TRANSMISSION AND EVOLUTION OF SALMONELLA

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by Yesim Soyer August 2009 © 2009 Yesim Soyer

TRANSMISSION AND EVOLUTION OF SALMONELLA

Yesim Soyer, Ph.D.

Cornell University 2009

Salmonella, a Gram-negative enterobacterium, is a human and animal pathogen. The species *Salmonella enterica* includes serotypes with broad and restricted host ranges. The objectives of this study were to utilize genotypic and phenotypic methods to (i) understand *Salmonella* diversity among human and animal hosts at the population level, and (ii) understand *Salmonella* genome evolution including the mechanisms of diversity and their contributions to new serotypes.

To understand genotypic and phenotypic diversity in *Salmonella* among human and animal hosts, we used serotyping, multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) subtyping methods. We found that while some subtypes might have represented host adapted strains within the same serotype, some subtypes were widely distributed among human and cattle isolates. We concluded that isolation of common PFGE types among humans and foods or farm animals must be interpreted carefully and that the establishment of causal relationships will require strong epidemiological linkages and/or the use of additional, more sensitive, subtyping methods.

To understand which mechanisms are responsible for diversity in the *Salmonella* genome, we used 5 whole genome sequences representing four serotypes, Typhi, Paratyphi A, Choleraesuis, and Typhimurium, to identify genes with evidence of positive selection and recombination. Positive selection was detected using PAML 3.15. Intragenic recombination was assessed by four different approaches: GENCONV, Max- χ 2, NSS, and PHI. We found that genes having evidence of

recombination may be more likely to be under positive selection. Positive selection may contribute to fixation of new allelic variants generated by recombination.

To understand how new *Salmonella* serotypes emerge, we characterized an emerging serotype, *Salmonella* 4,5,12:i:-, which is closely related to Typhimurium but lacks the expression of second phase flagellar antigen. We characterized *Salmonella* 4,5,12:i:- and *Salmonella* Typhimurium isolates from various sources using MLST, PFGE and PCR screening for differences in presence or absence of genes or intergenic regions. We found that while the majority of 4,5,12:i:- and Typhimurium isolates represented a single MLST type, all 4,5,12:i:- lacked *fljA* and *fljB*, which were present in all Typhimurium isolates. PCR screens further showed differences in deletion genotypes among 4,5,12:i:- strains which suggests that *Salmonella* 4,5,12:i:- appears to represent two different emergence events, both from a serotype Typhimurium ancestor.

Overall, my research gives us insight into the evolution of *Salmonella* that allows us to better understand the transmission and the evolution of *Salmonella* and its ability to cause disease in different host species. Consequently, we will be able to track contamination sources using much more specific subtyping methods in order to eliminate *Salmonella* from food products.

BIOGRAPHICAL SKETCH

Yesim Soyer was born in July 31, 1977 in Ankara, Turkey. Yesim received a Food Engineering degree from Ankara University Food Engineering Department, Turkey in June, 1999. Yesim decided to pursue a Master of Science degree in Food Engineering under Dr. Feryal Karadeniz. Yesim completed her Masters degree with a thesis entitled "Determination of Organic Acid Content of White Grapes and Grape juices" in June, 2001 and began a Ph.D. program in Food Engineering under the guidance of Dr. Feryal Karadeniz. In January, 2004, Yesim received a scholarship from the Higher Education System in Turkey to pursue a Ph.D. in the US. In August, 2004, Yesim began a Ph.D. program in Food Science with minors in Microbiology and Epidemiology under Drs. Martin Wiedmann, Kathryn J. Boor and Yrjö T. Gröhn. Yesim will start a position as a postdoctoral research associate in Dr. Wiedmann's laboratory in May, 2009. To Mom and Dad, Asiye and Bilgin Soyer

ACKNOWLEDGMENTS

I would like to thank my major advisor, Dr. Martin Wiedmann, for accepting me in into his laboratory as a graduate student. Though I did not have a microbiology background, he taught me a lot about the field. Thank you for being the best advisor during my Ph.D. pursuit. I have learned a lot from him during my Ph.D. studies. Martin has always challenged me during every step of my Ph.D. I truly appreciate his guidance in my education, as well as in my professional development. I was very lucky to have him as an adviser in my Ph.D. studies, as well as in my long term plans. I would also thank Dr. Kathryn J. Boor for being my minor adviser and being a very good role model for women scientist. I am very happy to be a member of Food Safety Laboratory (FSL). I will still have a lot to learn from both of them

I also would like to thank my minor adviser, Dr. Yrjö Gröhn for being a great minor adviser, as well as his family for opening their house doors to me in my first years in Ithaca, when I was very homesick. I have also enjoyed working with Dr. Gröhn, as well as Dr. Lorin Warnick in Zoonotic Research Unit project. While Dr. Lorin Warnick was not my official adviser, he has always supported my research and has found time to answer my questions. I really appreciate his supports in my studies.

For the last five years, members of the FSL have become my family in Ithaca. I will be happy to revisit my memories from FSL in future. I have been very happy to work with every member of this laboratory both in past and in present. I would like to start by thanking Haley Oliver, Esther Fortes, and Barbara Bowen for their technical as well as emotional supports. I can not imagine FSL without them. It was very fun to work with Renato Orsi, Andrea Moreno, Sam Alcaine, Sherry Roof, Emily Wright, Lorraine Rodriguez and Beth Licitra, thanks all. I thank present and also previous members of FSL, Yuwei Hu, Soraya Chaturongakul, Liz Palmer, Shelley Laue, Maria

V

Teresa da Silva Felicio, Sarita Raengpradub, Kendra Nightingale, Yvonne Chan, Teresa Bergholz, Henk den Bakker, Maureen Gunderson, Sana Mujahid, Kitiya Vongkamjan, Vania Ferreira, and Nancy Carey for their friendship throughout my studies at Cornell University.

Special thanks go to my family. I could not have managed to finish my Ph.D. without their love and encouragement. I thank Mom and Dad, who always believe that I can manage to do everything and support me gratuitously at every level of my life. I thank Canan, Aslı and Dilek for being the best sisters and best friends. Life would be very miserable without you guys. The last, but not the least, I also would like to thank my nephew, Arda, for being my life spark

TABLE OF CONTENTS

Biographical Sketch		iii
Dedication		iv
Acknowledgement	S	v
List of Figures		viii
List of Tables		Х
Chapter One	Introduction	1
Chapter Two	Pulsed Field Gel Electrophoresis	18
	Can Be Used to Distinguish Host Adapted and	
	Un-restricted Subtypes among Salmonella	
	enterica subsp. enterica Serotypes	
Chapter Three	Genome wide evolutionary analyses reveal	52
	serotype specific patterns of positive selection	
	in selected Salmonella serotypes	
Chapter Four	Salmonella 4,5,12:i:-: an emerging Salmonella	99
	serotype that represents multiple distinct clones	
Chapter Five	Conclusion	138

LIST OF FIGURES

Figure 2.1	PFGE type 94 is an example of PFGE types shared by	28
	different serotypes. PFGE type 94 was determined in one	
	bovine Salmonella Typhimurium (4,5,12:i:1,2) isolate and two	
	bovine Salmonella 4,5,12:i:- isolates	
Figure 2.2	PFGE type 157 was differentiated in ST43 and ST62 in	29
	two serotypes, serotype 1,7:-:1,5 and serotype Thompson	
Figure 2.3	PFGE types, 60, 89, and 126 obtained from	31
	both bovine and human clinical cases	
Figure 2.4	Spatial analysis of bovine Salmonella isolates	38
Figure 3.1	Example of neighbor joining tree used for positive selection	59
	Analysis	
Figure 3.2	Proportions of genes with evidence of recombination	68
	among individual JCVI role categories	
Figure 4.1	Deduced genome structure for the genomic region between	110
	STM2691 and STM2774 for (A) four Salmonella 4,5,12:i:-	
	isolates from Spain (based on genomic microarray data	
	reported by Garaizar et al., 2002) and (B) the US serotype	
	4,5,12:i:- isolate CVM 23701 (based on an unfinished	
	genome sequence reported by Rosovitz et al	
	[http://msc.jcvi.org/salmonella/salmonella_enterica_subsp	
	enterica_serovar_4512_istrcvm23701/index.shtml])	
Figure 4.2	Phylogenetic tree for all 3-gene (fimA, manB, and mdh) STs	114
	identified among 4,5,12:i:- and Typhimurium isolates	
	as well as selected isolates representing other	
	Salmonella serotypes	

Figure 4.3Representative XbaI PFGE patterns for Salmonella1194,5,12:i:- and Typhimurium isolates as well as four
isolates with inconsistent serotype data119

LIST OF TABLES

Table 2.1	Salmonella isolate information for clinical bovine	24
	isolates collected from farms at multiple visits	
Table 2.2	Distribution of subtypes found using serotyping,	27
	MLST, PFGE typing as well as combinations among	
	clinical bovine and human Salmonella isolates and	
	corresponding Simpson's Index of diversity scores for each	ch
	subtyping method as well as combined methods	
Table 2.3	Distribution of sequence types and PFGE types among	30
	common Salmonella serotypes	
Table 2.4	PFGE patterns shared by Salmonella isolates within	30
	closely related serotypes	
Table 2.5	Distribution of PFGE patters that were determined more	34
	than four times among clinical human and bovine	
	Salmonella isolates and P-values representing the	
	association between host species and PFGE patterns	
Table 2.6	Salmonella human isolates that might have been	36
	collected from human clinical clusters within a county	
	in two month duration	
Table 3.1	Salmonella genomes used	58
Table 3.2	Genes used to confirm positive selection and	63
	recombination patterns identified in genome wide	
	analyses	
Table 3.3	Genes that show evidence of recombination in all	66
	four tests	
Table 3.4	Genes with evidence for positive selection	71

Table 3.5	Salmonella pathogenicity island (SPI) genes with	76
	evidence of positive selection and recombination	
Table 3.6	Evidence of recombination among genes with	77
	evidence for positive selection	
Table 4.1	Salmonella 4,5,12:i:- and Typhimurium isolates used	103
Table 4.2	PCR conditions and primers for six genes and	108
	one region that show variable presence among serotype	
	4,5,12:i:- isolates from the US and Spain	
Table 4.3	Distribution of 4-Gene Sequence Types (STs) among	116
	Salmonella isolates	
Table 4.4	Presence/absence of selected genes in isolates	127
	Representing the Spanish and US Salmonella 4,5,12:i:-	
	clones as well as other Salmonella isolates	
Table A1 [S2.1]	A total of 335 spatially and temporally matched	142
	Salmonella enterica spp. enterica nontyphoidal	
	isolates used and their characteristics	
Table A2 [S4.1]	A total of 190Salmonella 4,5,12:i:- and Typhimurium	149
	isolates used and their characteristics	
Table A2 [S4.2]	Primers and PCR conditions	156

CHAPTER 1

INTRODUCTION

Salmonella, a Gram-negative enterobacterium, is a ubiquitous human and animal pathogen that can cause a wide range of diseases from self-limiting gastroenteritis to severe systemic infection in humans and animals. The genus Salmonella is divided into two species: Salmonella bongori and Salmonella enterica. Salmonella enterica consists of six subspecies: S. enterica subsp. enterica, S. enterica subsp. salamae, S. enterica subsp. arizonae, S. enterica subsp. diarizonae, S. enterica subsp. houtenae, and S. enterica subsp. indica (10). Among Salmonella enterica subspecies, Salmonella enterica subsp. enterica is the most important one, since serotypes of this subspecies are associated with warm blooded vertebrates and are responsible for the vast majority of salmonellosis infections (10, 51).

Salmonella enterica subsp. enterica serotypes are mainly transmitted by ingestion of food, feed, or water contaminated with feces from infected humans or animals (41), but can also be transmitted by direct contact (25, 34). The symptoms of nontyphoid Salmonella infection (salmonellosis) include fever, abdominal pain, diarrhea, nausea, and sometimes vomiting, and appear 12-72 hours after infection. The salmonellosis lasts 4-7 days and healthy adults can recover without any treatment. However, in infants, and the elderly, as well as in immunocopromised adults, the bacteria can enter the bloodstream and cause septicemia in severe salmonellosis cases (51) Another disease caused by certain Salmonella serotypes in certain host species is typhoid fever. For example, in humans, typhoid fever is caused by Salmonella Typhi. The symptoms of typhoid fever are high fever, malaise, headache, and diarrhea, rosecolored spots on the chest, and enlarged spleen and liver after 1-3 weeks exposure to Salmonella Typhi (51). Although typhoid fever is not common in developed countries such as the US, it is still a major problem in developing countries (56).

Salmonellae are among the most common reported bacterial foodborne pathogens worldwide (46). In the United States, nontyphoidal Salmonella serotypes have been estimated to cause >1.4 million human salmonellosis cases with >16,000 hospitalizations and almost 600 deaths annually (31). 95 % of salmonellosis is associated with consumption of contaminated food and water in the US (31). Salmonella Typhimurium, which causes predominantly self-limiting gastroenteritis in a large number of animal species, is the most common Salmonella serotype in the US (12, 51). According to data from the Foodborne Diseases Active Surveillance Network (FoodNet), the estimated incidence of several foodborne infections, including Campylobacter, Cryptosporidium, Shiga-toxin producing Escherichia coli O157 (STEC 0157), Listeria and Yersinia, decreased 29-49 % in the United States between 1996-98 and 2005, while Salmonella infections declined only by 9 % (46). According to the surveillance research conducted by FoodNet, a division of the Centers for Disease Control and Prevention (CDC)'s Emerging Infections Program, in 10 states in the US in 2007, the incidence of Salmonella did not significantly change and the incidence of human cases due to Salmonella was the highest among known foodborne pathogens. Among 17,883 reported laboratory-confirmed cases in FoodNet surveillance population (45.5 million people) in 2007, 6,790 cases were due to salmonellosis. It was also reported that the incidence of salmonellosis (i.e., 14.92 per 100,000 population) was the furthest from its national health target, which is 6.80 per 100,000 population, among known foodborne bacterial pathogens (i.e., *Camplyobacter, Listeria,* STEC O157, *Shigella, Vibrio* and *Yersinia*) (11) (http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5714a2.htm).

Similarly in the European Union (EU), *Salmonella* is among the top three commonly known source of foodborne bacterial infections in humans. In 2006, *Salmonella* caused 34.6 human salmonellosis cases per 100,000 population (160,649

confirmed cases) in EU (19), available at

http://www.efsa.europa.eu/cs/BlobServer/DocumentSet/Zoon_report_2006_en,0.pdf?s sbinary=true).

Generally, the sources of salmonellosis are meat and poultry related products, as well as fresh vegetables contaminated with feces. In the EU, the major source of foodborne salmonellosis is poultry related food products, followed by pork, while in the US, besides meat, eggs, and their products, fecal contaminated fresh vegetables, as well as nuts, are also the common vehicles of *Salmonella* for humans (12, 40).

Within different countries, the distribution of *Salmonella* serotypes causing human salmonellosis is different. For example, *Salmonella* Typhimurium is the most common serotype causing human salmonellosis in the US (12), while it is the second most common serotype, following *Salmonella* Enteritidis in EU (19). In Asia, although *Salmonella* Typhimurium and Enteritidis are common serotypes among human salmonellosis cases, *Salmonella* Weltevreden, a rare serotype in the US, is one of the most frequently isolated serotypes from human salmonellosis cases (7, 50).

In the US, the estimated economic burden for *Salmonella* human cases was reported as \$ 2.8 billion (95% CI: \$1.6 to \$5.3 billion) annually (1). This amount represents the estimated cost of hospitalization due to *Salmonella* infection, and does not include any economic loss due to recalls in food industry (1).

The characterization of *Salmonellae* beyond species and subspecies is performed by subtyping methods. Serotyping, a phenotype-based subtyping method, with the Kaufmann-White scheme, has been commonly used as a first step to differentiate *Salmonella* isolates since 1968 (10, 53). This technique relies upon the immunoreactivity of *Salmonella*'s lipopolysaccaride moieties on cell surface (O antigens) and the flagellar proteins (H antigens), as well as capsular protein antigen (Vi-antigen), which is only found in a few *Salmonella* serotypes (e.g., Typhi).

According to the Kaufmann-White scheme, *Salmonella* includes over 2,500 recognized serotypes (23). Many *Salmonella* are motile due to peritrichous flagella (32), which include a basal body, a propeller and a hook. The motility of *Salmonella* depends on the rotation of the flagellar propeller (i.e., the filament), which includes either FliC (phase-1 antigen) or FljB (phase-2 antigen) flagellin (15). Most of *Salmonella* serotypes, including *Salmonella* Typhimurium, are bi-phasic, meaning that they can express two distinct flagellar antigens (i.e., phase-1 and phase-2 antigens). Regulation of phase 1 and 2 antigen expression is under control of the recombinase Hin (4).

Since serotyping of *Salmonella* cannot provide sufficient discrimination to track and find the source of outbreaks, modern, rapid and standardized molecular techniques have been developed to subdivide the Salmonella isolates within a serotype, such as phage typing (52, 54), DNA sequencing-based subtypes (i.e., random amplification of polymorphic DNA [RAPID] [24, 28], multilocus sequence typing [MLST] [3, 44], multiple-locus variable-number tandem repeat analysis [MLVA] [16]), ribotyping (20), pulsed field gel electrophoresis (PFGE) (52, 55), and microarray (22, 42). For example, phage typing is another traditional commonly used phenotypic subtypic method for Salmonella, in which a standardized set of phages is used to differentiate *Salmonella* isolates based on their susceptibility to be lysed by different bacteriophages (53, 54). While a standardized set of phages is used between laboratories to phage type Salmonella, the results from different laboratories, even within a laboratory, might show high biological and experimental variation (53). MLST is one of the genetic subtyping methods that uses DNA sequences of mainly multiple housekeeping genes to differentiate the isolates (29). Since the Salmonella genome is highly clonal, virulence genes are also used in the MLST scheme (3, 44).

Ribotyping and PFGE are also DNA-subtyping methods that include whole genome digestion by restriction enzymes. Ribotyping uses small digested fragments of DNA (approximately 1-30 kb) are separated on an agarose gel by electrophoresis and then the patterns of DNA fragments of ribosomal RNA (rRNA) genes, which are determined by Southern blot, are compared to differentiate the isolates (53). Alternatively in PFGE typing, the whole genome is digested into 8 to 25 large DNA bands, and then all the DNA fragments are separated on an agarose gel through alternating electric fields (53).

Since PFGE has become the gold standard for bacterial pathogens, including *Salmonella*, subtyping during the past ten years due to its broad applicability, high discriminatory power and epidemiological concordance (8), PFGE is used by CDC and state health departments in the United States (45), as well as in Canada, Latin America, Asia and Europe (EU) (47). The Centers for Disease Control and Prevention and state health departments in the United States developed a national network (PulseNet) to rapidly exchange standardized PFGE subtype data for isolates of foodborne pathogens (45, 47). PulseNet uses the molecular subtyping of isolates that has been commonly used in epidemiological investigations of food borne disease outbreaks and has become an essential component of epidemiologic investigations of infectious diseases (45).

Serotypes of *Salmonella enterica* subsp. *enterica* can be divided in three subdivisions (i.e., host restricted, host adapted and unrestricted serotypes) according to the abilities of serotypes to cause disease in different host species. Host restricted *Salmonella* serotypes are exclusively associated with one particular host (e.g. *Salmonella* Typhi, and *Salmonella* Paratyphi A), while host adapted *Salmonella* serotypes are prevalent in one particular host species, but are able to cause disease in other host species (e.g. *Salmonella* Choleraesuis). Unrestricted *Salmonella* serotypes,

although capable of causing systemic disease in a wide range of host species, usually induce self-limiting gastroenteritis, e.g. *Salmonella* Typhimurium (51). Molecular subtyping data suggest that some unrestricted serotypes might have a narrower host species range (40). For example, *Salmonella* Typhimurium phage type DT2 and DT99 were reported as poultry associated strains, while *Salmonella* Typhimurium phage type DT104 is a broad range variant. Therefore, *Salmonella* unrestricted serotypes might be collections of strains that vary significantly in their host range and their degree of host adaptation. These strains can be determined by molecular subtyping methods (40).

The databases including *Salmonella* isolates, especially with unrestricted serotypes, from different sources (i.e., cattle, human, poultry, food, etc.) with easily comparable phenotypic and genotypic subtypes, such as serotypes, DNA-sequencing based types, ribotypes, and PFGE types, as well as isolate information (i.e., isolate source, isolation date, isolated from), around the world are essential for the faster detection of the outbreaks and the faster tracking of the outbreak sources.

In the evolution of bacteria, gene acquisition and deletion events clearly play an important role. The importance of acquiring of novel (non-homologous) genes by lateral gene transfer has been clearly demonstrated in a number of bacteria, including a number of bacterial pathogens (21, 27, 36, 39). Acquisition of pathogenicity islands has played a critical role in the evolution of *Salmonella* (39) and other Gram-negative and Gram-positive pathogens (43). Gene degradation and gene deletions also have been shown to play a critical role in bacterial evolution, particularly when organisms with a broad niche specificity adapt to narrow and specific ecological niches (30, 49). For example, it has been suggested that gene degradation and gene deletion contribute to host adaptation in both *Salmonella* Typhi and *Salmonella* Paratyphi A (30). Phylogenetic analyses suggest that *Salmonella* and *Escherichia coli* shared a common

ancestor and diverged from that common ancestor about 100 million years ago (6). After the divergence from *E. coli, Salmonella* gained virulence associated gene complexes, commonly called "Salmonella Pathogenicity Island (SPI)" (39). One study (13) evaluated 410 genes present in both *S. enterica* and *E. coli*, and reported that 50% of amino acid substitutions in these genes appear to have been fixed by positive selection in one of these species. Microarray technologies have allowed for rapid and large scale studies on gene presence/absence in large numbers of isolates, including in *Salmonella* (38). In addition to gene acquisition and deletion, positive selection and homologous recombination, play important roles in the evolution of bacteria and bacterial pathogens (14, 26, 35).

Genome wide studies on positive selection and recombination in bacterial pathogens, including *Streptococcus* spp. (26), *Listeria monocytogenes* (35), *E. coli* (14, 37), and *Shigella* (37) have contributed to a better understanding of the evolution of these important pathogens.

Recently emerged *Salmonella* serotype 4,5,12:i:-, which appears to be closely related to *Salmonella* Typhimurium (which has the serotype 4,5,12:i:1,2), but lacks the expression of second phase 1, 2 flagellar antigen. *Salmonella* 4,5,12:i:- was the 6th most common *Salmonella* serotype among human cases in the US in 2006 (12) and the 4th most common serotype among human isolates in Spain in 1998 (22). Overall, the prevalence of *Salmonella* 4,5,12:i:- among human cases has increased considerably in many countries in the world over the last 10 years (9, 12, 22, 33, 48). This *Salmonella* serotype has also been responsible for a number of human salmonellosis outbreaks over the last decades, including in Spain (1998), the US (2004 and 2007), and in Luxemburg (2006). *Salmonella* 4,5,12:i:- has also been isolated, particularly over the last decade, from a number of different foods and animals (2, 5, 17, 33, 57). A number of separate studies, using molecular subtyping and characterization tools (e.g.,

genomic microarrays, PCR assays to test for gene presence/absence), have shown that serotype 4,5,12:i:- isolates from Spain (18, 22) and the US (2, 3, 57) are closely related to *Salmonella* Typhimurium.

Salmonella causes one of the most widely known bacterial food borne diseases worldwide, and is still a public health concern, as well as a problem causing huge economic loss in the food industry. Research is required to better understand the transmission and evolution of *Salmonella* and its ability to cause disease in different host species, in order for us to track the contamination sources using highly specific subtyping methods, and eliminate *Salmonella* from food products.

REFERENCES

- Adhikari, B., F. Angulo, and M. Meltzer. 2004. Economic Burden of Salmonella Infections in the United States. 2004 Annual meeting from American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association). Denver, CO
- Agasan, A., J. Kornblum, G. Williams, C. C. Pratt, P. Fleckenstein, M. Wong, and A. Ramon. 2002. Profile of *Salmonella enterica* subsp. *enterica* (subspecies I) serotype 4,5,12:i:- strains causing food-borne infections in New York City. J. Clin. Microbiol. 40:1924-1929.
- Alcaine, S. D., Y. Soyer, L. D. Warnick, W. L. Su, S. Sukhnanand, J. Richards, E. D. Fortes, P. McDonough, T. P. Root, N. B. Dumas, Y. Grohn, and M. Wiedmann. 2006. Multilocus Sequence Typing Supports the Hypothesis that Cow- and Human-Associated Salmonella Isolates Represent Distinct and Overlapping Populations. Appl. Environ. Microbiol. 72:7575-7585.
- Aldridge, P. D., C. Wu, J. Gnerer, J. E. Karlinsey, K. T. Hughes, and M. S. Sachs. 2006. Regulatory protein that inhibits both synthesis and use of the target protein controls flagellar phase variation in *Salmonella enterica*. Proc. Natl. Acad. Sci. U.S.A. 103:11340-11345.
- Amavisit, P., W. Boonyawiwat, and A. Bangtrakulnont. 2005.
 Characterization of *Salmonella enterica* serovar Typhimurium and monophasic *Salmonella* serovar 1,4,[5],12:i:- isolates in Thailand. J. Clin. Microbiol.
 43:2736-2740.
- Baker, S., and G. Dougan. 2007. The Genome of Salmonella enterica Serovar Typhi. Clin. Infect. Dis. 45:S29-S33.

- Bangtrakulnonth, A., S. Pornreongwong, C. Pulsrikarn, P.
 Sawanpanyalert, R. S. Hendriksen, D. M. Lo Fo Wong, and F. M.
 Aarestrup. 2004. *Salmonella* serovars from humans and other sources in Thailand, 1993-2002. Emerg. Infect. Dis. 10:131-136.
- 8. **Barrett, T. J., P. Gerner-Smidt, and B. Swaminathan.** 2006. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog. Dis. **3:**20-31.
- Boonmar, S., A. Bangtrakulnonth, S. Pornruangwong, S. Samosornsuk, K. Kaneko, and M. Ogawa. 1998. Significant increase in antibiotic resistance of *Salmonella* isolates from human beings and chicken meat in Thailand. Vet. Microbiol. 62:73-80.
- Brenner, F. W., R. G. Villar, F. J. Angulo, R. Tauxe, and B. Swaminathan.
 2000. *Salmonella* nomenclature Guest commentary. J. Clin. Microbiol.
 38:2465-2467.
- CDC. 2008. Preliminary FoodNet Data on the Incidence of Infection with Pathogens Transmitted Commonly Through Food --- 10 States, 2007. MMWR 57:366-370.
- CDC. 2008. Salmonella Surveillance: Annual Summary, 2006, vol. Atlanta, Georgia: US Department of Health and Human Services, CDC.
- Charlesworth, J., and A. Eyre-Walker. 2006. The rate of adaptive evolution in enteric bacteria. Mol. Biol. Evol. 23:1348-56.
- Chen, S. L., C. S. Hung, J. Xu, C. S. Reigstad, V. Magrini, A. Sabo, D.
 Blasiar, T. Bieri, R. R. Meyer, P. Ozersky, J. R. Armstrong, R. S. Fulton,
 J. P. Latreille, J. Spieth, T. M. Hooton, E. R. Mardis, S. J. Hultgren, and
 J. I. Gordon. 2006. Identification of genes subject to positive selection in

uropathogenic strains of *Escherichia coli*: a comparative genomics approach. Proc. Natl. Acad. Sci. U.S.A. **103**:5977-5982.

- Chevance, F. F., and K. T. Hughes. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6:455-465.
- Cho, S., T. S. Whittam, D. J. Boxrud, J. M. Bartkus, and A. M. Saeed.
 2008. Allele distribution and genetic diversity of VNTR loci in *Salmonella enterica* serotype Enteritidis isolates from different sources. BMC Microbiol.
 8:146-157.
- de laTorre, E., D. Zapata, M. Tello, W. Mejia, N. Frias, F. J. Garcia Pena,
 E. M. Mateu, and E. Torre. 2003. Several *Salmonella enterica* subsp. *enterica* serotype 4,5,12:i:- phage types isolated from swine samples originate
 from serotype typhimurium DT U302. J. Clin. Microbiol. 41:2395-2400.
- Echeita, M. A., A. Aladuena, S. Cruchaga, and M. A. Usera. 1999.
 Emergence and spread of an atypical *Salmonella enterica* subsp *enterica* serotype 4,5,12 : i :- Strain in Spain. J. Clin. Microbiol. 37:3425-3425.
- EFSA. 2007. The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents, Antimicrobial Resistance and Foodborne Outbreaks in the European Union in 2006. EFSA J. 130:11-352.
- Fontana, J., A. Stout, B. Bolstorff, and R. Timperi. 2003. Automated ribotyping and pulsed-field gel electrophoresis for rapid identification of multidrug-resistant *Salmonella* serotype newport. Emerg. Infect. Dis. 9:496-9.
- 21. **Gal-Mor, O., Y. Valdez, and B. B. Finlay.** 2006. The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of *Salmonella enterica* serovar Typhimurium in mice. Microb. Infect. **8:**2154-2162.
- Garaizar, J., S. Porwollik, A. Echeita, A. Rementeria, S. Herrera, R. M. Y.
 Wong, J. Frye, M. A. Usera, and M. McClelland. 2002. DNA microarray-

based typing of an atypical monophasic *Salmonella enterica* serovar. J. Clin. Microbiol. **40**:2074-2078.

- Grimont, P., and F. Weil. 2007. Antigenic Formulae of the Salmonella Servovars, 9th ed, vol. Pasteur Institute, Paris: World Health Organization Centre for Reference and Research on Salmonella.
- Hudson, C. R., C. Quist, M. D. Lee, K. Keyes, S. V. Dodson, C. Morales, S. Sanchez, D. G. White, and J. J. Maurer. 2000. Genetic relatedness of *Salmonella* isolates from nondomestic birds in Southeastern United States. J. Clin. Microbiol. 38:1860-1865.
- Langvad, B., M. N. Skov, E. Rattenborg, J. E. Olsen, and D. L. Baggesen.
 2006. Transmission routes of *Salmonella* Typhimurium DT 104 between 14
 cattle and pig herds in Denmark demonstrated by molecular fingerprinting. J.
 Appl. Microbiol. 101:883-890.
- Lefebure, T., and M. J. Stanhope. 2007. Evolution of the core and pangenome of *Streptococcus*: positive selection, recombination, and genome composition. Genome Biol. 8:R71-88.
- Lercher, M. J., and C. Pal. 2008. Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol. Biol. Evol. 25:559-567.
- Lim, H., K. H. Lee, C. H. Hong, G. J. Bahk, and W. S. Choi. 2005. Comparison of four molecular typing methods for the differentiation of *Salmonella* spp. Int. J. Food Microbiol. 105:411-418.
- Maiden, M. C. J., J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R.
 Urwin, Q. Zhang, J. J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers, M.
 Achtman, and B. G. Spratt. 1998. Multilocus sequence typing: A portable

approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U.S.A. **95:**3140-3145.

- McClelland, M., K. E. Sanderson, S. W. Clifton, P. Latreille, S. Porwollik,
 A. Sabo, R. Meyer, T. Bieri, P. Ozersky, M. McLellan, C. R. Harkins, C.
 Y. Wang, C. Nguyen, A. Berghoff, G. Elliott, S. Kohlberg, C. Strong, F. Y.
 Du, J. Carter, C. Kremizki, D. Layman, S. Leonard, H. Sun, L. Fulton, W.
 Nash, T. Miner, P. Minx, K. Delehaunty, C. Fronick, V. Magrini, M.
 Nhan, W. Warren, L. Florea, J. Spieth, and R. K. Wilson. 2004.
 Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of *Salmonella enterica t*hat cause typhoid. Nat. Genet.
 36:1268-1274.
- Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro,
 P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607-625.
- 32. Moreno Switt, A. I., Y. Soyer, L. D. Warnick, and M. Wiedmann. 2009. Emergence, distribution and molecular and phenotypic characteristics of *Salmonella enterica* serotype 4,5,12:i:-. Foodborne Path. Dis. in press
- 33. Mossong, J., P. Marques, C. Ragimbeau, P. Huberty-Krau, S. Losch, G. Meyer, G. Moris, C. Strottner, W. Rabsch, and F. Schneider. 2007.
 Outbreaks of monophasic *Salmonella enterica* serovar 4,[5],12:i:- in Luxembourg, 2006. Euro. Surveill 12:E11-E12.
- 34. Nagano, N., S. Oana, Y. Nagano, and Y. Arakawa. 2006. A severe Salmonella enterica serotype Paratyphi B infection in a child related to a pet turtle, Trachemys scripta elegans. Jpn. J. Infect. Dis. 59:132-134.

- 35. Orsi, R. H., Q. Sun, and M. Wiedmann. 2008. Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of *Listeria monocytogenes*. BMC Evol. Biol. 8:233-254.
- 36. **Pal, C., B. Papp, and M. J. Lercher.** 2005. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. **37:**1372-1375.
- 37. Petersen, L., J. P. Bollback, M. Dimmic, M. Hubisz, and R. Nielsen. 2007.
 Genes under positive selection in *Escherichia coli*. Genome Res. 17:1336-1343.
- Porwollik, S., E. F. Boyd, C. Choy, P. Cheng, L. Florea, E. Proctor, and M. McClelland. 2004. Characterization of *Salmonella enterica* subspecies I genovars by use of microarrays. J. Bacteriol. 186:5883-5898.
- Porwollik, S., and M. McClelland. 2003. Lateral gene transfer in *Salmonella*. Microbes. Infect. 5:977-989.
- Rabsch, W., H. L. Andrews, R. A. Kingsley, R. Prager, H. Tschape, L. G. Adams, and A. J. Baumler. 2002. *Salmonella enterica* serotype Typhimurium and its host-adapted variants. Infect. Immun. 70:2249-2255.
- Ross, I. L., and M. W. Heuzenroeder. 2005. Discrimination within phenotypically closely related definitive types of *Salmonella enterica* serovar typhimurium by the multiple amplification of phage locus typing technique. J. Clin. Microbiol. 43:1604-1611.
- 42. Scaria, J., R. U. Palaniappan, D. Chiu, J. A. Phan, L. Ponnala, P. McDonough, Y. T. Grohn, S. Porwollik, M. McClelland, C. S. Chiou, C. Chu, and Y. F. Chang. 2008. Microarray for molecular typing of *Salmonella enterica* serovars. Mol. Cell. Probes 22:238-243.
- Schmidt, H., and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17:14-56.

- 44. Sukhnanand, S., S. Alcaine, L. D. Warnick, W. L. Su, J. Hof, M. P. Craver, P. McDonough, K. J. Boor, and M. Wiedmann. 2005. DNA sequence-based subtyping and evolutionary analysis of selected *Salmonella enterica* serotypes. J. Clin. Microbiol. 43:3688-3698.
- Swaminathan, B., T. J. Barrett, S. B. Hunter, and R. V. Tauxe. 2001.
 PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg. Infect. Dis. 7:382-389.
- Swaminathan, B., P. Gerner-Smidt, and T. Barrett. 2006. Focus on Salmonella. Foodborne Pathog. Dis. 3:154-156.
- 47. Swaminathan, B., P. Gerner-Smidt, L. K. Ng, S. Lukinmaa, K. M. Kam, S. Rolando, E. P. Gutierrez, and N. Binsztein. 2006. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog. Dis. **3:**36-50.
- 48. Tavechio, A. T., A. C. Ghilardi, and S. A. Fernandes. 2004. "Multiplex PCR" identification of the atypical and monophasic *Salmonella enterica* subsp. *enterica* serotype 1,4,[5],12:i:- in Sao Paulo State, Brazil: frequency and antibiotic resistance patterns. Rev. Inst. Med. Trop. Sao Paulo 46:115-117.
- 49. Thomson, N. R., D. J. Clayton, D. Windhorst, G. Vernikos, S. Davidson, C. Churcher, M. A. Quail, M. Stevens, M. A. Jones, M. Watson, A. Barron, A. Layton, D. Pickard, R. A. Kingsley, A. Bignell, L. Clark, B. Harris, D. Ormond, Z. Abdellah, K. Brooks, I. Cherevach, T. Chillingworth, J. Woodward, H. Norberczak, A. Lord, C. Arrowsmith, K. Jagels, S. Moule, K. Mungall, M. Sanders, S. Whitehead, J. A. Chabalgoity, D. Maskell, T. Humphrey, M. Roberts, P. A. Barrow, G. Dougan, and J. Parkhill. 2008. Comparative genome analysis of *Salmonella*

Enteritidis PT4 and *Salmonella* Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. **18:**1624-1637.

- 50. Thong, K. L., Y. L. Goh, S. Radu, S. Noorzaleha, R. Yasin, Y. T. Koh, V. K. Lim, G. Rusul, and S. D. Puthucheary. 2002. Genetic diversity of clinical and environmental strains of *Salmonella enterica* serotype Weltevreden isolated in Malaysia. J. Clin. Microbiol. 40:2498-2503.
- Uzzau, S., D. J. Brown, T. Wallis, S. Rubino, G. Leori, S. Bernard, J. Casadesus, D. J. Platt, and J. E. Olsen. 2000. Host adapted serotypes of *Salmonella enterica*. Epidemiol. Infect. 125:229-255.
- 52. Valdezate, S., M. Arroyo, R. Gonzalez-Sanz, R. Ramiro, S. Herrera-Leon, M. A. Usera, M. De la Fuente, and A. Echeita. 2007. Antimicrobial resistance and phage and molecular typing of *Salmonella* strains isolated from food for human consumption in Spain. J. Food Prot. **70**:2741-2748.
- 53. Wiedmann, M. 2002. Molecular subtyping methods for *Listeria monocytogenes*. J. AOAC Int. **85:**524-531.
- Winokur, P. L. 2003. Molecular epidemiological techniques for *Salmonella* strain discrimination. Front. Biosci. 8:c14-24.
- 55. Wonderling, L., R. Pearce, F. M. Wallace, J. E. Call, I. Feder, M. Tamplin, and J. B. Luchansky. 2003. Use of pulsed-field gel electrophoresis to characterize the heterogeneity and clonality of *Salmonella* isolates obtained from the carcasses and feces of swine at slaughter. Appl. Environ. Microbiol. 69:4177-4182.
- Yasin, R. M., M. M. Jegathesan, and C. C. Tiew. 1996. Salmonella serotypes isolated in Malaysia over the ten-year period 1983-1992. Asia Pac. J. Public Health 9:1-5.

57. Zamperini, K., V. Soni, D. Waltman, S. Sanchez, E. C. Theriault, J. Bray, and J. J. Maurer. 2007. Molecular characterization reveals *Salmonella enterica* serovar 4,[5],12:i:- from poultry is a variant Typhimurium serovar. Avian Dis. 51:958-964.

CHAPTER 2

PULSED FIELD GEL ELECTROPHORESIS CAN BE USED TO DISTINGUISH HOST ADAPTED AND UN-RESTRICTED SUBTYPES AMONG SALMONELLA ENTERICA SUBSP. ENTERICA SEROTYPES

ABSTRACT

We investigated the genetic relationships of temporally and spatially matched clinical, bovine and human *Salmonella enterica* spp. enterica isolates using serotyping, multilocus sequence typing (MLST), and pulsed field gel electrophoresis (PFGE). Among clinical human and bovine Salmonella isolates, we determined 51 serotypes, 73 sequence types (ST) and 167 XbaI PFGE patterns. Among PFGE patterns, 116 and 44, were obtained only in human and bovine salmonellosis cases, respectively, while 7 PFGE patterns were shared by human and bovine Salmonella isolates. Overall, PFGE provided very high discrimination among human (Simpson's index, D = 0.9907) and cattle (D = 0.9683) isolates that was considerably higher than that achieved by serotyping (D=0.9134) and MLST (D=0.9201). We determined that two PFGE types, associated with bovine clinical cases, might represent Salmonella bovine adapted subtypes. On the other hand we identified that three PFGE types, showed no association at causing disease within specific host species, might represent un-restricted Salmonella subtypes. In our study, we identified 11 persistent Salmonella strains within 16 farms collected in multiple visits. In addition, spatial analysis revealed that among bovine isolates, five PFGE types representing spatial and temporal clusters. Similarly, we also found in 6 instances the same subtypes (i.e. same serotype, ST, and PFGE) were observed for two or three human isolates collected in the same county in the same or consecutive months, possibly indicating small

temporal and geographical human case clusters. We conclude that PFGE can be used to determine host adapted and un-restricted subtypes as well as spatial and temporal subtype clusters, and the further development of large subtype databases for *Salmonella* isolates from different sources will provide a better understanding of *Salmonella* transmission and therefore, facilitate better tracking of outbreaks sources.

INTRODUCTION

Salmonella, a Gram-negative enterobacterium, is a human and animal pathogen. The genus Salmonella is divided into two species, Salmonella bongori and Salmonella enterica (3). While Salmonella enterica consists of six subspecies, Salmonella enterica subsp. enterica is considered the most important, since serotypes of this subspecies are associated with warm blooded vertebrates and are responsible for the vast majority of salmonellosis cases (3, 42). Salmonella enterica subsp. enterica serotypes usually are transmitted by ingestion of food or water contaminated with feces from infected animals or humans (34), but may also be transmitted by direct contact (19, 27).

Salmonellae are among the most common reported bacterial foodborne pathogens worldwide (40). In the United States nontyphoidal Salmonella serotypes cause an estimated 1.4 million human salmonellosis cases with approximately 16,000 hospitalizations and 500 deaths annually (25, 45). 95 % of salmonellosis is associated with consumption of contaminated food and water in the US (25). Similarly in the European Union (EU), Salmonella is among the top three common known source of foodborne bacterial infection in humans. In 2006, Salmonella caused 34.6 human salmonellosis cases per 100,000 population (160,649 confirmed cases) in the EU (7, available at

http://www.efsa.europa.eu/cs/BlobServer/DocumentSet/Zoon_report_2006_en,0.pdf?s

sbinary=true). While the major source of *Salmonella* contamination is poultry related food products, followed by pork, in the EU, in the US, in addition to meat, eggs, and their products, fecal contaminated fresh vegetables, including nuts, are also common vehicles of *Salmonella* (4, 30).

