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Control moment gyros (CMGs) are an energy-efficient means of reactionless 

actuation currently used for attitude control in some spacecraft. In this work, CMGs 

are compared to direct-drive actuation for robotic applications. Torque, power, and 

energy of the gimbal motor are calculated using principles of angular momentum and 

virtual power. 

Scissored-pair CMGs produce output torque along the joint axis, facilitating 

comparison with joint motors. A mechanical coupling enforcing scissored-pair 

symmetry eliminates undesirable gyroscopic reaction torques and accompanying 

power costs while simplifying analysis. Strictly controlling CMG rotor speed doubles 

the CMGs’ energy costs, whereas implementing minimal rotor speed control while 

assuming constant rotor speed reduces the energy costs without compromising the 

analyses. A single-link robot actuated with scissored-pair CMGs uses the same energy 

as direct drive for a large range of gimbal inertias and maximum gimbal angles. The 

transverse rate of the robot base does not affect this result if angular momentum is 

conserved about the joint axis.  

The equations of motion for an n-link robot with CMGs are presented in a 

recursive form. A two-link robot with orthogonal joint axes and axisymmetric bodies 

reduces to two, independent, single-link robots. In contrast, a two-link robot with 

parallel joint axes favors CMGs when the joints rotate with opposite sign, e.g. 

reaching motions. Direct drive is preferred when the joints act in unison, e.g. throwing 

motions. Conceptually, CMGs and direct drive may be analyzed as idealized body and 



 

joint torques, respectively. The mappings from actuator torques and velocities to 

generalized torques and velocities explain differences in power cost between the two 

actuation methods. A proposed power-optimal robot includes both types of actuation. 

The optimal distribution of joint and body torques for two- and three-link planar 

robots is calculated and applied to a three-link robot tracing a closed triangle. The 

combined actuation method easily outperforms the others in a Monte Carlo simulation. 

A planar robot with joint motors and CMGs currently in development illustrates the 

design of a CMG-actuated robot. 
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CHAPTER I. INTRODUCTION 

Attitude control of satellites may be accomplished with internal momentum 

control when external torques such as those imparted by the gravity gradient, magnetic 

torquers, or thrusters are inappropriate for the mission requirements. Control moment 

gyroscopes (CMGs) provide internal momentum for attitude control without 

expending propellant. Thus they contribute to reduced launch mass and longer 

spacecraft life. CMGs have important flight heritage controlling large space structures 

such as Skylab, ISS, and MIR, all of which demand very high torques. CMG’s ability 

to produce large torques in a small package also has applications for smaller satellites 

with greater agility [Lappas et al., 2005; Lappas et al., 2002; Wie et al., 2002]. 

Recently smaller CMGs for use on small satellites have been explored [Lappas et al., 

2002; Wie et al., 2002]. This research aims to encourage further development of small 

CMGs by highlighting their potential application to robotics. The primary motivation 

for this study is the prospect of using CMGs for reactionless actuation to reduce or 

eliminate the disturbances imparted by traditional joint motors and reduce the 

associated demands on the spacecraft attitude control system [Carpenter and Peck, in 

review]. 

The motion of a robot arm in space imparts reaction forces and torques onto the 

spacecraft base, resulting in nonlinear coupling between the base motion and the robot 

motion. These effects become more pronounced as the size of the robot increases 

relative to the base and as robot accelerations increase. When the coupling between 

the robot and base spacecraft is small, control schemes used for terrestrially based 

robot arms may be used (see, e.g., [Murray et al., 1994; Craig, 2005]). Other 

alternative control schemes include compensating for the robot motion with the 

spacecraft thrusters and attitude controller [Longman et al., 1987] or path planning of 
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both the robot and the spacecraft [Nakamura and Mukherjee, 1991]. For a recent 

review of dynamics and control of free-flying robots in space, see [Moosavian and 

Papadopoulos, 2007].  

An alternative approach is to reduce or eliminate the coupling between the 

spacecraft and the robot through reactionless actuation. In this paper, robotic actuation 

that does not impart a torque about the joint axis is termed reactionless actuation. A 

reactionless robot helps decouple the attitude control system (ACS) from the dynamics 

of the robotic arm. In Figure 1a, the joint motor creates a torque between the robot and 

spacecraft that increases demands on the ACS. In contrast, the CMG-driven robot in 

Figure 1b eliminates the torque coupling about the joint axis. With reactionless 

actuation, system-level pointing accuracy can be improved by reducing the known 

 

Figure 1. Free-body diagram of single-link robot.  
a. Joint-motor torque is reacted onto the base. b. Reactionless body torque moves the 
robot arm without reacting a torque onto the base. Motion of the robot’s center of 
mass may cause other constraint forces to react against the base. 
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disturbances created by a robotic arm. For such a configuration, rapid robotic 

movements do not impart low-frequency disturbances that might excite structural 

vibrations. Furthermore, the agility required of a specific subsystem need not be 

applied to the satellite as a whole. Reaction wheel assemblies (RWAs), clever gear 

design, and CMGs are all possible reactionless actuators [Billing-Ross and Wilson, 

1988]. A RWA-driven robot, such as the one described in [Carpenter and Peck, 2008; 

Osuka et al., 1994], can be energetically costly as compared to CMGs [Carpenter and 

Peck, 2008]. The work in [Carpenter and Peck, in review] demonstrates the reduced 

reaction torques on the spacecraft from the robot when CMGs are used in place of 

direct drive motors for joint actuation. Other relevant work in the literature include a 

proposed bifocal relay telescope that uses CMG attitude control on one member, and 

connects the other member with a joint motor [Romano and Agrawal, 2004]. CMGs 

have also been proposed for vibration and slew control of a large truss [Yang et al., 

1995]. Comparisons of RWAs and CMGs have previously shown the power benefits 

of using CMGs, both in attitude control and specifically for robotic applications [Peck, 

2005; Van Riper and Liden, 1971]. A comparison of CMGs with joint motors has not 

been previously published. 

Although the actuator reaction torques reflected onto the spacecraft through the 

joint axis are eliminated with reactionless actuation, the reaction forces and torques 

attributable to the motion of the robot arm from D’Alembert’s principle are not (FR in 

Figure 1). Mitigating vibrations from the rapidly spinning rotors adds complexity to 

the design of CMGs. Friction losses may make CMGs an inefficient choice for a 

generally quiescent system. Furthermore, reactionless actuators have much greater 

restrictions on the end-effector forces and torques than typical joint motors because 

persistent torques will saturate both and CMGs. Therefore, the pros and cons of 
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reactionless actuation must be weighed against the pros and cons of traditional joint 

actuation in choosing robot-arm architectures for specific applications. 

Scissored pairs of CMGs, also referred to as V-gyros or twin-gyros [Havill and 

Ratcliff, 1964] have been suggested for CMG-actuated robots [Carpenter and Peck, 

2008]. Scissored-pair CMGs were introduced over a century ago. Brennan used two 

counter-rotating flywheels with gearing between their gimbals to provide symmetric 

stabilization of a monorail vehicle around left or right turns [Brennan, 1905; Brennan, 

1903] (Figure 2). The Skylab-era Astronaut Maneuvering Research Vehicle used 

scissored pairs for attitude control of astronauts during extravehicular activities 

[Cunningham and Driskill, 1972; Murtagh et al., 1974]. These devices have also been 

 

Figure 2. Brennan’s gyroscope for monorail. 
Gearing between the two rotors directs the gyroscopic torque along the axis of the 
train, righting the train when tipping, from [Brennan, 1905].  
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studied as gyrodampers of large space structures [Yang et al., 1995; Aubrun and 

Margulies, 1979]. Scissored-pair CMGs could also be used to rapidly maneuver a 

payload with less power than rapidly maneuvering the entire spacecraft [Peck et al., 

2005].  

This dissertation is organized as follows. CHAPTER II reviews CMG dynamics 

and contributes an analysis of the power benefits of mechanically connecting a 

scissored pair. CHAPTER III provides new results on the energy costs of using a 

constant speed rotor. In CHAPTER IV, CMGs are compared to joint motors in terms 

of power used during a given motion of a single-link robot. CHAPTER V introduces 

the dynamics of an n-link robot and compares joint-motor and CMG power for two-

link robots. CHAPTER VI generalizes the results of CHAPTER V to draw parallels 

with a broad class of actuators and includes results for a robot with both joint- and 

body-torque actuators. CHAPTER VI describes how this work contributes to the 

design of a planar testbed of a CMG-driven robot arm.  
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CHAPTER II. CMG DYNAMICS 

CMGs belong to a broader class of actuators that use momentum to control the 

attitude or position of a body. Simply stated, a spinning body resists change in both 

the magnitude and the direction of spin, i.e., the change in angular momentum is equal 

to the applied moments. The embedded momentum of a spinning rotor mounted on a 

body can be used to produce an internal torque that causes the body to rotate in such a 

way that the net body-plus-rotor angular momentum stays constant. A body that uses 

momentum to control orientation can reorient without propellant and without changing 

its net angular momentum, valuable features in spacecraft applications. Typically 

either a fixed-axis, variable-speed rotor (reaction wheel) or a gimbaled-axis, constant-

speed rotor (CMG), or both (including variable-speed CMGs [Schaub et al., 1998]) 

provide the momentum. Linear momentum actuators have also been considered for 

controlling micron-scale systems [Koh et al., 2002] but are not considered here. 

A reaction wheel assembly (RWA) governs its momentum by changing only its 

rotor speed. The spin axis is fixed to the satellite. The approximate energy cost of 

using an RWA of inertia Ir is the change in the kinetic energy of the rotor from the 

initial to final wheel speeds.  

  2 2
2 1

1

2r rE I      (1) 

The initial and final speeds of the rotor (1, 2) are taken relative to an inertial 

reference frame. Even if RW efficiency is improved by recovering some of the energy 

stored in the rotor, maximumpower requirements limit the torque that may be applied 

by the reaction wheel. In spite of the high energy cost, reaction wheels have been used 

extensively due to their simplicity, reliability, and strong flight heritage. In contrast, 

the CMG uses a constant-speed rotor with angular momentum hr, rotated about a  
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gimbal axis to change the angular momentum and produce a torque, cmg, as shown in 

Figure 4. Its rotor’s kinetic energy changes only insignificantly (e.g. in response to 

low-speed base motions). A CMG does use at least as much energy as the change in 

the satellite body’s kinetic energy, but still much less than would be used by an RWA. 

Comparisons of RWAs and CMGs have previously shown the power benefits of using 

CMGs over RWAs, both in attitude control [Lappas et al., 2005; Van Riper and Liden, 

1971] and specifically for robotic applications [Carpenter and Peck, 2008]; the former 



gτ

hr

cmg

hr

cmg

c

d
 

Figure 3. Reaction wheel and CMG principals of operation. 
a. Torque on the reaction wheel in one direction produces a torque on the satellite in 
the opposite direction. b. The reaction wheel torque is generated by changing the 
speed of the rotor. c. Rotation of the gimbal causes a torque on the satellite 
perpendicular to the gimbal torque and the rotor momentum. d. CMG torque is 
generated by changing the direction of the rotor’s angular momentum vector.  
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references tested physical models and the latter reference compares simulation results. 

This paper is the first comparison of CMGs with joint motors for robotic applications. 

In this work, as well as in the simulations reported in [Carpenter and Peck, 2008], the 

startup and standby power of CMGs are not considered. Omitting startup and standby 

power does not invalidate previous comparisons with reaction wheels that must also 

maintain a nonzero nominal speed to avoid excessive zero crossings but does highlight 

a key advantage of joint-motor actuation, which draw near zero power in a quiescent 

state.  

A. Single CMG 

This section develops the equations of motion for a single CMG to obtain an 

expression for the gimbal torque. The gimbal torque is combined with gimbal velocity 

in later sections to determine power used by the CMGs. Similar equations have been 

developed elsewhere [Carpenter and Peck, 2008; Schaub and Junkins, 2003], but the 

following first-principles derivations clarify the assumptions made in this work and 

help establish notation. Principles of angular momentum determine the applied gimbal 

torque, the output torque onto the body, and the torque necessary to maintain rotor 

speed.  

Consider a control moment gyro attached to a body, e.g. attached to a segment of 

a robot arm. The CMG’s angular-momentum vector about its center of mass, Hcmg, is 

the sum of the momentum of the gimbal and the rotor: 

    
 

G/N R/N

G/B B/N R/G G/B B/N

G/B B/N

cmg g r

g r

cmg r

   

      

   

H I ω I ω

I ω ω I ω ω ω

I ω ω h

 (2) 

where the total CMG inertia is cmg g r I I I , and the term Ir·R/G = hr.  
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The torque produced by the CMG onto the spacecraft or robot link, cmg, is found 

by taking the time derivative in the N frame. 

 
N

cmgcmg  τ H  (3) 

where the time derivative of an arbitrary vector x taken in frame Y is written  

  
YY d

dt
x x  (4) 

From Eq. (2), 

    
N B B/N B/N B/N B/Nˆ ˆ ˆ ˆcmg cmg cmg rI I   

                 
   H g ω g ω g ω g ω h  (5) 

where G/B ˆ ω g . The overdot represents the time derivative of a scalar. In the case of 

a CMG inertia Icmg that is constant in any frame, as for a spherical body, the term 

   B/N B/Nˆ ˆcmg      
 g ω I g ω  is eliminated from Eq. (5). A spherical CMG 

inertia closely approximates a physical system because Icmg consists of the rotor, the 

gimbal support structure, and both gimbal and rotor motors. A study of high-accuracy 

control algorithms or a geometrical analysis of the rotor and gimbal would require an 

exact Icmg, but a power comparison between a joint-motor-actuated robot and a CMG 

with a spherical Icmg still has value for designing more general CMGs. Furthermore, 

the six time-varying parameters required to describe the CMG’s inertia dyadic are 

replaced with just one. Mathematically, the CMG inertia may be written as 

 g r cmg cmgI  I I I 1  (6) 

This work also assumes that the CMG rotor and gimbal are rigid bodies. However, 

flexible effects of the rotor and gimbal along the ˆˆ g h  axis increase gimbal torque g. 

The CMG inertia must therefore also include the output-axis stiffness kOA [Liden, 

1974]:  
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  2ˆ  cmg cmg r OAI h k  I g  (7) 

The torques acting on the CMG are the applied gimbal torque and the torque 

reacted onto the body. In the absence of friction, electromagnetic forces, and flexible 

effects, the time derivative of the CMG angular momentum equals the external 

torques. For a slow body rate B/Nω  the torque acting on the spacecraft is approximated 

by the gimbal rate crossed with the rotor momentum, resulting in the classic 

expression for gyroscopic torque (see Figure 4). 

 ˆcmg r  τ g h  (8) 

Even for a stationary body (= 0), Eq. (8) shows that the direction of cmg is not 

constant because of its dependence on .  

