized gradient algorithm

[148]. The OSSC value for parameter j defined as:

S o j (t) =
p∗j
Ns

( NT∑
k=1

Ns∑
i=1

[
1
x∗i

∂xi

∂p j

∣∣∣∣∣∣
tk

]2)1/2

(2.9)

were computed using the scaled first-order sensitivities. The quantity NT de-

notes the number of time points used in the simulation, while Ns denotes the

number of proteins/protein complexes in the model. To account for parametric

uncertainty, the OSSC values (S o j) were calculated over a family of random pa-

rameter sets; we randomly perturbed each nominal parameter by up to ±50%,

then solved the sensitivity balances for each family member.
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2.5.4 Statistical analysis of the shifts in OSSCs.

Two different statistical tests were performed to identify large statistically sig-

nificant shifts in the OSSC values between treatment cases. A Welch t-test [149]

was used to find all statistically significant shifts resulting from the different

treatments, and then a secondary test on the z-score of each shift was preformed

to find only the most prominent significant shifts. The OSSC values calculated

over the family of random parameter sets were assumed to follow normal dis-

tributions in each treatment case. The standard test to determine if the means

of normal distributions are equal is the student t-test; however, the student t-

test assumes the two distributions in question have equal variances. We cannot

a priori guarantee this is true for the OSSC distributions in different treatment

cases; thus, we have chosen the Welch t-test. The Welch t-test is very similar to

the student t-test, with the exception that the two distributions being compared

are not required to have equal variances. The statistical significance of shifts in

OSSC values for each treatment case relative to the control were determined by

performing a Welch t-test with the null hypothesis that the means of the OSSC

values were equal at a 1% significance level. The list of significant OSSC val-

ues was further restricted to only those shifts with a magnitude larger than a

specified z-score (0.1) away from the squared mean displacement over the sig-

nificant OSSC values. We defined the displacement of an OSSC value relative to

the control as:

d j,q =
(
S̄ q

o j
− S̄ c

o j

)2
, j = 1, 2, , 148 (2.10)

where S̄ c
o j

denotes the mean OSSC value over the family of random parame-

ter sets for parameter j in the control, while S̄ q
o j denotes the same quantity for
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treatment case q. A significant shift in OSSC value is accepted if:

d j,q > zσdq + µdq (2.11)

where z denotes a desired z-score, σd j denotes the standard deviation of the total

displacement over all significant OSSC values for the qth treatment case, and µdq

denotes the mean of the significant displacements for treatment case q.
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CHAPTER 3

FALSE NEGATIVE STRUCTURAL UNCERTAINTY DESTROYS THE

ABILITY TO ASSESS THE ROBUSTNESS AND FRAGILITY OF

MOLECULAR INTERACTIONS IN A HUMAN CASCADE

3.1 Abstract

Mechanistic mathematical modeling has not played a significant role in the de-

velopment of new therapies for cancer, cardiovascular diseases or the treatment

of acute events such as thrombosis during or after surgery. A critical issue often

cited for the lack of modeling has been uncertainty. The conventional wisdom

is that the data requirement to fully identify and validate mechanistic models

is too large. One tool that could potentially extract qualitative properties about

interactions in molecular networks, despite model uncertainty, is monte-carlo

sensitivity analysis. In this study, we explored two critical open questions sur-

rounding sensitivity-based knowledge discovery, namely, the impact of para-

metric sampling strategies and network structural uncertainty upon the assess-

ment of the qualitative importance of molecular interactions in an archetype

human network. We tested the working hypothesis that the determination of

fragile and robust mechanisms using sensitivity analysis and uncertain mech-

anistic models was independent of parameter sampling strategy but strongly

dependent upon network structural uncertainty. We tested our working hy-

pothesis by analyzing a mechanistic model of the well-studied human extrinsic

coagulation cascade. Overall state sensitivity coefficients generated using ran-

dom and Latin Hypercube Sampling (LHS) were compared for two different

perturbation sizes. Random and LHS sampling produced a qualitatively simi-
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lar ranking of coagulation mechanisms as measured by the Spearman rank cor-

relation for both small and large parameter perturbations. Sensitivity analysis

of structurally defective coagulation networks was strongly influenced by false

negative structural defects but tolerant to false positive errors. Surprisingly,

no relationship was observed between network connectivity and the impact of

structural errors. However, there was a linkage between the biological function

of proteins and the impact of missing network structural information. When

taken together, these results indicate that while parametric uncertainty can be

partially overcome by sampling feasible parameter regions using one of several

strategies, structural uncertainty remains a critical determinant of our ability to

classify mechanisms as fragile or robust in networks relevant to human health.

3.2 Introduction

The role that mechanistic mathematical modeling and systems biology will play

in molecular medicine and clinical development remains uncertain. Kitano sug-

gested that understanding of critical questions in biology requires the integra-

tion of experimental and computational research [73]. Assmus et al., and oth-

ers maintain that analysis of the dynamics of human relevant networks using

predictive computer models and high-throughput data generation will play an

increasingly important role in medical research and the elucidation of disease

mechanisms [76, 77]. However, mechanistic mathematical modeling at the cel-

lular or network level has not been widely adopted as a data integration or

knowledge generation platform in cell-biology, despite thoughtful discussion

to the contrary [150]. The primary issue limiting the use of mathematical mod-

eling in molecular medicine is uncertainty. The conventional wisdom is that
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the data requirement to fully identify and validate mechanistic models is too

large. Two schools of thought have emerged on the manner in which uncer-

tain mechanistic models can be used to gain qualitative insight into the func-

tion of protein-protein and protein-DNA networks. Bailey hypothesized that

critical qualitative properties of metabolic or signaling networks and perhaps

even entire cells could be determined largely on the basis of network structure

[151]. Certainly, there is literature evidence to support the Bailey hypothesis in

metabolic networks [152, 153, 154, 155] and studies focused upon identifying

the modularity of networks [85, 156, 157] have identified recurrent motifs that

perhaps betray natural design principles. More recently, a second line of in-

quiry in the computational and systems biology community has focused upon

extracting qualitative information about networks, for example the robustness

of network interactions, using uncertain models and sensitivity analysis.

Sensitivity analysis is an enabling tool for the investigation of robustness and

fragility in networks relevant to human health and more generally for model-

based knowledge discovery. Robustness, a long-recognized property of living

systems and networks, allows function in the face of uncertainty while fragility,

i.e., extreme sensitivity, can potentially lead to catastrophic failure following

seemingly innocuous perturbations [85, 158, 159, 160, 84]. Several researchers

have used sensitivity analysis to better understand the robustness and fragility

of metabolic and signalling networks [86, 87, 80, 89, 88, 161]. In the context

of molecular medicine, sensitivity analysis has been used to predict fragile in-

teractions involved in coagulation [162] and mammalian cell-cycle [163] where

these fragile interactions were shown to be consistent with anti-coagulation and

anti-cancer therapeutic strategies. The link between fragility and possible novel

therapeutics has also been suggested by Kitano [164]. Sensitivity analysis has
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also been used to integrate model identification and discrimination with opti-

mal experimental design. Several optimal experimental design and model iden-

tification studies are resident in the literature [100, 101, 103, 104, 105, 165, 166]

along with many techniques to estimate sensitivity coefficients for models com-

posed of ordinary differential equations, differential algebraic and stochastic

equations [167, 168, 169, 170, 171, 172, 173, 174, 175, 176].

In this study, we explore two open questions surrounding sensitivity-based

knowledge discovery using uncertain network models, namely, the impact of

parametric sampling strategies and the influence of network structural uncer-

tainty on the determination of the qualitative importance of mechanisms in-

volved in networks relevant to human health. We explore the working hy-

pothesis that the determination of fragile and robust mechanisms using sen-

sitivity analysis and uncertain mechanistic models is independent of the pa-

rameter sampling strategy but strongly dependent upon the fidelity of the net-

work structure. We test our working hypothesis by analyzing a mechanistic

model of the well-studied human extrinsic coagulation cascade developed and

validated from literature [162] using two-different parameter sampling strate-

gies in combination with sensitivity studies of structurally defective coagula-

tion networks in which we systematically remove structural knowledge from

the cascade. While the current development is restricted to coagulation, the

broader strategy and conclusion drawn from this study may be applicable to

other molecular networks with a similar cascade architecture, e.g., the MAPK

cascade, Caspase activation cascade or the human complement system.
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3.3 Results

The mechanistic extrinsic coagulation cascade model of Luan et al., [162], used

in this study, consisted of 92 proteins and 148 protein-protein interactions (Fig.

2.2.1 and Supplemental Materials). The Luan et al., coagulation model was

formulated using literature parameter values and was validated using 21 dif-

ferent in-vitro data sets taken from two different in-vitro coagulation models

[116, 108, 115]. The robustness and fragility of mechanisms involved in TF-FVIIa

initiated coagulation was determined by computing Overall State Sensitivity

Coefficients (OSSCs) over a family of parameter sets constructed by randomly

perturbing the published parameter set by up to ±50% (N=100, unless otherwise

noted). To control for possible artifacts introduced because of random sampling

and the choice of the perturbation size, we performed two sets of computational

experiments in which the size of the parameter perturbation was varied along

with the method used to generate the family of parameter sets explored. The

role of structural uncertainty was explored by introducing structural defects into

the coagulation network and then quantifying the shifts in the sensitivity rank-

ing of interactions relative to the unperturbed control. The network structure

was perturbed by the addition of single and multiple false positive and false

negative defects. In the nominal network, sensitivity analysis of TF-FVIIa initi-

ated coagulation predicted two key coagulation factors, FXa and FIIa, mediated

the majority of fragile mechanisms while other coagulation factors, such as FIXa

activity, were found to be moderately robust. These results were found to be in-

dependent of both the size of perturbation and the strategy used to generate the

family of parameter sets sampled. Conversely, the ability to estimate the relative

importance of interactions in the coagulation network was found to be strongly
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dependent upon structural knowledge. While false positive defects had little

effect, the introduction of false negative interactions, i.e., connections present

in the control but missing in the defective networks, significantly impacted our

ability to forecast the qualitative significance of mechanisms.

3.3.1 FXa and FIIa mediate fragile mechanisms in TF-FVIIa ini-

tiated coagulation.

Fragile mechanisms for TF-FVIIa initiated coagulation were previously reported

by Luan et al., [162] and are shown in Fig. 3.3.2A; four of the top five fragile

mechanisms involved the binding or activation of fX/FXa with the fifth being

platelet activation by FIIa. Other sensitive mechanisms included the formation

of the FVa-FXa surface complex, the activation of thrombin by the FVa-FXa com-

plex and the activation of surface or fluid phase fIX and fV. Fragility was spread

across initiation and amplification mechanisms; 14/25 fragile mechanisms were

upstream of the FVa-FXa or FVIIIa-FIXa surface complexes while the remaining

11/25 involved platelet activation, FVa-FXa activity and IIa inactivation. Bind-

ing interactions were found to be the majority of fragile mechanisms; 21/25 of

the top fragile mechanisms were binding interactions. Six paired binding inter-

actions were found to be sensitive indicating affinity was controlling in these

cases; the exception was the TF-FVIIa-X and Va-P5s-Xa-P10s complexes where

on-rate, catalytic turnover and off-rate were all found to be sensitive. Of the

predicted robust mechanisms, the most non-intuitive were the formation and

activity of the FVIIIa-FIXa surface complex responsible for FXa amplification.
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3.3.2 The qualitative assessment of fragile and robust coagu-

lation mechanisms was invariant to parameter sampling

methodology.

The coagulation model parameters, although derived experimentally, do not

equally well describe each of the 21 in-vitro data sets used to validate the model.

Thus, a family of parameter sets, generated from the nominal set by random

perturbation, was used to estimate the OSSC distributions shown in Fig. 3.3.2A.

There were at least two potential drawbacks to random parameter sampling;

first, there was no guarantee that all of the interesting behavior was sampled

and similar behavior was likely oversampled and; second, perhaps a quali-

tatively different picture of how the TF-FVIIa initiated coagulation response

varies with model parameters would have emerged if we employed a larger

perturbation size, more parameter sets, etc.

We tested the working hypothesis that the determination of important in-

teractions in coagulation using sensitivity analysis and uncertain mechanistic

models was independent of the parameter sampling strategy. We compared

the results of random sampling with Latin Hypercube Sampling (LHS) [177],

which generates a distribution of plausible collections of parameter values from

a multidimensional distribution, for two different perturbation sizes. OSSC val-

ues calculated using random parameter families constructed by perturbing the

nominal parameter set by < ±50% (N=100; control-small) and < ±2-orders of

magnitude (N=100; control-large) were compared with OSSCs generated us-

ing LHS over the same parameter ranges (maximum/minimum perturbation

±50% and ±2-orders of magnitude, Fig. 3.3.2B and 3.3.2C). Random and LHS
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Figure 3.1: Parametric uncertainty studies using random and latin hyper-
cube sampling strategies. (A) OSSC values for TF-FVIIa initi-
ated coagulation generated using the random sampling over
the small perturbation family (N=100;±50%). (B) Comparison
of OSSC results for TF-FVIIa initiated coagulation for random
versus latin hypercube sampling strategies for the small pertur-
bation family (N=100;±50%). (C) Comparison of OSSC results
for TF-FVIIa initiated coagulation for random versus latin hy-
percube sampling strategies for the large perturbation family
(N=100;±2-orders of magnitude). (D) Comparison of OSSC re-
sults for TF-FVIIa initiated coagulation for small versus a large
random sampling strategy (N=100)
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sampling generated a qualitatively similar ranking of fragile and robust mech-

anisms with a Spearman rank of 0.98 (Fig. 3.3.2B) for the small-perturbation

and 0.89 for the large-perturbation (Fig. 3.3.2C) when compared to the con-

trol, respectively. The small-versus large random-random perturbation had a

Spearman rank of 0.96 (Fig. 3.3.2D) indicating that perturbation size was not a

factor for the coagulation network. When taken together, the sampling results

indicate, at least for the extrinsic coagulation network explored here, that the

qualitative ranking of the importance of coagulation interactions was indepen-

dent of the size and method of the perturbation used to generate the family of

parameter sets sampled. These results were consistent with previous work by

Stelling et al., which showed similar ranking of parameters in models of circa-

dian rhythm between exhaustive and random sampling [89].

3.3.3 The qualitative assessment of fragile and robust coagula-

tion mechanisms was sensitive to false negative but ro-

bust to false positive interactions.

We tested the working hypothesis that the prediction of fragile and robust in-

teractions in molecular networks was dependent upon structural fidelity by

performing monte-carlo sensitivity analysis on four classes of structurally per-

turbed coagulation networks containing both false positive and negative inter-

actions. In each of the structurally perturbed networks, unless otherwise noted,

the nominal parameter set reported by Luan et al., was used to generate a family

of parameter sets (N = 50) by randomly perturbing each nominal parameter by

< ±50%. OSSCs were calculated for each of the structurally perturbed networks
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and compared with the unperturbed parent network (control) by calculating the

Spearman rank correlation.
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Figure 3.2: Impact upon the qualitative classification of interactions be-
cause of single and multiple false-positive structural defects.
(A) Protein connectivity versus the Spearman rank correlation
between structurally perturbed and control networks as a func-
tion of the number of false positive interactions. (B) Protein
connectivity versus the Spearman rank correlation between
structurally perturbed and control networks as a function of
protein species for 30 false positive interactions.

Single and multiple false positive interactions in the coagulation network

had a limited impact upon the classification of mechanisms as fragile or robust.

The addition of single pairwise false positive binding interactions for 100 ran-

domly generated defective networks (see methods) resulted in Spearman rank

coefficients ranging from 0.96 to 1 (data not shown) when compared to the nom-

inal network (control). Moreover, for multiple false positive interactions, the

Spearman rank correlation was invariant to the number of structural defects in-

troduced into the cascade. Over the top ten connected species, the Spearman

rank between the perturbed and unperturbed networks showed small variation

(< 0.02) within individual species as the number of defects increased from 1 to

30, with the exception of IIa and IIa-P2s (Fig 3.3.3A). Conversely, large varia-

tion in the spearman rank was observed between different species; the average

57



spearman rank over all defects for free and bound thrombin was 0.94 and 0.88,

while the inhibitors, ATIII and APC, showed 0.50 and 0.80 correlation, respec-

tively. While no obvious relationship was observed between the spearman rank

and the connectivity of the species in false-positive networks (Fig. 3.3.3B), a

correlation between the biological function and shift in spearman rank was ob-

served. Structural uncertainty in initiation factors such as TF-FVIIa, resulted in

average spearman rank over all trials of 0.69 ± 0.004, and the spearman rank

coefficients for control elements such as ATIII and APC were 0.50 ± 0.023 and

0.80 ± 0.042, respectively. On the other hand, components involved in the ampli-

fication of the thrombin signal, e.g., IIa, IIa-P2s, Va-P5s, or VIIIa-P8s were less

effected with an average spearman rank of 0.82. Thus, structural uncertainty

in mechanisms mediating the initiation of coagulation and control elements re-

straining the cascade was more influential than uncertainty in amplification in-

teractions.

Single and multiple simultaneous false-negative structural defects hindered

or destroyed the ability to correctly classify coagulation interactions as fragile or

robust. OSSC values calculated for 15 different coagulation networks corrupted

with single pairwise false-negative defects (see methods) were compared to the

unperturbed network using the Spearman rank correlation over a family of ran-

dom parameters sets (N=50, ±50%). While the influence of single false-negative

interactions was dependent upon which proteins or protein complexes were

affected, no obvious connection with reaction connectivity was observed (Fig.

3.3). The largest shift in Spearman rank occurred when platelet activation was

disrupted (correlation of 0.68) while the other 14 mechanisms selected had an

average Spearman rank of 0.89 ± 0.04, indicating that on average 90% of the

mechanisms would have been classified correctly in the structurally defective
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Figure 3.3: Impact upon the classification of coagulation interactions fol-
lowing the introduction of single pairwise false-negative struc-
tural defects.

networks. Although single pairwise false-negative defects had a limited im-

pact upon the classification of coagulation mechanisms, multiple simultaneous

false-negative interactions destroyed the ability to classify mechanisms as frag-

ile or robust. OSSC values generated for 2- (Fig. 3.3.3A), 4- (Fig. 3.3.3B) and

8- (Fig. 3.3.3C) partitions showed statistically significant deviation from the un-

partitioned control, where the Spearman rank correlation for the partitioned

networks was found to be inversely proportional to the number of partitions

(Fig. 3.3.3D). Partitioned subnetworks, independent of parameter values, dis-

played a similar fracture pattern versus the control where mechanisms impor-

tant in the control were no longer sensitive in the subnetwork and vice-versa.

Consider the 4-partitioned case (Fig. 3.3.3B). The 4-partitioned subnetworks

(37 ± 5 interactions in each partition) had a global cut of 8 proteins, including

TF-FVIIa, FXa and FIIa. Interestingly, only 30% of the statistically significant
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Figure 3.4: Impact of multiple false-negative structural defects upon the
qualitative classification of interactions in the network. The
coagulation cascade was partitioned into 2, 4 or 8 connected
subnetworks using hMetis and screened for fragile and robust
mechanisms using a random parameter family (N=100; ±50%
perturbation). The partitioned subnetworks were compared to
the unpartitioned control over the same family of random pa-
rameter sets; the 45o dashed-line indicates perfect correlation.
(A) OSSC values for the unpartitioned control versus the 2-
partitioned subnetwork. (B) OSSC values for the unpartitioned
control versus the 4-partitioned subnetwork. (C) OSSC values
for the unpartitioned control versus the 8-partitioned subnet-
work. (D) Spearman rank correlation as a function of the num-
ber of partitions.

fractured interactions involved cut proteins as reactants, thus, more complex

interactions were responsible for up- or downplaying the importance of signif-

icant mechanisms. Conversely, a core subset of interactions were predicted to

be important in both partitioned and unpartitioned networks, e.g., interactions
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involving TF-FVIIa activity. However, the persistence of these key interactions

as fragile mechanisms across 2-, 4- and 8-partitions could have been an artifact

of the partitioning as hMetis solutions are not deterministic.

To test for partitioning artifacts, ten different 4-partitioned subnetworks

were constructed and OSSC values were calculated over the same random pa-

rameter family as the original partitioning studies (Fig. 3.5). The average Spear-

man rank for the family of 4-partitioned subnetworks when compared to the

original was 0.87 ± 0.07 indicating that on average 80 - 94% of the mechanism

ranking was conserved across different partitioning trials. The persistent in-

teractions associated with TF-FVIIa activity appeared on average 70% ± 19%,

indicating these interactions were independent of partitioning.
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Figure 3.5: Pairwise Spearman Rank Correlation for the estimated OSSC
distributions calculated for ten different 4-partitioned coagula-
tion networks over the same family of random parameter sets.
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3.4 Discussion

Consistent with the conclusions drawn by Nayak et al., [163] and the hypoth-

esis of Kitano [164], the predicted fragile mechanisms in TF-FVIIa initiated co-

agulation are molecular targets in current anticoagulation preclinical develop-

ment, clinical therapies and clinical trials. Four of the top five fragile mech-

anisms involved fX/FXa or the activation of platelets by FIIa. Anti-fX/FXa

and Direct Thrombin Inhibitors (DTIs) are two important classes of anticoag-

ulants. Fondaparinux, a 1.7 kDa pentasaccharide which selectively binds ATIII,

is approved for the prevention of venous thromboembolism following hip frac-

ture surgery, total hip replacement, total knee replacement and major abdom-

inal surgery in addition to the initial treatment of patients with Deep Venous

Thrombosis (DVT) and Pulmonary Embolism (PE) [118, 119, 120, 178, 121, 122].

Fondaparinux increases the natural inhibitory effect of ATIII against FXa ap-

proximately 300-fold [123, 124]; selective inhibition of FXa by fondaparinux in-

terrupts thrombin generation and clot formation without inactivating thrombin

itself [125, 126]. Elalamy and coworkers showed in a whole blood in-vitro as-

say that fondaparinux prolonged the lag time of prothrombin activation for all

concentrations explored, and for physiologically relevant concentrations (0.11 -

0.28 anti-FXa IU/ml), reduced the maximal rate of thrombin formation to ap-

proximately 47 - 55% of its nominal value [127]. Herbert and colleagues ex-

plored fondaparinux and the sulfated analog SANORG 32701 in in-vivo mouse,

rat and rabbit coagulation models [128, 129]; SANORG 32701 has a high-affinity

for ATIII (Kd = 3.7 ± 0.7 nmol/L) and shows more potent anti-FXa activity

(1100 ±31 versus 850 ± 21 U/mg for fondaparinux). Direct Thrombin Inhibitors

(DTIs) have also been explored as anticoagulants [130]. Thrombin activity is
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mediated by three protein domains; an active site catalyzing protease activity

and two exosites controlling substrate binding [131]. Our sensitivity analysis

predicts thrombin activation of platelets is a key mechanism; Sarich et al., have

explored the DTI ximelagatran in healthy male subjects [132]. Thrombin gen-

eration, platelet activation and the thrombin-antithrombin complex were mon-

itored in shed blood collected from skin incisions in 120 healthy male volun-

teers following oral administration of ximelagatran. Oral ximelagatran showed

a rapid and statistically significant decrease in all endpoints relative to control.

When taken together, the fondaparinux, SANORG 32701 and ximelagatran re-

sults present a clinical basis in both in-vitro and in-vivo coagulation studies for

the prediction that fX/FXa and IIa are fragile components of the coagulation

architecture.

Mechanisms involving fIX/FIXa, consistent with multiple lines of experi-

mental evidence, were predicted to be moderately robust. Feuerstein et al., ex-

plored inhibition of fIX/FIXa using a murine anti-fIX/FIXa antibody (BC2) in a

male sprague-dawley rat model [133]. The fIX/FIXa activity and the Activated

Partial Thromboplastin Time (aPTT) endpoints were monitored ex-vivo follow-

ing IV-infusion of the BC2 antibody. Feuerstein et al., found that fIX/FIXa activ-

ity could be reduced by as much as 2.5-fold before any significant change in the

aPTT was observed; only after > 90% of the fIX/FIXa activity was eliminated

was there a 3.5 - 4 fold increase in aPTT. Benedict et al., explored the contribu-

tion of fIX/FIXa to intravascular thrombosis in a canine coronary thrombosis

model [134]. Animals received an IV-bolus of saline (vehicle), bovine glutamyl-

glycyl-arginyl-FIXa (FIXai; a competitive inhibitor which prevents the assembly

of the FVIIIa-FIXa complex [136, 135, 137]), bovine fIX or heparin. Animals

that received saline or bovine fIX developed a coronary occlusion due to a fib-
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rin/platelet thrombus in approximately 1 hr, conversely, FIXai decreased coro-

nary thrombus occlusion in a dose dependent manner. However, FIXai admin-

istration was not accompanied by increased bleeding at abdominal and chest-

wall incision sites leading Benedict et al., to conclude, consistent with the earlier

work of Weiss and Lages [138], that direct TF-FVIIa mediated activation of fX

may be the primary mechanism of fX activation in blood obtained from bleeding

wounds. While our prediction that FVIIIa-FIXa mediated fX activation is robust

is consistent with Benedict et al., the robustness of fIX mechanisms should be

further explored using in-vivo animal models or cell-based assays to control for

artifacts introduced by the synthetic plasma model.

The capability to gather cellular protein-protein and protein-DNA interac-

tion data has far outstripped our ability to understand it. Transforming large-

scale interaction data sets e.g., the B-cell interactome compiled by Califano and

coworkers [179], into a better cell or a new therapy requires tools to extract the

qualitatively significance of protein-protein and protein-DNA interactions. The

sampling and structural fidelity studies reported here support the Bailey hy-

pothesis that network structure is a critical factor in our ability to extract qual-

itative information about a network or system. The sampling results suggest

that given even an approximate parameter set it is possible to overcome para-

metric uncertainty by sampling regions of parameter space with one of many

possible strategies. Clearly, the more critical issue is structural uncertainty. Sin-

gle false positive and false negative structural defects were shown to have little

impact. Moreover, multiple false positive interactions appeared to have limited

influence with exception of particular inhibitors. However, multiple false nega-

tive structural defects made it impossible to infer the qualitative significance of

interactions. Unfortunately, protein-protein and protein-DNA interactions de-
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rived both computationally and experimentally are prone to both false positive

and false negative errors. The Yeast Two-Hybrid (Y2H) system [180, 181, 91, 92],

Fluorescence Resonance Energy Transfer (FRET) [182], quantitative Mass Spec-

trometry (MS) proteomic or Chromatin Immunoprecipitation (ChIP)-DNA mi-

croarray techniques [183, 93, 94, 95] have all been used to identify in-vivo bind-

ing interactions. Computational techniques have also contributed significantly

to network identification [184, 185]. However, Y2H assays are prone to false-

positive predictions e.g., in some cases >50% of the reported interactions are

false positives [185]. Moreover, Bork reported that none of the genomics meth-

ods for detecting connections cover more than 60% of the proteins in the yeast

genome and most are biased toward evolutionarily old, highly abundant pro-

teins that are localized in specific subcellular locations [186]. Bader and cowork-

ers have estimated that in yeast 25 - 45% of the reported interactions are likely

false positives and the false negative rates for worm and fly are possibly as high

as 75% and 90%, respectively [187]. When taken together, our results suggest

that using monte-carlo sensitivity analysis to explore large structurally uncer-

tain networks, especially networks corrupted with false negative interactions,

is likely to produce a small number of correct classifications dispersed among

many false results. Until interaction identification tools produce interaction

maps with a higher degree of fidelity, sensitivity analysis will likely have to

be limited to hand annotated networks.