The characterization of *Salmonellae* beyond species and subspecies is performed by subtyping methods. Serotyping is a phenotype-based subtyping method that is traditionally applied to *Salmonella* (3, 46). This technique relies upon the immunoreactivity of Salmonella's O (lipopolysaccaride) and H (flagellar) antigens. Salmonella has over 2,500 recognized serotypes according to the Kauffmann-White Scheme (13). Since serotyping has low discriminatory power to differentiate subtypes, phenotypic and genotypic approaches have been commonly used to differentiate the subtypes of *Salmonella* within serotypes, such as phage typing (20, 22), DNA sequencing-based subtyping methods (1, 37, 38, 49), ribotyping (10, 33), pulsed field gel electrophoresis (PFGE) (9, 32, 35, 37, 50), multilocus variable number of tandem repeat analysis (MLVA) (5, 24) and microarray (11, 36). PFGE has become the gold standard for subtyping bacterial pathogens, including Salmonella, during the past ten years due to its broad applicability, high discriminatory power and epidemiological concordance (2). Therefore, PFGE has been used by Centers for Disease Control and Prevention (CDC) and state health departments in the United States (39), as well as in Canada, Latin America, Asia and Europe (EU) (41). The Centers for Disease Control and Prevention and state health departments in the United States developed a national network (PulseNet) to rapidly exchange standardized PFGE subtype data for isolates of foodborne pathogens (39, 41). PulseNet uses the molecular subtyping of isolates that has been commonly used in epidemiological investigations of food borne disease outbreaks and has become an essential component of epidemiologic investigations of infectious diseases (39).

Serotypes of *Salmonella enterica* subsp. *enterica* can be divided in three subdivisions (i.e., host restricted, host adapted and unrestricted serotypes) according to the abilities of serotypes to cause disease in different host species. Host-restricted *Salmonella* serotypes are exclusively associated with one particular host (e.g. *Salmonella* Typhi), while host-adapted *Salmonella* serotypes are prevalent in one particular host species, but are able to cause disease in other host species (e.g. *S*. Dublin). Unrestricted *Salmonella* serotypes, although capable of causing systemic disease in a wide range of host species, usually induce a self-limiting gastroenteritis, e.g. *Salmonella* Typhimurium (42). Molecular subtyping data suggest that some unrestricted serotypes might include subtypes having a narrower host species range (30). For example, *Salmonella* Typhimurium phage type DT2 and DT99 were reported as poultry associated strains, while *Salmonella* Typhimurium phage type DT104 is a broad range variant. Therefore, *Salmonella* un-restricted serotypes might be collections of strains that vary significantly in their host range and their degree of host adaptation. These strains can be determined by molecular subtyping methods (30).

It is essential to compile databases including easily comparable phenotypic and genotypic subtypes, such as serotypes, DNA-sequencing based types, ribotypes, and PFGE types, as well as isolate information (i.e., isolate source, isolation date, etc.), for *Salmonella* isolates, especially isolates with unrestricted serotypes, world wide in order to facilitate rapid detection and tracking of the outbreak sources. To provide a better understanding of *Salmonella* transmission and facilitate a better tracking of outbreak sources, we characterized 335 temporally and geographically matched human and bovine *Salmonella* isolates collected from clinical human and bovine cases in New York State and a neighboring state, Vermont, by using serotyping and PFGE typing, as well as MLST data previously reported by our group (1). Our goals in this study were to (i) determine PFGE diversity and discriminatory ability

among clinical human and bovine *Salmonella* isolates, (ii) identify PFGE types associated with certain host species and geographical regions, (iii) evaluate the potential subtypes transmitted from cattle to humans, and (iv) provide a publicly accessible database for *Salmonella* isolates.

MATERIALS AND METHODS

Salmonella isolates: A total of 335 spatially and temporally matched Salmonella enterica spp. enterica nontyphoidal isolates were used in this study. A set of 178 human Salmonella isolates, collected in 2004, were obtained from the Wadsworth Center, New York State Department of Health. An additional set of 157 animal Salmonella isolates, collected from 64 different farms located in New York State and neighboring state Vermont in 2004, were obtained from the New York State Animal Health Diagnostic Laboratory (Table A1 [S2.1]). The procedure used to collect Salmonella isolates used in this study were previously characterized using multilocus sequence type (MLST) by our group (1), there are 10 exceptions: five Salmonella isolates (i.e., 1 bovine and 4 human isolates), used in our previous study, were not included in this study, while five human isolates in this study were not included in our previous study (1). The isolate designations are identical in both studies (i.e., FSL S5-430 isolate reported here is the identical isolate with designation of FSL S5-430 previously reported in [1]).

Serotyping and MLST. Bovine isolates were serotyped at the National Veterinary Services Laboratories (USDA-APHIS-VS, Ames, IA) (8). Human isolates and serotype information for isolates were delivered at the Wadsworth Center, New York State Department of Health.

Human and bovine isolates were previously typed by MLST (Multilocus

sequence typing) based on PCR amplification and sequencing of three genes (*manB*, *fimA* and *mdh*) (1, 38), and were previously reported (1). The sequence types are identical for the corresponding isolates in both studies (i.e., ST8, reported here was determined by Alcaine et al. [1] and is identical to ST8 previously reported). Sequence types (STs), assigned previously by Alcaine et al. (1), were used in this study to (i) determine the combined subtypes for *Salmonella* clinical human and bovine isolates using three subtyping methods (serotyping, MLST, and PFGE) and (ii) determine which subtyping method among three subtyping methods (serotyping *Salmonella* isolates.

Among bovine *Salmonella* isolates, the same serotype, MLST and PFGE subtypes were obtained from multiple isolates that were collected from the same farm during different visits. This indicates the re-isolation of a persistent subtype on a given farm. Therefore, only one isolate representing each unique serotype/MLST/PFGE combined subtype for a given farm was included in the statistical analysis and Simpson's index of diversity calculations to avoid over-representation of a subtype due to re-sampling in multiple visits of a given farm. For example, from farm 510, a combined subtype of serotype Newport, ST 11 and PFGE type 121 was obtained in 20 different visits (Table 2.1). However, only one of the isolates with this combined subtype from farm 510 was used for statistical analysis. Therefore, out of 157 bovine *Salmonella* isolates, a total of 91 cattle isolates were used in statistical analysis.

PFGE anlaysis. PFGE was performed according to the Centers for Disease Control and Prevention PulseNet protocol

(http://www.cdc.gov/pulsenet/protocols/ecoli_salmonella_shigella_protocols.pdf)(32). PFGE was performed with the CHEF-Mapper (Bio-Rad Laboratories, Hercules, CA). Electrophoresis conditions were an initial switch time of 2.16 seconds, a final
		iams at multiple visit	3
Farm ID	No. of farm visits with positive	Sequence type/serotype (No. of isolates)	PFGE Pattern (No. of isolates)
510	20	ST11/Newport (21) ST6/4,5,12:i:- (1)	121 (20), 122 (1) 94 (1)
261	22	ST6/ 4,5,12:i:- (18) ST17/Kentucky (5) ST6/Typhimurium (1)	89 (5), 90 (1), 91(1), 94 (10), 95 (1) 96 (5) 94 (1)
223	15	ST60/Infantis (15)	107 (13), 108 (1), 109 (1)
329	5	ST9/Montevideo (1) ST44/Muenster (3) ST62/Thompson (1)	119 (1) 7 (3) 157 (1)
186	4	ST75/Adelaide (1) ST8/Typhimurium (3) ^a	44 (1) 104 (3)
524	5	ST6/4,5,12:i: (1) ST11/Newport (4)	90 (1) 126 (1), 127 (3)
152	4	ST11/Newport (4)	126 (4)
490	4	ST11/Newport (4)	126 (1), 127 (2), 129 (1)
163	3	ST60/Infantis (1) ST11/Newport (2)	114 (1) 126 (2)
259	3	ST44/Muenster (3)	2 (1), 4 (1), 6 (1)
488	3	ST11/Bardo (1) ST11/Newport (3)	126 (1) 126 (3)
584	3	ST2/Agona (2) ST6/Typhimurium (1)	165 (1), 166 (1) 64 (1)
97	2	ST8/Typhimurium ^b (2)	104 (2)
105	2	ST11/Newport (1) ST8/Typhimurium (1)	121 (1) 102 (1)
125	2	ST6/Typhimurium (2)	79 (2)
208	2	ST6/Typhimurium (2)	66 (2)
303	2	ST11/Newport (2)	126 (2)
320	2	ST11/Newport (2)	126 (2)
415	2	ST9/Montevideo (1) ST6/Typhimurium (1)	119 (1) 70 (1)
764	2	ST6/Typhimurium (2)	60 (2)

Table 2.1. Salmonella isolate information for clinical bovine isolates collected from farms at multiple visits

^aAmong 3 Typhimurium isolates, there is a Typhimurium var. 5, previously known as Typhimurium Copenhagen, isolate ^bAmong 2 Typhimurium isolates, there is a Typhimurium var. 5, previously known as Typhimurium Copenhagen, isolate

switch time of 63.8 seconds and a run time of 21 hours. CDC *Salmonella* serovar Branderup H19812 was used as the reference strain (17). Pictures of PFGE gels were taken by Gel/ChemiDoc (BIO-RAD Laboratories). Among 335 *Salmonella* isolates, 10 isolates with serotypes Kentucky (n=6), representing all Kentucky isolates, Infantis (n=2), Oranienburg (n=1), and Havana (n=1), could not be typed by the routine CDC PulseNet protocol. The addition of 50 μ M thiourea to the running buffer yielded clear, interpretable PFGE patterns for these isolates (26).

Comparison analysis was performed using the BioNumerics Software package (Applied Maths 1998-2004, Austin, TX). Similarity analysis was performed using the Dice coefficient and clustering was created using the unweighted pair group method by arithmetic mean. All the isolates were coded according to CDC PulseNet codes for naming PFGE patterns with initials of New York Cornell University (NYCU), e.g.: NYCU.JP6X01.0001.

Statistical analysis. PFGE types were grouped such that there were at least 5 isolates for each PFGE type; PFGE types including less than five isolates were classified as "rare PFGE types". The frequency distributions of PFGE types for isolates from human and bovine clinical cases were compared using the chi-square test of independence or Fisher's exact test. For comparisons where one or more of the expected values was <5, Fisher's exact test was conducted. P-values lower than 0.05 were considered statistically significant. All statistical analyses were conducted with Statistical Analysis Systems (SAS) 9.1 (SAS Institute Inc., Cary, NC).

Simpson's index of diversity (D) was calculated as described (16) to assess the differentiation of *Salmonella* isolates by using serotyping, PFGE, MLST or the combination of the two or three subtyping methods. Simpson's index of diversity values reported here cannot be directly compared to those reported by Alcaine et al. (1) as the isolate sets used in these two sets were similar but not identical.

Spatial analysis. A New York State and Vermont map from MapViewer software (MapViewer package version 6.0, Golden Software) was used to identify the geographical clusters of cattle *Salmonella* isolates.

Access to detailed isolate information. All isolate information, including isolate source, gene sequence data, allele assignments, antibiotic resistance profiles, and PFGE images, are publicly available in the Pathogen Tracker website (www.pathogentracker.net).

RESULTS

PFGE is more discriminatory than serotyping and MLST. A total of 335 Salmonella isolates with 51 serotypes were characterized into 167 PFGE types. Previously, this isolate set was differentiated into 73 sequence subtypes (STs) (1) (Table 2.2). PFGE typing showed the highest discriminatory power among Salmonella clinical isolates as determined by Simpson's Index of Discrimination (D=0.9910). PFGE was followed by MLST (D=0.9201) and serotyping (D=0.9188), respectively. For example, 16 Salmonella serotype 4,5,12:i:- isolates with ST6 were differentiated into 9 different PFGE types. Overall, subtype diversity was always higher among human Salmonella isolates as compared to bovine isolates, regardless of subtyping methods; Simpson's index of diversity values for serotype, MLST, and PFGE diversity among human isolates were 0.9327, 0.9414, and 0.9913, respectively, as compared to Simpson's index of diversity values of 0.8415, 0.8046, and 0.9683 among cattle isolates, respectively (Table 2.2).

Among 51 serotypes, 14 serotypes that occurred more than 3 times among the *Salmonella* isolate set used in this study were assigned as "common serotypes" (Table 2.3). *Salmonella* isolates within these common serotypes were further subdivided by MLST and PFGE into one to six different STs, and two to 32 different PFGE types,

					Simpson's	Simpson's Index of Diversity			
	Nu	umber of s	ubtypes found i	n	SC	scores among			
	Only	Only	Both human						
	human	bovine	and bovine		Human	Bovine			
	cases	cases	cases	Total	isolates	isolates	Total		
Serotype (SrT)	35	5	11	51	0.9327	0.8229	0.9134		
MLST	57	6	10	73	0.9414	0.8046	0.9201		
PFGE	116	44	7	167	0.9913	0.9683	0.9910		
SrT+PFGE	117	48	7	172	0.9914	0.9736	0.9919		
MLST+PFGE	120	44	6	170	0.9916	0.9683	09912		
SrT+MLST+PFGE	119	49	6	174	0.9916	0.9736	0.9920		

Table 2. 2. Distribution of subtypes found using serotyping, MLST, PFGE typing as well as combinations among clinical bovine and human *Salmonella* isolates and corresponding Simpson's Index of diversity scores for each subtyping method as well as combined methods

respectively (Table 2.3). For example, 47 human and bovine *Salmonella* isolates with serotype Newport, the second most common serotype found in our isolate set, were differentiated into 6 STs and 22 PFGE types (Table 2.3), while 26 human *Salmonella* isolates with the third common serotype in our isolate set, Enteritidis, were differentiated into two STs and 8 PFGE types.

While, PFGE typing showed higher discriminatory power than serotyping and MLST, there were some exceptions. In five incidences of typing isolates with closely related serotypes, serotyping is more discriminatory than PFGE (Table 2.4). For example, PFGE type 94 represented one bovine Typhimurium (4,5,12:i:1,2) isolate and two bovine 4,5,12:i:- isolates, which lacks the second phase flagellar antigen (Figure 2.1). Similarly, PFGE types 66, 157, and 158 were differentiated into two different STs. PFGE types 66 and 158 were differentiated in two STs (i.e., ST6 and ST7, and ST43 and ST62, respectively) within a serotype (i.e., Typhimurium and Thompson, respectively), while PFGE type 157 was differentiated in two STs (i.e., ST43 and ST62) in two serotypes (i.e., 1,7:-:1,5 and Thompson, respectively) (Figure 2.2) (Table A1 [S2.1]).

Figure 2. 1. PFGE type 94 is an example of PFGE types shared by different serotypes. PFGE type 94 was determined in one bovine *Salmonella* Typhimurium (4,5,12:i:1,2) isolate and two bovine *Salmonella* 4,5,12:i:- isolates.

To be more discriminatory, we combined three subtyping methods and assigned a total of 174 different "combined" subtypes (D=0.9920) in this set of

Salmonella isolates (Table 2.2). Although the combination of subtyping methods yielded more subtypes than that obtained from PFGE typing, the discriminatory power of three methods combined (D=0.9921) is similar to that of PFGE typing (D=0.9910). Among 174 combined subtypes, only 4 combined subtypes were found among both human and bovine isolates.

00 kb	500 kb	oo kb eoo kb	00kb	40kb 20kb	lsolate No.	Source	Serotve	PFGE Pattern No.	PFGE Type No.	3-gene MLST
		ηŸ	ī	17	ESI \$5.471	Human	Thompson	NYCII IP6X01.0001	457	
S. 300					101 00-4/1	nuillall	mompson	N 100.51 0X01.0001	157	62
1.603				1993	FSL S5-472	Human	Thompson	NYCU.JP6X01.0001	157	62
					FSL S5-542	Human	C1,7:-:1,5	NYCU.SC1X01.0002	157	43
					FSL S5-761	Bovine	Thompson	NYCU.JP6X01.0001	157	62
					FSL S5-765	Bovine	Thompson	NYCU.JP6X01.0001	157	62

Figure 2. 2. PFGE type 157 was differentiated in ST43 and ST62 in two serotypes, serotype 1,7:-:1,5 and serotype Thompson.

Distribution of PFGE types among human and bovine Salmonella isolates.

Categorical analysis of the distribution of PFGE types from an overall 9 by 2 table (8 PFGE types that included at least 5 isolates plus one category for rare types [<5 isolates] by two host species, human and bovine) relieved that PFGE types were not independently distributed among human and bovine cases (*P*-value <0.0001; Monte Carlo estimation of exact test).

Among 167 PFGE types, only four PFGE types, 60, 89, 126, and 157, were obtained from both bovine and human clinical cases (Table 2.6) (Figure 2.3, Figure 2.2). For example PFGE pattern 60 was shared by five human and three bovine *Salmonella* Typhimurium isolates, while PFGE type 89 was shared by 6 human and one bovine *Salmonella* 4,5,12:i:- isolates, as well as one bovine *Salmonella* Typhimurium isolate (Figure 2.3).

		Among isolates no of different		
Serotype	No. of isolates	STs found	PFGE types found	
Typhimurium ^b	52	5	32	
Newport	47	6	22	
Enteritidis	26	2	8	
4,5,12:i:-	17	2	9	
Heidelberg	10	3	4	
Montevideo	9	5	6	
Thompson	9	2	3	
Agona	8	2	7	
Muenster	8	1	6	
Infantis	7	1	7	
Mbandaka	5	3	5	
Saintpaul	5	2	4	
Javiana	4	2	4	
Urbana	4	1	3	

Table 2. 3. Distribution of sequence types and PFGE types among common *Salmonella* serotypes^a

^a Salmonella serotypes, which were found ≥ 4 times among Salmonella isolate set used in our study, were called common Salmonella serotypes

^b Among 52 Typhimurium isolates, there are four Typhimurium var. 5, previously known as Typhimurium Copenhagen, isolates

serotypes			
PFGE Pattern	Serotype	Antigens	Source (No. of isolates)
89	4,5,12:i:-	4,5,12:i:-	Human (6), Bovine (1)
	Typhimurium	4,5,12:i:1,2	Bovine (1)
94	4,5,12:i:-	4,5,12:i:-	Bovine (2)
	Typhimurium	4,5,12:i:1,2	Bovine (1)

Table 2. 4. PFGE patterns shared by *Salmonella* isolates within closely related serotypes

94	4,5,12:i:-	4,5,12:i:-	Bovine (2)
	Typhimurium	4,5,12:i:1,2	Bovine (1)
121	Newport	6,8:e,h:1,2	Bovine (9)
	Bardo	8:e,h:1,2	Bovine (1)
126	Newport	6,8:e,h:1,2	Human (2), Bovine (10)
	Bardo	8:e,h:1,2	Bovine (1)
157	Thompson	6,7:k:1,5	Human (2), Bovine (2)
	C 1.7:-:1.5	1.7:-:1.5	Human (1)

Figure 2. 3. Among 167 PFGE types, only four PFGE types, 60, 89, 126, and 157 (Figure 2.2), were obtained from both bovine and human clinical cases. For example PFGE pattern 60 (A) shared by five human and three bovine *Salmonella* Typhimurium isolates, PFGE type 89 (B) shared by 6 human and one bovine *Salmonella* 4,5,12:i:-isolates, as well as one bovine *Salmonella* Typhimurium isolates, and PFGE type 126 (C) obtained from two and 10 human and bovine *Salmonella* Newport isolates, respectively, as well as from one bovine *Salmonella* Bardo isolate.

	okb	okb	okb	0kb	okb	집 원					PI	FGE	3-gene
	8	8	- 30	8	- 10	8 8	Isolate No.	Source	Serotye	PFGE Pattern No.	Тур	e No.	MLST
	11				11		FSL S5-370	Human	Typhimurium	NYCU.JPXX01.	0024	60	6
	П				11		FSL S5-375	Human	Typhimurium	NYCU.JPXX01.	0024	60	6
	11				111		FSL S5-488	Human	Typhimurium	NYCU.JPXX01.	0024	60	6
	11				11		FSL S5-509	Human	Typhimurium	NYCU.JPXX01.	0024	60	6
	11						FSL S5-535	Human	Typhimurium	NYCU.JPXX01.	0024	60	6
	11				11		FSL S5-429	Bovine	Typhimurium	NYCU.JPXX01.	0024	60	6
	11				111		FSL S5-845	Bovine	Typhimurium	NYCU.JPXX01.	0024	60	6
1	11						FSL S5-933	Bovine	Typhimurium	NYCU.JPXX01.	0024	60	6

-800 kb -500 kb -300 kb	- 200 kb - 1 00 kb - 40 kb - 20 kb	Isolate No.	Source	Serotye	PFGE Pattern No.	PFGE Type No.	3-gene MLST
		FSL S5-433	Bovine	Typhimurium	NYCU.JPXX01.0033	89	6
		FSL S5-737	Bovine	4,5,12:i:-	NYCU.JPXX01.0033	89	6
		FSL S5-390	Human	4,5,12:i:-	NYCU.JPXX01.0033	89	6
		FSL S5-398	Human	4,5,12:i:-	NYCU.JPXX01.0033	89	6
		FSL S5-409	Human	4,5,12:i:-	NYCU.JPXX01.0033	89	6
		FSL S5-498	Human	4,5,12:i:-	NYCU.JPXX01.0033	89	6
		FSL S5-656	Human	4,5,12:i:-	NYCU.JPXX01.0033	89	6
		FSL S5-666	Human	4,5,12:i:-	NYCU.JPXX01.0033	89	6

C.

300 kb	00 kb	200 kb	00 kb	okb okb	Isolate No.	Source	Serotye	PFGE Pattern No.	PFGE Type No.	3-gene MLST
		Ū	uiu	1 1	FSL S5-557	Bovine	Newport	NYCU.JJPX01.0003	126	11
		Ш			FSL S5-570	Bovine	Bardo	NYCU.TEGX01.0001	126	11
	Ï	11			FSL S5-413	Human	Newport	NYCU.JJPX01.0003	126	11
11		11			FSL S5-525	Human	Newport	NYCU.JJPX01.0003	126	11
	111	11			FSL S5-420	Bovine	Newport	NYCU.JJPX01.0003	126	11
					FSL S5-424	Bovine	Newport	NYCU.JJPX01.0003	126	11
					FSL S5-601	Bovine	Newport	NYCU.JJPX01.0003	126	11
		"			FSL S5-605	Bovine	Newport	NYCU.JJPX01.0003	126	11
					FSL S5-624	Bovine	Newport	NYCU.JJPX01.0003	126	11
	1				FSL S5-626	Bovine	Newport	NYCU.JJPX01.0003	126	11
	I				FSL S5-619	Bovine	Newport	NYCU.JJPX01.0003	126	11
					FSL S5-610	Bovine	Newport	NYCU.JJPX01.0003	126	11
					FSL S5-578	Bovine	Newport	NYCU.JJPX01.0003	126	11

A.

B.

Categorical analysis of PFGE type distributions using chi-square or Fischer's exact tests showed that PFGE types 121, and 126 were significantly associated with cattle cases (*P*-value <0.001), while PFGE type 27 was significantly associated with human cases (*P*-value <0.05) (Table 5). PFGE type 126 was obtained from both human and bovine cases (i.e, PFGE type 126, which was found 14 *S*. Newport and 1 *S*. Bardo isolates, was collected widely from 10 different farms in 7 counties among New York State and Vermont [Table A1 [S2.1]). The rest of the PFGE types, including the rare PFGE type category, were independently distributed among human and bovine cases.

Evidence of persistent subtypes on farms. As previously described, 64 farms were involved in this study. While 43 farms were only visited once, 20 farms were visited more than once due to extended salmonellosis infection. In multiple visits to given farms, some persistent combined subtypes (i.e., same serotype, MLST and PFGE pattern) were obtained from 16 farms (Table 1). Although our previous study showed the persistence of a given ST on most of the farms (1), this study shows that Salmonella isolates with certain persistent STs included multiple PFGE types, since PFGE provided more discrimination than MLST. For example, 18 Salmonella 4,5,12:i:- isolates, sharing the same sequence type, ST6, on Farm 261, were differentiated into 5 different PFGE types. Similarly, on farm 223, 15 Salmonella Infantis isolates, having the same sequence type, ST60, were differentiated into 3 different PFGE types: 107, 108, 109. In this study we used combined subtypes (serotype, ST, and PFGE type) to identify 11 persistent subtypes (i.e., combined subtype found more than once) within a given farm (Table 2.1). For example, a combined subtype of Newport, ST11 and PFGE type 121 was determined in 20 isolates from farm number 510.

	No. of isol	ates from	
	Human	Cattle	
27 (Enteritidis)	9	0	0.0291*
32 (Enteritidis)	6	0	0.0765
57 (Heidelberg)	7	0	0.0553
60 (Typhimurium)	5	3	0.8237
89 (4,5,12:i:-, Typhimurium)	6	2	0.2871
121 (Newport)	0	10	<0.0001**
126 (Newport)	2	11	<0.0001**
157 (C 1,7:-:1,5, Thompson)	3	2	0.7685
Rare PFGE types	140	63	0.0893
Total	178	91	

Table2.5. Distribution of PFGE patters that were determined more than four timesamong clinical human and bovine Salmonella isolates and P-values representing theassociation between host species and PFGE patterns

^a P values refer to comparisons of the frequency of a given PFGE type among human and bovine isolates, as determined by chi-square test or Fisher's exact test.

* indicates significance between PFGE pattern within a serotype and host species P < 0.05

** indicates significance between PFGE pattern within a serotype and host species P < 0.001

Evidence of temporal and spatial clusters of *Salmonella* **subtypes.** Among the human isolates, we observed the same subtypes (i.e. same serotype, MLST, and PFGE) in 6 instances for two or three isolates collected in the same county in the same or consecutive months (Table 2.6), possibly indicating small temporal and geographical case clusters. For example, the isolates with serotype Anatum, ST 25 and PFGE type 151, were obtained from 3 different people in the same month and county. Interestingly, PFGE types 14, 47, 86, and 151 were only found in these human clusters (Table 2.6). This may indicate that these isolates are unique to these human cases. While other PFGE types were found in other human and cattle clinical cases in our study (i.e., PFGE type27 was commonly found among human isolates, while PFGE type 157 was also obtained from bovine cases [Table A1 [S2.1.]]).

Spatial analysis of the distribution of PFGE patterns from bovine *Salmonella* isolates, found more than once, showed that (i) nine PFGE types (PFGE types 5, 7, 60, 90, 94, 104, 132, 157, and 166) that were collected from at least two farms in two different adjacent counties might represent widely distributed patterns, (ii) three PFGE types (PFGE type 96, 119, and 127) that were collected from multiple farms in 2 or three adjacent counties might represent spatial clusters, and (iii) two PFGE types (PFGE types 121 and 126) that were collected in bovine cases in 10 farms in 6 and 7 counties with and without boundaries might represent commonly found and widely distributed subtypes (Figure 2.4).

DISCUSSION

A total of 335 human and bovine *Salmonella* clinical isolates, collected from New York and a neighboring state (Vermont), were characterized by serotyping and PFGE, as well as MLST (1), to provide a better understanding of the genetic relationship and epidemiology of human and cattle associated *Salmonella*. Our data

	Date of	collected			PFGE
Isolate No.	isolation	from	Serotype	MLST	Pattern
FSL S5-529	9/15/2004	Erie	Anatum	25	151
FSL S5-530	9/14/2004	Erie	Anatum	25	151
FSL S5-540	9/22/2004	Erie	Anatum	25	151
FSL S5-369	12/22/2003	Monroe	Saintpaul	38	86
FSL S5-405	12/23/2003	Monroe	Saintpaul	38	86
FSL S5-376	12/31/2003	Nassau	Enteritidis	14	27
FSL S5-377	12/31/2003	Nassau	Enteritidis	14	27
FSL S5-471	5/4/2004	Nassau	Thompson	62	157
FSL S5-472	5/3/2004	Nassau	Thompson	62	157
FSL S5-456	4/22/2004	Orleans	Schwarzengrund	4	14
FSL S5-458	4/30/2004	Orleans	Schwarzengrund	4	14
			-		
FSL S5-388	1/11/2004	Schenectady	Urbana	52	47
FSL S5-410	2/28/2004	Schenectady	Urbana	52	47

Table 2. 6. Salmonella human isolates that might have been collected from human clinical clusters within a county in two month duration

together with the previous MLST data from our group (1) indicate that (i) PFGE provides higher discrimination for human and bovine *Salmonella* isolates than serotyping and MLST; (ii) PFGE can be used to differentiate host specific, unrestricted and widely distributed *Salmonella* isolates, as well as previously unknown human clusters with epidemiological data, and (iii) persistent *Salmonella* isolates might cause infection more than once on the same farm.

PFGE more discriminatory for human and bovine *Salmonella* isolates than serotyping and MLST. Serotyping, which is a phenotype-based subtyping method, has been used for subtyping Salmonella isolates with the Kauffmann-White scheme since 1968 (4). Since serotyping of *Salmonella* often cannot provide enough discriminatory ability to detect outbreaks and track the outbreak sources, modern rapid and standardized molecular techniques have been commonly used to subdivide the Salmonella isolates within a serotype, such as phage typing (43, 47), random amplification of polymorphic DNA, RAPD (15, 21), DNA sequeuncing-based subtypes (i.e., multilocus sequence typing, MLST [(1, 23, 38)]), ribotyping, (10), pulsed field gel electrophoresis, PFGE (43, 48), and multiple-locus variable-number tandem repeat analysis (MLVA) (5). While a standardized set of phages is used between laboratories to phage type Salmonella, the results from different laboratories, even within a laboratory, might be varied due to high biological and experimental variation (46). Since the *Salmonella* genome is a highly clonal, neither ribotyping nor MLST schemes provide enough discrimination to differentiate Salmonella subtypes (1, 38). In PFGE typing, the whole genome is digested into 8 to 25 large DNA bands (46), therefore, PFGE provides better discrimination. PFGE is considered as the gold standard for Salmonella subtyping (32), as well as other foodborne bacteria, such as Listeria monocytogenes (12) (Graves et al. 2001, by the CDC (39). Other researchers reported that PFGE provided more discriminatory power of differentiation of

Figure 2. 4. Spatial analysis of bovine *Salmonella* isolates showed that PFGE types 5, 60, 90, 104, 132, 157, and 166 are widely distributed and PFGE types 7, 94, 96, and 127 geographically clustered, while PGFE types 121 and 126 were widely distributed among New York State and Vermont

Symbol	PFGE Pattern #	Serotype	No. of County (No. of farms)		Symbol	PFGE Pattern #	Serotype	No. of County (No. of farms)
•	5	Muenster	2 (2)		+	119	Montevideo	2 (2)
•	7	Muenster	2 (2)		•	121	Bardo,	6 (10)
8	60	Typhimurium	2 (3)				Newport	
۲	90	4,5,12:i:-	2 (2)		*	126	Bardo, Newport	7 (10)
\$	94	4,5,12:i:-, Typhimurium	2 (2)		Δ	127	Newport	3 (4)
п	06	Kontuolau	2 (2)		A	132	Newport	2 (2)
_	20	Trachimurium	2 (2)	2 (2) 2 (3)		157	Thompson	2 (2)
•	104	Typnimurium, T.Copenhagen	2 (3)			166	Agona	2 (2)

Salmonella isolates than ribotyping (10, 33), RAPD (15, 21), and MLST (Cooke et al. 2008; Fakhr et al. 2001; Harbottle et al. 2006).

In our study, 355 human and bovine Salmonella isolates with 51 serotypes (D= 0.9134) were differentiated in 73 sequence types (D= 0.9201) and 167 PFGE types (D= 0.9910). Our data that showed PFGE had more discriminatory power than serotyping and MLST, is consistent with previous studies (6, 9, 14). Harbottle et al. (14) reported that 81 Salmonella Newport isolates, which were isolated from humans, feed and foods, were differentiated in 12 sequence types, assigned using 7-gene MLST (i.e., aroC, dnaN, hemD, hisD, purE, sucA, and thrA), while 43 XbaI PFGE types were found. In another study, 85 cattle clinical Salmonella Typhimurium isolates showed no genetic diversity among 4 genes (i.e., manB, pduF, glnA, and spaM), but were differentiated into 50 XbaI profiles (9). Similarly, Cooke et al. (6) reported that 13 human clinical Salmonella Typhimurium definitive phage type 104 (DT104) isolates having 13 different XbaI PFGE types represented a single sequence type, assigned by using 7-gene MLST (i.e., *aroC*, *dnaN*, *hemD*, *hisD*, *purE*, sucA, and thrA) and these 13 DT104 isolates had also conserved gene contents, determined by microarray. Cooke et al. (6) proposed that the differences among 13 human clinical Salmonella Typhimurium DT104 isolates might be due to the variation in prophage and plasmid contents, which can also be determined by PFGE.

PFGE might be used to differentiate host specific, un-restricted and widely distributed *Salmonella* **isolates, as well as previously unknown human clusters with epidemiological data**. We found that a total of three PFGE types are associated with clinical cases from certain host species (i.e., PFGE type 27 was associated with human clinical cases, while PFGE types 121 and 126 were associated with bovine clinical cases [*P*- values= 0.0291, <0.0001 and <0.0001, respectively]). Since PFGE type 27 was found in *Salmonella* Enteritidis isolates, which is commonly

transmitted form poultry products to humans, we expected that PFGE type 27 would be associated with human clinical cases, and not found in bovine clinical cases. However, PFGE types 121 and 126 were obtained from Newport, un-restricted serotype. PFGE type 121 was obtained from only bovine isolates, while PFGE type 126 was obtained from both human and cattle cases, however it was commonly found on 10 different farms in 7 counties, representing 14 S. Newport and 1 S. Bardo (Table A1 [S2.1]). These data show that some PFGE types can be responsible for salmonellosis among herds and might be associated with bovine clinical cases (i.e., host adapted isolates). These subtypes are also able to cause disease in humans. The finding of these host adapted subtypes in human cases, especially outbreaks, with the strong epidemiological linkage means that the source of disease or outbreak is more likely be transmitted to humans from cattle associated products. This data is supported by previous studies that showed *Salmonella* Newport had distinct lineages that can cause disease in different host species (1, 14). In addition, the same trend was seen in other un-restricted serotypes, such as Typhimurium DT40, which represents the avianadapted *Salmonella* Typhimurium phage type (30).

Using a combination of three subtyping methods as well as epidemiological data, we determined previously unknown human clusters in 6 instances for two or three isolates collected in the same county in the same or consecutive months (Table 2.6), possibly indicating small temporal and geographical case clusters. This data suggests that the number of human salmonellosis clusters occurs more often than reported.

Although we used a subtyping method with higher discriminatory power, PFGE, to differentiate isolates among un-restricted serotypes, we identified four PFGE types that were not associated with a specific host species (Table 2.5); 60 (i.e., PFGE type 60 was obtained from five human and three bovine *Salmonella* Typhimurium

isolates), 89 (i.e., PFGE type 89 was obtained from 6 human and one bovine *Salmonella* 4,512:i:- isolates, as well as one Typhimurium isolate), and 157 (i.e., PFGE type 157 was obtained from two human and two bovine *Salmonella* Thompson isolates, as well as one human C1,7:-:1,5 isolate), that were obtained from both bovine and human clinical cases. This data suggests that some PFGE types may be widely distributed among cattle and human cases. Therefore, finding common PFGE types in humans and cattle or food does not mean that they are associated, so the isolation of common PFGE types among humans and foods or farm animals must be interpreted carefully. Establishment of casual relationships will require strong epidemiological linkages and/or the use of additional, more sensitive methods such as multiple-locus variable-number of tandem repeat analysis (MLVA) (i.e., MLVA involves the amplification and fragment size analysis of polymorphic regions of DNA containing variable numbers of tandem repeat sequences) (5, 18, 24), and microarray (11, 31, 36), or whole genome sequencing (6).

Persistent Salmonella isolates might cause infection multiple times within a farm. A number of studies have shown that Salmonella can persistent on farms and flocks. Previously, Ogilive (28) reported that in a dairy farm, one cow shed Salmonella Typhimurium in her milk and contaminated milk products in a 36 day period, while she did not show any symptoms of salmonellosis (28). Similarly, Vanselow et al. (44) reported that Salmonella Typhimurium persisted in a dairy herd over approximately 2 years. However in this case, Salmonella Typhimurium caused severe salmonellosis among dairy cows and calves, resulting in the death of a cow and a calf. In addition, it was suspected that Salmonella Typhimurium was transmitted to a 9 month-old child living on the farm and caused salmonellosis (44). Another epidemiological study, investigating the survival of Salmonella Senftenberg in broiler parent stock and broiler farms, showed that Salmonella Senftenberg was persistent for

two years in a broiler parent stock, despite management practices, such as cleaning, disinfection, desiccation and also depopulation (29). These studies support our data that showed persistent *Salmonella* isolates with the same serotype, ST, and PFGE type, found in 16 farms. Besides *Salmonella* serotype Typhimurium, we found four more *Salmonella* serotypes, 4,5,12:i:-, Infantis, and Newport that were persistent in the farms included in our study (Table 2.1). These data indicate that some *Salmonella* subtypes might be persistent within a farm and cause salmonellosis among cattle.

Overall, we can conclude that some *Salmonella* serotypes might survive in the environment and might resist farm/broiler management practices, as well as might persist due to re-contamination by rodents, wild animals, birds and/or flies. Therefore, farm management practices should be conducted thoroughly and necessary modifications should be made to eliminate persistent *Salmonella* serotypes, even though there is no sign of salmonellosis found in the herd or flock. The persistent *Salmonella* isolates might not cause any disease in animal host species, but the animals may be the reservoir of these persistent *Salmonella* isolates that can cause severe salmonellosis in humans.

CONCLUSIONS

In this study, we used a phenotypic subtyping method, serotyping, as well as genotypic subtyping methods, MLST and PFGE, to build a database, which will be used to determine host specific, un-restricted, geographically clustered and spatially persistent *Salmonella* subtypes. The combination of these methods provided a better understanding of ecology and transmission of *Salmonella*, one of the commonly known foodborne bacterial pathogen around the world. The data we generated in this study, as well as the isolate information (i.e., isolation year, source, antibiotic resistance, county, etc.) are publicly available in Pathogen Tracker

(www.pathogentracker.net) and can be used by other researchers for their academic purposes and for their epidemiological investigations. We conclude that the development of a larger database including *Salmonella* isolates from various sources from different regions of the US, as well as different countries and continents, with combination of more sensitive molecular biology techniques will enhance our abilities to detect the outbreaks and link the outbreak to the specific food faster, therefore we will improve abilities to assure the public health.

ACKNOWLEDGEMENTS

This work was supported by Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. NO1-A1-30054. We thank Eric B. Fugett for help with laboratory techniques used in this study.

REFERENCES

- Alcaine, S. D., Y. Soyer, L. D. Warnick, W. L. Su, S. Sukhnanand, J. Richards, E. D. Fortes, P. McDonough, T. P. Root, N. B. Dumas, Y. Grohn, and M. Wiedmann. 2006. Multilocus Sequence Typing Supports the Hypothesis that Cow- and Human-Associated *Salmonella* Isolates Represent Distinct and Overlapping Populations. Appl. Environ. Microbiol. **72**:7575-7585.
- Barrett, T. J., P. Gerner-Smidt, and B. Swaminathan. 2006. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog. Dis. 3:20-31.
- Brenner, F. W., R. G. Villar, F. J. Angulo, R. Tauxe, and B. Swaminathan.
 2000. Salmonella nomenclature Guest commentary. J. Clin. Microbiol.
 38:2465-2467.
- CDC. 2008. Salmonella Surveillance: Annual Summary, 2006, vol. Atlanta, Georgia: US Department of Health and Human Services, CDC.
- Cho, S., T. S. Whittam, D. J. Boxrud, J. M. Bartkus, and A. M. Saeed.
 2008. Allele distribution and genetic diversity of VNTR loci in *Salmonella enterica* serotype Enteritidis isolates from different sources. BMC Microbiol.
 8:146.
- Cooke, F. J., D. J. Brown, M. Fookes, D. Pickard, A. Ivens, J. Wain, M. Roberts, R. A. Kingsley, N. R. Thomson, and G. Dougan. 2008. Characterization of the genomes of a diverse collection of *Salmonella enterica* serovar Typhimurium definitive phage type 104. J. Bacteriol. 190:8155-62.
- EFSA. 2007. The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents, Antimicrobial Resistance and Foodborne Outbreaks in the European Union in 2006. The EFSA Journal 130:11-352.

- Ewing, W. H. 1972. The genus *Salmonella* p. 146-256. *In* R. E. Edwards and
 W. H. Ewing (ed.), In Identification of *Enterobacteriaceae* vol. 3rd. Burgess
 Publishing Co., Minneapolis.
- Fakhr, M. K., L. K. Nolan, and C. M. Logue. 2005. Multilocus sequence typing lacks the discriminatory ability of pulsed-field gel electrophoresis for typing *Salmonella enterica* serovar Typhimurium. J. Clin. Microbiol. 43:2215-2219.
- Fontana, J., A. Stout, B. Bolstorff, and R. Timperi. 2003. Automated ribotyping and pulsed-field gel electrophoresis for rapid identification of multidrug-resistant *Salmonella* serotype newport. Emerg. Infect. Dis. 9:496-9.
- Garaizar, J., S. Porwollik, A. Echeita, A. Rementeria, S. Herrera, R. M. Y. Wong, J. Frye, M. A. Usera, and M. McClelland. 2002. DNA microarraybased typing of an atypical monophasic *Salmonella enterica* serovar. J. Clin. Microbiol. 40:2074-2078.
- Graves, L. M., and B. Swaminathan. 2001. PulseNet standardized protocol for subtyping *Listeria monocytogenes* by macrorestriction and pulsed-field gel electrophoresis. Int. J. Food Microbiol. 65:55-62.
- 13. Grimont, P., Weil, F. 2007. Antigenic Formulae of the *Salmonella* Servovars,
 9th ed, vol. Pasteur Institute, Paris: World Health Organization Centre for Reference and Research on *Salmonella*.
- Harbottle, H., D. G. White, P. F. McDermott, R. D. Walker, and S. Zhao.
 2006. Comparison of multilocus sequence typing, pulsed-field gel electrophoresis, and antimicrobial susceptibility typing for characterization of *Salmonella enterica* serotype Newport isolates. J. Clin. Microbiol. 44:2449-2457.
- 15. Hudson, C. R., C. Quist, M. D. Lee, K. Keyes, S. V. Dodson, C. Morales, S.

Sanchez, D. G. White, and J. J. Maurer. 2000. Genetic relatedness of *Salmonella* isolates from nondomestic birds in Southeastern United States. J. Clin. Microbiol. **38**:1860-1865.

