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Polarity is a fundamental cellular feature that is critical for generating cell 

diversity and maintaining organ functions during development. In C. elegans, the one-

cell embryo is polarized via asymmetric localization of the PAR proteins, which in 

turn are required to establish the future anterior-posterior axis of the embryo. PAR-3, a 

conserved PDZ domain-containing protein, acts with PAR-6 and PKC-3 (atypical 

protein kinase; aPKC) to regulate cell polarity and junction formation in a variety of 

cell types. To understand how PAR-3 localizes and functions during C. elegans 

development, we have produced targeted mutations and deletions of conserved 

domains of PAR-3 and examined the localization and function of the GFP-tagged 

proteins in C. elegans embryos and larvae. We find that neither PDZ1 not nor PDZ3 

are essential for localization or function. PDZ2, however, is required for PAR-3 to 

accumulate stably at the cell periphery in early embryos and at the apical surface in 

pharyngeal and intestinal epithelial cells. CR1, the PAR-3 self-oligomerization 

domain, is required for PAR-3 cortical distribution and function only during early 

embryogenesis. We also show that phosphorylation at S863 by PKC-3 is not essential 

in early embryogenesis, but is important in later development. Our results indicate that 

the different domains and phosphorylation forms of PAR-3 can have different roles 

during C. elegans development. 
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CHAPTER ONE 

INTRODUCTION 

Polarity is a fundamental feature of cells, from yeast positioning their budding 

site to neurons forming axons and dendrites. The development of multicellular 

organisms requires choreographed cell polarization to generate diverse tissue 

structures and maintain distinct organ functions. Some cells become polarized to 

segregate cell fate determinants unequally. For example, in Drosophila, most neural 

precursor cells divide asymmetrically to generate neurons and their support cells 

(Betschinger and Knoblich, 2004). Some cells become polarized to execute 

specialized functions. For example, the distinct apical and basolateral domains in 

epithelial cells provide barriers that regulate ionic homeostasis; while in nervous 

system the specification of extended axons are required for signal transduction over 

long distances (Macara, 2004b). 

During the past several decades, the mechanisms that drive cell polarization 

have been widely explored in many model systems. The C. elegans embryo provides 

many advantages for studying the mechanisms controlling polarized cell division: 

First, asymmetric divisions are a prominent feature during early embryogenesis 

(Sulston et al., 1983). Second, the large, transparent early blastomeres are favorable 

for microscopy and physical manipulations. Third, powerful forward genetics and 

reverse genetics tools are well established in C. elegans, which makes studies on gene 

function rapid and thorough (Brenner, 1974; Chalfie et al., 1981; Cuppen et al., 2007; 

Kamath et al., 2003; Timmons and Fire, 1998). Finally, the development of transgenic 

animal production techniques allowed us to study some germ-line expressed genes that 

had been impossible by traditional microinjections (Praitis et al., 2001). 

This thesis describes the work I have done to gain insight into how PAR-3, a 

conserved scaffold protein, controls embryonic and epithelial polarity in C. elegans. It 
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focuses on the structure and function analysis of PAR-3 in early worm embryos and 

developing larvae. In this introduction I will first discuss the events and the underlying 

mechanisms in the early worm embryo. Then I will review epithelial polarity 

development in flies, worms, and mammals. Finally I will discuss the structure and 

function of each PAR-3 domain in other organisms. 

 

I. ASYMMETRIC DIVISIONS IN THE EARLY C. ELEGANS EMBRYO 

1.1. The events of the first asymmetric cleavage 

A wild-type Caenorhabditis elegans hermaphrodite can produce about 300 

self-progeny at 20°C. Oocytes are produced in the two arms of the ovary. During 

larval development, sperm are made in each arm before the germline permanently 

switches to produce oocytes. During the first ovulation and fertilization event, mature 

sperm are pushed into the spermathecae, where they are stored and used to fertilize 

oocytes as they pass through (Hall et al., 1999). 

Before fertilization, oocytes are arrested at meiotic prophase for days and have 

no inherent polarity (Goldstein and Hird, 1996; McCarter et al., 1997). The symmetry 

is broken upon sperm entry, which promotes the completion of meiosis. The position 

of the sperm at the end of meiosis determines the future posterior pole of the embryo 

(Albertson, 1984; Browning and Strome, 1996; Goldstein and Hird, 1996). After 

meiosis, the surface of the newly fertilized egg begins to ruffle, seen as a number of 

small and transient invaginations of the cortex. As a sign of active cortical 

contractility, ruffling can last up to several minutes (Cowan and Hyman, 2004a; Hird 

and White, 1993; Munro et al., 2004). Initially, the contractions are present all over the 

surface, but shortly after the paternal chromosomes decondense, a local cessation of 

ruffling occurs at the cortex adjacent to the sperm centrosome (Cowan and Hyman, 

2004a; Hird and White, 1993; Munro et al., 2004). The smooth region rapidly expands 
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toward the opposite pole and ends at a deep invagination of the membrane, called the 

pseudocleavage furrow (Cowan and Hyman, 2004a; Hird and White, 1993; Munro et 

al., 2004). The sudden weakening of the tensioned cytoskeleton network at the cortex 

over the sperm centrosome promotes a dramatic movement of the cell contents: over a 

period of 10 to 15 minutes, cortical cytoplasm streams away from, and central 

cytoplasm streams toward, the sperm centrosome in a fountainhead-like fashion (Hird 

and White, 1993; Munro et al., 2004; Strome, 1986). The flow is believed to be 

responsible for the initial partitioning of molecules that are involved in zygotic 

polarity establishment (Cheeks et al., 2004; Munro et al., 2004) Meanwhile, the 

decondensing maternal pronucleus migrates toward the paternal pronucleus. After 

meeting in the posterior, they move back as a unit to the center of the embryo, and 

execute a 90° rotation to align the centrosomes along the A-P axis (Albertson, 1984; 

Hyman and White, 1987)  

In metaphase and anaphase, the mitotic spindle shifts to the posterior, leading 

to an asymmetric division, which generates two daughter cells different in size and 

fate. The larger anterior AB cell gives rise to neurons, anterior pharynx, skin and other 

tissues; and the smaller posterior P1 cell produces germ line, intestine, posterior 

pharynx, muscle and other tissues (Kemphues, 2000). Moreover, the AB cell and P1 

cell divide at different times and in different orientations. In the AB cell, which 

divides first, its spindle is perpendicular to the A-P axis. However, in the P1 cell, 

which divides second, an additional centrosome-nuclear rotation aligns the mitotic 

apparatus parallel to the A-P axis (Albertson, 1984; Cowan and Hyman, 2004a)  

 

1.2. The sperm sends the initial polarity cue  

 Fertilization presumably brings the sperm contents—paternal DNA, 

centrosome, cytoplasm, and plasma membrane--into the egg (Siomos et al., 2001). 
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Unlike in Drosophila, there is no evidence to indicate that asymmetries before 

fertilization in C. elegans oocytes are relevant to embryonic polarity (Pellettieri and 

Seydoux, 2002; Wodarz, 2002). Investigations from several labs suggest that the 

sperm centrosome, which organizes astral microtubules, specifies the posterior pole.  

First, despite the entry position relative to oocyte polarity, the pole occupied by the 

sperm centrosome always becomes the posterior (Goldstein and Hird, 1996). Second, 

embryos mutant for genes that are required for paternal centrosome maturation fail to 

establish AP axis (Hamill et al., 2002; O'Connell et al., 2000). Third, anucleated sperm 

with a pair of centrioles can fertilize eggs and establish A-P polarity (Sadler and 

Shakes, 2000). 

Although the paternal centrosome is believed to account for sending the initial 

polarity cue, the role of microtubules in this process is still controversial.  In mutant 

embryos that arrest in meiosis with immature sperm asters, the persistent maternal 

meiotic spindle can specify some aspects of the posterior pole (Wallenfang and 

Seydoux, 2000). Since the meiotic spindle lacks centrioles and the reversed A-P 

polarity can be abolished by microtubule elimination, it suggests an important role of 

microtubule in at least this abnormal polarity establishment (Wallenfang and Seydoux, 

2000). However, this polarity establishment is transient and partial, as P granules, a 

posterior marker, are dispersed throughout the cytoplasm instead of anteriorly 

concentrated (Wallenfang and Seydoux, 2000). In addition, in separate experiments, 

depletion of visible α-/β-tubulin by RNA interference (RNAi) fails to prevent 

polarization of the zygote, raising the possibility that centrosomal components may 

signal directly to the cortex (Cowan and Hyman, 2004b). 
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1. 3. The PAR proteins  

1.3.1 The identification of the PARs 

The key players for setting up embryonic polarity were identified in genetic 

screens aimed for mutants affecting the first asymmetric division (Kemphues et al., 

1988; Morton et al., 2002; Watts et al., 1996). Six genes were identified in these 

screens and were named as par (par-1 to par-6), standing for partitioning defective. 

Mutations in these genes perturb the early cleavage patterns without reducing the total 

cell number (Kemphues et al., 1988). The changes in the developmental potential of 

the blastomeres correlated with the absence of intestine and germline, and excess of 

pharyngeal and body-wall muscle to various extents (Bowerman et al., 1997; 

Crittenden et al., 1997; Draper et al., 1996). A seventh gene, pkc-3 (atypical kinase C), 

can be classified as a par gene because depletion of it in the early embryos leads to 

phenotypes indistinguishable from those of par-3 and par-6 (Tabuse et al., 1998). 

Mutants in each par gene exhibit most or all of a common set of polarity 

defects during the first few cell cycles, defined as the Par phenotypes: equal first 

cleavage, synchronous second cleavage, misorientated spindles at second cleavage, 

and mislocalization of cell fate determinants and P granules (Bowerman et al., 1993; 

Boyd et al., 1996; Etemad-Moghadam et al., 1995; Grill et al., 2001; Guo and 

Kemphues, 1995a; Hung and Kemphues, 1999; Kemphues et al., 1988; Tabuse et al., 

1998). In addition, cytoplasmic flow is attenuated, and the pronuclei meet more 

medially during the first cell cycle (Etemad-Moghadam et al., 1995; Kemphues et al., 

1988; Kirby et al., 1990). The phenotypes of some of the par mutants are displayed in 

Figure 1.1. The fact that most known cell fate regulators depend upon PAR activities 

for their asymmetric distribution implies that the PAR proteins are among the earliest, 

key molecules setting up embryonic polarity (Rose and Kemphues, 1998; Schneider 

and Bowerman, 2003). 
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Figure 1.1 Par phenotype Each par mutant exhibits most or all of a common set of 

polarity defects during the first few cell cycles, defined as the Par phenotypes: equal 

first cleavage (right column), synchronous second cleavage and misoriented spindles 

at second cleavage (middle column; microtubules in green, chromosomes in blue), and 

mislocalization of cell fate determinants and P granules (left column; embryos are at 

four cell stage). Modified from K. Kemphues. 
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1.3.2 PAR Protein structures  

Figure 1.2 is a summary of the PAR proteins’ primary structures and identified motifs. 

An evident feature of them is that the motifs they contain are often involved in 

intracellular signal transduction (Rose and Kemphues, 1998). PAR-1, PAR-4, and 

PKC-3 are serine/threonine protein kinases (Guo and Kemphues, 1995a; Tabuse et al., 

1998; Watts et al., 1996). PAR-3 and PAR-6 contain PDZ domains, which are well 

known to mediate protein-protein interactions and scaffold signaling complexes 

(Etemad-Moghadam et al., 1995; Hung and Kemphues, 1999; Watts et al., 1996). 

PAR-5 is a member of the 14-3-3 protein family, which has many roles in stimulating 

protein-protein interactions and regulating protein activity and localization (Morton et 

al., 2002). PAR-2 contains a ring-finger domain, which has been found in E3 ubiquitin 

ligase subunits (Boyd et al., 1996; Levitan et al., 1994). Recent studies also added 

CDC42, a member of the Rho GTPases, to this group since its removal in early 

embryos causes phenotypes similar to those of the par mutants (Aceto et al., 2006; 

Gotta et al., 2001; Kay and Hunter, 2001). 

 

1.3.3 PAR Protein localization   

The first clue to interpret how the PAR proteins control the polarization of the 

zygote came from their distinct asymmetric localization. Studies on fixed embryos 

revealed that four of the PAR proteins localize to the reciprocal cortical regions of the 

one-cell embryo. PAR-3 and PAR-6 colocalize to the anterior cortex, and PAR-2 and 

PAR-1 define the posterior cortical domain (Boyd et al., 1996; Etemad-Moghadam et 

al., 1995; Guo and Kemphues, 1995b; Hung and Kemphues, 1999; Levitan et al., 

1994; Tabuse et al., 1998; Watts et al., 1996). PAR-4 and PAR-5 are uniformly 

distributed in the cytoplasm as well as at the cortex (Morton et al., 2002; Watts et al., 

2000). Later work also showed that PKC-3 and active CDC42 also localize to the  
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Figure 1.2 The structure of the PAR proteins. PAR-1, PAR-4, and PKC-3 are 

serine/threonine protein kinases; PAR-3 and PAR-6 contain PDZ domains, which are 

well known to mediate protein-protein interactions and scaffold signaling complexes; 

PAR-5 is one of the two 14-3-3 proteins in C.elegans; PAR-2 contains a ring-finger 

domain, which has been found in E3 ubiquitin ligase subunits. 
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anterior cortex of the zygote (Gotta et al., 2001; Kay and Hunter, 2001; Motegi and 

Sugimoto, 2006). The anterior PARs and the posterior PARs act antagonistically to 

maintain the A-P asymmetry. How they achieve their asymmetric localization and 

execute their functions is discussed below. 

 

1.3.4 The interplay between actomyosin and PAR-3/PAR-6/PKC-3 during polarity 

establishment 

The polarization of the worm zygote can be categorized into two phases: the 

initial polarity establishment phase (fertilization to pronuclear meeting) and the later 

maintenance phase (pronuclear meeting to telophase) (Cuenca et al., 2003). These two 

phases differ not only in time, but also in the proteins controlling them. A series of 

molecules have been found acting antagonistically to translate the initial polarity 

signal to a persistent asymmetry in the one-cell embryo. The complex interactions are 

summed up as a sequential repression model, seen in Figure 1.3. 

PAR-3, PAR-6 and PKC-3 are the key regulators in the first phase. They 

interact with each other both in vitro and in vivo, forming a ternary complex and 

acting co-dependently (Hung and Kemphues, 1999; Tabuse et al., 1998; Watts et al., 

1996) (Li et al., unpublished). Depletion of any of them results in the same 

phenotypes. In par-3, par-6, and PKC-3(RNAi) embryos, the polarity completely fail 

to establish, as cortical and cytoplasmic flow is abolished, P granules are partitioned 

incompletely or not at all, and the mitotic spindle is centrally positioned, resulting in 

an equal first cleavage (Etemad-Moghadam et al., 1995; Hung and Kemphues, 1999; 

Tabuse et al., 1998; Watts et al., 1996). At the two-cell stage, both AB and P1 are the 

same size and divide synchronously. The centrosome-nuclear rotation fails to occur in  

the P1 cell, resulting in the spindle forming parallel to the long axis of the embryo  
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Figure 1.3 The sequential repression model for polarization of the C.elegans 

zygote Proteins that localize to the anterior are in blue (PAR-3, PAR-6, PKC-3 on the 

cortex, MEX-5 and MEX-6 in the cytoplasm). Proteins that localize to the posterior 

are in purple (PAR-2 and PAR-1 on the cortex, and P granules in the cytoplasm). 

Lines with bars depict antagonistic interactions, whereas lines with arrows depict 

positive interactions. Modified from Cuenca et al., 2003 and Motegi and Sugimoto, 

2006. 
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(Etemad-Moghadam et al., 1995; Hung and Kemphues, 1999; Tabuse et al., 1998; 

Watts et al., 1996). 

PAR-3, PAR-6, and PKC-3 are the earliest PAR proteins that respond to the 

polarity signal and redistribute asymmetrically (Cuenca et al., 2003; Munro et al., 

2004). During meiosis II, PAR-3, PAR-6 and PKC-3 accumulate at a high level 

around the entire cortex, while PAR-2 is uniformly distributed in the cytoplasm (Boyd 

et al., 1996; Cuenca et al., 2003; Etemad-Moghadam et al., 1995; Hung and 

Kemphues, 1999; Tabuse et al., 1998). About 30 minutes after fertilization, PAR-3, 

PAR-6 and PKC-3 start to clear from the posterior pole in response to the polarity 

signal, allowing PAR-2 and PAR-1 to fill the cortical region left by the retraction of 

the anterior PARs (Cuenca et al., 2003; Etemad-Moghadam et al., 1995; Hung and 

Kemphues, 1999; Munro et al., 2004; Tabuse et al., 1998). In the absence of PAR-2, 

the anterior PARs can still clear from the posterior pole and establish the anterior 

domain until pronuclear meeting, after which they spread to the posterior cortex 

gradually (Cuenca et al., 2003). In any of the anterior PAR mutant embryos, PAR-1, 

PAR-2 occupy the entire cortex (Boyd et al., 1996; Guo and Kemphues, 1995b). This 

evidence indicates that the anterior PARs react actively to the polarity cue, and PAR-2 

functions to restrict the anterior PARs from leaking back to the posterior domain 

(Cuenca et al., 2003). 

How the PAR proteins associate with the cortex is still not clear, but their 

cortical localization requires an intact microfilament network. Microfilament fibers 

and foci are present around the cell periphery and then are enriched in the anterior half 

in the early one-cell embryo (Hill and Strome, 1988). Chemical disruption of 

microfilaments with latrunculin A in early one-cell embryos blocks the cortical and 

cytoplasmic flows, and greatly reduces, if not eliminates, all cortical accumulation of 

PAR-3, PAR-6 and PKC-3 (Severson and Bowerman, 2003).  
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The mechanisms by which the anterior PARs establish their anterior domain 

appear to depend on the asymmetric contraction of the actomyosin network (Munro et 

al., 2004). Upon fertilization, the sperm-provided polarity signal causes a local 

weakening of the tensioned actomyosin network, resulting in an anterior-directed 

cortical flow (Munro et al., 2004). During the cortical flow, microfilaments, myosin, 

PAR-6, and yolk granules move toward the anterior pole at the same velocity, 

indicating that all they are components of the same profound cytoskeleton 

rearrangement (Munro et al., 2004). Depletion of non-muscle myosin II (NMY-2), 

myosin regulatory light chain (MLC-4), profilin (PFN-1), or the Formin Homology 

protein (CYK-1) abolishes the cortical contractility as well as the cytoplasmic and 

cortical flows, resulting in the failure of the clearance of PAR-3/PAR-6/PKC-3 from 

the posterior pole (Guo and Kemphues, 1996a; Munro et al., 2004; Severson and 

Bowerman, 2003; Shelton et al., 1999). Taken together, all these findings indicate that 

cortical transport is a dominant mechanism for the establishment of the PAR polarity 

(Munro et al., 2004).  