3.5 Conclusions

In this study, we explored two open questions surrounding sensitivity-based

knowledge discovery using uncertain network models, namely the impact of
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parametric sampling strategies and the influence of network structural uncer-

tainty. We showed that conclusions drawn from monte-carlo sensitivity analysis

of the human coagulation cascade were largely invariant to the method used to

generate the family of parameter sets sampled and the size of the parameter

perturbation used. However, structural defects strongly influenced the quali-

tative conclusions drawn from sensitivity analysis. The introduction of single

and multiple false positive defects showed limited impact on the classification

of mechanisms as fragile or robust. Moreover, the introduction of single false

negative structural defects did not have a great influence upon the classification

of interactions in the control. However, multiple simultaneous false negative

interactions introduced by partitioning the coagulation network into 2-, 4- and

8-partitions greatly altered conclusions drawn from our analysis. Thus, these

results indicated that while parametric model uncertainty can be partially over-

come by sampling feasible parameter regions using one of several strategies,

structural uncertainty remains a critical determinant of our ability to classify

mechanisms as fragile or robust.

3.6 Methods

3.6.1 Formulation of the model equations.

The human extrinsic coagulation model of Luan et al., composed of 92 proteins

and 148 protein-protein interactions, was used in this study [162]. Mass balance

equations were written around each protein or protein complex yielding the set
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of differential equations (vector-form):

dx
dt

= Sr (x,k) = g (x,k) x (to) = xo (3.1)

The symbol S denotes the stoichiometric matrix, x denotes the concentration

vector of proteins or protein complexes, r (x,k) denotes the vector of interaction

rates and k denotes the parameter vector. Each row in S describes a particular

protein or protein complex while each column describes the stoichiometry as-

sociated with a specific interaction in the network. Thus, the (i, j) element of S,

denoted by σi j, describes how protein i is connected to rate process j. If σi j < 0,

then protein i is consumed in r j, conversely, if σi j > 0 protein i is produced by

r j and if σi j = 0 there is no connection between protein i and rate process j. We

have assumed mass action kinetics for each interaction in the network; under

the mass action assumption the rate expression for protein-protein interaction

q: ∑
j∈{Rq}

σ jqx j →
∑

p∈{Pq}

σpqxp (3.2)

is given by:

rq

(
x, kq

)
= kq

∏
j∈{Rq}

x−σ jq

j (3.3)

where
{
Rq

}
denotes the set of reactants for reaction q,

{
Pq

}
denotes the prod-

uct set for reaction q, kq denotes the rate constant governing the qth interaction

and σ jq, σpq denote stoichiometric coefficients (elements of the matrix S). We

have treated every protein-protein interaction and catalytic mechanism as non-

negative. All reversible interactions were split into two irreversible steps, thus,

every element of the reaction rate vector r (x,k) took the form shown in Eqn. 5.3.

The model equations were solved using the LSODE routine of the OCTAVE pro-

gramming environment (v2.9.9; www.octave.org) on an Apple Computer Ma-

cOSX (Cupertino, CA; v10.4.8) workstation.
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3.6.2 Computation of overall state sensitivity coefficients.

The sensitive or fragile interactions of the coagulation architecture were deter-

mined by computing Overall State Sensitivity Coefficients (OSSC) [89]. Because

each parameter corresponds directly to a particular molecular interaction in the

cascade, OSSC values were used to gauge which interactions were qualitatively

important. Large OSSC values for interactions relative to their peers indicated

fragility or sensitivity while small OSSC values indicated robustness. The OSSC

value for interaction j was defined as:

O j (t) =
k∗j
NS

( NT∑
h=1

NS∑
i=1

[
1
x∗i

∂xi

∂k j

∣∣∣∣∣∣
th

]2)1/2

(3.4)

where NT denotes the number of time points used in the simulation while NS

denotes the number of proteins/protein complexes in the model. The first-order

sensitivity coefficients:

si j (th) =
∂xi

∂k j

∣∣∣∣∣∣
th

(3.5)

were computed by solving the differential equation:

ds j

dt
= A (t) s j + b j (t) j = 1, 2, ,NP (3.6)

subject to the initial condition s j(t0) = 0. In Eqn. 5.8, the quantity j denotes the

parameter index, NP denotes the number of parameters, A denotes the Jacobian

matrix of the model equations and b j denotes the jth column of the matrix B,

which contains first-derivatives of the mass balances w.r.t. the parameter val-

ues. The quantity s j denotes the vector of first-order sensitivity coefficients w.r.t

parameter j. The Jacobian matrix (A) and the matrix of first-derivatives of the

mass balances w.r.t the parameter values (B) are given by:

A =
∂g
∂x

∣∣∣∣∣∣
(x∗,k∗)

B =
∂g
∂k

∣∣∣∣∣∣
(x∗,k∗)

(3.7)
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where (x∗,k∗) denotes a point along the nominal or unperturbed system solu-

tion. The matrices A and B were numerically estimated at each time step us-

ing a generalized gradient algorithm [148] while the sensitivity balances were

solved using the LSODE routine of the OCTAVE programming environment

(v2.9.9; www.octave.org) on an Apple Computer MacOSX (Cupertino, CA;

v10.4.8) workstation.

3.6.3 Statistical analysis of the shifts in overall state sensitivity

coefficients.

Three different tests were performed to identify large statistically significant

shifts in OSSC values between defective networks and the control. A Welch

t-test [149] was used to find all statistically significant shifts resulting from the

different structural perturbations and then a secondary test on the z−score of

each shift was preformed to find only the most prominent. The OSSC values

calculated over the family of parameter sets were assumed to follow normal

distributions for all cases. The statistical significance of shifts in OSSC values

relative to the control were determined by performing a Welch t-test with the

null hypothesis that the means of the sensitivity coefficients were equal at a

1% significance level. The Welch t-test is similar to the student t-test with the

exception that the two distributions being compared are not required to have

equal variances. The list of significant OSSC values was further restricted to

only those shifts with a magnitude larger than a specified z-score (0.1) away

from the squared mean displacement relative to the control:

d j,q =
(
Ōq

j − Ōc
j

)2
, j = 1, 2, ,NP (3.8)
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where Ōc
j denotes the mean OSSC value over the family of parameter sets for

parameter j in the control while Ōq
j denotes the same quantity for defective case

q. A significant shift in OSSC value was accepted if:

d j,q > zσdq + µdq (3.9)

where z denotes a desired z-score, σd j denotes the standard deviation of the total

displacement over all significant OSSC values for the qth defective case and µdq

denotes the mean of the significant displacements for the structurally defective

case q.

A large statistically significant shift in OSSC value, while indicative of the

shifting importance of an interaction, does not guarantee that an interaction

is ranked differently between cases. To this end, we used the Spearman rank

correlation denoted by ρ and defined as:

ρ = 1 −
6
∑NP

i=1 d2
i

N
(
N2 − 1

) (3.10)

to measure the difference in qualitative ranking between cases. The quantity

di denotes the difference in the ordinal rank of interaction i between a struc-

turally defective network and the control, N denotes the number of pairs of

values and NP denotes the number of parameters considered. The Spearman

rank is bounded by −1 ≤ ρ ≤ 1; a Spearman rank of one indicates that two

ranked lists are identical, a Spearman rank equal to negative one indicates that

two ranked lists are perfectly negatively correlated, while a Spearman rank of

zero indicates that two ranked lists are uncorrelated.
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3.6.4 Generation of structurally perturbed coagulation net-

works.

Single pairwise false positive binding interactions were added to the coagula-

tion model by generating a single binding connection between two randomly

selected proteins. A family of structurally defective models was constructed

(N=100), where each model contained a single false-positive interaction. Sen-

sitivity analysis was conducted on each of the models using only the nomi-

nal parameter set. The Spearman rank correlation between each of the struc-

turally perturbed networks and the control was calculated to estimate the effect

of adding the false-positive interaction. The 10 models with the lowest Spear-

man rank, i.e., the largest degree of disruption were then selected for further

study. To control for possible artifacts stemming from the use of only the nomi-

nal parameter set, a parameter set family (N=50) was constructed by randomly

perturbing each of the nominal parameters by < ±50%. Sensitivity analysis was

conducted using the worst 10 models where sensitivity coefficients were com-

puted for each model and parameter set.

Multiple false positive binding and catalytic errors were introduced into the

coagulation network by randomly modifying the mass balance equations of the

ten most connected proteins. The connectivity of the top ten connected proteins,

free and bound thrombin, two inhibitors (ATIII and APC), five upstream coag-

ulation factors (free FIXa and FXa and bound FVa, FVIIIa, and FXa), and one

initiating complex (FVIIa-TF), was manipulated by adding either 1, 5, 7, 10, 15

or 30 false positive interactions to the stoichiometric matrix. The same monte-

carlo procedure was used for each of the connected species. First, a species was

selected from the list of connected proteins (row i) along with a random interac-
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tion in the network (column j). Second, a discrete number of randomly selected

zero stoichiometric coefficients (σi j) in column j were flipped from 0 to 1 where

different columns were selected for each number of false positives. For exam-

ple, if column j1 was selected and stoichiometric coefficients were flipped, then

column j2 , j1 would be selected for the next iteration of the algorithm. Because

our sampling protocol connected multiple previously unconnected proteins to-

gether via random interactions, we did not consider cases where the mass bal-

ance of more than one of the connected proteins was explicitly manipulated

simultaneously. Sensitivity analysis was conducted on each of the structurally

perturbed models using the nominal parameter set only.

Networks with single false negative structural errors were constructed by

removing a single protein-protein interaction from the network. Each of the 148

interactions were removed, in turn, and sensitivity analysis was conducted, us-

ing the nominal parameter set, on each of the structurally defective networks.

The difference in the ranking of interactions between the structurally perturbed

networks and the control was quantified using the Spearman rank correlation.

The 15 networks with the lowest Spearman rank, i.e., the largest degree of dis-

ruption were then selected for further study. To control for possible artifacts

stemming from the use of only the nominal parameter set, a parameter set fam-

ily (N=50) was constructed by randomly perturbing each of the nominal param-

eters by < ±50%. Sensitivity analysis was conducted using the worst 15 models

where sensitivity coefficients were computed for each model and parameter set.

Simultaneous false negative errors were investigated by partitioning the

extrinsic coagulation network into 2-, 4- and 8-partitions using hMetis [188].

hMetis partitioned the coagulation network by minimizing the number of
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shared proteins or protein complexes employed across partitions where any

given protein-protein interaction was resident in a single partition. Thus, the

partitioned subnetworks represent cases where defects, i.e., missing structural

information, has been introduced into the network; the larger the number of

partitions the more defects in the network. Sensitivity analysis was conducted

on each partitioned subnetwork in isolation using a random parameter set fam-

ily (N=50) where each of the nominal parameters was perturbed by < ±50%.

3.6.5 Calculation of protein and interaction connectivity.

The connectivity of the ith protein or protein complex, denoted by Cxi , was cal-

culated by summing the absolute values of the stoichiometric coefficients (σi j)

from the corresponding row of the stoichiometric matrix:

Cxi =

NS∑
j=1

∣∣∣σi j

∣∣∣ i = 1, 2, ,NS (3.11)

The connectivity of reaction j, denoted by Cr j , was taken to be the average con-

nectivity of the proteins or protein-complexes involved in the reaction:

Cr j =
1

Nr j

∑
i∈{R j∪P j}

Cxi j = 1, 2, ,NR (3.12)

where Nr j denotes the total number of reactants and products associated with

reaction j and NR denotes the number of interactions in the network.
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CHAPTER 4

A MATHEMATICAL MODEL SUCCESSFULLY PREDICTS THROMBIN

GENERATION IN PATIENT-DERIVED PLASMA

4.1 Abstract

The complex system regulating hemostasis, as well as an increasing number

of inherited and acquired conditions associated with their dysregulation, need

to be understood fully before meaningful clinical development can take place.

Mechanistic mathematical modeling plays a significant role in the develop-

ment of new therapies for a number of diseases. In this study, a mechanistic

model, composed of 193 proteins and 301 protein-protein interactions, was built

to describe the complex hemostatic system. A family or ensemble of probable

parameter sets were estimated using nine experimental data sets from a cell-

based model. The model and the parameter ensemble was used to predict the

thrombin generation in experiments using patient-derived plasma from coro-

nary artery and hemophilia A patients. In experiments, thrombin generation in

platelet-rich plasma from 4 coronary artery patients who are on aspirin treat-

ment and in platelet-poor plasma from healthy and hemophilia A patients was

initiated by the addition of tissue factor. The mean model predictions over the

parameter ensemble were generally consistent with the experimental observa-

tions with a normalized standard error less than 30% and a correlation greater

than 0.66. Furthermore, in order to study the initiating effects of TF-FVIIa and

FVIIa only, the model was used to predict thrombin concentrations following

the addition of 25 pM TF-FVIIa or 120 nM FVIIa to the synthetic plasma with

platelets. The mean model predicted values agreed well with the experiments
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as proved by a normalized error of less than 22 % and a correlation greater than

0.85. Sensitivity analysis revealed that the propagation of thrombin could be

highly influenced by the perturbation in the parameter values in the TF-FVIIa

initiating case, while the initiation of thrombin generation were profoundly af-

fected by the perturbation in the parameter values in the FVIIa initiating case.

4.2 Introduction

Factor VIII (fVIII) and factor IX (fIX) are the X-chromosomally encoded coagu-

lation factors which are deficient in hemophilia A and B, respectively [24]. The

frequency of hemophilia A is often stated to be 1 in 5,000-10,000 male births;

while hemophilia B occurs at about 1 in about 35,000-50,000 male births [25].

The existence of hemophilia was noted very early in the medical literature, and

has been a prime stimulus for attempts to understand the mechanism of blood

coagulation. Bleeding in hemophilia A and B correlates well with the residual

level of the coagulation activity in the patient’s plasma [25]. A hemophilia pa-

tient do not bleed more intensely than a normal person, but for a much longer

amount of time. In severe hemophiliacs even a minor injury could result in

blood loss lasting days, weeks, or not ever healing completely. The critical risk

here is with normally small injuries which, due to missing coagulation factors,

take long times to heal. In areas such as the brain or inside joints this can be

fatal or permanently debilitating. The bleeding with external injury is normal,

but incidence of late re-bleeding and internal bleeding is increased, especially

into muscles, joints, or bleeding into closed spaces. Major complications include

hemarthrosis, hemorrhage, gastrointestinal bleeding, and menorrhagia.
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Though there is no cure for hemophilia, it can be controlled with regular

infusions of the deficient clotting factor, i.e. fVIII in hemophilia A or fIX in

hemophilia B. Replacement therapy markedly improves the management of

bleeding of most patients with hemophilia. However, fVIII and fIX inhibitors

have developed in 18-32% and 2-3% of hemophiliacs A and B in response to

fVIII and fIX, respectively [28] and those inhibitors make the subsequent man-

agement of patient, using coagulation factor concentrates, difficult. In the 1980s,

activated prothrombin complex concentrates (aPCC) from pooled plasma were

developed for hemophiliacs with inhibitors, assuring ‘fVIII bypassing activity’

[29, 30]. However, aPCCs induce disseminated intravascular coagulation syn-

dromes or acute myocardial infarction [31]. Recently, recombinant factor VIIa

(rFVIIa) was developed as a new bypassing agent, and its clinical efficacy and

safety have been established [32, 33]. Hemophilia patients with inhibitors most

frequently bleed in the joints. Clinical data have demonstrated that rFVIIa has

a response rate of 91% in joint bleeds and 86% in muscle bleeds in as few as 5

hours [189]. rFVIIa has also been shown to effectively control bleeding during

surgical procedures in people with inhibitors. Four separate studies involv-

ing more than 200 procedures showed that rFVIIa was effective and safe [189].

However, because of its short half-life, therapy with rFVIIa requires frequent ad-

ministration (at intervals of 2-3 h) to achieve hemostasis and therapeutic dose

of rFVIIa is not always predictable [28].

Both bypassing products (aPCC and rFVIIa) have been shown to be effec-

tive, to some extend, in treating hemophilia with inhibitors [190]. Yet their

hemostatic efficacy can be difficult to predict [28] and does not reach the overall

success rates obtained with replacement therapy in patients without inhibitors

[191]. Furthermore, responsiveness to bypassing therapy may change from one
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bleed to the next in the same patient and even from hour to hour during the

course of a single bleeding event. Thus, sequential use of bypassing agents was

proposed to treat bleeding disorder, especially refractory bleeds [192, 193, 194].

However, increased risk for thrombosis is often a concern of using such therapy;

this aggressive therapy was recommended to use only in the inpatient setting

with careful monitoring of the physical examination and frequent laboratory

screening to assess for thrombosis [195, 30].

Given all the difficulties faced in treating hemophiliacs, the lack of under-

standing the principal mechanism of action of all these agents could be one of

the obstacles in developing effective treatment regimes. For example, it is gen-

erally believed that the mechanism of action of rFVIIa is either TF-dependent or

TF-independent. Both mechanisms have their experimental evidence; throm-

bin generation could be activated by small amount of TF-FVIIa or large amount

of FVIIa only [196, 197, 198, 199, 200, 32, 115, 201]. Thus the understanding of

mechanism of action of rFVIIa could provide some insights into determining

the therapeutic dosages in different pathological conditions. Furthermore, the

potential synergy of rFVIIa and APCCs is proposed to treat hemophilia in more

complex conditions [194].

In order to study the complex system regulating hemostasis, our group pre-

viously built a mechanistic model with 92 proteins and 148 protein-protein in-

teractions [162]. The model was validated using published datasets generated

from synthetic plasma and a cell-based model. However, in order to fit datasets

from both experiments, 3 kinetic parameters were modified. Here in the study,

we modified our previous model using more realistic interactions for platelet

activation and more involving proteins. The new model, with 193 protein and
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301 protein-protein interactions, was trained using nine cell-based experiment

measurements that were more representative to the in vivo conditions.

4.3 Results

The mechanistic model was formulated based on our previous coagulation

model [162] with additional interactions describing platelets activation via

PARs, the intrinsic pathway, etc (see supplementary table). A family or ensemble

of probable parameter sets (N = 437) were estimated using nine experimental

data sets from a cell-based model [29]. The model predictions and the training

data sets were shown in Figure 4.1. As the results of training with the experi-

ment data, a normalized standard error less than 30% and a correlation greater

than 0.66 (Table 4.1) were observed for the mean model predictions over the

parameter ensemble. The model and the parameter ensemble was used to pre-

dict the thrombin generation in experiments using patient-derived plasma for

coronary artery and hemophilia A patients. In experiment, thrombin genera-

tion in platelet-rich plasma from 4 coronary artery patients who are on aspirin

treatment and in platelet-poor plasma from healthy and hemophilia A patients

was initiated by the addition of tissue factor. As shown in Figure 4.2, the model

successfully predicted thrombin generation in patient-derived plasma with the

error quantifications shown in Table 4.1. Furthermore, in order to study the initi-

ating effects of TF-FVIIa and FVIIa only, the model was used to predict thrombin

concentrations following the addition of 25 pM TF-FVIIa or 120 nM FVIIa to the

synthetic plasma with platelets. The mean model predicted values agreed well

with the experiments as proved by a normalized error of less than 22 % and a

correlation greater than 0.85. Sensitivity analysis revealed that the propagation
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of thrombin could be highly influenced by the perturbation in the parameter

values in the TF-FVIIa initiating case, while the initiation of thrombin genera-

tion were profoundly affected by the perturbation in the parameter values in

the FVIIa initiating case.

4.3.1 The model predicted thrombin generations in patient-

derived plasma.

Computational simulations and experimental observations from a cell-based

model [29] and from an analysis of patient plasma were shown in Figure 4.1

and Figure 4.2, respectively. To address uncertainty in the model parameters,

we estimated a family or ensemble of parameter sets that minimized errors be-

tween model simulations and the training data sets. Nine data sets with dif-

ferent concentrations of rFVIIa and prothrombin in the presence and absence

of fVIII and fIX from a cell-based model were selected to train the model (Fig-

ure 4.1). Parameter values were adjusted to minimize the squared error between

model simulations and experimental measurements. We obtained an ensemble

of parameter sets (N = 437).

In each figure, the dashed lines in each case denote the mean simulated val-

ues over the ensemble of model parameters while the shaded regions denote

one ensemble standard deviation (N = 437). A typical thrombin generation

consists of three phases: the initiation, the propagation and the termination

[202, 203]. It is generally believed the initially formed thrombin is produced

upon the cleavage of prothrombin by fluid phase activated factor X (FXa) [200].

The picomolar amount of initially formed thrombin activates cofactors factors
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Figure 4.1: Comparison of model simulations versus training data from
a cell-based model. The dashed lines in each case denote the
mean simulated value over the ensemble of model parame-
ters while the shaded regions denote one ensemble standard
deviation (N = 437). Experimental data are shown with error
bars (10% of the experimental values). The quantified errors
are shown in Table 4.1.

V and VIII (fV and fVIII) and platelets, resulting in the formation of surface

complexes tenase and prothrombinase. Massive prothrombin activation occurs

as the results of interactions on activated platelet surface during the propaga-

tion phase. This is followed by the termination phase in which the reactions

of the coagulation cascade subside and thrombin is consumed by the dynamic

inhibitor APC and the potent thrombin inhibitor ATIII.
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Table 4.1: Quantification of model errors. The nomarlized standard errors
(SE) and the correlation (defined in the text) were calculated for
the mean simulated values of the ensemble versus the experi-
mental measurements.

Simulation Normalized SE Correlation r2 Simulation Normalized SE Correlation r2

Figure 4.1 Figure 4.2

Panel A 0.13 0.84 Panel A 0.12 0.88

Panel B 0.22 0.66 Panel B 0.05 0.96

Panel C 0.22 0.68 Panel C 0.17 0.77

Panel D 0.19 0.82 Panel D 0.30 0.66

Panel E 0.13 0.90 Panel E 0.17 0.74

Panel F 0.18 0.75 Panel F 0.19 0.76

Panel G 0.15 0.84 Figure 4.4

Panel H 0.15 0.74 Panel A 0.22 0.85

Panel I 0.21 0.77 Panel B 0.08 0.94

Thrombin generations in normal and hemophilia cases with various concen-

trations of FVIIa and prothrombin and the training data sets generated using a

cell-based model [29] are shown in Figure 4.1. The standard errors and the cor-

relations between the mean simulated values and the experimental measure-

ments are shown in Table 4.1. On average, the model has a standard error of

18% and explained about 78% of the thrombin generation dynamics. In the nor-

mal case where physiological amounts of the plasma clotting factors, inhibitors

and platelets were present in the system (Figure 4.1A), a characteristic patten

of thrombin generation was observed. Little amount of thrombin was gener-

ated in the initiation phase and subsequently quantitative thrombin was formed

during propagation, followed by the termination of thrombin. Thrombin gener-

ation reached its maximum of about 120 nM at 45 min and our model predicted

a faster rate of thrombin formation. The normalized standard error in this case
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is 13% and the correlation between the model prediction and the training data

was 0.84. While in the hemophilia case (Figure 4.1B) when no fVIII and fIX were

present, the maximum thrombin generated was less than 20 nM at 120 min. The

normalized standard error in this case was 22% and a correlation of 0.66 was

observed. When a combination of 75 nM FVIIa and 150% level of prothrom-

bin were added, the normal thrombin generation was almost restored and we

termed this case as treatment case. In the treatment case, the concentration of

thrombin generated reached the normal maximum level at about 40 min and

further increase to about 140 nM at about a hour. Our model resulted a slower

thrombin generation rate and a lower maximum thrombin concentration with a

correlation of 0.68 as compared to the training data.

The thrombin concentrations following the addition of FVIIa (25, 50 or 75

nM) to synthetic plasma at 100% prothrombin level were constrained by the

in vitro training data sets (Figure 4.1D, E and F) and resulted in an average

correlation of 0.82. Both the rate and the peak of thrombin generation were

increased with the increase in the concentration of FVIIa. Thrombin genera-

tion has been shown to be influenced by concentrations of various clotting fac-

tors, especially prothrombin and ATIII [146, 111]. The increase of prothrombin

concentration form 100% to 150% would result in 72% to 121% increase in the

amount of thrombin generated [146, 111]. The model showed that when the

level of prothrombin varied over 50-150% of the physiological ranges at fixed

FVIIa concentrations of 25 nM (Figure 4.1G, D and H) or 75 nM (Figure 4.1I,

F and C), the maximal concentration of thrombin generated increased with the

increase in the level of prothrombin concentrations. However, discrepancies be-

tween the model prediction and the experimental training data were observed

in the first 20 min of all simulations.