- Hunter, P. R., and M. A. Gaston. 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J. Clin. Microbiol. 26:2465-6.
- 17. Hunter, S. B., P. Vauterin, M. A. Lambert-Fair, M. S. Van Duyne, K. Kubota, L. Graves, D. Wrigley, T. Barrett, and E. Ribot. 2005. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43:1045-1050.
- Hyytia-Trees, E., S. C. Smole, P. A. Fields, B. Swaminathan, and E. M. Ribot. 2006. Second generation subtyping: A proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxinproducing *Escherichia coli* O157 (STEC O157). Foodborne Pathog. Dis. 3:118-131.
- Langvad, B., M. N. Skov, E. Rattenborg, J. E. Olsen, and D. L. Baggesen.
 2006. Transmission routes of *Salmonella* Typhimurium DT 104 between 14 cattle and pig herds in Denmark demonstrated by molecular fingerprinting. J. Appl. Microbiol. 101:883-890.
- Liesegang, A., D. Davos, J. C. Balzer, W. Rabsch, R. Prager, D. Lightfoot,
 A. Siitonen, H. Claus, and H. Tschape. 2002. Phage typing and PFGE pattern analysis as tools for epidemiological surveillance of *Salmonella enterica* serovar Bovismorbificans infections. Epi. Infec. 128:119-130.
- 21. Lim, H., K. H. Lee, C. H. Hong, G. J. Bahk, and W. S. Choi. 2005. Comparison of four molecular typing methods for the differentiation of

Salmonella spp. Int. J. Food Microbiol. 105:411-8.

- Lukinmaa, S., U. M. Nakari, A. Liimatainen, and A. Siitonen. 2006. Genomic diversity within phage types of *Salmonella enterica* ssp. enterica serotypes Enteritidis and Typhimurium. Foodborne Pathog. Dis. 3:97-105.
- 23. Maiden, M. C. J., J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin, Q. Zhang, J. J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers, M. Achtman, and B. G. Spratt. 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U.S.A. 95:3140-3145.
- 24. **Malorny, B., E. Junker, and R. Helmuth.** 2008. Multi-locus variable-number tandem repeat analysis for outbreak studies of *Salmonella enterica* serotype Enteritidis. BMC Microbiol. **8:**84.
- Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro,
 P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607-625.
- 26. Murase, T., M. Nagato, K. Shirota, H. Katoh, and K. Otsuki. 2004. Pulsedfield gel electrophoresis-based subtyping of DNA degradation-sensitive *Salmonella enterica* subsp *enterica* serovar Livingstone and serovar Cerro isolates obtained from a chicken layer farm. Vet. Microbiol. **99:**139-143.
- Nagano, N., S. Oana, Y. Nagano, and Y. Arakawa. 2006. A severe Salmonella enterica serotype Paratyphi B infection in a child related to a pet turtle, Trachemys scripta elegans. Jpn. J. Infect. Dis. 59:132-134.
- 28. **Ogilvie, T. H.** 1986. The Persistent Isolation of *Salmonella* typhimurium from the Mammary Gland of a Dairy Cow. Can. Vet. J. **27:**329-331.
- 29. Pedersen, T. B., J. E. Olsen, and M. Bisgaard. 2008. Persistence of *Salmonella* Senftenberg in poultry production environments and investigation

of its resistance to desiccation. Avian Pathol. 37:421-7.

- Rabsch, W., H. L. Andrews, R. A. Kingsley, R. Prager, H. Tschape, L. G. Adams, and A. J. Baumler. 2002. *Salmonella enterica* serotype Typhimurium and its host-adapted variants. Infect. Immun. 70:2249-2255.
- 31. Reen, F. J., E. F. Boyd, S. Porwollik, B. P. Murphy, D. Gilroy, S. Fanning, and M. McClelland. 2005. Genomic comparisons of *Salmonella enterica* serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a *Salmonella* microarray. Appl. Environ. Microbiol. **71**:1616-1625.
- 32. Ribot, E. M., M. A. Fair, R. Gautom, D. N. Cameron, S. B. Hunter, B. Swaminathan, and T. J. Barrett. 2006. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, *Salmonella*, and Shigella for PulseNet. Foodborne Pathog. Dis. **3**:59-67.
- 33. Ridley, A. M., E. J. Threlfall, and B. Rowe. 1998. Genotypic characterization of *Salmonella* enteritidis phage types by plasmid analysis, ribotyping, and pulsed-field gel electrophoresis. J. Clin. Microbiol. 36:2314-2321.
- 34. Ross, I. L., and M. W. Heuzenroeder. 2005. Discrimination within phenotypically closely related definitive types of *Salmonella enterica* serovar typhimurium by the multiple amplification of phage locus typing technique. J. Clin. Microbiol. 43:1604-1611.
- Sahlstrom, L., J. B. de, and A. Aspan. 2006. Salmonella isolated in sewage sludge traced back to human cases of salmonellosis. Lett. Appl. Microbiol. 43:46-52.
- Scaria, J., R. U. Palaniappan, D. Chiu, J. A. Phan, L. Ponnala, P. McDonough, Y. T. Grohn, S. Porwollik, M. McClelland, C. S. Chiou, C.

Chu, and Y. F. Chang. 2008. Microarray for molecular typing of *Salmonella enterica* serovars. Mol. Cell Probes 22:238-43.

- Seo, Y. S., S. H. Lee, E. K. Shin, S. J. Kim, R. Jung, and T. W. Hahn. 2006.
 Pulsed-field gel electrophoresis genotyping of *Salmonella* gallinarum and comparison with random amplified polymorphic DNA. Vet. Microbiol. 115:349-57.
- 38. Sukhnanand, S., S. Alcaine, L. D. Warnick, W. L. Su, J. Hof, M. P. Craver, P. McDonough, K. J. Boor, and M. Wiedmann. 2005. DNA sequence-based subtyping and evolutionary analysis of selected *Salmonella enterica* serotypes. J. Clin. Microbiol. 43:3688-3698.
- 39. Swaminathan, B., T. J. Barrett, S. B. Hunter, and R. V. Tauxe. 2001. PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg. Infec. Dis. 7:382-389.
- 40. Swaminathan, B., P. Gerner-Smidt, and T. Barrett. 2006. Focus on *Salmonella*. Foodborne Pathog. Dis. **3**:154-156.
- 41. Swaminathan, B., P. Gerner-Smidt, L. K. Ng, S. Lukinmaa, K. M. Kam, S. Rolando, E. P. Gutierrez, and N. Binsztein. 2006. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog. Dis. 3:36-50.
- Uzzau, S., D. J. Brown, T. Wallis, S. Rubino, G. Leori, S. Bernard, J. Casadesus, D. J. Platt, and J. E. Olsen. 2000. Host adapted serotypes of *Salmonella enterica*. Epidemiol. Infec. 125:229-255.
- 43. Valdezate, S., M. Arroyo, R. Gonzalez-Sanz, R. Ramiro, S. Herrera-Leon,
 M. A. Usera, M. De la Fuente, and A. Echeita. 2007. Antimicrobial resistance and phage and molecular typing of *Salmonella* strains isolated from

food for human consumption in Spain. J. Food Prot. 70:2741-8.

- Vanselow, B. A., S. Hum, M. A. Hornitzky, G. J. Eamens, and K. Quinn.
 2007. Salmonella Typhimurium persistence in a Hunter Valley dairy herd.
 Aust. Vet. J. 85:446-50.
- Voetsch, A. C., T. J. Van Gilder, F. J. Angulo, M. M. Farley, S. Shallow,
 R. Marcus, P. R. Cieslak, V. C. Deneen, and R. V. Tauxe. 2004. FoodNet estimate of the burden of illness caused by nontyphoidal *Salmonella* infections in the United States. Clin. Infect. Dis. 38 Suppl 3:S127-S134.
- 46. **Wiedmann, M.** 2002. Molecular subtyping methods for Listeria monocytogenes. J. AOAC Inter. **85:**524-531.
- 47. **Winokur, P. L.** 2003. Molecular epidemiological techniques for *Salmonella* strain discrimination. Front. Biosci. **8:**c14-24.
- 48. Wonderling, L., R. Pearce, F. M. Wallace, J. E. Call, I. Feder, M. Tamplin, and J. B. Luchansky. 2003. Use of pulsed-field gel electrophoresis to characterize the heterogeneity and clonality of *Salmonella* isolates obtained from the carcasses and feces of swine at slaughter. Appl. Environ. Microbiol. 69:4177-82.
- 49. Woo, Y. K., and S. H. Lee. 2006. Genetic diversity of multi-resistant *Salmonella enterica* serotype Typhimurium isolates from animals and humans. J. Microbiol. 44:106-112.
- 50. Zamperini, K., V. Soni, D. Waltman, S. Sanchez, E. C. Theriault, J. Bray, and J. J. Maurer. 2007. Molecular characterization reveals *Salmonella enterica* serovar 4,[5],12:i:- from poultry is a variant Typhimurium serovar. Avian Dis. 51:958-64.

CHAPTER 3

GENOME WIDE EVOLUTIONARY ANALYSES REVEAL SEROTYPE SPECIFIC PATTERNS OF POSITIVE SELECTION IN SELECTED SALMONELLA SEROTYPES

ABSTRACT

The bacterium *Salmonella enterica* includes a diversity of serotypes that cause disease in humans and different animal species. Some *Salmonella* serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five available *Salmonella* genome sequences, representing a broad host range serotype (Typhimurium), two host restricted serotypes (Typhi [two genomes], Paratyphi) and one host adapted serotype (Choleraesuis) were used to identify core genome genes that show evidence for recombination and positive selection. Overall, 3323 orthologous genes were identified in all 5 Salmonella genomes analyzed. Use of four different methods to assess homologous recombination identified 270 genes that showed evidence for recombination with at least one of these methods (false discovery rate [FDR] <10%). Site and branch specific models identified 41 genes as showing evidence for positive selection (FDR <20%), including a number of genes with confirmed or likely roles in virulence and genes encoding outer membrane proteins, which have also been found to be under positive selection in other bacteria. A total of 8, 16, 7, and 5 genes with no evidence of recombination were found to be under positive selection in Choleraesuis, Typhi, Typhimurium, and Paratyphi branch analyses, respectively. Sequencing and evolutionary analyses of four genes in an additional 42 isolates representing 23 serotypes confirmed branch specific positive

selection and recombination patterns. Our data show that (i) less than 10% of *Salmonella* genes in the core genome show evidence for homologous recombination, (ii) a number of *Salmonella* genes are under positive selection, including genes that appear to contribute to virulence, and (iii) branch specific positive selection contributes to the evolution of different *Salmonella* serotypes, including host restricted serotypes.

INTRODUCTION

Salmonella is a ubiquitous human and animal pathogen and the genus Salmonella is divided into two species, Salmonella bongori and Salmonella enterica. S. enterica consists of six subspecies (i.e., enterica, salamae, arizonae, diarizonae, houtenae, and indica) (7). Phylogenetic analyses suggest that Salmonella and Escherichia coli diverged from a common ancestor about 100 million years ago (5). After the divergence from *E. coli*, Salmonella gained virulence associated gene complexes, commonly called "Salmonella Pathogenicity Island (SPI)" (54).

The genus *Salmonella* contains >2,500 recognized serotypes. *Salmonella enterica* subsp. *enterica* serotypes can also be divided into subdivisions according to their host adaptation (71). For example, Uzzau et al. (2000) proposed that *Salmonella* serotypes can be divided into (i) host-restricted *Salmonella* serotypes (i.e., serotypes exclusively associated with one particular host, e.g. *Salmonella* Typhi and Paratyphi A); (ii) host-adapted *Salmonella* serotypes (i.e., serotypes prevalent in one particular host species, but able to cause disease in other host species, e.g. *Salmonella* Choleraesuis); and (iii) unrestricted *Salmonella* serotypes (i.e., serotypes capable of causing self-limiting gastroenteritis and, less commonly, systemic disease in a wide range of host species, e.g. *Salmonella* Typhimurium).

Multi-locus sequence typing (MLST) data indicate that the last common ancestor of the human host-adapted *Salmonella* Typhi existed 15,000-150,000 years

ago (27). The evolution of *Salmonella* Typhi towards a lifestyle characterized by systemic infection and transmission by excretion through the gall bladder rather than luminal gut colonization (5) involved a combination of acquisition events (e.g., acquisition of Vi capsule related genes), and deletion events (e.g., loss of virulence-associated genes, such as several genes in SPI-1, SPI-2, SPI-3, SPI-4 and SPI-5). *Salmonella* Paratyphi A also causes typhoid fever, although disease is typically milder than that caused by *Salmonella* Typhi. While *Salmonella* Paratyphi A also appears to have evolved recently, *Salmonella* Typhi and Paratyphi A clearly show distinct differences in their genome evolution, including a number of unique gene inactivation events in these two serotypes (39).

Nontyphoidal *Salmonella* serotypes are responsible for gastroenteritis in humans and other animals. These serotypes are mainly transmitted by ingestion of food, feed, or water contaminated with infected feces (58), but can also be transmitted by direct contact (33, 45). Disease caused by non-typhoidal *Salmonella* is one of the most common bacterial foodborne diseases worldwide (65). In the United States nontyphoidal *Salmonella* serotypes have been estimated to cause >1.4 million human salmonellosis cases with >16,000 hospitalizations and almost 600 deaths annually (41). *Salmonella* Typhimurium is one of the most common *Salmonella* serotypes, is found worldwide, and can cause disease, predominantly self limiting gastroenteritis, in a large number of animal species (71). The host adapted *Salmonella* Choleraesuis can cause severe disease, characterized by septicemia and enterocolitis, in swine. While relatively uncommon, this serotype can also infect humans where it typically causes severe invasive infections, e.g., infective aneurysm (15).

Gene acquisition and deletion events clearly play an important role in evolution. The importance of acquisition of novel (non-homologous) genes by lateral gene transfer has been clearly demonstrated in a number of bacteria, including a number of bacterial pathogens (21, 35, 50, 54). Acquisition of pathogenicity islands

has played a critical role in the evolution of *Salmonella* (54) and other Gram-negative and Gram-positive pathogens (61). Gene degradation and gene deletions also have been shown to play a critical role in bacterial evolution, particularly when organisms with a broad niche specificity adapt to narrow and specific ecological niches (39, 67). For example, it has been suggested that gene degradation and gene deletion contribute to host adaptation in both *Salmonella* Typhi and *Salmonella* Paratyphi A (39). Microarray technologies have also allowed for rapid and large scale studies on gene presence/absence in large numbers of isolates, including in *Salmonella* (53). In addition to gene acquisition and deletion, positive selection and homologous recombination, play important roles in the evolution of bacteria and bacterial pathogens (14, 34, 48).

Genome wide studies on positive selection and recombination in bacterial pathogens, including Streptococcus spp. (34), Listeria monocytogenes (48), E. coli (13, 52), and *Shigella* (52) have contributed to a better understanding of the evolution of these important pathogens. So far, no genome wide analyses of positive selection in Salmonella have been reported. One study (12) evaluated 410 genes present in both S. enterica and E. coli, though, and reported that 50% of amino acid substitutions in these genes appear to have been fixed by positive selection in one of these species. In order to further improve our understanding of the evolution of Salmonella, we thus performed full genome analyses for recombination and positive selection using the completed and published genome sequences for five Salmonella, including the host restricted Salmonella Typhi (two strains) and Paratyphi A, the host adapted Salmonella Choleraesuis, and the broad-host range Salmonella Typhimurium. We specifically hypothesized that analysis of these *Salmonella* serotypes would provide an improved understanding in the roles of positive selection and recombination in the evolution of host-adapted pathogen strains. A particular focus of our study was thus to evaluate lineage specific positive selection in different Salmonella serotypes.

METHODS AND MATERIALS

Genome sequences. Five available annotated *Salmonella enterica* subsp. *enterica* genome sequences were used in this study (Table 3.1). Genome sequences were downloaded from the Comprehensive Microbial Resource at The Institute for Genomic Research (TIGR; now J. Craig Venter Institute, JCVI) on November 25, 2005. Updated role category information for all genes was obtained from JCVI on October 14, 2008; the *Salmonella* Typhi CT18 genome was used as reference for role categories.

Identification of orthologous genes presents in all five *Salmonella* genomes analyzed. OrthoMCL (36) was used to identify orthologous genes in the five *Salmonella* genomes. Orthologs present in all five genomes were aligned using ClustalW (66). Multiple sequence alignments were carried out on amino acid sequences from each orthologous group, followed by conversion to nucleotide sequence alignments using the PAL2NAL software (64). Alignments containing variable sequence lengths or with low alignment scores were manually evaluated and edited, using BioEdit software (23), as previously described (48).

Detection of genes under positive selection. Positive selection can be detected by comparing the rate of non-synonymous substitutions (d_N) to the rate of synonymous substitutions (d_S). Among the programs that can be used to identify positive selection from DNA sequences, PAML (Phylogenetic Analysis by Maximum Likelihood) has been widely used to detect positive selection in bacteria (3, 13, 34, 48, 52, 70), viruses (69), and eukaryotes (11, 47). We thus used two types of tests implemented in PAML v3.15 to identify genes with evidence for positive selection (Test

Overall; TO) was carried out to identify genes under positive selection in any or all of the branches of a given phylogeny; this test compares the null model M1a (Nearly-neutral) to the alternative model M2a (positive selection) (73). To identify genes that are under positive selection in specific branches of the *Salmonella* phylogeny, the branch-site test2 (77) was used. The branch-site test was specifically used to identify genes under positive selection in the ancestral branches of (i) the human restricted serotypes Typhi (Ty#) and (ii) Paratyphi A (Pty#), (iii) the porcine adapted serotype Choleraesuis (Ch#), and (iv) the unrestricted serotype Typhimurium (Tym#) (Figure 3.1). Overall, 18 different phylogenetic trees represented the phylogeny of the 3316 *Salmonella* orthologous genes, including one tree that represented the phylogeny of 1198 genes. Both the overall test and the branch site tests were performed using the gene specific phylogenetic tree for each gene.

For each test, nested models (one null model that does not allow for positive selection and one alternative model that allows for positive selection) were compared using a Likelihood Ratio Test (LRT) (76). For each model, three replicates were generated and the maximum likelihood values for each model were used in the LRT in order to eliminate the runs that could not reach the global maximum likelihood score. Tests that yielded LRT values < -0.1 were re-run 10 times and the maximum values for each model were used to calculate the LRT. Negative LRT values (i.e., some tests yielded values \geq - 0.1) were rounded to zero (*P*-value=1). For all branch-specific tests, one degree of freedom was used to calculate *p*-values, while for the overall test, two degrees of freedom were used to calculate *p*-values.

Detection of genes with evidence of recombination. GENECONV version 1.81 (60), Maximum χ^2 (62), pairwise homoplasy index (PHI) (8) and neighbor similarity score (NSS) (25) were used to determine which of the 3316 orthologous genes

 Table 3. 1. Salmonella genomes used in this study

-			~ . ~	
Serotype	No. of	Accession	Sequencing Center	Reference
	ORFs	No.		
Choleraesuis	4801	NC_006905	Chang Gung Univ.	Chiu et al. 2005
Paratyphi A	4093	NC_006511	Washington Univ.	McClelland et al. 2004
Typhi CT18	4395	NC_003198	Sanger Centre/Imperial	Parkhill et al. 2001
			College	
Typhi Ty2	4323	NC_004631	Univ. of Wisconsin	Deng et al. 2003
Typhimurium	4553	NC_003197	Washington University	McClelland et al. 2001
			Consort.	

Figure 3.1. Example of neighbor joining tree used for positive selection analysis. Gene specific trees were used for all positive selection analysis. The tree shown here represented the phylogeny of 849 genes. Branches used for branch specific analyses are indicated; Ch#= Choleraesuis branch specific test; Ty# = Typhi branch specific test; Tym#= Typhimurium branch specific test; Pty#= Paratyphi A branch specific test.
showed evidence of recombination. The last three approaches are implemented in PhiPack (8). For the GENECONV analyses, the parameter g-scale was set to 1 and inner *p*-values were used to identify genes with evidence for recombination (60). For Maximum χ^2 , a fixed window size of 2/3 the number of polymorphic sites was used, while for PHI, a window size of 50 nucleotides was used. *P*-values were estimated using 10,000 permutations of the alignment for GENECONV and 1,000 permutations for NSS, Maximum χ^2 and PHI.

Assessment of codon bias. To assess the codon bias, we identified the effective number of codons used in a gene (N_c) using the program "chips" in the EMBOSS package (55). Nucleotide diversity and number of informative sites were obtained from PhiPack outputs.

Statistical analyses. Correction for multiple testing was performed using the procedure reported by Benjamini and Hochberg (6) as implemented in the program Q-Value (63). As previously detailed by our group (48), for each *p*-value, the *q*-value was calculated; the q-value represents the false discovery rate [FDR], i.e., the expected proportion of false positives among the significant tests. Corrections were performed separately for each test to account for testing of multiple genes . In an initial analysis of positive selection, all 3316 genes were used for FDR correction. A second correction was then performed including only those 3046 genes that showed no evidence for recombination. Genes with evidence for positive selection in the first analysis and evidence for recombination are treated as possible false positives. As the tests used for positive selection are already conservative (77), a false discovery rate (FDR) of 20% was used for the positives selection analyses (48). For recombination analyses, an FDR of 10% was used to compensate the fact that no correction for

multiple tests (GENECONV, NSS, Maximum χ^2 and PHI) was carried out due to the high correlation among the tests (48).

Associations between JCVI role categories and number of genes with (i) evidence of positive selection and (ii) evidence of recombination were tested using chi-square tests (or Fisher's exact tests where appropriate). Mann-Whitney U-tests (Wilcoxon tests) were used to determine whether selected continuous variables (i.e., gene length, codon bias, and nucleotide diversity) differed between a given role categories and all other role categories. In addition, Mann-Whitney U-tests were used to test whether the *p*-values of the positive selection tests for genes in a given role categories. All Mann-Whitney U-tests were performed as one-sided tests. Bonferroni corrections for all tests were performed based on the number of tests performed. All tests were performed in SAS. The cut off value for significance was set at 0.05; actual Bonferroni corrected *p*-values are reported unless otherwise stated. Actual *p*-values are reported unless *p*-values were <0.001 or <0.0001.

Verification of positive selection and recombination patterns in selected genes in a larger *Salmonella* set .For four genes that were identified as being under positive selection in the initial genome wide analyses, gene sequences were determined for an additional 42 *Salmonella* isolates to verify positive selection and recombination patterns in these genes. The 42 *Salmonella* isolates were selected to reflect a diversity of human and animal associated serotypes; specifically, the isolates were selected to represent the 15 most common human and animal associated serotypes in the US [as detailed in the 2003 *Salmonella* Annual Report from the US Centers of Disease Control and Prevention (10)] as well as two additional *Salmonella* Typhi isolates. Human and cattle isolates representing the common human and animal associated serotypes were selected from the strain collection available at Cornell. For

common serotypes (e.g., Typhimurium) more isolates were included in this set as compared to less common serotypes (e.g., Dublin) (see Supplemental Table S1 for a listing of all isolates used). Multiple isolates with the same serotype were selected to represent the most common distinct Pulse Field Gel Electrophoresis (PFGE) and Multilocus sequence typing (MLST) types within a given serotype.

The four genes that were used to confirm positive selection and recombination patterns identified in the full genome analyses included *folK-2, sseC, purE*, and STM3258 (Table 3.2). PCR conditions and primers are described in Supplemental Table S2. PCR products were purified using Exonuclease I (USB) and shrimp alkaline phosphatase (USB). Purified PCR products were sequenced using the Applied Biosystems Automated 3730 DNA Analyzer at the Cornell University Life Sciences Core Laboratories Center. Big Dye Terminator chemistry and AmpliTaq-FS DNA Polymerase were used for sequencing. Alignments for positive selection and recombination analyses, which were performed as detailed above, were constructed using the gene sequences for the five genomes analyzed and the gene sequences for the additional isolates sequenced.

RESULTS

Initial identification and characterization of orthologous genes present in the five *Salmonella* genomes representing serotypes Typhi, Typhimurium, Choleraesuis, and Paratyphi A. Using OrthoMCL, a total of 3323 orthologous genes present in all 5 *Salmonella* genomes were identified. Since seven orthologous genes had low quality alignments, we excluded these genes and used 3316 orthologous genes for the analyses described below. Genes that were not found in all of the five strains were excluded from our analyses. The 3316 core genes represented 69, 81, 73 and 75 %, respectively, of the Salmonella Choleraesuis, Paratyphi A, Typhimurium, and Typhi genes annotated in the genomes analyzed.

	D ()	JCVI Role Category	Gene length	Genome an	nalyses results for	Sequence analyses results (based on 47 sequences) for ^c	
Gene Name	Protein name		(bp)	Positive Selection ^a	Recombi- nation ^b	Positive Selection ^d	Recombi- nation ^e
folK-2	2-amino-4-hydroxy-6- hydroxymethyldihydro pteridine pyrophosphokinase	Biosynthesis of cofactors, prosthetic groups, and carriers	480	TO, Ty#	GEN, MAX	Ty#	GEN, MAX, NSS
STM3258	Putative PTS system IIA component	Transport and binding proteins	465	Ty#	-	Ty#	-
sseC	Probable pathogenicity island effector protein	Unclassified	1455	Ch#	GEN, MAX	TO, Ch#	GEN, MAX, NSS, PHI
purE	Phosphoribosylamino- imidazole carboxylase, catalytic subunit	Purines, pyrimidines, nucleosides, and nucleotides	510	Ty#	-	Ty#	NSS
^a positive selection tests that were significant (q<0.2) are listed; TO = overall test; Ch#= Choleraesuis branch specific test; Ty# =							

Table 3. 2. Genes used to confirm positive selection and recombination patterns identified in genome wide analyses

^apositive selection tests that were significant (q<0.2) are listed; TO = overall test; Ch#= Choleraesuis branch specific test; Ty# = Typhi branch specific test

^brecombination tests that were significant (q<0.1) are listed; GEN = GENECONV; MAX= Maximum χ^2 ; PHI= pairwise homoplasy; NSS= neighbor similarity

^cResults of positive selection and recombination analyses were based on gene sequence data for the 5 genomes and 42 additional *Salmonella* isolates (see Supp. Table 1); for *flolK-2* and *sseC* sequences were only obtained for 36 additional isolates; for STM3258 sequences were only obtained for 37 additional isolates.

^dpositive selection tests that were significant (P < 0.05)

^erecombination tests that were significant (P < 0.05)

Interestingly, we identified one 2-gene cluster (i.e., STM0947 and STM0948), which was repeated 12 times in the *Salmonella* Choleraesuis genome, present once in Typhimurium genome and absent in the Typhi and Paratyphi A genomes. These two genes encode a putative integrase (STM0947) and a putative cytoplasmic protein (STM0948), which differ by 4 and 1 non-synonymous substitution(s), respectively, between Choleraesuis and Typhimurium LT2. In addition, we identified one other gene (NT03ST2087, encoding a putative Tn10 transposase), which was repeated 7 times in the *Salmonella* Choleraesuis and found once in the *Salmonella* Typhi CT18, while not present in the other genomes analyzed. *Salmonella* Choleraesuis thus appears to contain at least two multicopy mobile genetic elements.

Genes categorized in the JCVI role categories "Hypothetical Proteins", "Protein synthesis", "Unclassified" and "Unknown function" showed a tendency to have shorter alignments (P<0.001, P=0.027, P=0.002, P=0.017, respectively; one sided U-test), while genes in the JCVI role categories "Amino Acid Biosynthesis", "DNA Metabolism", "Energy Metabolism", and "Transport and Binding Proteins" showed a tendency to have longer alignments (P<0.001, P=0.001, P<0.001, and P<0.001, respectively; one sided U-test).

Genes in the JCVI role categories "Cellular envelope", "Hypothetical proteins", and "Unclassified" showed a tendency to have more non-synonymous substitutions (P=0.009, P<0.001, and P<0.001 , respectively, one sided U-test). Genes in the JCVI role categories "Biosynthesis of cofactors, prosthetic groups, and carriers", "Energy Metabolism", and "Transport and Binding Proteins" showed a tendency to have more synonymous substitutions (P<0.001, P<0.001, and P=0.001, respectively, one sided U-test). Genes in the JCVI role categories "Metabolism", and "Transport and Binding Proteins" showed a tendency to have more synonymous substitutions (P<0.001, P<0.001, and P=0.001, respectively, one sided U-test). Genes in the JCVI role categories "Amino acid biosynthesis", "Energy metabolism", "Protein Synthesis", "Purines, pyrimidines, nucleosides, and nucleotides", "Transcription", and "Transport and binding proteins"

showed a tendency to have higher codon bias (i.e., low chip values $[N_C]$; *P*=0.006, *P*<0.001, *P*<0.001, *P*<0.001, *P*=0.033, and *P*=0.010, respectively; one sided U-test).

Approximately 8% of core genes show significant evidence for

recombination. Among the 3316 orthologous genes, 233 genes showed no substitutions; these genes thus were not analyzed for evidence of recombination. While the remaining 3083 genes were analyzed for recombination using GENECONV, only 2849 genes were analyzed using Max χ^2 , NSS and Phi (467 orthologs have ≤ 1 informative site and thus could not be analyzed with these programs in PhiPack).

Overall, 270 genes (8.14 % of all 3,316 core genes) showed evidence for recombination in at least one of the four tests used (FDR < 10%). A total of 192, 155, 69, and 20 orthologs showed evidence of recombination using GENECONV, Max χ^2 , NSS and Phi, respectively. Interestingly, only 10 genes showed evidence for recombination with all 4 approaches (Table 3.3). Genes with higher numbers of informative sites (*P* <0.0001; one sided U-test), longer alignments (*P*-value <0.0001; one sided U-test), higher codon bias (*P*-value <0.0001; one sided U-test), and higher nucleotide diversity (*p*-value <0.0001; one sided U-test) were more likely to have evidence for recombination.

An overall chi-square test showed that genes with evidence of recombination were not randomly distributed among the 20 JCVI role categories (P<0.001; Fisher's exact test with Monte Carlo simulation). Subsequent individual chi-square tests, determining whether genes with evidence for recombination were associated with individual role categories, showed that genes with evidence of recombination were

Gene annotation no. for <i>S</i> . Typhimurium LT2	Protein name	Gene name	JCVI Role Category
STM0067	Carbamoyl- phosphate synthase, large subunit	carB	Purines, pyrimidines, nucleosides, and nucleotides
STM0224	Surface antigen	b0177	Unknown function
STM0540	Conserved hypothetical protein	-	Hypothetical proteins
STM0661	Inosine-uridine preferring nucleoside hydrolase	iunH	Purines, pyrimidines, nucleosides, and nucleotides
STM2287	Conserved hypothetical protein	-	Hypothetical proteins
STM2660	ATP-dependent protease, Hsp 100, part of novel	clpB-1	Protein fate
STM2947	Sulfite reductase (nADPh) hemoprotein beta- component	-	Central intermediary metabolism
STM2948	Sulfite reductase (nADPh) flavoprotein alpha- component	-	Central intermediary metabolism
STM3174	DNA topoisomerase IV, A subunit	parC	DNA metabolism
STM4066	Fructokinase	cscK	Energy metabolism

Table 3. 3. Genes that show evidence of recombination in all four tests^a

^aThese genes showed evidence for recombination (Q<0.1) in four tests (i.e., GENECONV, Maximum χ^2 (MAX), pairwise homoplasy index (PHI), and neighbor similarity score (NSS)

significantly overrepresented in the role categories "Biosynthesis of cofactors, prosthetic groups, and carriers", "Energy metabolism", "Hypothetical proteins" and "Purines, pyrimidines, nucleosides, and nucleotides" (uncorrected P= 0.0035, P= 0.0037, P= 0.0034, and P= 0.0493, respectively, chi square test) (Figure 3.2). However, after corrections for multiple comparisons, the associations are not significant (P= 0.063, P= 0.066, P= 0.061, and P= 0.887, respectively, Bonferroni correction).

Initial analysis revealed a total of 81 Salmonella genes showing evidence for positive selection. Among the 3316 orthologous genes identified, 328 genes did not contain any non-synonymous substitutions. We used the gene specific phylogenetic tree for each gene in our analysis. A total of 21 genes showed evidence for positive selection (FDR $\leq 20\%$) in the overall test (TO) (Supplementary Table 3). Since the two Typhi isolates formed a single branch in only 1261 genes, we only used these 1261 genes to test for positive selection in the Typhi branch. A total of 23, 21, 13, and 14 genes, respectively, showed evidence of positive selection (FDR <20%), using the branch-site test, in the Choleraesuis, Typhi, Typhimurium, and Paratyphi A branch (Supplementary Table 3). Overall, 81 genes showed evidence of positive selection in at least one test. Among these 81 genes with evidence of positive selection, 32 genes also showed evidence of recombination with at least one of the four recombination tests used (Table 3.6) (Supplementary Table 3). Statistical analyses showed that genes with evidence of recombination were more likely to be under positive selection (P-value <0.0001; Chi- square test). While this may indicate that positive selection contributes to fixation of new allelic variants that were generated by recombination (48), it may also reflect that the positive selection tests used were affected by intragenic recombination (4). Thus, positive selection analyses were repeated without 270 genes with evidence of recombination. To test for positive selection, 3046 genes with no recombination evidence were used in the overall (TO)

Figure 3. 2. Proportions of genes with evidence of recombination among individual JCVI role categories. Genes that showed evidence for recombination (q<0.1) in at least one of the four tests were included. Bars indicate estimated standard error for the proportion of genes with evidence of recombination in each role category; standard errors were calculated as square root of p (1-p)/ n, where p is the frequency of genes with evidence of positive selection in a given role category, and n is the total number of genes in a given role category. Among the 20 JCVI role categories, two did not include genes with evidence of recombination (i.e., "Signal Transduction" and "Viral functions") and are thus not included in this figure.

JCVI Role Categories

test and the branch tests of Choleraesuis, Typhimurium and Paratyphi, while 1108 genes with no evidence of recombination were used in Typhi branch test. All data in the subsequent sections represent the data for genes with no evidence recombination, unless otherwise stated.

A total of 41 Salmonella genes with no evidence of recombination showed evidence of positive selection. We found 5 genes with evidence for positive selection (FDR <20%) in the overall test (TO) (Table 3.4). A total of 8, 16, 7, and 5 genes, respectively, showed evidence of positive selection (FDR <20%), using the branchsite test, in the Choleraesuis, Typhi, Typhimurium, and Paratyphi A branches (Table 3.4). None of these genes showed of evidence of positive selection in more than 1 test. No association between the low effective number of codons used by a gene (Nc) and positively selected genes was observed (P=0.4276; one-sided U-test) suggesting that results of positive selection were not biased by constrains on codon usage, which could result in a low synonymous substitution rate in these genes. Moreover, no association between low dS (the number of synonymous substitutions divided by the number of synonymous sites) and positively selected genes was observed (p-value =0.999; one-sided, U-test), supporting that the results were not biased by a low synonymous substitution rate .In order to initially determine whether specific JCVI role categories are more likely to include genes under positive selection, we used a contingency table to test for associations between the 20 JCVI role categories and the 41 genes under positive selection (Figure 3.3). This test did not find any significant association between JCVI role categories and number of genes with evidence of positive selection. A significant association was observed between JCVI role categories "Purines, pyrimidines, nucleosides, and nucleotides" and "Cell

Gene annotation no. for <i>S</i> . Typhimurium LT2 ^a	Gene name	Protein name ^b	Align- ment length (bp)	JCVI role category ^c	Positive selection ^d	BEB (P>95%) ^e
STM1450	-	Pyridoxal kinase	666	Biosynthesis of cofactors, prosthetic groups, and carriers	Ty# (0.0147)	-
STM3057	ubiH	2-octaprenyl-6- methoxyphenol hydroxylase, UbiH	1176	Biosynthesis of cofactors, prosthetic groups, and carriers	Tym# (0.1149)	-
STM1441	-	mMembrane protein, putative	1995	Cell Envelope	Ch# (0.0043)	-
STM2267	ompC	Outer membrane protein C precursor	1134	Cell Envelope	Ch# (0.0986)	274
STM0743	-	Putative lipoprotein	273	Cell Envelope	Ch# (0.1830)	-
STM2801	ygaC	Conserved hypothetical protein	300	Cell envelope	Pty# (0.020)	-
STM0301	safC	Outer membrane usher, Salmonella atypical fimbria	2508	Cell envelope	TO (0.0104)	85, 111, 405, 692
STM4106	katG	Catalase hydroperoxidase HPI(I)	2178	Cellular processes	TO (0.0035)	-
STM1425	ydhE	Hypothetical integral membrane protein	1371	Cellular processes	Tym# (0.0145)	-
STM0603	araT	Aminotransferase, class I	1158	Central intermediary metabolism	Ty# (0.1976)	-

Table 3. 4. Genes with evidence for positive selection

ble 3. 4. (Continu	ued)					
STM0395	-	Exonuclease SbcC, putative	3096	DNA metabolism	Ty# (0.1041)	_
STM4023	-	Putative 3- hydroxyisobutyrate dehydrogenase	840	Energy metabolism	Ch# (0.0138)	-
STM3680	aldB	Aldehyde dehydrogenase B	1536	Energy metabolism	Pty# (0.020)	-
STM0698	pgm	Phosphoglucomutase, alpha- D-glucose phosphate- specific	1638	Energy metabolism	Ty# (0.0157)	-
STM3515	malT	MalT regulatory protein	2703	Energy metabolism	Ty# (0.0198)	801
STM4187	iclR	Acetate operon repressor	819	Energy metabolism	Ty# (0.0693)	-
STM0401	malZ	Glycosyl hydrolase, family 13	1815	Energy metabolism	Tym# (0.1005)	-
STM3329	-	Conserved hypothetical protein TIGR01212	927	Hypothetical proteins	Ch# (0.1471)	-
STM1854	-	Hypothetical protein	162	Hypothetical proteins	Pty# (0.1973)	32, 40, 44, 45
STM0861	-	Conserved hypothetical protein	471	Hypothetical proteins	Tym# (0.1149)	-
STM1515	-	Conserved hypothetical protein TIGR00156 domain protein	384	Hypothetical proteins	Ty# (0.0167)	-
STM4015	-	Hypothetical protein	846	Hypothetical proteins	Ty# (0.0693)	-
STM4258	-	Conserved hypothetical protein	1386	Hypothetical proteins	Ty# (0.0884)	-
STM1532	-	Hypothetical protein	678	Hypothetical proteins	Ty# (0.1614)	-
STM1280	-	Conserved hypothetical protein	396	Hypothetical proteins	Tym# (0.0145)	-

Table 3. 4. (Con	tinued)					
STM3463	-	Conserved hypothetical	201	Hypothetical	Tym#	_
		protein		proteins	(0.1005)	
STM4522	-	Hypothetical protein	699	Hypothetical	Tym#	-
				proteins	(0.1649)	
STM3655	glyS	Glycyl-tRNA synthetase, beta subunit	2067	Protein synthesis	Ty# (0.0393)	313
STM0534	purE	Phosphoribosylaminoimidaz ole carboxylase, catalytic subunit	507	Purines, pyrimidines, nucleosides, and nucleotides	Ty# (0.0194)	-
STM2806	nrdI	NrdI protein	408	Purines, pyrimidines, nucleosides, and nucleotides	Ty# (0.0693)	-
STM2107	wcaH	GDP-mannose mannosyl hydrolase	435	Purines, pyrimidines, nucleosides, and nucleotides	Tym# (0.1081)	-
STM3262	glpR	Transcriptional regulator, DeoR family	771	Regulatory functions	Tym# (0.1843)	-
STM1679	oppA	Oligopeptide ÁBC transporter, periplasmic oligopeptide-binding protein	1605	Transport and binding proteins	Ch# (0.0121)	-
STM3685	-	PTS system, mannitol- specific IIC component subfamily, putative	1914	Transport and binding proteins	TO (0.0035)	-
STM3258	-	PTS system IIA component, putative	462	Transport and binding proteins	Ty# (0.0157)	124, 139, 143, 144, 147
STM3626	oppF	Oligopeptide ABC transporter, ATP-binding protein	1011	Transport and binding proteins	Ty# (0.0157)	-

Table 3. 4. (Con	tinued)					
STM3592	-	Proton/peptide symporter	1470	Unclassified	TO (0.0104)	-
		family protein				
STM1088	pipB	Pathogenicity island encoded	873	Unclassified	TO (0.0688)	173
		protein: SPI5, PipB				
STM0248	-	Histidinol phosphatase-	573	Unknown function	Ch#	175, 184, 185,
		related protein			(<0.0001)	191
STM3565	-	Acetyltransferase, GNAT	381	Unknown function	Pty# (0.0391)	-
		family				
STM3955	rarD	RarD protein	879	Unknown function	Ty# (0.0194)	-
STM2678	b2611	Putative membrane protein,	750	Viral functions	Ch# (0.1411)	-
		CorE				
STM4242	-	99% identical to TraF of	1284	Viral functions	Pty# (0.0329)	-
		plasmid R64			• • •	

^aRole categories were assigned based on annotations for *S*. Typhi CT18; JCVI locus names for Typhi CT18 for these genes are listed in Supp. Table S3

^bProtein designations were taken from the Typhi CT18 annotation; where limited annotation information was available, additional information was extracted from JCVI primary annotations and Typhimurium LT2 and Paratyphi annotations ^csome genes are assigned multiple JCVI role categories; all role categories for a given gene are listed here

^dtests that were significant for positive selection (FDR<20 %) are shown; TO = overall test; Ch#= Choleraesuis branch specific test; Pty#= Paratyphi A branch specific test ; Ty# = Typhi branch specific test; Tym#= Typhimurium branch specific test; numbers in brackets indicate q-values

^eaa sites identified by Bayes Empirical Bayes (BEB) as having probability > 95% of being under positive selection are shown; aa sites are based on site location in the alignment (alignments for genes under positive selection are provided as Supp. Material S4)

Envelope" and genes with evidence of positive selection in branch analyses for S. Typhi and S. Choleraesuis (uncorrected P = 0.034 and P = 0.023, respectively, Fisher's exact test). However, after corrections for multiple comparisons, these associations are not significant (Bonferroni corrected P=0.301 and P=0.114, respectively; Fisher's exact test) (Figure.3. 3). Because of the low number of genes under positive selection, it was not possible to assess the association between positive selection and most role categories. We thus assessed whether the distribution of the *p*-values for each test deviates from the random distribution for any of the role categories using the nonparametric U-test. The JCVI role category "Hypothetical proteins" showed significant trends of having genes with low *p*-values in the Choleraesuis, Typhimurium and Paratyphi A branch specific tests for positive selection (Bonferroni corrected P=0.042, P=0.034 and P<0.001, respectively; one sided U-test). In addition, this role category had also significant tendencies to have lower *p*-values in the overall (TO) and Typhi branch tests (uncorrected P=0.010 and P=0.008, respectively, one sided U-test). However, after Bonferroni correction for multiple comparisons, these associations are not significant (P=0.124 and P=0.068, respectively; one sided U-test). In addition, the JCVI role categories "Unclassified" and "Protein synthesis" showed the significant trends of having genes with low *p*-values in Choleraesuis and Typhimurium branch tests for positive selection, respectively (Bonferroni corrected P=0.002 and P=0.013, respectively; one sided U-test).