The PAR proteins are not simply passive cargo carried by the flow. They also 

modulate cortical actomyosin dynamics actively to promote a sustainable movement 

(Munro et al., 2004). In par-3 mutants, NMY-2 transiently clears away from the cortex 

next to the sperm centrosome, but fails to produce a directional flow (Munro et al., 

2004). In summary, the cortical flows driven by asymmetric contraction of the 

actomyosin carry the anterior PARs as well as other cytoplasmic contents to the 

anterior side of the zygote. And the PAR proteins feed back to the loop by promoting a 

persistent flow. 

 

1.3.5 RHO-1 and its regulators link the polarity cue to the PARs   

Since the posterior relaxation of the actomyosin network directly links to the  
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PAR asymmetry, one of the main questions to be answered is what causes the local 

change in response to the initial polarity cue. Growing evidence implied that the 

response to the sperm-provided signal is mediated by RHO-1, a small GTPase that 

regulates actomyosin contractility in many other systems (Goldstein and Macara, 

2007). GTPases are small signaling proteins that cyclebetween an active GTP-bound 

state and an inactive GDP-bound state (Erickson and Cerione, 2001; Etienne-

Manneville and Hall, 2002). 

 Prior to meiosis II, RHO-1 is uniformly distributed around the periphery of the 

zygote as small foci and short filaments (Motegi and Sugimoto, 2006). As the sperm 

de-condenses, RHO-1 is excluded from the posterior cortex and forms an anterior cap 

in large foci (Motegi and Sugimoto, 2006). In rho-1(RNAi) embryos, the cortical 

contractility is lost, cortical and cytoplasmic flows are abolished, the PAR-3/PAR-

6/PKC-3 fail to clear from the posterior pole, and PAR-2 is uniformly cytoplasmic 

(Jenkins et al., 2006; Motegi and Sugimoto, 2006; Schonegg and Hyman, 2006).The 

initial exclusion of RHO-1 is dependent on the sperm signal, as in spd-2 or spd-5 

mutant embryos, which fail to assemble functional centrosomes (Hamill et al., 2002; 

O'Connell et al., 2000), RHO-1 never clears from posterior pole (Motegi and 

Sugimoto, 2006; Kim et al., unpublished). However, none of the PARs and the 

components of actomyosin network are required for the initial clearance of RHO-1, 

indicating RHO-1 acts upstream of the asymmetric PAR proteins (Jenkins et al., 2006; 

Motegi and Sugimoto, 2006).  

The activity of the Rho-family GTPases is regulated by guanine nucleotide 

exchange factors (GEFs) and the GTPase-activating proteins (GAPs) (Erickson and 

Cerione, 2001; Etienne-Manneville and Hall, 2002). GEFs promote the active state of 

GTPases by inducing GDP dissociation; and GAPs promote the inactive state of 
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GTPases by stimulating GTP hydrolysis (Erickson and Cerione, 2001; Etienne-

Manneville and Hall, 2002). 

Increasing evidences implies that the GEFs and GAPs are widely involved in 

sending/sensing the polarity signal and refining the PAR asymmetry in the worm 

zygote (Jenkins et al., 2006; Motegi and Sugimoto, 2006; Schonegg et al., 2007). 

Jenkins and colleagues presented evidence that the sperm-provided RhoGAP, CYK-4, 

acts as the initial polarity cue (Jenkins et al., 2006). cyk-4(RNAi) embryos display 

similar polarity defects as rho-1(RNAi), as the cortical flow is abolished, and PAR-3, 

PAR-6 are uniformly distributed at the cortex(Jenkins et al., 2006). Depletion of 

paternal CYK-4 causes impaired polarization in about half of the embryos produced 

by the wild-type mothers (Jenkins et al., 2006). CYK-4 in the wild-type sperm can 

rescue the polarity defects but not the impaired meiotic cytokinesis for fertilized cyk-

4(RNAi) eggs (Jenkins et al., 2006). These are difficult experiments to carry out and 

several labs, including ours, have tried to repeat these results with no success. 

In mammals, ECT-2, a RhoGEF protein, works with CYK-4 to regulate RHO 

activity during cytokinesis (Glotzer, 2001). Recent studies of the worm ECT-2 

revealed its role in controlling asymmetric localization and/or activity of RHO-1, and 

subsequently the early polarity establishment (Jenkins et al., 2006; Motegi and 

Sugimoto, 2006). Despite some subtle dynamic differences, ECT-2 shows a similar 

localization to RHO-1, as it is uniformly distributed at the cell cortex before 

polarization, then clears from the posterior pole to occupy a common anterior domain 

shared by RHO-1, NMY-2, and the anterior PARs (Jenkins et al., 2006; Motegi and 

Sugimoto, 2006). Depletion of RHO-1 does not abolish the initial decrease of ECT-2 

at the cortex nearest to the sperm centrosome; but RHO-1 fails to clear from the 

posterior pole in the absence of ECT-2 (Jenkins et al., 2006; Motegi and Sugimoto, 
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2006). This evidence indicates that ECT-2 acts upstream of RHO-1 to promote its 

asymmetric localization in response to the polarity cue. 

One downstream effector of RhoA is RhoA kinase (ROCK), which activates 

myosin contraction by phosphorylating myosin light chain (MLC) (Riento et al., 

2003). Staining of early embryos with antibodies that can specifically recognize 

phospho-MLC revealed co-localization of phopho-MLC to RHO-1 and ECT-2 

(Jenkins et al., 2006). In ect-2(RNAi) or rho-1(RNAi) embryos, no phospho-MLC was 

detected at the cell periphery (Jenkins et al., 2006). 

RGA-1 and RGA-4, two similar RhoGAP proteins are required to control the 

activity of the actomyosin network and the size of the PAR domains (Schonegg et al., 

2007). rga-3/-4 (RNAi) embryos exhibit increased cortical contractility and an anterior 

shift of the boundary between the two reciprocal PAR domains (Schonegg et al., 

2007). This also supports the “actymyosin relaxation” model in which upregulated 

cortical contractility will lead to an over-contraction of the meshwork toward the 

anterior, which in turn results in the expansion of PAR-2 domain and the shrinking of 

the PAR-3/PAR-6/PKC-3 domain (Schonegg et al., 2007). 

 

1.3.6 CDC42 and PAR-2 in polarity maintenance 

 As PAR-3, PAR-6 and PKC-3 gradually clear away from the posterior, PAR-2 

fills the cortical region left by the anterior PARs (Boyd et al., 1996; Cheeks et al., 

2004; Cuenca et al., 2003; Levitan et al., 1994). During the maintenance phase of the 

cell cycle, posterior PAR-2 and anterior PAR-3/PAR-6/PKC-3 exclude each other 

from invading their respective territories to maintain the established AP axis (Boyd et 

al., 1996; Cheeks et al., 2004; Cuenca et al., 2003).  

 PAR-2 is the only PAR protein for which no homologs have been identified in 

other animals (Levitan et al., 1994).  It has a myosin-like ATP binding site and a 
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RING finger domain that is typical for E3 ligases (Levitan et al., 1994). The relevant 

biochemical activity of PAR-2 has not been characterized, but it appears to maintain 

the polarity by preventing back-flow of the actyomyosin meshwork (Munro et al., 

2004). In par-2 mutant embryos, an ectopic posterior-directed cortical flow 

redistributes PAR-6 to the posterior cortex by metaphase (Munro et al., 2004). This 

reverse flow is not observed in wide-type embryos, suggesting that after the polarity is 

established, PAR-2 normally functions to prevent aberrant flows that otherwise carry 

the anterior PARs back to the posterior (Munro et al., 2004). 

 The anterior PARs also function to exclude PAR-2 from the anterior cortex 

(Hao et al., 2006). Human aPKC, which is very similar to PKC-3, phosphorylates 

PAR-2 directly in vitro (Hao et al., 2006). PAR-2::GFP with alanine substitutions in 

its PKC-3 sites spreads to the entire cortex, and a construct with glutamic acid 

substitutions fails to associate with the cell periphery (Hao et al., 2006). This evidence 

indicates that PAR-2 is a target of the PKC-3 kinase and is excluded from the anterior 

cortex by PKC-3-dependent phosphorylation (Hao et al., 2006). Similarly, PKC-3 may 

also phosphorylate PAR-1 to prevent PAR-1 extending into the anterior domain (J. Li, 

personal communication)(Hao et al., 2006). 

 CDC42, the Rho family GTPase, has been shown to participate in polarity 

maintenance and proper spindle orientation in the one-cell worm embryo (Gotta et al., 

2001; Kay and Hunter, 2001). As a well-studied molecular switch, CDC42 controls 

many aspects of polarity, including yeast budding and mammalian epithelia formation 

(Etienne-Manneville and Hall, 2002; Hutterer et al., 2004; Johnson, 1999). 

The phenotype of C. elegans embryos depleted of CDC42 by RNAi resembles 

the polarity phenotypes of par-3, par-6, and pkc-3 mutants (Gotta et al., 2001; Kay 

and Hunter, 2001). Constitutively active CDC42(Q61L), but not constitutively 

inactive CDC42(T17N), co-localizes with PAR-6 (Aceto et al., 2006). Further analysis 
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showed that CDC42(Q61L) interacts with the semi-CRIB (Cdc42/Rac Interaction 

Binding) domain of PAR-6 (Aceto et al., 2006; Gotta and Ahringer, 2001). Disruption 

of CDC42(Q61L)-PAR-6 interaction results in CDC42(Q61L) and PAR-6 

mislocalization during the first cell cycle(Aceto et al., 2006). 

 

1.3.7 PAR-5 is required for the segregation of the reciprocal PAR domains 

 PAR-5, one of the two 14-3-3 proteins in C. elegans, is required for the 

formation of two distinct PAR domains (Cuenca et al., 2003; Morton et al., 2002). In 

par-5 mutant embryos, the cortical contraction is aberrant, P granules fail to localize, 

the first cleavage is equal, and the second cleavage is synchronous and transverse 

(Morton et al., 2002), PAR-3/PAR-6/PKC-3 and PAR-2 expand into the 

corresponding opposite pole, resulting in the partial overlap of the anterior and the 

posterior domains (Cuenca et al., 2003; Morton et al., 2002). Similar to PAR-4, PAR-

5 localizes uniformly in the cytoplasm as well as at the cell cortex (Morton et al., 

2002). In mammalian epithelial cells, 14-3-3 binds to aPKC-phosphorylated PAR-1, 

inhibits its kinase activity and prevents its membrane association (Hurov et al., 2004; 

Suzuki et al., 2004). The mechanisms by which PAR-5 segregates the anterior and the 

posterior PARs in worm zygote is not known yet.  

 

1.3.8 PAR-4 is required for polarized development 

PAR-4 is present uniformly in the cytoplasm with a slight enrichment around 

the cell cortex (Watts et al., 2000). par-4 mutant embryos differ in phenotype from 

mutants in other par genes. In par-4 embryos, although P granules are dispersed and 

the second division is synchronous, cortical contractions still occur and the first 

cleavage is asymmetric (Morton et al., 1992; Watts et al., 2000). LKB1, the 

mammalian homolog of PAR-4 has been found correlated with the Peutz-Jeghers 



 

 18 

Syndrome (PJS). PJS Patients are subjected to develop tumors originating from 

epithelial cells of a variety of organs (Baas et al., 2004). In mammals, LKB-1 acts as a 

master kinase that can phosphorylate and activate al least 14 downstream kinases, 

including PAR-1 (Alessi et al., 2006). The full kinase activity of LKB1 requires two 

cofactors: a pseudokinase, STRAD, and an armadillo-repeat-containing protein MO25 

(Baas et al., 2003). Depletion of the worm STRAD can enhance the embryonic 

lethality of a par-4 temperature-sensitive mutant dramatically, indicating PAR-4 may 

need STRAD to function in worm embryogenesis (D. Morton, personal 

communication).  

 

1.3.9 PAR-1 partitions cell fate determinants  

 PAR-1 is a serine/threonine kinase involved in a variety of aspects of cell 

polarization. For example, in Drosophila oocyte, PAR-1 is required for the posterior 

localization of the germline determinant Oscar by stabilizing microtubules and 

phosphorylating Oscar (Shulman et al., 2000).  It also regulates the anterior 

localization of bicoid mRNA by phosphorylating Exuperantia, a mediator required for 

bicoid transport (Riechmann and Ephrussi, 2004).  

The worm par-1 mutant embryos have polarity defects including an equal first 

cleavage, synchronous second division, misoriented spindles and a failure to segregate 

P granules and lineage determinants (Guo and Kemphues, 1995b). Similar to PAR-2, 

PAR-1 accumulates at the posterior cortical region left by the anterior PAR clearance. 

The observation that PAR-1 is mislocalized in all other par mutants but par-1 mutants 

have no effects on the distribution of other PARs suggest that PAR-1 is the most 

downstream protein among the PARs (Boyd et al., 1996; Etemad-Moghadam et al., 

1995; Guo and Kemphues, 1995b; Guo and Kemphues, 1996c; Tabuse et al., 1998; 

Watts et al., 1996)).  
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The molecules that anchor PAR-1 at the posterior cortex are still unknown. 

Interaction between PAR-1 C-terminal region and the tail part of NMY-2 was 

indentified in in vitro binding assays (Guo and Kemphues, 1996b). So far no direct 

substrate of PAR-1 has been identified in C. elegans, but it appears to function by 

preventing P granules and other germ-line destined molecules from ubiquitin-

dependent degradation in the posterior of the zygote (Cheeks et al., 2004; DeRenzo et 

al., 2003). This function of PAR-1 requires MEX-5 and MEX-6, two highly similar 

CCCH finger proteins that function redundantly (Cuenca et al., 2003; Schubert et al., 

2000). Depletion of MEX-5/-6 only has subtle effects on PAR localization, but causes 

mislocalization of most known fate determinants such as MEX-1, MEX-3, SKN-1, 

PIE-1, POS-1, GLP-1 and P granules (Cuenca et al., 2003; Schubert et al., 2000). 

 MEX-5 and MEX-6 are distributed in the anterior cytoplasm of the one-cell 

embryo and the asymmetry depends on PAR-3 and PAR-1 (Cuenca et al., 2003; 

Schubert et al., 2000). Recent studies revealed that MEX-5 asymmetry requires 

phosphorylation at a single serine S458, and this phosphorylation is dependent on 

PAR-1 and PAR-4 kinase activity, although it is not yet known whether either kinase 

acts directly on MEX-5 (Tenlen et al., 2008). 

 

1.4 Spindle orientation 

 In the one-cell worm embryo, the spindle needs to be placed correctly to bisect 

across the axis of asymmetry, generating two daughter cells different in molecular 

composition and size. The spindle positioning results from a series of movements.  

The maternal pronuleus migrates to meet the sperm pronucleus in the posterior, and 

the joined pronuclei move back as a unit to the center, termed centration (Albertson, 

1984; Hyman and White, 1987). As the apposed pronuclei approach the cell center, 

the nuclear-centrosome complex rotates 90° to align along the AP axis, ensuring the 
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future cleavage plane is perpendicular to the long axis (Albertson, 1984; Hyman and 

White, 1987). These processes are dependent on astral microtubules, dynein and 

dynactin (Gonczy et al., 1999; Skop and White, 1998).  

After rotation and centration, the spindle moves toward the posterior pole as it 

elongates during anaphase (Albertson, 1984; Hyman and White, 1987). The posterior 

displacement of the spindle results in a larger AB cell and a smaller P1 cell after the 

first division (Albertson, 1984). Disruption of the central spindle using a laser beam 

causes the two centrosomes to move apart rapidly from each other, with the posterior 

centrosome moving farther, and faster, indicating the presence of unequal pulling 

forces on astral microtubules, presumably from the cortex (Grill et al., 2001).  

 PAR-3 and PAR-2 are required to generate asymmetric cortical pulling forces 

on microtubules (Grill et al., 2001). In par-2 and par-3 mutants, the first mitotic 

spindle remains centrally positioned, producing daughter cells of equal size 

(Kemphues et al., 1988). Severing the central spindle in par-2 mutants results in both 

centrosomes moving apart with the same speed as the anterior centrosome in wild-type 

zygote; while in par-3 mutants both move apart with the same speed as the posterior 

centrosome (Grill et al., 2001). As previously discovered by Cheng et al., 1995, the 

par-3 par-2 double mutant behaves like par-3, indicating that PAR-3 reduces the 

cortical forces at the anterior pole, and, PAR-2 functions to restrict PAR-3 to the 

anterior cortex (Grill et al., 2001). Although how the PAR proteins modulate the 

cortical pulling forces is still unclear, they appear to act through two redundant 

heterotrimeric G protein α subunits, called GOA-1 and GPA-16 (Colombo et al., 

2003; Gotta and Ahringer, 2001). GOA-1/GPA-16 are present in the cytoplasm, 

diffusely at centrosomes and at the cortex (Colombo et al., 2003; Gotta and Ahringer, 

2001). Depletion of GOA-1/GPA-16 dramatically reduces the pulling forces applied 

on the spindle poles (Colombo et al., 2003; Gotta and Ahringer, 2001). GPR-1 and 
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GPR-2 are two nearly identical proteins working redundantly to control cortical 

pulling forces (Gotta et al., 2003). They are postertiorly localized regulators of Gα 

subunits, linking the cortex and the asymmetric pulling forces (Colombo et al., 2003; 

Gotta and Ahringer, 2001). Depletion of them results in phenotypes similar to those in 

embryos lacking GOA-1/GPA-16 (Colombo et al., 2003; Gotta and Ahringer, 2001; 

Gotta et al., 2003). Another regulator of spindle pulling forces is LIN-5, a coiled-coil 

protein. Recent studies showed that LIN-5 becomes enriched at the anterior cortex 

during rotation and centration, and is required for the cortical localization of GPR-1/-2 

(Gotta et al., 2003; Lorson et al., 2000; Park and Rose, 2008; Srinivasan et al., 2003). 