82



Time (min)

T
h

ro
m

b
in

 (
n

M
)

0 10 20 30 40 50 60
−100

0

100

200

300

400

Time (min)
T

h
ro

m
b

in
 (

n
M

)
0 10 20 30 40 50 60

−200

0

200

400

600

800

Time (min)

T
h

ro
m

b
in

 (
n

M
)

0 10 20 30 40 50 60
−50

0

50

100

150

200

250

300

350

Time (min)

T
h

ro
m

b
in

 (
n

M
)

0 10 20 30 40 50 60
−20

0

20

40

60

80

100

Time (min)

T
h

ro
m

b
in

 (
n

M
)

0 10 20 30 40 50 60
−10

0

10

20

30

40

Time (min)

T
h

ro
m

b
in

 (
n

M
)

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

(A) (B) (C)

(D) (E) (F)

coronary fVIII: 106 % fVIII: 39 %

fVIII: 0 %fVIII: 1 %fVIII: 7 %

Figure 4.2: Predicted time course of thrombin generation versus exper-
imental measurements using patient-derived plasma. The
dashed lines in each case denote the mean simulated values
over the ensemble of model parameters while the shaded re-
gions denote one ensemble standard deviation. (A) The ex-
periments were conducted using plasma from 4 patients with
coronary artery disease (on aspirin); the generation of throm-
bin was initiated using 1 pM TF. Experimental data are shown
with error bars, which were calculated as one standard devia-
tion of the 4 different patient data sets. (B-F) The experiments
were conducted using plasma from healthy or hemophilia A
patients; the levels of fVIII concentration with respect to the
normal concentration (0.3 nM) were shown in the corner. The
generation of thrombin was initiated using 5 pM TF. Experi-
mental data are shown with error bars, which were 10% of the
experimental values.
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The model and the parameter ensemble was then used to predict the throm-

bin generation in experiments using patient plasma for coronary artery diseases

and hemophilia A. Platelet-rich and platelet-poor plasma were prepared using

the coronary artery and hemophilia A patients plasma, respectively. TF was

added to initiate the generation of thrombin. In the simulations, we assumed

TF binds with FVIIa immediately to form TF-FVIIa complex, which therefore

initiate the cascade. Platelet-rich plasma prepared using the blood drawn from

4 coronary artery patients who were on aspirin treatment was used in the ex-

periments. The profile of thrombin concentrations in time has shown the typical

characteristics of thrombin generation with a normalized standard error of 0.12

and a correlation of 0.88 (Figure 4.2 A and Table 4.1). The maximum thrombin

concentration was about 150 nM at 15 min, while our model predicted a higher

maximum of 220 nM at almost the same time point. Both the peak and rate of

thrombin generation in this case were much lower than those in the case with

106% fVIII (plasma from healthy volunteer, Figure 4.2 B), which was mostly

likely to be the results of the smaller amount of initiating TF used (1 pM in Fig-

ure 4.2 A and 5 pM Figure 4.2 B-F). The model gave the best prediction in the

case with 106% fVIII (Figure 4.2 B), as shown by the small standard error of 0.05

and a high correlation of 0.96. While decreasing in fVIII concentrations resulted

in decreases in both the peak and the rate of thrombin generation, the model

explained more than 67% of the thrombin generation dynamics (Figure 4.2 C-F

and Table 4.1). As we know, the level of coagulation factors is often related to

the severity of hemophilia [25]. When fVIII decreased, the bleeding time was

prolonged as a result of less and slower thrombin generation. The above results

proved that the mechanistic model, trained using nine experimental data sets

from an in vitro cell-based experiment, was able to predict thrombin generations

84



in patient-derived plasma.

4.3.2 Sensitivity analysis revealed the bypassing activity of

rFVIIa.

The scaled OSSC values were clustered into three groups with high, medium

and low sensitivities using a k-mean algorithm (see Methods). The parameters

with high and medium sensitivities in the normal, hemophilia and treatment

cases (Figure 4.1 A, B and C) were shown in Table 4.2. In the normal, hemophilia

and treatment cases, the activation of platelets by ADP and TXA2 were clustered

as the top 2 most sensitive parameters. Although the inhibition of FXa by ATIII

(on rate), the formation and activity of prothrombinase, and the binding of FXa

on platelet active sites (off rate) were clustered in the medium sensitive group

in the treatment case, they showed similar ranks as those in the normal and

hemophilia cases. While the on rate of FXa binding and the on/off rates of fX

bindings showed similar ranks in the treatment and hemophilia cases, they were

much higher than those in the normal case. This indicated that the sensitivity

of fX/FXa bindings were generally higher in the case of hemophilia and treat-

ment. In addition, 11 fVIII/fIX mechanisms that were clustered in the medium

sensitive group in the normal case were shown to be robust in the hemophilia

and treatment cases; 6 fV/FVa mechanisms, 2 activated platelets mechanisms, 3

inhibitory mechanisms (by TFPI or ATIII) and the on rate of TF-FVIIa activating

fX were shown to have moderate sensitivity in the hemophilia and treatment

cases, but robust in the normal case. In general, comparing to the normal case,

the mechanisms related to fX/FXa and fV/FVa became more sensitive, while
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Figure 4.3: The normalized ranks of the OSSC values calculated over the
selected parameter ensemble (N = 100) were compared in pairs
among different cases.

the mechanisms related to fVIII/FVIIIa and fIX/FIX became more robust in the

treatment and hemophilia cases.

The statistically significant shifts were calculated using the Welch T-Test

among normalized ranks of the OSSC values in the normal, hemophilia, treat-

ment cases (Figure 4.3 A, B and C). Compare with the normal case, 24 and 23

statistically significant shifts were found in hemophilia and treatment cases, re-

spectively (data not shown). Except for the off-rate of fIX binding with platelet

active site, the remaining 23 shifts were identical in these two cases. And all

these shifts, related to fVIII and fIX activities, were shown to have increases sen-

sitivity in the normal case. This result proved that the treatment of hemophilia

using rFVIIa bypassed the activity of fVIII and/or fIX. It is reasonable as rFVIIa

is often used to treat hemophiliacs with inhibitors of fVIII and fIX. Compare to

the hemophilia case, 7 shifts were shown to have slightly increased sensitivities
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and 7 shifts were shown to have slightly reduced sensitivities in the treatment

case. Among the 7 decreased shifts, 4 of them were related to the activity of

tenase, which was probably due to the addition of the ‘by-passing’ agent rFVIIa

in the treatment case. The addition of rFVIIa is believed to activate fX when

fVIII and fIX were not available.

Table 4.2: Distribution of OSSCs for normal, hemophilia and treatment cases 4.

p-index normal hemophilia treatment Description

Cluster I

p-index Rank µ ± σ Rank µ ± σ Rank µ ± σ Description

172 4±4 0.91±0.13 7±7 0.78±0.22 2±2 0.98±0.04 TXA2 activates platelets (off)

175 6±7 0.78±0.14 4±5 0.90±0.14 3±3 0.76±0.15 ADP activates platelets (off)

126 5±3 0.71±0.23 3±1 0.70±0.20 – – ATIII inhibits FXa (on)

97 8±5 0.61±0.22 9 ±1 0.55±0.18 – – FXa binds FVa on platelet surface (on)

98 9±5 0.61±0.22 9±1 0.55±0.18 – – FXa binds FVa on platelet surface (off)

90 9±4 0.61±0.22 11±1 0.54±0.18 – – Prothrombinase activates fII (on)

50 5±4 0.69±0.24 6±2 0.67±0.22 – – FXa binds platelet active sites (off)

49 – – 5±2 0.67±0.22 – – FXa binds platelet active sites (on)

48 – – 4±2 0.68±0.22 – – fX binds platelet active sites (off)

47 – – 4±1 0.68±0.22 – – fX binds platelet active sites (on)

Cluster II

p-index Rank µ ± σ Rank µ ± σ Rank µ ± σ Description

126 – – – – 4±2 0.58±0.25 ATIII inhibits FXa (on)

97 – – – – 9±2 0.49±0.25 FXa binds FVa on platelets (on)

98 – – – – 10±1 0.49±0.25 FXa binds FVa on platelets (off)

90 – – – – 11±2 0.49±0.25 Prothrombinase activates fII (on)

50 – – – – 8±2 0.53±0.25 FXa binds platelet sites (off)

49 21±6 0.35±0.10 – – 6±2 0.53±0.25 FXa binds platelet sites (on)

Continued on next page
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Table 4.2 (Continued)

p-index normal hemophilia treatment Description

48 19±7 0.35±0.10 – – 6±1 0.53±0.25 fX binds platelet active sites (off)

47 19±6 0.35±0.10 – – 5±2 0.53±0.25 fX binds platelet active sites (on)

58 13±8 0.54±0.28 – – – – FVIIIa binds platelet sites (off)

57 15±7 0.54±0.28 – – – – FVIIIa binds platelet sites (on)

45 15±10 0.52±0.28 – – – – FIXa binds specific platelet sites (on)

46 16±10 0.52±0.28 – – – – FIXa binds specific platelet sites (off)

81 17±11 0.52±0.29 – – – – Tenase activates fX (on)

95 17±11 0.52±0.29 – – – – FIXa (specific) binds FVIIIa (on)

96 18±11 0.52±0.29 – – – – FIXa (specific) binds FVIIIa (off)

123 16±4 0.49±0.20 – – – – ATIII inhibits FIXa (on)

29 24±11 0.40±0.22 – – – – FXa activates fIX (on)

30 26±11 0.38±0.21 – – – – FXa activates fIX (off)

31 27±12 0.38±0.22 – – – – FXa activates fIX (catalytic)

284 35±16 0.23±0.14 22±10 0.31±0.21 23±12 0.23±0.12 FVIIa activates fX (catalytic)

282 34±12 0.22±0.13 21±7 0.30±0.18 22±9 0.23±0.11 FVIIa activates fX (on)

283 35±12 0.22±0.12 22±7 0.30±0.18 23±9 0.23±0.11 FVIIa activates fX (off)

165 16±11 0.47±0.18 14±9 0.43±0.18 10±7 0.46±0.15 Activate platelets secret TXA2

13 20±12 0.38±0.22 14±6 0.40±0.16 15±5 0.36±0.21 TF-FVIIa activates fX (catalytic)

121 25±12 0.30±0.12 17±5 0.38±0.15 18±4 0.22±0.15 TFPI inhibits X-VIIa-TF (on)

59 19±5 0.44±0.23 22±7 0.30±0.14 23±10 0.30±0.24 fII binds platelets sites (on)

60 19±5 0.44±0.23 23±7 0.30±0.14 23±10 0.30±0.24 fII binds platelets sites (off)

54 24 ±8 0.28±0.14 17±4 0.35±0.11 19±3 0.24±0.13 FVa binds platelet sites (off)

53 – – 21±3 0.31±0.12 21±3 0.23±0.13 FVa binds platelet sites (on)

52 – – 23±5 0.31±0.13 23±3 0.22±0.13 fV binds platelet sites (off)

51 – – 22±5 0.31±0.13 22±3 0.22±0.13 fV binds platelet sites (on)

23 – – 21±6 0.34±0.19 25±6 0.19±0.15 Thrombin activates fV (on)

24 – – 25±7 0.32±0.19 31±9 0.17±0.14 Thrombin activates fV (off)

25 – – 22±7 0.33±0.20 28±9 0.19±0.15 Thrombin activates fV (catalytic)

164 – – 23±9 0.27±0.11 20±7 0.23±0.07 Activate platelets secret ADP

Continued on next page
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Table 4.2 (Continued)

p-index normal hemophilia treatment Description

147 – – 34±26 0.21±0.14 26±14 0.21±0.11 FIIa activates PL (catalytic)

129 – – 22±5 0.32±0.16 27±5 0.19±0.11 ATIII inhibits thrombin (on)

133 – – 35±13 0.19±0.16 36±14 0.17±0.20 ATIII inhibits TF-FVIIa (on)

122 – – 29±6 0.20±0.09 25±5 0.21±0.14 TFPI inhibits X-VIIa-TF (off)

11 – – 32±8 0.17±0.13 29±8 0.17±0.16 TF-FVIIa activates fX (on)

In order to explore the dosage effect of rFVIIa, the ranks of OSSCs with

normal prothrombin and 25 nM or 75 nM rFVIIa were compared against each

other (Figure 4.3D). The sensitivities of almost all parameters were comparable

in these two cases, indicating that the parameter sensitivities were not depen-

dent on the dosage of rFVIIa. Similar analysis was conducted on the effect of

prothrombin level (50% fII vs 150% fII, 75 nM rFVIIa); the result was shown in

Figure 4.3E. The sensitivities of parameters were not related to the prothrombin

level (at least the levels we considerer here).

Figure 4.4F shows the comparison of the ranks of the OSSC values in the

cases with different amount of fVIII (106% vs 1% fVIII). There are 16 mecha-

nisms statistically significant changed when the level of fVIII changed (data not

shown). Among the 16 shifts, 11 fVIII/FVIIIa mechanisms became more robust

and the other 5 shifts, related to the activation of fVII and fV by thrombin, be-

came more fragile when fVIII was only 1% of the normal concentration (0.3 nM)

as compared to 106% fVIII. When fVIII is not enough to generate FXa, the al-

ternated pathway of thrombin generation, related to fVII and the formation of

prothrombinase, could become more important. This could be the reason why

fVII and fV mechanisms became more important in the 1% fVIII (hemophilia A)

4The OSSC values were clustered using a k-means algorithm into three parts. The most
fragile parameters were shown in Cluster I; the most robust ones were shown in Cluster III.
The mean OSSC value (µ) ± one standard deviation (σ) in Cluster I and II are reported. p-index
denotes the parameter index in the reaction file.
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case.

The ranks and the clustered OSSC values of the cases with 106% and 1% fVIII

(hemophilia A) are shown in Table 4.3. 5 fX/FXa mechanisms were shown to

have increased sensitivity, while 2 mechanisms related with activated platelets

became more robust when the level of fVIII was reduced to 1% from 106%. In

addition, 2 FXIa mechanisms, 6 fV/FVa mechanisms, 3 inhibitory mechanisms

by TFPI or ATIII, 3 fI mechanisms and 2 TF mechanisms were more sensitive

when only 1% fVIII was present. As the concentration of fVIII reduced, the

pathway of FXa activation by tenase was shut down, the activation of FXa by

other mechanisms, e.g. by TF-FVIIa, became more important. This could pos-

sibly explain why the TF mechanisms and fX/FXa activities became important

when the fVIII was only 1% of the normal level.

Table 4.3: The distribution of the OSSCs for 106% and 1% fVIII cases.

p-index 106% fVIII (µ ± σ) 1% fVIII (µ ± σ) Description

Cluster I

p-index Rank µ ± σ Rank µ ± σ Description

178 5±8 0.81±0.28 – – TXA2 activates platelets (catalytic)

165 14±17 0.52±0.25 – – Activate platelets secret TXA2

50 5±6 0.62±0.26 4±1 0.87±0.10 FXa binds platelet active sites (off)

49 5±4 0.56±0.25 4±2 0.86±0.10 FXa binds platelet active sites (on)

48 7±4 0.56±0.24 5±2 0.86±0.10 fX binds platelet active sites (off)

47 6±4 0.56±0.24 5±1 0.86±0.10 fX binds platelet active sites (on)

126 – – 3±2 0.93±0.12 ATIII inhibits FXa (on)

13 – – 3±2 0.88±0.11 TF-FVIIa activates fX (catalytic)

97 – – 9±2 0.63±0.10 FXa binds FVa (on)

98 – – 10±2 0.63±0.11 FXa binds FVa (off)

Continued on next page
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Table 4.3 (Continued)

p-index 106% fVIII (µ ± σ) 1% fVIII (µ ± σ) Description

90 – – 11±2 0.62±0.11 Prothrombinase activates fII (on)

Cluster II

p-index Rank µ ± σ Rank µ ± σ Description

178 – – 17±17 0.55±0.27 TXA2 activates platelets (catalytic)

165 – – 21±12 0.41±0.17 Activate platelets secret TXA2

126 8±6 0.44±0.11 – – ATIII inhibits FXa (on)

13 10±5 0.41±0.10 – – TF-FVIIa activates fX (catalytic)

97 12±6 0.38±0.13 – – FXa binds FVa (on)

98 14±6 0.35±0.11 – – FXa binds FVa (off)

90 12±4 0.37±0.10 – – Prothrombinase activates fII (on)

92 36±25 0.24±0.27 – – Prothrombinase activates fII (catalytic)

58 25±10 0.19±0.13 – – FVIIIa binds platelet active sites (off)

176 17±12 0.32±0.12 35±15 0.24±0.12 TXA2 activates platelets (on)

177 19±11 0.30±0.11 36±15 0.22±0.11 TXA2 activates platelets (off)

175 16±10 0.35±0.18 14±8 0.54±0.22 ADP activates platelets (off)

164 27±15 0.21±0.10 38±14 0.20±0.11 Activate platelets secret ADP

11 15±6 0.32±0.09 15±6 0.48±0.12 TF-FVIIa activates fX (on)

12 20±6 0.25±0.07 20±6 0.37±0.08 TF-FVIIa activates fX (off)

14 25±7 0.19±0.09 37±12 0.19±0.09 TF-FVIIa activates fIX (on)

15 28±8 0.17±0.08 41±12 0.17±0.08 TF-FVIIa activates fIX (off)

72 19±7 0.28±0.14 31±14 0.25±0.11 FXa activates fV (on)

54 14±5 0.34±0.12 13±2 0.52±0.07 FVa binds platelet active sites (off)

62 19±6 0.25±0.12 37±12 0.19±0.08 FIIa binds platelets active sites (off)

59 27±10 0.20±0.14 24±9 0.32±0.10 fII binds platelets active sites (on)

60 27±10 0.20±0.14 24±9 0.32±0.10 fII binds platelets active sites (off)

204 31±13 0.16±0.08 40±13 0.18±0.07 Thrombin activates fXI (on)

197 – – 21±11 0.42±0.23 FXIa self-activation (on)

199 – – 26±11 0.34±0.16 FXIa self-activation (catalytic)

Continued on next page
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Table 4.3 (Continued)

p-index 106% fVIII (µ ± σ) 1% fVIII (µ ± σ) Description

121 – – 22±7 0.35±0.15 TFPI inhibits X-VIIa-TF (on)

53 – – 25±15 0.34±0.16 FVa binds platelet active sites (on)

52 – – 27±15 0.34±0.16 fV binds platelet active sites (off)

51 – – 25±14 0.34±0.16 fV binds platelet active sites (on)

23 – – 29±12 0.28±0.14 Thrombin activates fV (on)

24 – – 34±16 0.26±0.14 Thrombin activates fV (off)

25 – – 31±15 0.28±0.19 Thrombin activates fV (catalytic)

129 – – 29±13 0.28±0.16 ATIII inhibits thrombin (on)

123 – – 32±14 0.25±0.16 ATIII inhibits FIXa (on)

166 – – 34±13 0.22±0.09 Activate platelets secret fibrinogen

179 – – 35±12 0.21±0.09 Thrombin activates fibrinogen (on)

180 – – 36±12 0.21±0.08 Thrombin activates fibrinogen (off)

2 – – 32±7 0.22±0.08 TF binds fVII (off)

4 – – 41±18 0.20±0.14 TF binds FVIIa (off)

4.3.3 TF-FVIIa is a more potent activator of thrombin genera-

tion than FVIIa only.

In order to study the initiating effects of TF-FVIIa and FVIIa in the generation

of thrombin, our model was used to predict thrombin concentrations following

the addition of 25 pM TF-FVIIa or 120 nM FVIIa to the synthetic plasma with

platelets (Figure 4.4A and B). The model predictions were generally consistent

with in vitro observations as proved by correlations of 0.85 and 0.94, resepec-

tively (Table 4.1). The initiation (lag) phase was about 5 minutes in the TF-FVIIa

initiating case, which is much shorter than that in the FVIIa case. In addition,

both the rate and the peak of thrombin generation in the TF-FVIIa case were

larger than those in the FVIIa case, which was consistent with the theory that
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the initiating potential of FVIIa was much smaller than TF-FVIIa [200]. It is clear

that TF-FVIIa has a much greater effect in initiating the coagulation cascade than

FVIIa only. In addition, TF also helps in the localization of the blood clot to the

wound site in physiological conditions.

Sensitivity analysis using ensembles of mechanistic models could be used

to robustly rank-order the fragility of proteins in the network. In order to ex-

plore the differences in the mechanism of action by TF-FVIIa and FVIIa, the

normalized ranks of the OSSC values and the species sensitivity results for the

TF-FVIIa versus FVIIa cases were shown in Figure 4.4C and D. Statistically sig-

nificant shifts between these two cases were calculated using Welch T-test (data

not shown). In Figure 4.4C, among the 24 statistically significant shifts, 3 shifts

that have increased sensitivity in the FVIIa case than the TF-FVIIa case are re-

lated to the activation of fX and fIX by FVIIa; the other shifts were shown to be

less sensitive in the FVIIa case and amongst them, 16 shifts related to TF/TF-

FVIIa activities, and the other 5 were inhibitory mechanisms related to TFPI,

APC and ATIII. In Figure 4.4D, among the 10 significantly shifted species, fX-

FVIIa complex has shown to be more sensitive in the FVIIa case; the other 9

species, including 7 TF related complexes and 2 tenase complexes, were more

sensitive in the TF-FVIIa case. These results show that fluid phase activation of

fIX and fX by FVIIa was the more important in the FVIIa case while the surface

interactions of tenase were more important in the TF-FVIIa case.

Because the above results do not clearly state the differences in the mech-

anism of action for TF-FVIIa and FVIIa, we further analyzed the sensitivities

in different phases of thrombin generation. The different phases were noted in

Figure 4.4 A and B, and the OSSC values were calculated as summing over the
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Figure 4.4: Model prediction and sensitivity analysis of TF-FVIIa and
FVIIa initiated thrombin generation. (A) and (B): Predicted
time course of thrombin generation versus in vitro experimen-
tal measurements [200]. Thrombin generation was initiated
either by 25 pM TF-FVIIa (we assumed TF binds with FVIIa
to form TF-FVIIa complex immediately) or by 120 nM FVIIa
in the presence of physiological concentrations of pro- and
anti-coagulants. Different phases of thrombin generation were
noted: Phase I: initiation; Phase II: propagation; Phase III:
degradation. The dashed lines in each case denote the mean
simulated values over the ensemble of model parameters while
the shaded regions denote one ensemble standard deviation
(N = 437). Experimental data are shown with error bars (10%
of the experimental values). (C) The normalized ranks of the
OSSC values calculated over the selected parameter ensemble
(N = 100) were compared between TF-FVIIa and FVIIa cases.
(D) The normalized ranks of the species sensitivity values cal-
culated over the selected parameters ensemble (N = 100) be-
tween TF-FVIIa and FVIIa cases.
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Figure 4.5: Comparisons of the parameter sensitivities (the normalized
ranks of the OSSC values) in different phases with respect to
that of the whole time span. (A-C) Normalized ranks of the
OSSC values in different phases in thrombin generation versus
that of the whole time span for TF-FVIIa case. (D-F) Normal-
ized ranks of the OSSC values in different phases in thrombin
generation versus that of the whole time span for FVIIa case.

first order sensitivity coefficients within the time span for separated phases. The

comparison of rank-ordered OSSC values in individual phases versus the whole

were shown in Figure 4.5. It is interesting to note that in the TF-FVIIa case, the

OSSC ranks of the parameters in the propagation phase were the most repre-

sentative across the whole time; while in FVIIa case, the OSSCs in the initiation

phase were more representative to those of the whole time span.

Compare to the TF-FVIIa whole time case, 21, 12 and 23 statistically signifi-

cant shifts were observed in the initiation, propagation and termination, respec-

tively (data not shown). In the initiation phase, all shifts showed reduced sensi-

tivity; 14 of them were related to the activity of PC/APC, 1 TF-fVII dissociation,
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1 fVIII binding on platelet surface (on-rate), 2 related to the formation of tenase,

1 activation of PL by thrombin, 1 fibrin formation and 1 thrombin inhibition. In

the propagation phase, 2 shifts, 1 fV activation by thrombin and 1 thrombin acti-

vation by prothrombinase, showed slightly increased sensitivity; while the other

10 shifts, including 1 TF-fVII dissociation,1 fVIII activation by FXa, 3 APC ac-

tivity, 1 ATIII inhibition of thrombin, 2 activation of PL/PL-sub by thrombin, 2

fibrin activities, were less sensitive. In the termination phase, all shifts showed

reduced sensitivity; 9 fluid phase activation of fV/fVIII by FXa/thrombin, 3

surface phase activation of fV/fVIII by FXa (surface), 7 platelets activation by

thrombin/subendothelium, 3 fXI activities and 1 binding interaction of FVa.