 

Figure 4. CMG vectors and scalars defined. 
The preferred body-rotation axis t̂ , e.g. the joint axis for a robot arm, the gimbal axis 
ĝ , and the normal n̂  define the body-fixed coordinate system. When the gimbal angle 
 is zero, the rotor angular momentum hr is aligned with n̂  and the output torque cmg 
is aligned with t̂ .  
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Adapting to changing CMG output torque is among the biggest challenges of 

CMG-based attitude-control system design because the array of CMGs can encounter 

singularities [Kurokawa, 2007; Margulies and Aubrun, 1978]. Singularities arise when 

the possible gimbal motions cannot produce the desired output torque from the array. 

For the robot under investigation here, the desired torque is always along the robot’s 

joint axis. A scissored pair both constrains the torque output to act only along the joint 

axis and avoids the internal singularities associated with more general CMG arrays.  

B. Scissored-Pair CMGs 

In a scissored pair of CMGs, two CMGs with parallel gimbal axes maintain equal-

magnitude and opposite-sign gimbal angles Figure 5). Scissored pairs, also referred to 

as V-gyros or twin-gyros [Havill and Ratcliff, 1964] produce torque about a single 

axis by using antisymmetric (equal-magnitude, opposite direction) gimbal angles to 

cancel unwanted torque on the body. Cross coupling torques acting on the gimbal 

motors that result from body motion can be cancelled internally to reduce gimbal 

torque [Havill and Ratcliff, 1964; Brown and Peck, 2008; Liska, 1968]. Singularities 

occur in a scissored pair only if the commanded torque exceeds the gimbal-rate 

capability of the scissored pair in magnitude or if the momentum stored in the pair is 

at a maximum. Related saturation singularities occur in any actuator. Scissored pairs 

also have a simple zero-angular-momentum configuration, useful for rotor spin-up and 

ensuring that motion of other robot links does not induce unwanted gyroscopic torque 

even though the rotors spin continuously. While this paper does not explore the 

application of a single CMG for each link, there may be some benefit to be gained by 

using them in this way. 
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A geared scissored pair uses a single gimbal motor with a mechanical coupling 

between CMGs, such as gears or a mechanical linkage, to enforce the gimbal-angle 

symmetry (Figure 5). An early double-gimbal CMG (DSCMG) scissored-pair concept 

with mechanical synchronization is described by [Liska, 1968]. In that design, each 

DSCMG is the central body of a universal joint with the shafts at right angles to 

gimbal the rotor. The shafts of each DSCMG are coupled with steel belts in lieu of 

gears. They reported 0.1 arcsecond pointing accuracy with their setup [Liska, 1968].  

In contrast to the geared scissored pair, each CMG in a scissored pair of 

independently driven CMGs has its own gimbal motor. This chapter explores the 

benefits of using a gear to cancel workless constraint torques that would otherwise act 

on the independent CMGs. The gears also replace the two independent gimbal motors 

with a single motor, which may represent improved mass and volume efficiency in the 

electromechanical design. Friction and backlash in the gears are not modeled in this 

work, but represent a potential problem for the geared CMGs. Gears could reduce or 

 

Figure 5. Geared scissored-pair CMGs. 
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eliminate misalignment of the gimbal angles otherwise compensated with control 

system design as discussed in [Yang and Chang, 1996].  

Independent scissored pairs do provide a second degree of freedom in the 

actuator. If the desired output torque is along more than a single axis, a pair of 

independent CMGs may suffice where two pairs of geared scissored pairs would 

otherwise be used. Independent scissored pairs are also more robust to single point 

failure since the loss of one CMG still leaves the other operational. A geared scissored 

pair has a single point of failure if the gimbal motor malfunctions. 

Scissored pairs attempt to mitigate some of the difficulties associated with 

traditional CMGs that arise from the changing direction of the CMG output torque. 

Accommodating the changing output-torque direction is among the greatest challenges 

of CMG-based attitude-control system design because this effect can lead to internal 

singularities [Kurokawa, 2007]. When a CMG array is singular, it cannot produce the 

commanded torque. Singularities in scissored pairs occur only if the commanded 

torque exceeds the capability of the scissored pair in magnitude or if the momentum 

stored in the pair is at a maximum. Related saturation singularities occur in any 

actuator. Scissored pairs otherwise offer a singularity-free range of angular 

momentum, unlike other CMG array geometries [Elgersma et al., 2007]. Essentially, a 

scissored pair array provides a set of constant-direction, variable-magnitude 

momentum vectors, whereas typical CMG arrays provide a set of constant-magnitude, 

variable-direction momentum vectors. Scissored pairs also have a unique zero-

angular-momentum configuration, useful for rotor spin-up and ensuring that motion of 

other links does not induce unwanted gyroscopic torque even though the rotors spin 

continuously. However, their singularity-free performance artificially limits the 

momentum envelope of a scissored-pair array to a single line instead of a disc by 

constraining the available output torque of the pair. This chapter does not investigate 
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the relative merits of such an array with other possible CMG arrays. Rather, the focus 

is on the internal torque cancellation and the resulting power savings for a geared 

scissored pair as compared to an independent scissored pair.  

1. Scissored Pair Analysis 

Although the magnitude of the rotor momentum is constant and identical for each 

CMG in the pair, the direction of the rotor momentum is different. Therefore hr1 ≠ hr2, 

where a subscript 1 or 2 is used to distinguish between the two CMGs. The torque 

applied by the gimbal motor on the first of the two CMGs acts only along the gimbal 

axis and is the dot product of ĝ and Eq. (5). The rotor momentum magnitude is 

identical for each CMG, but the direction is not. The gimbal torque for the ith CMG, 

 1, 2i , is given by: 

    B1 B/N B/N
, ,ˆ ˆ1

i

g i cmg cmg r iI I         ω g ω h g  (9) 

Figure 6 shows the gimbal angle , the body rate relative to the inertial N frame B/N, 

and the rotor momentum hr,i, which is constant in the gimbal frame. The gimbal axis ĝ 

comes out of the page. In Figure 7, a control volume for each gimbal isolates the 

individual gimbal torques. Another control volume including only the single motor for 

the scissored pair and each of the gimbal torques shows that a gear results in a net 

applied torque on the scissored pair sp equal to the difference between the two gimbal 

torques. 

 1 2sp g g     (10) 

  B/N
1 2 ˆ2sp cmg r rI        

 ω h h g  (11) 
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Figure 6. Scissored-pair kinematics. 
The equal-magnitude, opposite sign gimbal angles cause the net change in the angular 
to always be aligned with the output torque axis t̂ ,coincident with the joint axis. The 
unit vector triad defines the body fixed frame, and the ĝ  axis is the same for the body 
and gimbal frames.  

 

Figure 7. Applied torque on a scissored pair. 
The gimbal torque on a scissored pair is equal to the difference of the individual 
gimbal torques. The gear changes the sign of the second gimbal torque, demonstrated 
by considering each CMG separately, and then balancing the torques for a massless 
gear train. 
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The unit vector t̂  as defined in Figure 6 simplifies the scalar triple product to a dot 

product of the body rate and the scissored-pair angular momentum. 

 B/N ˆ2 2 cossp cmg rI h     ω t  (12) 

The first term in this expression corresponds to accelerating the gimbal. The second 

term accounts for the body rate and is referred to as the base-rate effect. The base-rate 

effect plays a significant role in energy costs of CMGs.  

From the work-energy principle [Bedford and Fowler, 2005; Oh et al., 1992], the 

power used by the CMGs for a maneuver is the product of gimbal torque and gimbal 

rate. For the geared scissored pair motor, the power is 

 sp spP     (13) 

For the independent scissored pair, the power is the sum of the powers of the 

individual gimbal motors: 

 1 2ind g gP        (14) 

where   for each CMG has identical magnitude. This expression neglects 

electromagnetic inefficiencies under the likely assumption that the gimbal torque per 

se drives the power design in an agile application. Friction losses may make CMGs an 

inefficient choice for a generally quiescent system. The absolute value in Eq. (13) 

ensures that power is independent of the sign of gimbal torque and gimbal rate. This 

study does not distinguish between positive or negative power since both require work 

from the gimbal motor. The sign would matter in a case where the spacecraft power 

system efficiently recovered this energy expenditure in a regenerative fashion, e.g. 

using the gimbal motor as a generator. In practice, such an approach may not be very 

efficient or may be too costly and complex. Such an architecture is not in place for 
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purposes of this study. Therefore these comparisons consider only the absolute value 

of power.  

The rotor momentum hr is usually large relative to the CMG inertia Icmg and 

accelerations  , with the latter limited by the gimbal motor. Adding the assumption 

that gimbal acceleration does not contribute significantly to the gimbal torque greatly 

simplifies comparisons between the geared and independent scissored pairs.  

 B/N ˆcoscmg rI h   ω t  (15) 

This assumption implies that the CMG inertia is small, whereas the rotor momentum 

is large. With this assumption, a simplified expression for net gimbal torque on a 

scissored pair is 

 B/N ˆ2 cossp rh   ω t  (16) 

An approximate power for the geared or the independent scissored pair is 

  B/N
1 2 ˆsp r rP        

 ω h h g  (17) 

    B/N B/N
1 2ˆ ˆind r rP          ω h g ω h g  (18) 

The component of B/Nω  along the gimbal axis does not affect this result and is 

assumed to be zero without loss of generality. The projection of the body rate onto the 

plane normal to ĝ is represented as a magnitude |||| and an angle α at which the 

rate is oriented relative to the output axis of the scissored pair, as shown in Figure 6. 

The magnitude of the body rate, rotor momentum, and gimbal rate can be factored out 

of Eqs. (17) and (18) to define a nondimensional power Px
*: 

  
*

B/N
x

x

r

PP
h


ω

 (19) 
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 * 2cos cosspP    (20) 

    * cos cosindP         (21) 

If there were no penalty for negative power, as in a lossless system that perfectly 

stores and returns negative power, there would be no distinction between geared and 

independent scissored pairs. The nondimensional power of independent and geared 

scissored pairs is shown for one quadrant of the gimbal-angle, body-rate-angle space 

in Figure 8a&b. A cyclical symmetry of Px
* about both and equal to n·/2, 

n=integer, is apparent from Eqs. (20) and (21), i.e. Px* repeats every n· for both the 

gimbal angle and the body-rate angle. Normalizing by ||||·hr means that the power 

shown in Figure 8 is relevant if considered over many maneuvers in which the body-

rate direction and gimbal angles are uniformly distributed. Many factors in the 

lifecycle of a scissored pair in space may affect the validity of comparing power 

equally over all gimbal angles and body-rate angles , such as limits on the gimbal 

angles, biases in the pointing requirements of the robot or satellite, or control laws that 

favor certain gimbal angles and rates. For example, CMGs with limited gimbal angles 

truncate the graph at =max. 

When ==0, the origin of Figure 8a&b, the power is at a max, as expected, 

because the scissored pair is directly responsible for the work done on the body. When 

 and  each approach ±/2, the scissored pair saturates (i.e., =/2 and the CMGs no 

longer provide angular momentum to the spacecraft) and the body rate is 

perpendicular to the output axis. At these extremes, the opposing torques add for the 

independent scissored pair but are canceled internally for the geared scissored pair. 

For  in the quadrant shown, the two require the same power. The geared 

scissored pair offers a clear advantage over the independent scissored pair for 

.  
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a  

b  

c  

Figure 8. Nondimensional power of scissored pairs.  
a) Independent scissored pairs requires full power when actively producing torque on 
the spacecraft (left peak) and when canceling gyroscopic torques (right peak). b) 
Geared scissored pair cancels the gyroscopic torques internally. c) Ratio of b to a. 
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The ratio of power for the geared scissored pair to power for the independent 

scissored pair as a function of  and  is found from Eqs. (20) and (21). The body-rate 

magnitude, rotor momentum, and gimbal rate divide out. 

 
   

2cos cos

cos cos
sp

ind

P

P

 
   


  

 (22) 

The simplification from Eq. (15) removes cmgI  from both numerator and 

denominator in this equation, precluding a power ratio of zero. 

This ratio is shown in Figure 8c as a function of base-rate angle  and gimbal 

angle . The volume of the region where the ratio is less than one represents the power 

savings. The integral of power is energy; therefore the volume enclosed by the 

surfaces in Figure 8a&b represents simplistically the total power over many 

maneuvers with uniformly distributed body and gimbal angles and rates. The ratio of 

the total enclosed volumes, found by integrating Eqs. (20) and (21), is 2/. These 

results do not show the contribution of cmgI , which adds an offset to Figure 8, 

dependent on the particular CMG design.  

This comparison of geared and independent scissored-pair CMGs can be used to 

optimize the design of a CMG array and maneuver planning for power usage, and 

therefore agility, of a spacecraft controlled by scissored pairs. Other design 

considerations, e.g., total mass, motor size, fault tolerance, and complexity, are also 

likely impacted by this strategy but are not discussed here. 

The maximum torque sp and power Psp of the motor on the geared scissored pair 

would seem to be twice that of the independent scissored pair since one motor actuates 

two CMGs instead of two motors providing the same level of actuation. However, if 

the body rate B/Nω  is zero when all gimbal angles in an array are zero, the geared 
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scissored pair does not have maximum power at the origin while the independent 

scissored pair still has maximum power at .  

For a spacecraft with three rotational degrees of freedom, an array of three 

orthogonal scissored pairs provides a cube-shaped singularity-free region with sides of 

length 4hr (see Figure 9). This array architecture illustrates the possible advantages 

afforded by a geared scissored pair. The maximum angular momentum is 2√3hr at the 

cube’s corners. The gimbal angles for a given spacecraft momentum are easily found 

by projecting the spacecraft momentum vector B/N
b I ω  onto the output axis of each 

scissored pair and solving for the necessary gimbal angle to conserve angular 

momentum. 

  B/N ˆ 2 sinb rh    I ω t  (23) 

 

 

 

Figure 9. Scissored-pair array momentum cube. 
The momentum available from a set of three orthogonal scissored pairs is a cube with 
sides of length 4hr. A single scissored pair provides 2hr angular momentum for the 
spacecraft normal to the face of the cube. The maximum angular momentum available 
to the spacecraft from all three orthogonal scissored pairs is 2√3hr at the cube’s 
corners. The region inside the cube but outside the sphere represents the operational 
region that a geared scissored pair outperforms an independent scissored pair.  
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The body-rate angle  is determined from 

 
B/N

1

B/N
ˆcos 

 
  
 
 

ω
t

ω
 (24) 

For a spacecraft with spherical inertia, B/Nω  is proportional to the spacecraft 

momentum. In this case, the geared and independent scissored pairs are equivalent 

when the array momentum lies within a momentum sphere of radius 2hr. The geared 

scissored pairs outperform their counterparts near the corners of the momentum 

envelope, a region representing up to 48% of the total momentum volume. This region 

is important for performing time-optimal maneuvers with actuator saturation [Wie et 

al., 2002]. Abrupt changes in attitude before the spacecraft comes to rest would further 

increase  and  (Figure 6) in favor of the geared scissored pairs.  