LIN-5 is a distant homologue of MT-binding protein NuMA and Mud. Mammalian 

and fly homologs of LIN-5, GPR-1/-2 form a trimeric complex with Gα to regulate 

spindle positioning in flies and mammals (Bowman et al., 2006; Du and Macara, 

2004; Izumi et al., 2006).  

PAR-2 and PAR-3 control the spindle placement in early cleavages at least in 

part by determining the posterior enrichment of GPR-1/2 and the circumferential 

cortical localization of LET-99, a DEP domain proteins that may negatively regulate 

cortical forces (Colombo et al., 2003; Gotta and Ahringer, 2001; Tsou et al., 2002). 

The PAR proteins may also regulate the pulling forces by affecting microtubule 

dynamics, as PAR-3 acts, presumably indirectly, to stabilize microtubules that reach 

the anterior cortex (Labbe et al., 2003). 

 

1.5 General cellular mechanisms that affect embryonic polarity 

 The identification of the pod mutants, many of which are components of 

anaphase promoting complex (APC), revealed that cell cycle machinery is involved in 

proper polarity establishment (Rappleye et al., 2002). Mutations in pod3, pod-4, pod-

5, and pod-6 lead to meiotic delay, osmotic sensitivity, and various polarity defects 
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including failed sperm apposition, mislocalization of the PAR proteins, and centrally 

positioned spindle (Rappleye et al., 2002). However, it is difficult to conclude if the 

polarity defects reflect a direct regulation by the APC pathway or a general 

requirement of proper progression of meiosis. 

 Fatty acids have also been shown to be required for correct polarity setup in 

the one-cell embryo (Rappleye et al., 2003). POD-2, the only acetyle-CoA carboxylase 

in C. elegans, is the rate-limiting enzyme for de novo fatty acid biosynthesis. EMB-8, 

a NADPH-cytochrome P450 reductase, is one of the key molecules in fatty acid de-

saturation pathway (Rappleye et al., 2003). Mutations in both genes lead to defects in 

PAR localization, spindle positioning and P granules restriction (Rappleye et al., 

2003). Other members of fatty acid metabolism also appear to be required in the 

polarization process, and exogenous supplied fatty acids can rescue the polarity 

defects to some extent (Rappleye et al., 2003) (D. Morton, personal communication). 

It is possible that proper fatty acid composition of the zygote membranes is necessary 

for proper embryonic polarity establishment (Rappleye et al., 2003). 

 Recent works from several labs have revealed roles of anterior PAR proteins in 

endocytic traffic regulation, and phospholipid synthesis pathway in spindle positioning 

(Balklava et al., 2007; Panbianco et al., 2008). All these findings provide new insight 

into the mechanism underlying the polarity establishment and maintenance in the C. 

elegans embryo. 

 

II: PAR-3 IN EPITHELIAL POLARIZATION IN FLIES, WORMS AND 

MAMMALS 

 As discussed above, PAR-3, PAR-6, and PKC-3 play fundamental roles in C. 

elegans embryo polarization. In addition, their homologues have been identified in 

yeast, flies, frogs, fish, and mammals, and control diverse aspects of cell polarization 
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(Goldstein and Macara, 2007). How they achieve their special cellular localization and 

function together or independently to polarize cells has remained unsolved in many 

areas. Here I will review some of the cases in which mechanisms of PAR-3/PAR-

6/aPKC-dependent cell polarization have been well investigated. 

 

2.1. Asymmetric divisions in the D. melanogaster neuroblasts 

In the past several decades, the asymmetric division of Drosophila neuroblasts 

has been studied deeply and provided tremendous knowledge about polarity 

establishment and cell fate determination (Yu et al., 2006). In the fly central nervous 

system, neural precursors called neuroblasts (NBs) delaminate from ventral 

neuroectoderm and undergo several rounds of asymmetric divisions in a stem cell-like 

manner (Betschinger and Knoblich, 2004). Each division produces a smaller basal 

ganglion mother cell (GMC) and a larger apical NB. The GMC divides to generate 

neurons or glia, while the newly formed NB keeps the stem cell potential and 

continues to divide asymmetrically. The difference in fate between GMC and NB 

results from exclusive segregation of neural cell fate determinants such as Prospero 

and Numb to the GMC (Betschinger and Knoblich, 2004).   

The polarity of Drosophila NBs is established when they become specified 

within the neuroectoderm (Jan and Jan, 2001). During NBs delamination, Bazooka 

(Baz), DmPar-6, and aPKC (the Drosophila homologues of C.elegans PAR-3, PAR-6 

and PKC-3, respectively) spread from the subapical region to the entire apical cortex 

(Petronczki and Knoblich, 2001; Rolls et al., 2003; Wodarz et al., 2000). During this 

process, an adaptor protein called Inscuteable is recruited to the apical cortex by 

Bazooka (Schober et al., 1999; Wodarz et al., 1999). Inscuteable in turn recruits Pins 

(Partner of Inscuteable) and its downstream effector Gαi, the α subunit of 
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heterotrimeric G protein to the apical complex (Schaefer et al., 2001; Schaefer et al., 

2000; Yu et al., 2000).  

The correct build-up of the apical complexes ensures two key processes to 

occur properly. First, Gαi is important for mitotic spindle alignment during NB 

division, and Pins appear to be essential for Gαi activity at the apical side. Gαi  and 

pins mutants have partial defects in spindle orientation. NBs devoid of both of them 

divide equally, resulting in two same-sized daughter cells (Cai et al., 2003; Fuse et al., 

2003; Izumi et al., 2004; Kimple et al., 2002; Schaefer et al., 2001; Yu et al., 2003). 

How Pins and heterotrimeric G proteins control the NB spindle orientation is not fully 

understood yet, although it may involve direct binding to microtubules or dynein-

associated protein as is the case for their homologues in mammals (Du et al., 2001; 

Merdes et al., 1996; Roychowdhury et al., 1999; Wang et al., 1990). Second, the 

Baz/Par-6/aPKC complex directs neural fate determinants (Prospero and Numb) and 

their adaptor proteins (Miranda and Pon, respectively) to segregate only into the basal 

GMC in a sequential repression manner (Betschinger et al., 2003). During the 

interphase of NB division, Miranda and Prospero accumulate apically, while Pon and 

Numb distribute uniformly around the cortex. When the NB enters prophase of 

mitosis, both complexes redistribute to the basal crescent, and then segregated into the 

basal GMC during cytokinesis (Betschinger and Knoblich, 2004). The redistribution 

of the neural fate determinants requires a restricted inactivation of Lethal giant larvae, 

a WD-40 domain containing proteins, on the apical cortex (Albertson and Doe, 2003). 

Lgl is uniformly localized around the NB periphery and is a kinase target of aPKC 

(Betschinger et al., 2003; Ohshiro et al., 2000). On the apical cortex, Lgl is 

phosphorylated and inactivated, allowing myosin II to accumulate and prevent 

determinants from localizing apically by an unknown mechanism (Barros et al., 2003; 

Betschinger et al., 2005). On the basal side, Lgl remains active and inhibits the 
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assembly of myosin filaments, allowing the association of the determinants with the 

cortex (Peng et al., 2000; Strand et al., 1994). During NB division, myosin II moves 

down to the cleavage furrow and appears to “push” determinants to GMC (Barros et 

al., 2003). In addition, myosin VI Jaguar binds to Miranda directly and probably 

transports Miranda to the basal cortex (Petritsch et al., 2003).  

In all cases, Bazooka is the most upstream gene in the linear hierarchy. In 

Bazooka null germline clones, all molecules mentioned above are mislocalized, basal 

crescents do not form and spindles are randomly oriented (Kuchinke et al., 1998; Rolls 

et al., 2003; Schober et al., 1999; Wodarz et al., 1999). How Bazooka associates with 

the cortex and achieves its apical distribution remains unknown. 

 

2.2 Epithelial Polarization in Worms, Flies and Mammals 

 Epithelial cells are present in most metazoa and the acquisition of apico-basal 

polarity is crucial for epithelial cells to perform their specialized functions. They 

confine the neighboring tissues from the environment, control the exchange of ions 

and molecules, and govern the shape change and directional movement during 

morphogenesis (Nelson, 2003). The formation of cell-cell junctions is a key step in 

epithelial polarization, defined as the establishment of asymmetric composition and 

organization of cellular components along the apicobasal axis (Macara, 2004b). For 

example, overexpression of E-cadherin, one of the main components of adherens 

junctions (AJ), can drive AJ formation and differential distribution of polarity markers 

in non-polarized fibroblasts (McNeill et al., 1990).  

In most animals examined thus far, AJs form an adhesive belt that encircles the apex 

of the epithelial cell (Knust and Bossinger, 2002). In vertebrates, epithelial cells also 

develop tight junctions (TJ) apical to AJ, which form an impermeable barrier and tight 

seal between the neighboring cells. Although Drosophila epithelial cells do not 
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develop TJ, they bear a distinct region apical to the AJ, the subapical region (SAR), 

which is composed of proteins similar to vertebrate TJs. The Drosophila cells also 

develop septate junctions (SJ), which lie basal to the AJ, to provide a seal between the 

cells. In C. elegans, only one tripartite junction, the C. elegans apical junction (CeAJ) 

has been identified, which resembles the AJ of flies and vertebrates (Knust and 

Bossinger, 2002). These structures are summarized in Figure 1.4. 

Several conserved groups of genes have been found to act in controlling 

junction formation and apico-basal polarity: the PAR-3-PAR-6-aPKC complex, the 

Scrib-Dlg-Lgl complex, and the Crb-Sdt-Patj complex (Betschinger et al., 2003; 

Bilder et al., 2003; Hurd et al., 2003b; Johnson and Wodarz, 2003; Tanentzapf and 

Tepass, 2003; Yamanaka et al., 2003). In the following sections I will focus on 

reviewing how PAR-3, PAR-6, and aPKC control epithelial polarity in flies, worms, 

and mammals. 

 

2.2.1.  PAR-3 in cellular junction formation of Drosophila embryos 

 In Drosophila, epithelial polarity is first established during cellularization. 

Blastoderm, the first epithelium of the fly embryo develops from a syncytium. After 

13 nuclear divisions without cytokinesis, the embryo plasma membrane forms 

numerous invaginations simultaneously, called cleavage furrows, to segregate ~5000 

nuclei into individual cells (Lecuit and Wieschaus, 2002). During this process, AJ 

components such as E-cadherin, α-and β-catenin, accumulate as spots along the 

furrow surface. After cellularization is complete, the dispersed AJ members coalesce 

apically and form the circumferential AJ belt in each cell.  Some of these junction 

components also localize transiently at the furrow canal to promote persistent growth 

of furrows in concert with other molecules (Bhat et al., 1999; Lecuit and Wieschaus, 

2002). 
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Figure 1.4 Comparison of epithelial organization in Drosophila, vertebrates, and 

C. elegans. In Drosophila and vertebrate epithelia, junctional regions are made up of 

common elements that are organized differently. The C. elegans junction presents a 

single structure, subdivided into three parts. (SAR, subapical region; TJ, tight 

junction; ZA, zonula adherens; SJ, septate junction; CeAJ, C. elegans apical junction). 

Modified from Knust and Bossinger, 2002.
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The proper formation of AJ in Drosophila embryos depends on three well-

conserved protein complexes (Muller and Bossinger, 2003). The Baz-DmPar-6-aPKC 

complex is targeted to the apical membrane domain and enriched at the SAR in 

Drosophila embryonic ectoderm. Depletion of any of them disrupts proper epithelial 

polarization (Kuchinke et al., 1998; Petronczki and Knoblich, 2001; Wodarz et al., 

2000). Surprisingly, when the embryonic epithelia first polarize, each member of this 

complex displays distinct localization and roles (Harris and Peifer, 2005). Baz serves 

as the initial apical landmark for AJ assembly, and DmPar-6/aPKC is required to 

maintain AJ in gastrulation and later development. (Harris and Peifer, 2004; Harris 

and Peifer, 2005; Hutterer et al., 2004; Petronczki and Knoblich, 2001; Tepass et al., 

2001; Wodarz et al., 2000). During cellularization, Baz does not co-localize with its 

typical binding partners DmPar-6 and aPKC, but is positioned more basally at the 

future AJ sites (Harris and Peifer, 2005). Even after the blastoderm is fully polarized 

at stage 14, Baz still remains separated from DmPar-6/aPKC (Harris and Peifer, 2005). 

Mutant analysis revealed that initial positioning of Baz does not require an intact AJ, 

or aPKC, or DmPar-6. However, the formation of AJ and aPKC localization depends 

upon Baz. In bazm/z embryos, E-cadherin and aPKC are dispersed along the entire 

furrow surface (Harris and Peifer, 2004; Harris and Peifer, 2005). Interestingly, at this 

stage DmPar-6 shows a Baz-independent widespread cytoplasmic and cortical 

distribution with slight enrichment above Baz (Harris and Peifer, 2005). During 

gastrulation DmPar-6 concentrates apically, which depends upon cdc42 but only 

partially requires Baz during this process (Hutterer et al., 2004). As epithelial 

development progresses, Baz, DmPar-6, and aPKC also exhibit a gradual dependence 

between each other (Hutterer et al., 2004). 

The apical scaffold that anchors Baz initially is not known yet, but Baz 

positioning requires intact microfilaments and dynein-mediated transport (Harris and 



 

 29 

Peifer, 2005). Chemical disruption of microfilaments with cytochalasin D causes Baz 

to diffuse along the lateral membrane with reduced level of accumulation. In embryos 

with decreased dynein pool, Baz and E-cadherin are recruited to cleavage furrows, but 

fail to be recruited to the apical region (Harris and Peifer, 2005). 

The maintenance of the embryonic epithelial polarity also requires the other 

two complexes. In the SAR, the transmembrane protein Crumbs (Crb), MAGUK 

(membrane-associated guanylate kinase) protein Stardust (Sdt), and PDZ protein Patj 

(previously called Discs lost) form a complex to maintain AJ at least partially by 

interacting with the intracellular cytoskeleton (Bachmann et al., 2001; Grawe et al., 

1996; Hong et al., 2001; Medina et al., 2002; Tepass et al., 1990). In maternal crb or 

sdt mutant embryos, AJ is fragmented and never forms a continuous belt (Bachmann 

et al., 2001; Bilder et al., 2000; Grawe et al., 1996; Tepass, 1996). Crb is also required 

to separate BAZ from DmPar-6 and aPKC, since depletion of Crb leads to extensive 

intermixing of BAZ, DmPar-6, and aPKC (Harris and Peifer, 2005). 

Another protein complex is composed of the multi-PDZ protein Scribble (Scrib), the 

MAGUK protein Discs large (Dlg), and Lgl. The ancient Scrib-Dlg-Lgl complex is 

localized at the SJ and lateral domain, serving as the guardian of the basolateral 

identity in epithelial cell (Bilder et al., 2000; Bilder and Perrimon, 2000). The 

localization of each of these proteins requires the presence of the other two proteins. In 

the absence of any of them, functional AJ fails to form and the epitheliabecomes 

multilayered (Bilder et al., 2000) 

In the past, a single regulatory hierarchy between the Crb-Sdt-Dlt, the BAZ-

DmPar-6-aPKC, and the Scrib-Lgl-Dlg complexes has been suggested in polarizing 

the fly embryonic epithelia, which is summarized in Figure 1.5 (Bilder, 2004; Brumby 

and Richardson, 2005). According to this model, BAZ-DmPar-6-aPKC complex forms  
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Figure 1.5 Regulation of epithelial polarity Par3–Par6–aPKC–Cdc42 and Crb–Sdt–

Patj function to promote apical membrane formation during adherence junction 

assembly, whereas Scrib–Dlg–Lgl functions to antagonize Par3–Par6–aPKC–Cdc42, 

and is itself antagonized by Crb–Sdt–Patj, to promote basolateral membrane identity. 

Lines with bars depict antagonistic interactions, whereas lines with arrows depict 

positive interactions. Circles with “P” denote phosphorylation. Modified from Brumby 

and Richardson, 2005.
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first and specifies the apical membrane identity. The Scrib-Lgl-Dlg complex defines 

the basolateral region by restricting the BAZ-DmPar-6-aPKC complex to the apical 

side. To fight back, BAZ-DmPar-6-aPKC complex recruits Crb-Sdt-Dlt to antagonize 

the activity of the Scrib-Lgl-Dlg complex. The interplay between these complexes 

controls the build-up and reinforcement of the AJ, ensuring precise control of 

epithelial organization and growth (Bilder, 2004; Brumby and Richardson, 2005).  

Recent investigations uncovered more roles of the Par complex and their 

associated-proteins. aPKC maintains epithelial polarity by regulating apical 

microtubule organization (Harris and Peifer, 2007). Cdc42, the partner of DmPar-6, 

participates in this process by controlling transport of apical proteins, including Crb, 

Baz, DmPar-6 and aPKC (Harris and Tepass, 2008). The PAR proteins also appear to 

actively facilitate this process by regulating endocytosis (Harris and Tepass, 2008). A 

Genome-wide RNAi screen of epithelial morphogenesis uncovered bitesize, a 

synaptotagmin-like protein, as one of the downstream effectors of Baz. Bitesize 

displays a Baz-dependent apical localization. In bitesize mutant, AJ assembly and Baz 

localization are normal initially, but rapidly become dispersed as epithelial 

polarization progresses (Pilot et al., 2006). All these emerging findings imply a 

complex crosstalk between the PAR proteins and other molecules in controlling 

epithelial polarization in Drosophila. 

 

2.2.2.  PAR-3 in cellular junction formation of C. elegans embryos 

 The hypodermis, the pharynx and the intestine are the main epithelial organs in 

the C. elegans embryo (Muller and Bossinger, 2003). Only one type of intercellular 

junction, the CeAJ has been well investigated (Koppen et al., 2001; Leung et al., 1999; 

McMahon et al., 2001). Since PAR-3, PAR-6 and aPKC have not been reported in 
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epidermis, I will focus on their roles in the digestive tract and somatic gonad 

(Bossinger et al., 2004; McMahon et al., 2001).  

The C. elegans intestine is made of only 20 polarized cells, forming a single 

layered tube (Sulston et al., 1983). As morphogenesis starts, the junctional 

components and PAR-3, PAR-6, and aPKC-3 accumulate in puncta at the apical pole 

(Leung et al., 1999). Later, the CeAJ components segregate more laterally, while 

PAR-3, PAR-6 and PKC-3 occupy the apical surface. As morphogenesis progresses, 

the CeAJ form a circumferential adhesion belt around the cell, closely resembling the 

AJ in flies and mammals (Bossinger et al., 2001; Leung et al., 1999). 