Table 4.4: The distribution of the OSSCs for TF-FVIIa and FVIIa cases.

p-index TF-FVIIa (µ ± σ) FVIIa (µ ± σ)

Cluster I

p-index Rank µ ± σ Rank µ ± σ Description

178 28±31 0.39±0.26 – – TXA2 activates platelets (catalytic)

172 2±1 0.86±0.13 5±4 0.87±0.16 TXA2 activates platelets (off)

165 5±8 0.75±0.28 5±6 0.72±0.25 Activate platelets secret TXA2

284 – – 3±1 0.81±0.17 FVIIa activates fX (catalytic)

282 – – 5±1 0.76±0.16 FVIIa activates fX (on)

283 – – 7±1 0.74±0.15 FVIIa activates fX (off)

126 – – 6±2 0.74±0.16 ATIII inhibits FXa (on)

50 – – 8±4 0.76±0.19 FXa binds platelet active sites (off)

49 – – 9±2 0.67±0.14 FXa binds platelet active sites (on)

48 – – 8±2 0.67±0.14 fX binds platelet active sites (off)

47 – – 8±2 0.67±0.14 fX binds platelet active sites (on)

97 – – 14±4 0.53±0.16 FXa binds FVa (on)

98 – – 15±3 0.52±0.16 FXa binds FVa (off)

Continued on next page
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Table 4.4 (Continued)

p-index TF-FVIIa (µ ± σ) FVIIa (µ ± σ)

90 – – 15±3 0.52±0.16 Prothrombinase activates fII (on)

Cluster II

p-index Rank µ ± σ Rank µ ± σ Description

178 – – 22±23 0.33±0.21 TXA2 activates platelets (catalytic)

126 5±2 0.58±0.15 – – ATIII inhibits FXa (on)

50 5±3 0.57±0.16 – – FXa binds platelet active sites (off)

49 8±2 0.53±0.12 – – FXa binds platelet active sites (on)

48 6±3 0.54±0.12 – – fX binds platelet active sites (off)

47 6±2 0.54±0.12 – – fX binds platelet active sites (on)

97 12±2 0.40±0.11 – – FXa binds FVa (on)

98 13±2 0.40±0.11 – – FXa binds FVa (off)

90 13±2 0.40±0.11 – – Prothrombinase activates fII (on)

13 6±2 0.55±0.12 – – TF-FVIIa activates fX (catalytic)

12 16±4 0.35±0.09 – – TF-FVIIa activates fX (off)

11 10±4 0.45±0.13 – – TF-FVIIa activates fX (on)

14 17±5 0.31±0.10 – – TF-FVIIa activates fIX (on)

15 20±7 0.28±0.10 – – TF-FVIIa activates fIX (off)

175 21±11 0.32±0.17 19±10 0.36±0.20 ADP activates platelets (off)

164 28±11 0.24±0.12 18±9 0.24±0.11 Activate platelets secret ADP

25 36±17 0.20±0.18 57±29 0.24±0.18 Thrombin activates fV (catalytic)

129 28±12 0.23±0.13 50±6 0.16±0.13 ATIII inhibits thrombin (on)

59 26±8 0.22±0.10 23±8 0.27±0.10 fII binds platelets active sites (on)

60 27±8 0.22±0.10 23±8 0.27±0.10 fII binds platelets active sites (off)

54 18±2 0.31±0.07 15±1 0.43±0.12 FVa binds platelet active sites (off)

53 – – 28±11 0.29±0.14 FVa binds platelet active sites (on)

52 – – 26±9 0.29±0.13 fV binds platelet active sites (off)

51 – – 25±8 0.29±0.13 fV binds platelet active sites (on)

58 – – 62±30 0.18±0.09 FVIIIa binds platelet sites (off)

Continued on next page

97



Table 4.4 (Continued)

p-index TF-FVIIa (µ ± σ) FVIIa (µ ± σ)

57 – – 68±26 0.17±0.08 FVIIIa binds platelet sites (on)

45 – – 59±27 0.17±0.07 FIXa binds specific platelet sites (on)

46 – – 60±27 0.17±0.07 FIXa binds specific platelet sites (off)

95 – – 76±36 0.15±0.08 FIXa (specific) binds FVIIIa (on)

96 – – 76±34 0.15±0.08 FIXa (specific) binds FVIIIa (off)

81 – – 76±35 0.15±0.08 Tenase activates fX (on)

72 – – 20±5 0.25±0.07 FXa activates fV (on)

166 – – 31±6 0.22±0.10 Activate platelets secret fibrinogen

29 – – 29±5 0.17±0.06 FXa activates fIX (on)

30 – – 30±5 0.16±0.06 FXa activates fIX (off)

31 – – 44±17 0.15±0.06 FXa activates fIX (catalytic)

23 – – 43±20 0.24±0.16 Thrombin activates fV (on)

24 – – 48±20 0.22±0.15 Thrombin activates fV (off)

20 – – 61±18 0.13±0.13 Thrombin activates fVII (on)

21 – – 63±17 0.12±0.13 Thrombin activates fVII (off)

22 – – 77±33 0.13±0.15 Thrombin activates fVII (catalytic)

179 – – 42±8 0.18±0.08 Thrombin activates fibrinogen (on)

180 – – 44± 8 0.17±0.08 Thrombin activates fibrinogen (off)

135 – – 59±19 0.14±0.07 Thrombin activated PC (on)

137 – – 78±27 0.12±0.07 Thrombin activated PC (catalytic)

170 – – 30±14 0.14±0.06 TXA2 activates platelets (on)

171 – – 31±14 0.13±0.05 TXA2 activates platelets (off)

176 – – 31±21 0.17±0.09 TXA2 activates platelets (on)

177 – – 33±22 0.16±0.08 TXA2 activates platelets (off)

Compare to the TF-FVIIa whole time case, no shifts found in the initiation

phase; while 21 and 29 shifts found in the propagation and termination phases,

respectively (data not shown). In the propagation phase, 11 shifts, related to

APC activities, showed increased sensitivity; while the other 10 shifts, includ-

ing 3 fluid phase activation of fVIII by FXa and 7 platelet activations by AP,
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subendothelium, thrombin and ADP, became more robust. In the termination

phase, 18 shifts, including 15 APC mechanisms, 1 activation of PL by thrombin,

1 fibrin formation and 1 thrombin inhibition, were more sensitive; while the

other 11 shifts, including 3 fluid phase activation of fVIII by FXa and 8 platelet

activations by AP, subendothelium, thrombin and ADP, became more robust.

In general, APC activities were more important in the propagation and ter-

mination phases than in the initiation phase, which were reasonable as APC

was formed only after certain amount of thrombin was generated.

4.4 Discussion

In this study, we modeled thrombin generation in different conditions using the

mechanistic model with 193 proteins or protein complexes connected by 301

interactions. A family or ensemble of model parameters (N = 437) was estimated

using nine experimental training sets compiled from a cell-based experimental

model. Sensitivity analysis was then used, over the selected parameter sets from

the ensemble (N = 100), to estimate which parameters were critical globally and

key to specific model outputs (thrombin concentration).

Numerous wet experimental studies on the complex system regulating

hemostasis have been done using synthetic plasma or cell-based models [196,

111, 108, 115]. One of the most important aspects of our research is the choice

of a model, which determines to a large extent the view of physiological reality

that we develop. Our previous model [162] was mainly based on the experi-

ments using synthetic plasma. However, in vivo conditions most likely require

the presence of platelets. Thus in this study, we enriched our model with more
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details to simulate physiological reality; for example, the activation of platelets

through different G protein-coupled protease-activated receptors (PARs), the

intrinsic pathway, etc, were added. We then trained the model using nine cell-

based model data sets (Figure 4.1) and obtained an ensemble of parameters. Fur-

thermore, plasma from coronary artery and hemophilia A patients was used

in the measurements of thrombin generation; our model predictions using the

parameter ensemble correlated well with the experimental measurements (Fig-

ure 4.2). These results suggested our model could capture the generation of

thrombin in the environment as close to the physiological conditions as possi-

ble.

Factor VIII (fVIII) and factor IX (fIX) are the X-chromosomally encoded co-

agulation factors which are deficient in hemophilia A and B, respectively [24].

A hemophilia patient do not bleed more intensely than a normal person, but

for a much longer amount of time. The critical risk here is with normally small

injuries which, due to missing coagulation factors, take long times to heal. Al-

though replacement therapy markedly improves the management of bleeding

of most patients with hemophilia, the development of inhibitors during treat-

ment is always a challenge. rFVIIa, as a newly developed bypassing agent, is

often considered a universal hemostatic agent that used in treating hemophilas

with inhibitors. Our study confirmed that in the treatment of hemophilia with

rFVIIa and 150% level of prothrombin would restore normal thrombin genera-

tion. Further sensitivity analysis revealed the robust behavior of fVIII and fIX

in the treatment case, while fX/FXa mechanisms became more important. This

is consistent with the theory that rFVIIa or TF-FVIIa bypasses fVIII and fIX to

produce FXa, which then restores thrombin production.
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Given all the difficulties faced in treating hemophiliacs, the lack of un-

derstanding the principal mechanism of action of all these agents could be

one of the obstacles in developing effective treatment regimes. For example,

it is generally believed that the mechanism of action of rFVIIa is either TF-

dependent or TF-independent. Both mechanisms have their experimental evi-

dence [196, 197, 198, 199, 200, 32, 115, 201]. It is generally believed that TF-FVIIa

is a more potent activator than FVIIa only. TF-FVIIa activates fX at a 4-fold

higher rate than that of FVIIa only [196, 200]. The sensitivity analysis was also

used to study differences in the initiating mechanisms of TF-FVIIa and FVIIa. As

mentioned above, thrombin generation can be divided into 3 phases [202, 203].

Our sensitivity analysis on the initiation, propagation and termination phases

revealed that TF-FVIIa initiating mechanism would highly influence thrombin

generation in the propagation stage, while FVIIa initiating mechanisms were

more important in the initiation region.

4.5 Materials and Methods

4.5.1 Formulation and solution of the model equations.

The reactions considered in the coagulation model have been compiled from

literature [162, 204, 113, 69, 17, 205, 206, 16, 15, 60, 52, 146, 9, 8, 53]. Mass balance

equations are written around each protein or protein complex yielding the set

of ordinary differential equations (ODEs):

dx
dt

= S · r (x,p) x (to) = xo (4.1)
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The symbol S denotes the stoichiometric matrix (193 × 301). The quantity x

denotes the species concentration (193 × 1). The term r (x,p) denotes the vector

of reaction rates (301 × 1). Each row in S described a species while each column

described the stoichiometry of network interactions. Thus, the (i, j) element of

S, denoted by σi j, described how protein i was involved in rate j. If σi j < 0, then

protein i was consumed in r j. Conversely, if σi j > 0, protein i was produced by

r j. Lastly, if σi j = 0, protein i was not involved in rate j.

We assumed mass-action kinetics for each interaction in the network. The

rate expression for protein-protein interaction or catalytic reaction q:∑
j∈{Rq}

σ jqx j →
∑

p∈{Pq}

σpqxp (4.2)

was given by:

rq

(
x, kq

)
= kq

∏
j∈{Rq}

x−σ jq

j (4.3)

The set
{
Rq

}
denotes reactants for reaction q. The quantity

{
Pq

}
denotes the set

of products for reaction q. The kq term denotes the rate constant governing the

qth interaction. Lastly, σ jq, σpq denote stoichiometric coefficients (elements of

the matrix S). We treated every interaction in the model as non-negative. All re-

versible interactions were split into two irreversible steps. The mass-action for-

mulation, while expanding the dimension of the model, regularized the math-

ematical structure. The regular structure allowed automatic generation of the

model equations. Model parameters and structure, shown in Supplement Table

1, were taken from the literature [60, 52, 146, 9, 8, 53]. Initial conditions were

taken from each experiment and roughly correspond to in-vivo physiological

conditions. An ensemble of parameters (N = 437) were estimated to minimize

the objective functions that describe the errors between model simulations and

experimental data sets. Among the parameter ensemble, 100 parameter sets that
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resulted in a CV of 2 were selected for the sensitivity analysis.

4.5.2 Error Analysis of the Coagulation Simulations.

The correlation between model simulations and experimental data was calcu-

lated using the relationship:

r2 =

∑N
h=1

(
Ym (th) − Ȳ

)2

∑N
h=1

(
Ȳ (th) − Ym (th)

)2
+

∑N
h=1

(
Ym (th) − Ȳ

)2 (4.4)

where Ym (th) denotes the model value at time point h, Ȳ denotes the global av-

erage experimental value (average of experimental measurements over time)

and Ȳ (th) denotes the average experimental value at time point h (average of

experimental trials). Eqn. 5.4 measures the fraction of variation captured by the

model. In addition to correlation, the scaled standard error was used to measure

the agreement between the model:

sE =
1

maxh

(
Ȳ (th)

)

∑N

h=1

(
Ȳ (th) − Ym (th)

)2

N


1/2

(4.5)

Both Eqn. 5.4 and 5.5 were taken from [147].

4.5.3 The Measurement of Thrombin Generation

Platelet-poor plasma (PPP) samples with varied levels of factor VIII were ob-

tained from George King Biomedical (Overland Park, KS). Platelet-rich plasma

(PRP) samples were obtained from four patients scheduled to undergo coronary

vascular procedures. They gave an informed written consent for blood sam-

pling according to the IRB-approved protocol. Whole blood samples were col-

lected into 3.2% (0.105 M) buffered sodium citrate tubes containing 100 µg/ml
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corn trypsin inhibitor (CTI) to prevent platelet activation during the blood draw,

and isolation of platelet rich plasma. These patients were not being treated with

antithrombotic agents except for aspirin (81 mg per day). PRP and PPP were iso-

lated by centrifugation (10 min at 150 x g and 20 min at 2000 x g, respectively).

Platelet count (PLT) of PRP was adjusted to 200x103 per µl with autologous PPP

(AcT10 Coulter counter, Beckman Coulter, Miami FL).

Thrombin generation was measured by the calibrated automated thrombog-

raphy method using a fluorogenic thrombin substrate (Z-Gly-Gly-Arg-AMC,

Diagnostica Stago, Parsipanny, NJ) [207, 208]. Briefly, 80 µl of PRP or PPP

sample was added, and then 20 µl of tissue factor (TF)-based activator (Biodis,

Signes, France) was added to wells of the 96-well plate. The plate was incubated

for 2 to 3 min at 37oC and then 20 µl of the substrate buffer was added. A throm-

bin calibrator with known thrombin-like activity was monitored in parallel sam-

ple wells to allow for calculation of generated thrombin in nM. The progress of

the reaction was continuously monitored for 70 min at 37oC with a fluorescence

reader (Fluoroscan Ascent, Thermo Labsystems, Franklin, MA) equipped with a

390 nm excitation filter and a 460 nm emission filter. A dedicated software pro-

gram (Thrombinoscope, Synapse BV, Maastricht, The Netherlands) was used to

record the peak thrombin level.

4.5.4 Computation of overall state sensitivity coefficients.

The sensitive or fragile interactions of the coagulation architecture were deter-

mined by computing Overall State Sensitivity Coefficients (OSSC) [89]. Because

each parameter corresponds directly to a particular molecular interaction in the
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cascade, OSSC values were used to gauge which interactions were qualitatively

important. Large OSSC values for interactions relative to their peers indicated

fragility or sensitivity while small OSSC values indicated robustness. The OSSC

value for interaction j was defined as:

O j (t) =
k∗j
NS

( NT∑
h=1

NS∑
i=1

[
1
x∗i

∂xi

∂k j

∣∣∣∣∣∣
th

]2)1/2

(4.6)

where NT denotes the number of time points used in the simulation while NS

denotes the number of proteins/protein complexes in the model. The first-order

sensitivity coefficients:

si j (th) =
∂xi

∂k j

∣∣∣∣∣∣
th

(4.7)

were computed by solving the differential equation:

ds j

dt
= A (t) s j + b j (t) j = 1, 2, ,NP (4.8)

subject to the initial condition s j(t0) = 0. In Eqn. 5.8, the quantity j denotes the

parameter index, NP denotes the number of parameters, A denotes the Jacobian

matrix of the model equations and b j denotes the jth column of the matrix B,

which contains first-derivatives of the mass balances w.r.t. the parameter val-

ues. The quantity s j denotes the vector of first-order sensitivity coefficients w.r.t

parameter j. The Jacobian matrix (A) and the matrix of first-derivatives of the

mass balances w.r.t the parameter values (B) are given by:

A =
∂g
∂x

∣∣∣∣∣∣
(x∗,k∗)

B =
∂g
∂k

∣∣∣∣∣∣
(x∗,k∗)

(4.9)

where (x∗,k∗) denotes a point along the nominal or unperturbed system solu-

tion. The matrices A and B were numerically estimated at each time step us-

ing a generalized gradient algorithm [148] while the sensitivity balances were

solved using the LSODE routine of the OCTAVE programming environment

(v2.9.9; www.octave.org) on an Apple Computer MacOSX (Cupertino, CA;

v10.4.8) workstation.
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The connectivity matrix S (193 × 301) was used to rearrange the parameter

OSSC values to the species OSSCs through the equation:

Q = |S|O (4.10)

The rank orders of the species OSSCs were used to access the fragility of differ-

ent species in the model.

4.5.5 Statistical and clustering analysis of the shifts in overall

state sensitivity coefficients.

Three different tests were performed to identify large statistically significant

shifts in OSSC values between defective networks and the control. A Welch

t-test [149] was used to find all statistically significant shifts resulting from the

different structural perturbations and then a secondary test on the z−score of

each shift was preformed to find only the most prominent. The OSSC values

calculated over the family of parameter sets were assumed to follow normal

distributions for all cases. The statistical significance of shifts in OSSC values

relative to the control were determined by performing a Welch t-test with the

null hypothesis that the means of the sensitivity coefficients were equal at a

1% significance level. The Welch t-test is similar to the student t-test with the

exception that the two distributions being compared are not required to have

equal variances. The list of significant OSSC values was further restricted to

only those shifts with a magnitude larger than a specified z-score (0.1) away

from the squared mean displacement relative to the control:

d j,q =
(
Ōq

j − Ōc
j

)2
, j = 1, 2, ,NP (4.11)
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where Ōc
j denotes the mean OSSC value over the family of parameter sets for

parameter j in the control while Ōq
j denotes the same quantity for defective case

q. A significant shift in OSSC value was accepted if:

d j,q > zσdq + µdq (4.12)

where z denotes a desired z-score, σd j denotes the standard deviation of the total

displacement over all significant OSSC values for the qth defective case and µdq

denotes the mean of the significant displacements for the structurally defective

case q.

A large statistically significant shift in OSSC value, while indicative of the

shifting importance of an interaction, does not guarantee that an interaction

is ranked differently between cases. To this end, we used the Spearman rank

correlation denoted by ρ and defined as:

ρ = 1 −
6
∑NP

i=1 d2
i

N
(
N2 − 1

) (4.13)

to measure the difference in qualitative ranking between cases. The quantity

di denotes the difference in the ordinal rank of interaction i between a struc-

turally defective network and the control, N denotes the number of pairs of

values and NP denotes the number of parameters considered. The Spearman

rank is bounded by −1 ≤ ρ ≤ 1; a Spearman rank of one indicates that two

ranked lists are identical, a Spearman rank equal to negative one indicates that

two ranked lists are perfectly negatively correlated, while a Spearman rank of

zero indicates that two ranked lists are uncorrelated.

The distributions of OSSC values obtained from monte-carlo sampling were

clustered using a k-means algorithm [209]. The mean and standard deviation

obtained from the monte-carlo sensitivity analysis was used to estimate the un-
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derlying OSSC distribution (N = 100 points) where the OSSC values were as-

sumed to be normally distributed. Two hundred different clustering attempts

were run for each model to control for clustering artifacts. The most probable

configuration was reported.

4.5.6 Coupling analysis

Coupling coefficients of the form:

α
(
i, j, to, t f

)
=

(∫ t f

to
xi (t) dt

)−1 (∫ t f

to
x( j)

i (t) dt
)

(4.14)

were calculated to understand the sensitivity of the parameters in the model.

The coupling coefficient α
(
i, j, to, t f

)
is the ratio of the integrated concentration

of a network output in the presence (numerator) and absence (denominator) of

structural or operational perturbation. If α
(
i, j, to, t f

)
> 1, then the perturbation

increases the output concentration. Conversely, if α
(
i, j, to, t f

)
� 1 the perturba-

tion decreases the output concentration. Lastly, if α
(
i, j, to, t f

)
∼ 1 the perturbation

does not influence the output concentration.
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CHAPTER 5

FACTOR XI IS A POTENTIAL THERAPEUTIC TARGET FOR

THROMBOSIS THAT MAINTAINS HAEMOSTASIS

5.1 Abstract

The systems biology approach, together with computational, experimental and

observational inquiry, is highly relevant to drug discovery and the optimization

of medical treatments. In this study, we test our working hypothesis that fXI

related mechanisms are fragile in the process of blood coagulation and could be

a potential therapeutic target for thrombosis treatment. A mathematical model

of the blood coagulation cascade including fXI activities was built and validated

against published datasets generated from a cell-based model. The model ex-

plained the time-resolved thrombin generation profile with normalized error

≤30% and correlation coefficients ≥72%. The simulation results show that the

addition of intrinsic pathway protease fXI to the TF initiated coagulation re-

sulted in the formation of extra amount of thrombin and thrombin was recipro-

cally generated in a fXI-dependent way. To gauge the robustness and fragility of

each interaction in the cascade, overall state sensitivity coefficients (OSSC) were

calculated for each of the 301 model parameters over a parameter ensemble that

could predict reasonable thrombin generation profiles; the species sensitivity

was also calculated using the connectivity matrix and parameter OSSCs. Analy-

sis of the sensitivity results discloses that fX/FXa and thrombin were important

species in the extrinsic case; while besides thrombin, fXI/FXIa was also sensitive

in the combined and intrinsic cases. Theoretical considerations and experimen-

tal data suggest that fXI/FXIa could be excellent candidates as clinical targets

109



in treatment of thrombotic diseases. Inhibition of fXI/FXIa could potentially re-

duce the risk of occlusive thrombi formation without sacrificing hemostasis as

deficiency of fXI results in bleeding manifestations only after trauma or surgery.

When taken together, these preliminary results support our hypothesis that fXI

related mechanisms are fragile in the process of blood coagulation and could be

a potential therapeutic target for thrombosis treatment with the advantage of

not affecting hemostasis.

5.2 Introduction

The systems biology approach, together with computational, experimental and

observational inquiry, is highly relevant to drug discovery and the optimization

of medical treatments. It has been frequently proposed that computer simula-

tions and analysis significantly increase the efficiency of drug discovery [73].

Assmus et al. and others maintain that analysis of the dynamics of human rel-

evant networks using predictive computer models and high-throughput data

generation will play an increasingly important role in medical research and the

elucidation of disease mechanisms [76, 77]. However, these techniques often

suffer from parametric and structural uncertainties in diagnosing complex bio-

logical networks [73, 84]. The conventional wisdom is that the data requirement

to fully identify and validate mechanistic models is too large. One tool that

could partially eleviate model uncertainty and potentially elucidate qualitative

properties of uncertain mechanistic models, such as robustness and fragility of

particular mechanisms, is sensitivity analysis.

Sensitivity analysis is an enabling tool for the investigation of robustness and
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fragility in networks relevant to human health and more generally for model-

based knowledge discovery. Robustness, a long-recognized property of living

systems and networks, allows function in the face of uncertainty while fragility,

i.e., extreme sensitivity, can potentially lead to catastrophic failure following

seemingly innocuous perturbations [85, 158, 159, 160, 84]. Cho et al. used sen-

sitivity analysis to study TNF-α-mediated NK-κB signalling where parametric

uncertainty was addressed using a monte-carlo parameter sampling protocol;

a parameter ensemble, generated from the best parameter guess, was used to

calculate the sensitivity profile in a region of parameter space [80]. Bullinger

and coworkers explored the robustness of models of programmed cell death

or apoptosis [88] while Stelling et al., computationally identified points of ro-

bustness and fragility, using monte-carlo sensitivity analysis and Overall State

Sensitivity Coefficients (OSSCs), in models of circadian rhythm [89]. Mahdavi

et al., employed sensitivity analysis to better understand stem cell differentia-

tion [161], while our group used an uncertain mechanistic model of the coag-

ulation cascade in combination with monte-carlo sensitivity analysis, to show

that computationally derived sensitive mechanisms were consistent with anti-

coagulation therapeutic strategies [162]. By screening a model of the extrinsic

pathway of blood coagulation using sensitivity analysis, we have previously

found that factor X/activated factor X (fX/FXa) and thrombin related mecha-

nisms were fragile and factor IX/activated factor IX (fIX/FIXa) related mecha-

nisms had moderately robust. Some anti-fX/FXa and direct thrombin inhibitors

have been evaluated in phase III clinical trials or have been licensed in North

America or Europe for the treatment of venous thromboembolism, deep ve-

nous thrombosis and pulmonary embolism [210]. And the treatment of throm-

botic disease with anti-fIX/FIXa antibodies often require high dosages to have
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an therapeutical effect [133]. However, the use of these anticoagulants is often

associated with therapy-related bleeding problems and has no significant im-

provement in safety/efficacy ratio [210, 211, 212]. Hence the development of

new therapies is necessary and requires the discovery of agents that are specific

for thrombus-forming mechanisms without affecting hemostasis.

Factor XI (fXI), closely related to mild bleeding disorder[27, 213, 205], often

receives less attention as a result of its in vivo insignificance. Deficiency in fXI

only affects people who has trauma or under surgery. However, recent studies

show that its feedback activation by thrombin consolidates blood coagulation

and fibrin clot formation [15, 16]. Elevated fXI activity levels are not only a

risk factor for deep venous thrombosis and possibly cardiovascular disease, but

also associated with stroke or cerebrovascular events [214, 215]. All these stud-

ies motivate us to study of the role of fXI in coagulation and its possibility as

potential therapeutic targets without a serious impact on hemostasis. In this

study, we use mathematical modeling and sensitivity analysis to test our work-

ing hypothesis that fXI related mechanisms are fragile in the process of blood

coagulation and could be a potential therapeutic target for thrombosis treat-

ment. A mathematical model of the blood coagulation cascade including fXI ac-

tivities (intrinsic pathway) was built and validated against published datasets

generated from a cell-based model [15]. The model explained the time-resolved

thrombin generation profile with normalized error ≤30% and correlation coeffi-

cients ≥72%. The simulation results show that the addition of intrinsic pathway

protease fXI to the Tissue Factor (TF) initiated coagulation resulted in the forma-

tion of extra amount of thrombin and thrombin was reciprocally generated in a

fXI-dependent way. We used monte-carlo sensitivity analysis to computation-

ally screen the model for sensitive mechanisms in the presence of either intrinsic
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pathway activators fXI and thrombin (intrinsic case), or extrinsic pathway acti-

vator TF (extrinsic case), or both pathways activators (combined case). Analysis

of the sensitivity results discloses that fX/FXa and thrombin were important

species in the extrinsic case; while besides thrombin, fXI/FIXa were also sensi-

tive in the combined and intrinsic cases. We then validated the fragility of fXI

related mechanisms in different cases and contrast with literature to determine

if they could be a potential therapeutic target for thrombosis treatment, thereby

proving or disproving our working hypothesis.

5.2.1 A review of the coagulation cascade.

Conventionally, the coagulation cascade has been known as two alternative or

convergent pathways known as the intrinsic pathway and the extrinsic path-

way [12, 52, 54, 60, 53, 8, 111, 109, 115, 110, 216, 217]. The extrinsic coagu-

lation cascade is initiated by the formation of the TF and Factor VIIa molec-

ular complex, following a series of enzymatic interactions leading to the for-

mation of thrombin. The detailed interactions and the roles of pro- and anti-

coagulants in the coagulation cascade could be found in a number of articles

[112, 10, 108, 20, 21, 22, 116, 117, 23]. The extrinsic pathway is believed to be

the major activation mechanism in vivo [12, 52, 54, 60, 53, 8, 111, 109]. However,

small quantities of active FXa generated by FVIIa-TF complex during the initia-

tion of the extrinsic pathway could result in the inactivation of TF pathway by

TFPI. When this inactivation occurs, an alternative system is needed to maintain

coagulation. The classic intrinsic pathway of coagulation is triggered by contact

activation of plasma protease factor XII, followed by sequential proteolytic ac-

tivation of fXI and fIX [14]. However, patients with deficiency in fXII do not
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experience abnormal hemostasis even after major trauma or surgery, whereas,

patients with fXI deficiency frequently present with excessive or even life-

threatening bleeding complication after trauma or surgical operations [14, 13].