Among the 41 genes with evidence for positive selection, two were located in *Salmonella* pathogenicity islands 1 through 5 (i.e., *pipB*, STM1088 (*siiB*); see Table

3.5). Overall 78 of the orthologs analyzed were located in five Salmonella

pathogenicity islands (40), thus, genes in the pathogenicity islands were not significantly overrepresented (P= 0.283; Fisher's exact test) among the genes under positive selection. In addition, three SPI-1 genes (i.e., *spaM*, *iagB*, and *sipD*), and one

SPIs ^a	Locations in	No. of orthologous	No. of genes under	No. genes with evidence
	Typhimurium LT2 ^b	genes found in SPI	positive selection	of recombination
1	STM2865-2914	33	0	1 (<i>stpA</i>)
2	STM1379-1422	30	0	3 (<i>sseC</i> , <i>sseD</i> , STM1379)
3	STM3752-3764	5	0	0
	STM3766-3775			
4	STM4257-4262	6	1 (<i>siiB</i>)	0
5	STM1087-1094	4	1 (pipB)	0

Table 3. 5. Salmonella pathogenicity island (SPI) genes with evidence of positive selection and recombination

^aThis table only lists genes in the five common *Salmonella* Pathogenicity islands (i.e., SPIs 1 to 5) ^bgenes in a given island are reported as described by McClelland et al. 2001

Test for positive selection ^a	No. of genes under positive selection with no	No. of selection rec	genes un that sho ombinati	No. of genes under positive selection		
	evidence of recombination	GENE- CONV	\max_{χ^2}	PHI	NSS	with evidence of recombination ^c
ТО	5	12	7	3	4	21
Ch#	8	11	10	1	3	23
Ty#	16	4	3	0	3	21
Tym#	7	4	4	0	1	13
Pty#	5	8	7	1	2	14

Table 3. 6. Evidence of recombination among genes with evidence for positive selection

^aTO = overall test; Ch#= Choleraesuis branch specific test; Ty# = Typhi branch specific test; Tym#= Typhimurium branch specific test; Pty#= Paratyphi A branch specific test ^bBased on our preliminary analysis, among 3316 orthologous genes, 81 genes showed evidence of positive selection in at least one test. Among 81 genes, 32 genes also showed evidence of recombination with at least one of the four recombination tests used in our study. Statistical analysis showed that genes evidence of recombination were more likely to be under positive selection (P<0.0001; chi-square test). Therefore, we excluded 270 genes with evidence of recombination from our positive selection analysis.

^cThis column lists the number of genes with evidence for positive selection in a given test (e.g., TO); since some genes showed evidence of recombination in > 1 recombination test, the total number of genes in this column is typically lower than the sum of the numbers in a given row. While a total of 81 genes showed evidence of positive selection, the sum of the numbers in this column is > 81 as 11 genes showed evidence of positive selection in two tests.

SPI-2 gene (*ssaI*) showed *P*-values <0.05 in the overall positive selection tests (*P*= 0.049, 0.017, 0.003 and 0.047, respectively), but failed to meet the FDR cutoff (<0.2) (*Q*-values=1, 1, 0.925, and 1, respectively). Similarly, one SPI-2 gene (*sseF*) showed very low *P*-value (*P*= 0.001) in the Choleraesuis branch test, but failed to meet the FDR cutoff (<0.2) (*Q*-value= 0.332).

ompC showed evidence for positive selection in our study (Table 3.4) as well as in a previous study of *Shigella* and *E. coli* (52). Our analyses showed that aa residues 228 and 274 show evidence for positive selection, while aa 163, 202, and 203 showed evidence for positive selection in *E. coli* and *Shigella* (52). *Salmonella* OmpC aa site 228, which was found to be under positive selection here, is located in a region that is absent from the *E. coli* and present in *Shigella* OmpC, while *Salmonella* OmpC aa site 274 is located in a region that is absent from the *E. coli* and *Shigella* OmpC.

Verification of positive selection and recombination patterns, identified by genome wide analyses, for four genes among 42 *Salmonella* **isolates.** In order to confirm positive selection and recombination patterns identified by the full genome analyses, we sequenced and analyzed four genes that showed evidence for positive selection, including two genes that showed evidence for positive selection and recombination (i.e., *folK-2, sseC*) and two genes that only showed evidence for positive selection (i.e., STM3258, *purE*). *folK-2*, which encodes an enzyme involved in the synthesis of folic acid, could not be PCR amplified in 6 Salmonella isolates, representing serotypes Montevideo, Oranienburg, Javiana, Urbana, Muenster. Analyses of 41 *folK-2* sequences (5 sequences from the genomes and 36 newly determined sequences) confirmed that this gene is under positive selection in the *Salmonella* Typhi branch and shows evidence for recombination, but did not find evidence for positive selection in the overall analysis. The STM3258 gene, which encodes a putative PTS component, could not be PCR amplified in one *Salmonella*

Typhimurium and three serotype 4,5,12:i:- isolates. Results from the analyses of the resulting 43 STM3258 gene sequences was consistent with the genome analyses data and confirmed that this gene shows no evidence for recombination, but is under positive selection in the *Salmonella* Typhi branch. *sseC*, which is located in the *Salmonella* pathogenicity island 2, could not be PCR amplified in 6 *Salmonella* isolates, representing serotypes Agona (n=2), Havana, Kentucky, and Mbandaka (n=2). Analyses of the *sseC* sequences confirmed positive selection in the Choleraesuis branch, but did not find evidence for recombination (even though the genome wide analyses found evidence for recombination using GENECONV; Table 3.2). *purE*, which encodes an enzyme involved in the synthesis of purine ribonucleotide, was successfully amplified and sequenced in all 42 isolates; analyses of the *salmonella* Typhi branch. Overall, analyses of additional isolates thus confirmed branch specific positive selection for all four genes.

DISCUSSION

In this study, we used 5 *Salmonella* genomes representing host restricted (i.e., Typhi and Paratyphi A), host adapted (i.e., Choleraesuis), and unrestricted (i.e., Typhimurium) serotypes to study the evolution of core genes in different *Salmonella* serotypes. A total of 3,316 orthologs among these 5 *Salmonella* genomes were used to (i) identify genes under positive selection and (ii) identify genes with evidence of recombination. Positive selection and recombination patterns for four genes of interest were confirmed in a larger set of isolates representing 23 different serotypes. Overall, our data show that (i) less than 10% of *Salmonella* genes in the core genome show evidence for homologous recombination, (ii) a number of core *Salmonella* genes are under positive selection, including genes that appear to contribute to virulence, and (ii)

cell surface protein, *ompC*, that is targeted by positive selection in both *Salmonella* and *E. coli* (52), may contribute to multi drug resistance in *Salmonella*.

Less than 10% of *Salmonella* genes show evidence for intragenic recombination. Since the first bacterial genome was sequenced in 1995, comparative tools have showed that horizontal gene transfer is the major process for the evolution of prokaryotes (31, 35, 50). Horizontal gene transfer has also been proposed to have played an important role in the evolution of the Salmonella genome. Salmonella Typhimurium LT2 seems to have acquired a number of novel genomic regions after the divergence from *E. coli* around 100 millions years ago (32) and it has been estimated that 25 % of the Salmonella Typhimurium genome may have been introduced by horizontal gene transfer (Porwollik and McClelland 2003). Groups of genes introduced by horizontal gene transfer include prophages and Salmonella pathogenicity islands (SPI) (54). While the role of horizontal gene transfer in introducing novel genes into the Salmonella genome has thus been well established, our analyses show that horizontal transfer (and recombination) of homologous genes also plays an important role in the diversification of Salmonella; we found that 270 of the 3316 genes characterized (8.1 %) showed evidence for intragenic recombination. This relatively low level of recombination is consistent with the observation that Salmonella is highly clonal (5, 17). By comparison, analysis of four E. coli and two Shigella found 236 genes with evidence for intragenic recombination, representing approximately 6.3 % of genes analyzed (52). Chen et al. (2006) reported that 12.8% of core genome genes, found in seven E. coli genomes, showed evidence for recombination. A study of 410 genes present in six E. coli and six Salmonella enterica genomes reported that 23% of these genes showed evidence of recombination in Salmonella; this estimate may be higher than the one reported here as the 410 genes evaluated do not represent a random sample of the Salmonella core genome (12).

Interestingly, even novel genes that were initially introduced into the *Salmonella* genome through horizontal gene transfer and non-homologous recombination, showed evidence for further subsequent diversification through homologous recombination (e.g., one and two genes in SPI-1 and 2, respectively, showed evidence for intergenic recombination). A recent analysis by Didelot et al. (2007) also suggested that convergence of *Salmonella* Typhi and Paratyphi A, two human host-restricted serotypes, through >100 recombination events involving both transfer of novel genes as well as transfer of homologous genes, further supporting the importance of *Salmonella* (18).

A number of core Salmonella genes are under positive selection, including genes that appear to contribute to virulence and systemic infection. A total of 1.2 % of genes found in all five Salmonella genomes (i.e., 41 genes) showed evidence for positive selection and no evidence for recombination. While 5 genes showed evidence for positive selection in the overall analyses, 36 genes showed evidence for positive selection only in specific branches, indicating considerable branch specific positive selection in the species Salmonella enterica. Previously, Petersen et al. (2007) reported that, among 3,505 E. coli and Shigella genes that showed no evidence for recombination, a total of 23 genes (0.66%) showed evidence for positive selection. Among Gram-positive pathogens, Orsi et al. (2008) reported that 36 L. monocytogenes and L. innocua genes (1.6 %) showed evidence of positive selection (among a total of 2267 genes analyzed), while Lefebure and Stanhope (2007) reported that 11 to 34% of the genes in the *Streptococcus* core genome showed evidence for positive selection, although this study did not control for multiple comparisons and thus may have somewhat overestimated the number of genes under positive selection. Overall, these data suggest that typically few genes in a given bacterial species show evidence for positive selection.

Interestingly, three *Salmonella* genes with evidence for positive selection were located in Salmonella pathogenicity islands (SPIs). SPIs are chromosomal regions that contain genes contributing to a particular virulence phenotype (22, 38, 72). These regions appear to have been acquired by Salmonella after the divergence of E. coli and Salmonella (54). So far, five common SPIs (i.e., SPI-1 through SPI-5), found among the majority of Salmonella enterica strains, as well as a number of additional less common SPIs have been reported. A gene with evidence for positive selection (i.e., STM4258; *siiB*) is located in SPI-4 and encodes a probable membrane protein (putative methyl-accepting chemotaxis protein). Morgan et al. (2004) reported that the SPI-4 genes, *siiD*, *siiE*, and *siiF* play a role in *Salmonella* Typhimurium intestinal colonization of calves (44). It also has been proposed that SPI-1 and SPI-4 play complementary roles in the infection of host epithelial cells (37). Kiss et al. (28) specifically showed that a Salmonella Typhimurium siiB mutant shows reduced secretion of SiiE, as compared to the wildtype, suggesting a possible involvement of *siiB* in calf virulence (as an *siiE* mutant showed reduced colonization in a calf model [(44)]). *pipB* (STM1088), located in SPI-5, also showed evidence for positive selection. SPI-5 encodes T3SS-1 and T3SS-2 effector proteins (74). PipB localizes to the Salmonella Containing Vacuole (SCV) in mammalian host cells (30). In addition, Wood et al. (1998) reported that a *pipB* null mutant showed reduced intestinal secretory and inflammatory responses in ligated bovine ileal loops, suggesting that this, as well as other genes in SPI-5, may contribute to bovine enteric infections (74). PipB also appears to be required for colonization of the cecum, by Salmonella Typhimurium, in chickens (43). safC (STM0301), a gene located in SPI-6 (51), a region called Salmonella enterica centrisome 7 genomic island (SCI) in Salmonella Typhimurium (20), was also found to be under positive selection. *safC* encodes an outer membrane usher protein for Salmonella atypical fimbriae (20). While a Salmonella Typhimurium strain with a deletion of SCI (SPI-6) showed reduced ability

to invade Hep2 cells (20), we are not aware of any studies characterizing virulence of a *safC* null mutant. Overall, our findings are consistent with a previous study (19) that reported that a number of genes located in *Salmonella* pathogenicity islands show evidence for differential evolution in different *Salmonella* serotypes.

Interestingly, two genes (i.e., *sseC* and *sseF*), which are located in SPI-2, (16) showed evidence for positive selection in the Choleraesuis branch in our initial analysis. In our second analyses (i.e. analysis excluding genes with recombination), sseF was removed, since sseF showed evidence of recombination and sseC could not meet the cut off Q-value for 20% FDR. sseC showed also evidence for positive selection and recombination in the follow-up analysis using a larger number of Salmonella serotypes. SPI-2 encodes a type III secretion system (T3SS), which interferes with phagosome maturation and facilitates formation of a Salmonellacontaining vacuole (SCV) (16). Genes in SPI-2 encode a number of effector proteins (e.g., *sseC* and *sseF*), which are required for bacterial replication in macrophages (38). sseC, encoding the translocon component SseC, has also been shown to be required for systemic Salmonella Typhimurium infection in mice. Localization of SseC to bacterial membrane is essential for function of T3SS (29). sseF encodes an effector protein that is required for dynein recruitment of intercellular Salmonella and a sseF null mutant showed reduced intracellular proliferation and reduced formation of intracellular Salmonella microcolonies (1). sseF and sseC also have previously been shown to contain distinct clusters of polymorphic sites that might be unique to the human adapted serotypes Typhi and Paratyphi (68). Moreover, the two genes in SPI-2 identified here as showing evidence for lineage specific evolution (i.e., *sseC*, *sseF*), were also identified in a previous study (19) as showing evidence for differential evolution.

Overall, three genes with no recombination evidence in the JCVI role category "Purine, pyrimidine, nucleotide and nucleotide biosynthesis" (i.e., *wcaH, purE* and

nrdI) showed evidence for positive selection. *wcaH*, which encodes a GDP-mannose mannosyl hydrolase, is under positive selection in the Typhimurium branch, while *purE* and *nrdI* were found to be under positive selection in the Typhi branch. *purE* encodes a phosphoribosylaminoimidazole carboxylase, while *nrdI*, which is located in an operon with genes that encode a Class 1b ribonucleotide reductase, encodes a small flavoprotein with unknown function in *Streptococcus pyogenes* (56).

Genes in the JCVI role category "Purine, pyrimidine, nucleotide and nucleotide biosynthesis" also showed a significant trend of having genes with evidence of positive selection in the Typhi branch (uncorrected P=0.034, Fisher's exact test). However, after corrections for multiple comparisons, the association is not significant (Bonferroni corrected P=0.309, Fisher's exact test). Positive selection for purE in the Salmonella Typhi branch was also confirmed in our analyses of 22 human and 20 animal *Salmonella* isolates, which included two additional Typhi strains. This is a striking finding since Samant et al. (2008) recently reported that the novo nucleotide biosynthesis is essential for bacterial growth in blood (59). As Salmonella Typhi predominantly causes systemic septicemic infections in humans, these findings suggests that adaptive changes in genes encoding purine, pyrimidine, nucleotide and nucleotide biosynthesis functions may have been critical in the evolution of this host restricted human pathogen. Our findings thus further support that development of novel drugs targeting appropriate purine, pyrimidine, nucleotide and nucleotide biosynthesis pathways may represent an opportunity for therapeutic approaches for bacterial pathogens causing septicemic infections (Samant et al. 2008).

Additional genes with evidence for positive selection and possible roles in host infection include *katG* (STM4106), which encodes a catalase. While antioxidant defenses mechanism appear to contribute to virulence in a number of pathogens, *Salmonella katG* null mutations have shown no affect on *Salmonella*'s ability to survive inside phagocytic cells and in a murine model of infections (9). The

importance of adaptive changes in *Salmonella katG* thus remains to be determined. It seems possible that adaptive changes in genes involved in anaerobic growth may contribute to an improved ability of different strains of this gastrointestinal pathogen to survive under anaerobic conditions encountered in the intestinal tract.

We also identified a number of genes with evidence for positive selection that have no apparent link to infection and virulence, including *malZ* (STM0401), *malT* (STM3515) and *mtlA* (STM3685), which encode, respectively, a maltodextrin glucosidase, a transcriptional activator of *mal* genes, and a mannitol specific PTS system component. While it has been proposed that horizontal transfer of genes encoding proteins involved in acquisition and synthesis of nutrients and genes encoding components of metabolic networks is critical as bacteria adapt to specific environments and ecological niches (50), our findings suggest that positive selection of genes encoding metabolic capabilities also contribute to adaptation to new environments.

Cell surface proteins are targeted by positive selection in both *Salmonella* and *E. coli*. While, in our preliminary analysis, we identified three genes encoding outer membrane proteins (*ompC*, *ompS1* and *ompS2*) that showed evidence for positive selection, *ompC* was the only gene that remained significant in our positive selection analysis for genes without evidence of recombination, since both *ompS1* and *ompS2* showed evidence of recombination. *ompC*, a highly expressed *omp* gene, encodes a protein that not only appears to play a role in *Salmonella* virulence (46), but also is a receptor for Gifsy-1 and Gifsy-2 phages (24). While *ompS1* and *ompS2* encode two porins that appear to be expressed at low levels, mutants in these two genes showed attenuated virulence in a mouse model (57). An analysis of 6 *E. coli* and *Shigella* genomes also found that three *omp* genes (i.e., *ompF*,

ompC and ompA) showed evidence of positive selection (52), while Chen et al. (2006) reported that *ompC* and *ompF* were under positive selection in uropathogenic E. coli strains. Furthermore, in Rickettsia spp., genes encoding the outer membrane proteins OmpA and OmpB showed evidence for positive selection (26). Overall, these data strongly suggest that adaptive changes in genes encoding outer membrane proteins critically contribute to the evolution of a variety of bacteria, including pathogenic enterobacteriaciae. In particular, *ompC*, which encodes one of the most abundant *E. coli* proteins (52), appears to be under positive selection in a number of pathogenic enterobacteriaciae. As proposed by Petersen et al. (2007), positive selection in *omp* genes may be an important mechanism that facilitates adaptation of bacterial pathogens allowing them to escape recognition by the host immune system and phages. In addition, mutations in porin genes (e.g., those belonging to OmpC and OmpF groups), as well as changes in Omp expression levels, have been linked to increased resistance to beta-lactam antibiotics (2, 42, 49). For example, under strong antibiotic pressure, bacteria can reduce the influx of antibiotic through downregulation of porin expression or expression of modified porins. Positive selection in porin genes, particularly *ompC* thus may also be associated with selection to increase antibiotic resistance. These findings provide potentially interesting avenues for future mutagenesis studies to elucidate the role of *ompC* polymorphisms in various phenotypes, including -lactam resistance.

CONCLUSIONS

Our analyses clearly show that both homologous recombination and positive selection (particularly lineage specific positive selection) contribute critically to the evolution of the *Salmonella* core genome. Genes with evidence of positive selection

identified here may provide promising targets for future mutational studies aimed at further identifying mechanisms that contribute to *Salmonella* diversification, including its adaptation to specific host species. The relevance of the lineage specific positive selection patterns identified is supported by the convergence of the positive selection patterns identified in the *Salmonella* Typhi lineage (i.e., for genes encoding proteins involved in purine, pyrimidine, nucleotide and nucleotide biosynthesis) and experimental evidence that genes involved in de novo nucleotide biosynthesis are essential for bacterial growth in blood (59).

In conjunction with previous genome wide studies on positive selection in uropathogenic *E. coli* (13), *Shigella* and *E. coli* (52), *Listeria* spp. (48), and *Streptococcus* spp. (34), our data clearly indicate the positive selection and homologous recombination among core genome genes play an important role in the evolution of bacterial pathogens, in addition to the well established importance of gene acquisition and deletion. Positive selection and homologous recombination also appear to contribute to further evolution of novel genes initially acquired by lateral gene transfer, such as selected genes in the *Salmonella* pathogenicity islands. As additional pathogen genomes, including additional *Salmonella* genomes, become available, positive selection and recombination analyses on larger numbers of genomes will further improve our understanding of bacterial pathogens.

Acknowledgements

This work was partially supported by USDA Special Research Grants 2005-34459-15625 and 34459-16952-06 (to MW) and the National Institute of Allergy and Infectious Disease (NIAID) National Institute of Health (NIH), US Department of Health and Human Services under contract N01-AI-30054 (to Lorin Warnick). The computer cluster used in the data analysis is partially funded by Microsoft. The authors thank Paige Smith for help with DNA sequencing.

Supplementary materials

All supplementary materials are available at http://www.foodscience.cornell.edu/cals/foodsci/research/labs/wiedmann/links/soyer2 http://www.foodscience.cornell.edu/cals/foodsci/research/labs/wiedmann/links/soyer2 http://www.foodscience.cornell.edu/cals/foodsci/research/labs/wiedmann/links/soyer2

Supplementary Table 1. *Salmonella* isolates (n=42) used to verify genome wide positive selection and recombination patterns in four selected genes

Supplementary Table 2. PCR conditions and primers for the four genes that were used to verify genome wide positive selection and recombination patterns in an additional 42 *Salmonella* isolates.

Supplementary Table 3. Preliminary results from positive selection and recombination analyses

Supplementary Table 4. Results from positive selection for genes without recombination

Supplementary Material 5. Alignments for gene under positive selection

REFERENCES

- Abrahams, G. L., P. Muller, and M. Hensel. 2006. Functional dissection of SseF, a type III effector protein involved in positioning the salmonellacontaining vacuole. Traffic 7:950-65.
- Alcaine, S. D., L. D. Warnick, and M. Wiedmann. 2007. Antimicrobial resistance in nontyphoidal *Salmonella*. Journal of Food Protection 70:780-790.
- Andrews, T. D., and T. Gojobori. 2004. Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis. Genetics 166:25-32.
- Anisimova, M., R. Nielsen, and Z. Yang. 2003. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229-1236.
- Baker, S., and G. Dougan. 2007. The Genome of Salmonella enterica Serovar Typhi. Clin. Infect. Dis. 45:S29-S33.
- Benjamini, Y., and Y. Hochberg. 1995. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society B 57:289-300.
- Brenner, F. W., R. G. Villar, F. J. Angulo, R. Tauxe, and B. Swaminathan.
 2000. *Salmonella* nomenclature Guest commentary. J. Clin. Microbiol.
 38:2465-2467.
- Bruen, T. C., H. Philippe, and D. Bryant. 2006. A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665-2681.
- Buchmeier, N. A., S. J. Libby, Y. Xu, P. C. Loewen, J. Switala, D. G.
 Guiney, and F. C. Fang. 1995. DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95:1047-53.

- CDC 2003, posting date. Center for Disease Control and Prevention.
 Salmonella surveillance: Annual Summary, 2003. CDC. [Online.]
- Chapman, M. A., J. H. Leebens-Mack, and J. M. Burke. 2008. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol 25:1260-73.
- Charlesworth, J., and A. Eyre-Walker. 2006. The rate of adaptive evolution in enteric bacteria. Mol. Biol. Evol. 23:1348-56.
- Chen, S. L., C. S. Hung, J. Xu, C. S. Reigstad, V. Magrini, A. Sabo, D. Blasiar, T. Bieri, R. R. Meyer, P. Ozersky, J. R. Armstrong, R. S. Fulton, J. P. Latreille, J. Spieth, T. M. Hooton, E. R. Mardis, S. J. Hultgren, and J. I. Gordon. 2006. Identification of genes subject to positive selection in uropathogenic strains of *Escherichia coli*: a comparative genomics approach. Proc. Natl. Acad. Sci. U.S.A. 103:5977-5982.
- Chen, Z. H., and T. D. Schneider. 2006. Comparative analysis of tandem T7like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands. Nucleic Acids Research 34:1133-1147.
- Chiu, C. H., P. Tang, C. S. Chu, S. N. Hu, Q. Y. Bao, J. Yu, Y. Y. Chou, H.
 S. Wang, and Y. S. Lee. 2005. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Research 33:1690-1698.
- Coburn, B., I. Sekirov, and B. B. Finlay. 2007. Type III secretion systems and disease. Clin Microbiol Rev 20:535-49.
- Deng, W., S. R. Liou, G. Plunkett, G. F. Mayhew, D. J. Rose, V. Burland,
 V. Kodoyianni, D. C. Schwartz, and F. R. Blattner. 2003. Comparative genomics of Salmonella enterica serovar typhi strains Ty2 and CT18. Journal of Bacteriology 185:2330-2337.

- Didelot, X., M. Achtman, J. Parkhill, N. R. Thomson, and D. Falush. 2007. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res 17:61-8.
- Eswarappa, S. M., J. Janice, A. G. Nagarajan, S. V. Balasundaram, G. Karnam, N. M. Dixit, and D. Chakravortty. 2008. Differentially evolved genes of Salmonella pathogenicity islands: insights into the mechanism of host specificity in Salmonella. PLoS ONE 3:e3829.
- Folkesson, A., S. Lofdahl, and S. Normark. 2002. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153:537-45.
- Gal-Mor, O., Y. Valdez, and B. B. Finlay. 2006. The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of *Salmonella enterica* serovar Typhimurium in mice. Microb. Infect. 8:2154-2162.
- Hacker, J., and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annual Review of Microbiology 54:641-679.
- 23. **Hall, T. A.** 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis

program for Windows 95/98/NT. . Nucl. Acids. Symp. Ser. 41:95-98.

- Ho, T. D., and J. M. Slauch. 2001. OmpC is the receptor for Gifsy-1 and Gifsy-2 bacteriophages of Salmonella. J Bacteriol 183:1495-8.
- Jakobsen, I. B., and S. Easteal. 1996. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Computer Applications in the Biosciences 12:291-295.

- Jiggins, F. M. 2006. Adaptive evolution and recombination of Rickettsia antigens. J Mol Evol 62:99-110.
- Kidgell, C., U. Reichard, J. Wain, B. Linz, M. Torpdahl, G. Dougan, and M. Achtman. 2002. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2:39-45.
- Kiss, T., E. Morgan, and G. Nagy. 2007. Contribution of SPI-4 genes to the virulence of Salmonella enterica. FEMS Microbiol Lett 275:153-9.
- 29. Klein, J. R., and B. D. Jones. 2001. Salmonella pathogenicity island 2encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun 69:737-43.
- 30. Knodler, L. A., J. Celli, W. D. Hardt, B. A. Vallance, C. Yip, and B. B. Finlay. 2002. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Molecular Microbiology 43:1089-1103.
- 31. Koonin, E. V., and Y. I. Wolf. 2008. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res.
- 32. Koski, L. B., R. A. Morton, and G. B. Golding. 2001. Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18:404-12.
- 33. Langvad, B., M. N. Skov, E. Rattenborg, J. E. Olsen, and D. L. Baggesen. 2006. Transmission routes of *Salmonella* Typhimurium DT 104 between 14 cattle and pig herds in Denmark demonstrated by molecular fingerprinting. J. Appl. Microbiol. **101**:883-890.
- Lefebure, T., and M. J. Stanhope. 2007. Evolution of the core and pangenome of *Streptococcus*: positive selection, recombination, and genome composition. Genome Biol. 8:R71-88.

- Lercher, M. J., and C. Pal. 2008. Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol. Biol. Evol. 25:559-567.
- Li, L., C. J. Stoeckert, Jr., and D. S. Roos. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178-2189.
- Main-Hester, K. L., K. M. Colpitts, G. A. Thomas, F. C. Fang, and S. J. Libby. 2008. Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun 76:1024-35.
- Marcus, S. L., J. H. Brumell, C. G. Pfeifer, and B. B. Finlay. 2000.
 Salmonella pathogenicity islands: big virulence in small packages. Microbes and Infection 2:145-156.
- McClelland, M., K. E. Sanderson, S. W. Clifton, P. Latreille, S. Porwollik, A. Sabo, R. Meyer, T. Bieri, P. Ozersky, M. McLellan, C. R. Harkins, C. Y. Wang, C. Nguyen, A. Berghoff, G. Elliott, S. Kohlberg, C. Strong, F. Y. Du, J. Carter, C. Kremizki, D. Layman, S. Leonard, H. Sun, L. Fulton, W. Nash, T. Miner, P. Minx, K. Delehaunty, C. Fronick, V. Magrini, M. Nhan, W. Warren, L. Florea, J. Spieth, and R. K. Wilson. 2004. Comparison of genome degradation in Paratyphi A and Typhi, humanrestricted serovars of *Salmonella enterica t*hat cause typhoid. Nat. Genet. 36:1268-1274.
- 40. McClelland, M., K. E. Sanderson, J. Spieth, S. W. Clifton, P. Latreille, L. Courtney, S. Porwollik, J. Ali, M. Dante, F. Y. Du, S. F. Hou, D. Layman, S. Leonard, C. Nguyen, K. Scott, A. Holmes, N. Grewal, E. Mulvaney, E. Ryan, H. Sun, L. Florea, W. Miller, T. Stoneking, M. Nhan, R. Waterston,

and R. K. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature **413**:852-856.

- Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro,
 P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607-625.
- Medeiros, A. A., T. F. O'Brien, E. Y. Rosenberg, and H. Nikaido. 1987.
 Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 156:751-7.
- Morgan, E. 2007. Salmonella Pathogenecity Islands, vol. Cromwell Press Trowbridge Wiltshire, Norfolk.
- Morgan, E., J. D. Campbell, S. C. Rowe, J. Bispham, M. P. Stevens, A. J.
 Bowen, P. A. Barrow, D. J. Maskell, and T. S. Wallis. 2004. Identification of host-specific colonization factors of Salmonella enterica serovar
 Typhimurium. Mol.Microbiol. 54:994-1010.
- 45. Nagano, N., S. Oana, Y. Nagano, and Y. Arakawa. 2006. A severe Salmonella enterica serotype Paratyphi B infection in a child related to a pet turtle, *Trachemys scripta elegans*. Jpn. J. Infect. Dis. **59:**132-134.
- 46. **Negm, R. S., and T. G. Pistole.** 1999. The porin OmpC of Salmonella typhimurium mediates adherence to macrophages. Can J Microbiol **45:**658-69.
- Nielsen, R., C. Bustamante, A. G. Clark, S. Glanowski, T. B. Sackton, M. J. Hubisz, A. Fledel-Alon, D. M. Tanenbaum, D. Civello, T. J. White, J. Sninsky, M. D. Adams, and M. Cargill. 2005. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3:e170.
- 48. Orsi, R. H., Q. Sun, and M. Wiedmann. 2008. Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of *Listeria monocytogenes*. BMC Evol. Biol. 8:233-254.

- Pages, J. M., C. E. James, and M. Winterhalter. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6:893-903.
- 50. **Pal, C., B. Papp, and M. J. Lercher.** 2005. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. **37:**1372-1375.
- Parkhill, J., G. Dougan, K. D. James, N. R. Thomson, D. Pickard, J. Wain, C. Churcher, K. L. Mungall, S. D. Bentley, M. T. G. Holden, M. Sebaihia, S. Baker, D. Basham, K. Brooks, T. Chillingworth, P. Connerton, A. Cronin, P. Davis, R. M. Davies, L. Dowd, N. White, J. Farrar, T. Feltwell, N. Hamlin, A. Haque, T. T. Hien, S. Holroyd, K. Jagels, A. Krogh, T. S. Larsen, S. Leather, S. Moule, P. O'Gaora, C. Parry, M. Quail, K. Rutherford, M. Simmonds, J. Skelton, K. Stevens, S. Whitehead, and B. G. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848-852.
- 52. Petersen, L., J. P. Bollback, M. Dimmic, M. Hubisz, and R. Nielsen. 2007.
 Genes under positive selection in *Escherichia coli*. Genome Res. 17:1336-1343.
- Porwollik, S., E. F. Boyd, C. Choy, P. Cheng, L. Florea, E. Proctor, and M. McClelland. 2004. Characterization of *Salmonella enterica* subspecies I genovars by use of microarrays. J. Bacteriol. 186:5883-5898.
- Porwollik, S., and M. McClelland. 2003. Lateral gene transfer in *Salmonella*. Microbes. Infect. 5:977-989.
- Rice, P., I. Longden, and A. Bleasby. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276-7.
- Roca, I., E. Torrents, M. Sahlin, I. Gibert, and B. M. Sjoberg. 2008. NrdI essentiality for class Ib ribonucleotide reduction in Streptococcus pyogenes. J Bacteriol 190:4849-58.
- 57. Rodriguez-Morales, O., M. Fernandez-Mora, I. Hernandez-Lucas, A.
 Vazquez, J. L. Puente, and E. Calva. 2006. Salmonella enterica serovar
 Typhimurium ompS1 and ompS2 mutants are attenuated for virulence in mice.
 Infect Immun 74:1398-402.
- 58. Ross, I. L., and M. W. Heuzenroeder. 2005. Discrimination within phenotypically closely related definitive types of *Salmonella enterica* serovar typhimurium by the multiple amplification of phage locus typing technique. J. Clin. Microbiol. 43:1604-1611.
- Samant, S., H. Lee, M. Ghassemi, J. Chen, J. L. Cook, A. S. Mankin, and
 A. A. Neyfakh. 2008. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 4:e37.
- 60. Sawyer, S. 1989. Statistical tests for detecting gene conversion. Mol.Biol.Evol. 6:526-538.
- Schmidt, H., and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17:14-56.
- Smith, J. M. 1992. Analyzing the Mosaic Structure of Genes. Journal of Molecular Evolution 34:126-129.
- Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 100:9440-9445.
- 64. Suyama, M., D. Torrents, and P. Bork. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609-12.

- 65. **Swaminathan, B., and P. Gerner-Smidt.** 2006. Foodborne disease trends and reports. Foodborne Pathog. Dis. **3:**220-221.
- 66. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
- 67. Thomson, N. R., D. J. Clayton, D. Windhorst, G. Vernikos, S. Davidson,
 C. Churcher, M. A. Quail, M. Stevens, M. A. Jones, M. Watson, A.
 Barron, A. Layton, D. Pickard, R. A. Kingsley, A. Bignell, L. Clark, B.
 Harris, D. Ormond, Z. Abdellah, K. Brooks, I. Cherevach, T.
 Chillingworth, J. Woodward, H. Norberczak, A. Lord, C. Arrowsmith, K.
 Jagels, S. Moule, K. Mungall, M. Sanders, S. Whitehead, J. A.
 Chabalgoity, D. Maskell, T. Humphrey, M. Roberts, P. A. Barrow, G.
 Dougan, and J. Parkhill. 2008. Comparative genome analysis of *Salmonella*Enteritidis PT4 and *Salmonella* Gallinarum 287/91 provides insights into
 evolutionary and host adaptation pathways. Genome Res. 18:1624-1637.
- 68. Tracz, D. M., H. Tabor, M. Jerome, L. K. Ng, and M. W. Gilmour. 2006. Genetic determinants and polymorphisms specific for human-adapted serovars of Salmonella enterica that cause enteric fever. J Clin Microbiol 44:2007-18.
- 69. **Twiddy, S. S., C. H. Woelk, and E. C. Holmes.** 2002. Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J.Gen.Virol. **83:**1679-1689.
- Urwin, R., E. C. Holmes, A. J. Fox, J. P. Derrick, and M. C. Maiden. 2002. Phylogenetic evidence for frequent positive selection and recombination in the meningococcal surface antigen PorB. Mol.Biol.Evol. 19:1686-1694.

- Uzzau, S., D. J. Brown, T. Wallis, S. Rubino, G. Leori, S. Bernard, J. Casadesus, D. J. Platt, and J. E. Olsen. 2000. Host adapted serotypes of *Salmonella enterica*. Epidemiol. Infect. 125:229-255.
- 72. **van Asten, A. J., and J. E. van Dijk.** 2005. Distribution of "classic" virulence factors among Salmonella spp. FEMS Immunol.Med.Microbiol. **44:**251-259.
- 73. Wong, W. S., Z. Yang, N. Goldman, and R. Nielsen. 2004. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041-1051.
- Wood, M. W., M. A. Jones, P. R. Watson, S. Hedges, T. S. Wallis, and E.
 E. Galyov. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Molecular Microbiology 29:883-891.
- 75. **Yang, Z.** 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput.Appl.Biosci. **13:**555-556.
- Yang, Z., R. Nielsen, N. Goldman, and A. M. Pedersen. 2000. Codonsubstitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431-49.
- 77. Zhang, J. Z., R. Nielsen, and Z. H. Yang. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution 22:2472-2479.

CHAPTER 4

SALMONELLA 4,5,12:I:-: AN EMERGING SALMONELLA SEROTYPE THAT REPRESENTS MULTIPLE DISTINCT CLONES

ABSTRACT

The prevalence, among human clinical cases, of Salmonella 4,5,12:i:-, a serotype closely related to *Salmonella* Typhimurium but lacking second phase flagellar antigens, has increased considerably over the last 10 years. To probe the evolution and ecology of this emerging serotype, we characterized 190 Salmonella isolates initially classified as serotypes 4,5,12:i:- (n= 90) and Typhimurium (n=100) and obtained from various sources in the United States and Spain. These 190 isolates were characterized into six sequence types [determined by multilocus sequence typing (MLST)] and 79 pulsed-field gel electrophoresis (PFGE) types. The majority of 4,5,12:i:- and Typhimurium isolates (85 and 84 isolates, respectively) represented a single MLST type. Existing genome information revealed different genome deletions (which included genes responsible for phase 2 flagella expression) in four Spanish and one US 4,5,12:i:- isolate. Fifty-nine isolates of both serotypes, representing different source and geographical locations, as well as different molecular subtypes were thus screened for the presence of six genes and one specific region, which all showed variable presence, based on existing genomic information, among 4,5,12:i:- and Typhimurium strains. All 4,5,12:i:- isolates lacked the phase 2 flagella genes *fljA* and *fljB*, which were present in all Typhimurium isolates. While all Spanish 4,5,12:i:isolates carried the same deletion surrounding *fliAB*, all but two US isolates showed a different genomic deletion; one of the two atypical US isolates represented the "Spanish" deletion genotype, while the other isolate represented a unique deletion

genotype. *Salmonella* 4,5,12:i:-, thus, appears to represent at least two common clones with different geographical distributions.

INTRODUCTION

Salmonella spp. are one of the most common causes of bacterial foodborne diseases worldwide (34). In the United States nontyphoidal Salmonella serotypes cause an estimated 1.4 million human salmonellosis cases, including approximately 550 deaths annually (27). Serotyping with the Kaufmann-White scheme is used commonly as a first step to differentiate *Salmonella* isolates. Serotyping of *Salmonella* isolates is based on lipopolysaccharide moieties on cell surface (O antigens) and the flagellar proteins (H antigens), as well as capsular protein antigens (Vi-antigen), which are only found in a few Salmonella serotypes (e.g., Typhi). According to Kaufmann-White scheme, *Salmonella* includes over 2,500 recognized serotypes (20). Many Salmonella are motile due to peritrichous flagella (28), which include a basal body, a propeller and a hook. The motility of *Salmonella* depends on the rotation of the flagellar propeller (i.e., the filament), which includes either FliC (phase-1 antigen) or FljB (phase-2 antigen) flagellin (11). Most of Salmonella serotypes, including Salmonella Typhimurium, are bi-phasic, meaning that they can express two distinct flagellar antigens (i.e., phase-1 and phase-2 antigens). Regulation of phase 1 and 2 antigen expression is under control of the recombinase Hin. This recombinase facilitates inversion of a promoter element so that it either (i) transcribes fljB (which encodes the phase 2 antigen FljB) and *fljA*, which encodes a repressor of *fliC*, the gene encoding the phase 1 antigen FliC (4, 37) or (ii) does not transcribe either of these genes. If this promoter is located in an orientation that does not allow for transcription of *fljB* and *fljA*, lack of a repression of *fliC* transcription leads to expression of phase 1 flagellar antigens.

Salmonella 4,5,12:i:- is a serotype that appears to be closely related to Salmonella Typhimurium (which has the serotype 4,5,12:i:1,2), but lacks the expression of second phase 1, 2 flagellar antigen. Salmonella 4,5,12:i:- was the 6th most common Salmonella serotype among human cases in the US in 2006 (10) and the 4th most common serotype among human isolates in Spain in 1998 (18). Overall, the prevalence of Salmonella 4,5,12:i:- among human cases has increased considerably in many countries in the world over the last 10 years (9, 10, 18, 29, 36). This Salmonella serotype has also been responsible for a number of human salmonellosis outbreaks over the last decades, including in Spain (1998), the US (2004 and 2007), and in Luxemburg (2006). Salmonella 4,5,12::- has also been isolated, particularly over the last decade, from a number of different foods and animals (1, 6, 13, 29, 38). While a number of separate studies, using molecular subtyping and characterization tools (e.g., genomic microarrays, PCR assays to test for gene presence/absence), have shown that serotype 4,5,12:i:- isolates from Spain (15, 18) and the US (1, 2, 38) are closely related to Salmonella Typhimurium, we are not aware of any comparative studies of serotype 4,5,12::- isolates from Europe and the US that have been published to date. In order to provide a better understanding of the transmission, ecology, and evolution of Salmonella. 4,5,12:i:-, we have assembled a collection of 190 serotype 4,5,12:i:- and Typhimurium isolates from various sources and from two countries, including the US and Spain. These isolates were characterized by different molecular subtyping methods (i.e., multilocus sequence typing [MLST] and pulsed-field gel electrophoresis [PFGE]), followed by characterization of selected isolates for genomic deletions that may be responsible for lack of phase 2 flagella expression. In combination with an analysis of existing genome data for a US serotype 4,5,12:i- isolate (32) and genomic microarray data for Spanish serotype 4,5,12:i:- isolates (18), our data indicate that serotype 4,5,12:i- represents at least two discrete genotypes with distinct geographical

distributions, supporting the hypothesis that at least two distinct emergence events lead to the evolution of this serotype.