2. Scissored Pair Simulations 

The agile spacecraft described in [Lappas et al., 2002] for a simple rotation about 

an axis. Three orthogonal scissored pairs provide actuation. The spacecraft angle, rate, 

and acceleration, , ,    , subject to finite jerk for a 30 degree maneuver are presrcibed 

as shown in Figure 10. The maximum ||B/N|| is 6 degrees per second [18]. The desired 

B/N determines hr from conservation of angular momentum for a rotation about the 

output axis of a single scissored pair. 

 B/N2 r bh  I ω  (25) 

The resulting CMG momentum hr is 0.1314 kg·m2/s when a single scissored pair 

provides the actuation and the spacecraft inertia is 2.5·1 kg·m2. When performing a 

maneuver that utilizes the corners of the momentum cube, all three scissored pairs 

contribute to the momentum available to the spacecraft. The greater momentum 

increases the maximum body rate by a factor of √3 for those maneuvers.  
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The spacecraft rotates smoothly about the [1 0 0] (face normal) or the [1 1 1]/√3 

(corner) axis to represent the range of loads on the scissored pairs when operating on 

the momentum envelope. The maximum gimbal angle is 85 degrees. The maximum 

torque and power of any single gimbal motor in the array, the maximum power of the 

entire array, and the total energy used for the maneuver are calculated for both geared 

and independent scissored pairs. The results are summarized in Table 1. The 

independent scissored pairs have the greatest maximum torque because they must 

work against the base-rate effect while doing little work on the spacecraft; i.e. the 

scissored pair constraint enforces a costly null motion. The geared scissored pair has a 

higher maximum power by only 20% over the independent scissored pair because of 

internal torque cancellations, indicating that one motor with gearing reduces mass over 

two independent gimbal motors in a scissored pair. The spacecraft power subsystem 

 

Figure 10. Commanded spacecraft angle, rate, and acceleration. 
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can also be smaller for the geared scissored pair since the maximum power is 36% less 

than for the independent scissored pair. As expected from the analysis, the geared and 

independent scissored pair arrays use the same amount of energy when operating on a 

face of the momentum cube, but the geared scissored pairs use less energy at the 

corners. The body rate effect causes the maximum gimbal power of the geared 

scissored pair to be less at the faster corner maneuver than the face maneuver even 

though maximum torque is the same. This is because the extra speed available to the 

spacecraft at the corner of the momentum cube does not correspond to an increase in 

acceleration and jerk of the base body.  

The simulations consider nearly the full range of gimbal angles. If a smaller value 

of max were used, the power costs associated with independent scissored pairs would 

be reduced. A gear may still be desireable for mechanically coupling the control inputs 

to ensure proper phasing of the two CMGs.  

Table 1. Maximum torque and power for geared and independent scissored 
pairs. 

Location on 
momentum cube Face center Corner 

Max body rate max , 
rad/s 0.1049 0.1816 

Gimbal configuration Geared Independent Geared Independent

Max motor torque sp 
or g,i, mN·m 13.9 7.0 14.0 16.8 

Max motor power, 
mW 6.0 3.0 4.5 5.0 

Max total power Psp 
or Pind, mW 6.0 6.0 13.6 21.4 

Total energy  Esp or 
Eind, mJ 27.5 27.5 82.5 129 
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3. Scissored Pair Conclusions 

A mechanical constraint between the CMGs of a scissored pair provides internal 

torque cancellation to limit the power used by the CMGs. The advantage in power 

used over independent CMGs occurs near the limit of the scissored pair’s momentum 

capacity. A geared scissored pair may reduce the overall mass of the scissored pair by 

replacing two motors, and the extra housing, harness, and connector mass, with one 

motor and the connecting gears. Non-linearities in the gears or mechanism connecting 

the CMGs may affect these results; thus actual power savings would depend on the 

hardware implementation. The independent scissored pair performs poorly relative to 

the geared scissored pair in simulations because they perform costly null motions that 

are affected by the base rate. The base rate effects are cancelled internally via the 

mechanical coupling. Although only two types of scissored-pair CMG arrays are 

considered in this chapter, the difference in power between them suggest that the 

operation of general CMG arrays with null motion [Bedrossian et al., 1990; Vadali et 

al., 1990] could strongly affect the power used. 
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CHAPTER III. ANALYSIS AND CONTROL OF ROTOR SPEED 

An analysis of CMG power would be incomplete without also considering the 

power used by the rotor spin motor. This chapter examines two conflicting 

assumptions that are each useful in determining the dynamics and power use of 

CMGs. First, the case of a constant speed rotor is considered, with an emphasis on the 

power required to maintain rotor speed in spite of the motion of the spacecraft. A 

constant rotor speed is commonly assumed to reduce the complexity of the dynamic 

equations and because typical rotor speed sensors and motors reference the rotor speed 

relative to the gimbal frame. In this work, rotor speed is defined relative to the gimbal 

frame and the magnitude of the rotor’s angular velocity is considered separately.  

The second assumption considered is the case where the spin motor’s power is 

constant in spite of the motion of the spacecraft base. In the limit of an ideal rotor, the 

power goes to zero and only gimbal power is needed to characterize the total CMG 

power. Power-optimal CMG control algorithms need to use a cost function that 

distinguishes which of these two cases apply to a particular spacecraft. 

Figure 11 illustrates how the constant-rotor-speed assumption departs from the 

ideal CMG. In Figure 11a, the spacecraft is at rest and the anguglar momentum of the 

two CMGs is perfectly canceled. In Figure 11b, the two CMGs combine their angular 

momentum, causing the spacecraft to rotate in the opposite direction to conserve 

angular momentum. If no torque has been applied to the rotor, then the angular 

velocity of the rotor about the spin axis will be constant relative to the N frame. Figure 

11c shows that the rotor speed, as measured relative to the spacecraft, has changed. A 

spin motor required to maintain constant rotor speed would have slowed down the 

rotors and lost that energy.  
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This chapter first examines the energy cost of maintaining a constant rotor speed 

during base motion through what amounts to a kinematic constraint. Then the zero-

rotor-torque case posits a spin motor that provides enough torque to overcome friction 

and other steady state losses but allows the rotor speed to vary. No additional energy is 

required in this case. Rather, variable rotor speed affects both the spacecraft angle and 

the gimbal angle. These results inform the validity of the assumption used in this 

dissertation to simplify the analysis while ensuring its accuracy with regards to the 

dynamics and power of the CMG and spacecraft. 

Although a review of the literature does not reveal an analysis of the constant 

rotor speed assumption, rotor speed has been subject to a variety of studies. Early 

CMG rotors for space applications used induction motors with a large time constant 

and were assumed to have a nearly constant speed because the response time of such 

motors is slow relative to the other dynamics [Liska, 1968]. Control of the CMG rotor 

speed is important for integrated power and attitude control systems (IPACS). IPACS 

use a combination of drive motor and generator circuitry to change the rotor speed for 

the purpose of regulating the satellite power while passing through the shadow of the 

earth [Notti et al., 1975]. A recent study on an IPACS architecture for the International 

Space Station (ISS) uses fixed-axis, kinetic energy storage rotors in concert with the 

existing CMGs [Roithmayr et al., 2004]. Neither of these studies examines the power 

required by the attitude controller in the context of constant speed rotors. The rotor 

speed of CMGs is also varied in variable-speed CMGs (VSCMGs). VSCMGs attempt 

to remove the singularities in a CMG array [Schaub et al., 1998] by treating the CMG 

array as a combination of reaction wheels and CMGs. Although the treatment of 

VSCMGs does include expressions for the torque required of the rotor motor [Schaub 

et al., 1998], the power required to operate a VSCMG is not addressed.   
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A. Energy cost of constant-speed rotor control 

In this chapter, the system under study is spacecraft with an arbitrary array of n 

CMGs attached. The gimbal rate of the ith CMG is i  and the rotor’s spin speed is i; 

both are scalar values measured relative to the body. With these definitions, the 

rotational energy of the composite body Ec is [Carpenter and Peck, 2008]: 
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 (26) 

where Isc is the spacecraft inertia dyadic without the CMGs, and the other terms are 

defined as in the previous chapter.  

The effect of changing the rotor speed of a single CMG on the total energy is 

captured by the sensitivity of Ec to , i.e. the partial derivative of Ec with respect to . 

where the index has been dropped for notational clarity. 

 

Figure 11. Rotor speed constant in N frame. 
a. The single-link robot at rest. b. The CMGs have rotated 90 deg about the gimbal 
axis. Net angular momentum is still zero since the body’s angular velocity is opposite 
in sign to the rotors. c. Rotor speed, |R/B|, has increased, whereas |R/N| remains 
constant in the N frame. 
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  B/Nˆ ˆc
r

E 



   


h I ω h  (27) 

The energy cost of changing  is very large due to an amplifying effect of , 

indicating that controlling the rotor speed is energetically costly. The power required 

to control  is  

 Pr=r· (28) 

The spin-motor torque, r, is determined from the derivative of the rotor’s angular 

momentum Hr.  

  B/N ˆˆr r     H I ω g h  (29) 

    N B B/N B/N B/N B/Nˆ ˆˆ ˆ ˆ ˆr r r     
                  

   H I ω g ω g h ω g I ω g h  (30) 

The component of 
N

rH  along the rotor axis ĥ
 
is 

    B B/N B/N B/N B/Nˆ ˆˆ ˆ ˆr r r    
                     

  I ω g ω h ω g I ω g h
 

(31) 

An axisymmetric rotor eliminates the latter scalar triple product, simplifying the rotor 

torque to  

 
B B/N B/N ˆˆr r rI I  

 
     

 
 ω g ω h

 
(32) 

where ˆ ˆ
r rI   h I h . 

From Eq. (28), the power required to maintain a constant  in the presence of 

spacecraft motion is 

 
B B/N B/N ˆˆr rP I 

 
     

 
ω g ω h  (33) 
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If the contribution of 
B B/Nω  is small, then Pr for a scissored pair is approximately equal 

to the gimbal power (cf. Eq. (17) and (18)). 

  B/Nˆr rP   g ω h  (34) 

Therefore, when strictly enforcing constant , the spin motor uses as much energy as 

the gimbal motor. The high energy costs of reaction wheels as compared to CMGs is 

due to the costs of controlling high-speed rotors [Peck, 2005; Van Riper and Liden, 

1971]. Forcing a constant  for energy calculations may unnecessarily penalize the 

CMGs’ performance. 

B. Zero rotor torque 

When the rotor speed  is not controlled, no extra energy is required by the rotor 

beyond that determined by bearing friction, electromagnetic losses, and other 

inefficiencies in the rotor. However,  varies in response to gimbal and body 

rotations. This section examines errors in gimbal and CMG output torque, g and cmg, 

due to assuming constant  without enforcing constant rotor speed. An expression for 

the change in  due to spacecraft motion is also derived. 

1. Gimbal torque 

The gimbal torque derived in Eq. (9) assumes constant . Relaxing this 

assumption adds ˆ
rI h  to Eq. (5), but does not change Eq. (9). The sensitivity of g to 

 represents the potential errors in g due to either dynamically changing rotor speed 

or imperfect measurements. The partial derivative of Eq. (9) with respect to  is  

  B/N ˆ ˆg
rI





  


ω h g  (35) 
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For a given rotor momentum, as → ∞, Ir → 0, and g will be unaffected by changes 

in . An infinite-speed rotor creates a theoretical tool that replaces the CMG with an 

embedded angular momentum vector whose direction changes by applying a torque g.  

2. CMG output torque 

Changes in the rotor speed  influence the torque applied to the spacecraft, cmg, 

and the attitude control of the spacecraft. The sensitivity of cmg to the rotor speed is:  

  B/Nˆ ˆˆcmg
r rI I




  


τ
h + ω g h

 
(36) 

As with the gimbal torque g, as  approaches infinity, Eq. (36) goes to zero. In 

contrast, because energy depends quadratically on rotor speed, its sensitivity to rotor 

speed is much greater. Therefore, rotor speed affects energy more directly than 

torque—both the input gimbal torque and the output torque on the body.  

3. Change in rotor speed 

If  0 and t=t0 when the spacecraft is at rest, then Eq. (29) taken in the ĥ  

direction at time t=t0 and any arbitrary time t yields the following relationship between 

the spacecraft rotation rate   and rotor speed. 

 0sinr r rI I I    +
 

(37) 

Assuming that  is constant in the analysis without enforcing that constraint causes an 

error in rotor speed. From Eq. (37), this error is 

 0 sinerr        
 

(38) 

The constant rotor speed assumption is conservative because err is always positive 

since the sign of   and sin max  will always be opposite each other, as illustrated by 

Figure 11. This means that the actual available momentum from the CMGs, hr=Ir, is 

greater than hr as estimated from 0. Also, err depends only on the spacecraft rate 
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and gimbal angle, not the rotor speed itself. Thus the relative error of  (i.e., err/) 

decreases as  increases. 

4. Error in spacecraft rate 

The angular-momentum balance of a spacecraft constrained to rotate about a 

single axis of rotation under CMG actuation provides another constraint between rotor 

speed and spacecraft rate. In the case where the spacecraft starts at rest, the net angular 

momentum Hc must be zero along the axis of rotation. 

 sin 0c rI I   

 
(39) 

where Ic is the inertia of the spacecraft and CMGs about the axis of rotation. Again 

assuming that an estimated spacecraft rate est  is determined from Eq. (39) for =0, 

then the error in the estimated base rate, err est      , is found by combining Eqs. 

(38) and (39). 

 sin 0c err r errI I   

 
(40) 

Substituting for err and solving for err  yields 

 2sinerr r cI I   

 
(41) 

The sign of err  tracks the sign of  , indicating that the spacecraft rotates faster than 

estimated by less than the ratio of rotor to spacecraft inertia Ir/Ic without enforcing 

constant rotor speed.  

5. Rotor speed conclusions 

Allowing  to vary maintains the rotor’s angular velocity relative to an inertial 

reference frame and reduces the energy costs of unnecessarily controlling rotor speed 

to maintain constant . The analysis of the spacecraft rate in Eq. (41) shows that a 

spacecraft designed to constant  conservatively predicts the maximum spacecraft 

rate attainable when rotor speed is not rigorously controlled.  
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Two observations about the rotor control arise from the analyses of rotor speed. 

First, accelerating and decelerating the rotor is energetically costly as shown by Pr in 

Eq. (34) and should be minimized. Therefore, slow, low-effort control should be 

selected to control the rotor speed. Specifically, if the controller bandwidth is much 

greater than the body-motion bandwidth, then the rotor control fully compensates for 

the body motion and  = 0, with an accompanying energy cost. Otherwise, if the 

controller bandwidth is much less than the body-motion bandwidth, then the rotor 

control ignores the effect of spacecraft motion on  and the CMG uses much less 

energy.  