Researches on this discrepancy indicate additional mechanisms for fXI activa-

tion in vivo, which is the activation of fXI by a catalytic amount of thrombin in

the presence of dextran sulfate [14, 13]. Further studies show that the surface

of activated platelets could substitute for dextran sulfate in vivo [18, 19]. More-

over, this feedback activation of fXI by thrombin is proven to be a preference

over contact activation of FXIIa [17]. Hence, the activation of fXI by thrombin

could serve as an alternative to maintain blood coagulation and has been well

studied by several groups [13, 14, 15, 16, 17, 18, 19]. Therefore, besides activation

by Factor XIIa, which is activated upon contact with negatively charged surface,

factor XI (fXI) in the intrinsic pathway could also be activated by thrombin and

its own active form, Factor XIa (FXIa) [13, 14, 18, 19, 17, 16, 15, 206, 205]. The

intrinsic pathway of coagulation joins with the extrinsic at the point where fIX

activated by FXIa to form FIXa (shown in Figure 5.1).

5.3 Results

Thrombin generation as a function of TF, FVIIa, fXI and thrombin were pre-

dicted, over an ensemble of parameter sets (N = 437, see Chapter 4), to be con-

sistent with published datasets from a cell-based model [15]. To gauge the ro-

bustness and fragility of each interaction in the cascade, a hundred parameter

sets were further selected from one parameter ensemble with a coefficient of

variance (CV) equals 2 for sensitivity analysis. The overall state sensitivity coef-

ficients (OSSCs) were calculated for each of the 301 model parameters over the
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Figure 5.1: Schematic illustration of the coagulation cascade.

selected parameter sets (see Methods). Simulation results and error quantifica-

tions for different cases (Table 5.1) are shown in Figure 5.2. The model explained

the time-resolved thrombin generation profile with normalized error ≤30% and

correlation coefficients ≥72%. The simulation results show that the addition of

intrinsic pathway protease fXI to the TF initiated coagulation resulted in the for-

mation of extra amount of thrombin and thrombin was reciprocally generated

in a fXI-dependent way. The OSSCs were clustered into groups with varied

levels of sensitivity (high, medium and low); the high and medium sensitive

groups for different cases are reported in Table 5.2. Pairwise comparison of the

OSSCs are shown in Figure 5.3 and the parameter indices of statistically signif-
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icant shifts for different pairs are reported in Table 5.3. The species sensitivity

was calculated using the connectivity matrix and parameter OSSCs; and the av-

erage ranks of the top 10 most sensitive species and their connectivities for all

cases are shown in Figure 5.4. Pairwise comparison of the rank-ordered species

sensitivity are shown in Figure 5.5 and the statistically significant shifts for dif-

ferent pairs are reported in Table 5.4. Analysis of the sensitivity results discloses

that fX/FXa and thrombin were important species in the extrinsic case; while

besides thrombin, fXI/FXIa were also sensitive in the combined and intrinsic

cases.

5.3.1 Thrombin generation in the presence and absence of fXI.

Figure 5.2 shows the time resolved generation of thrombin as a function of TF,

FVIIa, fXI and thrombin. Figure 5.2 A is thrombin generation profile of the

extrinsic case where only TF and FVIIa were present in the reaction system;

Figure 5.2 B is thrombin generation in the combined case where fXI was also

added in addition to TF and FVIIa; Figure 5.2 C and D show thrombin gener-

ation profiles in the intrinsic cases with different amounts of thrombin as the

initiator of the intrinsic pathway, since fXII was not available. The dotted lines

denoted the mean thrombin generation profile obtained from the parameter en-

semble (437 sets). A hundred parameter sets were further selected with a CV

of 2 for the sensitivity analysis. The model predictions of mean thrombin gen-

eration explained the generation of thrombin for all cases in Table 5.1 with the

normalized standard errors ≤ 30% and the correlation coefficients above 72%.

Thrombin generation were simulated using the ensemble of parameter sets and

the mean and standard deviation of thrombin concentrations at each time were
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Table 5.1: Treatement cases considered in the sensitivity analysis. Case A
denotes the ‘Combined’ case, where species for both extrinsic
and intrinsic pathways are present, Case B denotes the ‘Extrin-
sic’ case while cases C and D denote the ‘Intrinsic’ case with two
different initial thrombin concentrations.

Case Name TF (pM) VIIa (nM) XI (nM) IIa (nM)

A Extrinsic 1.0 20 – –

B Combined 1.0 20 60 –

C Intrinsic – – 60 0.5

D Intrinsic (5nM IIa) – – 60 5

calculated for all cases. The shadow areas denoted thrombin concentratrions

within ±1-standard deviation of the ensemble.

Thrombin generation profile typically consists of three stages: the initiation,

the propagation and the termination. The initiation stage is the part where no

or little thrombin is generated, the propagation is the part where large amount

thrombin formed in a short period of time due to increased thrombin gener-

ation rates, and the termination of thrombin is the result of fast consumption

of thrombin. Figure 5.2A shows that in the extrinsic case, the initiation stage

covered the first 15 min, followed by the propagation of thrombin. Thrombin

reached its maximal of 30 nM at about 40 minutes, then it gradually degraded

to 20 nM at one hour. The normalized standard error and the correlation coeffi-

cient in this case were 0.07 and 0.97, respectively, which was probably because of

the discrepancy between the mean simulation results and the experiment data

in the propagation stage. The thrombin generation profile in the extrinsic case

(case A) was quite similar to that in the intrinsic case (case C). As shown in Fig-

ure 5.2C, after 0.5 nM thrombin was added to initialize the reaction, thrombin
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propagation started at about 12 min, which was close to the lag time in extrinsic

case; furthermore, the rate and maximal amount of thrombin generated in this

case was about the same as those in the extrinsic case, especially when compar-

ing the experimental data. The model predicted a faster thrombin generation

in the propagation and a faster thrombin consumption in the termination stage.

This discrepancy caused a larger standard error of 0.24 and a smaller correlation

coefficient of 0.78. In the combined case (Figure 5.2B), both the rate and maximal

thrombin generation were increased as compared to that in either the extrinsic

or the intrinsic case . Thrombin concentration reached a maximum of 40 nM

at about 30 min. Our model prediction was consistent with the experimental

observation that feedback activation of fXI by thrombin resulted in additional

production of thrombin [16, 15]. Our model predictions of the combined case

(case B) correlated well with the experimental observation, which had a stan-

dard error of 0.10 and a correlation coefficient of 0.95.

The experimental observations of the thrombin generation in case C and case

D show that thrombin was reciprocally generated in a fXI-dependent manner,

i.e. increasing the initiating thrombin concentration resulted in increased FXIa

formation, which then increased the amount of thrombin formation. In Fig-

ure 5.2D, after 5 nM thrombin was added, the experiment results illustrated

gradually increased thrombin concentration to a maximum of 60 nM in a tem-

poral range of 0 to 20 min, which indicated a much faster thrombin generation

rate than that in case C. However, our simulation results in case D failed in pre-

dicting thrombin generation in the first 20 min; we predicted a lag time of 10 min

and a faster thrombin generation rate where thrombin concentration reached its

maximum within 15 min. As a result, a standard error of 0.30 and a correlation

coefficient of 0.72 were observed in this case.
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5.3.2 The fragility and robustness of the combined, intrinsic

and extrinsic coagulation pathways.

The OSSCs were calculated for cases A-D in Table 5.1. The scaled OSSC val-

ues were clustered into three groups (high, medium and low sensitivity) using

a k-mean algorithm. The mean and standard deviations of the OSSC values in

the high (Cluster I) and medium (Cluster II) sensitive groups are reported in

Table 5.2. 7 interactions in the extrinsic case (case A), 4 interactions in the com-

bined case (case B), and 5 interactions in the intrinsic cases (case C and D) are

shown in the most sensitive cluster (Cluser I). Among all these interactions, the

off rates of platelet activations by TXA2 and ADP were clustered in the high

sensitive group for all cases. In the extrinsic case, 3 out of 7 interactions were

associated with fX/FXa activities, all other interactions were related to platelet

activation by TXA2 or ADP. It is noted that, although all these 3 fX/FXa interac-

tions were not in the high sensitive group for the combined case (case B), they

were classified in the medium sensitive group (Cluster II). Furthermore, the se-

cretion of TXA2 by activated platelets was also not shown in the high sensitive

group for case B, in stead, it showed up in the medium sensitive group. In addi-

tion, the self-activation of intrinsic pathway protease fXI (on and catalytic rates)

were shown in the high sensitive group for the case B, C and D.

The medium sensitive group (Cluster II) consisted 24 interactions in case A,

20 interactions in case B, 25 interactions in case C and 18 interactions in case

D. For the extrinsic case (case A), one of the most important category of re-

actions in Cluster II was the surface binding interactions as 9 out of the total

24 interactions in Cluster II were binding interactions with active platelet sites;

while among other interactions, 6 interactions related to the formation and ac-
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Figure 5.2: Model predictions of thrombin generation versus time as a
function of TF, FVIIa, fXI and thrombin and experimental mea-
surments from a cell-based model. (A-D) Thrombin genera-
tion in the case A, B, C and D in Table 5.1, respectively. The
experimental thrombin generation assay was reproduced from
Wielder et al [15]. An ensemble of parameter sets (N = 437)
was generated using nine training data sets. The dotted lines
denote the mean thrombin concentrations calculated from the
parameter ensemble and the shadow areas denote one stan-
dard deviation of the ensemble. The normalized standard er-
rors (SE) and the correlations between the mean simulation val-
ues of the ensemble are reported in the corner of each panel. In
the experiments, recalcified PRP was incubated with different
concentrations of FVIIa, fXI and thrombin (see Table 5.1) in the
presence of collagen. Thrombin generation was initiated by TF
or small amount of thrombin.
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tivities of surface complex tenase or prothrombinase, 5 TF-VIIa activating inter-

actions, 3 platelets activations by thrombin and 1 ATIII inhibitory interaction.

Our findings in Cluster I and II for the extrinsic case were consistent to cer-

tain degree with our previous observations in the extrinsic pathway model [162]

that fX/FXa and thrombin related mechanisms were fragile, while fIX/FIXa and

fVIII/FVIIIa activation and activities were relatively robust.

Table 5.2: The distribution of the OSSCs for different cases 5.

p-index case A case B case C case D Description

Cluster I

172 0.83±0.23 0.76±0.20 0.84±0.19 0.76 ±0.18 TXA2 activates platelets (off)

175 0.74±0.27 0.48±0.17 0.57±0.24 0.63 ±0.25 ADP activates platelets (off)

126 0.62±0.18 – – – ATIII inhibits FXa (on)

50 0.60±0.21 – – – FXa binds platelet active sites (off)

13 0.54±0.19 – – – TF-FVIIa activates fX (catalytic)

164 0.37±0.17 – – – Activate platelets secret ADP

165 0.50±0.22 – 0.47±0.13 0.44±0.14 Activate platelets secret TXA2

197 – 0.68±0.40 0.80±0.23 0.62±0.33 FXIa self-activation (on)

199 – 0.50±0.27 0.65±0.13 0.49±0.16 FXIa self-activation (catalytic)

Cluster II

90 0.56±0.23 0.41±0.24 0.29±0.14 0.34±0.18 Prothrombinase activates fII (on)

59 0.41±0.20 0.29±0.16 0.22±0.13 0.29±0.18 fII binds platelets activate sites (on)

60 0.40±0.20 0.28±0.15 0.22±0.13 0.28±0.17 fII binds platelets activate sites (off)

58 0.35±0.26 0.27±0.20 0.30±0.10 0.36±0.15 FVIIIa binds platelet active sites (off)

57 0.35±0.26 0.27±0.20 0.30±0.10 0.36±0.15 FVIIIa binds platelet active sites (on)

123 0.27±0.18 0.33±0.30 0.33±0.27 0.53±0.32 ATIII inhibits FIXa (on)

47 0.50±0.17 0.34±0.18 – – fX binds platelet active sites (on)

48 0.50±0.17 0.34±0.18 – – fX binds platelet active sites (off)

49 0.50±0.18 0.33±0.18 – – FXa binds platelet active sites (on)

11 0.44±0.13 0.28±0.13 – – TF-FVIIa activates fX (on)

Continued on next page
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Table 5.2 (Continued)

p-index case A case B case C case D Description

12 0.34±0.09 0.22±0.10 – – TF-FVIIa activates fX (off)

147 0.47±0.37 0.26±0.29 0.31±0.30 – Thrombin activates platelets (catalytic)

97 0.45±0.18 0.29±0.16 0.20±0.08 – FXa binds FVa on platelet surface (on)

98 0.45±0.18 0.29±0.16 0.20±0.08 – FXa binds FVa on platelet surface (off)

95 0.32±0.28 – 0.17±0.11 0.25±0.18 FIXa (specific) binds FVIIIa (on)

96 0.32±0.28 – 0.17±0.11 0.25±0.18 FIXa (specific) binds FVIIIa (off)

81 0.32±0.28 – 0.17±0.11 0.24±0.18 Tenase activates fX on platelet surface (on)

45 0.32±0.25 – 0.15±0.09 0.22±0.14 FIXa binds specific platelet active sites (on)

46 0.31±0.25 – 0.14±0.09 0.21±0.13 FIXa binds specific platelet active sites (off)

156 0.27±0.21 – 0.19±0.19 – Thrombin activates platelets via PAR4 (off)

155 0.27±0.21 – 0.19±0.19 – Thrombin activates platelets via PAR4 (on)

14 0.31±0.11 – – – TF-FVIIa activates fIX (on)

15 0.28±0.10 – – – TF-FVIIa activates fIX (off)

16 0.23±0.15 – – – TF-FVIIa activates fIX (catalytic)

13 – 0.37±0.19 – – TF-FVIIa activates fX (catalytic)

165 – 0.42±0.11 – – Activate platelets secret TXA2

164 – 0.24±0.10 0.24±0.14 0.29±0.11 Activate platelets secret ADP

198 – 0.21±0.14 0.25±0.10 0.19±0.11 FXIa self-activation (off)

50 – 0.41±0.21 0.24±0.09 0.17±0.04 FXa binds platelet active sites (off)

126 – 0.36±0.19 – 0.18±0.08 ATIII inhibits FXa (on)

129 – – 0.19±0.12 0.19±0.06 ATIII inhibits thrombin (on)

93 – – 0.14±0.11 – FIXa binds FVIIIa on platelet surface (on)

94 – – 0.14±0.11 – FIXa binds FVIIIa on platelet surface (off)

78 – – 0.13±0.11 – Tenase activates fX on platelet surface (on)

144 – – 0.11±0.10 – Thrombin activates platelets via PAR1 (off)

143 – – 0.11±0.10 – FXa activates fV on platelet surface (on)

62 – – – 0.17±0.07 Thrombin binds platelet active sites (off)

210 – – – 0.16±0.08 FXIa activates fIX (on)

5The OSSC values were clustered using a k-means algorithm into three parts. The most
fragile parameters were shown in Cluster I; the most robust ones were shown in Cluster III.
The mean OSSC value (µ) ± one standard deviation (σ) in Cluster I and II are reported. p-index
denotes the parameter index in the reaction file.
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For the combined case (case B), 8 platelet binding interactions and 3 inter-

actions related to the formation and activities of prothrombinase, 3 interactions

of TF-VIIa activating fX, 2 ATIII inhibitions for FIXa and FXa and the others

were related to platelet activation. In total, there were 11 interactions related to

fX/FXa activities, 1 interaction related to fXI/FXIa, and 1 interaction related to

fIX/FIXa, etc. For case C and D, most of the medium sensitive parameters were

associated with the activities of platelets, thrombin, fIX/FIXa and fXI/FXIa.

When taken together, thrombin and platelets interactions were the most sensi-

tive interactions among all cases; fX/FXa activities were fragile in the extrinsic

and combined case, while less fragile in other cases; binding interactions were

moderately sensitive in the extrinsic and combined cases, but less important in

all other cases. Furthermore, TF-FVIIa mechanisms were sensitive in the extrin-

sic case, while robust in all other cases; similarly, fXI/FXIa mechanisms were

robust in the extrinsic case, while sensitive in the combined and intrinsic cases.

The statistically analysis of the pairwise comparisons of the OSSCs for dif-

ferent cases were used to gauge the importance of mechanisms in different cases

(Figure 5.3 and Table 5.3). Increases or decreases in the OSSC value of a reaction

in one case relative to the other indicated increased or decreased importance of

the reaction in different pathways. And all the shifts found in these pairwise

comparisons have shown to be in either high or medium sensitive group in one

case or the other. Comparing the intrinsic cases with different amount of initi-

ating thrombin (Figure 5.3D and Table 5.3), 6 statistically significant shifts were

observed. Among all these 6 shifts, 3 of them involved thrombin activity, 2 re-

lated to fXI/FXIa activity and 1 related to ATIII inhibition of FIXa. The results

indicated that the changes in the initiating thrombin concentration in the in-

trinsic cases not only affected the sensitivity of thrombin mechanisms, but also
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Figure 5.3: The pairwise parameter OSSC values calculated from sensitiv-
ity analyses for different cases in Table 5.1. Among the gener-
ated parameter ensemble, 100 parameter sets with a CV of 2
were selected for the sensitivity analyses. The mean and stan-
dard deviation of all parameter sets were shown in the figure.

had something to do with the fXI/FXIa mechanisms, and even fIX/FIX mech-

anism. After further investigating the OSSCs, although the relative importance

of most parameters was statistically shifted between these two cases, 3 out of

the 6 parameters were still clustered into the same sensitive group. For exam-

ple, although the on and catalytic rates of FXIa self-activation (parameter index

of 197 and 199) were statistically shifted when comparing case C with case D,

they were clustered into the high sensitive group (Cluster I) for both cases. On

the other hand, if a parameter was clustered into different groups, this param-
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Table 5.3: Statistical results of the indices of shifted parameters in pairwise
comparison of different cases (Table 5.1).

.

case C vs case A case C vs case B case A vs case B case C vs case D

11 11 – –

12 12 – –

13 13 – –

14 14 – –

47 47 – –

48 48 – –

49 49 – –

50 50 – –

126 126 126 –

197 – 197 197

199 – 199 199

– – 147 147

– – 175 –

– – – 123

– – – 155

– – – 156

eter was highly possible to be one of the statistically significant shifts, e.g. the

rates of thrombin activating platelets (parameter indices of 147, 155 and 156).

As compared to the combined case, 9 and 5 statistically significant shifts

were observed in the intrinsic and extrinsic cases, respectively; while 11 signifi-

cant shifts were observed when comparing the intrinsic case to the extrinsic case

(Table 5.3). Comparing the intrinsic to the combined case, except for 1 fIX/FIXa

mechanism (index 14), the remaining 8 mechanisms all related to fX/FXa activ-

ities; All these mechanisms were all shown to have reduced sensitivity in the

intrinsic case. When comparing the extrinsic to the combined case, the on and
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catalytic rates of fXI self-activation were shown to have increased sensitivity in

the combined case; while the other 3 mechanisms that related to the activation

of platelets and the inhibition of FXa became less significant in the combined

case. Comparing the intrinsic to the extrinsic case, 8 out of 11 significant shifts

related to fX/FXa activities and 1 related to FIXa were shown to have reduced

sensitivities in the intrinsic case; while the remaining 2 shifts were related to

fXI self-activation with apparently increased significance in the intrinsic case.

Overall, the sensitivity of fX/FXa mechanisms was generally shifted to be more

important in the extrinsic case; while the parameters related to fXI/FXIa inter-

actions was more sensitive in the intrinsic cases. In the combined case, both

fX/FXa and fXI/FXIa mechanisms were sensitive.

The sensitivity of species was accessed by multiplying the absolute connec-

tivity matrix with the parameter OSSC values, therefore it evaluates the com-

bination of the species connectivity and the parameter sensitivity. Figure 5.4

shows the average ranks of the top ten most sensitive species and their corre-

sponding connectivity in different cases (Table 5.1). In all cases, at least 8 out

of the top 10 most sensitive species show a connectivity greater than the mean

connectivity (4.9) + 1 standard deviation (6.1) of all species, which indicated that

the species sensitivity was highly influential by the species connectivity. Platelet

activators ADP and TXA2 ranked within the top 3 most sensitive species for all

cases; while thrombin ranked the 5th sensitive species except for the combined

case. In the extrinsic case, free and surface bound fX/FXa and TF-FVIIa were

ranked in the top 10 sensitive species (Figure 5.4A); while in the combined and

intrinsic cases, FXIa became more sensitive as shown in the top 10 sensitive

species (Figure 5.4B, C and D); FIXa was shown as the 8th sensitive species in

case D. The relative importances of fX/FXa, TF-FVIIa, fXI/FXIa were consistent
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Figure 5.4: The connectivities of species ranked as the top ten most sensi-
tive species for different cases in Table 5.1. The x-axis denotes
the average ranks of the top ten most sensitive species in differ-
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of the species.
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with our findings in the clustered parameter OSSCs (Table 5.2).
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Figure 5.5: The pairwise species OSSC ranks calculated from sensitivity
analyses for different cases in Table 5.1. The connectivity ma-
trix S (193 × 301) was used to rearrange the parameter OSSC
values to the species OSSCs. The rank orders of the species
OSSCs were used to access the fragility of different species in
the model. The mean and standard deviation of the ranks for
species OSSC values (100 sets) were shown in the figure.

The pairwise comparisons of the rank-ordered species sensitivity of different

cases are plotted in Figure 5.5 and the statistically significant shifts of the ranks

are reported in Table 5.4. As compared to the combined case, 15 and 7 species

were statistically significantly changed in the intrinsic and extrinsic cases, re-

6The mean ranks of the species OSSC values (µ) ± one standard deviation (σ) of the statisti-
cally shifted species are reported. s-index denotes species index in the pairwise comparison.

128



spectively; in the intrinsic case, all these 15 species, including 8 TF-FVIIa/FVIIa

proteins or protein complexes and 4 PARs (protease-activated receptor) or PAR

complexes, became less important approved by the increased species sensitivity

ranks; in the extrinsic case, FXIIa and the other 6 fXI/FXIa or fXI/FXIa com-

plexes became less fragile as compared to that in the combined case. Compare

the intrinsic to the extrinsic cases, 6 fXI and fXII related species become more

important, while the other 8 species including TF-FVIIa, FXa and PAR related

species became less important in the intrinsic case. When considering the effect

of initiating thrombin in the intrinsic cases, the different amount of initiating

thrombin resulted in statistically significant changes in the sensitivity ranks of

7 PAR related species, 3 fVIII related species and 2 thrombin inhibitors. Those

PARs were associated with the activation of platelets by thrombin; and the in-

creased initial thrombin concentration (case D) resulted in decreased sensitivity

of all species shifted.

5.4 Discussion

We have previously reported that fX/FXa activity and thrombin-mediated

platelet activation were fragile mechanisms in the extrinsic pathway model, and

these mechanisms were targets of current anticoagulation preclinical develop-

ment, clinical therapies, and clinical trials in the treatment of thrombotic dis-

orders [162]. In this study, we used parameter OSSCs and species sensitivity

analysis to show that fX/FXa, thrombin and platelets were important species in

the extrinsic case; while besides thrombin and platelets, fXI/FXIa became more

important in the combined and intrinsic cases than that in the extrinsic case.
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Table 5.4: Statistical results of the shifts in the rank of species OSSCs for
pairwise comparison of different cases 6.

s-index species case C case A s-index species case C case B

(µ ± σ) (µ ± σ) (µ ± σ) (µ ± σ)

3 X-VIIa-TF 91.0±3.5 14.7±3.9 3 X-VIIa-TF 91.0±3.5 17.9±7.5

4 IX-VIIa-TF 95.0±5.5 29.3±7.0 4 IX-VIIa-TF 95.0±5.5 42.1±13.4

36 TF-FVIIa 87.9±2.2 6.0±1.9 6 VII-IIa 98.2±4.7 142.0±9.6

92 PAR3 170.4±13.9 83.4±2.9 35 VIIa 95.3±2.5 50.4±5.5

96 IIa-PAR3 186.5±11.2 120.6±12.8 36 TF-FVIIa 87.9±2.2 10.7±5.7

98 IIa-PAR4 166.8±15.1 78.8±4.4 39 X 53.8±7.2 14.5±6.6

102 PL-Psub-IIa-PAR4 183.9±12.1 116.0±13.1 78 VIIa-TF-ATIII 121.8±4.7 76.9±7.7

115 XIIa 98.6±6.3 172.2±3.3 81 TFPI-X-VIIa-TF 106.6±6.8 59.8±10.6

121 XI 11.4±6.9 106.5±4.7 82 TFPI-Xa-VIIa-TF 109.7±5.3 69.4±5.4

122 XIa 3.1±1.1 93.6±3.0 92 PAR3 170.4±13.9 94.0±3.8

127 XIIa-XI 99.6±6.3 179.1±3.8 96 IIa-PAR3 186.5±11.2 128.0±12.8

128 XIa-XI 6.5±3.6 169.6±6.1 98 IIa-PAR4 166.8±15.1 88.0±5.6

131 IIa-P2s-XI-P11s 51.0±11.8 115.3±7.0 102 PL-Psub-IIa-PAR4 183.9±12.1 123.2±12.8

185 IX-VIIa 130.4±5.8 62.4±2.5 184 X-VIIa 111.8±6.8 67.3±6.4

– – – – 185 IX-VIIa 130.4±5.8 91.6±1.5

s-index species case A case B s-index species case C case D

(µ ± σ) (µ ± σ) (µ ± σ) (µ ± σ)

115 XIIa 172.2±3.3 92.9±8.5 11 Xa-VIII 79.8±1.9 128.1±33.1

121 XI 106.5±4.7 24.3±18.4 19 VIII-P8s-Xa-P10s 83.0±2.1 128.2±33.0

122 XIa 93.6±3.0 10.9±11.7 20 VIII-P8s-IIa-P2s 88.8±5.2 122.2±28.4

127 XIIa-XI 179.1±3.8 93.9±8.5 91 PAR1 53.4±18.9 82.0±32.7

128 XIa-XI 169.6±6.1 17.4±15.9 93 PAR4 44.5±21.3 74.2±34.1

129 XI-P11s 102.1±3.6 50.3±12.0 94 IIa-PAR1 142.7±17.0 181.3±6.3

131 IIa-P2s-XI-P11s 115.3±7.0 58.1±16.7 95 PL-IIa-PAR1 165.9±20.6 188.0±3.4

– – – – 97 PL-IIa-PAR3 28.4±23.2 59.5±39.1

– – – – 100 PL-Psub-IIa-PAR1 138.6±19.7 179.8±6.4

– – – – 101 PL-Psub-IIa-PAR3 163.6±20.5 186.6±3.9

– – – – 169 HCII-DER 134.5±6.7 161.6±4.7

– – – – 170 HCII-DER-IIa 136.1±7.0 164.0±6.2
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It is known that thrombi formed at low thrombin concentrations are com-

posed of thick fibrin fibers and are highly susceptible to fibrinolysis; while

thrombi formed at high thrombin concentrations are composed of thin fibers

and are relatively resistant to fibrinolysis [218]. The addition of fXI in TF-

initiated coagulation results in extra thrombin generation, which could protect

fibrin clots from fibrinolysis [16] through the activation of thrombin activatable

fibrionolysis inhibitor (TAFI) [210]. Thus, fXI deficiency does not seem to pre-

vent the initiation of thrombi formation, but rather causes significant thrombi

instability that prevents occlusion of the vessel. Moreover, fXI deficiency relates

to only mild to moderate bleeding disorders and only has significant impact

after trauma or surgery. The relative important impact on thrombosis and the

relatively moderate impact on hemostasis make fXI an excellent target for the

treatment of thrombotic disorders.