MATERIALS AND METHODS

Salmonella isolates. A total of 190 *Salmonella* isolates initially serotyped as Typhimurium (n=100) and 4,5,12:i- (n=90) were used in this study (Table 4.1). These isolates were obtained from different states in the US, including New York (69 isolates), Washington (52 isolates) and Georgia (26 isolates), and Spain (43 isolates) as well as different sources, including human clinical isolates, foods, cattle, poultry, and other warm-blooded animals (Table 4.1). Human isolates from New York State and Washington were obtained from the New York State Department of Health and the Washington State Department of Health, respectively. Bovine isolates from New York State and Washington State were obtained from the Animal Health Diagnostic Center (AHDC) at Cornell University and the Washington Animal Disease Diagnostic Laboratory, Pullman, respectively; isolates from foods collected in New York State were obtained from the Food and Drug Administration (FDA) (Table A2 [S4..1]). Salmonella Typhimurium and 4,5,12:i:- isolates from Georgia have previously been described (38). Salmonella Typhimurium and 4,5,12:i:- isolates from Spain have also been described previously (5, 18) and were provided by Dr. Garaizar, University of the Basque Country, Vitoria-Gasteiz, Spain. Detailed information for all isolates (see Table A2 [S4..1]), including serotype, source, gene sequence data, allelic types and pulsed field gel electrophoresis (PFGE) patterns are available via the Pathogen Tracker website (http://www.pathogentracker.net).

While serotype data were provided for all isolates, isolates that were initially classified as serotype 4,5,12:i:- but contained an intact copy of the phase 2 flagella gene fljBwere re-submitted for serotyping at the National Veterinary Service

	No. of isolates from ^a						
State, Country	Bovine	Human	Poultry	Food	Others	Non- domestic birds	Total
Serotype 4,5,12:i:-							
Georgia, US	2 (2)	0	10(7)	0	0	1(1)	13 (10)
New York, US	7 (5)	9 (4)	0	2(1)	0	0	18 (10)
Washington, US	0	40 (10)	0	0	2(1)	0	42 (11)
Spain	0	11	0	2	0	0	13 (10)
Total							86 (41)
Serotype Typhimurium							
Georgia, US	6	0	5 (2)	0	0	1(1)	12 (3)
New York, US	22	29 (4)	0	0	0	0	51 (4)
Washington, US	1	6 (2)	0	0	0	0	7 (2)
Spain ^b	0	5	0	8	17	0	30 (5)
Total							100 (14)
Inconsistent (Typhimuriu	m or 4,5,12:	$(i:-)^{c}$					
Georgia, US	0	0	0	0	0	1	1(1)
Washington, US	3 (1)	0	0	0	0	0	3 (3)
Total							4 (4)
Total							190 (59)

Table 4. 1. Salmonella 4,5,12:i:- and Typhimurium isolates used in this study

^anumbers in brackets represent numbers of isolates that were used for further PCR screens to determine the presence/absence of selected genes and one specific region.

^bSpanish *Salmonella* Typhimurium isolates in category "others" were obtained from water and other environment; detailed information for Spanish isolates is in Supplementary Table 1.

^cthese isolates were serotyped as 4,5,12:i:- in one replicate and Typhimurium in another replicate (including one isolates that was classified as 4,5,12:i:- in two replicates and Typhimurium in one replicate) and were thus designated as "inconsistent".

Laboratories (NVSL). Isolates that were serotyped as 4,5,12:i:- in one replicate and Typhimurium in another replicate (including one isolate that was classified as 4,5,12:i:- in two replicates and Typhimurium in one replicate) were designated as "inconsistent serotype" isolates.

Multilocus Sequence Typing (MLST). While traditional MLST schemes target 7 housekeeping genes (24), we initially used a previously reported MLST scheme targeting three genes (i.e., *manB*, *mdh*, *fimA*) (2, 33) to characterize all isolates used in this study. While this MLST scheme had previously been shown to provide similar discriminatory power as a 7-gene MLST, the 3-gene MLST only allowed for limited discrimination among the isolates used here. We thus also sequenced a 826 nt fragment of a 4th gene (*aroC*) in all isolates to determine whether use of additional genes would increase discriminatory power. *aroC* was chosen as an additional gene as it was found to represent the greatest number of different allelic types among all isolates in the 7-gene MLST database for *Salmonella* in July 2007 (http://web.mpiib-berlin.mpg.de/mlst/dbs/Senterica). Allelic types for *fimA*, *mdh*, and *manB* and 3-gene sequence types (STs) were assigned to be consistent with previous studies published by our group (2, 3, 33). Allelic types for *aroC* were also assigned to be consistent with 7-gene MLST Max Planck Institute database (http://web.mpiib-

<u>berlin.mpg.de/mlst/dbs/Senterica</u>). For example, 3-gene ST6 includes the same allelic type combination for 3 genes as reported in two studies by Alcaine et al. (2, 3), while *aroC* allelic type 18 for is identical to allelic type AROC18 in the 7-gene MLST database (<u>http://web.mpiib-berlin.mpg.de/mlst/dbs/Senterica</u>). STs were also determined based on allelic types for all four genes; these STs do not correspond to any previously reported STs.

Salmonella DNA used as template for PCR reactions performed for MLST was purified using QIAmp DNA Mini kit (QIAGEN Inc., Chatsworth, CA). PCR primers for *manB*, *mdh*, and *fimA* have previously been reported (2, 33); PCR primers for *aroC* amplification were obtained from the *Salmonella enterica* MLST database at Max Plank Institute (http://web.mpiib-berlin.mpg.de/mlst/dbs/Senterica); all primers used are summarized in Table A2 [S4.2]. PCR products were purified using Exonuclease I (USB, Cleveland, OH) and shrimp alkaline phosphatase (USB, Cleveland, OH). Purified PCR products were sequenced using Big Dye Terminator chemistry and Ampli Taq-FS DNA Polymerase and sequencing reaction were analyzed using the Applied Biosystems Automated 3730 DNA Analyzer at the Cornell University Life Sciences Core Laboratories Center. Sequences were assembled and proofread using SeqMan and aligned using the Clustal W algorithm implanted in MegAlign (DNAStar Inc., Madison, WI).

Phylogenetic analysis. Phylogenetic analysis was performed using all 3-genes STs found among *Salmonella* Typhimurium and 4,5,12:i:- isolates as well as 3-gene STs available for other serotypes (e.g., STs reported by Alcaine et al. [2]). As *manB* is duplicated in some isolates, thus yielding sequence data not suitable for phylogenetic analyses (2), STs representing sequences with *manB* duplications were not included in the phylogenetic analyses. For each unique ST, the sequences of the three genes were concatenated. Concatenated sequences were aligned using MegAlign (DNAStar Inc., Madison, WI) and MACCLADE version 4.08 (Sunderland, Massachusetts: Sinauer Associates Inc). MODELTEST (30) was used to determine the best fitting model of evolution (i.e., TrN+I+G), which was used for construction of a maximum likelihood (ML) tree. The ML tree was constructed, using the concatenated 3-gene MLST sequences, using PAUP* Portable version 4.0b10 for Unix (35). No phylogenetic analyses were performed on the 4-gene MLST data as insufficient ST data are available for serotypes other than Typhimurium and 4,5,12:i:-.

Pulsed-Field Gel Electrophoresis (PFGE). XbaI PFGE was performed according to the Centers for Disease Control and Prevention PulseNet protocol (http://www.cdc.gov/pulsenet/protocols/ecoli_salmonella_shigella_protocols.pdf) (31). Analysis of PFGE types was performed using the BioNumerics Software package (Applied Maths 1998-2004, Austin, TX). Similarity analysis was performed by using the Dice coefficient and clustering was performed using the unweighted pair group method with arithmetic mean (UPGMA).

Simpson's index of diversity. Simpson's index of diversity (SID) was calculated as previously described (23).

Analysis of microarray and genome sequence data to identify gene **deletions in serotype 4,5,12::-**. In order to identify gene deletions and other genomic differences between serotypes 4,5,12:i:- and Typhimurium, we used (i) comparative genomic microarray data on gene presence/absence patterns in four Spanish serotype 4,5,12:i:- isolates (as compared to *Salmonella* Typhimurium LT2) (as reported by Garaizar et al. [18]), and (ii) full genome sequence data for the US serotype 4,5,12:i:isolate CVM23701 (GenBank accession no. NZ_ABAO0000000, http://msc.jcvi.org/salmonella/salmonella_enterica_subsp__enterica_serovar_4__5__1 2_i___str__cvm23701/index.shtml) (32) and *Salmonella* Typhimurium LT2 (AE006468). Genomic microarray data reported by Garaizar et al. (18) revealed one genomic deletion (termed cluster V) in serotype 4,5,12,:i-, which included deletion of *fljB* (encoding phase 2 flagella, thus providing a functional explanation for the absence of phase 2 flagellar expression observed in serotype 4,5,12:i:-) as well as a second deletion (termed cluster IV) located approximately 16 kb 5' of cluster V. BLAST searches were used to determine whether genes in cluster IV (genes STM2694 to STM2740) and cluster V (genes STM2758 to STM2773) as well as genes in the intervening regions and upstream and downstream were present in the serotype

4,5,12:i:- isolate CVM23701 genome. Specifically, BLAST searches were used to determine whether *Salmonella* Typhimurium LT2 genes STM2691 through STM2775 were present in the CVM23701 genome. BLAST searches were performed using the National Center for Biotechnology Information (NCBI) BLAST tools and gene sequences downloaded from the J. Craig Venter Institute Comprehensive Microbial Resource (JCVI CMR). BLAST searches were also used to determine whether genes in three other clusters (I, II, and III), which were previously reported to be present in *Salmonella* Typhimurium LT2, but absent in Spanish 4,5,12:i:- isolates, were present in the genome sequence for the US 4,5,12:i:- isolate CVM23701.

PCR-based characterization of gene deletion patterns in representative serotype 4,5,12::-and Typhimurium isolates. Based on our analyses of (i) the genomic microarray data reported by Garaizar et al. (18) and (ii) the serotype 4,5,12:i:- isolate CVM23701 genome, we designed PCR primers to test for the presence of selected genes in clusters IV and V and adjoining regions (Table 4.2). We initially designed 8 primer sets for genes that are at the junctions of clusters IV and V (as reported by Garaizar et al. [18]); these primers target STM2692, STM2694, STM2740, STM2741, STM2757, STM2758, STM2773 (iroB) and STM2774 (see Figure 4.1 for primer locations). In addition, we designed primer sets for (i) two genes (*fljA*, *fljB*) absent from both the 4,5,12:i:- isolates from Spain (based on the genomic microarray data reported by Garaizar et al., 2002) and CVM23701 genome as well as for (ii) one gene (*hin*) present in CVM23701 and absent in the 4,5,12:i:- isolates from Spain. We also designed one set of primers targeting a region found upstream of *hin* in only the CVM23701 genome; this region was designated as "STM1053-1997 region", as primers designed are located in genes with homology to STM1053 (forward primer) and STM1997 (reverse primer) (see Figure 4.1). PCR was performed on DNA purified using the QIAmp DNA Mini Kit (Qiagen Inc, Chartsworth) as detailed below, using

				Tempe	erature (time	e) for
	Gene	Ampli-	_	Denatu-	Anneal-	Exten-
Gene	function ^a	con Size	Primers (5' to 3') ^b	ration	ing	sion
fljA	Repressor of	642 bp	F: TTC ATT AGG TCC CCT CCG G	95°C	55°C	72°C
	phase-1 flagellin gene		R: ATT CAG CCC CGT GAA TTC GGG	(10 min)	(45 sec)	(1 min)
	magemin gene					
fljB	Phase-2	561 bp	F: TTTACCGTCTACGCCACCC	95°C	52°C	72°C
	flagellin structural protein		R: GGTACTACACTGGATGTATCGGG	(10 min)	(45 sec)	(1 min)
hin	H inversion:	570 bp	F: TGG CTA CTA TTG GGT ATA TTC GGG	95°C	52°C	72°C
	regulation of flagellar gene expression	er er	R: AAT TCA TTC GTT TTT TTA TGC GGC	(10 min)	(45 sec)	(1 min)
STM1053-	_	614 bp	F. CCA TTT TTA TAC TGC CAG TCG CC	95°C	55°C	72°C
1997		orrop	R: CAG CGA AAT ACT GAT GGC GG	(10 min)	(45 sec)	(1 min)
STM2740	Integrase,	980 bp	F: AAT GTG GAG ATC GCT GGC GCG	95°C	55°C	72°C
	phage family		R: AGT TCG CCG CCG AAC CCC	(2 min)	(45 sec)	(1.5)
STM2757	Putative	717 bp	F: ATG ATG ATG GCG TAA TGG CGC	95°C	55°C	72°C
	cytoplasmic protein	· - · - P	R: AAA ACG TTC CGG TGC GGC G	(10 min)	(45 sec)	(1 min)

Table 4. 2. PCR conditions and primers for six genes and one region that show variable presence among serotype 4,5,12:i:- isolates from the US and Spain

Table 4. 2.	(Continued)

iroB	Glucosyl-	858 bp	F: TTC GAT TCG GAA GCG GGT TAT CGC	95°C	65-55°C	72°C
	transferase		CG	(2 min)	TD^{c} (45	(1.5
	homolog		R: CTC GCG AAG CGC GCG		sec)	min)
9~ .						

^aGene functions for *S*. Typhimurium LT2 were obtained from JVCI CMR (J. Craig Venter Institute The Comprehensive Microbial Resource) website

^bR: reverse primer; F: forward: primer ^cTD, Touch down PCR; annealing temperatures decreased 0.5 °C/cycle during the first 20 cycles, followed by 20 cycles at 55°C

Figure 4. 1. Deduced genome structure for the genomic region between STM2691 and STM2774 for (A) four *Salmonella* 4,5,12:i:- isolates from Spain (based on genomic microarray data reported by Garaizar et al., 2002) and (B) the US serotype 4,5,12:i:- isolate CVM 23701 (based on an unfinished genome sequence reported by Rosovitz et al.

[http://msc.jcvi.org/salmonella/salmonella_enterica_subsp__enterica_serovar_4__5__ 12_i___str__cvm23701/index.shtml]). Genes are represented as open arrows or boxes; gene numbers (e.g., 2691) represent locus numbers based on primary annotation of Salmonella Typhimurium LT2 (with the prefix "STM"). White color represents the genes present in S. Typhimurium LT2 and all 4,5,12:i:- isolates; grey represents genes present in S. Typhimurium LT2 and absent from both US and Spanish 4,5,12:iisolates; halftone pattern represents genes present Salmonella Typhimurium LT2 and Spanish 4,5,12::- isolates, but absent from the US 4,5,12:i:- isolate. Black represents a unique insertion in the US 4,5,12:i:- isolate CVM 23701, which includes genes with genes with full or partial homology with the Salmonella Typhimurium LT2 genes STM1054 (94 % homology with LT 2 over 79 % gene length), STM1053 (93 % homology with LT 2 over 85 % gene length), STM1997 (92 % homology with LT 2 over 42 % gene length), STM2704 (87 % homology with LT 2 over 100 % gene length), STM2706 (87 % homology with LT 2 over 18 % gene length); hin and iroB, which are present in LT2 and the US 4,5,12:i- isolate are also shown in black. Small arrows represent PCR primers, including five primer sets (See Supp. Table S2) used only for an initial screen of 6 isolates (two 4,5,12:i:- isolates from each Spain and the US and one Typhimurium isolate from each Spain and the US), shown as thin black arrows, as well as 7 primer sets (See Table 4.2) used to screen a total of 59 isolates, shown as thick arrows.

76 genes absent in US S. 4,5,12:i:- genome CVM23701

either Ampli Taq Gold (Applied Biosystems, Foster City, CA) or Go Taq (Promega, Madison, WI).

All PCR primers were used initially to screen for gene presence/absence among four serotype 4,5,12:i:- isolates (two each from Spain and the US) as well as two Typhimurium isolates (one each from Spain and the US). Subsequently, primers targeting six genes (i.e., *STM2740, STM2757, fljA, fljB, hin*, and *iroB*) and the STM1053-1997 region (see Table 2 for all primers) were used to screen for presence/absence of the selected genes among 59 representative isolates, representing serotypes 4,5,12:i:- (41 isolates) and Typhimurium (14 isolates) as well as all four isolates with inconsistent serotype data (i.e., serotyped as 4,5,12:i:- and Typhimurium). These isolates were selected to represent all PFGE types and STs found among the Spanish isolates. Isolates obtained in the US were selected to represent the most common PFGE types found among different isolate sources (e.g., human, food, cattle, poultry, non-domestic birds); for serotype 4,5,12:i:-, isolates from the US were selected to assure inclusion of at least one representative of each ST and PFGE.

RESULTS AND DISCUSSION

In order to better understand the evolution and ecology of *Salmonella* 4,5,12:i:-, we characterized 190 *Salmonella* 4,5,12:i:- and Typhimurium isolates from the US and Spain with a variety of molecular methods. Overall, our data indicate that (i) *Salmonella* 4,5,12:i:- and Typhimurium represent a highly clonal group, which can be differentiated by PFGE, (ii) US and Spanish 4,5,12:i:- isolates show different patterns of gene deletion in the regions encoding phase 2 flagella and represent distinct PFGE patterns, and (iii) in addition to two common 4,5,12:i:- genotypes (designated here as the "Spanish" and the "US" 4,5,12:i:- clone), other 4,5,12:i:- genotypes exist. We thus

conclude that *Salmonella* 4,5,12:i:- most likely represents multiple clones that emerged through independent deletion events.

Salmonella 4,5,12:i:- and Typhimurium represent a highly clonal group, which can be differentiated by PFGE. Among the 190 Salmonella initially characterized as serotypes Typhimurium (100 isolates) and 4,5,12:i:-, we identified six distinct sequence types (STs) based on a four gene MLST scheme (Table 4.3). A single ST (ST1) represented the vast majority of Typhimurium and 4,5,12:i:- isolates; 84 out of 100 Typhimurium and 85 out of 86 serotype 4,5,12:i:- isolates were classified as ST1. Analyses of the relevant genes in the genomes of *Salmonella* LT2 and the US Salmonella 4,5,12:i:- isolate CVM23701 showed that these two strains also represent ST1. One serotype 4,5,12::- isolate from Spain represented ST 3; ST 3 also represented 7 US Salmonella Typhimurium isolates and one US isolate with inconsistent serotype data (i.e., serotyped as 4,5,12:i:- and Typhimurium in replicate experiments). ST3 differs from ST1 by only one nucleotide difference in manB. While serotype 4,5,12:i:- represented only two STs (Simpson Index of Discrimination [SID] = 0.02), Typhimurium isolates represented six STs (SID=0.29), indicating considerably higher ST diversity among the Typhimurium isolates characterized. Guerra et al. (21) previously also proposed that Salmonella 4,5,12:i:- represents a lower diversity as compared to Salmonella Typhimurium, even though their molecular subtype study only used 16 serotype 4,5,12:i:- and two Typhimurium isolates from Spain.

Phylogenetic analyses of 3-gene MLST data (performed here; Figure 4.2) also supported that serotypes 4,5,12:i:- and Typhimurium are closely related and highly clonal as shown by the fact that all serotype 4,5,12:i:- and Typhimurium STs form a single branch with strong bootstrap support. The observation that serotypes 4,5,12:i:and Typhimurium represents a single highly clonal group is consistent with a number

Figure 4. 2. Phylogenetic tree for all 3-gene (*fimA*, *manB*, and *mdh*) STs identified among 4,5,12:i:- and Typhimurium isolates as well as selected isolates representing other *Salmonella* serotypes (these STs were taken from Alcaine et al. [2]). For each unique ST, *fimA*, *manB*, and *mdh* sequences were concatenated and aligned, followed by construction of a maximum likelihood (ML) tree (100 bootstrap replicates), using the TrN+I+G model of evolution (identified by MODELTEST as the appropriate model for the data set used). While a number of nodes in this tree were supported by high bootstrap values, bootstrap support is only shown for the clade containing serotype 4,5,12:i:- and Typhimurium isolates.

0.0060

4-Gene					
Sequence Type ^a	<i>S</i> . 4,5,12:i:-	S. Typhimurium	Inconsistent ^b	Total	
1	85	84	3	172	
2	0	1	0	1	
3	1	7	1	9	
7	0	5	0	5	
8	0	1	0	1	
9	0	2	0	2	

TABLE 4. 3. Distribution of 4-Gene Sequence Types (STs) among Salmonella isolates

^asequence types were based on allelic types for partial *fimA*, *mdh*, *manB* and *aroC* sequences

^bthese isolates were serotyped as 4,5,12:i:- in one replicate and Typhimurium in another replicate (including one isolates that was classified as 4,5,12:i:- in two replicates and Typhimurium in one replicate) and were thus designated as "inconsistent"

of studies (2, 14) that have shown that *Salmonella* Typhimurium is highly clonal. The observation that all serotype 4,5,12::- isolates characterized here share identical STs with Typhimurium isolates is consistent with a number of studies (e.g., references 1, 6, 13, 14, 16 and 38) that have shown, using different molecular subtyping methods (e.g. PFGE, MLST, phage typing), that *Salmonella* 4,5,12:i:- isolates are closely related to Salmonella Typhimurium. While, according to serological characterization, Salmonella 4,5,12:i:- is also closely related to Salmonella serotypes Lagos (4,5,12:i:1,5), Agama (4,12:i:1,6), Farsta (4,12:i:e,n,x), Tsevie (4,12:i:e,n,z₁₅), Cloucester (1,5,12,27:i:1,w), Tumodi $(1,4,12:i:z_6)$, and an unnamed subspecies II serotype $(4,5,27:i:z_{35})$ (28), we are not aware of any data that suggest any of these closely related serotypes might be an ancestor of a 4,5,12:i- strain. Echeita et al. (16) specifically reported that two genomic regions, i.e., a 1,000 bp fliB-fliA intergenic region and a 162 bp region specific for DT104 and DT U302 phage types, were absent in S. Lagos, but present in S. Typhimurium phage types DT104 and DT U302, as well as in Spanish 4,5,12:i:- isolates, suggesting that Spanish serotype 4,5,12:i:- isolates are closely related to *Salmonella* Typhimurium DT104 and DT U302, and are unlikely to have originated from a serotype Lagos ancestor. In our analysis of *aroC* allelic types (including *aroC* ATs obtained from the Max Planck Institute [MPI] MLST website http://web.mpiib-berlin.mpg.de/mlst/dbs/Senterica), we also found that the *aroC* AT (i.e., AROC146) for the only serotype Lagos isolate in this database was distinct from the *aroC* AT found among all 4,5,12:i:- isolates and all but one Typhimurium isolates characterized here (i.e., AT 10, which differs by 4 nucleotides from AROC146), further supporting that serotype Lagos is unlikely to be the ancestor of serotype 4,5,12:i:-. Similarly, the *aroC* AT for the one serotype Agama isolate represented in the MPI MLST database represents an aroC allelic type (AROC136), which is distinct from AT 10 (4 nt differences between AT10 and AROC136), suggesting that serotype

Agama is unlikely to be the ancestor of serotype 4,5,12:i:-. While, overall, these data suggesting that 4,5,12:i:- is a monophasic variant of serotype Typhimurium, the rare serotypes Farsta, Tsevie, Cloucester, Tumodi, and subspecies II serotype 4,5,27:i: z_{35} cannot be definitively excluded as ancestors of serotype 4,5,12:i:- until isolates representing these serotypes have been characterized by molecular methods and compared to serotype Typhimurium and 4,5,12:i:- isolates.

As PFGE has been shown to be a highly discriminatory subtyping method for a number of *Salmonella* serotypes (1, 14, 38), we further characterized all 190 *Salmonella* isolates using PFGE with the enzyme XbaI. Overall, we identified 79 PFGE patterns (SID =0.96) among all 190 isolates. A total of 29 and 50 PFGE types were differentiated among the 86 and 100 serotype 4,5,12:i:- and Typhimurium isolates (SID = 0.91 and 0.93, respectively); the four isolates with inconsistent serotypes represented three different PFGE patterns. Overall, these data support previous studies which have shown that serotype 4,5,12:i:- isolates represent considerable PFGE diversity (1, 21, 38) and that PFGE, in general, allows for more sensitive subtype discrimination among *Salmonella* isolates as compared to MLST (12, 17, 22).

Interestingly, two PFGE patterns (P1 and P71, see Figure 4.3) were shared by serotype 4,5,12:i:- and Typhimurium isolates. PFGE type P1 was found in 3 serotype 4,5,12:i:- and 4 serotype Typhimurium isolates from the US, while P71 represented four serotype 4,5,12:i:- and one serotype Typhimurium isolate as well as one isolate with an inconsistent serotype, all isolated in the US. These observations extend previous observations by de la Torre et al. (13) and Zamperini et al. (38). de la Torre et al. (13) showed that at least one XbaI and one BlnI PFGE type were shared between Spanish 4,5,12:i:- and Typhimurium isolates, even though these two serotypes never shared the same combined XbaI/BlnI PFGE type (13). However, Zamperini et al.

Figure 4. 3. Representative XbaI PFGE patterns for *Salmonella* 4,5,12:i:- and Typhimurium isolates as well as four isolates with inconsistent serotype data (i.e., isolates that were initially identified as 4,5,12:i:- , but were classified as Typhimurium when they were re-submitted for serotyping). PFGE types shown represent all 79 unique types found among the 190 isolates characterized. If identical PFGE types were found among isolates representing two serotypes, different sources (e.g., human and bovine), or different countries, one representative from each group was included in this figure; solid vertical lines indicate multiple isolates with identical PFGE patterns. For example PFGE pattern 28 (P28) was identified in five 4,5,12:i:- isolates from Spain and one 4,5,12:i:- isolate from a non-domestic bird in the US. Number of isolates with a given PFGE type is indicated in parentheses after the PFGE type designation.

-1000 kb	-500 kb -350 kb -200 kb -100 kb -40 kb -20 kb	Isolate No.	Country Isolated from	State Isolated from	Source	Serotype	PFGE Pattern (No. of isolates)	4-gene MLST
		FSL \$5-534	US	NY	Human	Typhimurium.	P15(1)	1
1.2		FSL S5-607 FSL R6-144	US	WA	Human	Typhimurium Typhimurium	P16 (1) P12 (24)	1
11		FSL S9-221	Spain		Enviromental	Typhimurium.	P12 (24)	1
		FSL 53-845 FSL 59-217	US Spain	NY	Bovine Enviromental	Typhimurium Typhimurium	P12 (24) P14 (1)	1
. 10	J] [[]] [[]]	FSL S9-165	US	WA.	Bovine	Inconsistent	P23 (2)	i
		FSL S9-214 FSL S5-492	Spain US	NY	Food Human	Typhimurium Typhimurium	P13 (1) P17 (1)	1
ų		FSL R6-131	US	WA	Human	Typhimurium.	P24 (1)	2
1		FSL S9-233	Spain	NI	Enviromental	Typhimurium	P74 (1) P84 (1)	1
1		FSL S9-235	Spain TTS	64	Food	Typhimurium Typhimurium	P88 (1)	1
		FSL S9-126	US	GA	Bovine	4,5,12:i:-	P49 (1)	i
		FSL S9-167 FSL S9-184	US	WA	Human Human	4,5,12:i:- 4,5,12:i:-	P48 (2) P50 (3)	1
		FSL S9-121	US	GA	Poultry	4,5,12:i:-	P50 (3)	i
		FSL 59-179 FSL 59-128	US	GA	Human Bovine	4,5,12:1:- Typhimurium	P55 (1) P85 (1)	1
12		FSL S9-188	US	WA	Human	4,5,12:i:-	P46 (8)	1
		FSL S9-130	US	GA	Bovine	4,5,123:- Typhimurium	P46 (8)] P41 (1)	1
		FSL S5-452 FSL S9-103	US	NY	Human	Typhimurium 4.5.12-i	P1 (7)	1
		FSL S9-114	US	GA	Poultry	4,5,12:i:-	P40 (10)	1
		FSL R6-150 FSI S0-120	US	WA.	Human Berrine	4,5,12:i:-	P40 (10)	1
		FSL \$5-392	US	NY	Human	Typhimurium	P44 (1)	1
		FSL \$5-527 FSL \$9-031	US	NY	Human Food	4,5,12:i:- 4 5 12:i:-	P42 (2) P42 (2)	1
		FSL \$9-172	US	WA	Avian	4,5,12::-	P69 (5)	i
11		FSL R6-152 FSL S9-212	US Spain	WA	Human	4,5,12:i:- Typhimurium	P69 (5)	1
- 0		FSL S5-788	US	NY	Bovine	Typhimurium	P45 (2)	9
		FSL S9-210 FSL S5-536	Spain US	NY	Enviromental Human	Typhimurium Typhimurium	P45 (2) P18 (1)	7
		FSL S9-207	Spain		Food	Typhimurium	P10 (3)	1
		FSL S5-462 FSL S5-507	US	NY	Human Human	Typhimurium	P38 (1) P36 (4)	1
		FSL S9-125	US	GA	Poultry	Typhimurium	P36 (4)	1
- 11		FSL 89-110	US	GA	Poultry	Typhimurium	P35 (3) P35 (3)	1
11		FSL \$9-231	Spain		Enviromental	Typhimurium	P35 (3)	7
		FSL 89-228 FSL R6-119	US	WA.	Enviromental Human	4,5,12:i:-	P32 (2) P67 (1)	1
		FSL S5-936	US	NY	Bovine	Typhimurium	P53 (1)	1
111		FSL S5-896	US	NY	Bovine	Typhimurium	P75 (1)	1
	and the state state of pairs	FSL S5-729	US	NY	Bovine	Typhimurium	P8 (1)	1
		FSL 55-831	US	NY	Bovine	Typhimurium	P4 (7)	i
		FSL S9-103 FSL S9-247	US Spain		Non-dom. bird Environmental	Typhimurium Typhimurium	P4 (7) P19 (2) I	1
		FSL S5-494	US	NY	Human	Typhimurium	P19 (2)	1
		FSL 55-805 FSL 55-381	US	NY	Bovine Human	Typhimurium Typhimurium	P7 (2) P7 (2)	1
		FSL \$5-397	US	NY	Human	Typhimurium	P6 (1)	1
10		FSL 55-655 FSL 55-799	US	NY	Bovine	Typhimurium	P10 (1) P11 (1)	1
		FSL S5-394	US	NY	Human	Typhimurium	P25 (1)	1
		FSL R6-124	US	WA	Human	4,5,12:i:-	P71 (6) P71 (6)	1
		FSL S9 - 171 FSL S5_433	US	WA	Canine Borrino	4,5,12:i:-	P71 (6) P71 (6)	1
10		FSL \$5-596	US	NY	Bovine	4,5,12::-	P56 (2)	1
14		FSL S9-030 FSL S9-115	US	NY GA	Food	4,5,12::- 4 5 12::-	P59 (21) P59 (21)	1
5 1		FSL \$5-398	US	NY	Human	4,5,12::-	P59 (21)	i
		FSL S5-737 FSL S9-192	US	NY WA	Bovine Human	4,5,12:i:- 4 5 12:i:-	P59 (21) P60 (1)	1
T		FSL S5-526	US	NY	Human	4,5,12::-	P61 (1)	1
- 12		FSL 55-618 FSL 55-759	US	NY	Bovine Bovine	4,5,12::- 4,5.12::-	P62 (1) P65 (1)	1
		FSL \$5-816	US	NY	Bovine	4,5,12:i:-	P64 (2)	1
12	1 1 1 1 11 11 11 1	FSL 59-124	US	GA	Poultry	Typhimurium	P63 (1)	i
Contraction of the		FSL S9-131 FSL S9-180	US	GA WA	Bovine Humar	Typhimurium 4.5.12-i	P51 (1)	1
11		FSL \$5-555	US	NY	Bovine	Typhimurium	P76 (3)	i
		FSL S5-505 FSL S5-531	US	NY	Human Human	Typhimurium Typhimurium	P76 (3)	1 8
11		FSL S5-564	US	NY	Bovine	Typhimurium	P77 (2)	ĩ
1		FSL S9-132 FSL S9-102	US	GA	Bovine Non-dom, bird	Typhimurium Inconsistent	P78 (1) P21 (1)	1
$-\pi$		FSL \$9-211	Spain		Human	Typhimurium	P79 (1)	i
		FSL 59-119 FSL 59-133	US	GA GA	Poultry Bovine	+,5,12::- Typhimurium	P66 (1) P72 (1)	1
	11.11.11.11	FSL S5-430	US	WA	Bovine	Typhimurium	P2 (1)	3
100		FSL R6-161	US	WA.	Human	Typhimarian	P81 (5) P81 (5)	1
ų	11 1 IN 188 110 11	FSL R6-002 FSL S5-706	US	WA	Bovine	Typhimurium	P86 (1)	3
		FSL \$5-635	US	NY	Human	4,5,12:i:-	P80 (1)	1
11		FSL S9-101 FSL S9-206	US Sprin		Non-dom. bird Humar	4,5,12:i:- 4,5.12:i:-	P28 (6)	1
		FSL S9-245	Spain		Human	4.5.12::-	P30 (1)	1
1		FSL S9-241 FSL S9-238	Spain Spain		Human Humar	4,5,12:i:- 4,5.12:i:-	P29 (1) P31 (1)	3 1
1000		FSL 59-239	Spain		Human	4,5,12:i:-	P26 (1)	ī
		FSL S9-244 FSL S9-204	Spain Spain		Human Humar	4,5,12:i:- 4,5,12:i:-	P27 (1) P32 (2)	1
		FSL S9-237	Spain		Human Empire	4,5,12::-	P34 (1)	1
		FSL 59-252 FSL 59-234	Spain Spain		Enviromental	Typhimurium	P87 (1) P83 (1)	7
			-					

found one combined XbaI/BlnI PFGE type shared by one 4,5,12:i- and one Typhimurium isolate, both isolated from poultry in the US (38). In general, these observations further support that *Salmonella* 4,5,12:i:- has evolved from a *Salmonella* Typhimurium ancestor.

A total of four PFGE patterns (P12, P19, P35, and P45) were found among both Spanish and US Salmonella Typhimurium isolates. P12 represented 14 and 10 Salmonella Typhimurium isolates from Spain and US, respectively. P35 represented two Typhimurium isolates from the US and one Typhimurium isolate from Spain. PFGE patterns P19 and P45 each represented one Salmonella Typhimurium isolate from the US and one isolate from Spain. Identification of identical XbaI PFGE patterns among *Salmonella* Typhimurium isolates from different continents is consistent with previous studies which have shown that some genetically closely related Salmonella strains are distributed worldwide (7, 19), including some other studies that have found *Salmonella* Typhimurium isolates with identical PFGE types in different countries and continents (7). While PFGE patterns for most Spanish 4,5,12::- isolates were similar and different from the patterns for US serotype 4,5,12:i:- isolates, one PFGE pattern (PFGE type P28) was shared among five Spanish serotype 4,5,12:i:- isolates and one 4,5,12:i:- isolate from the US (this US isolate was obtained from a free ranging owl in Georgia [38]). As most owls are non-migratory there is no apparent hypothesis as to the source of an infection with a "Spanish clone" 4,5,12:i:- isolate in this animal.

US and Spanish 4,5,12:i:- isolates show different patterns of gene deletion in the regions encoding phase 2 flagella and have different PFGE patterns. A previous genomic microarray study of four multidrug-resistant Spanish *Salmonella* 4,5,12:i:- isolates and *Salmonella* Typhimurium LT2 identified five genomic regions (clusters) that were absent in all four Spanish *Salmonella* 4,5,12:i:- isolates, but

present in S. Typhimurium LT2. As our initial PFGE data suggested that Spanish 4,5,12:i:- isolates may be genetically distinct from most US 4,5,12:i:- isolates, we analyzed an available genome sequence for a US 4,5,12:i:- isolate (strain CVM23701 [32]) for presence of these five clusters (i.e., clusters I to V). BLAST searches against the CVM23701 genome sequences showed that cluster I (STM0517-STM0529), which includes 13 genes most of which are involved in allantoin-glyoxylate pathway related functions, is present in the genome of this US 4,5,12:i:- isolate, even though this cluster appears to be absent from the four Spanish Salmonella 4,5,12::- isolates previously characterized by genomic microarrays (18). Cluster II (STM0893-STM0929), which includes 35 Fels-1 prophage genes and two adjacent genes, was reported to be absent from the four Spanish 4,5,12::- isolates and was not identified in the available unfinished genome of the US 4,5,12:i:- isolate. As the genes upstream and downstream of cluster II were located on a single contig, we conclude that this cluster is likely absent from the CVM23701 genome. These findings are consistent with the observation that the Fels1 prophage is present in LT2, but typically absent in other Salmonella Typhimurium isolates (25). Cluster III (STM2616-STM2617) encodes the Gifsy-1 prophage and was found in the genome of the US 4,5,12:i:isolate CVM23701, but was reported to be absent from the four Spanish 4,5,12:i:isolates previously characterized by genomic microarrays (18). The findings that clusters I to III were all absent from four Spanish 4,5,12:i:- isolates characterized by genomic microarray, while only cluster II was absent from the US 4,5,12:i:- isolate CVM23701, provide initial evidence that US and Spanish 4,5,12:i:- isolates may represent distinct genotypes.

Clusters IV (STM2694-STM2740) and V (STM2758-STM2773), which both were reported to be absent in the four Spanish 4,5,12:i:- isolates (Figure 1a), are located in close proximity to each other. While cluster IV contains 47 Fels-2 prophage

genes, cluster V contains a number of genes associated with different functions, including the *fljAB* operon (18). Notably, deletion of *fljAB* provides a functional explanation for the absence of phase 2 flagellar expression observed in serotype 4,5,12:i:-, as *fljB* encodes the phase 2 flagellar protein and *fljA* encodes a repressor of *fliC* transcription (which encodes the phase 1 flagellar protein). Initial BLAST searches against the genome sequence for the US 4,5,12:i:- isolate CVM23701 showed that both clusters IV and V were absent from the CVM23701genome (cluster IV and V as well as intervening genes were located on a single CVM23701 contig, NZ ABA001000014.1). Two genes located in the 3' end of cluster V, including STM2772 (*hin*, encodes a recombinase that regulates the regulation of flagellar gene expression) and STM2773 (*iroB*, encodes glucosyl-transferase homolog protein), were present in the CVM23701genome, even though they were reported to be absent from the four Spanish 4,5,12:i:- isolates, based on genomic microarray data (18). Further analysis of the CVM23701 genome sequence indicated that the region between clusters IV and V (STM2739-STM2757) was also absent from the CVM23701 genome, indicating that this strain contains a larger deletion as compared to the four Spanish 4,5,12:i:- isolates; this deletion spans cluster IV and most of cluster V (except for two genes at the 3' end) as well as the region between these two clusters. Interestingly, in the genome sequence of the 4,5,12:i:- isolate CVM23701 an approximately 7 kb region is inserted into this deleted section of the genome. This insertion includes two partial Fels-2 genes (STM2704 and STM2706), and three genes homologous to STM1054, STM1053 and STM1997 (umuC), which encode two Gifsy-2 prohage genes and a component of DNA polymerase V (*umuC*) (Figure 4.1b). We will refer to this insertion as the "STM1053-1997" region; this region is not found in LT2. Presence of this region CVM23701 suggests the intriguing hypothesis that

deletion, in the US 4,5,12:i:- clone, of clusters IV and V and the intervening region may have been caused by abortive, imprecise excision of a prophage.

As our analyses detailed above suggest that the US 4,5,12:i: isolate CVM23701 shows distinct genomic gene presence/absence patterns as compared to four Spanish 4,5,12::- isolates previously characterized by genomic microarrays (18), we designed PCR primers to determine the absence/presence of 8 genes that are at the junctions of clusters IV and V (i.e., STM2692, STM2694, STM2740, STM2741, STM2757, STM2758, STM2773 (*iroB*) and STM2774; see Fig. 1 for primer locations) and three genes (i.e., *fljA*, *fljB*, and *hin*), that are responsible for expression of phase-2 flagellar antigen. In addition, a set of primers was designed to allow for the detection of "STM1053-1997" region, which was found in the CVM23701 genome sequence. While negative PCR results may indicate absence of a gene or presence of a distinct allelic variant of a gene, which does not allow for PCR amplification, we surmised that, in this study, negative PCR results in 4,512:i- due to gene diversification (rather than gene absence) are extremely unlikely due to the high genetic similarity between 4,5,12:i- and Typhimurium isolates (e.g., as indicated by identical or highly similar MLST types for these two serotypes). Characterization of an initial 6 isolates (two 4,5,12:i:- isolates from each Spain and the US and one Typhimurium isolate from each Spain and the US) showed that Spanish S. 4,5,12:i:- had STM2692, STM2740, STM2741, STM2757and STM2774, but lacked STM2694, STM2758, STM2773 (*iroB*), *fljA*, *fljB*, *hin* and the STM1053-1997 region. These results confirmed the genes presence/absence patterns previously reported, based on genomic microarray data, for four Spanish 4,5,12:i:- isolates (18), except for the fact that the PCR primers for STM2740, which was previously reported as absent in Spanish S. 4,5,12::-, yielded positive results, suggesting presence of at least part of this gene. The PCR results on the two US Salmonella 4,5,12:i:- isolates were consistent with the

observations based on our analysis of the CVM23701 genome (representing a US *Salmonella* 4,5,12:i:- isolate). Specifically, the PCR data indicated that the two US *Salmonella* 4,5,12:i:- isolates (i) lacked clusters IV and V as well as the intervening region (as supported by negative PCR results for STM2694, STM2740, STM2741, STM2757, STM2758, *fljA*, and *fljB*), (ii) contain *hin* and *iroB* (which are located in the 3' end of cluster V and absent in the Spanish isolates), and (iii) contain an insertion upstream of *hin* gene (i.e., the STM1053-1997 region), which is absent in the Spanish *Salmonella* 4,5,12:i:- isolates. These data provided further support that Spanish 4,5,12:i:- isolates may be distinct from US 4,5,12:i:- isolates.

To further test the hypothesis that Spanish and US 4,5,12::- isolates represents different clonal groups with distinct genome deletion patterns we screened 59 representative Salmonella 4,5,12:i:- and Typhimurium isolates from these two countries (representing all PFGE patterns represented among 4,5,12:i- isolates) for presence/absence of six genes (i.e., STM2740, STM2757, fljA, fljB, hin, and iroB) and the STM1053-1997 region (Table 4.2). These PCR targets were selected as they (i) allow for clear differentiation of Typhimurium and 4,5,12:i:- genotypes and (ii) allow for differentiation of the "Spanish" and "US" genomic deletion patterns in the cluster IV and V region of serotype 4,5,12:i:- isolates. The PCR data generated clearly indicated that (i) all Spanish 4,5,12:i:- isolates show a deletion of clusters IV and V, but presence of the intervening region (STM2740 to STM2757), and (ii) all but two US 4,5,12:i:- isolates show a deletion of clusters IV and V, including a deletion of the intervening region between clusters IV and V, as well as presence of *hin* and *iroB* (which are absent in the Spanish 4,5,12:i:- isolates) and presence of the STM1053-1997 region. We thus propose that *Salmonella* 4,5,12:i- isolates from the US and Spain represent two distinct clones (i.e., the "Spanish" and the "US" clone). These findings are consistent with our observations that XbaI PFGE types of Spanish

4,5,12:i:- isolates generally are clearly distinct from the PFGE patterns for US serotype 4,5,12:i:- isolates. Interestingly, one 4,5,12:i:- isolate from the US (isolated from a free-ranging owl in Georgia) had the same deletion pattern as Spanish 4,5,12:i:- isolates. As this isolate also shared an identical PFGE pattern (P28; see Figure 4.3) with five Spanish 4,5,12:i:- isolates, we also provide initial evidence for intercontinental spread of the "Spanish" 4,5,12:i:- clone.