It is also noted that changes in the steady state drag are expected over much 

longer time scales than the spacecraft motion. As such, any disturbances would be 

rejected by the rotor-speed control, thereby ensuring that the  →0 when the 

spacecraft is at rest. 

Second, for a low-effort controller, Eq. (38) indicates that the error in rotor speed 

is positively biased. An integral controller would artificially reduce rotor speed over 

several spacecraft maneuvers as the errors in Eq. (38) accumulate. An aggressive 

rotor-speed control is also inadvisable because interaction between rotor speed control 

and the spacecraft may act like an uncompensated reaction wheel creating unwanted 

disturbances. A larger spin motor than is practical may also be required to generate the 

necessary torques at high speeds. 

Finally, as long as Ir/Ic is small, the rotor speed is assumed constant to simplify 

modeling and control of the CMG dynamics, and spin motor power is assumed to be 

zero for an ideal motor.  
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C. Control Laws for Single-Link Robot 

In this section, the CMG dynamics with variable rotor speed are derived. Simple 

control laws for spacecraft rotation about a single degree of freedom are also given 

with increasing detail. 

The equations of motion for a single spacecraft with an arbitrary array of identical 

CMGs are developed using [Schaub and Junkins, 2003] and [Roithmayr et al., 2004] 

as guides. Suppose that there are C single-gimbal CMGs on the spacecraft. The 

dynamics of the ith rotor is determined from the rotor dynamics in Eq. (32). 

 
B B/N B/N

,
ˆˆr i r i i i r iI I  

 
     

 
 ω g ω h

 
(42) 

The gimbal dynamics are identical to the gimbal torque in Eq. (9) for  1i C  . 

The remaining equations may be determined from angular momentum balance of 

the entire spacecraft. The total angular momentum of the spacecraft is the sum of the 

angular momentum of the individual parts, or 

    B/N B/N B/N
, ,

1

ˆˆ ˆ
C

c sc g i i i r i i i i i
i

  


            H I ω I ω g I ω g h  (43)  

This equation may also be written with the angular velocity terms gathered and 

spherical CMG inertia assumed (Eq. (6)). Without loss of generality, the CMG inertias 

are all identical and included with the body inertia, simplifying the notation 

 B/N

1

ˆˆ
C

c c cmg i i r i i
i

I I 


      H I ω g h  (44)  

The derivative of the angular momentum with respect to time in an inertial frame is 
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 

 

N N B/N B/N B/N B/N

1

B/N

1

ˆ ˆ

ˆ ˆˆ

C

c c c cmg i i cmg i i
i

C

r i i i i r i i
i

I I

I I

 

  





      

     





 



H I ω ω I ω + g ω g

h ω g h

 (45) 

This equation is divided into three components along the principal axes of Ic, written 

as k̂b , for the full equations of motion. The component of the spacecraft’s angular 

velocity along the direction of each principal axis is denoted uk, k = 1..3. 

The system of equations that results when combining the rotor, gimbal, and 

spacecraft dynamics in Eqs. (42), (9), and (45), respectively, is 

  
 

 

B/N B/N

B/N

B/N

ˆ ˆ ˆ ˆ ˆˆ 0

ˆ ˆ 0 0

0 0 1 0

0 0

ˆ ˆ ˆˆ ˆ

ˆ ˆ

ˆˆ

kk c k cmg i k r i k

icmg k i cmg

i

ir r

c cmg i i r i i i i r i i k

r i i i

i

r i i i

uI I

I I

I I

I I I

I

I





   







      
   

      
   

     
         


  



 








 





b I b g b h b

b g

ω I ω + g h g h b

ω h g

g ω h

,

,

ˆ

0

ext k

g i

r i






  
 
    
 
    

 

τ b  
(46) 

where ext is the total external moment acting on the spacecraft. The spacecraft attitude 

is not explicitly included in this equation and would add at least three additional states 

requiring integration of the angular velocities. The mass matrix in this equation is 

written to fill the following block form using  1 3k    and  1i C  : 

 

diag 3 3 3 3 3

3

3 diag 3 3

3

C C C

C

C C C

C

    
  
  
  

M
 

(47) 
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To gain some insight into the dynamics of the spacecraft given in Eq. (46), 

consider a spacecraft with scissored-pair CMGs shown in Figure 12. The spacecraft is 

initially at rest, 0  , and the CMGs are arranged in a scissored pair. The output axis 

of the scissored pair is a principal axis of the spacecraft inertia dyadic Ic; therefore, the 

spacecraft will only rotate about that axis in the absence of external torques. This 

reduced spacecraft system is identical to the single-link robot analyzed in the 

following chapter and has one primary degree of freedom: the spacecraft angle . The 

goal of developing control laws for this simple spacecraft system are to provide a 

comparison of different input variables that may be used and to show a control law 

that includes both gimbal and rotor torques. 

Consider first a simple proportional control law. Assume that  is constant and 

the gimbal angle  is the control input. The dynamics of this first-order system are 

captured by Eq. (39).  

 2 sinr cI I   

 
(48) 

A linearized proportional control law (for small ) that drives the spacecraft to a 

desired angle des is given by 

  ˆ,
2 des br

I K I     
h

 
(49) 

 

Figure 12. Single-link body controlled by gimbal angle.  
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where the gain K is chosen to provide the desired performance, such as the speed or 

steady state accuracy of driving →des. 

As a second example, the control input is the gimbal rate  , a typical approach 

for CMG control laws. In this case the dynamics are second order. Taking the 

derivative of the spacecraft dynamics in Eq. (48) yields 

 2 cosr cI I    

 
(50) 

Combining with Eq. (48) and assuming  is small yields a set of linearized equations 

in state-space form. 

 
00 1

20 0 r cI I





      

               




  
(51) 

The controllability matrix of this system is 

 
0 2

2 0
r b

r b

I I
C

I I




 
     

(52) 

which is full rank. Therefore, the spacecraft is fully controllable with gimbal-rate 

control. 

Controlling gimbal rate   requires a way to close a separate control loop from 

gimbal torque g to  . The spacecraft dynamics with the scissored-pair torque of Eq. 

(12) as the control input has four states. The spacecraft angle is measured from some 

arbitrary reference. Using the notation of Figure 6 and Figure 12, the governing 

equations of this system are 

 

0 2 cos 0 0 0

cos 0 0 0 1 2

0 1 0 0 0

1 0 0 0 0

r c

r cmg cmg
sp

I I

I I I

  
  


 
 

      
      
         
      
      
         

 

 




 

(53) 
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The controllability matrix of this system of equations as linearized about , , , 0       

is 

 

 
       22 3

0 0 0

1 2 0 2 2

0 1 2 0 0

0 0 2 0

r c cmg

cmg r c cmg r c cmg

cmg

r c

I I I

I I I I I I IC
I

I I



 



 
 
    
 
 

  

 
(54) 

which is rank deficient. Therefore the system of equations with gimbal torque control 

as linearized about zero has an uncontrollable mode coupling the gimbal angle to the 

body rate in contrast to gimbal angle or rate control. The reason for this discrepancy is 

that conservation of angular momentum prohibits independent control of gimbal angle 

 and body rate   using internal torques, i.e., sp, since the net angular momentum 

depends on both states. The eigenvalue of the uncontrollable mode is zero because the 

angular momentum is conserved. This implies that if the spacecraft has nonzero 

angular momentum when the gimbal angles are zero, no control can drive both the 

body rate and gimbal angles to zero. The reason gimbal angle control in Eq. (49) does 

not have an uncontrollable mode is because the gimbal angle is a control input instead 

of a state and is not subject to conservation of angular momentum. For designing a 

gimbal torque control law, a minimal realization of the linearized system reduces the 

dynamics to a third-order system and traditional methods such as LQR may be applied 

[Albertos and Salas, 2004].  

When  is allowed to vary and rotor torque is included in the dynamics, the rotor 

speeds of the separate CMGs may be combined into one rotor speed due to the 

symmetry in the problem. Figure 12 shows the simple case of a body at rest with a 

scissored pair of CMGs as the sole means of actuation. Figure 11 suggests that an 

angular momentum balance of the rotors will determine the change in . Given the 
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rotor’s angular momentum in Eq. (29) and r=0, the rotor speed  for each rotor in the 

scissored pair is determined from Eq. (32), using the geometry shown in Figure 6 and 

Figure 12.  

  0 sin cosr r i r iI I I          
 

(55) 

for i=1,2. If 1=2 at any particular time, then 1 2    and 1=2 for all time and 

the subscript may again be omitted. 

The equations in Eq. (46) reduces to a five-state system of equations by invoking 

the scissored-pair symmetry and considering only one axis of spacecraft rotation. 
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

 
(56) 

The mass matrix is written so that its inverse may be found by inverting the 2×2 block 

matrix and each of the remaining diagonal elements. The inverse of the 2×2 block is 
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(57) 

The system written in first order matrix form is 

 

 
 

 

sin 2 cos 0 2 sin

02 cos
1 2 0cos

0 0

0 02 sin

r r

c
r c

sp
cmg

r cmg r

r

I I den

I denI I
II I

I

     
      
    
 
  

                                                

 

  

 
 


 
(58) 

where 2 sinc rI I   . 
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Suppose that the rotor speed is controlled by a proportional gain:  

  0r r r dragI K          
(59) 

where the Kr is the proportionality gain and 0 and drag are the nominal rotor speed 

and rotor torque, respectively, when the spacecraft or robot arm is at rest. As Kr 

approaches infinity, the rotor speed approaches a constant, and the power cost of 

constant  from section A of this chapter is relevant. As the gain approaches zero, the 

torque also approaches zero and the error in rotor speed and spacecraft rate are 

determined from section B of this chapter. In practice, the gain is nonzero to allow the 

controller to overcome bearing friction and motor losses that may change over time. 

A control law of the form in Eq. (59) has several advantages over more complex 

control laws while still allowing some flexibility in the gain and set-point speed 

chosen. First, Eq. (59) is easily implemented in the CMG electronics independent of 

the gimbal control. Second, knowledge of the spacecraft state is not required of the 

rotor controller, reducing communications bandwidth. Third, this control law is 

broadly applicable because it is independent of the particular CMG array used on the 

spacecraft.  

The control law of Eq. (59) combined with the dynamics in Eq. (58) as linearized 

about , , , 0       and 0   yields 
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

 
(60) 

which allows for flexible gimbal torque control. Because this system is linearized 

about zero, the uncontrollable mode coupling gimbal angle and body rate is still 
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present. A linear feedback law cannot drive the gimbal angle to zero when the 

spacecraft is at rest. However, a variable speed rotor with nonlinear control could be 

used to adjust the CMG momentum to drive the gimbal angles to any arbitrary value. 

In practice, external torques from, e.g., thrusters, could return the CMGs to a desired 

resting angle. 

D. Rotor Speed Conclusions 

This chapter has examined the relevance of assuming a constant speed rotor while 

allowing spacecraft (or robot) dynamics to affect the rotor speed . The energy 

required to maintain strictly constant  is equal to the energy used by the gimbals, an 

unacceptable cost for spacecraft applications. As  increases relative to the maximum 

angular velocity of the spacecraft or robot arm,  varies a fixed amount and the 

sensitivity of gimbal torque and CMG output torque to  decreases. In the limit, a 

high-speed CMG rotor is replaced with an angular momentum vector whose direction 

is controlled by the gimbal. 

A linear control law about rest for a single body actuated by a scissored pair is 

also given. This controller demonstrates how one might control a link on a robot arm. 

The analysis of this chapter highlights the importance of choosing a low-bandwidth 

controller for the rotor speed. A spacecraft benefits from such a design because the 

motor can be smaller and operate at maximum efficiency by ensuring that steady state 

and maximum torque are similar. 
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CHAPTER IV. SINGLE-LINK ROBOT ARM 

This section analyzes actuation of a single-link robot as a single-degree-of-

freedom system to obtain an analytical expression for power used by either a joint 

motor between the spacecraft and robot or a scissored-pair of CMGs on the robot. The 

cost of additional attitude control effort when using a joint motor is not included. The 

differences in actuator mass are also not included. Although important trades can be 

made between actuator mass and system mass and performance, this paper focuses on 

the contribution of CMGs as joint actuators. Equal actuator mass and inertia also 

establishes an ‘equivalent system’ in which the CMGs are conceptually replaced with 

joint torques to analyze the tradeoffs associated with sizing CMGs in this or any 

CMG-driven system in terms of an equivalent system driven by joint motors.  

E. Single-Link Analysis 

The dynamics of a single-link robot with a joint motor are given first as the 

reference equations and are then augmented to obtain the dynamics of the CMG-

driven robot. 
1. Joint-torque-driven robot 

Suppose the robot link’s angular momentum about the joint axis is 

 B/N
b j b  H H I ω  (61) 

Since vj, the velocity of the center of mass, is not explicitly included in Hb, Ib is the 

inertia of the link (including actuator inertia) measured about either the center of mass 

or an inertially fixed point, whichever intersects the joint axis t̂ . The link’s inertial 

angular velocity B/Nω  need not be parallel to the joint axis. The angular momentum 

derivative is 

  N B B/N B/N B/N
b b b   H I ω ω I ω  (62) 
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The joint torque acting about the joint axis t̂  is given by 

  B B/N B/N B/Nˆ ˆ
j b b         I ω t ω I ω t  (63) 

2. CMG-driven robot 

A CMG-driven robot replaces the joint motor with the rotors and gimbals of a 

scissored-pair CMG. Although the CMGs likely represent a greater inertia than the 

joint motor, including the actuator inertia in Ib for comparing CMGs and joint motors 

separates the obvious effects on power of increasing inertia from the remaining 

gyroscopic effects of the CMGs. The angular momentum of the CMG-driven robot is 

the same Hb as for the joint driven robot with the additional angular momentum due to 

the CMGs. 

 
   

1 2

B/N G1/B B/N G2/B B/N
1 2

c b cmg cmg

c b cmg r cmg r

  

         

H H h h

H I ω I ω ω h I ω ω h
 (64) 

where B/N-cmg cmg cmg h = H I ω . For the scissored-pair CMGs with Icmg1 = Icmg2, the 

angular momentum of the gimbals cancels, i.e., G1/B G2/B
1 2 0cmg cmg   I ω I ω . As 

indicated in Figure 6, the sum of the rotor momenta becomes 

 1 2
ˆ2 sinr r rh  h h t  (65) 

With this substitution Hc reduces to 

 B/N ˆ2 sinc b rh   H I ω t  (66) 

The only difference between Hj and Hc is ˆ2 sinrh  t . The derivative of Hc is: 

 
 N B B/N B/N B/N B/Nˆ ˆ2 cos 2 sinc b b r rh h         H I ω ω I ω t ω t  (67) 

For the CMG-driven robot, the robot freely rotates about t̂ . Therefore the projection 

of 
N

cH  from Eq. (67) onto the joint axis t̂  must be zero. 
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   B B/N B/N B/Nˆ ˆ0 2 cosb b rh         I ω t ω I ω t  (68) 

Substituting Eq. (63) leads to an expression for the gimbal rate: 

 
2 cos

j

rh








 

(69) 

This equation states that the gimbal velocity becomes infinite as the gimbal angle 

approaches 90 deg. Also note that gimbal velocity roughly tracks the robot 

acceleration due to the relationship between j and  . 