Intravital microscopy clearly demonstrated that platelet-rich thrombi form

at sites of vessel injury in fXI-deficient mice [219, 220]. However, the platelet

aggregates were unstable and undergo fragmentation, resulting a substantial

reduction in thrombus growth and hence preventing injured vessels from oc-

clusion [220]. Baird et al. studied platelet accumulation and fibrin deposition

in fXI deficient mice after laser injury using digital fluorescence intravital mi-

croscopy [221]. As compared to wild-type mice, platelet accumulation was re-

duced by >90% and fibrin deposition at the site of injury by about 50% in fXI

deficient mice after laser injury [219]. Renné et al. investigated the intrinsic path-

way of coagulation on thrombus stability in mice and revealed that fXII- and

fXI-deficient mice did not experience excessive injury-related bleeding. How-

ever, intravital fluorescence microscopy and blood flow measurements in three

separate arterial beds revealed a severe defect in formation and stabilization
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of platelet-rich occlusive thrombi induced by different methods of injury [220].

Infusion of human fXI or fXII into fXI or fXII null mice restored arterial throm-

bus formation following FeCl3-induced injury of the carotid artery in the mouse

[222, 220].

Yamashita et al. studied the role of fXI on arterial thrombus growth in the

rabbit iliac artery in the presence of repeated balloon injury using a mouse mon-

oclonal antibody XI-5108 to inhibit the auto-activation of FXIa. Intravenous ad-

ministration of XI-5108 (3.0 mg kg−1) remarkably reduced thrombus growth,

and the activated partial thromboplastin time (APTT) was significantly pro-

longed; while prothrombin time (PT) and bleeding time (BT) remained un-

changed [223]. Gruber et al. also showed in a baboon model when thrombo-

sis was initiated by knitted dacron or TF-presenting teflon grafts deployed into

arteriovenous shunts , intraluminal thrombus growth was markedly reduced in

baboons treated with antihuman fXI antibody (aFXI) [224]. Compared with hep-

arin at doses significantly prolonged the APTT, PT and BT, aFXI also prolonged

the APTT, but the PT and BT were unaffected [224]. Recent studies showed

that fXI deficient C57BL/6 mice in a carotid artery injury were protected from

the formation of occlusive thrombi to a degree similar to fIX deficient mice af-

ter varied concentrations of ferric chloride were induced [225]. Carotid artery

blood flow was completely blocked within 10 min in C57BL/6 mice by applica-

tion of 3.5% FeCl3. In contrast, fXI- and fIX-deficient mice were fully protected

from occlusion induced by 5% FeCl3, and partially protected against the effect of

7.5% FeCl3. While fXI and fIX deficiencies were indistinguishable in the carotid

artery injury model, there was a marked difference in tail-bleeding-time assay.

The bleeding time in fXI-deficient mice, similar to that in and wild-type mice,

were significantly shortened than that in fIX-deficient mice [225]. Lin et al. de-
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signed and synthesized peptidomimetic inhimibitors of FXIa as novel anticoag-

ulants [226], They showed that compound 32 caused a doubling of the APTT in

human plasma and was efficacious in a rat model of venous thrombosis, which

suggested that fXI played a significant role in venous thrombosis and could be

a suitable target for the development of antithrombotic therapy.

Theoretical considerations and these experimental data [16, 210, 219, 220,

221, 222, 223, 224, 225, 226] suggested that fXI/FXIa could be excellent can-

didates as clinical targets in treatment of thrombotic disease. Inhibition of

fXI/FXIa could potentially reduce the risk of occlusive thrombi formation with-

out sacrificing hemostasis as deficiency of fXI results in bleeding manifesta-

tions only after trauma or surgery. Thus the use of sensitivity analysis could

capture important mechanisms in a human-related cascade, and these mecha-

nisms could be potentially excellent therapeutic targets in clinical treatments.

Although experiments in animal models and clinical trials are always the most

important steps in developing new drugs, mechanistic modeling and sensitivity

analysis could be used as the first step in selecting potential drug targets.

5.5 Methods

5.5.1 Formulation of the model equations.

The reactions considered in the coagulation model have been compiled from

literature [162, 204, 113, 69, 17, 205, 206, 16, 15, 60, 52, 146, 9, 8, 53]. Mass balance

equations are written around each protein or protein complex yielding the set
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of differential equations (vector-form):

dx
dt

= Sr (x,k) = g (x,k) x (to) = xo (5.1)

The symbol S denotes the connectivity matrix (193 × 301), while x denotes

the 193-dimensional concentration vector of proteins or protein complexes and

r (x,k) denotes the 301-dimensional vector of reaction rates and k denotes the

parameter vector. Each row in S describes a particular protein or protein com-

plex while each column describes the stoichiometry associated with a specific

interaction in the network. Thus, the (i, j) element of S, denoted by σi j, de-

scribes how protein i is connected to rate process j. If σi j < 0, then protein i is

consumed in r j, conversely, if σi j > 0 protein i is produced by r j and if σi j = 0

there is no connection between protein i and rate process j. We have assumed

mass action kinetics for each interaction in the network; under the mass action

assumption the rate expression for protein-protein interaction q:

∑
j∈{Rq}

σ jqx j →
∑

p∈{Pq}

σpqxp (5.2)

is given by:

rq

(
x, kq

)
= kq

∏
j∈{Rq}

x−σ jq

j (5.3)

where
{
Rq

}
denotes the set of reactants for reaction q,

{
Pq

}
denotes the prod-

uct set for reaction q, kq denotes the rate constant governing the qth interaction

and σ jq, σpq denote stoichiometric coefficients (elements of the matrix S). We

have treated every protein-protein interaction and catalytic mechanism as non-

negative. All reversible interactions were split into two irreversible steps, thus,

every element of the reaction rate vector r (x,k) took the form shown in Eqn.

5.3. The model equations were solved using the LSODE routine of the OCTAVE

programming environment (v2.9.9; www.octave.org) on an Apple Computer
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MacOSX (Cupertino, CA; v10.4.8) workstation. Initial conditions were taken

from each experiment and roughly correspond to in-vivo physiological condi-

tions (Table fXItbl-cases). Among the parameter ensemble, 100 parameter sets

that resulted in CV of 2 were selected for the sensitivity analysis.

5.5.2 Error Analysis of the Coagulation Simulations.

The correlation between model simulations and experimental data was calcu-

lated using the relationship:

r2 =

∑N
h=1

(
Ym (th) − Ȳ

)2

∑N
h=1

(
Ȳ (th) − Ym (th)

)2
+

∑N
h=1

(
Ym (th) − Ȳ

)2 (5.4)

where Ym (th) denotes the model value at time point h, Ȳ denotes the global av-

erage experimental value (average of experimental measurements over time)

and Ȳ (th) denotes the average experimental value at time point h (average of

experimental trials). Eqn. 5.4 measures the fraction of variation captured by the

model. In addition to correlation, the scaled standard error was used to measure

the agreement between the model:

sE =
1

maxh

(
Ȳ (th)

)

∑N

h=1

(
Ȳ (th) − Ym (th)

)2

N


1/2

(5.5)

Both Eqn. 5.4 and 5.5 were taken from [147].

5.5.3 Computation of overall state sensitivity coefficients.

The sensitive or fragile interactions of the coagulation architecture were deter-

mined by computing Overall State Sensitivity Coefficients (OSSC) [89]. Because
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each parameter corresponds directly to a particular molecular interaction in the

cascade, OSSC values were used to gauge which interactions were qualitatively

important. Large OSSC values for interactions relative to their peers indicated

fragility or sensitivity while small OSSC values indicated robustness. The OSSC

value for interaction j was defined as:

O j (t) =
k∗j
NS

( NT∑
h=1

NS∑
i=1

[
1
x∗i

∂xi

∂k j

∣∣∣∣∣∣
th

]2)1/2

(5.6)

where NT denotes the number of time points used in the simulation while NS

denotes the number of proteins/protein complexes in the model. The first-order

sensitivity coefficients:

si j (th) =
∂xi

∂k j

∣∣∣∣∣∣
th

(5.7)

were computed by solving the differential equation:

ds j

dt
= A (t) s j + b j (t) j = 1, 2, ,NP (5.8)

subject to the initial condition s j(t0) = 0. In Eqn. 5.8, the quantity j denotes the

parameter index, NP denotes the number of parameters, A denotes the Jacobian

matrix of the model equations and b j denotes the jth column of the matrix B,

which contains first-derivatives of the mass balances w.r.t. the parameter val-

ues. The quantity s j denotes the vector of first-order sensitivity coefficients w.r.t

parameter j. The Jacobian matrix (A) and the matrix of first-derivatives of the

mass balances w.r.t the parameter values (B) are given by:

A =
∂g
∂x

∣∣∣∣∣∣
(x∗,k∗)

B =
∂g
∂k

∣∣∣∣∣∣
(x∗,k∗)

(5.9)

where (x∗,k∗) denotes a point along the nominal or unperturbed system solu-

tion. The matrices A and B were numerically estimated at each time step us-

ing a generalized gradient algorithm [148] while the sensitivity balances were

solved using the LSODE routine of the OCTAVE programming environment
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(v2.9.9; www.octave.org) on an Apple Computer MacOSX (Cupertino, CA;

v10.4.8) workstation.

The connectivity matrix S (193 × 301) was used to rearrange the parameter

OSSC values to the species OSSCs through the equation:

Q = |S|O (5.10)

The rank orders of the species OSSCs were used to access the fragility of differ-

ent species in the model.

5.5.4 Statistical and clustering analysis of the shifts in overall

state sensitivity coefficients.

Three different tests were performed to identify large statistically significant

shifts in OSSC values between defective networks and the control. A Welch

t-test [149] was used to find all statistically significant shifts resulting from the

different structural perturbations and then a secondary test on the z−score of

each shift was preformed to find only the most prominent. The OSSC values

calculated over the family of parameter sets were assumed to follow normal

distributions for all cases. The statistical significance of shifts in OSSC values

relative to the control were determined by performing a Welch t-test with the

null hypothesis that the means of the sensitivity coefficients were equal at a

1% significance level. The Welch t-test is similar to the student t-test with the

exception that the two distributions being compared are not required to have

equal variances. The list of significant OSSC values was further restricted to

only those shifts with a magnitude larger than a specified z-score (0.1) away
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from the squared mean displacement relative to the control:

d j,q =
(
Ōq

j − Ōc
j

)2
, j = 1, 2, ,NP (5.11)

where Ōc
j denotes the mean OSSC value over the family of parameter sets for

parameter j in the control while Ōq
j denotes the same quantity for defective case

q. A significant shift in OSSC value was accepted if:

d j,q > zσdq + µdq (5.12)

where z denotes a desired z-score, σd j denotes the standard deviation of the total

displacement over all significant OSSC values for the qth defective case and µdq

denotes the mean of the significant displacements for the structurally defective

case q.

A large statistically significant shift in OSSC value, while indicative of the

shifting importance of an interaction, does not guarantee that an interaction

is ranked differently between cases. To this end, we used the Spearman rank

correlation denoted by ρ and defined as:

ρ = 1 −
6
∑NP

i=1 d2
i

N
(
N2 − 1

) (5.13)

to measure the difference in qualitative ranking between cases. The quantity

di denotes the difference in the ordinal rank of interaction i between a struc-

turally defective network and the control, N denotes the number of pairs of

values and NP denotes the number of parameters considered. The Spearman

rank is bounded by −1 ≤ ρ ≤ 1; a Spearman rank of one indicates that two

ranked lists are identical, a Spearman rank equal to negative one indicates that

two ranked lists are perfectly negatively correlated, while a Spearman rank of

zero indicates that two ranked lists are uncorrelated.
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The distributions of OSSC values obtained from monte-carlo sampling were

clustered using a k-means algorithm [209]. The mean and standard deviation

obtained from the monte-carlo sensitivity analysis was used to estimate the un-

derlying OSSC distribution (N = 200 points) where the OSSC values were as-

sumed to be normally distributed. Two hundred different clustering attempts

were run for each model to control for clustering artifacts. The most probable

configuration was reported.
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CHAPTER 6

COMPUTATIONAL ANALYSIS OF THE EFFECT OF FLOW ON BLOOD

CLOT FORMATION

6.1 Abstract

A mathematical model, that was validated for thrombin and fibrin formation in

the absence of flow, was further refined to simulate blood clot formation under

simple pressure-driven parabolic flow after being exposed to different sizes of

tissue factors (TF) patches. The predicted clot times at various shear rates and

TF patch sizes were generally consistent with experimental observations using

microfluidic capillaries or parallel plate flow. Our numerical analysis elucidates

two counteracting effects of flow on the formation of arterial clot under condi-

tions of exposed TF: (1) inhibition of the initiation of blood clot formation by

the flow-mediated transport of enzymes; (2) promotion of rapid formation of

active factors and blood clots via shear induced platelet activation (SIPA) under

high shear. Thresholds in shear rates or TF patch sizes were observed for the

initiation of clot formation; the balance between the generation of active factors

and the removal of those factors by flow was possibly the reason for the thresh-

old phenomena. Extremely low shear, where the flow-mediated transport was

insignificant, and extremely high shear, where the generation of active factors

was significant, could both lead to the initiation of clotting; the shear rates, at

which the blood clotting did not initiate within 1000 seconds, were found to be

correlated with the normal physiological range of shear rates.
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6.2 Introduction

When the delicate balance between the pro- and anti-coagulants in the blood is

interrupted by plaque rupture, vessel damage, or dysfunctional endothelium,

blood clots could form at the site to interfere with normal blood flow, which is

central to cardiovascular diseases. The mechanisms underlying clot formation

or thrombosis were first identified over a hundred years ago when Virchow pro-

posed his triad of blood, surface, and flow. The local rheological flow conditions

are pivotal for the hemostatic system and largely affect the blood coagulation

and platelets activation and deposition [227]. The underlying chemical, phys-

ical, and biological processes culminated in clot formation in the presence of

flow have been proven difficult to model in a systematic, quantitative fashion.

In this paper, we built a mathematical model to study the effect of flow on the

formation of blood clots. It encompassed the extrinsic and intrinsic pathways

of thrombin generation, as well as the formation and lysis of fibrin clots; we

studied the effect of flow, the wound size (TF patch size) and the shear-induced

platelet activation (SIPA) on the time of clot formation under model simple flow.

6.2.1 The biology of clot formation and lysis:

Following injury, a family of proteins (coagulation factors) and a key group of

blood cells (platelets), both of which are normally inactive in the circulation, are

activated by several different interconnected mechanisms that eventually lead

to thrombin generation and fibrin clot formation at the wound site. Thrombin is

the terminal protease generated by the process of blood coagulation. There are

two pathways in the coagulation cascade which lead to thrombin generation:

141



the intrinsic and extrinsic pathways [111, 108]. In the extrinsic pathway, the

exposed TF at the site of injury binds with circulating factor VII/VIIa to form TF-

FVIIa complex and initiates a series of enzymatic interactions that leads to the

formation of thrombin. The details of the coagulation process could be found in

many other articles [116, 117, 110, 111, 112, 108, 115, 162]. The protease thrombin

not only plays a key role in the feedback activation of upstream factors and

platelets, buts also activates the intrinsic protease factor XI (fXI) [13, 14, 16, 17,

206, 19, 15, 205]. The intrinsic pathway of coagulation joins up with the extrinsic

pathway at the point where fIX is activated by FXIa to form FIXa.

Thrombin irreversibly activates platelets through a family of transmem-

brane receptors on the platelet surface called Protease-Activated Receptors

(PARs) [113, 204]. Platelets, another key components for thrombus formation,

are produced in the bone marrow from megakaryocytes as cytoplasmic frag-

ments without genomic DNA [228]. The lack of genomic DNA makes platelets

incapable of transcription of nuclear material, rather structural and biosyn-

thetic proteins that are required for normal platelet function are translated from

megakaryocyte derived RNA. Platelets are present as inactive forms in the cir-

culation and remain inactive because of a series of signals emitted by normal

endothelial cells. However, platelets are highly reactive in the presence of vas-

cular injury; they respond to and interact with unique substances in the tissue

fragments released by ruptured plaques. These materials, primarily collagen,

fibronectin and von Willebrand factor (vWF), existing in the tissue fragments

promote platelet binding with the plaque ruptures (platelet adhesion) through

specific molecular recognition interactions. The adhered platelet is then acti-

vated by external signals such as Adenosine Diphosphate (ADP),Thromboxane

A2 (TXA2) and thrombin.
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Activated platelets have a different physical shape than their inactivate

counterparts and transmit chemical and peptide signals into the blood stream.

These signals attract additional platelets to the scene and promote further bind-

ing and activation. In particular, activated platelets secreted ADP and Throm-

boxane A2 (TXA2), both of which promote further activation. Jin et al. have

explored the molecular mechanisms of ADP induced activation of platelets and

have shown that the P2Yi receptor mediates ADP-induced shape change in ac-

tivated platelets [229]. The shift in shape will expose key phospholipid binding

sites that are required for the formation of the critical surface bound complexes

in the coagulation response. In addition, activated platelets secrete fibrinogen,

a linker-like substance which interacts with platelet glycoprotein surface recep-

tors (Glycoprotein IIb/IIIa) to cross-link other activated platelets thereby form-

ing a temporary platelet plug over the plaque ruptures. The platelet plug forms

in seconds after exposure to the tissue fragments and serves as a necessary scaf-

fold for the more permanent fibrin clot. Thrombin is a critical mediator be-

tween the formation of the platelet plug (platelet aggregation) and the fibrin clot

(thrombus). Thrombin cleaves fibrinogen into fibrin monomers that form fibrin

matrix on and between the aggregated platelet scaffold leading to the formation

of insoluble fibrin clot [230, 231, 11]. Once a fibrin clot is formed, it serves as a

cofactor for the activation of plasminogen to plasmin (PLA) by tissue-type plas-

minogen activator (tPA) or urokinase (uPA). Plasmin cleaves fibrin and leads to

the breakdown of a fibrin clot, which is normally called fibrinolysis. Throm-

bin also plays a role in fibrinolysis by cleaving thrombin activatable fibrinolysis

inhibitor (TAFI) to its active form activated TAFI (TAFIa), which will attenuate

fibrinolysis by blocking the binding sites of plasmin to fibrin.
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6.2.2 Review of flow effects on blood clot formation:

Arterial thrombosis usually occurs in flowing blood following the events such

as plaque rupture, vessel damage, or dysfunctioning endothelium [232, 233,

227]. The roles of blood flow in coagulation and thrombosis have been rightly

recognized more than a century ago by Virchow [42]. The flow behavior of

blood may partly explain the localization and morphology of arterial, intrac-

ardiac and venous thrombi within the human circulation, and even why the

increase in haematocrit, fibrinogen and other macromolecules, and rigid blood

cells may increase the risk of ischaemic events [234, 42].

Under pressure-driven flow, in a laminar regime, shear stress is maximum

at the vessel wall, and affects endothelial cell morphology and function. Fluid

shear stress is the force of shearing motion of blood per unit area. Extremely

low shear stress induces an intimal thickness of the arteries, which can develop

into an early atherosclerotic plaque under certain circumstances such as exces-

sive low density lipoprotein concentrations in blood [235]. The use of the non-

invasive detection method such as Doppler ultrasound, enables investigators

to localize atherosclerotic plaques in arteries as an indicator of atherosclerosis

[235]. The correlation between early plaque localization in human subjects and

areas of relative low and oscillatory wall shear stress implicates that this factor

as the key to the role of fluid dynamics in atherogenesis [235, 236, 237, 238]. This

intimal thickening can evolve into an early atherosclerotic plaque under certain

circumstances such as excessive low density lipoprotein concentrations in blood

[41]. Each early plaque exhibits an individual natural history of progression,

regression, or stabilization. In the presence of certain local, systemic, and ge-

netic factors, the local vascular wall might undergo excessive expansive remod-
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eling. A self-perpetuating vicious cycle is established among local endothelial

shear stress, excessive expansive remodeling, and plaque inflammation, trans-

forming the early plaque to a thin cap fibroatheroma [41]. The stenotic plaques

might either evolve with a phenotype promoting fibroproliferation consistently

throughout their natural history course or represent a final stage of scarring

in the setting of prior inflamed this cap fibroatheroma through repetitive mi-

croruptures and healing. Also, the stenotic plaques might infrequently undergo

local erosion or develop calcified nodules and eventually lead to local thrombus

formation and manifestation of an acute coronary syndrome [41].

Approximately 20 % of the early developed atherosclerotic plaques could

grow to stenotic plaques through constrictive remodeling and result in a high

local shear stress at the vessel wall [41]. High intra-stenotic shear stress may

activate platelets, promoting the formation of initial platelet-rich “white-head”

of arterial thrombi, while low post-stenotic shear stress may promote the for-

mation of subsequent, fibrin- and red cell-rich“red tail” [3]. Blood viscosity,

platelet microemboli, and activated leucocytes may each reduce post-stenotic

microcirculatory blood flow, promoting infarction. Such mechanisms may ex-

plain the associations of increased levels of blood and plasma viscosity, haema-

tocrit, white cell count, fibrinogen and vWF with risk and outcome of myocar-

dial, cerebral and limb infarction [232, 233, 239, 42, 227, 41].

When blood with a parabolic velocity profile passes through a narrow-

ing in the channel, it accelerates resulting in much higher wall shear stress

near the apex of stenosis. Platelets are also concentrated at the vessel wall

where they can be activated by high shear stress and well-placed to interact

with vWF and subendothelium, resulting in platelet adhesion and activation
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[240, 241, 39, 242, 243]. Shear-induced platelet activation (SIPA) and aggre-

gation are important mechanisms of arterial thrombosis formation. In 1975,

Brown used a cone and plate viscometer to demonstrate that exposing platelet-

rich plasma to fluid shear stresses > 50 dynes/cm2 resulted in changes in platelet

morphology, along with secretion (ADP,ATP, serotonin) and aggregation [244].

Higher shear stresses (300, 750 and 1000 dynes/cm2) were then proved to be

able to induce activation of platelets in the average residence times of 25 to

1650 ms [245]. Early studies of SIPA in rotational viscometers focused on rel-

ative long exposure times to elevated shear stresses (50 to 100 dynes/cm2) and a

threshold response of platelet to shear stress is often addressed in these stud-

ies [246, 245, 247, 248, 249]. However, the threshold stress depends heavily

on the time the platelets are subjected to the shear stress. Hellums et al. later

showed that shear-induced platelet activation was a function of both the shear

stress magnitude and the exposure time to shear by consolidating the finding

from several groups using different flow devices [250]. Boreda further derived

a platelet stimulation function defined by PSF = τ × t0.452, where the activation

state was linearly dependent on the magnitude of applied shear stress (τ) and

somewhat less dependent on exposure time (t) [251]. Platelet activation state

(PAS) measured in small diameter tubing directly increased with shear stress

and time of exposure to shear, and elicited procoagulant activity on the platelet

surface [252]. Thereby linking shear-mediated platelet responses to coagula-

tion reactions. Thus, exposure of platelets to shear conditions causes platelet

activation and that this activation is dependent on both shear stress and time

of exposure. Using these relationships, Raz et al. used numerical models to

study flow induced platelet activation resulting from stress histories along Lan-

grangian trajectories in the flow field and validated using Digital Particle Image
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Velocimetry (DPIV) in 84 % eccentric and axisymetric coronary stenosis model

[253]. CFD, DPIV and PAS assay results in their study agreed well in predicting

the level of platelet activation.

6.2.3 Review of the mathematical models:

Numerous models have been built to understand the underlying complex and

intertwined chemical and biological processes that lead to blood coagulation

[48, 20, 52, 12, 54, 60, 8, 9, 254]. In recent years, Mann and coworkers presented

an model for thrombin generation via the extrinsic pathway [52, 12], and ex-

tended it to include the role of inhibitors [53]. Kuharsky and Fogelson [60] as-

sumed the existence of a thin, well-mixed layer near the surface of the injured

vessel. Transport of species from the bulk flow into this layer was quantified by

an overall mass transfer coefficient. A more recent work by Anand et al. [8, 9]

suggested a reaction-diffusion model of clot formation and lysis under flow

conditions, using quasi-one-dimensional thrombus formation in a cylindrical

vessel. Sorensen et al. [69, 70] proposed a set of coupled convection-reaction-

diffusion equations to model platelet activation and deposition in flowing hu-

man blood. The equations were solved using finite element method in a two-

dimensional flow and the results were compared with experimental results of

platelet deposition onto collagen. In order to understand the complex biological

system governing blood clotting, a simple chemical system was developed by

Kastrup et. al [254, 255]. The group showed that the initiation of blood clotting

on a 2-D surface in response to TF patches in the absence of flow depended not

only on the size of individual patches [254], but also on the shape of the patch

[255].
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Most of the models focused on the reaction aspect of blood clotting. Only a

few of them studied the effect of flow on clot formation. This is possibly due

to the complexity arising from incorporating rheological aspects into the model,

which lies not only in the influence of flow on the biochemical reactions but

also the hemodynamic properties of blood flow itself. Even in the models that

considered flow effect, they mostly focused on the low to medium shear range

and ignored the effect of shear-induced platelet activation. In the present study,

we built a mathematical model to study the formation of blood clot under low,

medium, to high shear rates. We did a systematic research on the effect of flow-

mediate transport and the effect of SIPA on clot formation.