Interestingly, Matiasovicova et al. (25) suggested that multidrug resistant *Salmonella* Typhimurium might have evolved from a *Salmonella* Typhimurium ancestor that first lost the region including STM0517-0529 (designated as cluster I by Garaizar et al. [18]), allowing the utilization of allantoin as a sole nitrogen source, followed by acquisition of the *Salmonella* genomic island (GI)-1, which includes genes responsible for multi-drug resistance. Since multidrug-resistant isolates Spanish 4,5,12:i:- isolates lack cluster I (18), while the US *Salmonella* 4,5,12:i:- (CVM23701) contains this cluster, one might hypothesize that Spanish 4,5,12:i:- strains might have emerged from MDR *Salmonella* Typhimurium, while US *S.* 4,5,12:i:- might have emerged from non drug resistant *Salmonella* Typhimurium through independent events. Future studies on larger sets of multi-drug resistant and pansusceptible Typhimurium and 4,5,12:i:- isolates from different countries will be needed though to test this hypothesis.

In addition to two common *S*. 4,5,12:i:- clones (i.e., the "Spanish" and the "US" clone), we identified one rare 4,5,12:i:- genotype in North America. In addition to the common "Spanish" and "US" 4,5,12:i:- clones described in detail above, we also identified one rare 4,5,12:i:- genotype in North America. Specifically, a human 4,5,12:i:- isolate from New York State (isolate FSL S5-635; Table4. 4) was found to lack *hin* and the STM1053-1997 region, which are both present in the typical US 4,5,12:i:- isolates, but contained *iroB*, which is typically absent in the Spanish

	Presence of genes in ^a								
Genes	US 4,5,12:i:- Clone (n=30)	Spanish 4,5,12:i:- Clone (n=10)	FSL S5-635 (4,5,12:i:-; n=1)	Isolates with inconsistent serotype results (n=4) ^b	Salmonella Typhimurium (n=14)				
2740	-	+	+	+	+				
2757	-	+	+	+	+				
1053-1997	+	-	-	-	-				
fljA	-	-	-	+	+				
fljB	-	-	-	+	+				
hin	+	-	-	+	+				
iroB	+	-	+	+	+				

Table 4. 4. Presence/absence of selected genes in isolates representing the Spanish and US *Salmonella* 4,5,12:i:- clones as well as other *Salmonella* isolates

^aPlus (+) and minus (-) signs designate positive and negative PCR results, indicating the presence or absence of a gene.

^bthese isolates were serotyped as 4,5,12:i:- in one replicate and Typhimurium in another replicate (including one isolates that was classified as 4,5,12:i:- in two replicates and Typhimurium in one replicate) and were thus designated as "inconsistent"

clone. This isolate also was positive in the PCR assays targeting STM2741 and 2757, suggesting that this isolate did maintain the genomic region between clusters IV and V, which is present in the "Spanish", but absent in the "US" 4,5,12:i:- clone. This isolate thus seems to be similar to the Spanish clone, but shows a deletion pattern different from Spanish clones isolates at the 3' end of cluster V (see Table 4.4). Further characterization of this isolate will be needed to determine whether it represents a third emergence event, independent of both the emergence of the "Spanish" and the "US" clone of 4,5,12:i:- or whether it represents an evolutionary intermediate related to the Spanish 4,5,12:i:- clone. While this isolate represents a unique PFGE pattern not found among any other 4,5,12:i:- or Typhimurium isolates, it was classified as ST 1, the same sequence type that represented the majority of Typhimurium isolates (84/100) as well as the majority of Spanish and US clone 4,5,12::- isolates (12/13 and 73/73, respectively). This indicates that this strain is closely related to Typhimurium and most likely also emerged from a Salmonella Typhimurium ancestor. Overall, our findings suggest that serotype 4,5,12:i:- represent multiple genotypes, possibly indicating a strong selective pressure for loss of phase 2 flagella expression.

We also identified four isolates from the US (FSL S9-102, FSL S9-165, FSL S9-166 and FSL R6-084) that were initially determined to be serotype 4,5,12:i:-, but were found in the PCR screens to contain *fljA*, *fljB*, and *hin*, three genes critical for phase-2 flagellar expression (Table 4.4). PCR screens for other genes in clusters IV and V indicated that both of these clusters were present in these four isolates. As Zamperini et al. (2007) suggested that mutations in *fljB* (the gene encoding phase 2 flagella) may also cause a serotype 4,5,12:i:- phenotype, we sequenced the 1521 nt *fljB* ORF in three of these isolates (isolates FSL S9-165 and FSL S9-166 showed the same PFGE type [P23] and thus *fljB* was only sequenced for one of these isolates). All

of these isolates had an identical *fljB* sequence, which showed one synonymous single nucleotide polymorphisms as compared to *Salmonella* Typhimurium LT 2 (the representative sequence for FSL S9-102 was deposited in GenBank with accession no. FJ763347), these isolates did not show any non-synonymous changes or other mutations that would explain a lack of phase 2 flagella expression. These four isolates were thus submitted to NVSL (USDA APHIS VS, Ames, IA) for serotype confirmation. While isolates FSL S9-166 and FSL R6-084 were re-serotyped as Typhimurium, FSL S9-102 was re-serotyped twice, once as 4,5,12:i:- and once as Typhimurium and FSL S9-165 was re-serotyped as Typhimurium twice. These results are consistent with previous reports (26) that serotyping of Salmonella may sometimes be difficult to reproduce and suggest that Typhimurium isolates may sometimes be misclassified as 4,5,12::- (and vice versa). While the four specific isolates with inconsistent serotype results characterized here appear to represent serotype Typhimurium (based on genetic evidence for presence of intact phase 2 genes and at least on serotype result characterizing them as Typhimurium), it is tempting to speculate that these isolates may show reduced phase 2 flagella expression, which could be responsible for the inconsistent serotype data. This hypothesis would need to be tested further by expression analyses (e.g., quantitative RT-PCR analysis).

CONCLUSIONS

Overall, our observations suggest that *Salmonella* 4,5,12:i:- evolved through multiple independent emergence events, most likely from serotype Typhimurium ancestors. Serotype 4,5,12:i:- isolates from Spain and the US appear to represent two different clones with distinct geographical distributions. This hypothesis is supported by multiple independent pieces of evidence. First, different genome-wide deletion patterns were found in four Spanish *Salmonella* 4,5,12:i:- isolates (as previously

determined by genomic microarrays [18]) and one US Salmonella 4,5,12:i:- isolate (based on an available whole genome sequence [32]). In particular, clusters I and III were present in the US 4,5,12:i:- isolate (CVM23701), even though these clusters were reported to be absent in Spanish S. 4,5,12:i:- isolates (18). Second, genome analyses and detailed PCR based mapping (of 31 US and 10 Spanish 4,5,12:i:- isolates) showed clearly distinct deletion patterns in the genome region up and downstream of the genes encoding proteins critical for phase 2 flagella and phase variation (i.e., *fljA*, *fljB*, and hin) in all Spanish and all but two US 4,5,12:i:- isolates. Specifically, the Spanish isolates showed two deletions (of clusters IV and V), while the majority of US isolates showed a single larger deletion (encompassing both clusters IV and V as well as the intervening region) with a 3' junction different from that observed in the Spanish isolates. These findings provide another example of a Salmonella serotype of considerable public health relevance that represents at least two independent genetic lineages. For example, Salmonella Newport has previously been shown to represent two distinct genetic lineages, including one lineage that contains predominantly pansusceptible isolates and one that predominantly contains multi-drug resistant isolates (2, 8, 22). In addition, multiple independent emergence of serotype 4,5,12:i:and subsequent ecological success of multiple lineages (as evidenced by common isolation from human clinical cases in both Spain and the US), suggesting a strong selective pressure for loss of phase 2 flagella or a closely linked genotype. Future efforts to define the possible selection for loss of phase 2 flagella and to understand the specific 4,5,12:i- genotypes circulating in countries other than the US and Spain will be critical for understanding of the ecology and evolution of human disease associated non-typhoidal Salmonella.

ACKNOWLEDGEMENTS

We thank Javier Garaizar, University of the Basque Country, Vitoria-Gasteiz, Spain for providing *Salmonella* isolates from Spain and David White, FDA, for providing *Salmonella* food isolates. Support for this project was provided by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract N01-AI-30054 - ZC-006-07 (to Lorin Warnick). Andrea Moreno was supported by National Research Initiative Competitive Grant 2006-55212-17250 from the USDA Cooperative State Research, Education, and Extension Service Epidemiological Approaches to Food Safety program awarded to Dr. Randall Singer.
REFERENCES

- Agasan, A., J. Kornblum, G. Williams, C. C. Pratt, P. Fleckenstein, M. Wong, and A. Ramon. 2002. Profile of *Salmonella enterica* subsp. *enterica* (subspecies I) serotype 4,5,12:I:- strains causing food-borne infections in New York city. J. Clin. Microbiol. 40:1924-1929.
- Alcaine, S. D., Y. Soyer, L. D. Warnick, W. L. Su, S. Sukhnanand, J. Richards, E. D. Fortes, P. McDonough, T. P. Root, N. B. Dumas, Y. Grohn, and M. Wiedmann. 2006. Multilocus sequence typing supports the hypothesis that cow- and human-associated *Salmonella* isolates represent distinct and overlapping populations. Appl. Environ. Microbiol. 72:7575-7585.
- 3. Alcaine, S. D., S. S. Sukhnanand, L. D. Warnick, W. L. Su, P. McGann, P. McDonough, and M. Wiedmann. 2005. Ceftiofur-resistant *Salmonella* strains isolated from dairy farms represent multiple widely distributed subtypes that evolved by independent horizontal gene transfer. Antimicrob. Agents Chemother. 49:4061-4067.
- Aldridge, P. D., C. Wu, J. Gnerer, J. E. Karlinsey, K. T. Hughes, and M. S. Sachs. 2006. Regulatory protein that inhibits both synthesis and use of the target protein controls flagellar phase variation in *Salmonella enterica*. Proc. Natl. Acad. Sci. U.S.A 103:11340-11345.
- Alvarez, J., M. Sota, A. B. Vivanco, I. Perales, R. Cisterna, A. Rementeria, and J. Garaizar. 2004. Development of a multiplex PCR technique for detection and epidemiological typing of *Salmonella* in human clinical samples. J. Clin. Microbiol. 42:1734-1738.
- 6. Amavisit, P., W. Boonyawiwat, and A. Bangtrakulnont. 2005.
 Characterization of *Salmonella enterica* serovar Typhimurium and monophasic

Salmonella serovar 1,4,[5],12:I:- isolates in Thailand. J. Clin. Microbiol. **43:**2736-2740.

- Baggesen, D. L., D. Sandvang, and F. M. Aarestrup. 2000. Characterization of *Salmonella enterica* serovar Typhimurium DT104 isolated from Denmark and comparison with isolates from Europe and the United States. J. Clin. Microbiol. 38:1581-1586.
- Berge, A. C., J. M. Adaska, and W. M. Sischo. 2004. Use of antibiotic susceptibility patterns and pulsed-field gel electrophoresis to compare historic and contemporary isolates of multi-drug-resistant *Salmonella enterica* subsp. *Enterica* serovar Newport. Appl. Environ. Microbiol. **70**:318-323.
- Boonmar, S., A. Bangtrakulnonth, S. Pornruangwong, S. Samosornsuk, K. Kaneko, and M. Ogawa. 1998. Significant increase in antibiotic resistance of *Salmonella* isolates from human beings and chicken meat in Thailand. Veterinary Microbiology 62:73-80.
- CDC. 2008. Salmonella surveillance: Annual summary, 2006. Atlanta, Georgia: US Department of Health and Human Services, CDC.
- Chevance, F. F., and K. T. Hughes. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol.6:455-65.
- Cooke, F. J., D. J. Brown, M. Fookes, D. Pickard, A. Ivens, J. Wain, M. Roberts, R. A. Kingsley, N. R. Thomson, and G. Dougan. 2008.
 Characterization of the genomes of a diverse collection of *Salmonella enterica* serovar Typhimurium definitive phage type 104. J. Bacteriol. 190:8155-8162.
- de la Torre. E., D. Zapata, M. Tello, W. Mejia, N. Frias, F. J. Garcia Pena,
 E. M. Mateu, and E. Torre. 2003. Several *Salmonella enterica* subsp. *enterica* serotype 4,5,12:I:- phage types isolated from swine samples originate
 from serotype Typhimurium DT U302. J. Clin. Microbiol. 41:2395-2400.

- Delgado Ronda, N., J. L. Muñoz Bellido, M. I. García García, R. Ibáñez Pérez, S. Muñoz Criado, R. Serrano Heranz, M. C. Sáenz González, J. A. García Rodríguez. 2006. Molecular epidemiology of drug-resistant Salmonella Typhimurium in Spain Rev. Esp. Quimioterap. 19:152-160.
- Echeita, M. A., A. Aladuena, S. Cruchaga, and M. A. Usera. 1999.
 Emergence and spread of an atypical *Salmonella enterica* subsp *enterica* serotype 4,5,12 : I :- strain in Spain. J. Clin. Microbiol. 37:3425-3425.
- Echeita, M. A., S. Herrera, and M. A. Usera. 2001. Atypical, *fljB*-negative *Salmonella enterica* subsp. enterica strain of serovar 4,5,12:I:- appears to be a monophasic variant of serovar Typhimurium. J. Clin. Microbiol. 39:2981-2983.
- Fakhr, M. K., L. K. Nolan, and C. M. Logue. 2005. Multilocus sequence typing lacks the discriminatory ability of pulsed-field gel electrophoresis for typing *Salmonella enterica* serovar Typhimurium. J. Clin. Microbiol. 43:2215-2219.
- Garaizar, J., S. Porwollik, A. Echeita, A. Rementeria, S. Herrera, R. M. Y. Wong, J. Frye, M. A. Usera, and M. McClelland. 2002. DNA microarraybased typing of an atypical monophasic *Salmonella enterica* serovar. J. Clin. Microbiol. 40:2074-2078.
- Gatto, A. J., T. M. Peters, J. Green, I. S. Fisher, O. N. Gill, J. S. O'Brien, C. Maguire, C. Berghold, I. Lederer, P. Gerner-Smidt, M. Torpdahl, A. Siitonen, S. Lukinmaa, H. Tschape, R. Prager, I. Luzzi, A. M. Dionisi, W. K. van der Zwaluw, M. Heck, J. Coia, D. Brown, M. Usera, A. Echeita, and E. J. Threlfall. 2006. Distribution of molecular subtypes within Salmonella enterica serotype Enteritidis phage type 4 and S. Typhimurium

definitive phage type 104 in nine European countries, 2000-2004: results of an international multi-centre study. Epidemiol. Infect. **134**:729-736.

- 20. Grimont, P., and F. Weil. 2007. Antigenic Formulae of the Salmonella Servovars, 9th ed. Pasteur Institute, Paris: World Health Organization Centre for Reference and Research on Salmonella.
- Guerra, B., I. Laconcha, S. M. Soto, M. A. Gonzalez-Hevia, and M. C. Mendoza. 2000. Molecular characterisation of emergent multiresistant *Salmonella enterica* serotype [4,5,12:I:-] organisms causing human salmonellosis. FEMS Microbiol. Lett. 190:341-347.
- Harbottle, H., D. G. White, P. F. McDermott, R. D. Walker, and S. Zhao.
 2006. Comparison of multilocus sequence typing, pulsed-field gel electrophoresis, and antimicrobial susceptibility typing for characterization of *Salmonella enterica* serotype Newport isolates. J. Clin. Microbiol. 44:2449-2457.
- Hunter, P. R., and M. A. Gaston. 1988. Numerical index of the discriminatory ability of typing systems: An application of Simpson's index of diversity. J. Clin. Microbiol. 26:2465-2466.
- 24. Maiden, M. C. J., J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin, Q. Zhang, J. J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers, M. Achtman, and B. G. Spratt. 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U.S.A. 95:3140-3145.
- 25. Matiasovicova, J., P. Adams, P. A. Barrow, H. Hradecka, M. Malcova, R. Karpiskova, E. Budinska, L. Pilousova, and I. Rychlik. 2007. Identification of putative ancestors of the multidrug-resistant *Salmonella enterica* serovar

Typhimurium DT104 clone harboring the *Salmonella* genomic island 1. Arch. Microbiol. **187:**415-24.

- McQuiston, J. R., R. Parrenas, M. Ortiz-Rivera, L. Gheesling, F. Brenner, and P. I. Fields. 2004. Sequencing and comparative analysis of flagellin genes *fliC, fljB*, and *flpA* from *Salmonella*. J. Clin. Microbiol. 42:1923-1932.
- Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro,
 P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the
 United States. Emerg. Infec. Dis. 5:607-625.
- 28. Moreno Switt, A. I., Y. Soyer, L. D. Warnick, and M. Wiedmann. 2009. Emergence, distribution and molecular and phenotypic characteristics of *Salmonella enterica* serotype 4,5,12:I:-. Foodborne Pathog. Dis. in press.
- Mossong, J., P. Marques, C. Ragimbeau, P. Huberty-Krau, S. Losch, G. Meyer, G. Moris, C. Strottner, W. Rabsch, and F. Schneider. 2007.
 Outbreaks of monophasic *Salmonella enterica* serovar 4,[5],12:I:- in Luxembourg, 2006. Euro. Surveill. 12:E11-E12.
- Posada, D., and K. A. Crandall. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics. 14:817-818.
- 31. Ribot, E. M., M. A. Fair, R. Gautom, D. N. Cameron, S. B. Hunter, B. Swaminathan, and T. J. Barrett. 2006. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of *Escherichia coli* O157:H7, *Salmonella*, and *Shigella* for PulseNet. Foodborne Pathog. Dis. 3:59-67.
- 32. Rosovitz, M. J., McDermott, P., White, D., LeClerc, J. E., Mammel, M. K., Cebula, T. A. and Ravel, J. Annotation of *Salmonella enterica* subsp. *enterica* serovar 4,[5],12:I:- str. CVM23701. The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA

http://msc.jcvi.org/Salmonella/Salmonella_enterica_subsp__enterica_serovar_ 4_5_12_i__str_cvm23701/index.shtml.

- 33. Sukhnanand, S., S. Alcaine, L. D. Warnick, W. L. Su, J. Hof, M. P. Craver, P. McDonough, K. J. Boor, and M. Wiedmann. 2005. DNA sequence-based subtyping and evolutionary analysis of selected *Salmonella enterica* serotypes. J. Clin. Microbiol. 43:3688-3698.
- Swaminathan, B., P. Gerner-Smidt, and T. Barrett. 2006. Focus on Salmonella. Foodborne Pathog. Dis. 3:154-156.
- Swofford, D. L. 2002. Paup*: Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
- 36. Tavechio, A. T., A. C. Ghilardi, and S. A. Fernandes. 2004. "Multiplex PCR" Identification of the atypical and monophasic *Salmonella enterica* subsp. *enterica* serotype 1,4,[5],12:I:- in Sao Paulo State, Brazil: Frequency and antibiotic resistance patterns. Rev. Inst. Med. Trop. Sao Paulo. 46:115-117.
- 37. Yamamoto, S., and K. Kutsukake. 2006. *fljA*-mediated posttranscriptional control of phase 1 flagellin expression in flagellar phase variation of *Salmonella enterica* serovar Typhimurium. J. Bacteriol. 188:958-967.
- 38. Zamperini, K., V. Soni, D. Waltman, S. Sanchez, E. C. Theriault, J. Bray, and J. J. Maurer. 2007. Molecular characterization reveals *Salmonella enterica* serovar 4,[5],12:I:- from poultry is a variant Typhimurium serovar. Avian. Dis. 51:958-64

CHAPTER 5

CONCLUSIONS

Salmonella serotypes can cause a wide range of diseases, from self-limiting gastroenteritis to severe systemic infections. Salmonella nontyphoid serotypes are the major cause of known foodborne diseases worldwide. In the US alone, the annual economic burden due to Salmonella was estimated at \$2.8 billion, which does not include any economic loss due to recalls in the food industry. Since Salmonella remains to be a public health concern and causes huge economic loss in the food industry, it is important to determine the transmission, ecology and evolution of Salmonella in different host species from different geographical regions to assure public health worldwide.

The study reported in chapter 2 was conducted to provide a better understanding of the genetic relationship and epidemiology of human and cattle associated *Salmonella*. In this study, we used a total of 335 human and bovine *Salmonella* clinical isolates, collected from New York and a neighboring state (Vermont), and we characterized them by serotyping and pulsed field gel electrophoresis (PFGE), as well as multilocus sequence typing (MLST). My work showed that:(i) PFGE provides higher discrimination for human and bovine *Salmonella* isolates than serotyping and MLST; (ii) PFGE can be used to differentiate host specific and unrestricted *Salmonella* subtypes, as well as widely distributed *Salmonella* subtypes, and (iii) persistent *Salmonella* isolates may cause infection more than once on the same farm. Overall, the combination of these subtyping methods provides a better understanding of ecology and transmission of *Salmonella*.

Using different subtyping methods, we built a database which will be used to determine host specific, unrestricted, geographically clustered and spatially persistent *Salmonella* subtypes. The data we generated in this study, as well as isolate

138

information (e.g. isolation year, source, antibiotic resistance, county) are publicly available in Pathogen Tracker (www.pathogentracker.net) and can be used by other researchers for their academic purposes and for their epidemiological investigations. We also found that the larger database, which includes *Salmonella* isolates from various sources from different regions of the US, as well as different countries and continents, in combination with more sensitive molecular biology techniques, will enhance our abilities to detect outbreaks and link the outbreak to a specific food faster. This improves our ability to secure a safe food supply, thus safeguards the public health.

Further work is needed to assess which mechanisms are responsible for *Salmonella's* ability to survive in different host species as well as the mechanisms that determines its the pathogenic potential in *Salmonella* host adapted and unrestricted subtypes determined in this study. The data provided in Chapter 2 can be used in future studies to further determine the distribution of subtypes of *Salmonella* nontyphoidal serotypes from different geographical regions world wide, as well as from different years. The data can also be used to detect which *Salmonella* subtypes among host adapted or unrestricted subtypes are more likely to gain multi drug resistance.

Results from chapter 3 clearly indicate that positive selection and homologous recombination among core genome genes play an important role in the evolution of bacterial pathogens. These are, in addition, to the well established importance of gene acquisition and deletion in conjunction with previous genome wide studies on positive selection in other pathogens. Our analyses clearly show that both homologous recombination and positive selection (particularly lineage-specific positive selection) contribute critically to the evolution of the *Salmonella* core genome. Genes with evidence of positive selection identified here may provide promising targets for future

139

mutational studies aimed at further identifying mechanisms that contribute to *Salmonella* diversification, including its adaptation to specific host species. The relevance of the lineage-specific positive selection patterns identified is supported by the convergence of the positive selection patterns identified in the *Salmonella* Typhi lineage (i.e., for genes encoding proteins involved in purine, pyrimidine, nucleotide and nucleotide biosynthesis) and experimental evidence that genes involved in *de novo* nucleotide biosynthesis are essential for bacterial growth in blood.

Further studies are needed with additional *Salmonella* genomes, with different serotypes, source and multidrug resistant patterns to further improve our understanding of bacterial pathogens. In addition, further studies are needed to assess the roles on virulence of the genes found to have evidence of under positive selection and recombination in my study in different host species.

The study described in chapter 4 was conducted to better understand the evolution and ecology of *Salmonella* serotype 4,5,12:i:-, a newly emerged serotype, in the US and Spain using a variety of molecular methods. Our data indicate that (i) *Salmonella* 4,5,12:i:- and Typhimurium represent a highly clonal group, which can be differentiated by PFGE, (ii) US and Spanish 4,5,12:i:- isolates show different patterns of gene deletion in the regions encoding phase 2 flagella and represent distinct PFGE patterns, and (iii) in addition to two common 4,5,12:i:- genotypes (designated in this study as the "Spanish" and the "US" 4,5,12:i:- clone), other 4,5,12:i:- genotypes exist. The novel finding in Chapter 4 showed that *Salmonella* 4,5,12:i:- most likely represents multiple clones that emerged through independent deletion events.

These findings provide another example of a *Salmonella* serotype of considerable public health relevance that represents at least two independent genetic lineages. Multiple independent emergence of serotype 4,5,12:i:- and the subsequent ecological success of multiple lineages (as evidenced by common isolation from

140

human clinical cases in both Spain and the US), suggest a strong selective pressure for loss of phase 2 flagella on *Salmonella* Typhimurium or a closely linked genotype. Future efforts to define the possible selection for loss of phase 2 flagella and to understand the specific 4,5,12:i- genotypes circulating in countries other than the US and Spain will be critical for understanding the ecology and evolution of human disease associated non-typhoidal *Salmonella*.

In conclusion, my Ph.D. work provides important contributions to our understanding of the transmission and evolution of *Salmonella*. My work provides additional information on the *Salmonella* core genome that is important for understanding the evolution of *Salmonella* to help the food industry to detect and differentiation of *Salmonella* species (e.g. developing rapid molecular techniques to detect *Salmonella*). Further, this study provides data that may contribute to identification of novel targets for drugs for salmonellosis and/or typhoid fever or may aid in vaccine development to prevent typhoid fever in developing countries.

APPENDIX ONE

LIST OF SUPPLEMENTAL TABLES

 Table A1 [S2.1]. A total of 335 spatially and temporally matched Salmonella enterica spp. enterica nontyphoidal isolates and their characteristics

FSL No. ^a	County	State	Farm	Serotype	Source	ST	PFGE	PFGE Pattern					
	2		No.	21			Type No.	Designation					
FSL S5-546	Wyoming	NY	259	Muenster	Cattle	44	2	NYCU.TDSX01.0004					
FSL S5-425	Wyoming	NY	259	Muenster	Cattle	44	4	NYCU.TDSX01.0005					
FSL S5-387	Franklin	NY	909	Muenster	Cattle	44	5	NYCU.TDSX01.0002					
FSL S5-432	Wyoming	NY	907	Muenster	Cattle	44	5	NYCU.TDSX01.0002					
FSL S5-868	Wyoming	NY	259	Muenster	Cattle	44	6	NYCU.TDSX01.0006					
FSL S5-789	Orleans	NY	853	Muenster	Cattle	44	7	NYCU.TDSX01.0003					
FSL S5-917	Livingston	NY	329	Muenster	Cattle	44	7	NYCU.TDSX01.0003					
FSL S5-798	Livingston	NY	329	Muenster	Cattle	44	7	NYCU.TDSX01.0003					
FSL S5-838	Livingston	NY	329	Muenster	Cattle	44	7	NYCU.TDSX01.0003					
FSL S5-547	Lewis	NY	54	Agona	Cattle	1	13	NYCU.JABX01.0006					
FSL S5-549	Rensselaer	NY	120	Havana	Cattle	69	36	NYCU.TDLX01.0001					
FSL S5-427	Oneida	NY	61	Oranienburg	Cattle	53	41	NYCU.JJXX01.0002					
FSL S5-551	Washington	NY	186	Adelaide	Cattle	75	44	NYCU.TDAX01.0002					
FSL S5-429	Cortland	NY	911	Typhimurium	Cattle	6	60	NYCU.JPXX01.0024					
FSL S5-845	Clinton	NY	764	Typhimurium	Cattle	6	60	NYCU.JPXX01.0024					
FSL S5-933	Clinton	NY	243	Typhimurium	Cattle	6	60	NYCU.JPXX01.0024					
FSL S5-784	Clinton	NY	764	Typhimurium	Cattle	6	60	NYCU.JPXX01.0024					
FSL S5-788	Niagara	NY	904	Typhimurium	Cattle	49	63	NYCU.JPXX01.0027					
FSL S5-607	Rensselaer	NY	584	Typhimurium	Cattle	6	64	NYCU.JPXX01.0031					
FSL S5-555	Tompkins	NY	100	Typhimurium	Cattle	6	65	NYCU.JPXX01.0005					
FSL S5-564	St.	NY	208	Typhimurium	Cattle	6	66	NYCU.JPXX01.0006					
	Lawrence		• • • •		<i>.</i> .								
FSL S5-556	St.	NY	208	Typhimurium	Cattle	6	66	NYCU.JPXX01.0006					
	Lawrence				G 11	-	-						
FSL S5-620	Wyoming	NY	415	Typhimurium	Cattle	6	70	NYCU.JPXX01.0010					
FSL S5-747	Wyoming	NY	691	Typhimurium	Cattle	6	70	NYCU.JPXX01.0010					
FSL S5-831	Wyoming	NY	837	Typhimurium	Cattle	6	70	NYCU.JPXX01.0010					
FSL S5-805	Orleans	NY	826	Typhimurium	Cattle	6	72	NYCU.JPXX01.0012					
FSL S5-799	Genesee	NY	821	Typhimurium	Cattle	6	/3	NYCU.JPXX01.0013					
FSL S5-936	Rensselaer	NY	125	Typhimurium	Cattle	6	79	NYCU.JPXX01.0019					
FSL S5-931	Rensselaer	NY	125	Typhimurium	Cattle	6	/9	NYCU.JPXX01.0019					
FSL 55-729	w asnington	IN Y	804	Typnimurium	Cattle	6	84	NYCUJPXX01.0028					
FSL 55-896	Rensselaer	IN Y	318	1 ypnimurium	Cattle	6	85	NYCU IPXX01.0029					
FSL 55-/5/	wyoming	IN I NIV	201	4,5,12:1:-	Cattle	0	89	NYCU IDXX01.0033					
FSL 53-433	Wuomina	IN I NIV	820	1 ypnimurium	Cattle	0	89	NYCU IDXX01.0033					
FSL 53-336	Wyoming	IN I NIV	201	4,5,12:1:-	Cattle	0	89 80	NICUJPAA01.0055					
FSL 53-397	Wyoming	IN I NIV	201	4,5,12:1:-	Cattle	0	89 80	NICUJPAA01.0055					
FSL 53-013	Wyoming	IN I NV	201	4,5,12:1:-	Cattle	6	89 80	NICUJPAA01.0055					
FSL SJ-022	Wyoming	IN I NIV	201	4,5,12:1:-	Cattle	0	89 00	NICUJPAA01.0055					
FSL 53-360	Clinton	IN I NV	201 524	4,5,12:1:-	Cattle	6	90	NICUJPAA01.0055					
FSL 53-390	Wyoming	IN I NV	524 261	4,5,12.1	Cattle	6	90	NYCU IDVV01 0024					
FSL 53-016	Niagara	IN I NV	510	4,5,12.1	Cattle	6	91	NYCU IDVV01 0001					
FSL 53-010	Wyoming	IN I NV	261	4,5,12:1:-	Cattle	6	94	NYCU IDXX01.0001					
FSL 53-691	Wyoming	IN I NV	201	4,J,12.1 Tunhimurium	Cattle	6	94	NYCU IDVV01 0001					
FSL 55-744 FSL 85 777	Wyoming	IN I NV	201	4 5 12·i·	Cattle	6	94	NYCU IPYY01 0001					
FSL S5-777	Wyoming	NV	201	4,5,12.1	Cattle	6	94	NYCU IPYY01 0001					
FSL 55-762	Wyoming	NV	201	4,5,12.1	Cattle	6	94 04	NVCI IDV01 0001					
FSL 55-765	Wyoming	NV	201	4,5,12.1 4 5 12.i	Cattle	6	94 Q/	NYCI IPXY01 0001					
FSL 55-620	Wyoming	NV	201	4,5,12.1	Cattle	6	24 04	NVCU IDVV01 0001					
FSL 55-629	Wyoming	NV	261	4,5,12.1 4 5 12.i	Cattle	6	94 Q/	NYCII IPXY01 0001					
1.95 93-041	w yonning	1 1 1	201	4,5,12.1	Cattle	U	74	NICU.JI AA01.0001					

Table A1 [S2.1]. (Continued)

FSL S5-865	Wyoming	NY	261	4,5,12:i:-	Cattle	6	94	NYCU.JPXX01.0001
FSL S5-876	Wyoming	NY	261	4,5,12:i:-	Cattle	6	94	NYCU.JPXX01.0001
FSL S5-924	Wyoming	NY	261	4,5,12:i:-	Cattle	6	94	NYCU.JPXX01.0001
FSL S5-759	Wyoming	NY	261	4,5,12:i:-	Cattle	6	95	NYCU.JPXX01.0038
FSL S5-431	Erie	NY	901	Kentucky	Cattle	17	96	NYCU.JGPX01.0001
FSL S5-889	Wyoming	NY	261	Kentucky	Cattle	17	96	NYCU.JGPX01.0001
FSL S5-822	Wyoming	NY	261	Kentucky	Cattle	17	96	NYCU.JGPX01.0001
FSL S5-840	Wyoming	NY	261	Kentucky	Cattle	17	96	NYCU.JGPX01.0001
FSL S5-864	Wyoming	NY	261	Kentucky	Cattle	17	96	NYCU.JGPX01.0001
FSL S5-873	Wyoming	NY	261	Kentucky	Cattle	17	96	NYCU.JGPX01.0001
FSL S5-947	Lewis	NY	11	Mbandaka	Cattle	65	100	NYCU.TDRX01.0004
FSL S5-796	Chenango	NY	105	Typhimurium	Cattle	8	102	NYCU.JPXX01.0002
FSL S5-554	Cavuga	NY	97	Typhimurium	Cattle	8	104	NYCU IPXX01.0004
FSL S5-786	Washington	NY	225	Typhimurium	Cattle	8	104	NYCUJPXX01.0004
FSL S5-800	Washington	NY	186	Typhimurium	Cattle	8	104	NYCU IPXX01.0004
FSL S5-916	Washington	NY	186	Typhimurium	Cattle	8	104	NYCU IPXX01 0004
FSL S5-550	Cavuga	NY	97	Typhimurium	Cattle	8	104	NYCU IPXX01.0004
FSL S5-797	Washington	NY	186	Typhimurium	Cattle	8	104	NYCU IPXX01 0004
FSL S5-428	Oswego	NY	906	Rough ori: 1.2	Cattle	8	105	NYCU YABX01 0001
FSL S5-430	Oswego	NY	906	Typhimurium	Cattle	8	105	NYCII IPXX01 0041
FSL S5-839	Saratoga	NY	223	Infantis	Cattle	60	107	NYCU IFXX01.0001
FSL \$5-553	Saratoga	NY	223	Infantis	Cattle	60	107	NYCU IFXX01.0001
FSL S5-560	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL S5-500	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL S5-575	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL S5 582	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL 55-582	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU IFXX01.0001
FSL S5 503	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL S5-617	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL 55-017	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU IFXX01.0001
FSL S5-725	Saratoga	NV	223	Infantis	Cattle	60	107	NYCU IFXX01.0001
FSL S5-750	Saratoga	NY	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
FSL S5-760	Saratoga	NY	223	Infantis	Cattle	60	107	NYCU JEXX01.0001
ESL \$5-566	Saratoga	NY	223	Infantis	Cattle	60	108	NYCU IFXX01.0002
FSL \$5-590	Saratoga	NY	223	Infantis	Cattle	60	109	NYCU IFXX01 0003
FSL S5-734	Cavuga	NY	163	Infantis	Cattle	60	114	NYCUJEXX01.0009
ESL S5-559	Wyoming	NY	415	Montevideo	Cattle	9	119	NYCU IIXX01 0005
FSL S5-757	Livingston	NY	329	Montevideo	Cattle	9	119	NYCU IIXX01 0005
ESL S5-630	Washington	NY	521	Montevideo	Cattle	9	120	NYCU IIXX01 0006
FSL S5-836	Genesee	NY	838	Bardo	Cattle	11	121	NYCU TEGX01 0002
FSL S5-436	Oneida	NY	902	Newport	Cattle	11	121	NYCU UPX01 0001
FSL S5-544	Oneida	NY	228	Newport	Cattle	11	121	NYCU UPX01 0001
FSL S5-545	Wyoming	NY	260	Newport	Cattle	11	121	NYCU UPX01.0001
FSL \$5-611	Niagara	NY	510	Newport	Cattle	11	121	NYCU UPX01 0001
FSL \$5-612	Frie	NY	522	Newport	Cattle	11	121	NYCU UPX01.0001
FSL \$5-621	Wyoming	NY	791	Newport	Cattle	11	121	NYCU UPX01 0001
FSL S5-739	Niagara	NY	827	Newport	Cattle	11	121	NYCU UPX01.0001
FSL \$5-776	Niagara	NY	637	Newport	Cattle	11	121	NYCU UPX01 0001
FSL S5-842	Chenango	NY	105	Newport	Cattle	11	121	NYCU UPX01.0001
FSL S5-629	Niagara	NY	510	Newport	Cattle	11	121	NYCU UPX01 0001
FSL S5-730	Niagara	NY	510	Newport	Cattle	11	121	NYCU UPX01.0001
FSL S5-740	Niagara	NY	510	Newport	Cattle	11	121	NYCU IIPX01 0001
FSL \$5-746	Niagara	NV	510	Newport	Cattle	11	121	NYCII IIPX01.0001
FSL \$5-752	Niagara	NV	510	Newport	Cattle	11	121	NYCII IIPX01 0001
FSI \$5-752	Niagara	NV	510	Newport	Cattle	11	121	NYCU IIPX01.0001
FSL \$5-762	Niagara	NV	510	Newport	Cattle	11	121	NYCII IIPX01 0001
FSI S5-702	Niagara	NV	510	Newport	Cattle	11	121	
FSL S5-760	Niagara	NV	510	Newport	Cattle	11	121	NVCI HDV01 0001
FSL 55-833	Niagara	NV	510	Newport	Cattle	11	121	NYCU UPYAI AAA
195 93-033	Tuagata	111	510	rewport	Cattle	11	121	101CU.JJI A01.0001

Table A1 [S2.1]. (Continued)

FSL S5-846	Niagara	NY	510	Newport	Cattle	11	121	NYCU.JJPX01.0001
FSL S5-879	Niagara	NY	510	Newport	Cattle	11	121	NYCU.IJPX01.0001
FSL S5 882	Niagara	NV	510	Newport	Cattle	11	121	NYCU UPY01 0001
FSL 53-002	Niagara	INI	510	Newport	Cattle	11	121	NICUJJFA01.0001
FSL S5-88/	Niagara	ΝY	510	Newport	Cattle	11	121	NYCU.JJPX01.0001
FSL S5-903	Niagara	NY	510	Newport	Cattle	11	121	NYCU.JJPX01.0001
FSL S5-910	Niagara	NY	510	Newport	Cattle	11	121	NYCU.JJPX01.0001
FSI \$5-914	Niagara	NY	510	Newport	Cattle	11	121	NYCU 11PX01 0001
	Niasana	NIX	510	Name	Cattle	11	121	NVCU UDV01 0001
FSL 55-920	Magara	IN Y	510	Newport	Cattle	11	121	NYCU.JJPX01.0001
FSL S5-938	Niagara	NY	510	Newport	Cattle	11	121	NYCU.JJPX01.0001
FSL S5-850*	Niagara	NY	510	Newport	Cattle	11	122	NYCU.JJPX01.0022
FSL S5-570	Franklin.	VT	488	Bardo	Cattle	11	126	NYCU.TEGX01.0001
	VT							
EGI 05 400	V I	N 1 N 7	002	NT (0.41	11	100	NVCU UDV01 0002
FSL 55-420	Seneca	IN Y	903	Newport	Cattle	11	120	NYCU.JJPX01.0003
FSL S5-424	St.	NY	204	Newport	Cattle	11	126	NYCU.JJPX01.0003
	Lawrence							
ESL 85-557	Franklin	VT	303	Newport	Cattle	11	126	NYCU 11PX01 0003
162 65 557	VT	• 1	505	riempore	Cuttle		120	11100.001
DOL 05 550		1.00	220		G 11		10.6	
FSL S5-578	Franklin,	VT	320	Newport	Cattle	11	126	NYCU.JJPX01.0003
	VT							
FSL S5-601	Franklin.	VT	218	Newport	Cattle	11	126	NYCU.JJPX01.0003
	VT			P				
	Clinter	NIX	504	NT	Cattle	11	126	NVCU UDV01 0002
FSL 55-005	Clinton	INY	524	Newport	Cattle	11	120	NYCUJJPX01.0005
FSL S5-610	Cayuga	NY	163	Newport	Cattle	11	126	NYCU.JJPX01.0003
FSL S5-619	Onondaga	NY	152	Newport	Cattle	11	126	NYCU.JJPX01.0003
FSL S5-624	Franklin.	VT	488	Newport	Cattle	11	126	NYCU.IJPX01.0003
102.00 02.	VT	• •		rienpoir	cum		120	
		VT	400	NT (0.41	11	100	NVCU UDV01 0002
FSL S5-626	Chittenden,	VI	490	Newport	Cattle	11	126	NYCU.JJPX01.0003
	VT							
FSL S5-548	Franklin,	VT	303	Newport	Cattle	11	126	NYCU.JJPX01.0003
	VT			1				
ESI 85 561	Eronklin	VТ	100	Noumort	Cattle	11	126	NVCU UDV01 0002
L27 22-201	Franklin,	V I	400	Newport	Cattle	11	120	NICU.JJPA01.0005
	VT							
FSL S5-567	Franklin,	VT	488	Newport	Cattle	11	126	NYCU.JJPX01.0003
	VT			1				
ESI S5 577	Franklin	VТ	320	Newport	Cattle	11	126	NVCU UDV01 0003
TSL 55-577		V I	520	Newport	Cattle	11	120	N1C0.JJ1X01.0003
	V I							
FSL S5-623	Onondaga	NY	152	Newport	Cattle	11	126	NYCU.JJPX01.0003
FSL S5-631	Onondaga	NY	152	Newport	Cattle	11	126	NYCU.JJPX01.0003
ESI \$5-722	Cavuga	NY	163	Newport	Cattle	11	126	NYCU JIPX01 0011
ESL 85 722	Onondoao	NV	150	Neumont	Cattle	11	120	NVCU UDV01 0002
FSL 53-752	Onondaga	IN I	132	Newport	Cattle	11	120	NICUJJPA01.0005
FSL S5-552	Chittenden,	VT	489	Newport	Cattle	11	127	NYCU.JJPX01.0004
	VT							
FSL S5-562	Lamoille.	VT	359	Newport	Cattle	11	127	NYCU.JJPX01.0004
	VT			- · · · · · · · ·				
		N 1 N 7	524	NT (0.41	11	107	NIXCUL LIDX01 0004
FSL 55-594	Clinton	IN Y	524	Newport	Cattle	11	127	NYCU.JJPX01.0004
FSL S5-628	Chittenden,	VT	490	Newport	Cattle	11	127	NYCU.JJPX01.0004
	VT							
ESL \$5-625	Clinton	NY	524	Newport	Cattle	11	127	NYCU 11PX01 0004
FSL S5 627	Chittandan	VT	400	Newport	Cattle	11	127	NYCU UPY01 0004
FSL 55-027	Cinttenden,	V I	490	Newport	Cattle	11	127	NICU.JJFA01.0004
	VT							
FSL S5-766	Clinton	NY	524	Newport	Cattle	11	127	NYCU.JJPX01.0004
FSL S5-591	Chittenden.	VT	490	Newport	Cattle	11	129	NYCU.JJPX01.0007
	VT			- · · · Port		- •		
EQL OF COO	V 1 Enc 1-1'	177	200	Nerror (C-#1	11	120	NVCU UDV01 0011
FSL S5-602	Franklin,	VT	300	Newport	Cattle	11	132	NYCU.JJPX01.0011
	VT							
FSL S5-715	Lewis	NY	438	Newport	Cattle	11	132	NYCU.JJPX01.0011
FSL \$5-419	Cortland	NY	910	Newport	Cattle	11	150	NYCU IIPX01 0013
	Cottores	NINZ	600	A 10.	Cottl-	- 1 I - C	150	NVCI IDVV01 0020
LOT 22-120	Canaraugus	INI	080	4, 12:1:-	Cattle	0	155	NICUJPAAUL0039
FSL S5-761	Niagara	ΝY	6/9	Thompson	Cattle	62	157	NYCU.JP6X01.0001