3. Joint-motor and CMG power 

Calculating power requires both torque and velocity about the axis of interest--the 

joint axis or the gimbal axis for joint-moto or CMG actuation, respectively. The scalar 

value of the angular velocity of the link about the joint axis is  

 B/N ˆ   ω t  (70) 

The joint-motor power is 

 j jP     (71) 

Substituting the torque in Eq. (12) and the gimbal rate in Eq. (69), CMG power Pcmg 

becomes 

  2 2 cos
2 cos

j
cmg cmg r

r

P I h
h


  




    (72) 

When coscmg rI h    , i.e., rotor momentum is the dominant term in Eq. (72), the 

CMG power equals the joint-motor power: 

 cmg jP     (73) 
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Both  and hr are eliminated from Pcmg when coscmg rI h    . A DC bias error in 

the gimbal angle , equivalent to a non-zero-momentum set point, would not 

significantly affect the power usage. Neither would misalignment of the scissored pair, 

which introduces a momentum bias perpendicular to the joint axis and serves only to 

reduce the available angular momentum from the scissored pair. In conclusion, this 

section provides a simple derivation of the power cost for CMGs and joint motors and 

shows that both are equal for coscmg rI h    . 

F. Sizing CMGs in a Scissored Pair 

Since the CMG power cost (excluding baseline losses) is on par with joint-motor 

power, CMG design principles for determiing gimbal-motor torque and speed can be 

traced to the same robot link parameters that would be used to determine joint-motor 

sizing. These design principals are derived for specific cases of CMG-robot 

configurations; a later section establishes the validity of these principals for the more 

general equations derived above. In both the analysis and simulation, these design 

principles are valid only if the CMGs do not become saturated, e.g., from external 

torques.  

CMGs on a robot arm are robust against if conservation of net robot angluar 

momentum Hc about the joint axis t̂  determines the maximum gimbal angle, max 

based on the maximum momentum required by the robot arm. The necessary 

conditions for conservation of momentum about a joint provide a relationship between 

CMG momentum and link momentum that may be used to properly size the CMGs.  

The change in Hc about t̂  is  

      ˆ ˆ ˆ
c c c

d d d

dt dt dt
    H t H t H t  (74) 
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The derivatives may be taken in any reference frame since this is a scalar equation. 

The first term on the right is equal to the torque about t̂  and is zero for a CMG-driven 

robot. Substituting Eq. (66) for Hc and noting that the derivative of t̂  in the inertial 

frame is B/N ˆω t , leads to 

      B/N B/Nˆ ˆ ˆ2 sinc b r i

d
h

dt
     H t I ω t ω t  (75) 

Rearranging terms, angular momentum is conserved about t̂  iff  

  B/N B/N ˆ 0b
     ω I ω t  (76) 

Physically, Eqs. (75) and (76) state that momentum about the joint axis is conserved 

for the two cases illustrated in Figure 13. Either the link rotates purely about the joint 

axis or, for arbitrary rotation of the link, the link inertia is symmetric about t̂ .  

If the condition in Eq. (76) is satisfied, then a robot that starts at Hc = 0 and  = 0 

will always satisfy ˆ 0c  H t . From Eq. (66), ˆ
c H t  is  

 ˆ,
ˆ 2 sin 0c rbI h    

tH t  (77) 

 

 

Figure 13. Valid single-link robot configurations in determining the bound on 
gimbal rate. 
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The joint torque from Eq. (63) reduces to 

 ˆ,j bI  
t

 (78) 

Both Eq. (77) and (78) depend on only the component of inertia about the joint axis 

ˆ,b
I

t
 as a consequence of Eq. (76), a fact verified by considering both cases shown in 

Figure 13. Combining Eq. (69) with Eq. (77) provides a bound on the gimbal rate for 

the one-degree-of-freedom robot.  

  tanmax max max       (79) 

This bound is conservative because the angular acceleration goes to zero when the 

angular velocity reaches its maximum value. The bound on   also illustrates a 

tradeoff between designing for a high max to minimize the size and mass of the rotor 

versus designing for a more limited max to reduce   and associated power costs. The 

simulations below suggest a maximum gimbal angle of 60 to 70 deg to balance these 

options.  

4. Gimbal torque and torque amplification 

Single-gimbal CMGs are credited with a torque-amplification property, meaning 

that the output to input torque ratio is much greater than one: 

 1cmg g    (80) 

It can be shown that torque amplification requires that the gimbal rate   be much 

greater than the body rate   [Margulies and Aubrun, 1978; Lappas et al., 2002]. 

 1   
 (81) 

For given robot joint rate and acceleration requirements, ensuring that   satisfies both 

the condition in Eq. (81) and the bound in Eq. (79) may require artificially limiting 

max by increasing hr.  
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Because this may be undesireable, an expression for the torque ratio in Eq. (80) 

which includes the acceleration of the body or link being actuated is found by writing 

the CMG output torque as the joint-motor torque of an equivalent robot. The joint 

torque of the equivalent system from Eq. (78) and the scissored-pair torque of Eq. (12) 

are combined to write a torque ratio for scissored-pair CMGs as 

 
ˆ,

2 2 cos
cmg b

g cmg r

I

I h


   






 
t  (82) 

A simplified version of this equation for rapid design iterations would omit the 

contribution of gimbal inertia and acceleration. 

 
ˆ,

2 cos
cmg b

sp r

I

h


  





t  (83) 

Interpreting this torque input/output ratio, the CMGs amplify the input torque near 

0, but the reverse occurs as  approaches 90 deg. This analysis underscores the 

tradeoff between minimizing rotor size and gimbal-motor size. Interestingly, CMGs 

without meaningful torque amplification remove one primary objection to double-

gimbal CMGs (DGCMGs): the need to transfer large torques through the gimbal 

motors rather than bearings [Margulies and Aubrun, 1978]. A DGCMG could reduce 

ACS volume [Liska, 1968], though questions remain regarding the reliability and 

accuracy of such a system [Liden, 1974].  

When sp is the limiting factor in a particular CMG-robot application, Eq. (16) 

indicates that max  increases as hr decreases, but conservation of angular momentum 

(Eq. (77)) suggests the opposite relationship. An estimate of the optimal hr that 

maximizes max  may be determined as follows. Consider a CMG robot that satisfies 

Eq. (66). When max   , max   and 0  . Combining Eqs. (12) and (66) gives an 

expression for sp:  
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  2

ˆ,
2 sin cossp r b

h I  
t

 (84) 

The first order optimality condition determines the  that maximizes sp for a given hr. 

    2 2 2
ˆ,0 2 cos sinsp

r bh I


 



  

 t  (85) 

The maximum value of sp occurs when  = k/4, k = 1,3,5, ... Solving for hr: 

 ˆ,
2r spb

h I 
t

 (86) 

The corresponding max  is found from Eq. (66) at . 

 ˆ,
2 sinmax sp maxb

I  
t

  (87) 

A CMG-driven robot will in general present a varying inertia to its actuators since 

motion of outer links affects the motion of the inner links. Therefore the optimal hr 

Figure 14. Maximum robot angular velocity vs. robot inertia under 
limited gimbal torque. 
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from Eq. (86) is selected for a particular robot configuration, e.g. fully extended to 

meet performance requirements for the greatest robot inertia taken about the shoulder 

joint. An abrupt change in max  occurs for small inertias because if sp cannot provide 

enough torque to reach the designed max , then 4max   due to the condition given 

in Eq. (85). An example of a single-link robot with variable inertia due to changing 

payloads is given in Figure 14. This plot of max  vs. total robot inertia compares the 

optimal max  calculated when ˆ,
2r spb

h I 
t

 to the realizable max  when hr is fixed 

over the range of inertias. If the CMG is too large for the gimbal motor, then 

performance is significantly less than would be predicted from conservation of angular 

momentum alone. The lower performance region with small robot inertias may occur 

during testing of a robot link not attached to a base and with hardware omitted. 

5. Gimbal acceleration 

The gimbal acceleration   contributes to the gimbal torque (Eq. (12)) as well as 

the gimbal power (Eq. (72)) and the input/output torque relationship (Eq. (82)). 

Differentiating the gimbal rate in Eq. (69) for the case when angular momentum is 

conserved about the joint axis (Eq. (76)) gives an expression for gimbal acceleration: 

 
ˆ,

22 sin

2 cos
rb

r

I h

h

  



 


 

 t  (88) 

Two important features of the gimbal acceleration are that    as 90deg   and 

that finite   implies finite  . The latter conclusion implies that the jerk of the robot 

link will never be infinite since infinite gimbal torque would be required.  

6. Power contributors 

The CMG and joint-motor power are shown to be equal in the analysis above. 

However, when gimbal acceleration   is an important contributor to Pcmg, the 

relationship between Pcmg and Pj is less clear. The factors that affect the CMG power 
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relative to joint-motor power in the more general case determine how the simulation 

results later in this chapter may be scaled according to a specific set of problem 

parameters. A dimensionless power, P̃rel, is defined as:  

 cmg j
rel

j

P P
P

P


  (89) 

When Pj = 0, e.g., at the start or end of a maneuver or when changing direction, P̃rel 

becomes unbounded. Integrating power for each actuation method over the entire 

maneuver provides a more robust performance metric. Therefore, P̃rel by itself should 

not be the cost function for finding an optimal actuation method and is here used only 

to determine scaling relationships. 

To express P̃rel in terms of the design parameters of the robot, Eqs. (71) and (72) 

are substituted into Eq. (89). 

 
cos
cmg

rel
r

I
P

h


 








 (90) 

Substituting from Eqs. (88) and (69) eliminates   and   from this result, yielding 

 
2

ˆ ˆ, ,
2 22

sin

2 cos2 cos

cmg b b
rel

rr

I I I
P

hh

 


 

 
   

 





t t

 
(91)  

Relative power is given as a function of time. For practical use, a time-independent 

scaling relationship may be obtained by evaluating the maxima of P ̃rel over all possible 

values of , , ,  and       . Two obvious maxima occur as 0   or as 2   with a 

value of relP  . Therefore a candidate local maximum of P̃rel would occur at max 

which also corresponds to max    and 0  . However,   may be nonzero at this 

instant. Therefore, Eq. (91) may take a local maximum value of  
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ˆ,

2 22 cosmax

cmg maxb
rel

max r max

I I
P

h 



 






t

 
(92)  

This equation shows that the power consumption of a CMG compared to a direct drive 

motor will be proportional to the product ˆ,cmg maxb
I I 

t  and inversely proportional to 

max  and the square of cosr maxh  .  

Relative power may have another local maximum for 0 max     corresponding 

to a nonzero value of  . To explore the relative magnitude of 
max

relP
 

  as compared to 

the other local maximum, time histories of the link angle and gimbal angle from 

4max max       for values of max between 55 and 80 deg are used to determine the 

maximum P ̃rel in this interval, denoted P̃rel,max. Values of 4max    are likely 

influenced by the discontinuity in Eq. (91) at 0  . A plot of the relative error 

 , ,
max

rel max rel rel maxP P P
 

    in Figure 15 shows that 
max

relP
 

  provides a reasonable 

approximation for P̃rel,max. for 4max max      . This approximation is within one 

 

Figure 15. Relative error in P̃rel.  
Relative error is defined as  , ,

max
rel max rel rel maxP P P

 
   . 
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percent of P̃rel,max for max>60 deg. Another useful expression for 
max

relP
 

  may be 

found by applying Eq. (77) to express P̃rel independent of gimbal angle.  

 

 
ˆ,

22
ˆ,

2

max

cmg maxb
rel

r maxb

I I
P

h I 













t

t

 
(93) 

Proper sizing of CMGs involves tradeoffs between link inertia, joint velocity, 

rotor momentum, and gimbal angle constrained by conservation of angular momentum 

about the joint axis. Although the sizing and scaling relationships of this section are 

derived from a scissored-pair CMG array on a robot arm, they can be extended to 

CMG arrays used for attitude control of satellites with the generalization that the 

scissored-pair gimbal angle  corresponds to the angle between the rotor momentum 

of any active CMG in an array and the output-torque axis. 

G. Single-Link Simulations 

As discussed and defined above, the local maximum relative power, P̃rel,max, gives 

an indication of the performance of CMGs vs. joint motors. The goal of this section is 

to show through simulation the effect of CMG size as driven by gimbal inertia and 

maximum gimbal angle by simulating a rest-to-rest maneuver. The ratio of the energy 

used by either CMGs or joint motors is used as an alternative to P̃rel to quantify the 

differences in power between the two actuation methods over a complete rest-to-rest 

maneuver. Robot arms that do not conserve momentum about the joint axis are also 

simulated to explore the effect, if any, of the transverse rate of a link on CMG energy 

use. 

1. Trajectory generation 

The link motion , , ,      as a function of time is prescribed to facilitate 

comparison between joint motors and scissored pairs without confounding influences 
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from a particular control algorithm. The link is rotated through a given angle in 

minimum time by maximizing, in order, jerk, acceleration, and rate. The joint-angle 

profile, shown in Figure 16, reaches the maximum rate and acceleration for only an 

instant and is achieved via the following relationships among total link rotation and 

maximum rate, acceleration, and jerk: 

 2
max max max       (94) 

 max max
max

max max

  
 
 

   
 

 


   (95) 

 4 max maxt       (96) 

The first two relationships ensure that joint rate and acceleration just reach a 

maximum but do not plateau during the rest-to-rest maneuver. The final relationship 

determines the slew time.  

 

Figure 16. Joint trajectory.   



 

65 

The torque and power required by the joint motor and the scissored-pair CMGs 

are then calculated for the given trajectory. Integrating power over time provides the 

total energy used by each actuation method. Writing power as the product of torque 

and velocity, the energy used by each actuation method is, for joint-motors and CMGs 

respectively, 

 
0

t

j jE dt 


    (97) 

 
0

t

cmg spE dt 


    (98) 

The ratio of these two energies determines the relative performance of the two 

actuation methods in lieu of the power ratio, which, as shown above, captures the 

instantaneous relative performance but not the aggregate performance given by Eqs. 

(97) and (98). 

2. Gimbal inertia and maximum gimbal angle 

The first simulation explores the contribution of Icmg and max to Ecmg/Ej. A fixed 

Ib is maintained for all simulation runs even though Icmg varies for each simulation; 

i.e., the inertia Ib includes CMG inertia and is identical to the Ib used for the joint-

motor-driven robot, regardless of the changes in Icmg. The cost of increasing gimbal 

inertia is thus separated from the cost of increasing the link inertia by maintaining a 

fixed Ib. The results are based on 30 evenly spaced values for max and Icmg from 1 to 

1.5 rad (57-86 deg) and 0 to 0.3 kg·m2 respectively, as listed in Table 2. The remaining 

robotic arm parameters are chosen to be unity, but they can easily be scaled to 

accommodate other designs. The rotor momentum is prescribed to conserve angular 

momentum about the joint axis across simulations (Eq. (62)).  