6.3 Results

The mathematical model consisted 193 species and 301 interactions in the blood

clotting system and it was developed to simulate blood clot formation in the

simple 1-D flow conditions. We considered simple unidirectional, pressure

driven flow, and shear rate in the boundary layer near the wall was used as

the shear rate. The model was first validated for the formation of fibrin under

quiescent conditions, shown in Figure 6.1, which worked as a supplement to the

previous validation results for thrombin generations in the absence of flow (see

Chapter 4 and 5); it was further developed to calculate clot time, which was a

function of either thrombin or fibrin concentration, and the validations against

experimental data were shown in Figure 6.2 and Figure 6.3 [256]. Since platelets

could be activated by shear after exposure for critical time [252], we introduced

platelet activation by different shear stresses at different exposure time; the

shear rates, viscosities of blood, shear stress, exposure time required for SIPA,
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and the rate of SIPA were shown in Table 6.1. The activation of platelets by shear

was compared against the experimental observation [241] and the formation of

fibrin and activated platelets (AP) were simulated under high shear conditions

(Figure 6.4). Threshold effects were observed for the initiation of clot forma-

tion under various shear conditions and the shear rates, under which the blood

clotting did not initiate in 1000 seconds, were found to be correlated with the

normal physiological range of shear rates.

6.3.1 Model validation against the formation of fibrin in the ab-

sence of flow.

Our previous model validation focused on the generation of thrombin under

quiescent conditions (see Chapter 4 and 5). However, generation of a stable

blood clot requires thrombin-mediated conversion of fibrinogen to fibrin. Con-

centration of fibrin is another important marker for blood clot formation. Here

in this part, we performed the simulation of fibrin formation after the addition

of physiological amount of fibrinogen, and we simulated the process of fibri-

nolysis by tPA, uPA and plasmin in the presence and absence of TAFI [257, 258].

We compared our results against experimental data [257, 258] and we found that

our model successfully predicted evolution of fibrin concentrations at different

experiment conditions (Figure 6.1). Fibrin formed when fibrinogen was cleaved

by thrombin; as shown in Figure 6.1A, after a lag phase of about 20 min, a burst

of fibrin formation was observed. Our simulation well captured the experimen-

tally observed time lag followed by surge in concentration in the formation of

fibrin. When fibrin formed, plasmin that was activated by tPA or uPA could
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cleave fibrin between its D and E domains and lead to the lysis of fibrin clots.

Furthermore, TAFIa activated by thrombin prevented fibrin from fibrinolysis

by competing with plasmin for fibrin binding sites. Figure 6.1B, 6.1C and 6.1D

show the effect of TAFI in fibrinolysis when either plasmin or plasmin activa-

tor (tPA or uPA) was present. In all, the fibrin concentrations (blue curves) in-

creased when TAFI was present, as the results of the inhibition of fibrinolysis by

TAFI. Our model simulations are in good agreement with the experiments in-

dicating that our model was not only capable in thrombin simulations but also

able to predict fibrin formation.

6.3.2 Threshold response to shear rate and the size of TF patch

for the generation of thrombin under the low to medium

shear.

Thrombin generation in an 1-D flow field was simulated under mild shear con-

ditions (5 to 50 s−1) (Figure 6.2A). In all simulations, the TF patch started at

position x = 600 µm. A TF patch of 200 µm, between position x of 600 and 800

µm, was used to initiate the coagulation cascade. The clot time was calculated

as the time when more than 0.1 nM of thrombin was formed. In both simulation

and experiment, in normal pooled plasma (NPP), the clot time remained con-

stant near 200 s for shear rate below 20 s−1, followed by a rapid increase in clot

time to 800 - 1000 s around shear rate of 30 s−1, yielding a threshold shear rate

between 20 to 30 s−1. For shear rates below the threshold, thrombin generation

initiated with 200 seconds. While increasing shear rates resulted in a decrease

in the initiation of thrombin formation; a clot time greater than 800 seconds was
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Figure 6.1: Model validation against experimental observations of the for-
mation of fibrin in the absence of flow. (A) Computational sim-
ulation (solid line) is consistent with experimental observation
of fibrin generation in time (shown as circles). The fibrin con-
centration was determined in diluted plasma samples by the
ELISA [257]. (B-D) The fibrinolysis in time by tPA, uPA and
plasmin (PLA) in the presence and absence of TAFI [258]. The
fibrin concentrations were scaled by the maximum in each cor-
responding experiment.
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observed for any shear rate greater than the threshold. This threshold effect is

believed to be the result of competition between reaction and transport of acti-

vated coagulation factors [256]. The procoagulant factors got activated over the

TF patch and these active factors could either react with other factors at the site

or be transported from the site by the flow. Only when the concentration of acti-

vated factors exceeds a critical concentration at a position, thrombin generation

could initiate. Therefore, when the shear rate is low, the effect of transport is

not significant; the concentration of active factors could easily reach the critical

value near the site of TF patch. This was proved by the generation of throm-

bin at shear rate of 5 s−1 (Figure 6.2C and 6.2E). It clearly shows that thrombin

concentrations were much higher in positions near TF patch and it gradually

decreased along the flow direction. While after the shear rate increased to 40

s−1, thrombin generation initiated at the down-streams of the TF patch at time

greater than 1000 seconds or 16 minutes (Figure 6.2D). This was because when

the shear rate increased, the effect of flow-mediated removal of active factors

from the TF patches became more significant. The active coagulation factors cu-

mulated at at down-streams of the TF patch, which led to thrombin formation

far from the patch.

Figure 6.2B shows the effect of TF patch size on clot formation at a constant

shear rate. At a shear rate of 40 s−1, increasing the size of TF patch from 100

to 1600 µm resulted in a substantial decrease in clot time around 200 to 400 µm

of patch size. The threshold patch size between 200 and 400 µm observed in

the model prediction is again consistent with the experimental observations.

Similar mechanisms could apply in this case; the generation of active factors

was much faster when the TF patch increased and the concentration of active

factors could achieve the critical value at a much earlier stage, as depicted in
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Figure 6.2: Model simulations of thrombin formation in normal pooled
plasma (NPP). (A) and (B): Computational simulations are con-
sistent with experiment observations that clot time in NPP dis-
played a threshold response to shear rate at a constant patch
size of 200 µm (from 600 to 800 µm) (A) and to patch size at a
constant shear rate of 40 s−1 (B) [256]. Clot time was determined
as the time point at which ≥ 0.1 nM thrombin was generated in
the simulation. In the experiment, the generation of thrombin
was detected by fluorescence microscopy and the clot time was
the time point when a burst of thrombin was generated or the
initial formation of cross-linked fibrin appeared [256]. (C) and
(D): Thrombin concentrations versus time and position with
shear rates of 5 s−1 (C) and 40 s−1 (D) at a patch size of 200 µm.
(E) Thrombin concentrations versus position at 0 and 300 sec
at a shear rate of 5 s−1 and a patch size of 200 µm. Consistent
with experiments at 300 sec [256], thrombin generation did not
initiate at a shear rate of 40 s−1 (D), but did initiate at a shear
rate of 5 s−1 (C and E). (F) Thrombin concentrations versus time
and position at a shear rate of 40 s−1 and a patch size of 800 µm
(from 600 to 1400 µm).
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Figure 6.2B. We note that the initiation of thrombin generation occurred at posi-

tion away from the TF patch for t he shear rate of 40 s−1 regardless of patch size

(Figure 6.2D and F). This was possibly because the concentration of activated

factors reached its critical concentration at somewhere down-streams of the TF

patch as a result of increased flow-mediated removal effect.

6.3.3 Attenuation of fibrin clot formation by flow mediate

transport of enzymes

The above simulations were performed to predict thrombin generation in nor-

mal pooled plasma (NPP) where small amount of platelets was present. How-

ever, given the importance of platelets and fibrinogen in blood clot formation,

the experiments were also conducted in platelet rich plasma (PRP), where fib-

rinogen with fluorescence labels were also added in order to measure the for-

mation of fibrin mesh [256]. Our calculation of clot time using the time for

thrombin or fibrin ≥ 0.1 nM would return similar results; while here we used

the time calculated for fibrin formation. As shown in Figure 6.3A, the threshold

between shear rates of 70 to 100 s−1 was also observed in the PRP simulations.

At low shear rates, the formation of clots started within 200 seconds, while af-

ter the shear rate increased to a value greater than the threshold, the simulated

clot time increased to more than 400 seconds and continued to increase with

shear rates. However, in the experiments, the threshold effect was much more

distinct as the clot time sharply increased from 200 to about 1000 seconds right

after crossing the threshold (In Figure 6.3A Observation). Such a high threshold

value for clot time at shear rate between 70 and 100 s−1 in PRP correlated to the
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Figure 6.3: Model simulations of clot formation in platelet rich plasma
(PRP). (A) Computational simulations are generally consistent
with experiment observations that clot time in PRP displayed
a threshold response to shear rate at a constant patch size of
200 µm [256]. The bright-field microscopy was used to detect
the formation of fibrin mesh and aggregation of platelets [256].
In simulation, the clot time was calculated as the time point at
which ≥ 0.1 nM fibrin was generated. (B) and (C) Fibrin con-
centrations versus time and position with shear rates of 80 s−1

(B) and 20 s−1 (C). (D) Thrombin concentrations versus time
and position at a shear rate of 20 s−1. (E) and (F): Fibrin and
thrombin concentrations versus position at time of 0 and 300
sec at a shear rate of 20 s−1 and a patch size of 200 µm. Al-
though TF patches located between 600 and 800 µm, the maxi-
mum fibrin and thrombin concentrations at 300 sec were found
at downstream of the patches.

procoagulant phenotype at extremely low wall shear stress [256].

The 3-D plots of the fibrin concentrations versus time and position at two

different shear rates 20 s−1 and 80 s−1 are shown in Figure 6.3B and 6.3C . The

thrombin concentrations in time and position at shear rate of 20 s−1 is also de-

picted in Figure 6.3D. At high shear rate (80 s−1), fibrin formation did not initiate
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in about the first 600 s−1, while fibrin formation initiated in the first 100 seconds

at low shear rate (20 s−1). The initiation of thrombin and fibrin formation oc-

curred at about the same time as shown in Figure 6.3C and 6.3D. Figure 6.3E

and 6.3F show the spatial evolution of concentrations of fibrin and thrombin

at 0 and 300 seconds at shear rate 20 s−1. The maximum fibrin and thrombin

concentrations at 300 seconds were achieved at position about 2000 µm, which

was the down-stream of the TF patch.

6.3.4 Acceleration of clot time via SIPA under high shear

Since the activation of platelets by shear was not only the function of shear rate,

but also a weak function of time [252], we introduced platelet activation by dif-

ferent shear stresses at different time in PRP. The shear rates, viscosities of blood,

shear stress, exposure time required for SIPA, and the rate of SIPA were sum-

marized in Table 6.1. When the shear rate was below 100 s−1, SIPA was not

initiated druing the time span we considered. Hence the initiation time of fibrin

formation at the shear rates lower than 100 s−1 would be the same as those in Fig-

ure 6.3A, and thus in Figure 6.4A, we only showed the clot times for shear rates

≥ 100 s−1. With further increases in shear rates, the critical exposure time be-

came smaller and smaller, and the activation rate of platelets became larger and

larger. As a result, thus the activation of platelets increased drastically with in-

creasing shear rate. The concentration profiles of activated platelets (AP) clearly

show the impact of SIPA at different shear rates (Figure 6.4B), which were com-

pared against experiments [241]. To be consistent with the experiment setup,

the simulation was run over collagen patch as well; our model predicted appar-

ent threshold activation of platelets by shear, while the experiments showed a
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Table 6.1: Shear rate (γ̇), and its corresponding blood viscosity (η), shear
stress (τ = ηγ̇), critical exposure time (t), SIPA rate (r) 7.

shear rate viscosity (Newtonian/non-Newtonian) shear stress critical exposure time SIPA rate

(sec−1) (poise) (dynes/cm2) (sec) (sec−1)

10 0.04/0.09 0.4/0.9 ≥1200 –

20 0.04/0.08 0.8/1.6 ≥1200 –

40 0.04/0.07 1.6/2.8 ≥1200 –

60 0.04/0.06 2.4/3.6 ≥1200 –

70 0.04/0.06 2.8/4.2 ≥1200 –

80 0.04/0.06 3.2/4.8 ≥1200 –

100 0.04/0.06 4.0/6 ≥1200/780 0.1577

200 0.04 8 420 0.2133

500 0.04 20 60 0.5333

800 0.04 32 0 0.8533

1000 0.04 40 0 1.0667

1200 0.04 48 0 1.2800

1400 0.04 56 0 1.4933

1500 0.04 60 0 1.6000

3000 0.04 120 0 3.2000

more gradual increase of AP with increasing shear rates. When TF was present

in the patch, the AP concentrations became a little higher because additional

platelets were activated by thrombin that was initiated to form by TF.

Clots formation increased with the increase in shear rates when the effect

of SIPA was considered, which was proved by the initiation times of clot for-

7The viscosities of blood at different shear rates were estimated from the apparent absolute
steady shear blood viscosity of normal, healthy subjects [259]; the shear stresses were calculated
from shear rates and viscosity for both Newtonian and non-Newtonian blood, in this study, the
shear-thinning effect of non-Newtonian behavior of blood did not make much difference on
the simulation results; the critical exposure time were estimated from the exposure time/shear
stress plane and the derived platelet stimulation function (PAS = τt0.452)[250, 252, 251]; the SIPA
rates were estimated based on the experimental results [252] and by fitting with the experimen-
tal data [241].
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mation for shear range from 100 to as high as 3000 s−1 (shown in Figure 6.4A).

A threshold at shear rate between 800 to 1000 s−1 was observed as a competi-

tion result of SIPA and flow transport. When the shear rate increased to a value

above the threshold, platelet activation by shear was significant enough to cope

with the inhibitory effect of flow transport of active factors; in other words, the

formation of active factors by SIPA was faster than the removal of those factors

from the site by the flow. As a result, the concentration of active factors could

achieve the critical value and led to the formation of clots. Taken together, in all

cases with or without the effect of SIPA, the threshold effect on clot formation

was observed. This threshold effect had its physiological importance and had

been studied by several groups [60, 55, 260, 145, 261].

Furthermore, it is interesting to note that the threshold in the shear rates for

initiating fibrin formation (Figure 6.4A) correlated with the shear rate at which

the concentration of AP increased drastically (Figure 6.4B). Below the threshold,

the fibrin clot did not form within 1000 seconds (Figure 6.4A) and the activa-

tion of platelet was also not observed at 1 minute (Figure 6.4A); while after the

threshold, blood clotting initiated almost immediately and a large amount of

platelets became activated after being sheared for 1 minute. The formation of

fibrin and the activated platelet concentration were shown in Figure 6.4C and

6.4D, respectively. When the shear rate increased to 1500 s−1, the concentrations

of fibrin and AP versus time and position were shown in Figure 6.4E and 6.4F.

At a shear rate of 100 s−1, the induced activation of platelets took place after ex-

posing to the shear stress for about 780 seconds (Figure 6.4D); while it was clear

that the activation of platelets was much more quickly when the shear rate was

as high as 1500 s−1 (Figure 6.4F).
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Figure 6.4: Model simulation of clot formation in high shear conditions.
(A) Computational simulations of clot times under high shear
conditions at a constant TF patch size of 200 µm. (B) Com-
putational simulations and experimental observation of per-
centage platelet activation after exposed to shear rates of 100,
800, 1500 or 3000 s−1 for 1 minute. The simulations were con-
ducted over 200 µm collagen patches with or without TF. The
scaled platelet activation was calculated as all activated platelet
(AP) concentrations scaled by the maximum AP concentration
for simulation without TF. The experimental observations of
platelet deposition over collagen were also scaled by its maxi-
mum amount of deposited platelets [241]. (C) and (D): Fibrin
and AP concentrations versus time and position with a shear
rate of 100 s−1 . (E) and (F): Fibrin and AP concentrations ver-
sus time and position with a shear rate of 1500 s−1. The AP
concentrations shown here were for the movable AP only.
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The profiles of fibrin formation under different shear rates were quite differ-

ent as well (Figure 6.4C and Figure 6.4E). At low shear (100 s−1), fibrin concentra-

tion increased after a lag phase of about 1000 seconds; while at high shear (1500

s−1), the formation of fibrin started almost immediately after exposure to shear

and then degradation of fibrin, probably due to fibrinolysis, quickly showed up

after the maximum amount of fibrin was formed. Our model also showed that

SIPA could accelerate the burst of AP, which could contribute to the acute events

happening after the rupture of plaque at stenotic regions (high shear range).

This results indicated that at high shear conditions, e.g. stenosis, a platelet-rich

fibrin clot (white head) may form; while at low shear, e.g. post stenosis recircu-

lation region, a fibrin-rich clot was more preferred to form, which could possibly

capture red blood cell and form the red tail [3, 8, 239, 42, 227].

6.4 Discussion

Blood flow could affect the formation of clot in different ways. Two counter-

acting effects of flow on the formation of arterial clotting under conditions of

exposed tissue factors (TF) are: (1) flow-mediated transport of enzymes inhibit

the initiation of blood clot formation; (2) high shear inducing platelet activa-

tion promotes rapid clot formation. Extremely low and high shear stresses

could result in either the early formation of plaque or the activation and ag-

gregation of platelets. Early formed plaque, when combining with other risk

factors (e.g. excessive low density lipoprotein concentrations, etc), could grow

into high-risk plaque and may induce various ischemic events when ruptured.

On the other hand, the removal of active enzymes from the reactive vessel

surface by flow could inhibit the generation of thrombin to some extent. Re-
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searchers often concentrated one or the other effect of blood flow on clot for-

mation [235, 262, 263, 42, 264, 227, 41, 265]. However, the competition between

the ‘procoagulant’ effect of high shear stress and the ‘anti-coagulant’ effect of

flow-mediated removal has not been systematically studied. Here we use the

mathematical model to study the effect of flow with different shear rates on the

formation of blood clots. Our results showed that when SIPA was not occur-

ring in the model, the initiation of clot formation delayed with increasing shear

rates as a result of enhanced flow transport; however, when the shear rates were

high enough to induce platelet activation in a short time, the initiation of blood

clotting rapidly increased with shear rates.

Threshold effects were observed for the initiation of clot formation under

different shear conditions. A threshold regulation in the blood clotting systems

has been observed by many other researchers [60, 55, 260, 145, 261]. Jesty et. al.

proposed that the threshold regulation could play a major role among the vari-

ous mechanisms of regulation in blood clotting; they believed that the threshold

system was the result of the kinetic balance of formation and inhibition of the

feedback enzymes in clotting [260]. Both experimental evidence [254, 117] and

computational validation [60, 254] could be found in literature for the presence

of threshold under quiescent conditions. Okorie et. al. further provided both ex-

perimental and computation evidence for the TF thresholds that triggered clot-

ting under flow with different shear rates; different critical TF concentrations

were determined at wall shear rates of 100, 500 and 1000 s−1 [261]. For given

systems of particular kinetic properties, Beltrami et. al. found that lower flow

rates or larger active patches could result in exceeding the activation threshold

using a partial differential equation model of an archetypal feedback loop [55].

In our model, we found thresholds in both the shear rate and the TF patch size.
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The threshold here could be considered as the balance between the rates for the

generation of active factors and the rates for the removal of those active factors

by flow. Lower shear rates or larger active patches could result in exceeding the

activation threshold of clotting system; while extremely high shear rates could

also result in exceeding the activation threshold because of the effect of SIPA.

The shear rates we studied in this paper could be categorized, based on

the different thresholds, into three regions: low shear (shear rate < 100 s−1),

moderate shear (100 s−1 ≤ shear rate < 1000 s−1) and high shear (shear rate ≥

1000 s−1). It is interesting to note that the moderate shear region corresponded

to the physiological shear range (≈ 102 to 103 s−1) [256]; these physiologically

preferred shear rates not only related to the minimization work and the opti-

mization of efficient oxygen transport according to Murray’s law [266], but also

related to the prevention or inhibition of blood clotting. In the low shear re-

gion, the inhibitory effect of flow-mediated removal of active factors, which

was proposed and studied using a mathematical model of intravascular co-

agulation by Fogelson et al [264], was not significant enough; therefore the

concentrations of active factors could exceed the threshold. This finding was

also consistent with the experimental observation that the initiation of clotting

was increased with decreasing shear rates from 110 s−1 to 17 s−1 in the junc-

tion micro-fluidic flow vessel system [265]. The activation and aggregation of

platelets by high shear have been observed many years ago by a number of re-

searchers [244, 246, 245, 247, 248, 240, 241, 39, 242, 243], which were believed

to contribute to the onset of artery thrombosis [267] and correlated with throm-

bin generation [40]. Our model proved that extremely high shear rates would

also result in active factors concentration exceeding the activation threshold due

to SIPA. Other interesting findings included that the concentration of AP was
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much higher when the shear rates were high, which could lead to the formation

of platelet-rich thrombi under high shear.

Our mathematical model successful predicted blood clot formation in the

absence and presence of flow. While there are limitations in the model: the

model was only used to simulate blood clotting in a simple, model 1-D flow

system with constant shear rates, the physiological flow conditions in arteries

is more complex, e.g. the oscillation flow when the shear rate and stress at the

wall are continuously changing in time; and the concentrations of factors in the

model were assumed constants across the radius, while the diffusion in radius

direction could also be important. Given all these limitations, our model was

able to combine the complex interactions in the clotting system with the effect

of flow and to the best of our knowledge, our model is the first mathematical

model that did a systematic study of the effect of shear rates from really low

shear (10 s−1) to really high one (3000 s−1). Therefore, we believe this model

could provide insights into the blood clotting system under flow conditions.

6.5 Methods

The mathematical model of this study was designed to describe spatial dynam-

ics of clot formation initiated over a patch of tissue factor (TF). The species con-

servation equation was written around around each protein or protein complex:

Dc
Dt

= D∇2c + R (6.1)

where c (193 × 1) denotes the concentration vector of proteins or protein com-

plexes. The symbol D denotes the diffusion coefficients of all proteins or protein
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complexes. Except for platelets or platelet-bound species, the diffusion coeffi-

cients of other proteins were assumed to be 5×10−7cm2/s (approximate value for

a solution-phase protease in blood clotting, such as thrombin [254, 268, 227]);

the diffusion coefficients of platelets or platelet-bound species were given as

5×10−9cm2/s [60]. The reactions were assumed to occur within a boundary layer

of 2-3 µm (the distance over which platelets can attach to one another because of

their pseudopodia [269, 60]) in 1-dimensional (or pseudo-2D) flow field where x

is the direction of flow. The above convection-diffusion-reaction equation could

be simplified as:
∂c
∂t

= D
∂2c
∂x2 − vx

∂c
∂x

+ R (6.2)

where the velocity vx is calculated by multiplying the wall shear (sh) with one-

half of the boundary layer thickness (h) (vx = sh × h
2 ).

The details for the reaction equation (R) and model parameters can be found

in the our previous work [162]. The initial concentrations were taken from

each experiment and roughly correspond to in-vivo physiological conditions. TF

patch in each simulation was located at the spatial grid started from x = 600 µm

and the initial conditions of platelets and fibrinogen concentrations were deter-

mined to be consistent to the NPP and PRP environments. All other parameters

and initial conditions held constant.

Given the large scale of the partial differential equation, it was solved using

a time-splitting method [270]. The key of the method is to separate chemical

species transport (i.e., convection and diffusion) from chemical reaction. At time

t = ti to t = ti+ 1
2
, we solve the convection-diffustion reactions only:

∂c
∂t

= D
∂2c
∂x2 − vx

∂c
∂x

c (ti) = c |t=ti (6.3)
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At time t = ti+ 1
2

to t = ti+1:

dc
dt

= Sr (c,k) = R (c, t) c
(
ti+ 1

2

)
= c |t=ti+ 1

2
(6.4)

Equation 6.3 was solved using the method of lines (MOL) [271] in the OCTAVE

programming environment (v2.9.9; www.octave.org), and the solutions at this

time step were used as the initial conditions of the next time step. Equation 6.4

was solved using the LSODE routine of the OCTAVE programming environ-

ment on an Apple Computer MacOSX (Cupertino, CA; v10.4.8) workstation.

6.6 Limitations and Future Directions

6.6.1 Limitations

Plasma flowing parallel to the wall convectively transports coagulation factors

from upstream to a region close to the reactive site (TF patch), and Brownian

motion mediates the radial movement toward the reactive wall. Local flow

conditions near the wall can significantly enhance or impede the transport of

molecule to (and away from) a reactive surface and are typically characterized

by the wall shear rate (γw), which is the rate at which the axial flow velocity in-

creases as one moves directly away from the vessel wall toward the center of the

vessel. Because the velocity profile across the vessel is roughly parabolic, the γw

approximates the flow velocities only near the wall. For fully developed, lami-

nar flow through a rigid tube the velocity at distance h (h � 2r) from the wall

can be γw can be calculated as Vx(h) = γwh. Because the coagulation reactions

are initiated by the reactive TF surface and diffusion is only an effective means
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Figure 6.5: Illustration of the capillary with TF patch.

of transport over short distances, the reactions are assumed to occur within a

concentration boundary layer from the wall (Figure 6.5).

In this study, we assumed the species in a thin boundary near the vessel

wall were well-mixed and ignored the diffusion along y-direction. However, by

calculating the squared Thiele modulus for species l:

φ2
l =

M∑
k=1

H2σlqrq(c∗, k)
D∗c∗l

(6.5)

where H is the characteristic length, i.e. the boundary layer thickness, D∗ is

the characteristic diffusion coefficient, c∗l is the characteristic concentration for

species l (we used the concentration vector at the centerline), M is the number
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of reactions, rq is the reaction rate and σlq denote stoichiometric coefficients (el-

ements of the connectivity matrix S). The distribution of Thiele modulus was

shown in Figure 6.6.

The squared Thiele modulus is the ratio of two characteristic times, diffu-

sion to reaction. If the reaction is very fast, its characteristic time is small and

the Thiele modulus is large (φ2 � 1), the concentration on the TF patch may be

small because the reaction is so fast that the material cannot diffuse to the sur-

face before it is reacted. Likewise, if the diffusion is very fast, its characteristic

time is small and the Thiele modulus is small (φ2 � 1), now the concentration

may not vary very much within the boundary layer because the diffusion is fast

enough to keep the boundary filled with reactants. If the reaction and diffusion

have similar characteristic time, the Thiele modulus approaches 1 (φ2 ≈ 1), the

diffusion and reaction phenomena have comparable importance.
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Most of the species have shown small Thiele modulus numbers, indicating

fast diffusion and slow reactions. However, for the species related to platelets

activation on the surface, large Thiele modulus was observed. These results

indicated that the well-mixed assumption in the boundary layer was not valid

for all species in the model. Furthermore, the Peclet number Pe = UH/D in the

model ranged from O(1) to O(103) for shear rates from 10 to 3000 s−1. Thus, some

characteristic behavior of flow on clot formation may be missed because of this

well-mixed assumption. Hence we proposed two solutions for the situation in

order to get more suitable model in Future Directions.