Table A1 [S2.1]. (Continued)

FSL S5-765	Livingston	NY	329	329 Thompson		62	157	NYCU.JP6X01.0001
FSL S5-386	Livingston	NY	905	Thompson	Cattle	43	159	NYCU.JP6X01.0003
FSL S5-437	Tompkins	NY	908	Agona	Cattle	2	164	NYCU.JABX01.0004
FSL S5-748	Rensselaer	NY	584	Agona	Cattle	2	165	NYCU.JABX01.0005
ESL \$5-867	Allegany	NY	599	Agona	Cattle	2	166	NYCII IABX01 0007
ESI S5 972	Donesoloor	NV	591	Agona	Cattle	2	166	NYCU LAPYOL 0007
FSL 53-0/2	Relissenaer	IN I NIX	200	Agona		2	100	NICUJABA01.0007
FSL 55-505	Clinton	IN Y	308	Newport	Cattle	11	108	NYCU.JJPA01.0005
FSL S5-660	Clinton	NY		Urbana	Human	52	1	NYCU.JQGX01.0003
FSL S5-485	Erie	NY		Saintpaul	Human	38	3	NYCU.JN6X01.0004
FSL S5-401	Chemung	NY		Muenster	Human	44	8	NYCU.TDSX01.0001
FSL S5-481	Erie	NY		Pomona	Human	29	9	NYCU.POMX01.0002
FSL S5-487	Unknown	NY		Give	Human	30	10	NYCU.JEXX01.0001
ESL S5-661	Schenectady	NY		Urbana	Human	52	11	NYCU 10GX01 0002
FSL \$5-512	Monroe	NY		Saintnaul	Human	81	12	NYCU IN6X01 0003
FSL S5 456	Orleans	NV		Schwarzen	Human	4	14	NYCU IM6Y01 0001
TSL 55-450	Offeatis	191		Schwarzen-	Tuman	4	14	NTCO.JM0X01.0001
	0.1	N 7 N 7		grund			1.4	
FSL S5-458	Orleans	ΝY		Schwarzen-	Human	4	14	NYCU.JM6X01.0001
				grund				
FSL S5-379	Suffolk	NY		Panama	Human	37	15	NYCU.JKGX01.0001
FSL S5-454	Chenango	NY		Panama	Human	37	16	NYCU.JKGX01.0002
FSL S5-652	Erie	NY		Javiana	Human	21	17	NYCU.JGGX01.0004
FSL S5-406	Bronx	NY		Javiana	Human	21	18	NYCU.JGGX01.0003
ESL \$5-500	Nassau	NY		Panama	Human	19	19	NYCU IKGX01 0003
FSL S5 305	Dichmond	NV		Iaviana	Human	10	20	NYCU ICGY01 0001
	Nasaaa	IN I NIV		Javialia	TTuman	19	20	NYCH ICCY01 0002
FSL 55-005	Nassau	IN I		Javiana	Human	19	21	NYCU.JGGX01.0002
FSL S5-453	Nassau	NY		Arechavaleta	Human	37	22	NYCU.AREX01.0001
FSL S5-502	Nassau	NY		Berta	Human	82	23	NYCU.JAXX01.0001
FSL S5-474	Suffolk	NY		Montevideo	Human	56	24	NYCU.JIXX01.0003
FSL S5-478	Suffolk	NY		Montevideo	Human	56	24	NYCU.JIXX01.0003
FSL S5-382	Chautauqua	NY		Montevideo	Human 57 25		25	NYCU.JIXX01.0004
FSL S5-414	Erie	NY		Enteritidis	Human	14	26	NYCU.JEGX01.0001
FSL S5-415	Broome	NY		Enteritidis	Human	14	26	NYCU IEGX01 0001
FSL S5 413	Dutchess	NV		Enteritidis	Human	14	20	NYCU JEGY01 0001
FSL 55-445	Suffall	NV		Enteritidia	Human	14	20	NYCU JECX01.0001
FSL 53-443	SUIIOIK	IN I		Enterniois	Human	14	20	NICUJEGX01.0001
FSL S5-3/1	Erie	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
FSL S5-376	Nassau	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
FSL S5-377	Nassau	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
FSL S5-402	Unknown	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
FSL S5-486	Onondaga	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
FSL S5-514	Suffolk	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
FSL S5-522	Westchester	NY		Enteritidis	Human	14	27	NYCU.JEGX01.0002
ESL S5-528	Frie	NY		Enteritidis	Human	14	27	NYCU JEGX01 0002
FSL S5 641	Westchester	NV		Enteritidis	Human	14	27	NYCU JEGY01 0002
FSL SJ-041	Monroo	NV		Enteritidia	Human	14	27	NYCU JECX01.0002
FSL 53-400	Monroe	IN I			Human	14	20	NICUJEGA01.0005
FSL S5-492	Orange	NY		Typhimurium	Human	6	29	NYCU.JPXX01.0043
FSL S5-467	Kings	NY		Enteritidis	Human	14	30	NYCU.JEGX01.0004
FSL S5-539	Onondaga	NY		Enteritidis	Human	14	30	NYCU.JEGX01.0004
FSL S5-645	Orange	NY		Enteritidis	Human	14	30	NYCU.JEGX01.0004
FSL S5-538	Nassau	NY		Enteritidis	Human	14	31	NYCU.JEGX01.0005
FSL S5-416	Albany	NY		Enteritidis	Human	36	32	NYCU.JEGX01.0006
FSL S5-444	Tompkins	NY		Enteritidis	Human	36	32	NYCUJEGX01 0006
FSL S5_450	Erio	NV		Enteritidie	Human	36	32	NYCU JEGY01 0006
TOL 0J-4J9	Dalarrer	IN I NIV		Enteritials	T Turllall	20	32	NVCU IECV01.0007
FSL 55-461	Delaware	IN Y		Enteritidis	ниman	36	32	IN I CU.JEGX01.0006
FSL S5-496	Monroe	IN Y		Enteritidis	Human	nan 36 32		NYCU.JEGX01.0006
FSL S5-508	Nassau	NY		Enteritidis	Human	36	32	NYCU.JEGX01.0006
FSL S5-483	Westchester	NY		Enteritidis	Human	36	33	NYCU.JEGX01.0007
FSL S5-497	Monroe	NY		Enteritidis	Human	14	34	NYCU.JEGX01.0008
FSL S5-407	Orange	NY		Dublin	Human	23	35	NYCU.JDXX01.0001
FSL S5-439	Suffolk	NY		Dublin	Human	23	35	NYCU.JDXX01.0001

Table A1	[S2.1]. ((Continued))
----------	-----------	-------------	---

FSL S5:37 Ave: Alegany NY 1,7-:1,5 Human 58 37 NYCU.JERN01.003 FSL S5:374 Monoe NY 4,5.12::- Human 40 39 NYCU.JERN01.0040 FSL S5:374 Monoe NY 4,5.12::- Human 40 NYCU.JEXN01.0040 FSL S5:464 Alonore NY Paratyphi C Human 80 42 NYCU.JEXN01.0001 FSL S5:466 Albany NY Adelaide Human 84 45 NYCU.JEXN01.0001 FSL S5:467 Oncida NY Berta Human 83 46 NYCU.JACN01.0001 FSL S5:468 Kings NY Urbana Human 63 49 NYCU.JACN01.0001 FSL S5:461 Schenectady NY Urbana Human 15 15 NYCU.JACN0.0001 FSL S5:461 Schenectady NY Urbana Human 15 NYCU.JACN0.0001 FSL S5:461 NY Agona Human 15 NYCU.JACN0.0001 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
FSI. SS:373 Westchester NY Braenderup Human 61 38 NYCU.JPXX01.0001 FSI. SS:474 Monroe NY Oranienburg Human 53 40 NYCU.JPXX01.0001 FSI. SS:464 Monroe NY Paratyphi C Human 83 40 NYCU.JPXX01.0001 FSI. SS:469 Nasau NY Paratyphi C Human 83 46 NYCU.JPXX01.0001 FSI. SS:469 Nasau NY Berta Human 52 47 NYCU.JQX01.0001 FSI. SS:470 Schenectady NY Urbana Human 52 47 NYCU.JQX01.0001 FSI. SS:471 Alsan NY Blockley Human 61 38 NYCU.JRX01.0001 FSI. SS:472 Onondagn NY Poona Human 1 53 NYCU.JAX01.0001 FSI. SS:474 Bronx NY Agona Human 1 54 NYCU.JAX01.0001 FSI. SS:464 New York Y Agona Human 57 NYCU.JF6X01.0003 FSI. SS:465 Newi OK NY Heideb		FSL S5-662	Allegany	NY	1,7:-:1,5	Human	58	37	NYCU.SC1X01.0003
FSL S5-42 Nassau NY 45,12: Human 40 39 NYCUJ7XX01.040 FSL S5-42 Nassau NY Paratyphi C Human 80 42 NYCUJ7XX01.040 FSL S5-446 Abany NY Paratyphi C Human 80 42 NYCUJ7XX01.0400 FSL S5-458 Schenetady NY Paratyphi B Human 83 46 NYCUJ7XX01.0001 FSL S5-468 Schenetady NY Urbana Human 52 47 NYCUJ6X01.0001 FSL S5-468 Kings NY Urbana Human 63 49 NYCUJEX01.0001 FSL S5-467 Suffolk NY Agona Human 63 49 NYCUJEX01.0001 FSL S5-467 Suffolk NY Agona Human 153 NYCUJEX01.0001 FSL S5-467 Suffolk NY Agona Human 153 NYCUJEX01.0001 FSL S5-467 Suffolk NY Agona Human 3 57 NYCUJEX01.0001 FSL S5-467 Suffolk NY Heideberg		FSL S5-373	Westchester	NY	Braenderup	Human	61	38	NYCU.JBPX01.0001
FSL S5-642 Nasau NY Oranienburg Human 53 40 NYCU_JXS01.0001 FSL S5-646 Albany NY Paratyphi C Human 75 43 NYCU_JYESN01.0001 FSL S5-646 Albany NY Paratyphi C Human 84 SNYCU_JAXN01.0001 FSL S5-647 Oneida NY Urbana Human 52 47 NYCU_JAXN01.0001 FSL S5-648 Kings NY Urbana Human 52 47 NYCU_JAX01.0001 FSL S5-442 Onodaga NY Urbana 1mman 53 NYCU_JAX01.0001 FSL S5-442 Onodaga NY Poona Human 5 NYCU_JABX01.0001 FSL S5-442 Onodaga NY Agona Human 1 53 NYCU_JABX01.0001 FSL S5-467 Broxn NY Agona Human 1 54 NYCU_JABX01.0001 FSL S5-467 Broxn NY Agona Human 15 NYCU_JABX01.0001 <td></td> <td>FSL S5-374</td> <td>Monroe</td> <td>NY</td> <td>4,5,12:i:-</td> <td>Human</td> <td>40</td> <td>39</td> <td>NYCU.JPXX01.0040</td>		FSL S5-374	Monroe	NY	4,5,12:i:-	Human	40	39	NYCU.JPXX01.0040
FSI. SS-404 Monroe NY Paratyphi Č Human 80 42 NYCU/EXS010001 FSI. SS-466 Albany NY Paratyphi B Human 75 43 NYCU/JKX010001 FSI. SS-388 Schenectady NY Berta Human 83 46 NYCU/JKX010001 FSI. SS-388 Schenectady NY Urbana Human 52 47 NYCU/JQCX010001 FSI. SS-486 Kings NY Urbana Human 53 NYCU/JQCX010001 FSI. SS-467 Nasau NY Poona Human 54 NYCU/JQCX010001 FSI. SS-467 Suffolk NY Agona Human 53 NYCU/JAS010001 FSI. SS-474 Broux NY Agona Human 55 NYCU/JAS010001 FSI. SS-474 Broux NY Agona Human 55 NYCU/JAS010000 FSI. SS-475 Suffolk NY Agona Human 57 NYCU/JAS010000 FSI. SS-475		FSL S5-642	Nassau	NY	Oranienburg	Human	53	40	NYCU.JJXX01.0001
FSL S5-646 Albany NY Adeliade Human 75 43 NYCUIDXX01.0001 FSL S5-647 Oneida NY Paratyphi B Human 83 46 NYCUJAXX01.0001 FSL S5-647 Oneida NY Urbana Human 52 47 NYCUJAXX01.0001 FSL S5-648 Kings NY Urbana Human 52 47 NYCUJQCX01.0001 FSL S5-442 Onondag NY Urbana 48 NYCUJRCX01.0001 FSL S5-442 Onondag NY Poona Human 5 NYCUJRCX01.0001 FSL S5-442 Onondag NY Poona Human 5 NYCUJAX01.0001 FSL S5-447 Bronx NY Agona Human 55 NYCUJAX01.0003 FSL S5-447 Bronx NY Agona Human 55 NYCUJAX01.0002 FSL S5-457 Bronx NY Agona Human 57 NYCUJAX01.0002 FSL S5-458 Morrox NY		FSL S5-404	Monroe	NY	Paratyphi C	Human	80	42	NYCU YESX01.0001
Instruct Instruct Instruct Instruct Instruct Instruct ISS 55-05 Nassau NY Berta Human 43 45 NYCUJKX01.0001 ISS 55-85 Schenectady NY Urbana Human 52 47 NYCUJGX01.0001 ISS 55-66 Kings NY Urbana Human 52 47 NYCUJGX01.0001 ISS 55-66 Nassau NY Poona Human 53 NYCUJAS01.0001 ISS 55-66 Nassau NY Poona Human 53 NYCUJAS01.0001 ISS 55-667 Suffolk NY Agona Human 53 NYCUJABX01.0001 ISS 55-467 Bronx NY Agona Human 54 NYCUJABX01.0001 ISS 55-467 Bronx NY Agona Human 57 NYCUJABX01.0001 ISS 55-468 New York NY Heidelberg Human 57 NYCUJF6X01.0003 ISS 55-467 Bronk NY Heide		FSL S5-646	Albany	NY	A delaide	Human	75	43	NYCU TDAX01 0001
Inst. Sci. 27-27 Transau Fundamental Fundamental		FSL S5-040	Nassau	NV	Paratyphi B	Human	18	45	NYCU IKXX01.0001
PSL 53-38 Schenectady NY Urbana Human 52 47 NYCUJQGX01.0001 FSL 55-38 Schenectady NY Urbana Human 52 47 NYCUJQGX01.0001 FSL 55-48 Kings NY Blockley Human 33 49 NYCUJBGX01.0001 FSL 55-45 Nasau NY Poona Human 35 51 NYCUJAGX01.0002 FSL 55-567 Suffolk NY Poona Human 1 53 NYCUJABX01.0002 FSL 55-547 Suffolk NY Agona Human 1 53 NYCUJABX01.0001 FSL 55-547 Suffolk NY Agona Human 1 53 NYCUJABX01.0001 FSL 55-448 Eric NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL 55-448 Eric NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL 55-459 Suffolk NY Heidelberg Human		FSL S5-477	Onoida	NV	Porto	Uumon	+0 92	45	NYCU LAYYO1 0002
PSL S.3-368 Schenetcady NT Unbina Plunan 22 47 NYCUJQGX01.0001 FSL S.5-448 Kings NY Blockley Human 22 48 NYCUJGX01.0001 FSL S.5-447 Albany NY Poona Human 55 51 NYCUJAK01.0001 FSL S.5-447 Bronx NY Agona Human 1 52 NYCUJAK01.0001 FSL S.5-447 Bronx NY Agona Human 1 53 NYCUJAK01.0001 FSL S.5-447 Bronx NY Agona Human 26 56 NYCUJAK01.0002 FSL S.5-440 New York NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S.5-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S.5-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S.5-457 Nasau NY Heidelberg Human </td <td></td> <td>FSL 53-037</td> <td>S abama ata du</td> <td>IN I NIV</td> <td>Linhana</td> <td>Human</td> <td>63 50</td> <td>40</td> <td>NYCU JOCY01 0001</td>		FSL 53-037	S abama ata du	IN I NIV	Linhana	Human	63 50	40	NYCU JOCY01 0001
FSL S5-440 Schenetchay NY Draha Pluman 32 47 NYCUJBGX01.0001 FSL S5-448 Kings NY Agbeni Human 63 49 NYCUJBGX01.0001 FSL S5-456 Nassau NY Poona Human 23 51 NYCUJBGX01.0001 FSL S5-667 Suffolk NY Agona Human 1 53 NYCUJABX01.0001 FSL S5-647 Bronx NY Agona Human 1 54 NYCUJABX01.0001 FSL S5-468 New York NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-480 New York NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Mortoo NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Mortoo NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Suffolk NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-456 Suffolk <		FSL 53-300	Schenectady	IN I	Ulbana	Human	52	47	NTCU.JQGX01.0001
FSL SS-448 Kings NY Blockley Human 2/ 48 NYCUJRX01.0001 FSL SS-442 Albany NY Poona Human 63 49 NYCUJRX01.0001 FSL SS-442 Onondaga NY Poona Human 55 51 NYCUJAEX01.0001 FSL SS-447 Brons NY Agona Human 1 52 NYCUJAEX01.0003 FSL SS-474 Brons NY Agona Human 3 55 NYCUJAEX01.0003 FSL SS-440 New York NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-444 Eric NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-475 Mason NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-475 Nasau NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-475 Nasau NY Heidelberg Human <td< td=""><td></td><td>FSL S5-410</td><td>Schenectady</td><td>NY</td><td>Urbana</td><td>Human</td><td>52</td><td>47</td><td>NYCU.JQGX01.0001</td></td<>		FSL S5-410	Schenectady	NY	Urbana	Human	52	47	NYCU.JQGX01.0001
FSL SS-417 Albany NY Agbeni Human 63 49 NYCUJLKX01.0002 FSL SS-442 Onondaga NY Poona Human 55 1 NYCUJLAK01.0001 FSL SS-5647 Suffolk NY Agona Human 1 52 NYCUJABX01.0001 FSL SS-484 Bronx NY Agona Human 1 53 NYCUJABX01.0001 FSL SS-484 New York NY Agona Human 3 57 NYCUJABX01.0001 FSL SS-437 Dutchess NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-435 Morroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-455 Suffolk NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-4545 Morroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-4545 Suffolk NY Heidelberg Human <td></td> <td>FSL S5-648</td> <td>Kings</td> <td>NY</td> <td>Blockley</td> <td>Human</td> <td>27</td> <td>48</td> <td>NYCU.JBGX01.0001</td>		FSL S5-648	Kings	NY	Blockley	Human	27	48	NYCU.JBGX01.0001
FSL S5-465 Nassau NY Poona Human 28 50 NYCUJL6X01.0001 FSL S5-442 Onondaga NY Agona Human 1 52 NYCUJABX01.0001 FSL S5-647 Bronx NY Agona Human 1 53 NYCUJABX01.0002 FSL S5-647 Bronx NY Agona Human 3 55 NYCUJF6X01.0003 FSL S5-440 New York NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-448 Eric NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-475 Nassau NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-466 Nassau NY 4,12:r: Human 3 57 NYCUJF6X01.0003 FSL S5-750 Chautaqua NY 4,12:r: Human 56 NYCUJFXX01.0024 FSL S5-750 Chautaqua NY Typ		FSL S5-417	Albany	NY	Agbeni	Human	63	49	NYCU.JRFX01.0001
FSL S5-442 Onondaga NY Poona Human 55 51 NYCUJABX01.0001 FSL S5-517 Suffolk NY Agona Human 1 53 NYCUJABX01.0002 FSL S5-467 Suffolk NY Agona Human 1 54 NYCUJABX01.0003 FSL S5-480 New York NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-383 Dutchess NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Morroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Morroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-450 Suffolk NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-452 Suffolk NY 4,12:r: Human 3 58 NYCUJFX01.0024 FSL S5-350 Kingk NY Typhimurim Human<		FSL S5-465	Nassau	NY	Poona	Human	28	50	NYCU.JL6X01.0002
FSL S5-517 Suffolk NY Agona Human 1 52 NYCU JABX01.0001 FSL S5-667 Suffolk NY Agona Human 1 53 NYCU JABX01.0003 FSL S5-480 New York NY Heidelberg Human 3 55 NYCU JF6X01.0003 FSL S5-431 Sutchess NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-448 Erie NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-475 Nasau NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-475 Nasau NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-466 Nasau NY 4,12:r: Human 3 57 NYCU JF6X01.0003 FSL S5-475 Kings NY Typhimurium 14 3 58 NYCU JF6X01.0003 FSL S5-546 Nasau NY 4,12:r: Human </td <td></td> <td>FSL S5-442</td> <td>Onondaga</td> <td>NY</td> <td>Poona</td> <td>Human</td> <td>55</td> <td>51</td> <td>NYCU.JL6X01.0001</td>		FSL S5-442	Onondaga	NY	Poona	Human	55	51	NYCU.JL6X01.0001
FSL S5-667 Suffolk NY Agona Human 1 53 NYCU JABX01.0002 FSL S5-447 Bronx NY Agona Human 1 54 NYCU JABX01.0003 FSL S5-3480 New York NY Heidelberg Human 3 55 NYCU JF6X01.0003 FSL S5-333 Dutchess NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-448 Erie NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-455 Monroe NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-455 Oneida NY Heidelberg Human 3 57 NYCU JF6X01.0003 FSL S5-455 Oneida NY 4,12:r: Human 3 58 NYCU JF6X01.0003 FSL S5-375 Kings NY Typhimurium 14.12:r: Human 6 60 NYCU JFXX01.0024 FSL S5-535 Suffolk NY <td< td=""><td></td><td>FSL S5-517</td><td>Suffolk</td><td>NY</td><td>Agona</td><td>Human</td><td>1</td><td>52</td><td>NYCU.JABX01.0001</td></td<>		FSL S5-517	Suffolk	NY	Agona	Human	1	52	NYCU.JABX01.0001
FSL SS-647 Bronx NY Agona Human 1 54 NYCUJABX01.0003 FSL SS-480 New York NY Heidelberg Human 3 55 NYCUJF6X01.0002 FSL SS-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-445 Massau NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-475 Nassau NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-475 Nassau NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL SS-570 Chautauqua NY Heidelberg Human 3 59 NYCUYSMX01.0001 FSL SS-570 Chautauqua NY Typhimurim <td></td> <td>FSL S5-667</td> <td>Suffolk</td> <td>NY</td> <td>Agona</td> <td>Human</td> <td>1</td> <td>53</td> <td>NYCU.JABX01.0002</td>		FSL S5-667	Suffolk	NY	Agona	Human	1	53	NYCU.JABX01.0002
FSL S5-480 New York NY Heidelberg Human 3 55 NYCUJF6X01.0001 FSL S5-383 Dutchess NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-343 Dutchess NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-448 Erie NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Monroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Oneida NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-456 Nassau NY Heidelberg Human 3 59 NYCUJF6X01.0003 FSL S5-442 Suffolk NY 4,12:r:- Human 6 60 NYCUJPXX01.0024 FSL S5-488 Westchester NY Typhimurium Human 6 60 NYCUJPXX01.0024 FSL S5-53 Suffolk NY Typhimurium		FSL S5-647	Bronx	NY	Agona	Human	1	54	NYCU.JABX01.0003
FSL S5-491 Suffolk NY Heidelberg Human 26 56 NYCUJF6X01.0002 FSL S5-440 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-448 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Monroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Monroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-655 Oncida NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-655 Oncida NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-570 Chautauqua NY Hypimurium 4,12:r:- Human 3 59 NYCUJF8X01.0024 FSL S5-507 Knigas NY Typhimurium Human 6 60 NYCUJPXX01.0024 FSL S5-509 Keubau NYT		FSL S5-480	New York	NY	Heidelberg	Human	3	55	NYCU.JF6X01.0001
FSL S5-383 Dutchess NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-444 Franklin NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-448 Eric NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-455 Monroe NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-495 Suffolk NY Heidelberg Human 3 57 NYCUJF6X01.0003 FSL S5-495 Suffolk NY Heidelberg Human 3 57 NYCUJF6X01.0001 FSL S5-496 Nassau NY 4,12:r:- Human 3 59 NYCUJF6X01.0024 FSL S5-482 Suffolk NY Typhimurium Human 6 0 NYCUJFX01.0024 FSL S5-488 Westchester NY Typhimurium Human 6 0 NYCUJPXX01.0024 FSL S5-535 Suffolk NY TyphimuriumH		FSL S5-491	Suffolk	NY	Heidelberg	Human	26	56	NYCU.JF6X01.0002
FSL S5-440FranklinNYHeidelbergHuman557NYCUJF6X01.0003FSL S5-440FranklinNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-455MonroeNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-455MonroeNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-655OncidaNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-655OncidaNYHeidelbergHuman358NYCUJF6X01.0001FSL S5-655OncidaNYHeidelbergHuman358NYCUJF6X01.0024FSL S5-70ChatuaquaNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-70KingsNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-75KingsNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-75SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-75SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-75SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-75SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-751SteubenNYTyphimuriumHuman766NYCUJPXX01.0026FSL S5-7525SteubenNY<		FSL S5-383	Dutchess	NY	Heidelberg	Human	3	57	NYCU IE6X01 0003
FSL S5-448FrieNYHeidelbergHumanJJNYCUJF6X01.0003FSL S5-455MonroeNYHeidelbergHumanJJNYCUJF6X01.0003FSL S5-475NassauNYHeidelbergHumanJJNYCUJF6X01.0003FSL S5-495SuffolkNYHeidelbergHumanJJNYCUJF6X01.0003FSL S5-465OneidaNYHeidelbergHumanJSNYCUJF6X01.0003FSL S5-466NassauNY4,12:r:-HumanJSNYCUJF6X01.0021FSL S5-482SuffolkNY4,12:r:-HumanGGONYCUJPXX01.0024FSL S5-482SuffolkNYTyphimuriumHumanGGONYCUJPXX01.0024FSL S5-488WestchesterNYTyphimuriumHumanGGONYCUJPXX01.0024FSL S5-534AlbanyNYTyphimuriumHumanGGONYCUJPXX01.0024FSL S5-535SuffolkNYTyphimuriumHumanGGONYCUJPXX01.0024FSL S5-534AlbanyNYTyphimuriumHumanGGONYCUJPXX01.0026FSL S5-531SteubenNYTyphimuriumHumanGGONYCUJPXX01.0007FSL S5-532CortlandNYTyphimuriumHumanGGONYCUJPXX01.0007FSL S5-533SuffolkNYTyphimuriumHumanGGONYCUJPXX01.0007FSL S5-534UbbenNY<		FSL S5-440	Franklin	NY	Heidelberg	Human	3	57	NYCU IE6X01 0003
FSL S5-455MonoceNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-455MonoceNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-655OneidaNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-656NoeidaNYHeidelbergHuman357NYCUJF6X01.0003FSL S5-657OneidaNY4,12:r:-Human358NYCU.YSMX01.0001FSL S5-370ChautauquaNY4,12:r:-Human660NYCUJPXX01.0024FSL S5-375KingsNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-509WashingtonNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0025FSL S5-535SutfolkNYTyphimuriumHuman660NYCUJPXX01.0006FSL S5-535SutfolkNYTyphimuriumHuman668NYCUJPXX01.0007FSL S5-535SteubenNYTyphimuriumHuman668NYCUJPXX01.0007FSL S5-540SteubenTyphimuriumHuman668NYCUJPXX01.0008FSL S5-520SteubenTyphim		FSL S5 448	Erio	NV	Heidelberg	Human	3	57	NYCU JE6Y01 0003
FSL SS-433MolitoleNYHeldelbergHuman357NYCUJF6X01.0003FSL SS-475NassauNYHeidelbergHuman357NYCUJF6X01.0003FSL SS-466NassauNY4,12:r:-Human357NYCUJF6X01.0003FSL SS-466NassauNY4,12:r:-Human359NYCUJFX01.00024FSL SS-466NassauNY4,12:r:-Human660NYCUJFX01.0024FSL SS-470ChautauquaNYTyphimuriumHuman660NYCUJPXX01.0024FSL SS-575KingsNYTyphimuriumHuman660NYCUJPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman661NYCUJPXX01.0026FSL SS-531SteubenNYTyphimuriumHuman667NYCUJPXX01.0006FSL SS-532CorlandNYTyphimuriumHuman668NYCUJPXX01.0007FSL SS-544BronxNYTyphimuriumHuman668NYCUJPXX01.0008FSL SS-511ChemungNYTyphimuriumHuman668NYCUJPXX01.0008FSL SS-520SteubenN		FSL 55-446	Monroe	NX	Heidelberg	Human	2	57	NYCU IE6Y01.0003
FSL SS-473NaksauNTFreidelebergHuman337NTCU_JF6X01.0003FSL SS-495SuffolkNYHeidelbergHuman357NYCU_JF6X01.0003FSL SS-466NassauNY4,12:r:-Human359NYCU_YSMX01.0001FSL SS-482SuffolkNY4,12:r:-Human359NYCU_YSMX01.00024FSL SS-488WestchesterNYTyphimuriumHuman660NYCU_JPXX01.0024FSL SS-509WashingtonNYTyphimuriumHuman660NYCU_JPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman660NYCU_JPXX01.0024FSL SS-548WestchesterNYTyphimuriumHuman660NYCU_JPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman660NYCU_JPXX01.0025FSL SS-545SuffolkNYTyphimuriumHuman661NYCU_JPXX01.0006FSL SS-552SteubenNYTyphimuriumHuman667NYCU_JPXX01.0007FSL SS-511ChemungNYTyphimuriumHuman668NYCU_JPXX01.0008FSL SS-397SLNYTyphimuriumHuman668NYCU_JPXX01.0008FSL SS-391DutchessNYTyphimuriumHuman672NYCU_JPXX01.0008FSL SS-397SLNYTyphimuriumHuman676NYCU_JPXX01.0016FSL SS-394		FSL 53-433	Nonroe	IN I NIX	Heidelberg	Human Human	2	57	NICU.JF0A01.0003
FSL S5-495SuffolkNYHeidelbergHuman357NYCU.JF6X01.0003FSL S5-655OneidaNY4,12:r:Human357NYCU.JF6X01.0003FSL S5-466NassauNY4,12:r:Human358NYCU.YSMX01.0001FSL S5-370ChautauquaNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-375KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-375KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-375KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-505SuffolkNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-505SuffolkNYTyphimuriumHuman661NYCU.JPXX01.0025FSL S5-505SteubenNYTyphimuriumHuman766NYCU.JPXX01.0007FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-505SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-510ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-331MuchessNYTyphimuriumHuman670NYCU.JPXX01.0008FSL S5-340Dtchess <td></td> <td>FSL 55-4/5</td> <td>Nassau</td> <td>NY</td> <td>Heidelberg</td> <td>Human</td> <td>3</td> <td>57</td> <td>NYCU.JF6X01.0003</td>		FSL 55-4/5	Nassau	NY	Heidelberg	Human	3	57	NYCU.JF6X01.0003
FSL S5-655OneidaNYHeidelbergHuman357NYCU.JFX01.0001FSL S5-466NassauNY4,12:r.Human358NYCU.YSMX01.0001FSL S5-370ChautauquaNYTyphimuriumHuman660NYCU.YSMX01.0024FSL S5-370KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-488WestchesterNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-509WashingtonNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-534AlbanyNYTyphimuriumHuman661NYCU.JPXX01.0025FSL S5-535SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-531SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-532SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-531SteubenTyphimuriumHuman667NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman672NYCU.JPXX01.0016FSL S5-394Dutchess		FSL 55-495	Suffolk	NY	Heidelberg	Human	3	57	NYCU.JF6X01.0003
FSL SS-466NassauNY4,12:r.Human358NYCU.YSMX01.0001FSL SS-370ChautauquaNYTyphimuriumHuman660NYCU.JPXX01.0024FSL SS-375KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL SS-375KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL SS-509WashingtonNYTyphimuriumHuman660NYCU.JPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman660NYCU.JPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman661NYCU.JPXX01.0024FSL SS-535SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0025FSL SS-531SteubenNYTyphimuriumHuman667NYCU.JPXX01.0006FSL SS-532CortlandNYTyphimuriumHuman667NYCU.JPXX01.0007FSL SS-532SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL SS-530SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL SS-531SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL SS-532SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL SS-530SteubenNYTyphimuriumHuman672NYCU.JPXX01.0016FSL SS-		FSL S5-655	Oneida	NY	Heidelberg	Human	3	57	NYCU.JF6X01.0003
FSL S5-482SuffolkNY4,12:r:-Human359NYCU.YSMX01.00024FSL S5-370ChautauquaNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-375KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-548WestchesterNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-559WashingtonNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman661NYCU.JPXX01.0025FSL S5-535SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-550SteubenNYTyphimuriumHuman668NYCU.JPXX01.0007FSL S5-551CortlandNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-394DutchessNYTyphimuriumHuman674NYCU.JPXX01.0012FSL S5-452NasauNYTyphimuriumHuman676NYCU.JPXX01.0014FSL S5-334DutchessNYTyphimuriumHuman676NYCU.JPXX01.0015FSL S5-394DutchessNYTyphimuriumHuman676NYCU.JPXX01.0016<		FSL S5-466	Nassau	NY	4,12:r:-	Human	3	58	NYCU.YSMX01.0001
FSL S5-370ChautauquaNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-370KingsNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-488WestchesterNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-509WashingtonNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-633SuffolkNYTyphimuriumHuman661NYCU.JPXX01.0025FSL S5-635SteubenNYTyphimuriumHuman766NYCU.JPXX01.0006FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-511ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-381WashingtonNYTyphimuriumHuman668NYCU.JPXX01.0009LawrenceTTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0015FSL S5-454BronxNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-643Onondag		FSL S5-482	Suffolk	NY	4,12:r:-	Human	3	59	NYCU.YSMX01.0002
FSL S5-375KingsNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-488WestchesterNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-509WashingtonNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-534AlbanyNYTyphimuriumHuman661NYCUJPXX01.0025FSL S5-533SuffolkNYTyphimuriumHuman662NYCUJPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman667NYCUJPXX01.0007FSL S5-505SteubenNYTyphimuriumHuman668NYCUJPXX01.0007FSL S5-511ChemungNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCUJPXX01.0009LawrenceTyphimuriumHuman672NYCUJPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-641FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-507NassauNYTyphimuriumHuman676NYCUJPXX01.0021FSL S5-537SuffolkN		FSL S5-370	Chautauqua	NY	Typhimurium	Human	6	60	NYCU.JPXX01.0024
FSL S5-488WestchesterNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-509WashingtonNYTyphimuriumHuman660NYCUJPXX01.0024FSL S5-533SuffolkNYTyphimuriumHuman660NYCUJPXX01.0025FSL S5-534AlbanyNYTyphimuriumHuman661NYCUJPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman662NYCUJPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman667NYCUJPXX01.0006FSL S5-532CortlandNYTyphimuriumHuman668NYCUJPXX01.0007FSL S5-532SteubenNYTyphimuriumHuman668NYCUJPXX01.0007FSL S5-511ChemungNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCUJPXX01.0008FSL S5-381WashingtonNYTyphimuriumHuman674NYCUJPXX01.0012FSL S5-454BronxNYTyphimuriumHuman676NYCUJPXX01.0014FSL S5-454BronxNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-641Nasa		FSL S5-375	Kings	NY	Typhimurium	Human	6	60	NYCU.JPXX01.0024
FSL S5-509WashingtonNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-535SuffolkNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-534AlbanyNYTyphimuriumHuman661NYCU.JPXX01.0026FSL S5-653SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0026FSL S5-553SteubenNYTyphimuriumHuman766NYCU.JPXX01.0007FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-542SteubenNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0015FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-642 <td></td> <td>FSL S5-488</td> <td>Westchester</td> <td>NY</td> <td>Typhimurium</td> <td>Human</td> <td>6</td> <td>60</td> <td>NYCU.JPXX01.0024</td>		FSL S5-488	Westchester	NY	Typhimurium	Human	6	60	NYCU.JPXX01.0024
FSL S5-535SuffolkNYTyphimuriumHuman660NYCU.JPXX01.0024FSL S5-534AlbanyNYTyphimuriumHuman661NYCU.JPXX01.0025FSL S5-533SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman668NYCU.JPXX01.0007FSL S5-511ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCU.JPXX01.0012LawrenceLawrenceTyphimuriumHuman674NYCU.JPXX01.0012FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-641FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-642Suffolk		FSL S5-509	Washington	NY	Typhimurium	Human	6	60	NYCU.JPXX01.0024
FSL S5-534AlbanyNYTyphimuriumHuman661NYCU.JPXX01.0025FSL S5-653SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman766NYCU.JPXX01.0006FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-473SuffolkNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman669NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCU.JPXX01.0012LawrenceLawrenceTyphimuriumHuman672NYCU.JPXX01.0014FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0014FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-641FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0020FSL S5-642Suffolk		FSL S5-535	Suffolk	NY	Typhimurium	Human	6	60	NYCU.JPXX01.0024
FSL S5-653SuffolkNYTyphimuriumHuman662NYCU.JPXX01.0026FSL S5-531SteubenNYTyphimuriumHuman766NYCU.JPXX01.0006FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-537St.NYTyphimuriumHuman669NYCU.JPXX01.0009LawrenceLawrenceTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman676NYCU.JPXX01.0014FSL S5-452NasauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-643OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0016FSL S5-604FranklinNYTyphimuriumHuman677NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-642Suffolk		FSL S5-534	Albany	NY	Typhimurium	Human	6	61	NYCU.JPXX01.0025
FSL S5-531SteubenNYTyphimuriumHuman766NYCUJPXX01.0006FSL S5-505SteubenNYTyphimuriumHuman667NYCUJPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman667NYCUJPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-520SteubenTyphimuriumHuman669NYCUJPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCUJPXX01.0009LawrenceExstenceFSL S5-394DutchessNYTyphimuriumHuman672NYCUJPXX01.0012FSL S5-494BronxNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-641FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-642SuffolkNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0021FSL S5-36JeffersonNYTyphimuriumHuman680NYCUJPXX01.0021<		FSL \$5-653	Suffolk	NY	Typhimurium	Human	6	62	NYCU JPXX01.0026
FSL S5-505SteubenNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman667NYCU.JPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCU.JPXX01.0009LawrenceLawrenceEE111FSL S5-394DutchessNYTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman676NYCU.JPXX01.0014FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0017FSL S5-507NassauNYTyphimuriumHuman678NYCU.JPXX01.0021FSL S5-36JeffersonNYTyphimuriumHuman680NYCU.JPXX01.0021FSL S5-507NassauNYTyphimurium </td <td></td> <td>FSL S5-531</td> <td>Steuben</td> <td>NY</td> <td>Typhimurium</td> <td>Human</td> <td>7</td> <td>66</td> <td>NYCU IPXX01 0006</td>		FSL S5-531	Steuben	NY	Typhimurium	Human	7	66	NYCU IPXX01 0006
FSL S5-532CortlandNYTyphimuriumHuman667NYCUJPXX01.0007FSL S5-532CortlandNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCUJPXX01.0008FSL S5-397St.NYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-394DutchessNYTyphimuriumHuman672NYCUJPXX01.0012FSL S5-394BronxNYTyphimuriumHuman674NYCUJPXX01.0014FSL S5-494BronxNYTyphimuriumHuman676NYCUJPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0017FSL S5-302WestchesterNYTyphimuriumHuman678NYCUJPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0021FSL S5-462SuffolkNYTyphimuriumHuman680NYCUJPXX01.0021FSL S5-36Jefferson<		FSL \$5-505	Steuben	NY	Typhimurium	Human	6	67	NYCU IPXX01.0007
FSL S3-532ContaindNTTyphimuriumHuman667NTCUJPXX01.0007FSL S5-473SuffolkNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-511ChemungNYTyphimuriumHuman668NYCUJPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCUJPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCUJPXX01.0009LawrenceLawrenceFSL S5-394DutchessNYTyphimuriumHuman674NYCUJPXX01.0012FSL S5-494BronxNYTyphimuriumHuman675NYCUJPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-501NassauNYTyphimuriumHuman677NYCUJPXX01.0017FSL S5-501NassauNYTyphimuriumHuman680NYCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman680NYCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCUJPXX01.0021FSL S5-536JeffersonNYTyphimuriumHuman682NYCUJPXX01.0023FS		FSL 55-505	Cortland	NV	Typhimurium	Uumon	6	67	NYCU IDYX01.0007
FSL S3-473SuitokNYTyphinuriumHuman668NYCUJPXX01.0008FSL S5-510SteubenTyphimuriumHuman668NYCUJPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCUJPXX01.0009LawrenceLawrenceFSL S5-394DutchessNYTyphimuriumHuman672NYCUJPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman674NYCUJPXX01.0014FSL S5-494BronxNYTyphimuriumHuman676NYCUJPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0017FSL S5-462SuffolkNYTyphimuriumHuman678NYCUJPXX01.0017FSL S5-501NassauNYTyphimuriumHuman680NYCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman680NYCUJPXX01.0021FSL S5-536JeffersonNYTyphimuriumHuman4781NYCUJPXX01.0022FSL S5-405MonroeNYSaintpaulHuman3886NYCUJPXX01.0021FSL		FSL 53-332	Suffalle	IN I NIV	Typiiiiuiiuii	Human	6	69	NYCU IDYX01.0007
FSL S5-511ChemungNYTyphimurumHuman668NYCU.JPXX01.0008FSL S5-520SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCU.JPXX01.0009LawrenceLawrenceTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman674NYCU.JPXX01.0012FSL S5-494BronxNYTyphimuriumHuman675NYCU.JPXX01.0014FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-653TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman680NYCU.JPXX01.0021FSL S5-536JeffersonNYTyphimuriumHuman4781NYCU.JPXX01.0021FSL S5-549MonroeNYSaintpaulHuman3886NYCU.JPXX01.0023FSL S5-649Bronx <td< td=""><td></td><td>FSL 53-475</td><td>Suitoik</td><td>IN I</td><td></td><td>Human</td><td>0</td><td>08</td><td>NICUJPAA01.0008</td></td<>		FSL 53-475	Suitoik	IN I		Human	0	08	NICUJPAA01.0008
FSL S5-320SteubenTyphimuriumHuman668NYCU.JPXX01.0008FSL S5-397St.NYTyphimuriumHuman669NYCU.JPXX01.0009LawrenceTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-381WashingtonNYTyphimuriumHuman674NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman674NYCU.JPXX01.0014FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0015FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633DomokinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-642SuffolkNYTyphimuriumHuman678NYCU.JPXX01.0020FSL S5-507NassauNYTyphimuriumHuman680NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-649MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649 <td></td> <td>FSL 55-511</td> <td>Chemung</td> <td>IN Y</td> <td>Typnimurium</td> <td>Human</td> <td>6</td> <td>68</td> <td>NYCUJPXX01.0008</td>		FSL 55-511	Chemung	IN Y	Typnimurium	Human	6	68	NYCUJPXX01.0008
FSL S5-397St.NYTyphimurumHuman669NYCUJPXX01.0009LawrenceFSL S5-381WashingtonNYTyphimuriumHuman672NYCUJPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman674NYCUJPXX01.0014FSL S5-494BronxNYTyphimuriumHuman675NYCUJPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCUJPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCUJPXX01.0017FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0017FSL S5-462SuffolkNYTyphimuriumHuman680NYCUJPXX01.0020FSL S5-507NassauNYTyphimuriumHuman4781NYCUJPXX01.0022FSL S5-369MonroeNYSaintpaulHuman3886NYCUJPXX01.0023FSL S5-405MonroeNYSaintpaulHuman3887NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0001 </td <td></td> <td>FSL 55-520</td> <td>Steuben</td> <td></td> <td>Typhimurium</td> <td>Human</td> <td>6</td> <td>68</td> <td>NYCUJPXX01.0008</td>		FSL 55-520	Steuben		Typhimurium	Human	6	68	NYCUJPXX01.0008
LawrenceFSL S5-381WashingtonNYTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman674NYCU.JPXX01.0014FSL S5-494BronxNYTyphimuriumHuman675NYCU.JPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0017FSL S5-462SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-507NassauNYTyphimuriumHuman4781NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-649MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-397	St.	NY	Typhimurium	Human	6	69	NYCU.JPXX01.0009
FSL S5-381WashingtonNYTyphimuriumHuman672NYCU.JPXX01.0012FSL S5-394DutchessNYTyphimuriumHuman674NYCU.JPXX01.0014FSL S5-494BronxNYTyphimuriumHuman675NYCU.JPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-462SuffolkNYTyphimuriumHuman678NYCU.JPXX01.0020FSL S5-507NassauNYTyphimuriumHuman680NYCU.JPXX01.0021FSL S5-506JeffersonNYTyphimuriumHuman4781NYCU.JPXX01.0022FSL S5-369MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002			Lawrence						
FSL S5-394DutchessNYTyphimuriumHuman674NYCU.JPXX01.0014FSL S5-494BronxNYTyphimuriumHuman675NYCU.JPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0016FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0017FSL S5-462SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-507NassauNYTyphimuriumHuman4781NYCU.JPXX01.0022FSL S5-506JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-649MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-381	Washington	NY	Typhimurium	Human	6	72	NYCU.JPXX01.0012
FSL S5-494BronxNYTyphimuriumHuman675NYCU.JPXX01.0015FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0018FSL S5-462SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman4781NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCU.JPXX01.0022FSL S5-36JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-405MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-394	Dutchess	NY	Typhimurium	Human	6	74	NYCU.JPXX01.0014
FSL S5-452NassauNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-302WestchesterNYTyphimuriumHuman678NYCU.JPXX01.0017FSL S5-501NassauNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-462SuffolkNYTyphimuriumHuman4781NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-405MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-494	Bronx	NY	Typhimurium	Human	6	75	NYCU.JPXX01.0015
FSL S5-633OnondagaNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-302WestchesterNYTyphimuriumHuman678NYCU.JPXX01.0017FSL S5-501NassauNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-462SuffolkNYTyphimuriumHuman4781NYCU.JPXX01.0020FSL S5-507NassauNYTyphimuriumHuman682NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-452	Nassau	NY	Typhimurium	Human	6	76	NYCU.JPXX01.0016
FSL S5-640FranklinNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-392WestchesterNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-301NassauNYTyphimuriumHuman678NYCU.JPXX01.0018FSL S5-462SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman4781NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-633	Onondaga	NY	Typhimurium	Human	6	76	NYCU.JPXX01.0016
FSL S5-663TompkinsNYTyphimuriumHuman676NYCU.JPXX01.0016FSL S5-392WestchesterNYTyphimuriumHuman677NYCU.JPXX01.0017FSL S5-501NassauNYTyphimuriumHuman678NYCU.JPXX01.0018FSL S5-462SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman4781NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-640	Franklin	NY	Typhimurium	Human	6	76	NYCU.JPXX01.0016
FSL S5-392WestchesterNYTyphimuriumHuman677NYCUJPXX01.0017FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0018FSL S5-462SuffolkNYTyphimuriumHuman680NYCUJPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman4781NYCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCUJPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCUJPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3887NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		FSL \$5-663	Tompkins	NY	Typhimurium	Human	6	76	NYCU JPXX01.0016
FSL S5-501NassauNYTyphimuriumHuman678NYCUJPXX01.0018FSL S5-462SuffolkNYTyphimuriumHuman678NYCUJPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman680NYCUJPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman4781NYCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCUJPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCUJPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3887NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		FSL S5-392	Westchester	NY	Typhimurium	Human	6	77	NYCU JPXX01.0017
FSL S5-642SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman680NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman4781NYCU.JPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCU.JPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCU.JPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		ESL \$5-501	Nassan	NV	Typhimurium	Human	6	78	NYCII IPXX01.0019
FSL S5-492SuffolkNYTypinmurumHuman680NYCUJPXX01.0020FSL S5-493SuffolkNYTyphimuriumHuman4781NYCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCUJPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCUJPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		FSI \$5_462	Suffolk	NV	Typhimurium	Human	6	80	NYCI IPYYNI 0020
FSL 55-475SurforkNTTypininurumHuman4781INTCUJPXX01.0021FSL S5-507NassauNYTyphimuriumHuman682NYCUJPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCUJPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		FSL 55-402	Suffelle	IN I NV	Typhiniunun	Human	47	0U 91	NVCU IDVV01 0021
FSL 55-507NatsauNTTypnimurumHuman682NYCUJPXX01.0022FSL S5-536JeffersonNYTyphimuriumHuman4983NYCUJPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		FOL 0J-473	Nasar	1 N I N N 7	1 ypiiiiiuiiuiiu	Lum	47	01	NVCU IDVV01 0022
FSL 55-550JeffersonNYTyphimuriumHuman4983NYCUJPXX01.0023FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		LOT 22-201	INASSAU	IN Y	i ypnimurium	Human	0	82 82	NICUJPXA01.0022
FSL S5-369MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-405MonroeNYSaintpaulHuman3886NYCUJN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCUJN6X01.0002		FSL 55-536	Jefferson	IN Y	I yphimurium	Human	49	83	NYCUJPXX01.0023
FSL S5-405MonroeNYSaintpaulHuman3886NYCU.JN6X01.0001FSL S5-649BronxNYSaintpaulHuman3887NYCU.JN6X01.0002		FSL S5-369	Monroe	NΥ	Saintpaul	Human	38	86	NYCU.JN6X01.0001
FSL S5-649 Bronx NY Saintpaul Human 38 87 NYCU.JN6X01.0002		FSL S5-405	Monroe	NY	Saintpaul	Human	38	86	NYCU.JN6X01.0001
	_	FSL S5-649	Bronx	NY	Saintpaul	Human	38	87	NYCU.JN6X01.0002