However, it has been difficult to test whether and how the PAR-3/PAR-

6/PKC-3 complex participates in epithelial polarization due to their early requirement 

in embryogenesis (Pellettieri and Seydoux, 2002). Recent experiments in which PAR-

3 and PAR-6 were only provided to the early embryo but degraded in the somatic 

precursors provide evidence that they also play roles in zygotic development (Nance et 

al., 2003). In those embryos, depletion of maternal PAR-3 or PAR-6 from the 4-cell 

stage leads to defects in endodermal precursor ingression and cell-cell adhesion during 

gastrulation (Nance et al., 2003). Embryos lacking both maternal and zygotic PAR-6 

arrest during morphogenesis with severely impaired epithelial adhesion and junction 

formation (Totong et al., 2007). Surprisingly, these epithelial cells are still polarized, 

indicating that PAR-6 regulates epithelial junction formation but epithelial 

polarization does not require PAR-6 (Totong et al., 2007). Interestingly, PAR-6 and 

PKC-3 always co-localize, but they only overlap with PAR-3 transiently during the 

early stage of polarization. In fully polarized epithelial cells, PAR-3 develops a more 

lateral localization (Totong et al., 2007). 

During larval development, PAR-3, PAR-6 and PKC-3 are transiently 

localized in the somatic gonad (Aono et al., 2004). From the late-L3 stage, PAR-
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3/PAR-6/PKC-3 start to accumulate in developing uterinesheath and spermathecal 

cells, and gradually localize apically until mid-L4 stage(Aono et al., 2004). Depletion 

of zygotic PAR-3 in larvae results in compromised distal spermatheca polarity and 

CeAJ assembly. In turn, functional CeAJ is required for signaling between the 

spermatheca and the germline (Aono et al., 2004). 

Besides the PAR proteins, the apical members work cooperatively to regulate 

epithelial polarization in the intestine. For example, CRB-1, the worm homologue of 

Crumbs, is localized at the apical surface in the gut. Depletion of CRB-1 alone does 

not cause any polarity phenotype. However, when CRB-1 is knocked down together 

with HMP-1(α-catenin), the intestinal polarity is severely compromised (Bossinger et 

al., 2004; Bossinger et al., 2001). Similarly, worms devoid of DLG-1(Dlg) are still 

able to retain established cell-cell adhesion. When DLG-1 was reduced with other 

CeAJ components such as HMR-1(E-cadherin), synergistic effects were uncovered as 

the epithelial cells dissociate from each other and the polarity is lost (McMahon et al., 

2001; Segbert et al., 2004). 

The apically enriched cytoskeletal bundles are also important for the apico-

basal polarity in intestine, although the mechanism is still unclear. Recently, two 

cytoskeleton associated proteins, kinesin ZEN-4 and RhoGAP CYK-4, have been 

found essential in pharyngeal polarity establishment. In zen-4 or cyk-4 mutant 

embryos, PAR-3 and PKC-3 fail to localize at the apical membrane and lumen 

formation is disrupted, possibly due to the compromised microtubule and actin 

organization (Portereiko and Mango, 2001; Portereiko et al., 2004). 

The apical restriction of the junctional proteins requires the ancient basolateral 

identity keeper, LET-413, which is the only worm homologue of the fruit fly Scribble 

(Bossinger et al., 2001; Koppen et al., 2001; Legouis et al., 2000; McMahon et al., 

2001). In the absence of LET-413, apical markers gradually expand to the basolateral 
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domain in the gut. Interestingly, LET-413 does not co-localize with its typical binding 

partner DLG-1 in worm epithelia. Further biochemical studies are necessary to dissect 

the role of LET-413 in maintaining epithelial polarity (Bossinger et al., 2001; Koppen 

et al., 2001; Legouis et al., 2000; McMahon et al., 2001).   

In summary, the C. elegans apical junctions share many characteristics of the 

intercellular junctions in Drosophila. The identification of other polarity molecules 

and their characterization will help to elucidate the nature of the CeAJ and contribute 

to an understanding of junction development. 

 

2.2.3.  PAR-3 in cellular junction formation in mammals 

 In vertebrate epithelia, the TJ serves as physical barrier to separate the apical 

and basolateral domain as well as to provide cell-cell adhesion and vesicle targeting 

sites (Shin et al., 2006). Transmembrane proteins occludin, claudin, and JAM 

(junctional adhesion molecule) are the important components of TJ. All of them 

interact directly with the PDZ-containing ZO proteins to link to the beneath 

cytoskeleton meshwork (Shin et al., 2006). 

 Two conserved protein complexes, the CRB-Pals1-PATJ and the Par3-Par6-

aPKC complexes, are localized at the TJ and control the epithelial polarity (Shin et al., 

2006). Expression of CRB3, one of the human homologues of Drosophila Crb, in 

MCF10A cells drives ectopic TJ formation in those poorly polarized cells (Fogg et al., 

2005). Overexpression of CRB3 in MDCK cells leads to delayed TJ formation and 

disrupted cell polarity (Lemmers et al., 2004; Roh et al., 2003). PALS1 (Stardust) is 

also required in polarity establishment, as depletion of PALS1 causes defects in TJ 

assembly and polarity marker recruitment (Straight et al., 2004). Another member of 

this complex is PATJ(Discs lost), which participates in the polarization process at least 

partially by stabilizing the CRB3 complex (Latorre et al., 2005; Michel et al., 2005; 
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Shin et al., 2005).  In the absence of PATJ, the TJ is disrupted and CRB3 is 

redistributed into intracellular compartments, suggesting impaired vesicular transport 

(Michel et al., 2005; Shin et al., 2005). All these results imply that the conserved 

CRB-Pals1-PATJ polarity complex controls epithelial polarity in mammals as well. 

 Recent results also indicate that the Par3-aPKC-Par6-Cdc42 complex is 

involved in several aspects of mammalian epithelial polarization (Macara, 2004b). In 

this complex, the interaction between activated Cdc42 and Par6 induces a 

conformational change in Par6, resulting in the activation of the kinase activity of 

aPKC (Garrard et al., 2003; Yamanaka et al., 2001). The activated aPKC promotes the 

polarization process through the phophorylation of downstream effectors such as Lgl 

or Par-1. The aPKC-dependent phosphorylation causes the dissociation of Lgl or Par-1 

from the apical membrane, resulting in the restricted basolateral distribution of Lgl 

and Par-1 (Hurov et al., 2004; Plant et al., 2003; Suzuki et al., 2004; Yamanaka et al., 

2003). 

Par6 signals to the CRB-Pals-PATJ complex by direct binding to the C-

terminus of CRB3. Mutations in CRB3 that specifically disrupted Par6-CRB3 binding 

can abolish the detrimental effects of CRB3 overexpression in MDCK cells, indicating 

that the Pals1-Par6 interaction is important for CRB3 function (Lemmers et al., 2004). 

Par6 has also been shown to physically interact with Lgl. However, it is difficult to 

assess the significance of this interaction since the mutations that abolished Par-6-Lgl 

binding also disrupted Par-6-Pals1 interaction (Hurd et al., 2003b; Plant et al., 2003; 

Wang et al., 2004; Yamanaka et al., 2003). 

.  Par3 directly interacts with the C-terminus of JAM, and this interaction is 

important for Par3 to localize at the TJ and functions to assemble the Par3-aPKC-

Par6-Cdc42 complex (Ebnet et al., 2001; Hirose et al., 2002; Itoh et al., 2001). 

Moreover, Par3 may also regulate epithelial polarity by binding to 14-3-3 in a 
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phosphorylation-dependent manner. Disruption of interaction between Par3 and the 

14-3-3 proteins leads to the failure in the lumen formation of epithelial cyst (Hurd et 

al., 2003a). In Drosophila, this phosphorylation is dependent on PAR-1 kinase, and 

excludes Baz-DmPar6-aPKC from the basolateral membrane in follicular cells 

(Benton and St Johnston, 2003b). The mammalian kinase that is responsible for this 

regulation is still not known. 

Recently, additional roles of the PAR proteins have been reported. However, 

the mechanisms are still controversial. Par3 can recruit T lymphoma invasion and 

metastatis protein (Tiam1), a RacGEF, through its C-terminus. This Cdc42-

independent interaction leads to a local activation of Rac and regulates the polarity of 

epidermal keratinocytes (Mertens et al., 2005). In contrast, Chen and Macara (2005) 

showed that Par3 binds to and inhibits Tiam1-mediated Rac activation, allowing the 

proper formation of TJ in MDCK cells (Chen and Macara, 2005). A third study in 

neuroblastoma cells suggests that Par3 mediated Rac activation requires activated 

Cdc42 at the front edge, which promotes the directional cell migration (Nishimura et 

al., 2005). Further studies are necessary to understand the basis for these contrasting 

results. In summary, all the evidence indicates that various cell polarity complexes are 

physically linked and functionally interdependent during the epithelial polarization 

and junction formation processes. 

 

III: THE STRUCTURE AND FUNCTION OF PAR-3 IN OTHER ORGANISMS 

3.1. The interactions between PAR-3, PAR-6, and aPKC  

PAR-3, PAR-6 and PKC-3 are highly conserved proteins and their homologues 

have been identified in frogs, flies and mammals (Goldstein and Macara, 2007). In 

worms as well as in other species, PAR-3 is able to form a tripartite complex with 

PAR-6 and aPKC, and the interactions have been extensively investigated in many 
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systems (Izumi et al., 1998; Joberty et al., 2000; Lin et al., 2000; Petronczki and 

Knoblich, 2001; Suzuki et al., 2001; Wodarz et al., 2000; Yamanaka et al., 2001)(J. Li, 

personal communication). 

The C.elegans par-3 genomic sequence spans 12.5kb on Chromosome III. The 

ORF is 4140 nucleotides, encoding a 138 kD protein (Etemad-Moghadam et al., 

1995). Three conserved regions (CR) have been indentified in PAR-3, named CR1, 

CR2 (consisting of three PDZ domains in tandem), and CR3. In C.elegans, PAR-3 

binds to PAR-6 via its first PDZ domain (Etemad-Moghadam et al., 1995; Tabuse et 

al., 1998) (J. Li, personal communication). The N-terminal PB1 domain of PAR-6 

interacts with that of PKC-3 (D. Aceto, personal communication). PAR-6 also 

interacts with the active form of CDC42 via its semi-CRIB domain (Gotta et al., 2001; 

Aceto et al, 2006). PKC-3 binds to and phosphorylates PAR-3 at S863 in its CR3 

region (Izumi et al. M. Beers, personal communication; see Chapter 2).  

Based on their physical interactions, co-localization and co-dependence, PAR-

3, PAR-6, and PKC-3 are considered to function as an obligate complex in many cases 

(Macara, 2004a). However, growing evidence suggest that they can localize and/or 

function independently. In drosophila, Baz localizes at the apical membrane below 

aPKC and DmPar-6, and is positioned there by distinct mechanisms during epithelial 

development (Harris and Peifer, 2005). In C. elegans zygotes, PAR-3, PKC-3, and 

PAR-6 co-localize at the anterior cortex in clusters, but these different clusters only 

partially co-localize (Hung and Kemphues, 1999; Tabuse et al., 1998). aPKC and Par6 

colocalize without Par3 at the leading edge of migrating mammalian astrocytes 

(Etienne-Manneville and Hall, 2001). In MDCK cells, Par3 localizes dominantly to 

the TJ, while aPKC and Par6 are also distributed at the apical surface and the 

cytoplasm (Vogelmann and Nelson, 2005). Par3 can regulate TJ assembly 

independently of aPKC and Par6 (Chen and Macara, 2005). In summary, the 



 

  38 

interactions between PAR-3, aPKC, and PAR-6 are dynamic and regulated in various 

circumstances.  

 

3.2 PAR-3 is an ancient scaffolding protein 

Our understanding on PAR-3 structure and function heavily relies on the 

studies of its mammalian homologues in cultured epithelial cells. Par3 localizes at the 

TJs of hese extremely differentiated cells which bears distinct apical and basolateral 

domains (Balda and Matter, 2003; Nelson, 2003). This system is favorable for 

physical manipulations and biochemical treatments, allowing rapid and thorough 

studies of protein structure and function both in vitro and in vivo.  

One of the limitations of much of the previous Par3 analysis in cultured 

epithelial cells is that endogenous Par3 could mask the abnormal distribution and 

functions of the transfected Par3 mutants by self-recruitment and/or dose 

compensation. To overcome this difficulty, an endogenous Par3 suppression system in 

cultured epithelial cells was established by Chen and colleagues in 2005 (Chen and 

Macara, 2005). MDCK II cells are canine epithelial cells that have been widely used 

for studying epithelial polarization. Depletion of Ca2+ from the cell medium causes 

rapid disruption of cellular junctions, while replenishing Ca2+ can reverse this 

process. Thus this treatment is usually referred to as “calcium switch” (Matter and 

Balda, 2003). Overexpression of Par3 in MDCK II cells does not cause dramatic 

effects on TJ formation (Hirose et al., 2002). However, reducing Par3 by RNAi leads 

to a profound disruption of TJ in MDCK cells (Chen and Macara, 2005). The robust 

Par3 knockdown is also specific, as AJ assembly is only slightly affected and little 

effects were observed on other polarity markers and junctions (Chen and Macara, 

2005). Normally, TJs start to reassemble within 30 minutes after adding Ca2+ back to 

the medium. However, this process was greatly delayed when Par3 is reduced by 
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RNAi. In addition, the formation of TJs can be rescued by expressing human Par3, 

which is not degraded by the canine-Par3-specific RNAi (Chen and Macara, 2005). In 

summary, this system clearly showed that Par3 is required for TJ formation in MDCK 

cells. These newly developed tools made it possible to reduce endogenous Par3 and to 

express various exogenous Par3 constructs simultaneously, thus providing an excellent 

opportunity to study Par3 structure and function in vivo. 

 

3.2.1 CR1 domain (69-152)  

The N-terminally located CR1 domain of PAR-3 is highly conserved in all 

PAR-3 homologues, but is not found in any other known proteins (Benton and St 

Johnston, 2003a). By comparing the possible predicted CR1 structures with known 

protein sequences, Benton and colleagues uncovered the similarity of Baz CR1 and the 

dimerization domain of a bacterial gene Din1 (Benton and St Johnston, 2003a). They 

provided evidence that CR1 mediates oligomerization of Baz both in vitro and in vivo. 

BAZ::GFP with CR1 deleted is largely diffused in the cytoplasm of follicular cells, 

and exhibits poor ability to rescue baz mutant phenotype (Benton and St Johnston, 

2003a). Similarly, in mammals Par3 CR1 is also able to self-associate, and the 

overexpression of CR1 in MDCK cells leads to compromised Par3 localization and 

delayed TJ formation (Mizuno et al., 2003).  

In 2007, Feng and colleagues solved the structure of a monomeric form of Par-

3 CR1 (called NTD in that study, standing for N-terminal domain) (Feng et al., 2007). 

The CR1 monomer adopts a PB1-like fold and is able to self-oligomerize in a front-to-

back manner, forming a helical filament(Feng et al., 2007). Although PB1 domains 

can form dimers in many cases, Par3 CR1 does not interact with that of Par6 or aPKC. 

Whether self-oligomerization is essential for Par3 cellular localization and/or function 

are still controversial (Chen and Macara, 2005; Feng et al., 2007).  



 

  40 

Mutations in two conserved residues (V13D and D70K) can abolish the CR1-

mediated oligomerization without significantly affecting the overall structure (Feng et 

al., 2007). Either CR1Δ or V13DD70K can disrupt the junctional localization of Par3. 

Only subtle difference were observed, as CR1Δ mutant is completely cytoplasmic 

while V13DD70K mutant still shows residual junctional distribution. Moreover, 

replacing CR1 by a GCN leucine zipper motif, which is able to form tight tetramers, 

fully restored the membrane localization of the chimaric Par3. Taken together, the 

results indicate that CR1 is absolutely required for the TJ localization of Par3 (Feng et 

al., 2007). 

In contrast, Chen and colleagues found that the Par3 construct missing the CR1 

domain is still able to localize correctly and to rescue TJ assembly efficiently after a 

Ca2+ switch in MDCK cells (Chen and Macara, 2005). In addition, Expression of 

Par3 in neuroblastoma cells can induce the formation of multiple axon-like neurites. 

CR1 deletion does not affect Par3’s ability to promote neurite growth (Nishimura et 

al., 2005).  

 

3.2.2. PDZ1 (383-463)  

PDZ domains are one of the most common protein-protein interaction domains 

in eukaryotes (Nourry et al., 2003; Sheng and Sala, 2001). They typically function 

through scaffolding molecular complexes in signal pathways, thus enhancing the 

fidelity and rate of signal transduction within the complex (Sheng and Sala, 2001). 

PDZ domains are usually 80-90 amino acid-long modules, forming a barrel-like 

structure consisting of 5-6 β stands and 2 α helices (Nourry et al., 2003). To date, four 

types of interactions have been identified for PDZ domains: They can harbor the C-

terminal signature sequence of transmembrane proteins (Ebnet et al., 2001; Takekuni 

et al., 2003), or bind to the internal peptides (Penkert et al., 2004; Wang et al., 2004), 
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or form dimmers with other PDZ domains (Brenman et al., 1996; Hillier et al., 1999), 

and even interact with phosphatidylinositol moieties (Wu et al., 2007; Yan et al., 2005; 

Zimmermann et al., 2002). In addition, PDZ domains also show significant sequence 

variation, presumably reflecting the diversity of their binding partners (Nourry et al., 

2003). 

So far, several proteins have been identified as PAR-3 PDZ1 partners (Chan et 

al., 2006; Ebnet et al., 2001; Itoh et al., 2001; Joberty et al., 2000; Schober et al., 1999; 

Takekuni et al., 2003; Wodarz et al., 1999). For example, in Drosophila neuroblast 

Baz recruits Inscuteable via its PDZ1 domain to the apical surface, regulating the 

downstream effectors that control spindle orientation (Schober et al., 1999; Wodarz et 

al., 1999). In vertebrate nervous systems, Par3 recruits p75 neurotrophin receptor to 

the axon-glial side of Schwann cells to promote myelination. Overexpression of Par3 

PDZ1 domain or the Par3-binding motif of P75 significantly inhibits myelination 

(Chan et al., 2006). In MDCK cells, Par3 is recruited to TJs by interacting with the C-

terminus of JAM directly. JAM lacking the Par3 binding motif fails to recruit 

endogenous Par3 in several types of cultured epithelial cells. Both PDZ1 and PDZ3 

appear to be required for this binding, and overexpression of JAM C-terminal 

fragment disrupts Par3 localization at TJs (Ebnet et al., 2001; Itoh et al., 2001). 