 

66 

Figure 17 shows the energy ratio of all the simulations. The flat region where the 

ratio of the energies is near unity indicates a large preferred design space for max and 

Icmg such that CMGs are about as efficient as joint motors. Note that the energy ratio 

increases approximately linearly with both Icmg and max in the plot even though P̃rel,max 

in Eq. (92) is proportional to 1/cos2. This trend arises because Ecmg is the integral of 

Pcmg over the interval 0 max   . This simulation suggests that reasonable limits for 

max and Icmg are about 70 deg and one tenth of Ib, respectively.  

Table 2. Parameters for single-link simulation. 

Study , 
deg 

max, 
s-1 

amax, 
s-2 

jmax, 
s-3 

Ib, 
kg·m2 

hr, 
N·m·s 

max, 
deg 

Icmg, 
kg·m2

 

Ecmg/Ej 

Gimbal 
properties 

115 1 1 1 1·1 0.50—
0.59 

57—
86 

0—
0.3 

1.0—
1.91 

Body rate " " " " 0.8—
1.2 

0.44—
0.65 

60—
70 

0.1 1.0—
1.03 

 

Figure 17. Gimbal inertia and maximum gimbal angle effect on CMG energy use. 
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3. Transverse Rate  

CMGs are best suited for robotic systems that conserve angular momentum about 

the joint axis as this avoids momentum bias that would eventually saturate the CMGs. 

However, momentum about any particular joint axis may not be conserved during the 

operation of a robot because the condition of Eq. (76) may not be satisfied for an 

arbitrary payload or complex motion of the robot link attached to a moving spacecraft 

base or other robotic links. This next simulation is of a robot arm that does not 

conserve momentum about its joint axis. Consider the case of a body with arbitrary 

inertial properties (i.e. a robot arm segment with an arbitrary payload) rotating about a 

transverse axis at a constant rate. This transverse rate is maintained through external 

means (e.g. spacecraft ACS or other links of the robot arm) while the body of interest 

performs the maneuver as shown in Figure 18. The angular velocity vector as written 

in the link’s frame is  BB/N
1 2 3

T    ω , where 1    as defined in Figure 16, 

and 2 and 3 are constants such that total transverse rate, 2 2
0 2 3    , is less than 

1 rad/s (Figure 18). 

The link inertia varies between trials by choosing physically realizable principal 

moments of inertia from the range given in Table 2 and arbitrarily rotating the 

resulting inertia matrix to introduce off-diagonal terms in the body-fixed reference 

frame, i.e. the joint axis is not one of the principal axes of inertia. The off-diagonal 

 

Figure 18. Transverse rate. 
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terms ensure that the off-axis rotation contributes to the dynamics (cf. Eq. (76)). In a 

physically realizable inertia, the maximum principal inertia cannot be greater than the 

sum of the other two principal inertias. The inertia matrix must also be symmetric. 

Peck describes a method of simulating a distribution of random inertia matrices [Peck, 

2006] that selects the principal inertias and randomly rotates this diagonal matrix. In 

this work the principal inertias are drawn from the sum of uniform distributions both 

for ease of use and to limit bias that could arise if the inertia were fixed to some 

arbitrary value. Physical but random and asymmetric inertia matrices further explore 

the effects of transverse rate on power and energy use but are not central to its 

conclusion. The variation of the inertia matrix also effectively accounts for a displaced 

mass center. 

Since the CMG-driven robot link’s angular momentum is not conserved about t̂ , 

only the case where Hc = 0 at t = 0 is considered. The rotor momentum is determined 

by approximating the robot momentum about the joint axis at maximum body rate 

using  

 
0max

c
c c t

max

d
t

dt  

     
 

H
H H  (99) 

The term in brackets is evaluated at t=0 and t=t/2 to determine its maximum value. 

From the link’s angular momentum in Eq. (66) and zero initial momentum, combined 

with the change in momentum about the joint axis from Eq. (76), the rotor momentum, 

hr, is found by solving: 

  B/N B/N B/Nˆ ˆ2 sin 0 2b max r max b
max

h t           I ω t ω I ω t  (100) 
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The maximum gimbal angle used to calculate hr is 70 deg (1.22 rad). Although hr is 

determined from a fixed value of max, the actual max achieved during the simulation 

varies, and the range of max values reported in Table 2 reflects that Eq. (100) is an 

approximation. The ratio of energy used by CMGs to joint motors is shown for 1000 

simulations in Figure 19. Transverse rate does not appear to significantly affect the 

energy used by a scissored pair if the rotor momentum is appropriately sized. 

This chapter demonstrates that internal momentum exchange via CMGs can be 

designed to use the same amount of power as joint motors. The CMG does add 

complexity and rotor losses associated with storing momentum when compared to 

joint-motors. Also, undersized CMGs and bulky gimbals add to the energy costs, but 

transverse-axis rotation does not. Correctly and accurately sizing the momentum 

requires knowledge of the bounds on link kinematics to ensure optimal CMG 

performance.  

 

Figure 19. Energy ratio plotted against transverse rate. 
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CHAPTER V. TWO-LINK ROBOT ARM 

This chapter introduces the general equations for an n-link robot arm with CMGs, 

followed by specific treatment of two-link robots to highlight the key differences in 

the equations of motion. The two-link robot gives insight into the design 

considerations for multilink robots by illustrating the effect of neighboring joints on a 

given link based on whether joint torques or CMGs are used. Simulations reveal a 

power difference for different robotic motions, including some that are particularly 

well suited for CMGs.  

With joint-motor actuation, each motor moves its own link and reacts the torques 

produced by links further down the chain according to the angles between the joint 

axes—the joint topology. Two distinct joint topologies for a two-link robot are the  

a     

b  

Figure 20. Joint topologies. a) Orthogonal joint axes. b) Parallel joint axes. 
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planar robot with parallel joint axes and a ‘pitch-roll’ robot with orthogonal joint axes, 

shown in Figure 20. The key difference between these two topologies is that a torque 

about the second joint of the ‘pitch-roll’ robot is perpendicular to the first joint axis 

and will be transmitted to the base via a constraint torque. Torque about the second 

joint of a planar robot is coupled to the first joint, as shown in the free-body diagram 

of a two-link robot with joint torques (Figure 21). A subscript j or b denotes joint 

torques and body torques. Figure 21 also shows that, as with CMGs, a body torque 

must have zero torque about the joint axis.  

A. Multilink Robot Dynamics 

The single-link robot arm with CMG actuation provides insight into the power 

and energy used by CMGs as a single unit. A multilink robot may gain additional 

a  b  

Figure 21. Free-body diagram of a two-link robot.  
a. Joint torque. b. Body torque. 
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benefits with CMGs because the reactionless actuation affects not only the torques 

reacted onto the base but also torque reacted between links. The equations of motion 

for a three-link robot with scissored-pair CMG actuation have been derived by 

Carpenter and Peck [Carpenter and Peck, 2008]. They used Kane’s equations [Kane 

and Levinson, 1985], equivalent to the principle of virtual power in this formulation 

[Moon, 1998], to derive the equations of motion. This work extends their analysis to n-

link robots to compare joint-motor or scissored-pair CMG actuation.  

Kane’s equations may be written as [Moon, 1998]:  

 
B /NNN

1 1

0 for 1..
in n

a ai
iii i i

i ik k

m k n
q q 

                 
  

v ω
v F H M  (101) 

The number of links is n, i sums over each link, and k indexes the generalized 

coordinates. There are n generalized coordinates for a grounded serial linkage with 

revolute joints. The applied forces and moments on the ith link are Fi
a and Mi

a; the 

superscript a distinguishes them from constraint forces and moments. The partial 

derivatives in Eq. (101) are known as partial velocities and indicate the component of 

the velocity or angular rate aligned with the appropriate generalized velocity. The 

velocities and rates are taken with respect to an inertial frame. Each body frame is 

denoted Bi, with a body-fixed vector ît  aligned with the ith joint axis. The zeroth link 

is the nonrotating N frame. The angle of rotation of each link about its joint axis is the 

ith generalized coordinate, qi.  

Recursive expressions for each term allow additional links to be added using the 

same block of code with another joint-angle command. Since this analysis uses 

prescribed motion, the expressions include no feedback terms. Including feedback 

requires an expression for the mass matrix, an exercise in algebra and indexing not 
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included here. A schematic of the code structure for the joint-motor simulation is 

shown in Figure 22. 

1. Joint motor actuation 

The motion of the robot links is identical for both the joint-motor and CMG-

driven robots. The angular velocity of the ith link with respect to the Newtonian frame 

is defined recursively as: 

 B /N B /Nˆi i-1
i iq ω t ω  (102) 

The angular acceleration is also given recursively: 

 
N NB /N B /N B /Nˆ ˆi i-1 i-1

i i i iq q    ω t t ω ω  (103) 

The angular velocity and acceleration of each link are calculated first because the 

other terms in Eq. (101) may be written in terms of these quantities. From Eq. (102), 

the partial angular velocity term in Eqs. (101) may be concisely written as: 

 

Figure 22. Code structure for n-link robot with joint motors showing recursive 
dependence. 
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B /N ˆ

0

i
k

k

k i

q k i

 
  

tω
 (104) 

The angular momentum of the joint-motor actuated link i and its derivative are given 

in Eqs. (61) and (62). Letting Ii denote the inertia of link i and its actuator, 
N

,j i
H  for an 

n-link robot is 

 
N N B /N B /N B /N

,
i i i

j i i i  H I ω ω I ω  (105) 

The applied moments on link i from the joint motors are  

 , , , 1 1
ˆ ˆa

j i j i i j i i    M t t  (106) 

The applied moments become much less cumbersome after summing over all the 

links. The kth equation from Eq. (101) has a single torque term after taking the sum of 

applied moments projected onto the space of partial angular velocities:  

   
B /N

, , , 1 1
1

ˆ ˆ ˆ
iN N

a
j i j i i j i i k

i i kkq
   

 


   
 

ω
M t t t  (107) 

 
B /N

, ,
1

iN
a
j i j k

i kq





 
 

ω
M  (108) 

The dynamics due to the acceleration of the centers of mass of each link are not 

addressed in the single-link analysis. The first sum in Eq. (101) includes such 

dynamics. In a single link, these effects can be included by augmenting the inertia 

matrix in the equations of motion. The geometry of the robot is defined as follows. Let 

li be the vector from the i-frame origin to the i+1-frame origin, and let ri be the vector 

from the i-frame origin to the center of mass of link. The position, Ri, and velocity, vi, 

of the ith link relative to the inertial frame origin are written recursively as 
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1

1

i

i m i
m





 R l r  (109) 

 
1N

B /N B /N

1

i
j i

i i m i
m





    v R ω l ω r  (110) 

The acceleration of link i is 

 
    

1N NN B /N B /N B /N B /N B /N B /N

1

i
m m m i i i

i m j i i
m





         v ω l ω ω l ω r ω ω r  (111) 

The corresponding partial velocities are 
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ˆ

0

i

k i mi
m k
k ik

i k

q
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




  
            
 




t r lv
 (112) 

With no applied forces in the problem, Fa=0.  

2. CMG actuated robot 

As is the case for the single-link equations, the equations for the multibody CMG-

driven robot arm share most of the terms from the equations for the joint-motor-driven 

robot arm. The only difference is that there are no applied joint torques, i.e., the 

gimbal motor is considered an internal force and 

 
B /N

1

0
iN

a
i

i kq


 
 

ω
M  (113) 

Instead, motion is controlled with internal angular momentum from the CMGs. The 

angular momentum of a link and its CMGs is given by Eq. (66). The angular 

momentum derivative given by Eq. (67) for a single link takes the same form for the 

ith link: 



 

76 

  
N N B /N B /N B /N B /N

, , ,
ˆ ˆ2 cos 2 sini i i i

c i i i r i i i i r i iih h         H I ω ω I ω t ω t  (114) 

This equation is projected onto the partial velocities in Eq. (104). The equations of 

motion for the CMG-actuated robot are related to the equations of motion for the joint-

motor-driven robot by the following: 

 
 

B /N B /NN N
B /N

, ,
1 1

ˆ ˆ ˆ ˆ2 cos 2 sin
i in n

i
c i j i r i i i k r i i k

i ik k

h h
q q

  
 

 
       
   
 

ω ω
H H t t ω t t  (115) 

for k ≤ i. The equations of motion for the joint-motor driven robot can be assembled 

into the following form with a mass matrix M and the velocity product terms V [Moon, 

1998]. 

    , ,M V T         (116) 

The n joint angles, rates, and accelerations and the joint torques are the elements of the 

arrays , , , and T    . The same left-hand side of this equation can be used to express 

the motion of a CMG-driven robot. Including the gimbal dynamics results in a 

differential equation in both joint angles  and the gimbal angles .  

        , , , , ,M V B P                   (117) 

The matrix P is an upper-triangular matrix that reflects the alignment of an outboard 

scissored pair with the inboard link of interest. In other words, once T has been 

determined for an equivalent robotic system, the gimbal trajectories may be 

determined by: 

    , , ,T B D           (118) 
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The  are then used with Eq. (12) to find the gimbal torques. Implementation of a 

CMG-robot control scheme could consist of a standard control algorithm for  and a 

nested control algorithm for . 

A. Two Link Simulations 

A robot with orthogonal joint axes is contrasted with a robot with parallel joint 

axes as two possible joint topologies for a two-link robot. For example, the first 

provides orientation control with two degrees of freedom (e.g., azimuth and elevation) 

for pointing a sensor at a target. The latter provides range for reaching tasks for a 

manipulation robot on a spacecraft. These two cases represent two extremes of the 

potential differences between CMG torques and joint torques on a two-link robot. 

1. Link rate and CMG size 

For both joint topologies, the mass properties and motion of the outer link affect 

CMG sizing through the total angular momentum of the robot. The net angular 

velocity of the outer link includes a component from the first joint that can project 

along the second joint axis because the joint axes are not necessarily principal axes of 

inertia. Therefore sizing the CMGs on a two-link robot requires careful bookkeeping 

of a time-varying inertia and angular velocities of the links. The CMGs on a multi-link 

robot could be sized according to the expected maximum angular momentum about 

each joint. An economic alternative used in these simulations is to place identical 

CMGs on each link and adjust the maximum joint velocity so that the net angular 

momentum is bounded by the capacity of the CMGs. The maximum angular velocities 

that do not saturate the CMGs are determined using an expanded version of the 

approximate change in momentum about the joint axis from Eq. (100). The angular 

momentum about each joint axis depends on the rate about both axes, yielding a 

system of two equations that is quadratic in the joint velocities.  
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For this exploratory study, the maximum acceleration and jerk are arbitrarily set 

to the same numerical value as the adjusted maximum angular velocity to satisfy Eq. 