Table A1	[S2.1]. ((Continued))
----------	-----------	-------------	---

FSL S5-516	Otsego	NY	Typhimurium	Human	6	88	NYCU.JPXX01.0030
FSL S5-390	Monroe	NY	4,5,12:i:-	Human	6	89	NYCU.JPXX01.0033
FSL S5-398	Westchester	NY	4,5,12:i:-	Human	6	89	NYCU.JPXX01.0033
FSL S5-409	Erie	NY	4,5,12:i:-	Human	6	89	NYCU.JPXX01.0033
FSL S5-498	Nassau	NY	4,5,12:i:-	Human	6	89	NYCU.JPXX01.0033
FSL S5-656	Westchester	NY	4.5.12:i:-	Human	6	89	NYCUJPXX01.0033
FSL S5-666	Warren	NY	4.5.12:i:-	Human	6	89	NYCUJPXX01.0033
FSL S5-526	Suffolk	NY	4 5 12:1:-	Human	6	92	NYCU IPXX01 0036
FSL S5-527	Onondaga	NY	4 5 12:1:-	Human	6	93	NYCU IPXX01 0037
FSL S5-519	Erie	NY	Mbandaka	Human	73	97	NYCU TDRX01.0001
FSL S5-517	Erie	111	Mbandaka	Human	73	98	NYCU TDRX01.0002
FSL S5-657	Onondaga	NV	Mbandaka	Human	64	90	NYCU TDRX01.0002
FSL S5-057	Onoida	NV	Mbandaka	Human	64	101	NVCU TDPV01 0005
FSL S5-451	Suffolk	NV	Haidalbara	Human	50	101	NVCU IE6V01 0003
FSL 55-004	Niagara	IN I NIV	Stanlay	Human	50 94	103	NICUJF0A01.0005
FSL 53-408	Intagara	IN I NIX	Statiley	Human	04 60	110	NTCUJNGA01.0001
FSL 55-533	Saratoga	IN Y	Infantis	Human	60 70	111	NYCU JFXX01.0005
FSL 55-438	Monroe	IN Y	weitevreden	Human	/9	112	NYCU.JPQX01.0001
FSL S5-506	Kings	ΝY	Infantis	Human	60	113	NYCU.JFXX01.0008
FSL S5-3/2*	/		Infantis	Human	60	115	NYCU.JFXX01.0007
FSL S5-391	Westchester	NY	Kintambo	Human	59	116	NYCU.JRNX01.0001
FSL S5-503	Genesee	NY	Newport	Human	33	117	NYCU.JJPX01.0010
FSL S5-441	Monroe	NY	Abony	Human	45	118	NYCU.ABOX01.0001
FSL S5-449	Unknown	NY	Newport	Human	11	123	NYCU.JJPX01.0002
FSL S5-632	Erie	NY	Cubana	Human	71	124	NYCU.JDGX01.0001
FSL S5-399	Tompkins	NY	Hadar	Human	41	125	NYCU.TDKX01.0001
FSL S5-543	Dutchess	NY	Hadar	Human	41	125	NYCU.TDKX01.0001
FSL S5-413	Chenango	NY	Newport	Human	11	126	NYCU.JJPX01.0003
FSL S5-525	Westchester	NY	Newport	Human	11	126	NYCU.JJPX01.0003
FSL S5-541	Ulster	NY	Newport	Human	11	128	NYCU.JJPX01.0006
FSL S5-396	Suffolk	NY	Newport	Human	11	130	NYCU.JJPX01.0008
FSL S5-446	Saratoga	NY	Newport	Human	11	131	NYCU.JJPX01.0009
FSL S5-479	Suffolk	NY	Muenchen	Human	35	133	NYCU.JJ6X01.0003
FSL \$5-537	Erie	NY	Newport	Human	33	134	NYCU.JJPX01.0014
FSL S5-490	Warren	NY	Worthington	Human	68	135	NYCU TDYX01.0001
FSL S5-489	Suffolk	NY	Newport	Human	76	136	NYCU JIPX01.0019
FSL S5-650	Suffolk	NY	Newport	Human	46	137	NYCU JIPX01 0020
FSL S5-513	Franklin	NY	Newport	Human	46	138	NYCU UPX01 0021
FSL S5-484	Onondaga	NY	Schwarzen-	Human	40	130	NYCU IM6X01.0002
1 DL 55-404	Ollolluaga	111	orund	Tuman	-	157	10100.51010701.0002
ESI S5 524	Harkimar	NV	Newport	Uuman	78	140	NVCU UDV01 0015
FSL S5-524	Orange	NV	Newport	Human	78	140	NVCU UDV01 0016
FSL SJ-039	Orange	NV	Newport	Human	70	141	NVCU UDV01 0017
FSL 55-051	Masaa	IN I NIX	Newport	Tuillall	10	142	NYCU UDV01 0019
FSL 55-045	INassau Nia a ana	IN I NIX	Newport	Human	13	145	NYCU ICYYO1 0001
FSL 55-580	Niagara	IN I NIX	Litchileid	Human	51	144	NYCUJGAA01.0001
FSL 55-504	Suffolk	IN Y	Muenchen	Human	74	145	NYCU.JJ6X01.0001
FSL S5-636	Saratoga	NY	Muenchen	Human	/4	146	NYCU.JJ6X01.0002
FSL S5-635	Suffolk	NY	4,5,12:1:-	Human	6	147	NYCU.JPXX01.0032
FSL S5-477	Orleans	NY	Rubislaw	Human	54	148	NYCU.JLPX01.0001
FSL S5-403*		NY	Montevideo	Human	88	149	NYCU.JIXX01.0002
FSL S5-529	Erie	NY	Anatum	Human	25	151	NYCU.JAGX01.0001
FSL S5-530	Erie	NY	Anatum	Human	25	151	NYCU.JAGX01.0001
FSL S5-540	Erie	NY	Anatum	Human	25	151	NYCU.JAGX01.0001
FSL S5-464	Nassau	NY	Stanley	Human	39	152	NYCU.JNGX01.0002
FSL S5-510	Washington	NY	Hartford	Human	77	154	NYCU.JHAX01.0001
FSL S5-658	Suffolk	NY	Senftenberg	Human	18	155	NYCU.JMPX01.0001
FSL S5-457*		NY	Montevideo	Human	67	156	NYCU.JIXX01.0001
FSL S5-470	Nassau	NY	Montevideo	Human	67	156	NYCU.JIXX01.0001
FSL S5-542	Dutchess	NY	1,7:-:1,5	Human	43	157	NYCU.SC1X01.0002
FSL S5-471*	Nassau	NY	Thompson	Human	62	157	NYCU.JP6X01.0001
			1				

Table A1 [S2.1]. (Continued)

FSL S5-472	Nassau	NY	Thompson	Human	62	157	NYCU.JP6X01.0001
FSL S5-411	Wayne	NY	Thompson	Human	62	158	NYCU.JP6X01.0002
FSL S5-412	Saratoga	NY	Thompson	Human	62	158	NYCU.JP6X01.0002
FSL S5-450	Ulster	NY	Thompson	Human	62	158	NYCU.JP6X01.0002
FSL S5-523	Schenectady	NY	Thompson	Human	43	158	NYCU.JP6X01.0002
FSL S5-378	Nassau	NY	1,7:-:1,5	Human	42	160	NYCU.SC1X01.0001
FSL S5-393	Putnam	NY	Newport	Human	11	161	NYCU.JJPX01.0012
FSL S5-447	Erie	NY	Paratyphi B var. Java	Human	32	162	NYCU.JKXX01.0001
FSL S5-468	Bronx	NY	Paratyphi B var. Java	Human	32	163	NYCU.JKXX01.0002
FSL S5-654	Onondaga	NY	Nyanza	Human	66	167	NYCU.YSSX01.0001
FSL S5-515	Niagara	NY	Newport	Human	11	168	NYCU.JJPX01.0005
FSL S5-518	Wayne	NY	Newport	Human	11	168	NYCU.JJPX01.0005

*Isolates are not included in the previous study (Alcaine et al. 2006)

APPENDIX TWO

LIST OF SUPPLEMENTAL TABLES

 Table A2 [S4.1]. A total of 190Salmonella 4,5,12:i:- and Typhimurium isolates used and their characterists

								3-	4-	PFGE	Presence of Is				Isola-			
								gene	gene	Pattern		1053-						tion
Isolate No.	State	Serotypea	Source	fimA	mdh	manB	aroC	ST	ST	No	fljA	1997	fljB	hin	2740	2757	2773	year
FSL S9-177	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P1								2005
FSL S9-187	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P1								2006
FSL S9-193	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P1								2006
FSL S9-239	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P26	-	-	-	-	+	+	-	1999
FSL S9-244	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P27	-	-	-	-	+	+	-	1999
FSL S9-101	non- domestic bird	4,5,12:i:-	Owl (free- ranging)	4	5	5	10	6	1	P28	-	-	-	-	+	+	-	
FSL S9-206	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P28	-	-	-	-	+	+	-	1997
FSL S9-240	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P28								1999
FSL S9-242	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P28								1999
FSL S9-243	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P28	-	-	-	-	+	+	-	1999
FSL S9-246	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P28	-	-	-	-	+	+	-	1999
FSL S9-241	Spain	4,5,12:i:-	Human	4	5	7	10	8	3	P29	-	-	-	-	+	+	-	1999
FSL S9-245	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P30	-	-	-	-	+	+	-	1999
FSL S9-238	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P31	-	-	-	-	+	+	-	1999
FSL S9-204	Spain	4,5,12:i:-	Pork meat	4	5	5	10	6	1	P32	-	-	-	-	+	+	-	1998
FSL S9-205	Spain	4,5,12:i:-	Sausage	4	5	5	10	6	1	P32								1998
FSL S9-237	Spain	4,5,12:i:-	Human	4	5	5	10	6	1	P34	-	-	-	-	+	+	-	1999
FSL R6-125	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2004
FSL R6-150	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40	-	+	-	+	-	-	+	2005
FSL S9-114	Georgia	4,5,12:i:-	Poultry	4	5	5	10	6	1	P40	-	+	-	+	-	-	+	2005
FSL S9-174	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2005
FSL S9-178	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2005
FSL S9-185	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2006
FSL S9-190	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2006
FSL S9-196	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2007
FSL S9-198	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2007
FSL S9-199	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P40								2007
FSL S5-527	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P42	-	+	-	+	-	-	+	2004
FSL S9-031	FDA	4,5,12:i:-	Food- chicken breast	4	5	5	10	6	1	P42	-	+	-					2003

Table A2	[S2.1]. ((Continued)
I abit AZ		(Commucu)

	[:= = : =] · (= =																	
FSL S9-109	Georgia	4,5,12:i:-	Poultry	4	5	5	10	6	1	P46	-	+	-	+	-	-	+	2005
FSL S9-120	Georgia	4,5,12:i:-	Poultry	4	5	5	10	6	1	P46	-	+	-	+				2006
FSL S9-188	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P46	-	+	-	+	-	-	+	2006
FSL S9-191	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P46								2006
FSL S9-194	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P46								2006
FSL S9-195	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P46								2006
FSL S9-197	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P46								2007
FSL S9-200	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P46								2007
FSL S9-167	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P48								2004
FSL S9-180	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P48	-	+	-	+	-	-	+	2005
FSL S9-126	Georgia	4,5,12:i:-	Bovine	4	5	5	10	6	1	P49	-	+	-	+	-	-	+	2003
FSL S9-121	Georgia	4,5,12:i:-	Poultry	4	5	5	10	6	1	P50	-	+	-	+	-	-	+	2005
FSL S9-122	Georgia	4,5,12:i:-	Poultry	4	5	5	10	6	1	P50	-	+	-	+	-	-	+	2006
FSL S9-184	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P50								2006
FSL S9-179	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P55	-	+	-	+	-	-	+	2005
FSL S5-580	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P56								2004
FSL S5-596	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P56	-	+	-	+	-	-	+	2004
FSL S5-390	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2004
FSL S5-398	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2004
FSL S5-409	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2004
FSL S5-498	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2004
FSL S5-656	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2005
FSL S5-666	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2005
FSL S5-737	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2004
FSL S9-030	FDA	4,5,12:i:-	Food-	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2003
FGL 00 115	a .	4 5 1 2 1	chicken		-	-	10			D5 0								2005
FSL S9-115	Georgia	4,5,12:1:-	Poultry	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2005
FSL S9-116	Georgia	4,5,12:1:-	Poultry	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2006
FSL S9-117	Georgia	4,5,12:1:-	Poultry	4	5	5	10	6	1	P59								2005
FSL S9-118	Georgia	4,5,12:1:-	Poultry	4	5	5	10	6	1	P59								2005
FSL S9-127	Georgia	4,5,12:i:-	Bovine	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2003
FSL S9-168	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59	-	+	-	+	-	-	+	2004
FSL S9-169	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2004
FSL S9-181	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2005
FSL S9-182	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2006

I uble 112		nunucu)																
FSL S9-183	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2006
FSL S9-186	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2006
FSL S9-201	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2007
FSL S9-202	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P59								2007
FSL S9-192	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P60	-	+	-	+	-	-	+	2006
FSL S5-526	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P61	-	+	-	+	-	-	+	2004
FSL S5-618	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P62	-	+	-	+	-	-	+	2004
FSL S5-816	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P64	-	+	-	+	-	-	+	2004
FSL S5-891	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P64								2004
FSL S5-759	New York	4,5,12:i:-	Bovine	4	5	5	10	6	1	P65	-	+	-	+	-	-	+	2004
FSL S9-119	Georgia	4,5,12:i:-	Poultry	4	5	5	10	6	1	P66	-	+	-	+	-	-	+	2006
FSL R6-119	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P67	-	+	-	+	-	-	+	2004
FSL R6-152	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P69	-	+	-	+	-	-	+	2005
FSL R6-153	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P69								2005
FSL S9-170	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P69								2004
FSL S9-172	Washington	4,5,12:i:-	Avian	4	5	5	10	6	1	P69								2005
FSL S9-176	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P69								2005
FSL R6-124	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P71	-	+	-	+	-	-	+	2004
FSL S9-171	Washington	4,5,12:i:-	Canine	4	5	5	10	6	1	P71	-	+	-	+	-	-	+	2005
FSL S9-173	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P71								2005
FSL S9-175	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P71								2005
FSL S9-189	Washington	4,5,12:i:-	Human	4	5	5	10	6	1	P73	-	+	-	+	-	-	+	2005
FSL S5-635	New York	4,5,12:i:-	Human	4	5	5	10	6	1	P80	-	-	-	-	+	+	+	2000
FSL S9-102	non- domestic bird	Inconsistent	Heron (free- ranging)	4	5	5	10	6	1	P21	+	-	+	+	+	+	+	
FSL S9-165	Washington	Inconsistent	Bovine	4	5	5	10	6	1	P23	+	-	+	+	+	+	+	1996
FSL S9-166	Washington	Inconsistent	Bovine	4	5	5	10	6	1	P23	+	-	+	+	+	+	+	1996
FSL R6-084	Washington	Inconsistent	Bovine	4	5	7	10	8	3	P71	+	-	+	+	+	+	+	2005
FSL S5-430	New York	Typhimurium	Bovine	4	5	7	10	8	3	P2								2004
FSL S9-110	Georgia	Typhimurium	Poultry	4	5	5	10	6	1	P35	+	-	+	+	+	+	+	2006
FSL S5-554	New York	Typhimurium	Bovine	4	5	7	10	8	3	P81								2004
FSL S5-786	New York	Typhimurium	Bovine	4	5	7	10	8	3	P81								2004
FSL S5-800	New York	Typhimurium	Bovine	4	5	7	10	8	3	P81								2004

 Table A2 [S2.1]. (Continued)

FSL S5-452 New York Typhimurium Human 4 5 5 10 6 1 P1 +		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	2004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	1986
FSL S9-229SpainTyphimuriumHuman4551061P10FSL S5-799New YorkTyphimuriumBovine4551061P11FSL R6-100WashingtonTyphimuriumHuman4551061P12+-+++FSL R6-144WashingtonTyphimuriumHuman4551061P12+-++++FSL S5-375New YorkTyphimuriumHuman4551061P12+-++++FSL S5-375New YorkTyphimuriumHuman4551061P12++++FSL S5-488New YorkTyphimuriumHuman4551061P12++++FSL S5-355New YorkTyphimuriumHuman4551061P12+++FSL S5-355New YorkTyphimuriumHuman4551061P12 <t< td=""><td></td><td>1986</td></t<>		1986
FSL S5-799New YorkTyphimuriumBovine4551061P11FSL R6-100WashingtonTyphimuriumHuman4551061P12+-+++++FSL R6-144WashingtonTyphimuriumHuman4551061P12+-+++<		1986
FSL R6-100WashingtonTyphimuriumHuman4551061P12FSL R6-144WashingtonTyphimuriumHuman4551061P12+-++++FSL S5-370New YorkTyphimuriumHuman4551061P12+-+++++FSL S5-375New YorkTyphimuriumHuman4551061P12+++++FSL S5-370New YorkTyphimuriumHuman4551061P12+++ <td></td> <td>2004</td>		2004
FSL R6-144WashingtonTyphimuriumHuman4551061P12+-++++FSL S5-370New YorkTyphimuriumHuman4551061P12+-+++++FSL S5-375New YorkTyphimuriumHuman4551061P12+-+++		2004
FSL \$5-370New YorkTyphimuriumHuman4551061P12+-++++FSL \$5-375New YorkTyphimuriumHuman4551061P12++++FSL \$5-375New YorkTyphimuriumBovine4551061P12++++FSL \$5-309New YorkTyphimuriumHuman4551061P12++++FSL \$5-509New YorkTyphimuriumHuman4551061P12<	+	2005
FSL S5-375 New York Typhimurium Human 4 5 5 10 6 1 P12 FSL S5-429 New York Typhimurium Bovine 4 5 5 10 6 1 P12 FSL S5-488 New York Typhimurium Human 4 5 5 10 6 1 P12 FSL S5-509 New York Typhimurium Human 4 5 5 10 6 1 P12 FSL S5-355 New York Typhimurium Bovine 4 5 5 10 6 1 P12 FSL S5-335 New York Typhimurium Bovine 4 5 5 10 6 1 P12 FSL S5-933 New York Typhimurium Bovine 4 5 5 10 6 1 P12 FSL S9-213 Spain Typhimurium Human 4 5 5 10 6 1 P12 FSL S9-216 Spain Typhimurium Meat 5	+	2004
FSL S5-429New YorkTyphimuriumBovine4551061P12FSL S5-488New YorkTyphimuriumHuman4551061P12FSL S5-509New YorkTyphimuriumHuman4551061P12FSL S5-535New YorkTyphimuriumHuman4551061P12FSL S5-845New YorkTyphimuriumBovine4551061P12FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S5-939SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumHuman4551061P12FSL S9-218SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-222SpainTyphimuriumBeach4		2004
FSL S5-488New YorkTyphimuriumHuman4551061P12FSL S5-509New YorkTyphimuriumHuman4551061P12FSL S5-535New YorkTyphimuriumHuman4551061P12FSL S5-535New YorkTyphimuriumBovine4551061P12FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S9-209SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-222SpainTyphimuriumBeach4		2004
FSL S5-509New YorkTyphimuriumHuman4551061P12FSL S5-535New YorkTyphimuriumBovine4551061P12FSL S5-845New YorkTyphimuriumBovine4551061P12FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S9-209SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumHuman4551061P12FSL S9-218SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumBeach4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4 <t< td=""><td></td><td>2004</td></t<>		2004
FSL S5-35New YorkTyphimuriumHuman4551061P12FSL S5-845New YorkTyphimuriumBovine4551061P12FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S9-209SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-215SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumRiver4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-222SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach45<		2004
FSL S5-845New YorkTyphimuriumBovine4551061P12FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S9-209SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-215SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumRiver4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach45 <td></td> <td>2004</td>		2004
FSL S5-933New YorkTyphimuriumBovine4551061P12FSL S9-209SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-215SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumRiver4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-222SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach4551061P12FSL S9-225SpainTyphimuriumBeach45 <t< td=""><td></td><td>2004</td></t<>		2004
FSL S9-209SpainTyphimuriumChicken s4551061P12FSL S9-213SpainTyphimuriumHuman4551061P12FSL S9-215SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumBeach4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach4551061P12FSL S9-225SpainTyphimuriumBeach4551061P12FSL S9-226SpainTyphimuriumPork saus.4551061P12FSL S9-230SpainTyphimuriumPork saus.45<		2004
FSL S9-213 Spain Typhimurium Human 4 5 5 10 6 1 P12 FSL S9-215 Spain Typhimurium Human 4 5 5 10 6 1 P12 FSL S9-216 Spain Typhimurium Meat 4 5 5 10 6 1 P12 FSL S9-218 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-219 Spain Typhimurium River 4 5 5 10 6 1 P12 FSL S9-220 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-221 Spain Typhimurium Beach 4 5 5 10 6 1 P12 + - + + + + FSL S9-222 Spain Typhimurium Beach 4 5 5 10 6 1 P12 - - + +		1989
FSL S9-215SpainTyphimuriumHuman4551061P12FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumRiver4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-222SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach4551061P12FSL S9-225SpainTyphimuriumBeach4551061P12FSL S9-226SpainTyphimuriumPork saus.4551061P12FSL S9-230SpainTyphimuriumPork saus.4551061P12FSL S9-230SpainTyphimuriumChicken45 <td></td> <td>1986</td>		1986
FSL S9-216SpainTyphimuriumMeat4551061P12FSL S9-218SpainTyphimuriumBeach4551061P12FSL S9-219SpainTyphimuriumRiver4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-220SpainTyphimuriumBeach4551061P12FSL S9-221SpainTyphimuriumBeach4551061P12FSL S9-222SpainTyphimuriumBeach4551061P12FSL S9-223SpainTyphimuriumBeach4551061P12FSL S9-224SpainTyphimuriumBeach4551061P12FSL S9-225SpainTyphimuriumBeach4551061P12FSL S9-226SpainTyphimuriumBeach4551061P12FSL S9-226SpainTyphimuriumPork saus.4551061P12FSL S9-230SpainTyphimuriumChicken4551061P12		1988
FSL S9-218 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-219 Spain Typhimurium River 4 5 5 10 6 1 P12 FSL S9-220 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-220 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-221 Spain Typhimurium Beach 4 5 5 10 6 1 P12 + - + + + + FSL S9-222 Spain Typhimurium Beach 4 5 5 10 6 1 P12 - - + <td></td> <td>1989</td>		1989
FSL S9-219 Spain Typhimurium River 4 5 5 10 6 1 P12 FSL S9-220 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-221 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-221 Spain Typhimurium Beach 4 5 5 10 6 1 P12 + - +		1991
FSL S9-220 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-221 Spain Typhimurium Beach 4 5 5 10 6 1 P12 + - + <		1992
FSL S9-221SpainTyphimuriumBeach4551061P12+-+++FSL S9-222SpainTyphimuriumBeach4551061P12-++++FSL S9-223SpainTyphimuriumBeach4551061P12+++FSL S9-224SpainTyphimuriumBeach4551061P12<		1992
FSL S9-222 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-223 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-224 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-225 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-230 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12	+	1992
FSL S9-223 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-224 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-225 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-230 Spain Typhimurium Chicken 4 5 5 10 6 1 P12		1992
FSL S9-224 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-225 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-230 Spain Typhimurium Chicken 4 5 5 10 6 1 P12		1993
FSL S9-225 Spain Typhimurium Beach 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-230 Spain Typhimurium Chicken 4 5 5 10 6 1 P12		1994
FSL S9-226 Spain Typhimurium Pork saus. 4 5 5 10 6 1 P12 FSL S9-230 Spain Typhimurium Chicken 4 5 5 10 6 1 P12		1996
FSL 89-230 Spain Typhimurium Chicken 4 5 5 10 6 1 P12		1996
		1988
FSL S9-214 Spain Typhimurium Meat 4 5 5 10 6 1 P13		1988
FSL S9-217 Spain Typhimurium Beach 4 5 5 10 6 1 P14		1991
FSL S5-534 New York Typhimurium Human 4 5 5 10 6 1 P15		2004

Table A2 [S2.1]. (Continued)

Table A2 [S2.1]. (Continu

	.]. (
FSL S5-607	New York	Typhimurium	Bovine	4	5	5	10	6	1	P16								2004
FSL S5-492	New York	Typhimurium	Human	4	5	5	10	6	1	P17								2004
FSL S5-536	New York	Typhimurium	Human	36	5	5	10	49	9	P18	+	-	+	+	+	+	+	2004
FSL S5-494	New York	Typhimurium	Human	4	5	5	10	6	1	P19								2004
FSL S9-247	Spain	Typhimurium	Beach	4	5	5	10	6	1	P19								1996
FSL S5-653	New York	Typhimurium	Human	4	5	5	10	6	1	P20								2005
FSL R6-131	Washington	Typhimurium	Human	4	5	5	18	6	2	P24								2005
FSL S5-394	New York	Typhimurium	Human	4	5	5	10	6	1	P25								2004
FSL R6-154	Washington	Typhimurium	Human	4	5	5	10	6	1	P35								2005
FSL S9-231	Spain	Typhimurium	Beach	34	5	5	10	47	7	P35	+	-	+	+	+	+	+	1994
FSL R6-136	Washington	Typhimurium	Human	4	5	5	10	6	1	P36								2004
FSL S5-493	New York	Typhimurium	Human	34	5	5	10	47	7	P36								2004
FSL S5-507	New York	Typhimurium	Human	4	5	5	10	6	1	P36	+	-	+	+	+	+	+	2004
FSL S9-125	Georgia	Typhimurium	Poultry	4	5	5	10	6	1	P36	+	-	+	+	+	+	+	
FSL S9-212	Spain	Typhimurium	Human	4	5	5	10	6	1	P37								1992
FSL S5-462	New York	Typhimurium	Human	4	5	5	10	6	1	P38								2004
FSL S5-501	New York	Typhimurium	Human	4	5	5	10	6	1	P39								2004
FSL S5-473	New York	Typhimurium	Human	4	5	5	10	6	1	P4								2004
FSL S5-511	New York	Typhimurium	Human	4	5	5	10	6	1	P4								2004
FSL S5-520	New York	Typhimurium	Human	4	5	5	10	6	1	P4								2004
FSL S5-620	New York	Typhimurium	Bovine	4	5	5	10	6	1	P4								2004
FSL S5-747	New York	Typhimurium	Bovine	4	5	5	10	6	1	P4								2004
FSL S5-831	New York	Typhimurium	Bovine	4	5	5	10	6	1	P4								2004
FSL S9-103	non- domestic bird	Typhimurium	FL Emu (captive)	4	5	5	10	6	1	P4	+	-	+	+	+	+	+	
FSL S9-130	Georgia	Typhimurium	Bovine	4	5	5	10	6	1	P41								1999
FSL S5-392	New York	Typhimurium	Human	4	5	5	10	6	1	P44								2004
FSL S5-788	New York	Typhimurium	Bovine	36	5	5	10	49	9	P45								2004
FSL S9-210	Spain	Typhimurium	Water	34	5	5	10	47	7	P45	+	-	+	+	+	+	+	1990
FSL S9-129	Georgia	Typhimurium	Bovine	4	5	5	10	6	1	P47								2003
FSL S9-131	Georgia	Typhimurium	Bovine	4	5	5	10	6	1	P51								2002
FSL S9-208	Spain	Typhimurium	Water	4	5	5	10	6	1	P52								1986
FSL S9-228	Spain	Typhimurium	Water	4	5	5	10	6	1	P52	+	-	+	+	+	+	+	1986
FSL S5-936	New York	Typhimurium	Bovine	4	5	5	10	6	1	P53								2004

FSL S9-123	Georgia	Typhimurium	Poultry	4	5	5	10	6	1	P57								
FSL S5-397	New York	Typhimurium	Human	4	5	5	10	6	1	P6								2004
FSL S9-124	Georgia	Typhimurium	Poultry	4	5	5	10	6	1	P63								2000
FSL S5-381	New York	Typhimurium	Human	4	5	5	10	6	1	P7								2004
FSL S5-805	New York	Typhimurium	Bovine	4	5	5	10	6	1	P7								2004
FSL S5-433	New York	Typhimurium	Bovine	4	5	5	10	6	1	P71								2004
FSL S9-133	Georgia	Typhimurium	Bovine	4	5	5	10	6	1	P72								2000
FSL S5-516	New York	Typhimurium	Human	4	5	5	10	6	1	P74								2004
FSL S5-896	New York	Typhimurium	Bovine	4	5	5	10	6	1	P75								2004
FSL S5-505	New York	Typhimurium	Human	4	5	5	10	6	1	P76								2004
FSL S5-532	New York	Typhimurium	Human	4	5	5	10	6	1	P76								2004
FSL S5-555	New York	Typhimurium	Bovine	4	5	5	10	6	1	P76								2004
FSL S5-531	New York	Typhimurium	Human	4	5	6	10	7	8	P77								2004
FSL S5-564	New York	Typhimurium	Bovine	4	5	5	10	6	1	P77								2004
FSL S9-132	Georgia	Typhimurium	Bovine	4	5	5	10	6	1	P78								1995
FSL S9-211	Spain	Typhimurium	Human	4	5	5	10	6	1	P79								1991
FSL S5-729	New York	Typhimurium	Bovine	4	5	5	10	6	1	P8								2004
FSL R6-161	Washington	Typhimurium	Human	4	5	5	10	6	1	P81	+	-	+	+	+	+	+	2005
FSL S5-916	New York	Typhimurium	Bovine	4	5	7	10	8	3	P81								2004
FSL S5-796	New York	Typhimurium	Bovine	4	5	7	10	8	3	P82								2004
FSL S9-234	Spain	Typhimurium	Beach	34	5	5	10	47	7	P83								1996
FSL S9-233	Spain	Typhimurium	Beach	4	5	5	10	6	1	P84								1994
FSL S9-128	Georgia	Typhimurium	Bovine	4	5	5	10	6	1	P85								2002
FSL R6-002	Washington	Typhimurium	Bovine	4	5	7	10	8	3	P86								2004
FSL S9-232	Spain	Typhimurium	Beach	34	5	5	10	47	7	P87								1994
FSL S9-235	Spain	Typhimurium	Minced	4	5	5	10	6	1	P88								1996
	<i>.</i> .		beef		_	_	10											
FSL S9-112	Georgia	Typhimurium	Poultry	4	5	5	10	6	1	P9								2006

^a these isolates were serotyped as 4,5,12:i:- in one replicate and Typhimurium in another replicate (including one isolates that was classified as 4,5,12:i:- in two replicates and Typhimurium in one replicate) and were thus designated as "inconsistent"

Gene	Size of amplicon, bp	Primers ^a	Reaction parameters ^b
STM2692	919	F: 5'- ATA TTC AGC GTG AAC GGG CG-3'	95°C for 10 min (1x); 95°C for 1 min, 55°C for 45 sec,
		R: 5'- ACG CCG TCA AGC CCG CCG-3'	72°C for .15 min (30x); 72 °C for 7 min (1x)
STM2694	214	F: 5'- TGA ACT GTC CAG AGT GCG G-3'	95°C for 10 min (1x); 95°C for 1 min, 55°C for 45 sec,
		R: 5'- TCA GAA ACT CAT GTG GCC TTG ACC-3'	72°C for .15 min (30x); 72 °C for 7 min (1x)
STM2741	543	F: 5'- AAG CGC GGC ATC TCG CCC-3'	95°C for 10 min (1x); 95°C for 1 min, 55°C for 45 sec,
		R: 5'- AAG CCC ATC CGA CGG C-3'	72°C for .15 min (30x); 72 °C for 7 min (1x)
STM2758	653	F: 5'- ATT GCC ATG CTG CCT GCC GC-3'	95°C for 10 min (1x); 95°C for 1 min, 55°C for 45 sec,
		R: 5'- AGC CAG AAC GTC GGC C-3'	72°C for .15 min (30x); 72 °C for 7 min (1x)
STM2774	642	F: 5'- TCG GTT GAA GGT CAG ATT ATC GGG C-3'	95°C for 10 min (1x); 95°C for 1 min, 55°C for 45 sec,
		R: 5'- TAA CTG CAG TGT TGA ACG GCG G-3'	72°C for .15 min (30x); 72 °C for 7 min (1x)
manB	790	F: 5'-CAT AAY CCG ATG GAC TAC AAC G-3'	95°C for 10 min (1x); 95°C for 45 sec, TD 55°C -45 °C
		5'-ACC AGC AGC CAC GGG ATC AT-3'	for 45 sec, 72° C for 1 min (40x); 72° C for 7 min (1x)
fimA	760	F: 5'- TCA GGG GAG AAA CAG AAA ACT AAT -3'	95°C for 10 min (1x); 95°C for 45 sec, 57.1°C for 45
		R: 5'- TCC CCG ATA GCC TCT TCC -3'	sec, 72° C for 1 min (45x); 72° C for 7 min (1x)
mdh	849	F: 5'-GAT GAA AGTCGC AGT CCT CG-3'	95°C for 10 min (1x); 95°C for 45 sec, TD 55°C -45°C
		R: 5'-TAT CCA GCA TAG CGT CCA GC-3	for 45 sec, 72° C for 1 min (40x); 72° C for 7 min (1x)
aroC	501	F: 5'-GGCACCAGTATTGGCCTGCT-3'	95°C for 5 min (1x); 95°C for 1 min, 55°C for 45 sec,
		R: 5'-CATATGCGCCACAATGTGTTG-3'	72° C for 1 min (30x); 72° C for 7 min (1x)

Table A2 [S4.2]. Primers and PCR conditions

^aR: reverse primer; F: forward: primer ^bTD: Touch down PCR; annealing temperatures decreased 0.5 ^oC/cycle during the first 20 cycles, followed by 20 cycles at 55^oC