 The interaction between PAR-3 and PAR-6 has been verified in many species, 

although the consequence of this binding still remains elusive (Gibson and Perrimon, 

2003). In one study, overexpressed Par6 can perturb epithelial polarity, but mutations 

in Par6 that disrupt Par3-Par6 interaction abolished this activity (Joberty et al., 2000). 

Whether this effect is due to abolished Par3-Par6 interaction remains unclear since the 

same mutations (KPLG167-170AAAA) can also abolish the interaction between Par6 

and Pals1 (Hurd et al., 2003b). In contrast, in MDCK cells Par3 lacking PDZ1 domain 

can localize normally and rescue the TJ formation efficiently in the absence of 
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endogenous Par3, indicating that Par3-Par6 binding is not required for MDCK cell 

polarization (Chen and Macara, 2005). 

 

3.2.3. PDZ2 (515-584) and PDZ3 (659-738)  

Little research has been reported on PAR-3 PDZ2 and PDZ3 domains until 

recently, when the structure of mammalian Par3 PDZ2 and PDZ3 were solved and 

their roles in epithelial polarization were examined (Feng et al., 2008; Wu et al., 

2007). Both PDZ2 and PDZ3 domains of Par3 adopt the canonical PDZ fold. 

Surprisingly, PDZ2 shows high affinity to PIP lipids (Wu et al., 2007). It contains a 

flat surface rich in positively charged residues, which are critical for the interaction 

with negatively charged inner cell membrane. It also bears a binding pocket to harbor 

PIP head directly as well as several residues that can insert into the lipid bilayer (Wu 

et al., 2007). However, whether PDZ2 is the necessary for Par-3 localization and 

function in epithelial polarization is still controversial (Chen and Macara, 2005; Wu et 

al., 2007). In one Ca2+ switch experiment, a C-terminal Par3 fragment without PDZ2 

is sufficient to localize normally and rescue the TJ assembly in MDCK cells lacking 

endogenous Par3 (Chen and Macara, 2005). While in another study, Par3 with PDZ2 

deletion is completely cytoplasmic in MDCK cells. After Ca2+ switch, the protein 

bearing PDZ2 deletion fails to rescue the TJ formation in the absence of endogenous 

Par3. Replacing Par3 PDZ2 with PLCδ PH domain that exhibits similar lipid-binding 

affinity to Par3 PDZ2 domain was able to rescue the polarization efficiently (Wu et 

al., 2007). 

The role of PAR-3 PDZ3 is linked to its conserved interaction with the 

phosphoinositide phosphatase PTEN. In Drosophila, Baz co-localizes and binds to 

PTEN directly through a region containing PDZ2 and PDZ3 domain (von Stein et al., 

2005). PTEN is required for Drosophila germline fate determinants localization and 
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mammalian epithelial lumen formation (Martin-Belmonte et al., 2007; von Stein et al., 

2005). In mammals, Par3 PDZ3 binds to the very C-terminus of PTEN directly, and 

the interaction is important for the membrane enrichment of PTEN in MDCK cells 

(Feng et al., 2008). Mutations that specifically disrupt Par3-PTEN interaction 

(DED3A) eliminates PTEN from the cell-cell contacts.  Knockdown of PTEN in 

MDCK cells dramatically delayed TJ formation after Ca2+ switch, which closely 

resembles the par-3(RNAi) results. RNAi-resistant human PTEN is able to rescue the 

TJ formation caused by endogenous Par3 reduction, while Par3-binding deficient 

PTEN (DED3A or ΔC) fails to rescue those repolarization defects (Feng et al., 2008). 

 

3.2.4. CR3 (854-868)  

In mammals, aPKC binds to the CR3 region of Par3 directly and 

phosphorylates serine 827 (Lin et al., 2000; Nagai-Tamai et al., 2002). This 

phosphorylation significantly reduces the affinity between Par3 and aPKC (Nagai-

Tamai et al., 2002). Antibody that specifically recognizes S827-phosphorylated Par3 

can identify this form in MDCK cell lysate, suggesting at least some population of 

Par3 is phosphorylated at S827 in vivo. Furthermore, the kinase activity of aPKC 

decreases by 40% in the presence of Par3 CR3, indicating that the interaction with 

Par3 may hold aPKC in an inactive conformation (Lin et al., 2000). 

The physiological significance of this phosphorylation is still unclear. 

Overexpression of an S827A mutant in MDCK cells causes polarity defects similar to 

dominant-negative aPKC in MDCK cells (Nagai-Tamai et al., 2002). However, Par3 

lacking aPKC binding region is still able to rescue the polarization of MDCK cells 

when endogenous Par3 is suppressed (Chen and Macara, 2005). In D. rerio embryos, 

PAR-3 lacking aPKC binding motif localizes the same as the wide-type PAR-3::GFP 



 

  44 

in neuroepithelial cells, although the function is hard to dissect  due to the presence of 

endogenous fish PAR-3 (von Trotha et al., 2006). 

Recent studies also revealed Par3 as a direct kinase target of RhoA kinase 

(ROCK), which is a downstream effector of RhoA (Nakayama et al., 2008). ROCK 

directly phosphorylates Par3 at T833. This phophorylation disrupts the assembly of 

Par3/aPKC/Par6/Cdc42 complex, thereby locally preventing the Cdc42-induced 

activation of Rac. Moreover, an antibody that specifically recognize the phospho-T833 

form of Par3 shows that this phosphorylation occurs in vivo and the T833 

phosphorylated Par3 is present in the central and rear cytoplasm as well as the leading 

edge of cultured migrating cells, which closely resembles the distribution of active 

RhoA (Jaffe and Hall, 2005). Depletion of Par3 inhibits Hela cell migration and 

decreases lamellar length in the wound-healing assay. Compared to wide-type Par3, 

Par3 T833D that mimics constitutive ROCK phosphorylation exhibits much weaker 

ability to rescue the defects in front-to-rear polarity and migration caused by 

endogenous Par3 knockdown. All these results imply that the ROCK-dependent 

phosphorylation of Par3 is context-specific and may function in distinct pathways to 

regulate polarized cell migration and epithelial polarization. 

 

3.2.5. C terminus (869-1379)  

The sequence of the PAR-3 C terminal region can vary greatly between species 

or even within the same animal (Etemad-Moghadam et al., 1995; Lin et al., 2000; von 

Trotha et al., 2006). In cultured rat hippocampal neurons, Par3/Par6/aPKC complex 

accumulates at the tip of growing axons and plays important roles in neuron 

polarization (Shi et al., 2003). Ectopic expression of Par6 or Par3 leaves neurons with 

no axon specified (Shi et al., 2003). A direct interaction between Par3 C-terminal 

region and KIF3A was identified (Nishimura et al., 2004). KIF3 is a plus-end-directed 



 

  45 

MT motor protein that participates in anterograde axonal transport in neurons 

(Goldstein and Yang, 2000). Par3 and KIF3A accumulate and colocalize at the tip of 

the axon in stage-3 neurons. The expression of dominant-negative Par3 or KIF3A 

fragments deficient in Par3-binding inhibits the accumulation of Par3 and aPKC at the 

neurite tip and impairs axon formation (Nishimura et al., 2004). These results suggest 

that Par3 is transported to the distal tip of the axon by KIF3A and that the proper 

localization of Par3 is required to establish neuronal polarity.  

Par3 C-terminus also interacts with Tiam1, the RacGEF, directly. In MDCK 

cells, The PDZ3 plus C-terminal region of Par3 is sufficient and essential for its 

proper localization and TJ-rescue ability when endogenous Par3 is suppressed (Chen 

and Macara, 2005). When Tiam1 is reduced, the polarity defects caused by 

Par3(RNAi) can be partially suppressed. In addition, Par3 fragments deficient in 

Tiam1-binding fails to rescue the TJ formation in cells lacking Par3 (Chen and 

Macara, 2005). All these data suggest that Par3 controls TJ formation by recruiting 

Tiam1, providing local control to Rac activity. Similary, in dendritic spines of 

hippocampal neurons, Par3 also recruits Tiam1 to locally activate Rac, thereby 

contributing to spine maturation (Zhang and Macara, 2006).  

 

3.2.6. Putative 14-3-3 binding sites (947-952)  

PAR-3 C terminus also contains a conserved putative 14-3-3 binding site. As 

discussed in 1.3.5, PAR-5, a member of the 14-3-3 family, is required to restrict the 

PAR-3/PAR-6/PKC-3 complex to the anterior cortex (Cuenca et al., 2003; Morton et 

al., 2002). In mammalian epithelial cells, 14-3-3 protein binds to Par3 both in vitro 

and in vivo, and the phosphorylation of Par3 at S144 is required for the interaction 

(Hurd et al., 2003a). MDCK cells stably expressing Par3 S144A mutant exhibit 

profound defects in cell organization and lumen formation, while cells expressing WT 
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Par3 can form relatively normal cysts with a central lumen (Hurd et al., 2003a). 

Together with other data, they concluded that the phosphorylation-dependent binding 

between 14-3-3 and Par3 regulates epithelial polarity, although the interaction is 

unlikely to control the subcellular distribution of Par3 (Hurd et al., 2003a). 

In Drosophila, Par-1 phosphorylates Baz at S151 and S1085 to generate 14-3-3 

binding sites (Benton and St Johnston, 2003b). S1085 is conserved in Drosophila, 

human and C.elegans (corresponding to serine 950 in C.elegans). The 14-3-3-Baz 

interaction blocks the interaction between Baz and aPKC, thus preventing the 

assembly of the Baz/DmPar-6/aPKC complex (Benton and St Johnston, 2003b). 

Disruption of Baz and14-3-3 binding leads to the spread of Baz to the basolateral 

surface, resulting in compromised epithelial polarity (Benton and St Johnston, 2003b).  

 

Thesis Organization 

Chapter 2 of this thesis focuses on the role of different PAR-3 domains and 

phosphorylation forms in early embryonic patterening and in late epithelial 

development. The appendices are a compilation of projects I initiated to understand 

how PAR-3 is regulated throughout C. elegans development.



 

  47 

CHAPTER TWO 

DIFFERENT DOMAINS OF C. ELEGANS PAR-3 ARE REQUIRED AT 

DIFFERENT TIMES IN DEVELOPMENT 

 

INTRODUCTION 

 Acquisition of cell polarity is a critical process for specifying body axis and 

maintaining distinct organ function in metazoan development. The PAR (partitioning 

defective) proteins, which are highly conserved from worms to mammals, are part of 

the core machinery to control cell polarization in many different cell types (Goldstein 

and Macara, 2007). PAR-3, a multi-PDZ domain scaffold protein, can interact with 

PAR-6 and PKC-3 (atypical protein kinase C; aPKC) to control cell polarization in 

different developmental stages and in different tissues. For example, in the Drosophila 

central nervous system, PAR-3 (also called Bazooka), PAR-6 and aPKC co-localize at 

the apical surface of neuroblasts and ensure that the neural fate determinants segregate 

into one of the two daughter cells (Rolls et al., 2003; Schaefer et al., 2001; Schober et 

al., 1999; Wodarz et al., 1999). In mammalian epithelial cells, PAR-3, PAR-6 and 

aPKC localize to the tight junctions to control apical-basolateral polarity (Chen and 

Macara, 2005; Izumi et al., 1998; Yamanaka et al., 2001). 

The role of PAR-3, PAR-6 and PKC-3 as regulators of polarity was first 

identified in C. elegans, where they play critical roles in the establishment of 

embryonic polarity and organization of epithelial cells (Aono et al., 2004; Etemad-

Moghadam et al., 1995; Kemphues et al., 1988; Nance et al., 2003; Tabuse et al., 

1998; Totong et al., 2007; Watts et al., 1996). Early in the first embryonic cell cycle, 

___________________________________________________________________________________
*This Chapter is written in a format compatible with submission for journal publication. Figure 2.10 A 
was contributed by M. Beers. 
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PAR-3, PAR-6, and PKC-3 are uniformly distributed at the cell periphery of the 

fertilized egg (Cuenca et al., 2003; Etemad-Moghadam et al., 1995; Hung and 

Kemphues, 1999; Tabuse et al., 1998). In response to the polarity cue provided by the 

sperm centrosomes or microtubules emanating from them, localized reduction of 

actomyosin contractility at the posterior pole results in the cortical actin network 

flowing away from the sperm, carrying PAR-3, PAR-6 and PKC-3 toward the anterior 

(Cowan and Hyman, 2007). This restricted localization of the anterior PAR proteins is 

critical for the first asymmetric division, which generates two daughter cells different 

in size, fate, and spindle orientation (Boyd et al., 1996; Cheeks et al., 2004; Etemad-

Moghadam et al., 1995; Hao et al., 2006; Munro et al., 2004; Tabuse et al., 1998; 

Watts et al., 1996). PAR-3 appears to act upstream to localize PAR-6 and PKC-3 at 

the cell periphery (Beers and Kemphues, 2006; Tabuse et al., 1998; Watts et al., 

1996). However, little is known about how PAR-3 associates with the cortex in the 

one-cell stage worm embryo. 

Recent studies in C. elegans organogenesis have revealed that PAR-3, PAR-6 

and PKC-3 also play important roles in epithelial development (Aono et al., 2004; 

Nance et al., 2003; Totong et al., 2007). Maternal PAR-3, PAR-6 and PKC-3 

gradually diminish after the 26-cell stage, and zygotic expression of PAR-3 initiates 

when the embryo approaches 400 cells (Leung et al., 1999; McMahon et al., 2001; 

Nance et al., 2003). The re-expressed PAR-3, PAR-6 and PKC-3 proteins localize at 

the apical surface of developing pharynx, intestine, vulva, spermatheca, uterus, and 

male tail rays (Aono et al., 2004; Nance et al., 2003; our unpublished results). 

Interestingly, PAR-3 localizes basolaterally to PAR-6 and PKC-3 in fully polarized 

epithelial cells, suggesting that PAR-3 may act independently from the other two 

proteins (Totong et al., 2007), similar to results reported in flies (Harris and Peifer, 

2005). Targeted degradation of maternal PAR-3 in embryonic somatic precursor cells 
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leads to aberrant cell adhesion and cell ingression (Nance et al., 2003) and  

knockdown of zygotic PAR-3 protein in larvae causes defects in distal spermathecal 

junctions (Aono et al., 2004).  

Like its homologues, C. elegans PAR-3 contains an N-terminal CR1 domain, 

three PDZ domains in tandem (PDZ1, PDZ2, PDZ3) followed by a CR3 region 

containing a conserved PKC-3 binding site (Figure 1A) (Etemad-Moghadam et al., 

1995). There has been considerable progress in understanding PAR-3 function and 

localization in mammalian cultured cells (Goldstein and Macara, 2007). However, less 

is known about how the domains of PAR-3 contribute to its function in cells of living 

animals. To understand how PAR-3 localizes and functions during worm 

development, we have introduced targeted mutations and deletions into PAR-3::GFP 

and examined the localization and function of the mutated proteins in the genetic 

background of two different par-3 alleles that allow us to assess maternal versus 

zygotic requirements. Our results indicate that although the role of PAR-3 in 

controlling cell polarity is widely conserved, the protein acts via different mechanisms 

in early embryos and epithelial cells.  

 

MARTERIALS AND METHODS 

Nematode strains 

Caenorhabditis elegans strains were cultured under standard procedures 

(Brenner, 1974), except that all transgenic strains were maintained at 25°C. The 

Bristol N2 strain was used as wild type. The par mutant strains used in this study are 

KK653, unc32(e189)par-3(it71)/qC1 III (Etemad-Moghadam et al., 1995), and 

KK928, par-3(tm2010)/qC1 III.  par-3(tm2010), generated by the National 

Bioresource Project (S. Mitani, Tokyo Women’s Medical University), was outcrossed 

6 times, balanced, and sequenced. 
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Transgene construction and transformation 

All par-3 transgenes were derived from plasmid pJN210 (gift from Dr. Jeremy 

Nance (Nance et al., 2003). Mutations or deletions were constructed by site-directed 

mutagenesis (Quickchange kit, Stratagene) or recombinant PCR.  All constructs 

included a wild-type unc-119 gene on the vector used for transformation marker. unc-

119(ed3) worms were transformed by microparticle bombardment (Praitis et al., 

2001). Only 5-10% of the Unc + transgenic lines stably express GFP both maternally 

and zygotically, and the maternal expression in most par-3CT::gfp lines was lost within 

6 weeks after the lines were generated.  

 

Analysis of transgene rescue of par-3(it71) and par-3(tm2010)  

 We integrated homozygous transgenic lines that express mutated variants of 

PAR-3::GFP both maternally and zygotically. We tested at least two independent lines 

from each construct for rescue and fusion protein distribution, except for the PAR-

3ΔPDZ3::GFP mutant, for which we recovered only one line. The identity of the 

transgene in each rescue experiment was confirmed by single-worm PCR followed by 

DNA sequencing (Barstead et al., 1991; Williamson et al., 1991). 

To assess maternal function of the mutant construct, we mated 

unc32(e189)par-3(it71)/qC1 III males to transgenic hermaphrodites. F1 outcross 

progeny were allowed to self individually. The recessive marker unc-32 was used to 

select par-3(it71) homozygotes in the F2. We identified individuals expressing the 

PAR-3 transgene by scoring for GFP expression in the pharynx, developing vulva and 

embryos by fluorescence microscopy.  

To assess the ability of mutated forms of PAR-3 to rescue the zygotic 

requirement for the gene, we mated par-3(tm2010)/qC1 III males to hermaphrodites 
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from each homozygous integrated transgenic line. Offspring from the F1 worms that 

did not segregate qC1 homozygotes were scored for embryonic and larval lethality. If 

the transgene fully rescues in a single copy, we expect approximately 15/16 larvae to 

be viable in the F2; if the transgene fails to rescue, we expect ¾ of the worms to be 

viable. Therefore we define full zygotic rescue as 93.75% viability, and no rescue as 

75% viability.  The percentage rescue was determined by the following formula: (X-

75%)/(93.75%-75%), X=scored viability. Each cross was performed in parallel with 

crosses using the wild-type PAR-3::GFP line as positive controls and N2 as negative 

controls.  