(94). The angle of rotation and slew duration are given by Eqs. (95) and (96). The start 

time of the rotations is offset by t0, with either joint randomly assigned to move first. 

The parameters used for a 1000 trial simulation are given in Table 3. The principal 

inertias, center-of-mass offset, and joint axis locations are randomly assigned 

component-wise from a uniform distribution over the range given in Table 3. The 

uniform distribution is merely meant to provide a qualitative assessment, not to 

encourage statistical inferences from the outputs. The maximum inertia about the joint 

axis, the maximum body rate, and maximum gimbal angle are calculated from the 

assigned parameters. Table 3 also gives ranges for these values.  

2. Orthogonal joint axes 

The equations of motion are decoupled if the following conditions hold: the joint 

axes are orthogonal, the outer link is axisymmetric about its joint axis, and the two 

Table 3. Parameter value ranges for two-link simulations.  
The two entries per row in the columns under intermediate calculations correspond to 
the first link (top) and second link (bottom). 

 Parameters Monte Carlo Inputs 
 Icmg, 

kg·m2
 

hr, 
N·m·s 

ˆ,b
I

t  
kg·m2 

r(i), 
m 

l1(i), 
m 

t0, 
s 

sign() 

Ortho 0.1 0.53 0.8–1.2 -0.5–
0.5 

-1–1 0–4 +/- 

Parallel 0.1 0.53 0.8–1.2 -0.5–
0.5 

-1–1 0–4 +/- 

 
 Intermediate calculations Result 
 max, s

-1 Imax, kg·m2
 max, deg , deg Ecmg/Ej 

Ortho 0.1–0.5 
0.6–1.2 

1.9–6.1 
0.8–1.6 

7–74 
50–80 

10–59 
65–134 

1–1.33 

Parallel 0.03–1.0 
0.0–0.9 

1.0–4.0 
0.9–1.5 

3–73 
1–73 

4-112 
0.2–98 

-0.49–1.38

 



 

79 

joint axes intersect. These conditions also satisfy conservation of momentum about the 

joint axes stated in Eqs. (74) through (76), adjusted for the two-link robot. In such a 

case, the power performance is calculated as for two independent single links. The 

simulations below specifically offset the joint axes, translate the centers of mass, and 

include off-diagonal terms in the inertia matrices to avoid repeating the results of 

CHAPTER IV. 

Figure 23 is a plot of the energy ratio for the two-link robot as a function of the 

maximum gimbal angle of the inner link, max. The greater inertia about the first joint 

axis causes the inner link’s gimbal angle to influence the energy ratio more than the 

outer link’s gimbal angle as shown in Figure 23. The effect of the combined inertia of 

the links about the first joint axis is included in max through Eq. (100). As with the 

single link robot, the energy ratio is greater than zero with some dependence on the 

size of the CMG as represented by the maximum angle for the first gimbal. However, 

 

Figure 23. Performance of CMGs on robot arm with orthogonal joint axes. 
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some trials in this simulation are not very power efficient due to increased inertia 

about the joint axes without a corresponding decrease in the other terms of the relative 

power in Eq. (92). 

3. Parallel joint axes 

None of the simulations thus far have indicated that CMGs offer an advantage in 

terms of power and energy over joint motors. In the simulations below, identical 

CMGs are again used on each link and the maximum joint rate is adjusted in 

accordance with the momentum capability of the scissored pair. For parallel joint axes, 

the sign of each joint’s rotation is critical in determining the maximum joint rate. 

When both joints move together, the outer link saturates its CMGs more easily 

because both joint velocities add to determine the link’s angular velocity with respect 

to ground. When the joints move in opposite directions, the outer link can attain a high 

joint rate while keeping the angular momentum low. The maximum joint velocities are 

 

Figure 24. Joint-angle command product as an indicator of performance for 
parallel joint axes.  
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determined from the CMG momentum by taking the individual joint velocity if they 

are opposite sign or the sum of the two if they share the same sign. Zero velocity of 

either link is possible due to the start-time offset t0. 

For 1000 trials over the same range of parameters as the orthogonal-axes case, the 

energy ratio is less than zero for 403 trials. Figure 24 shows the values of the energy 

ratio plotted against the sign of the product of the joint angle commands. The results 

show that CMGs are more efficient than joint motors when the joints move in opposite 

directions, as they must for reaching tasks. Joint motors represent a more power-

efficient choice when the joints move together, e.g. overhand throwing motions.  
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CHAPTER VI. ENERGETICS OF ROBOT ACTUATION USING JOINT AND 

BODY TORQUES 

The application of robotics in space, biology, microelectromechanical systems 

(MEMS), and other fields creates new applications and areas of research. Often, 

different types of actuation must be developed and studied to meet the specific 

demands of a given area, e.g. muscles in biological systems, or electromagnetic field 

interactions for MEMS. This chapter builds on recent work in space robotics and 

momentum-based actuation by generalizing earlier results on power differences 

between direct joint actuation and control-moment-gyroscope (CMG) actuation 

[Carpenter and Peck, 2008; Brown and Peck, in review].  

Momentum-based actuation is currently used for spacecraft attitude control when 

applying external forces would require a greater supply of fuel than can be 

economically transported to space. Reaction wheels or CMGs are two common 

methods of controlling spacecraft orientation through internal momentum exchange. A 

system, such as a satellite, that uses no external forces to control its motion is termed a 

reactionless system in this work. When these same momentum-exchange actuators 

control a robot arm [Carpenter and Peck, 2008], this reactionless property is preserved 

in the sense that the actuator does not react additional torques against the base 

[Carpenter and Peck, in review; Brown and Peck, in review]. However, the motion of 

the center of mass of the arm may generate other constraint forces and torques 

between the robot and the base as stated by D’Alembert’s Principle. 

The CMGs produce torque on a body by providing an inertial base against which 

a gimbal motor may act. The dynamics of the CMGs affect the direction and 

magnitude of the resulting output torque, but the power delivered by the CMG is 

conserved in the limit of an ideal CMG [Brown and Peck, in review]. This chapter 
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provides an analytical link between a CMG-actuated robot and a robot with direct 

joint-torque actuation by conceptualizing the CMG’s output torque as a body torque 

applied at the center of mass of the body. The direction of the CMG’s output torque is 

constrained to a single, body-fixed axis by using scissored-pair CMGs [Yang et al., 

1995; Havill and Ratcliff, 1964]. However, replacing CMGs with idealized body 

torques will not account for two important and related limitations of the physical 

robot. First, CMGs are limited by the angular momentum stored in their rotor in that 

external torques cause a change in the total angular momentum of the robot that may 

saturate the CMGs. Second, complex motion of the robot may alter the direction of the 

angular momentum so that the direction of the CMG output torque is not constant with 

respect to the robot link. A hybrid robot with both CMGs and joint torques could help 

overcome the former limitation, and the second would necessitate more complex 

analysis of the robot. 

Other applications that could use body torques (either from CMGs or other 

actuation methods) include robots with a thrust available along a single body-fixed 

direction. For example, CMGs have been proposed for steering control on an 

autonomous underwater vehicle (AUVs) [Thornton et al., 2005]. Surgical probes 

inside a flexible needle are steered by controlling the orientation of the tip [Webster III 

et al., 2006]. Greatly miniaturized CMGs could be used to augment existing strategies 

for needle steering. Joint torques may not be feasible in many MEMS applications. 

External electromagnetic fields [Bar-Cohen, 2004; Kim and Tadokoro, 2007], light 

[Maruo et al., 2003], linear momentum [Koh et al., 2002; Mita et al., 2003], or even 

acoustic streaming [Parviz et al., 2001] are all MEMS actuation methods that could be 

modeled as body torque for the control of a microrobot arm.  

A more traditional robot configuration that is modeled like a body-torque actuated 

robot uses pulleys to connect the motion of the robot links to actuators attached to the 
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base of the robot. In a similar manner, the tendon network of the fingers or biarticulate 

muscles in the arms and legs affect the energetics of simple, daily tasks [Alexander, 

1997; van Ingen Schenau et al., 1987]. This paper analyses only joint torques that act 

across a single joint between two neighboring robot links and body torques that act 

only between a given robot link and an inertial base. 

This chapter expresses body torques in terms of the equivalent joint torques 

required for a given motion of a serial-link robot attached to an inertial base. A similar 

expression is found for an over-actuated robot with joint and body torques. Choosing 

the power-optimal distribution of joint and body torques is expressed as a constrained 

optimization problem. Simulations of a two-link planar robot show the importance of 

the sign of the joints’ velocities in determining which actuation method uses less 

power. A three-link robot is used to show the added improvements in power when 

combined joint- and body-torque actuation is used.  

A. Equations of Motion and Power 

The method of virtual power [Moon, 1998] isolates the applied torques from the 

constraint forces and torques while maintaining vector notation throughout the 

derivation. For an N-link robot, the equations of motion are derived from 

    
1 1

0
N N

a ai i
i i i i i

i ik k

m
q q 

 
     
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 

v ω
a F H M  (119) 

The subscript i denotes each link and qk denotes each generalized coordinate—the 

joint angles between adjacent links are the generalized coordinates used throughout 

this work. The full equations of motion for a joint-torque-driven robot as derived from 

this method are given in CHAPTER V. The focus of this chapter is on the 

relationships between the torques, power, and energy of a robot actuated by either 

joint or body torques. 
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4. Torques 

Because the two robotic systems under consideration are identical in every respect 

except the application of torques, the equations of motion are conveniently expressed 

in matrix form. The generalized coordinates are the joint angles. For the joint torques, 

Eq. (119) can be written as 

  , , , 0jt     A Τ  (120) 

The matrix A captures the kinematics of the robot by combining the mass, stiffness, 

and Coriolis matrices. The vector j contains the joint torques as mapped onto the 

generalized coordinates. Since the work done by j,k is j,k·qk, the kth element of Tj is 

j,k.  

When body torques provide the actuation, Eq. (119) becomes 

    , , , 0ct     A B Τ  (121) 

The B matrix represents the mapping needed to align each c,k with the generalized 

velocities [Duindam and Stramigioli, 2008]. The vector c is a column vector of scalar 

body torques. As seen from Eqs. (120) and (121), B also maps Tc to the equivalent Tj 

necessary to produce the same motion for a given set of robot parameters. 

  j cΤ B Τ  (122) 

To find B from Eq. (119), the partial derivative of the angular velocity is found for a 

serial-link robot anchored to an inertial base with the kth joint axis denoted k̂t . 

 
ˆ

0
ki

k

k i

q k i

 
  

tω
 (123) 
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The applied moments on the ith link for the joint torques are the inner joint torque 

and the negative of the outer joint torque as shown in the free-body diagram in Figure 

21b. 

 , , , 1 1
ˆ ˆa

j i j i i j i i    M t t  (124) 

Referring to Eq. (119) and Eq. (123), the total contribution of the applied joint torques 

to the kth equation is  

   , , , 1 1
1

ˆ ˆ ˆ
N N

a i
j i j i i j i i k

i i kkq
   

 


   
 

ω
M t t t  (125) 

Note that j,N+1 does not exist, reducing this summation to 

 , ,
1

N
a i
j i j k

i kq





 
 

ω
M  (126) 

which agrees with the identity mapping from j,k to qk in Eq. (120). 

For body torques, the ,
a
c iM  are aligned with the inboard joint axis and can be 

written as  

 , ,
ˆa

c i c i iM t  (127) 

The net contribution of the c to the kth generalized coordinate is 

 , ,
1

ˆ ˆ
N N

a i
c i c i i k

i i kkq


 


  
 

ω
M t t  (128) 

For a three link robot, Eq. (128) is written in vector-matrix form as: 
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t t t t
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Thus B is the upper triangular matrix whose (k,i) entry is the dot product of the unit 

vectors along the kth and ith joint axes where i and k refer to the ith body and kth 

generalized coordinate in Eq. (119). The body torques can always be written in terms 

of equivalent joint torques because B is guaranteed to be nonsingular.  

Combined joint and body torques 

A more general actuation scheme combines both types of actuation. This would 

allow an optimal control algorithm to choose an assortment of body and joint torques 

to execute a maneuver. The matrix that maps from the applied torques to the 

generalized velocities would be the concatenation of B and the identity matrices. A 

useful alternative that helps unify the two actuation methods is to express Eq. (119) as 

a combination of the relative contribution of each. 

     * *, , , 0c jt      A B Τ T  (130) 

The asterisk distinguishes the torques applied to the robot with hybrid actuation from 

the torques of Eqs. (120) and (121). Let the joint torques in the hybrid robot be 

expressed as proportional to the joint torques from Eq. (120).  

  *
j i jdiag T T  (131) 

The i are the entries on a diagonal matrix that determines the relative contribution of 

the joint and body torques. An  of 1 indicates that j from Eq. (120) is used, and an  

of zero indicates that c from Eq. (121) is used. The body and joint torques are related 

by Eqs. (122) and (131). 

     *
c i jdiag  B Τ I T  (132) 

The is are chosen to achieve performance requirements or to optimize for a given 

cost function. A choice of i equal to zero or one for all time is equivalent to removing 
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the ith body-torque or joint-torque actuator from the robot. The optimal i is not 

necessarily between 0 and 1. 

5. Angular Velocity 

The angular velocity that determines the power of a joint torque is different from 

the angular velocity associated with a body torque. Joint torques correspond to the 

joint velocities, whereas body torques correspond to the angular velocity of the body 

taken in the reference inertial frame and aligned with the body torque direction, i.e. 

B / N
,

ˆi
c i i   ω t . For the robots considered here, the angular velocity of a given body in 

the inertial frame is the sum of the inboard joint velocities. The scalar component of 

the body velocities that aligns with the body torques in terms of the joint velocities for 

the three link case is 
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 

 

 
 (133) 

Again, the tilde is used to designate a body-referenced angular velocity. If the vector 

of joint angles is designated as j, then the body angles can be written in terms of the 

joint angles. 

 T
c j Θ B Θ  (134) 

6. Power 

The power associated with the body torques can now be expressed in terms of the 

joint torques and joint velocities. For both joint- and body-torque based robots, the 

total power is the sum of the power at each joint. For a perfectly restorative robot, i.e., 

one that fully recovers negative work, the power is the dot product of the torques and 

velocities for each actuation method: 
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 ,j C j jP  Θ Τ  (135) 

 ,c C c cP  Θ Τ  (136) 

Substituting from Eqs. (122) and (134), the power of this body-torque-driven robot is 

identical to the power from the joint-torque-driven robot.  