6.6.2 Future Directions

The main problem with the current model is related to the diffusion along y-

direction. Equation 6.2 can be re-written as:

∂c
∂t

= D(
∂2c
∂x2 +

∂2c
∂y2 ) − vx

∂c
∂x

+ R (6.6)

with the boundary conditions:

c(∞, y) = cb (6.7)

∂c
∂t

(−∞, y) = 0 (6.8)

where x = ∞ denotes far away from the TF patch at downstream and x = ∞

denotes upstream far away from the patch. One solution for this is to average

the concentrations c(x, y) along y-direction to get average concentration in the

boundary layer at a given position x, which is defined as:

c̄(x) =
1
H

∫ H

0
c(x, y)dy (6.9)
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The velocity vx within the boundary layer can be estimated by multiplying the

wall shear (γw) with one-half of the boundary layer thickness (H) (v̄x =
γwH

2 ). The

boundary conditions in y-directions are:

∂c
∂y

(x,H) = 0 −∞ < x < ∞ (6.10)

∂c
∂y

(x, 0) = 0 x < 0 or x > L (6.11)

∂c
∂y

(x, 0) =
cb − c

H
0 ≤ x ≤ L (6.12)

where cb is the bulk concentration and L is the length of the TF patch. At the

top surface (y = H) of the boundary, no flux along y-direction. At the bottom

of the boundary (the vessel wall), for places without TF patch, no flux along

y-direction, while over the patch, the concentration change within the volume

(V) equals the diffusion along y-direction across the area (A), thus, (cb − c)V =

A∂c
∂y (x, 0) and H = V/A.

The boundary layer is defined using the same methodology from [60]. The

averaged boundary thickness can be estimated using:

H =
3
4

(
rLD

V
)1/3 (6.13)

where r is the radius of the capillary, L is the length of TF patch, D is the diffusion

coefficient of a protein, and V is the velocity at the centerline. If the boundary

layer is thinner than the typical distance at which platelets can attached to other

platelets (2 − 3µm), then we set H = 2.5µm.

The ordinary differential equation governing c̄(x) is obtained by averaging

each term in Equation 6.6 and can be solved using a time-splitting method as

stated in Methods [270].

∂c̄
∂t

= D
∂2c̄
∂x2 +

D
H
∂c
∂y

∣∣∣∣y=H

y=0
− v̄x

∂c̄
∂x

+ R (6.14)
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or, using the boundary conditions at the top and bottom of the boundary layer:

∂c̄
∂t

= D
∂2c̄
∂x2 − v̄x

∂c̄
∂x

+ R x < 0 or x > L (6.15)

∂c̄
∂t

= D
∂2c̄
∂x2 −

D(cb − c̄)
H2 − v̄x

∂c̄
∂x

+ R 0 ≤ x ≤ L (6.16)

Another solution to capture diffusion of material in the y-direction is to

model the flow effect in two dimensional space using Finite Element Methods.

In this way, we can incorporate the diffusion along y-direction. However, be-

cause of the limited time, these two solutions were not included in this disser-

tation.
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Table A.1: Nomenclature

fI fibrinogen

FIa fibrin

fII prothrombin

FIIa thrombin

fVII factor VII

FVIIa activated factor VII

fV factor V

FVa activated factor V

fVIII factor VIII

FVIIIa activated factor VIII

fIX factor IX

FIXa activated factor IX

fX factor X

FXa activated factor X

TF Tissue Factor

TFPI Tissue Factor Pathway Inhibitor

ATIII Antithrombin III

PC Protein C

APC activated Protein C

TM Thrombomodulin

PL resting platelets

AP activated platelets
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Table A.2: Initial Conditions for different cases in Figure 2.2

cases A B C and D E F

fII 1700/2000 nM 1700 nM 1400 nM 1400 nM 1400 nM

fVII – – – – 10 nM

FVIIa – – – – 0.5 nM

TF – – – – 1 pM

TF-FVIIa 1.25 pM 1.25 pM 1.25 pM 5/10/50/500/5000 pM –

fV 20 nM 20 nM 20 nM 20 nM 20 nM

fVIII 0.7 nM 0.7 nM 0.7 nM 0.7 nM 0.3 nM

fIX 90 nM 90 nM 90 nM 90 nM 70 nM

fX 170 nM 170 nM 170 nM 170 nM 135 nM

TFPI 0/1/2.5/5 nM 0/2.5 nM 2.5 nM – 3 nM

ATIII – 0/3400 nM – – 3000 nM

PC – – 65 nM – –

TM – – 0/1/10 nM – –

number of PL 150 150 150 150 150

number of PL binding sites on

subendothelium

100 100 100 100 100

number of fII/FIIa binding sites

on AP surfaces

50 50 50 20 0.5

number of fV/FVa binding sites

on AP surfaces

50 50 50 20 50

number of fVIII/FVIIIa binding

sites on AP surfaces

5 × 10−10 5 × 10−10 5 × 10−10 5 × 10−10 5 × 10−6

number of fIX/FIXa binding

sites on AP surfaces

50 50 50 20 5 × 10−8

number of specific fIX/FIXa

binding sites on AP surfaces

50 50 50 20 5 × 10−8

number of fX/FXa binding sites

on AP surfaces

50 50 50 20 150
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Table A.3: Reactions and parameter values used in the extrinsic coagulation

model 1.

p-index case A case B case C case D

Description

VII+TF
 VII-TF 5 × 10−2 5 × 10−3 – [60]

VIIa+TF
 VIIa-TF 5 × 10−2 5 × 10−3 – [60]

Xa+VII-TF
 Xa-VII-TF 5 × 10−3 1.0 – [60]

Xa-VII-TF→ VIIa-TF + Xa – – 5 × 10−3 [60]

IIa+VII-TF
 IIa-VII-TF 3.92 × 10−4 1.0 – [60]

IIa-VII-TF→ VIIa-TF +IIa – – 3.92 × 10−4 [60]

X+VII-TF
 X-VIIa-TF 0.1 5.5 – [54]

X-VII-TF→ VIIa-TF + Xa – – 1.4 [54]

IX+VIIa-TF
 IX-VIIa-TF 0.1 2.2 – [54]

IX-VII-TF→ VIIa-TF + IXa – – 0.47 [54]

VII+Xa
 VII-Xa 0.1 1.0 – [60, 53]

VII-Xa→ VIIa + Xa – – 0.5 [60, 53]

VII+IIa
 VII-IIa 0.1 10 – [60, 53]

VII-IIa→ VIIa + IIa – – 0.5 [60, 53]

V+IIa
 V-IIa 0.1 7.21 – [54]

V-IIa→ V + IIa – – 0.26 [54]

VIII+IIa
 VIII-IIa 0.1 152 – [54]

VIII-IIa→ VIIIa + IIa – – 0.9 [54]

Xa + IX
 Xa-IX 0.1 1.5 – [52]

Xa-IX→ Xa + IXa – – 2.3 × 10−2 [52]

Xa + V
 Xa-V 0.1 1.0 – [52, 54]

Xa-V→ Xa + Va – – 4.3 × 10−2 [52, 54]

Xa + VIII
 Xa-VIII 0.1 2.1 – [52, 54]

Xa-VIII→ Xa + VIIIa – – 2.3 × 10−2 [52, 54]

Xa + II
 Xa-II 7.5 × 10−6 1.0 × 10−9 – [53]

Xa-II
 IIa + Xa – – 7.5 × 10−6 [53]

IX + P9s
 IX-P9s 1.0 × 10−2 2.5 × 10−2 – [60]

Continued on next page
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Reaction k+ (nM−1 s−1) k− (s−1) kc (s−1) Source

IXa + P9s
 IXa-P9s 1.0 × 10−2 2.5 × 10−2 – [60]

IXa + P9s∗
 IXa-P9s∗ 1.0 × 10−2 2.5 × 10−2 – [60]

X + P10s
 X-P10s 0.1 2.5 × 10−2 – [60]

Xa + P10s
 Xa-P10s 0.1 2.5 × 10−2 – [60]

V + P5s
 V-P5s 5.7 0.17 – [60]

Va + P5s
 Va-P5s 5.7 0.17 – [60]

VIII + P8s
 VIII-P8s 5.0 × 10−2 0.17 – [60]

VIIIa + P8s
 VIIIa-P8s 5.0 × 10−2 0.17 – [60]

II + P2s
 II-P2s 1.0 × 10−2 5.9 – [60]

IIa + P2s
 IIa-P2s 1.0 × 10−2 2.042 – [60]

PL + Psub→ AP-Psub – – 0.9 [60]

PL + Psub→ PL-Psub – – 20 [60]

AP + Psub→ AP-Psub – – 0.2 [60]

PL + AP
 PL-AP 5 × 10−7 1.0 – [60]

PL-AP
 2AP – – 5 × 10−7 [60]

PL + AP-Psub
 PL-AP-Psub 5 × 10−7 1.0 – [60]

PL-AP-Psub→ AP+ AP-Psub – – 5 × 10−7 [60]

PL + IIa
 PL-IIa 3 × 10−7 1.0 – [60]

PL-IIa→ AP + IIa – – 3 × 10−7 [60]

PL-Psub + IIa
 PL-Psub-IIa 3 × 10−2 1.0 × 10−2 – [60]

PL-Psub-IIa→ AP-Psub + IIa – – 9 × 10−3 [60]

V-P5s + Xa-P10s
 V-P5s-Xa-P10s 0.1 1.0 – [60, 54]

V-P5s-Xa-P10s→ Va-P5s + Xa-P10s – – 4.6 [60, 54]

V-P5s + IIa-P2s
 V-P5s-IIa-P2s 1.73 × 10−2 1.0 – [60, 54]

V-P5s-IIa-P10s→ Va-P5s + IIa-P10s – – 4.6 [60, 54]

X-P10s+VIIIa-P8s-IXa-P9s
 X-P10s-VIIIa-P8s-IXa-P9s 0.1 1.0 × 10−2 – [60, 54]

X-P10s-VIIIa-P8s-IXa-P9s→ Xa-P10s + VIIIa-P8s-IXa-P9s – – 20.0 [60, 54]

X-P10s+VIIIa-P8s-IXa-P9s∗ 
 X-P10s-VIIIa-P8s-IXa-P9s∗ 0.1 0.01 – [60, 54]

X-P10s-VIIIa-P8s-IXa-P9s∗ → Xa-P10s + VIIIa-P8s-IXa-P9s∗ – – 20.0 [60, 54]
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Reaction k+ (nM−1 s−1) k− (s−1) kc (s−1) Source

VIII-P8s + Xa-P10s
 VIII-P8s-Xa-P10s 0.1 2.1 - [60, 54]

VIII-P8s-Xa-P10s→ VIIIa-P8s + Xa-P10s – – 0.0232 [60, 54]

VIII-P8s + IIa-P2s
 VIII-P8s-IIa-P2s 0.1 152 – [60, 54]

VIII-P8s-IIa-P10s→ VIIIa-P8s + IIa-P10s – – 0.9 [60, 54]

II-P2s + Va-P5s-Xa-P10s
 II-P2s-Va-P5s-Xa-P10s 0.1 0.051 – [60, 54]

II-P2s-Va-P5s-Xa-P10s→ IIa-P2s + Va-P5s-Xa-P10s – – 301 [60, 54]

VIIIa-P8s + IXa-P9s
 VIIIa-P8s-IXa-P9s 0.1 0.4 – [60, 54]

VIIIa-P8s + IXa-P9s∗ 
 VIIIa-P8s-IXa-P9s∗ 0.1 0.4 – [60, 54]

Va-P5s + Xa-P10s
 Va-P5s-Xa-P10s 1.0 1.0 – [60, 54]

Xa-P10s + IX-P9s
 Xa-P10s-IX-P9s 1.0 × 10−3 1.5 – [52]

Xa-P10s-IX-P9s→ Xa-P10s + IX-P9s – – 2.3 × 10−2 [52]

APC + VIIIa-P8s
 APC-VIIIa-P8s 0.12 1.0 – [60]

APC-VIIIa-P8s→ APC+VIIIa-P8s-i – – 0.5 [60]

APC + Va-P8s
 APC-Va-P8s 0.12 1.0 – [60]

APC-Va-P8s→ APC+Va-P8s-i – – 0.5 [60]

APC + Va-P5s-Xa-P10s
 APC-Va-P5s-Xa-P10s 0.12 1.0 – [60, 8]

APC-Va-P5s-Xa-P10s→ APC + Va-P5s-Xa-P10s-i – – 0.5 [60, 8]

APC + VIIIa-P8s-IXa-P9s
 APC-VIIIa-P8s-IXa-P9s 0.12 1.0 – [60, 8]

APC-VIIIa-P8s-IXa-P9s→ APC + VIIIa-P8s-IXa-P9s-i – – 0.5 [60, 8]

APC + VIIIa-P8s-IXa-P9s∗ 
 APC-VIIIa-P8s-IXa-P9s∗ 0.12 1.0 – [60, 8]

APC-VIIIa-P8s-IXa-P9s∗ → APC + VIIIa-P8s-IXa-P9s∗-i – – 0.5 [60, 8]

TFPI + Xa
 TFPI-Xa 1.6 × 10−3 3.3 × 10−4 – [54, 60]

TFPI-Xa + VIIa-TF
 TFPI-Xa-VIIa-TF 1.0 × 10−3 1.1 × 10−3 – [60]

TFPI + Xa-VIIa-TF
 TFPI-Xa-VIIa-TF 0.32 1.1 × 10−4 – [53]

IIa→ IIa-i – – 1.35 × 10−4 [53]

ATIII + IXa
 ATIII-IXa 4.9 × 10−7 1.0 × 10−9 – [60, 53]

ATIII-IXa→ATIII+IXa-i – – 4.9 × 10−7 [60, 53]

ATIII + Xa
ATIII-Xa 2 × 10−4 1.0 × 10−9 – [60, 53]

ATIII-Xa→ ATIII+Xa-i – – 1.5 × 10−6 [60, 53]
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Reaction k+ (nM−1 s−1) k− (s−1) kc (s−1) Source

ATIII + IIa
 ATIII-IIa 1.5 × 10−5 1.0 × 10−9 – [60, 53]

ATIII-IIa→ ATIII+IIa-i – – 4.75 × 10−6 [60, 53]

ATIII + VIIa-TF
 VIIIa-TF-ATIII 2.5 × 10−7 1.0 × 10−9 – [53]

PC + IIa
 PC-IIa 1.003 × 10−6 1.0 × 10−9 – [8, 116]

PC-IIa→ APC + IIa – – 1.67 × 10−4 [8, 116]

IIa + TM
 IIa-TM 3.0 × 10−2 4.5 × 10−2 – [116]

IIa-TM + PC
 IIa-TM-PC 1.4 × 10−4 0.5 – [116]

IIa-TM-PC→ IIa-TM + APC – – 40 [116]

1The mode consists of 92 protein or protein complexes and 148 interactions. The kinetics of
binding and reaction interactions are assumed to follow mass action rate laws where k+ denotes
the on-rate constant, k− denotes the off-rate constant and kc denotes the catalytic rate constants.
All binding interactions are assumed to be reversible. Values for the kinetic parameters and net-
work structure were taken from the literature, see [52, 54, 116, 60, 53, 8]. Of the 148 parameters
in the model, 138 were taken directly from literature or have a literature basis. Only 10 of 148
parameters have no direct literature source: of these, nine of ten parameters correspond to in-
teractions of APC with the FVIIIa-FIXa and FVa-FXa surface complexes. The parameter values
governing the interaction of APC with FVIIIa-FIXa/FVa-FXa were approximated by literature
values describing the interaction of APC with FVa and FVIIIa in plasma. The remaining un-
known parameter was the rate constant governing the nonspecific inactivation of FIIa (IIa→IIa-
i); we have assumed an arbitrary small value for this parameter. Last, there were differences
in in vitro assay temperatures from which parameters were taken; parameter values were ad-
justed to the assay temperature of Mann and coworker (T1 = 37oC). (1) Rate constant adjusted
to T1 = 37oC from T2 = 25oC using Arrhenius rate law, where Ea = 21kJ,R = 8.314gmol/K; (2)
Rate constant adjusted to T1 = 37oC from T2 = 22oCusing Arrhenius rate law.

177



APPENDIX B

CHAPTER 4 APPENDIX

178



Table B.1: Extended reactions and parameter values used in this coagulation

model.

p-index case A case B case C case D

Description

IIa + PAR1-PL
 IIa-PAR1-PL 0.71 8.67 – [204, 113]

IIa + PAR1-PL-Psub
 IIa-PAR1-PL-Psub 0.13 6.46 – [204, 113]

IIa-PAR1-PL→ AP + IIa – – 0.03 [204, 113]

IIa-PAR1-PL-Psub→ AP-Psub + IIa – – 0.04 [204, 113]

IIa + PAR3-PL
 IIa-PAR3-PL 0.03 1.01 – [204, 113]

IIa + PAR3-PL-Psub
 IIa-PAR3-PL-Psub 0.10 8.74 – [204, 113]

IIa-PAR3-PL→ AP + IIa – – 0.82 [204, 113]

IIa-PAR3-PL-Psub→ AP-Psub + IIa – – 0.42 [204, 113]

IIa + PAR4-PL
 IIa-PAR4-PL 0.22 4.39 – [204, 113]

IIa + PAR4-PL-Psub
 IIa-PAR4-PL-Psub 0.88 1.59 – [204, 113]

IIa-PAR4-PL→ AP + IIa – – 0.24 [204, 113]

IIa-PAR4-PL-Psub→ AP-Psub + IIa – – 0.93 [204, 113]

AP→ APs + ADP – – 1 × 10−6 [69]

AP→ APs + TXA2 – – 1 × 10−6 [69]

AP→ APs + I – – 1 × 10−6 [69]

AP-Psub→ APs + ADP – – 1 × 10−3 [69]

AP-Psub→ APs + TXA2 – – 1 × 10−3 [69]

AP-Psub→ APs + I – – 1 × 10−3 [8]

ADP + PL
 ADP-PL 3 × 10−7 1.0 – [69]

ADP-PL→ AP + ADP – – 3 × 10−7 [69]

TXA2 + PL
 TXA2-PL 1.61 × 10−2 1.0 – [69]

TXA2-PL→ AP + TXA2 – – 1.61 × 10−2 [69]

ADP + PL-Psub
 ADP-PL-Psub 3 × 10−2 0.01 – [69]

ADP-PL-Psub→ AP-Psub + ADP – – 3 × 10−3 [69]

TXA2 + PL-Psub
 TXA2-PL-Psub 1.61 × 10−2 1.0 – [69]

TXA2-PL-Psub→ AP-Psub + TXA2 – – 1.61 × 10−2 [69]

IIa + I
 IIa-I 1.898 × 10−2 1.0 – [8]
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Reaction k+ (nM−1 s−1) k− (s−1) kc (s−1) Source

IIa-I→ IIa + Ia – – 59 × 10−4 [8]

XII+Surface
 XII-Surface 0.1 0.1 – [17, 14]

XII-Surface→ XIIa+Surface – – 0.1 [17, 14]

XIIa+PK
 XIIa-PK 0.1 0.1 – [17, 14]

XIIa-PK→ XIIa+ K – – 0.1 [17, 14]

XII+K
 XII-K 0.1 0.1 – [17, 14]

XII-K→ XIIa+ K – – 0.1 [17, 14]

XIIa+ XII
 XIIa-XII 0.1 0.1 – [17, 14]

XIIa-XII→ 2XIIa – – 0.1 [17, 14]

XIIa+ XI
 XIIa-XI 0.3 × 10−3 0.1 – [17, 14]

XIIa-XI→ XIIa+XIa – – 0.35 [17, 14]

XIa + XI
 XIa-XI 1.3 × 10−3 0.1 – [17]

XIa-XI→ 2*XIa – – 0.13 [17]

XI + P11s
 XI-P11s 0.04 1.0 – [205, 206]

XIa + P11s∗ 
 XIa-P11s∗ 0.06 1.0 – [205, 206]

IIa-P2s + XI-P11s
 IIa-P2s-XI-P11s 0.0125 0.1 – [17, 16, 15]

IIa-P2s-XI-P11s→ IIa-P2s + XIa-P11s∗ – – 1.43 [17, 16, 15]

XIa + IX
 XIa-IX 0.016 0.1 – [206]

XIa-IX→ XIa + IXa – – 7.7 [206]

XIa-P11s∗ + IX
 XIa-P11s∗-IX 0.016 0.1 – [206]

XIa-P11s∗-IX→ XIa-P11s∗ + IXa – – 7.7 [206]

tPA+PAI1
 tPA-PAI1 0.02 2 × 10−3 – [272, 273, 274, 275]

uPA+PAI1
 uPA-PAI1 1.8 × 10−2 1.0 × 10−3 – [272, 273]

tPA+PAI2
 tPA-PAI2 1.2 × 10−4 1.0 × 10−6 – [274, 34]

uPA+PAI2
 uPA-PAI2 2.1 × 10−3 1.0 × 10−5 – [34]

PLG+tPA
 PLG-tPA 1.67 × 10−2 0.1 – [276, 277, 275]

PLG-tPA→ PLA+tPA – – 2.0 [276, 277, 275]

PLG+uPA
 PLG-uPA 3.3 × 10−3 0.1 – [278]

PLG-uPA→ PLA+uPA – – 73 [278]
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Reaction k+ (nM−1 s−1) k− (s−1) kc (s−1) Source

PLA+A2AP
 PLA-A2AP 3.8 × 10−2 7.22 × 10−3 – [279, 280, 281, 282, 283, 284]

PLA-A2AP→ PLA+A2AP-inactive – – 4.2 × 10−3 [279, 280, 281, 282, 283, 284]

PLA+A2M
 PLA-A2M 5.0 × 10−4 1.0 × 10−5 – [283, 284, 285]

PLA-A2M→ PLA+A2M-inactive – – 1.0 × 10−5 [283, 284, 285]

FDPs+PLA
 FDPs-PLA 0.01 0.1 – [286, 287]

IIa+TAFI
 IIa-TAFI 1.29 × 10−3 0.1 – [258, 288]

IIa-TAFI→ IIa+TAFIa – – 61 [258, 288]

Ia+PLA
 Ia-PLA 7.45 × 10−5 0.1 – [257]

Ia-PLA→ Ddimer+FDPs+PLA – – 1.16 × 10−4 [257]

Ia+FDPs-PLA
 Ia-FDPs-PLA 7.45 × 10−5 0.1 – [257]

Ia-FDPs-PLA→ Ddimer+FDPs+FDPs-PLA – – 1.16 × 10−3 [257]

TAFIa+FDPs
 TAFIa-FDPs 100 1.0 × 10−4 – [286, 287]

H5+ATIII
 H5-ATIII 3.7 × 10−2 0.9 – [124, 289]

H5-ATIII+Xa
 H5-ATIII-Xa 2.0 × 10−2 1.0 × 10−9 – [124, 289]

H5-ATIII-Xa→ H5-ATIII+Xa-inactive – – 0.6 × 10−3 [124, 289]

H5-ATIII+IIa
 H5-ATIII-IIa 1.5 × 10−5 1.0 × 10−9 – [124, 289]

H5-ATIII-IIa→ H5-ATIII+IIa-inactive – – 0.5 × 10−5 [124, 289]

HCII+IIa
 HCII-IIa 4.5 × 10−7 1.0 × 10−9 – [290, 291, 292]

HCII+IIa-P2s
 HCII-IIa-P2s 4.5 × 10−7 1.0 × 10−9 – [290, 291, 292]

HCII+DER
 HCII-DER 0.9 1.0 × 10−9 – [290, 291, 292]

HCII-DER+IIa
 HCII-DER-IIa 0.02 1.0 × 10−9 – [290, 291, 292]

HCII-DER+IIa-P2s
 HCII-DER-IIa-P2s 0.02 1.0 × 10−9 – [290, 291, 292]

ARG +IIa
 ARG-IIa 0.033 0.33 – [290, 291]

ARG +IIa-P2s
 ARG-IIa-P2s 0.033 0.33 – [290, 291]

BIV+IIa
 BIV-IIa 0.43 0.82 – [290, 291]

BIV-IIa→ BIV-inactive+IIa – – 1.0 × 10−2 [290, 291]

BIV+IIa-P2s
 BIV-IIa-P2s 0.43 0.82 – [290, 291]

BIV-IIa-P2s→ BIV-inactive+IIa-P2s – – 1.0 × 10−2 [290, 291]

LEP+IIa
 LEP-IIa 0.29 1.7 × 10−5 – [290, 291]

Continued on next page

181



Reaction k+ (nM−1 s−1) k− (s−1) kc (s−1) Source

LEP+IIa-P2s
 LEP-IIa-P2s 0.29 1.7 × 10−5 – [290, 291]

H5-ATIII+VIIa
 H5-ATIII-VIIa 1.7 × 10−7 1.0 × 10−9 – [293]

H5-ATIII+VIIa-TF
 H5-ATIII-VIIa-TF 4.5 × 10−7 1.0 × 10−9 – [293]

X+VIIa
 X-VIIa 4.0 × 10−5 0.1 – [28, 196]

X-VIIa→ Xa+VIIa – – 5.0 × 10−4 [28, 196]

IX+VIIa
 IX-VIIa 5.0 × 10−5 0.1 – [28, 196]

IX-VIIa→ IXa+VIIa – – 1.5 × 10−5 [28, 196]

APC+PCI
 APC-PCI 6.5 × 10−6 1.0 × 10−9 – [294]

IIa+PCI
 IIa-PCI 6.1 × 10−6 1.0 × 10−9 – [294]

Xa+PCI
 Xa-PCI 2.01 × 10−5 1.0 × 10−9 – [294]

XIa+PCI
 XIa-PCI 9.03 × 10−5 1.0 × 10−9 – [294]

uPA +PCI
 uPA-PCI 2.2 × 10−6 1.0 × 10−9 – [294]

tPA +PCI
 tPA-PCI 0.8 × 10−6 1.0 × 10−9 – [294]

K +PCI
 K-PCI 6.5 × 10−5 1.0 × 10−9 – [294]
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