To determine the localization of non-rescuing PAR-3::GFP fusion proteins in 

homozygous par-3(tm2010) embryos and larvae, we constructed par-3(tm2010)/qC1 

strains expressing par-3S863A::gfp (itIs182), par-3CT::gfp (itIs195), par-3NT::gfp 

(itIs200) and par-3ΔPDZ2::gfp (itIs232) respectively. For control experiments, we also 

generated par-3(tm2010)/qC1 strains expressing wild-type par-3::gfp (itIs179) and 

rescuing construct par-3S863E::gfp(itIs166). Synchronous populations of embryos from 

these worms were mounted for microscopy and assayed for PAR-3::GFP distribution.  

One fourth of the embryos are expected to be homozygous for tm2010. Counts 

verified that ¼ of the progeny died as embryos or arrested near the L1 to L2 molt.  

 

Microscopy 

Observations of live embryos were made on a Leica DM RA2 microscope with 

a 63X Leica HCX PL APO oil emersion lens and Hamamatsu ORCA-ER digital 

camera. Digital images were captured using Openlab software (Improvision). Unless 

indicated otherwise, for each construct images were obtained from at least two 

independent lines and more than 50 embryos. 
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Immunostaining and Western analysis 

Embryos were fixed in methanol following previously published procedures 

(Guo and Kemphues, 1995). The following primary antibodies and dilutions were 

used: anti-PAR-3 mouse monoclonal (Nance et al., 2003) 1:70, anti-GFP goat 

polyclonal (Rockland Immunochemicals) 1:400. Primary antibodies were detected by 

goat anti-mouse Cy3 at 1:250, or donkey anti-goat Cy3 1:400 (Jackson 

ImmunoResearch Laboratories, Inc.). Unless indicated otherwise, immunostaining 

observations were based on the analysis of more than 10 embryos at the appropriate 

stage. 

For detection of proteins in embryo extracts, embryos were collected from 

hypochlorite-treated adult worms and boiled in SDS-sample buffer (Etemad-

Moghadam et al., 1995). Gel electrophoresis and Western blots were performed by 

standard procedures.  

 

in vitro kinase assays 

His-PKC-3 and His-PKC-3K266A were expressed and purified from baculovirus-

infected Sf21 cells (Fujise et al., 1994). GST-PAR-3678-935, GST-PAR-31-152, GST-

PAR-3153-382, GST-PAR-3759-868, and GST-PAR-3869-1379 were produced in Escherichia 

coli and purified by standard procedures. His-PKC-3 and His-PKC-3K266A were 

incubated with 10µCi[γ-32P]ATP (ICN Biomedicals, Inc.) and GST-PAR-3 fragments 

in 100 µl kinase buffer (25mM Tris-HCl, pH 7.4, 25ng phosphatidylserine , 5mM 

MgCl2, 500µM EGTA, 1mM dithiothreitol). Reactions were incubated at 30°C for 2 

hours and terminated by addition of SDS sample dilution buffer. Proteins were 

separated by 10% SDS-PAGE, and phosphorylation was visualized by 

autoradiography. 
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RESULTS 

A par-3 deletion mutant causes larval lethality 

All previously reported par-3 alleles are strict maternal-effect-lethal mutations 

(Cheng et al., 1995; Kemphues et al., 1988; Kirby et al., 1990). par-3(it71), the 

strongest of these, contains a nonsense mutation in exon 3 and shows no detectable 

protein in early embryos (Etemad-Moghadam et al., 1995). However, PAR-3 

accumulates normally in epithelial cells of the digestive tract and somatic gonad in 

embryos from homozygous it71 mothers, indicating that it71 is not a null allele (Aono 

et al., 2004). We obtained a par-3 deletion allele (tm2010, generously provided by the 

National Bioresource Project, Tokyo), which contains a 409bp internal deletion (5049-

5457, start codon=1) including part of intron 6 and exon 7 (Fig. 2.1A). In contrast to 

the previously identified par-3 mutants, par-3(tm2010) homozygotes die as L1 larvae 

(33/47) or embryos (14/47). The mutation failed to complement par-3(it71) and was 

rescued by a par-3::gfp transgene (viability 95.1±3%, n=523). The larval lethality of 

tm2010 indicates that zygotic expression of PAR-3 is required for viability.  

 

The N-terminal region of PAR-3 containing amino acids 1-809 is required for its 

cortical recruitment 

To identify the core sequence in PAR-3 important for localization and 

function, we tested the ability of truncated PAR-3::GFP proteins to localize and 

function in par-3 mutants. We first made reciprocal constructs producing either the N-

terminal (NT) or C-terminal (CT) portions of the PAR-3 fused to GFP: 

par-3NT::gfp (aa 1-809) and par-3CT::gfp (aa 809-1379), driven by its native promoter. 

We introduced both constructs and a control full-length par-3::gfp into worms by 

biolistic transformation of an unc119(-); par-3(+) strain (Praitis et al., 2001) and 

examined the distribution of the GFP fusion proteins in early embryos, late embryos  
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Figure 2.1. PAR-3NT::GFP and PAR-3CT::GFP in early embryos. 

 (A) Schematic drawing of the par-3 gene (upper row) and PAR-3 protein structure 

(lower row). par-3 exons are represented by black boxes, introns are black lines and 

untranslated sequences are grey boxes. Asterisk shows the location of the it71 

nonsense mutation, and bracket shows the tm2010 deletion. Blue, red and green 

rectangles denote the genomic regions corresponding to CR1, PDZ1, 2, 3 and CR3 

domains respectively. In the lower row, colored boxes indicate the conserved domains 

of PAR-3 protein; numbers denote the amino acids marking the endpoints of each 

conserved domain (Etemad-Moghadam et al., 1995; Izumi et al., 1998). (B-I) 

Fluorescence images of PAR-3::GFP, PAR-3NT::GFP and PAR-3CT::GFP in par-3(+) 

embryos (B-E) and in par-3(it71) embryos (F-H). (I) shows an embryo with no 

transgene under the same microscopy conditions. In this and all figures, anterior is to 

the left of the embryo and the scale bar is approximately 10µm. 
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and developing larvae. Because PAR-3 can self-oligomerize via its CR1 domain in 

flies and mammals (Benton and St Johnston, 2003a; Feng et al., 2007; Mizuno et al., 

2003), it is possible that the wild-type PAR-3 present in the worms could recruit the 

mutant protein via oligomer formation and thus mask any abnormal localization. 

Therefore we also examined GFP distribution after crosses to replace the endogenous 

wild-type par-3 gene with par-3(it71) or tm2010 mutations. These crosses also 

enabled us to test whether the truncated transgenes could provide par-3 function in 

early embryogenesis (it71) and in late embryogenesis or post-embryonic development 

(tm2010). 

In both par-3(+) and par-3(it71) worms, full-length PAR-3::GFP displayed an 

identical distribution to endogenous PAR-3 protein as reported before (Aono et al., 

2004; Etemad-Moghadam et al., 1995; Nance et al., 2003); PAR-3::GFP distributed 

uniformly at the cortex early in the cell cycle, then cleared from the posterior cortex 

during the first mitotic prophase. After the first mitotic division, PAR-3::GFP covered 

the anterior AB cell cortex as well as the anterior periphery of the posterior P1 cell 

(Fig. 2.1B, F). In L4 larvae, PAR-3::GFP localized to apical surfaces of pharyngeal 

and vulval epithelial cells (Fig. 2.2A, B). In addition, both par-3(it71) and par-

3(tm2010) were rescued by PAR-3::GFP (Figure 2.3A, B), indicating that this fusion 

protein functions normally throughout development. 

Neither PAR-3NT::GFP nor PAR-3CT::GFP functioned like wild-type PAR-3. 

When expressed in par-3(+) embryos, PAR-3NT::GFP localized to the anterior cortex 

with much of the protein present in the cytoplasm (Figure 2.1C). However, in par-

3(it71) embryos, little PAR-3NT::GFP was detected at the cortex, the cytoplasmic GFP 

signal was higher than for the wild-type transgene in these strains, and the mutant 

protein showed a cell-cycle dependent nuclear accumulation  (Figure 2.1G). The 

cortical accumulation started to increase after the 16-cell stage, in both the par-3(+) 
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Figure 2.2. PAR-3NT::GFP and PAR-3CT::GFP in late par-3(+) embryos, 

developing larvae and par-3(tm2010) embryos. Fluorescence images of par-3(+) 

larvae (A, B, D, E, G, H) and 1.5-fold stage par-3(tm2010) embryos (C, F, I) 

expressing PAR-3::GFP (A-C), PAR-3NT::GFP (D-F) and PAR-3CT::GFP (G-I). (A, D, 

G), vulva; (B, E, H), pharynx. 
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and par-3(it71) backgrounds, indicating that PAR-3NT::GFP was still capable 

of associating with the cortex (Fig. 2.1D, H). Since par-3(it71) embryos lack maternal 

PAR-3, and zygotic PAR-3 does not express until 300-400 cell stage (Nance et al., 

2003), this late cortical localization is likely a result of gradual accumulation of PAR-

3NT::GFP rather than the recruitment from re-expressed wild-type PAR-3, although we 

cannot rule out the possibility that there could be different mechanisms to localize 

PAR-3NT::GFP in one-cell and >16-cell stage embryos. When introduced into par-

3(it71), PAR-3NT::GFP completely failed to rescue the maternal-effect-lethality (Fig. 

2.3A). Thus the C-terminal region of PAR-3 is required for the maternal function of 

the protein, and contains information necessary for robust accumulation at the cell 

cortex. Zygotic expression of PAR-3NT::GFP showed the same pattern as wild-type 

PAR-3:GFP (Fig. 2D, E), except that the best expressing lines (n=5) showed 

consistently higher signal in the somatic gonad compared to wild-type PAR-3::GFP 

(data not shown). In spite of this normal cortical distribution, PAR-3NT::GFP 

completely failed to rescue par-3(tm2010), indicating that the C-terminal region of the 

protein is necessary for PAR-3 zygotic function as well (Fig. 2.3 B).  

In par-3(+) embryos, maternally-expressed PAR-3CT::GFP failed to localize to 

the cortex and was barely detectable in the cytoplasm. One-cell embryos of transgenic 

worms had consistently higher levels of cytoplasmic signal than the negative controls 

(Fig. 2.1E, I; 121.6±8% of background fluorescence, n=31 embryos, single-tail t-test, 

P<0.005).  We verified that this weak signal was due to expression of the PAR-

3CT::GFP by Western blot (Fig. 2.4). Compared to wild-type PAR-3::GFP, which 

displayed restricted apical localization in epithelial tissues (Fig. 2.2A, B), zygotically  
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Figure 2.3. PAR-3 transgene rescue of par-3(it71) and par-3(tm2010). 

(A) Percentage of viable embryos from it71 homozygous mothers carrying the 

indicated transgene.  WT= wild-type PAR-3 transgene; no TG = no transgene  (See 

text for explanation of abbreviations for transgene constructs). (B) Percentage rescue 

of progeny viability from par-3(tm2010)/+ mothers calculated as described in 

Materials and Methods. Error bars represent standard deviation of the values obtained 

for each experiment. n=total embryos checked for viability. 
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Figure 2.4. Western blot of PAR-3CT::GFP protein in par-3(+) embryos.  Embryo 

extracts were prepared from wild type (N2) and from lines expressing PAR-3 
S863A::GFP and PAR-3CT::GFP, then probed with anti-PAR-3 antibody following 

separation by 7% SDS-PAGE. Note that because the collected embryos were 

somewhat asynchronous and might include late stage embryos, we cannot rule out the 

possibility that some of the positive signal is due to zygotic expression.
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expressed PAR-3CT::GFP was diffuse in pharynx, spermatheca, vulva, uterine muscles, 

and anus (Fig. 2.2G, H and data not shown). Consistent with its failure to localize, 

PAR-3CT::GFP  also completely failed to rescue par-3(it71) (Fig. 2.3B). 

To examine the localization of the NT and CT truncated proteins in the 

absence of endogenous PAR-3 in developing larvae, we performed crosses to obtain 

par-3(tm2010)/qC1 III hermaphrodites homozygous for par-3NT::gfp or par-3CT::gfp. 

Of the progeny from these mothers, 25% should be par-3(tm2010) homozygotes and 

express the transgene. We observed that 97/343 progeny from par-3NT::gfp; par-

3(tm2010)/qC1 III and 84/273 progeny from par-3CT::gfp; par-3(tm2010)/qC1 III died 

as embryos or L1 larvae, and thus confirmed that neither transgene is capable of 

rescuing the tm2010 mutation. We also examined the localization of these transgenic 

proteins in bean, comma, 1.5-fold, 2-fold and 3-fold stage embryos. We detected no 

defects in embryonic localization for PAR-3NT::GFP-expressing embryos (n=87), 

among which a quarter are par-3(tm2010) homozygotes (Fig. 2.2F). The intestinal 

GFP signal appeared stronger than wild type, although after immunostaining the 

samples to enhance the signal, there was no detectable difference (data not shown). As 

expected, tm2010 homozygous embryos expressing PAR-3CT::GFP displayed diffuse 

expression, with concentrated signal in pharynx, developing digestive tract and 

hypodermis (Fig 2.2I; n=33).   

Overall, these results indicate that the first 808 amino acids of PAR-3 (NT), 

contain information sufficient for cortical localization but not for proper function, and 

that amino acids 809 to 1379 (CT) contribute to cortical accumulation or protein 

stability and are required for function. 
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PDZ2, but not PDZ1 or PDZ3, is necessary for PAR-3 localization and function  

Our attempts to identify smaller fragments sufficient for localization by 

sequential deletion of the N-terminal fragment failed because we were unable to 

recover lines expressing any fragment smaller than PAR-3NT::GFP.  Therefore we took 

an alternative approach by making targeted deletions of conserved domains 

(summarized in Fig. 2.5). We started our analysis by deleting each of the PDZ 

domains. We generated lines expressing constructs PAR-3∆PDZ1::GFP (∆aa 383-463), 

PAR-3∆PDZ2::GFP (∆aa 515-584), PAR-3∆PDZ3::GFP (∆aa 659-738) and examined the 

distribution of the GFP-tagged transgenes. In wild-type par-3(+) embryos, we found 

that deletion of any one of the three PDZ domains had no obvious effect on the 

cortical localization of the corresponding fusion protein (summarized in Fig. 2.5). 

Occasionally we observed embryos expressing PAR-3∆PDZ2::GFP that showed par-

3(it71)-like phenotypes in the presence of the endogenous wild-type copy of PAR-3, 

indicating that PDZ2 deletion may cause some dominant-negative effects (data not 

shown). When endogenous maternal PAR-3 was absent, as in progeny from 

homozygous par-3(it71) mothers, PAR-3∆PDZ1::GFP and PAR-3∆PDZ3::GFP proteins 

showed distributions indistinguishable from PAR-3::GFP (Fig. 2.6A, B, D) and 

rescued the progeny from homozygous mothers to near wild-type viability (Figure 

2.3A). In contrast, PAR-3∆PDZ2::GFP deviated from wild type, forming cortical and 

cytoplasmic puncta that were sparser and larger than the puncta formed by PAR-

3::GFP (n>50, Figure 2.6C). In addition, the mutant protein failed to maintain its 

cortical localization through the first cell cycle. In prophase of the first division, a  

 

 

 



 

 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Embryonic localization of PAR-3::GFP protein and the mutant 

variants. Summary of the localization of indicated transgenic protein in early par-

3(+) embryos, early par-3(it71) embryos and late par-3(tm2010) embryos 

respectively. Asterisks show positions of point mutations.  “+” indicates normal 

localization; “-“ designates failure to localize.  If abnormally large and sparse GFP 

puncta were observed, this was noted as “punctate”.  
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Figure 2.6. PAR-3ΔPDZ1::GFP,  PAR-3ΔPDZ2::GFP and PAR-3ΔPDZ3::GFP in one-cell 

par-3(it71) embryos. Anti-PAR-3 stained one-cell par-3(it71) embryos that express 

PAR-3::GFP (A), PAR-3ΔPDZ1::GFP (B), PAR-3ΔPDZ2::GFP (C) and PAR-3ΔPDZ3::GFP 

(D). Note that PAR-3ΔPDZ2::GFP forms large and sparse puncta at the cell periphery 

and in the cytoplasm (C). 
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Figure 2.7. PAR-3ΔPDZ2::GFP in par-3(it71) embryos. Fluorescence images of par-

3(it71) embryo expressing PAR-3CR1Δ(69-82)::GFP at pronuclear meeting (A), centration 

(B), metaphase (C) and cytokinesis (D). 



 

 66 

reduced amount of PAR-3∆PDZ2::GFP accumulated at the anterior cortex but then lost 

its restriction as the cell cycle progressed and was uniformly distributed at the time of 

cytokinesis (Fig.2.7). Consistent with these defects, the transgenes failed to rescue and 

the embryos exhibited phenotypes typical for loss of maternal PAR-3. These 

observations showed that PDZ2, but not PDZ1 or PDZ3, is required for PAR-3 to 

localize and function properly in early embryos. 

We obtained similar results when we introduced these three constructs into 

par-3(tm2010): homozygous tm2010 embryos were rescued by PAR-3∆PDZ1::GFP and, 

to a slightly lesser extent, by PAR-3∆PDZ3::GFP, but not by PAR-3∆PDZ2::GFP (Figure 

2.3B). We examined the localization of the fusion protein among embryos of 

tm2010/+; par-3∆PDZ2::gfp mothers, in which 25% of the offspring were expected to 

express PAR-3∆PDZ2::GFP and lacked endogenous PAR-3. We found 21% of embryos 

lacked apical accumulation of GFP but showed accumulations of large GFP puncta 

adjacent to or in the lumen of the developing pharynx during morphogenesis (n=8/38; 

Fig. 2.8A, C) while the remaining embryos showed normal localization (n=30/38; Fig. 

2.8A, B). Control embryos lacking the transgene showed no signal (data not shown). 

These results suggested that PDZ2, but not PDZ1 or PDZ3, is required for apical 

localization and function of PAR-3 in late embryogenesis or larval development.  

 

CR1 is necessary for PAR-3 function in early embryos but dispensable in late-

embryogenesis and post-embryonic development 

CR1 (conserved region 1), also called NTD (N-terminal domain), is highly 

conserved among PAR-3 homologues (Benton and St. Johnston, 2003a; Feng et al., 

2007; Mizuno et al., 2003). It has been shown to mediate PAR-3 oligomerization both 

in vitro and in vivo and is necessary for PAR-3 apical localization in Drosophila and  
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Figure 2.8. PAR-3ΔPDZ2::GFP in late par-3(tm2010) embryos.  

1.5-fold stage embryos (A) and 2-fold stage embryos (B, C) expressing PAR-

3ΔPDZ2::GFP stained with anti-GFP antibody. Note that PAR-3ΔPDZ2::GFP shows apical 

localization in the developing pharynx, gut and rectum in par-3(+) embryos (A upper 

embryo; B), but is undetectable at the cortex of most cells of par-3(tm2010) embryos 

except developing pharynx where it forms aggregates (arrowheads) in or near the 

lumen (A lower embryo; C). 

 



 

  68 

in mammalian cultured cells (Benton and St Johnston, 2003a; Feng et al., 2007; 

Mizuno et al., 2003). To investigate the role of CR1 in C. elegans, we first tested 

whether CR1 of worm PAR-3 mediates oligomerization. Using the yeast-two-hybrid 

system, we found that CR1 of C. elegans PAR-3 was indeed capable of self–

association. We found that deletion of aa 1-68, which is specific to worm PAR-3, did 

not block PAR-3 self-association, although three other small deletions in CR1 (∆69-

82, ∆109-119; ∆122-132) each abolished this property (data not shown). Recently the 

structure of the CR1 (NTD) domain of mammalian Par3 has been solved (Feng et al., 

2007) and two point mutations (equivalent to V80D and D138K in C. elegans PAR-3) 

were identified as being able to disrupt CR1 oligomerization without significantly 

affecting its overall structure. We introduced the deletion ∆(69-82) and the double 

point mutation V80D, D138K into full length PAR-3::GFP (PAR-3∆(69-82)::GFP and  

PAR-3V80D, D138K::GFP respectively) and generated lines expressing these constructs to 

assess the requirement for oligomerization of PAR-3 in vivo.  

Neither PAR-3∆(69-82)::GFP nor PAR-3V80D, D138K::GFP localized normally in 

early par-3(+) embryos. PAR-3∆(69-82)::GFP displayed a diffuse signal in the cytoplasm 

and no sign of asymmetry was detected in the one-cell stage embryos (n>50, figure 

6A).  In embryos after pronuclear meeting, PAR-3V80D, D138K::GFP behaved 

indistinguishably from PAR-3∆(69-82)::GFP (n>50, Fig. 2.9C); however, among thirty-

one very early embryos expressing PAR-3V80D, D138K::GFP, five exhibited a very weak 

transient cortical signal which clears from the posterior pole then disappears from the 

cell periphery during pronuclear migration (Fig. 2.9D). However, in late par-3(+) 

embryos and larvae, both PAR-3∆(69-82)::GFP and PAR-3V80D, D138K::GFP  localized 

similarly to wild-type PAR-3::GFP; they accumulate at apical surfaces of cells in  

pharynx, intestine, vulva, and somatic gonad (Fig. 2.9E, F and data not shown). 
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Figure 2.9. PAR-3CR1Δ(69-82)::GFP and PAR-3V80D, D138K ::GFP in par-3(+) embryos 

and larvae.   

(A-D) Fluorescence images of par-3(+) embryo expressing PAR-3CR1Δ(69-82)::GFP (A), 

PAR-3V80D, D138K::GFP (C, D) and no transgene (B). Note that PAR-3V80D, D138k::GFP is 

cytoplasmic in most early par-3(+) embryos (C), but shows weak and transient 

cortical localization occasionally (D). Arrowhead points to the weak cortical signal. 

(E-F) Fluorescence images of par-3(+) larvae expressing both PAR-3CR1Δ(69-82)::GFP 

(E) and PAR-3V80D, D138K::GFP (F). Arrows point to the vulva; bracket indicates the 

pharynx.
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 In par-3(it71) embryos, both PAR-3∆(69-82)::GFP and PAR-3V80D, D138K::GFP 

distribution is similar to par-3(+) embryos (data not shown). Consistent with its 

failure to localize, PAR-3∆(69-82)::GFP failed to rescue the maternal-effect lethality of 

par-3(it71) (Fig. 2.3A), indicating that  aa 69-82 are essential for maternal PAR-3 

function. PAR-3V80D, D138K::GFP showed partial and variable rescue --8.6% to 40.4% of 

the offspring survived and grew to fertile adults. The rescue variability occurs both 

between and within lines, and appears to be specific to the PAR-3V80D, D138K::GFP 

construct only (Fig. 2.3A). Two possible explanations for the weak rescue by PAR-

3V80D, D138K::GFP can be drawn: the mutations did not abolish the ability of PAR-3 to 

form oligomers, or the CR1 domain has a function in addition to oligomer formation 

that monomers can facilitate.  

Surprisingly, both PAR-3∆(69-82)::GFP and PAR-3V80D, D138K::GFP were capable 

of rescuing the larval-lethality of par-3(tm2010) efficiently (Fig. 2.3B). Together with 

the observation that both constructs localized properly in zygotic tissues, these results 

suggest that CR1 is required for PAR-3 to localize and function in early 

embryogenesis, but it is dispensable for late embryogenesis and postembryonic 

development. 

 

PKC-3 phosphorylates PAR-3 at a conserved serine 

In mammals, aPKC, the homologue of C. elegans PKC-3, can bind and 

phosphorylate mPar3 both in vitro and in vivo (Izumi et al., 1998; Joberty et al., 2000; 

Lin et al., 2000; Nagai-Tamai et al., 2002; Suzuki et al., 2001). The single 

phosphorylation target of mPar3 is serine 827, although binding to aPKC requires 

serine 829 (Nagai-Tamai et al., 2002); the equivalent serines in C. elegans PAR-3 are 

S863 and S865. To investigate whether PAR-3 is a target of C. elegans PKC-3 in 

vitro, we carried out kinase assays using purified C. elegans proteins (see Materials 
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and Methods). We divided PAR-3 into five pieces and tested whether any of them 

could be phosphorylated by His-PKC-3 in vitro. Except for a fragment containing 

amino acids 383 to 758, which we were unable to express, we found that only the 

PAR-3 fragment containing amino acids 678 to 935, which includes the C. elegans 

region corresponding to the aPKC binding and phosphorylation site in mammals, 

could be phosphorylated by wild-type PKC-3 (Fig. 2.10A). PKC-3K266A, a kinase-dead 

form of PKC-3, failed to phosphorylate PAR-3, indicating that PAR-3 is specifically 

phosphorylated by PKC-3 in our assay (Fig. 2.10A). 

Conversion of the putative target, S863, to alanine completely abolished the 

phosphorylation by His-PKC-3 but conversion of S865 to alanine had no effect.  Thus 

C. elegans PKC-3 phosphorylates PAR-3 at conserved serine S863 in vitro. 

 

Phosphorylation at S863 in PAR-3 is not required in early embryogenesis, but is 

important for later development 

 

To investigate the in vivo significance of PKC-3 phosphorylation, we mutated 

S863 to alanine to block phosphorylation or to glutamic acid to mimic constitutive 

phosphorylation, and then generated transgenic worms expressing PAR-3S863A::GFP 

and PAR-3S863E::GFP. We found that in both par-3(+) and par-3(it71) embryos, PAR-

3S863A::GFP and PAR-3S863E::GFP were able to localize to the anterior cortex like wild-

type PAR-3::GFP (Figure 2.10B-D and data not shown). Moreover, both PAR-

3S863A::GFP and PAR-3S863E::GFP exhibited robust rescue of par-3(it71) (Figure 2.3A). 

To test if S865 could serve as a redundant phosphorylation site in vivo, we generated 

PAR-3S863AS865A::GFP and found that this double mutant also localized properly and 

rescued par-3(it71) efficiently (Fig. 2.3A; Fig. 2.10E). These results suggest that 

phosphorylation of PAR-3 on S863 or S865 is not essential for early embryogenesis in 
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C. elegans. We did, however, note a difference between these two constructs. PAR-

3S863A::GFP appeared to have a much stronger cortical signal than PAR-3S863E::GFP or 

wild-type PAR-3::GFP in the early embryos (Fig. 2.11). This difference is quite 

consistent among more than three independent lines for each construct. 

To test whether there is a zygotic requirement for phosphorylation of PAR-3 by PKC-

3, we crossed both PAR-3S863A::GFP and PAR-3S863E::GFP into the par-3(tm2010) 

strain. In contrast to the results showing rescue of par-3(it71), PAR-3S863A::GFP 

showed poor ability to rescue the larval-lethality in par-3(tm2010), but PAR-

3S863E:GFP was able to rescue par-3(tm2010) efficiently (single tail t-test, p<0.005; 

Figure 3B). We checked offspring from the tm2010/qC1 III mothers expressing either 

PAR-3S863A::GFP or PAR-3S863E::GFP and examined the localization of the transgene. 

For PAR-3S863E::GFP, all embryos (n=103) were indistinguishable from wild-type 

PAR-3::GFP staining patterns (data not shown). Furthermore we were able to isolate 

par-3(tm2010)/par-3(tm2010); par-3S863E::gfp lines that produce fertile progeny, 

confirming that PAR-3 S863E::GFP is functional during zygotic development.   For 

PAR-3S863A::GFP, we could detect no obvious defects in distribution or levels of the 

mutant protein in any of the 62 embryos we checked (data not shown). Normal 

localization of PAR-3S863A::GFP may result from perdurance of maternal PAR-3 

loaded by the heterozygous mothers, or may indicate that S863A impairs PAR-3 

function in some way other than by affecting its apical localization. We conclude that 

PKC-3 phosphorylation is required for C. elegans PAR-3 function in late 

embryogenesis or post-embryonic development or both, but not in early embryos.  

 

Phosphorylation at two potential 14-3-3 binding sites is not essential for PAR-3 

function in C. elegans. 

PAR-5 is a C. elegans 14-3-3 protein and restricts PAR-3 distribution to the 
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Figure 2.10. PAR-3 phosphorylation at S863 in par-3(it71) embryos.  

(A) in vitro PKC-3 kinase assay with a portion of PAR-3(aa 678-932) and the mutated 

variants PAR-3S863A::GFP, PAR-3S863E::GFP and PAR-3S863AS865A::GFP as substrate. 

PKC-3K266A, the kinase-dead form of PKC-3, was used as negative control. (B-E) Anti-

PAR-3 antibody stained par-3(it71) embryos that express PAR-3::GFP (B), PAR-

3S863A::GFP (C), PAR-3S863E::GFP (D) and PAR-3S863AS865A::GFP (E).  
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anterior in one-cell embryos (Cuenca et al., 2003; Morton et al., 2002). Previous 

studies in Drosophila and mammals suggest that PAR-3 binds to 14-3-3 proteins 

directly and this interaction requires the phosphorylation of a conserved serine S950 

(Benton and St Johnston, 2003b; Hurd et al., 2003a; Izaki et al., 2005). To assess the 

physiological significance of this phosphorylation in C. elegans, we mutated S950, as 

well as S251, another residue that may be involved in this interaction, to alanines 

singly and in combination (Benton and St Johnston, 2003b; Hurd et al., 2003a; Izaki et 

al., 2005). However both PAR-3S950A::GFP and PAR-3S251A, 950A::GFP function properly 

throughout development (summarized in Fig. 2.5). This may be explained by the 

observation that PAR-3 has multiple putative PAR-5 binding sites, and the point 

mutations we made may not be sufficient to abolish the interaction in vivo. 

 

DISCUSSION 

PAR-3 is a highly conserved scaffold protein that functions in a variety of cellular 

events such as asymmetric cell division, epithelial polarization, directional cell 

migration and neuronal specification (Goldstein and Macara, 2007). In C. elegans, 

PAR-3 is essential for anterior-posterior polarity in the early embryo (Cuenca et al., 

2003; Etemad-Moghadam et al., 1995; Kemphues et al., 1988; Tabuse et al., 1998; 

Watts et al., 1996) and for processes in later embryonic (Nance et al., 2003) or early 

larval development (this report) and later larval development (Aono et al., 2004). Here 

we report results of an analysis of the function of PAR-3’s conserved protein domains 

in living animals.  We find that in spite of the overall structural conservation among 

animals, the requirements for specific PAR-3 domains appear to be stage and species-

specific. 
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Figure 2.11. PAR-3::GFP, PAR-3S863A::GFP, PAR-3S863E::GFP and PAR-

3S863AS865A::GFP in par-3(it71) embryos. Fluorescence images of one-cell par-3(it71) 

embryos expressing PAR-3::GFP (A), PAR-3S863A::GFP (B), PAR-3S863E::GFP (C) and 

PAR-3S863AS865A::GFP (D). All images were taken and processed under the same 

conditions.  
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The role of PAR-3 PDZ domains 

 PDZ domains are 80-90 amino acid-long modules, forming a barrel-like 

structure consisting of 5-6 β-strands and 2 α-helices (Nourry et al., 2003; Sheng and 

Sala, 2001). PDZ domains can bind the C-terminus, internal peptides, other PDZ 

domains of their client proteins or phosphatidylinositol moieties (Roh and Margolis, 

2003; Tonikian et al., 2008). PAR-3 has three PDZ domains, so it is reasonable to 

suppose that this protein may organize large complexes via these PDZ domains. 

Surprisingly, we found that although deletion of PDZ2 rendered the protein non-

functional, deletion of either PDZ1 or PDZ3 had no effect on the ability of the mutated 

protein to rescue loss-of-function mutations of par-3.  

The PDZ1 domain of mPar3 or Bazooka has been shown to bind to various 

proteins including mPar-6, JAM-1, nectins, Inscuteable, and p75 to regulate junction 

formation in epithelial cells, asymmetric division in neuroblasts and myelination in 

hippocampal cells (Chan et al., 2006; Ebnet et al., 2001; Itoh et al., 2001; Joberty et 

al., 2000; Lin et al., 2000; Schober et al., 1999; Takekuni et al., 2003; Wodarz et al., 

1999). The in vitro interaction between PAR-3 and PAR-6 has been verified in many 

species including C. elegans (J. Li and K. K., manuscript in preparation), although the 

consequence of this binding remains unclear (Gibson and Perrimon, 2003). In one 

study, overexpressed mPar6 can perturb epithelial polarity, and mutations in mPar6 

that reduce mPar3-mPar6 interaction (KPLG167-170AAAA) abolished this activity 

(Joberty et al., 2000). However the same mutations can also abolish the interaction 

between mPar6 and Pals1, therefore making it difficult to interpret the results (Hurd et 

al., 2003b). In another study, mPar-3 binding to mPar6 is dispensable for tight 

junction (TJ) assembly in polarizing MDCK cells (Chen and Macara, 2005). Because 

of this conserved interaction and because PAR-6 and PAR-3 are mutually required for 

stable localization to the cell cortex of early embryos, our finding that deletion of 
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PDZ1 had no apparent effect on PAR-3 function in C. elegans was unexpected, 

although it is consistent with results from our parallel analysis of the PAR-6 PDZ 

domain. Point mutations in the PAR-6 PDZ domain that block binding of PAR-3 

PDZ1 and PAR-6 PDZ in vitro have no effect on the PAR-6 function in C. elegans (J. 

Li and K.K. manuscript in preparation).   

Limited research has been reported on PAR-3 PDZ2 and PDZ3 domains until 

recently, when the structure of mPar3 PDZ2 and PDZ3 domains were solved and their 

roles in mammalian epithelial polarization were examined (Feng et al., 2008; Wu et 

al., 2007). mPar3 PDZ2 shows high affinity to phosphatidylinositol lipids, but the 

physiological significance in epithelial polarization is still controversial (Chen and 

Macara, 2005; Wu et al., 2007); in one study, PDZ2 is not required for mPar3 to 

restore TJ assembly in mPar3-depleted MDCK cells (Chen and Macara, 2005), 

whereas another study showed that mPar3 with a PDZ2 deletion fails to localize and 

function properly in MDCK cells (Wu et al., 2007). We found that PAR-3 PDZ2 is 

absolutely required for C. elegans early embryogenesis and later development. 

Although the sequence of C. elegans PAR-3 PDZ2 domain is not strikingly similar to 

its mammalian homologues, it does contain a cluster of positively charged amino acids 

(H512, H555, K557, R597) with spacing similar to that proposed to mediate the 

electrostatic interaction between mPar3 PDZ2 and phospholipid membranes (K458, 

R504, K506, R546). It is possible then that C. elegans PAR-3 associates with the cell 

periphery through PDZ2-lipid interaction. Because deleting PDZ2 does not completely 

dissociate PAR-3 from the cell periphery in early embryos, this putative interaction 

with phospholipid cannot be the sole mechanism responsible for PAR-3 cortical 

localization. Indeed, the association of PAR-3 with the cortex in the early embryo is 

also dependent upon an intact actomyosin network (Severson and Bowerman, 2003).  

We found that PAR-3 PDZ3 is dispensable in C. elegans in spite of its clear 
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role in other animals. For example, in mammals, PTEN, the phosphatase that 

generates PtdIns(4,5)P2, binds directly to mPar3 PDZ3 and this interaction is 

important for membrane enrichment of PTEN and epithelial polarity (Feng et al., 

2008). PDZ3 is also required for mPar3 to concentrate at TJ and to control TJ 

assembly in polarizing MDCK cells (Chen and Macara, 2005).  

 

The role of PAR-3 CR1 domain 

 The CR1 domain of PAR-3 is highly conserved in all PAR-3 homologues and 

mediates PAR-3 oligomerization both in vitro and in vivo (Benton and St Johnston, 

2003a; Feng et al., 2007; Mizuno et al., 2003). mPar3 lacking CR1 shows diffuse 

cellular distribution in MDCK cells, and overexpression of CR1 delays the formation 

of functional TJs (Feng et al., 2007; Mizuno et al., 2003). In Drosophila, deletion of 

CR1 disrupts Bazooka apical localization and strongly compromises its function in 

follicular epithelial cells (Benton and St Johnston, 2003a). We find that in C. elegans, 

intact CR1 is critical for PAR-3 function and cortical localization in early embryos, 

but not in late embryos and larvae, suggesting that the later function of PAR-3 is 

independent of CR1-mediated oligomerization. Whether PAR-3 can function in a 

monomeric form or form oligomers through other regions needs further analysis. 

 

The role of phosphorylation of PAR-3 

The CR3 region of PAR-3 is highly conserved from worms to mammals (73% 

identical). In mammals, aPKC binds to the CR3 region of mPar3 directly and 

phosphorylates serine 827 both in vitro and in vivo (Lin et al., 2000; Nagai-Tamai et 

al., 2002). However, the physiological significance of this phosphorylation is not 

clear. One study showed that overexpression of an S827A mutant, but not wild-type 

mPar3, significantly inhibits TJ reformation in polarizing MDCK cells (Nagai-Tamai 
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et al., 2002). In another study, however, mPar3 can function properly in epithelial 

polarization independent of aPKC (Chen and Macara, 2005). In our study, we found 

that in C. elegans, the phosphorylation of PAR-3 by PKC-3 does not markedly affect 

PAR-3 function in early embryogenesis. The phosphorylation may play a subtle role, 

however, because blocking the phosphorylation consistently resulted in higher levels 

of cortical PAR-3. In contrast, in late embryogenesis or post-embryonic development, 

phosphorylation at S863 is required for PAR-3 function. The phosphorylation appears 

to be permissive rather than regulatory because the phospho-mimic mutation can 

function as well as wild-type PAR-3.  

In flies and mammals, Bazooka and mPar3 can bind to 14-3-3 proteins in a 

phosphorylation-dependent manner to regulate epithelial polarization (Benton and St 

Johnston, 2003b; Hurd et al., 2003a). We found that blocking the phosphorylation of 

PAR-3 at two conserved 14-3-3 (PAR-5) binding sites also had no effect on 

localization or function of the protein. It is possible that in C. elegans additional 

putative PAR-5 binding sites have assumed the role of the two conserved sites that we 

tested. 

 

The role of PAR-3 C-terminal region 

The C-terminal region of PAR-3 does not contain any recognizable domain 

structures, but plays important roles in polarity establishment in mammalian neurons 

and epithelia (Chen and Macara, 2005; Nishimura et al., 2004; Nishimura et al., 2005; 

Zhang and Macara, 2006). Several studies have revealed that motifs in the C-terminal 

region are essential for mPar3 to localize properly and to recruit effectors, such as 

Tiam1, a RacGEF protein (Chen and Macara, 2005; Nishimura et al., 2005). We found 

that PAR-3 lacking the C-terminal region is still able to associate with the cell 

periphery in late embryos and developing larvae. These differences are consistent with 
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the significant sequence difference between worm PAR-3 and its vertebrate 

homologues (Etemad-Moghadam et al., 1995; Lin et al., 2000; von Trotha et al., 

2006).  

In summary, our results revealed differential requirements for the conserved 

domains of PAR-3 in early embryogenesis and larval development.  Although PAR-3, 

PAR-6 and PKC-3 function co-dependently, direct binding between PAR-3 and PAR-

6 appears not to be essential, and a requirement for PKC-3 phosphorylation may be 

dynamic throughout worm development. Interestingly, PAR-3 may function as a 

monomer or oligomer at different developmental stages, since CR1, the self-

association domain, is not required for zygotic development. These findings illustrate 

the dynamic complexity of PAR-3 interactions and regulation in different 

developmental contexts to control cell polarity. 
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CHAPTER THREE 

SUMMARY AND FUTURE DIRECTIONS 

 

3.1 Summary 

This thesis describes the work that I have done to better understand the 

mechanisms by which PAR-3 localizes and functions throughout worm development. 

The PAR-3 protein plays important roles in cell polarity in many animals.  In C. 

elegans, it is a critical component of the anterior PAR system that regulates cell 

polarity in the early embryo (Kemphues et al., 1988) and is essential for processes in 

late embryonic or larval development (Aono et al., 2004; Nance et al., 2003; Totong et 

al., 2007) et al 2007. To understand how PAR-3 localizes and functions during worm 

development, I introduced targeted mutations and deletions into PAR-3::GFP and 

examined their localization and function in different developmental stages. I found 

that the phosphorylation of PAR-3 by PKC-3 at S863 is not essential in early 

embryogenesis, but is important for PAR-3 function in later stages. Among the three 

PDZ domains, surprisingly only PDZ2 is essential for function.  Neither PDZ1, the 

PAR-6, nor PDZ3, reported to bind PTEN in mammals and flies, are essential for 

localization or function. However, PDZ2 is required for stable accumulation of PAR-3 

at the cell periphery in early embryos and at apical surface in pharyngeal and intestinal 

epithelial cells. Furthermore PAR-3 proteins lacking PDZ2 are unable to rescue either 

the maternal or zygotic PAR-3 function. CR1, the self-oligomerization domain, is 

required for PAR-3 cortical distribution and function only during early 

embryogenesis. Disruption of PAR-3 self-association appears dispensable for zygotic 

development. All these results indicate that in spite of the conservation of PAR-3’s 

overall structure, the requirements for specific PAR-3 domains appear to be organism 

and stage specific. 
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3.2. Future directions 

3.2.1. To identify PAR-3 PDZ2 interacting molecules 

 PDZ2 is absolutely required for worm PAR-3 to achieve stable cortical 

localization and to polarize the early embryo. However, the molecule(s) that interacts 

with PDZ2 to link PAR-3 to the cell periphery is still not known. The PDZ2 domain of 

mammalian Par3 displays high affinity to phosphotidylinositol lipid membranes and 

this interaction is essential for Par3 to localize at TJs in MDCK cells (Wu et al., 2007). 

Although the sequence of worm PAR-3 PDZ2 is not strikingly similar to its 

mammalian counterpart, the positive cluster responsible for the electrostatic 

interaction to the lipid membrane is still present, raising the possibility that worm 

PAR-3 associates with the cell periphery through PDZ2-lipid interaction. Lipid-

binding assays, which can test the direct interaction between the purified protein and 

synthetic lipid components, will be able to tell us if this interaction is also conserved 

in worms. If yes, replacing PDZ2 with another lipid-binding motif such as PLCζ pH 

domain will test whether PDZ2 contributes to PAR-3 localization and function solely 

by recruiting it to the membrane. If not, yeast-two-hybrid assays can be performed to 

screen for putative PDZ2 binding partners that participate in localizing PAR-3. 

 

3.2.2. To test if PAR-3 functions independent of PAR-6/PKC-3 

 Emerging evidence indicate that PAR-3 might execute distinct roles 

independent of PAR-6/PKC-3 during worm development (Beers and Kemphues, 2006; 

Hung and Kemphues, 1999; Tabuse et al., 1998; Totong et al., 2007). In chapter 2, I 

presented evidence that direct interaction between PAR-3 with PAR-6 or PKC-3 is 

dispensable for worm development, as PAR-3 mutants with presumably disrupted 

PAR-3-PAR-6 binding (PDZ1Δ), or PAR-3-PKC-3 interaction (S863E, 
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S863AS865A), or PKC-3 phosphorylation are normal in terms of localization and 

function. However, none of the PAR-3 mutants mentioned above presumably could 

completely distrupt the whole complex. For example, PAR-3 PDZ1Δ in par-3(it71) 

embryos presumably cannot recruit endogenous PAR-6 by itself, but it is still able to 

interact with PKC-3, and PKC-3 can bring PAR-6 to this complex via its PB1 domain. 

It will be interesting to test if PAR-6/PKC-3 maintains cortical PAR-3 by being 

physically part of the complex, or by some other pathways. Analysis of the behavior 

of PAR-3PDZ1ΔS863E::GFP (or PAR-3PDZ1ΔS863AS865A::GFP) in the absence of endogenous 

PAR-3 may help to answer the question since these mutants are likely to be “PAR-

6/PKC-3-free” PAR-3. In addition, in vitro experiments will be necessary to test if 

these mutations can truly abolish the interaction of PAR-6/PKC-3 with PAR-3. 

 Since neither PDZ1 and PDZ3 are necessary for PAR-3 localization or 

function, it also raises the possibility that these two domains may act redundantly. It 

will be helpful if PDZ1ΔPDZ3Δ double mutant can be generated to test this 

hypothesis. 

 

3.2.3. To identify other par-3 isoforms and regulatory elements for par-3 expression 

 Several lines of evidence imply that mulitple par-3 isoforms exist and they 

may differ in the 5’-end sequence as well as the expression pattern and timing. It will 

help us to better understand how PAR-3 polarizes cells in different contexts if we 

could identify other isoforms. (1) 5’RACE-PCR (rapid amplification of cDNA ends)-

PCR can be used to isolate the 5′ end sequences of cDNA. (2) the 4th intron of 

genomic par-3 is 3.6kb long, which lies in the middle of CR1 domain, raising the 

possibility for bearing an alternative promoter in this region. In addition, this idea is 

also supported by the fact that two maternal-effect-lethal par-3 mutants, par-3(it71) 

and par-3(t1591), both bear nonsense mutations upstream of the 4th intron. To test the 
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alternative promoter hypothesis, we can fuse par-3 intron4 with GFP, and check if the 

4th intron itself can drive the expression of GFP in live worms. (3) I’ve observed that 

all par-3CT::gfp animals I checked (n=24 lines) have much stronger zygotic GFP signal 

than that of any other par-3 mutant, indicating that there might be negative regulatory 

elements residing in the 5’ genomic region.  A promoter bashing experiment might 

help to elucidate the mechanism underlying the expression of PAR-3 in zygotic 

tissues. 

 

3.2.4. To identify molecules that work with PAR-3 to regulate actomyosin network 

 In mammals, the C-terminus of PAR-3 recruits Tiam1, the RacGEF, to control 

cell polarization through Rac-mediated regulation of cytoskeleton (Chen and Macara, 

2005; Nishimura et al., 2005). In C.elegans zygote, PAR-3 is also required to generate 

sustainable cortical flow (Munro et al., 2004). It raises the possibility that PAR-3 may 

also recruit regulators of actomyosin meshwork to promote cytoskeleton 

rearrangement. One of the candidates is ECT-2, the putative RhoGEF protein. Despite 

its important role in early polarity establishment, ECT-2 has also been shown to 

interact with both Par3 and Par6 in mammalian cells (Liu et al., 2004). More 

candidates might be identified with the help of fast-growing bioinformatics and 

powerful reverse genetics. For example, most GEFs contain a PH (pleckstrin 

homology) domain and a C-terminal DH (Dbl homology) domain (Rossman et al., 

2005; Schmidt and Hall, 2002). There are 70 DH members in the human genome, 23 

in Drosophila, and 18 in C. elegans (Rossman and Sondek, 2005). In addition, another 

subgroup of Rho-GEFs has been recently characterized, which bear two DH homology 

regions, called DHR1 and DHR2, instead of the classical DH catalytic domain (Meller 

et al., 2005; Nishikimi et al., 2005). Investigation on the roles of potential worm GEFs 
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and GAPs might also shed light on our understanding of the mechanism by which the 

PARs polarize the worm embryos. 
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APPENDIX 

This appendix consists of two parts. The first part describes my attempt to 

identify different PAR-3 isoforms and to identify a par-3 null mutant. The second part 

reports the RNAi analysis of C.elegans homolgues of some human PAR interacting 

proteins and potential worm interactors from a large-scale yeast-two-hybrid assay .  

 

A.I. Investigation of PAR-3 zygotic isoforms and par-3 null mutants 

A.1.1. 5’RACE-PCR 

5′ RACE-PCR is a technique to obtain the 5’ sequence of an mRNA of interest. 

It first uses an anti-sense primer that recognizes a known sequence in the mRNA of 

interest, then synthesizes the first strand of cDNA by reverse transcription reaction. 

DNA polymerase is used to generate the second strand of cDNA and RNAse H is used 

to degrade mRNA template. Following cDNA synthesis, a double-stranded adaptor 

whose sequence is known is added to the 5’ends of the cDNA by T4 DNA ligase. A 

regular PCR reaction is then carried out to amplify the product. 

Synchronized glp-4(ts) L1 worms were cultured at 25°C until L3-L4 stage. 

RNA extraction was performed according to the Trizol procedure, and the poly-A+ 

RNA was prepared by FastTrack mRNA isolation kit (Invitrogen). Marathon cDNA 

amplification kit (Clontech) was used for 5’ RACE-PCR. Sequencing of two putative 

par-3 isoforms revealed that both started exactly from the 6th exon (aa93). However, 

both of them lack SL1 or SL2 attached at the 5’ end, indicating that they may reflect 

truncated mRNA of cDNA instead of intact isoforms. 

 

A.1.2. Complementation test of 7 lethal mutations 

 All previously isolated par-3 alleles are strict maternal-effect-lethal mutants 

(Etemad-Moghadam et al., 1995; Kemphues et al., 1988). par-3 (it71) contains a 
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nonsense mutation in exon 3 and showed no detectable protein in early embryos 

(Etemad-Moghadam et al., 1995; Kemphues et al., 1988). However, PAR-3 

accumulates normally in epithelial cells of the digestive tract and somatic gonad, 

indicating that it71 is not a null allele (Aono et al., 2004). To check if any of available 

mutants could be par-3 null, I checked 7 lethal mutations in the region where par-3 is 

mapped (Stewart et al., 1998) for complementation with the maternal effect lethal 

mutation par-3(it71). I crossed par-3(it71) males to hermaphrodites of let-718, let-

780, let-797, let-798, let-799, let-809 and let-810, then checked the viability of worms 

laid from it71/let mothers. All of the let mutants mentioned above were able to 

complement the maternel-effect-lethality of par-3(it71), indicating that none of these 

embryonic or larval lethal mutations is a mutation in par-3. 

 

A.1.3. Generation of par-3(tm2010)/qC1 

We obtained a par-3 deletion allele (tm2010) from the National Bioresource 

Project. tm2010 contains a 409bp-long deletion in par-3 including part of intron 6 and 

exon 7, and the homozygotes of tm2010 mostly die as L1 larvae. K. Kemphues 

outcrossed tm2010 with N2, then I sequenced the deletion region and balanced it with 

qc1 balancer. The mutation fails to complement par-3(it71) and can be rescued by a 

wild-type par-3::gfp transgene, indicating that tm2010 carries a zygotic par-3 

mutation and the expression of PAR-3 in late embryogenesis or/and postembryonic 

development is required for viability.  

 

A.1.4. Verification of par-3(it136) 

 par-3(it136) is a unique par-3 allele, since it136 homozygotes are embryonic 

lethal instead of maternal-effect-lethal, and the maternal mutations can not be 
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separated from the embryonic lethal one (C. Kirby). To verify this observation, I 

checked the segregation of the progeny of 2 lines: 

lon-1(e0185)par3(it136)/qc1III;rol-6(e187) F3 phage INT 

lon-1(e0185)par3(it136)/qc1III  

 Both strains segregate about a quarter fertilized dead embryos (24.9% n=389, 

and 23.8% n=302, respectively). This result indicates that par-3(it136) may carry two 

closely-linked mutations since the exogenous wild-type PAR-3 cannot rescue the 

embryonic lethality. Complementation test with tm2010 can be performed to 

determine if t136 is a null allele. 

 

A.II. Investigation of potential PAR-3 interactors 

A.2.1. Analysis of mammalian PAR-3 interacting proteins 

 Brajenovic and colleagues carried out a TAP (tandem affinity purification) 

assay to identify mammalian proteins that co-purified with PAR proteins in 

mammalian epithelial cells (Brajenovic et al., 2004). This study confirmed many 

known interactors of the PAR proteins and reported other novel interactions. J. Li, M. 

Beers and I collaborated in the identifcation of the C.elegans homologues for each of 

the PAR-interacting proteins and determining the phenotypes resulting from RNAi-

mediated depletion of the proteins from early embryos. 

 dsRNA was made by in vitro transcription and then injected into 15-20 young 

adult worms. The eggs were allowed to incubate for 12-16 hours at 25°C and then 

were scored for viability and terminal phenotype if lethality was observed. Time-lapse 

microscopy was also used to determine if the RNAi caused any defects in early 

embryonic development. A summary of these data is shown in Table A.1.  Only genes 

previously known to have roles in polarity or microtubule function in the early embryo 

gave significant amounts of embryonic lethality. 
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A.2.2. Analysis of worm PAR-3 interacting proteins 

 In 2004, The Vidal group carried out a genome-wide mapping of protein-

protein interactions, defining a C. elegans “interactome” (Li et al., 2004). 3024 worm 

proteins that relate to multicellular functions were used as baits and more than 4000 

interactions were identified from high-throughput, yeast two-hybrid screens. 

Independent affinity purification assays were used to validate the overall quality of the 

data set. Together with previously identified interactions, the Worm Interactome map 

contains approximately 5500 interactions.  

 I checked most of the PAR-related protein partners, and repeated the RNAi of 

some of them to see if any of them plays a role in early embryogenesis. The results are 

summarized in Table A.2. 
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Table A.1 human PAR network analysis 

human ID worm ID bait RNAi Remarks on human prey 

SQDTM1 T12G3.1 aPKC WT Drosophila REF(2) like 

 Y32B12A.1  WT Zinc finger  

USP9 F37B12.4 Par1 ~10% Ste Ubiquitin C-terminal hydrolase 

NIPSNAP2 K02D10.1 aPKC WT 4-nitrophenylphosphatase 

C6orf69 R05F9.1 Par1 WT transport, BTB/POZ domain 

FLJ20645 F13H8.2 Par6 Gro Mitochondrial, WD domain 

LOC342684 C34E11.3 Par1 WT Kinetichore-associated 

 C23H4.6  WT Transport, ABC domain 

STRADa C24A8.4 Par4 WT Ser/Thr kinase 

 T19A5.2a  WT GCK-3 family of ste20 kinase 

 C45B11.1b  WT Rho-binding domain, Ste20 family 

LOC55580 Y51A2D.15 Par3 Egl ER->Glogi transport 

KIAA0802 T10G3.5 Par1 ~20%Lvl Vesicular transport 

USP7 H19N07.2 Par1 WT MATH domain, apoptosis 

FLJ20643 F32D8.6 Par6 ~20%Lvl Vesicular transport 
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Table A.2.  Analysis of worm interactome 

bait name prey RNAi  remarks 

par-3 F54E7.3a pkc-3 Emb  

  F42A10.3 WT Indolehyl amine N-methyl transferase 

  T11B7.4 WT PDZ-LIM domain, cell adhesion 

  par-6 Emb  

par-6 T26E3.3 par-3 Emb  

  H06I04.1 WT Rho associated GTPase 

  ZK849.2 WT Golgi-associated, PDZ domain 

  pkc-3 Emb  

  pkc-2 WT  

  F53B3.1 Ste Pyrophosphatase, zic finger 

par-5 M117.2 K08B4.1 Lvl Transcription factor in Wnt pathway 

  Y51H4A.8 WT transposase 

  zyg-8 Emb Concentrated with spindles 

  C53D6.6 WT transposase 

pkc-3 F09E5.1 par-6 Emb  

  par-3 Emb  

  num-1 WT Numb homologue, endocytic transport 

nmy-2 F20G4.3 F31C3.2 WT Nucleotidyl transferase 
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