 1
,

T
c C j jP Θ BB Τ  (137) 

For Eq. (137) to be valid, negative power at one joint cancels an equal positive 

power at another joint. A physical robot at a minimum loses some of the energy 

associated negative work from inefficiencies of power regeneration. A lossless braking 

mechanism does not recover any of the negative work and does not account for 

braking effort. For a well controlled robot, the negative power represents active 

braking with some amount of associated power cost. In this work, the cost of negative 

power is the absolute value of power. Choosing a different cost function for negative 

power does not in general change whether or not joint torques and body torques have 

different total power because one actuation method will have positive power while the 

other has negative power for different robot positions and motion. Total power is 

taken as the sum of the absolute value of the power of each actuator. 

 ,
1

N

j j i i
i

P  


   (138) 

 , ,
1

N

c c i c i
i

P  


   (139) 

With the absolute value included in the summation, Eqs. (135) and (136) can no 

longer be used and Pj ≠ Pc. For a hybrid robot with both types of actuators, the total 

power is 
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   , , ,
1 1

1
N N

H c i c i j i i
i i

P     
 

      (140) 

Power visualization for two-link robot 

The difference between joint-torque power and body-torque power is illustrated 

with a planar, two-link robot as summarized in Table 4. The dot product of the unit 

vectors along the joint axes’ directions is one. Therefore, the B matrix is [1 1; 0 1], 

with an inverse of [1 -1; 0 1]. The joint-torque case is the reference case and the body-

torque power is expressed in terms of the joint torques and powers. The total power 

for the body-torque-driven robot given in Eq. (139) is  

    1 2 1 2 1 2c j j jP             (141) 

Table 4. Contrasting joint-torque and body-torque actuation.  
For the two-link planar robot shown in Figure 21, the relationship between joint 
torques and body torques of an otherwise equivalent robot is illustrated with a 
description of the kinematics and free body diagrams for each link. 

     

 Upper arm  Forearm  Upper arm  Forearm  

Kinematics 

 

   

Free-body 
diagram 

    

Torque 1j  2j  1 1 2c j j     2 2c j   

Velocity 1  2  1 1c    2 1 2c       

Power 1 1 1j jP     2 2 2j jP     1 1 2 1c j jP P      2 2 2 1c j jP P    
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The ith joint’s power Pj,i is defined as 

 , ,j i j i iP     (142) 

With this definition, Pc is 

 1 2 1 2 2 2c j j j jP P P         (143) 

The power for the body-torque-driven robot is a function of three values: Pj1, P j2, and 

a cross-product term 2 1j  .  

A plot of the total power as a function of P j,i for i = 1,2 is shown in Figure 25 for 

a positive value of 2 1j  . The absolute value function creates an inverted pyramid with 

 

Figure 25. The total power cost as a function of the local joint power.  
For a two-link planar robot, the joint-torque power is an inverted pyramid (grid). The 
body-torque power (grey) is the same shape but with the apex translated along the line 
Pj1 = -Pj2 according to the time-changing value of 2 1j  . The two are equal in the 
overlapping regions at the front and back of the plot area.  
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the apex at the origin. The body-torque power is simply the joint-torque power with 

the apex shifted by 2 1j   along the line defined by P j1 = -P j2. The combination of the 

absolute value as the cost function and the coordinate shift along the [1 -1] direction in 

the joint-power coordinates creates a significant region of equal power cost dividing 

the regions that favor joint torques or body torques.  

Power for a Robot with Hybrid Actuation 

In general, the values of i that minimize Eq. (140) depend on how the negative 

power is penalized in the cost function. A power-optimal value of 1 can be 

determined independently of the other is for the case of the absolute value taken as 

the negative power penalty function. First the total power at a given instant in time is 

written as a function of 1 only; the other is are fixed to some (optimal) value. 

  1 1 1 1 1 1 1 21H j jP c c            (144) 

In this equation, 1 is determined from Eq. (120) and substituted into Eq. (132). The 

values for c1 and c2 are independent of 1 and contain the other terms in the power of 

the first body torque (for c1) and the body and joint torques on the other links (for c2). 

The triangle inequality provides a lower bound for Eq. (144). 

  1 1 1 1 1 1 1 21H j jP c c            (145) 

The only value of 1 that guarantees equality in this equation is zero. Setting 1 to 

zero is equivalent to removing the joint torque on the first link and only using a body 

torque.  

The other scaling factors i cannot be so easily determined because they enter into 

multiple expressions of the body torques. The problem of determining the optimal 

distribution of torques between joint and body torques can be cast as a linear 

programming problem [Shanno and Weil, 1971] when using the absolute value as the 
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power cost. The vertices in the optimization function correspond to zeros in either the 

body- or joint-torque generated power. For a small number of links (two or three in are 

given as examples), the power may be calculated at these vertices and the smallest 

power chosen. An illustration of this method for a three-link robot is given below. 

7. Energy 

Power represents the instantaneous load on the power system and does not 

account for the amount of energy used during a complete motion of the robot. The 

calculated energy use for the simulations reported in this chapter is the integral of the 

power cost in Eq. (138) through (140). 

 x xE P   (146) 

B. Simulations 

8. Two-link robot 

A robot with hybrid actuation from both body and joint torques would only need 

three actuators for the two-link robot to minimize power: a body torque on each link 

and a joint torque on the second joint. The combined power for the two-link robot is 

 
 
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
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  

   

 

  
 (148) 

To find the optimal 2 requires only determining where the individual expressions 

each become zero. The second and third terms are zero when 2 is one and zero, 

respectively. The first term is zero when 2 ≠ 0 and  

 2 1 21 j j     (149) 

The power is then calculated for three candidate values of 2 and the minimum 

selected at each time point. 
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In [Brown and Peck, in review], body-torque producing control-moment gyros 

(CMGs) provided actuation for a planar, two-link robot. The authors show that CMGs 

may use less energy than joint torques when the two joint angles move in opposite 

directions, whereas the joint torques use less energy when the joints move in the same 

direction. In this work, a body torque replaces the CMGs to eliminate the extra 

gyroscopic terms associated with CMGs. The energy used for joint torques, body 

Table 5. Parameters used for the two-link simulations. The links are identical. 
Inertia is taken about the center of mass. 

Mass, kg Inertia, kg·m2 rcm, m length, m 

1 0.25 0.5 1 

 

Figure 26. The difference in energy used by joint torques and body torques.  
The peaks represent regions of body-torque advantage corresponding to opposite 
motion of each joint, whereas the valleys represent regions of joint-torque advantage 
corresponding to same-sign joint motion. 
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torques, or both for a robot with parameters given in Table 5 is calculated for zero 

initial link angles and final angles from – to .  

The energy used by the body torques is compared to the energy used by the joint 

torques for the prescribed arm movements. The difference in energy used is shown in 

Figure 26, with peaks corresponding to an advantage for the body torques and valleys 

indicating less energy used by the joint torques. As reported earlier for CMGs [Brown 

and Peck, in review], the body-torque advantage occurs when the joints move in 

opposite directions. Figure 25 indicates that the joint power also has opposite sign for 

at least a portion of the robot motion.  

In a two-link robot with hybrid actuation, a simple control law might choose to 

use all body torques or all joint torques at any given portion of the motion, depending 

on which actuation method would use less energy. The additional savings from letting 

both joint and body torques be active at one time are shown in Figure 27, a plot of 

 

Figure 27. Benefits of combined actuation for two-link robot. 
The energy used by a robot with combined body- and joint-torques is able to 
outperform robots with either actuation method alone for only some maneuvers. 
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difference of the energy using the simplistic control and the energy of the truly hybrid 

actuation. The nonzero values in Figure 27 correspond to values of 2 not equal to 

either zero or one. 

9. Three-Link Robot 

The simulations of a two-link robot considered the same joint motion for either 

case. This section examines a robot with an additional degree of freedom to permit 

optimization of the joint trajectories of the three candidate actuation methods.  

Path Optimization 

The end-effector path is the triangle illustrated in Figure 28, chosen to represent a 

closed path in the workspace. The optimization routine uses the energy required to 

move the robot end-effector through this path as the cost function in determining the 

optimal joint trajectories. The infinite-dimension space defining all possible joint 

trajectories is reduced by specifying the (x,y,) position of the end effector with cubic 

splines and optimizing over the spline coefficients. Two via points evenly divide each 

 

Figure 28. The closed path followed by the robot.  
Each segment is defined with cubic splines through two via points. The optimization 
variables are the absolute angle of the third link, , and time at each via point. 
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line segment into three splines with known location, smooth velocity, and continuous 

acceleration. The time the robot reaches each vertex of the triangle is specified, as are 

all the (x,y) coordinates of the vertices and via points. The optimizer chooses the time 

to reach the via points and  at both the via points and the vertices for a total of 15 

optimization variables.  

The (x,y,) trajectory and sign of 2 fully define the joint trajectory. The sign of 2 

is determined a priori and does not change during the simulation. The inverse 

kinematics that determine 1 and 2 for a three-link robot are given in standard 

robotics textbooks, such as [Murray et al., 1994; Craig, 2005]. The first and second 

derivatives of 1 and 2 are calculated in closed form in terms of the x, y, and  splines 

using the Jacobian of the robot.  

Power of hybrid actuation  

The total power for the robot with hybrid actuation for a given robot trajectory is 

a function of (2 ,3) only:  
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 (150) 

where the value of 1 is zero as discussed above. The minimum value of Eq. (150) 

occurs when at least two of the individual absolute value terms become zero—the 

intersection of two edges of the cost function. The eight possible vertices used to 

calculate the optimal (2 ,3) are summarized in Table 6.  

Monte Carlo Simulations 

The link lengths and masses were varied to provide a comparison of the different 

actuation methods. The link masses and lengths were sampled from a normal 

distribution with mean 1 kg and 1 m, respectively, and variance 0.25 units2. If the total 
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length of a candidate robot in the Monte Carlo simulation was less than 2.5 m, a new 

set of parameters was chosen until the path would be in the workspace.  The inertia of 

each link was calculated using  

 Ii = mi·li
2/12  (151) 

Each simulation calculated the energy required for an optimal trajectory given each of 

the three actuation methods, i.e., three optimizations for each of the 1500 parameter 

sets. The Matlab optimization toolbox was used to perform the optimizations. 

Although the software converged on a result for every simulation, no guarantee is 

made that every point represents a global optimum. However, the authors’ experience 

with additional searches yielded answers close to the results from Matlab. Therefore, 

the aggregate behavior indicated in the results are likely to remain true should globally 

optimum results become available. 

Table 6. Optimal distribution between joint and body torques. 
The optimal power for a robot with combined actuation is determined by evaluating 
the power at each of the following eight (2 ,3) pairs. The zeroed terms indicate 
which terms in Eq. (150) are set to zero. If either 2 or 3 are zero, then the 
corresponding 2  or3 is arbitrarily set to zero without affecting the optimal s. 

Zeroed terms 2 3

1, 2 1-(1/2) 1-(1/3) 

1, 3 1-(1/2) 1

1, 5 1-(1/2) 0

2, 3 1 1

2, 5 1-(3/2) 0

4, 2 0 1-(2/3) 

4, 3 0 1

4, 5 0 0
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Results 

Of the 1500 simulations run, the recorded energy for 11 of these was outside six 

standard deviations of the remaining values. These 11 simulations were removed from 

the data. The energy used by the 1489 remaining simulations is shown in Figure 29, 

with mean (std dev) reported in Table 7. For this particular robot setup, the joint 

torques outperformed the body torques. The hybrid-actuation robot did considerably 

better than either. 

Table 7. Three-link robot results for Monte Carlo simulation.  
Mean, (std dev) reported. 

 Joint torques Body torques Combined 
actuation 

Energy used, W 0.42, (0.04) 0.47, (0.04) 0.33, (0.02) 

 

Figure 29. Energy cost of different actuation methods. 
A hybrid robot with both joint and body torques available uses 21% less energy in this 
case study.  
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C. Discussion 

The hybrid actuation provides more benefits than energy alone. In a space-

robotics application, combined actuation also allows momentum transfer from links in 

the robot to the base spacecraft. Nonplanar robots do not generally conserve 

momentum about individual joint axes and the CMGs could saturate without the 

means to transfer momentum among links and with the base. A joint motor between 

the first link and the base does not improve energy efficiency and directly impacts the 

spacecraft’s attitude control system. Thus the first joint motor would likely be used 

only for dumping momentum. 

Other robotic systems that have non-identity mappings from the actuators to the 

joint angles are cable or tendon driven mechanisms. These mechanicsms provide an 

interesting extension to the results in this paper. In [Murray et al., 1994] a 

transformation matrix much like the B matrix in Eq. (121) is used to write the 

equations of motion for a tendon-driven robot. The flexibility in how the cables are 

routed means that nearly any desired structure in the B matrix can be achieved. This 

work supports the hypothesis that biarticular muscles in biological systems save 

energy as compared to uniarticular muscles [Alexander, 1997; van Ingen Schenau et 

al., 1987].  

The work in this chapter provides a framework for understanding how 

nontraditional actuation methods affect the power used by a robot through the 

structure of the mapping from actuation torques to the joint velocities. A comparison 

of joint torques and body torques is given, motivated by recent work on CMG-

actuated robots. In a robot with hybrid actuation of both joint and body torques, the 

first joint torque may be omitted or left unused without sacrificing power optimality. 

Omitting actuation of the first joint is particularly relevant for CMG-driven robots 

since the CMGs on the first link react to torques from later links without transmitting 
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them to the base spacecraft, reducing the attitude control effort and preserving key 

benefits of reactionless actuation. 



 

102 

CHAPTER VII. CASE STUDY: CMG TESTBED 

The analyses of the previous chapters are unified in an analysis of a planar testbed 

currently in development for CMG robot experiments. The testbed is a critical 

component of future work on CMG robotics and is presented as a case study of how to 

apply the results from the previous chapters. 

Ground-based simulators for the space environment are often used for 

experimental validation of new ideas. Several testbeds for CMGs on single spacecraft 

are reported in the literature [Lappas et al., 2005; Liska, 1968; Peck and Cavender, 

2004; Hall, 2006; Jung and Tsiotras, 2003]. A survey of simulators using air bearings 

is given in [Schwartz et al., 2003]. Student teams at Cornell University have 

previously built CMG-driven robots (Figure 30) [Cornell CMG Team, 2006; Cornell 

CMG Team, 2007]. They demonstrated successful operation of the CMGs on the 

NASA Microgravity research aircraft [Berkowitz, 2008]. The weightless environment 

 

Figure 30. Robot built by Cornell CMG team.  
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aboard the NASA research craft allowed the student teams to test three-dimensional 

motion of their robot arms but limited testing to one flight per year. 

A. Requirements 

The primary goal of the planar testbed is to compare CMGs with joint torques on 

a physical robot. The results for a planar, two-link robot in Figure 24 suggest that 

microgravity is not necessary to achieve this goal. Therefore, the testbed seeks to 

modify the existing CMG robot to include air bearings to support the robot on a flat 

surface with joint motors added as an optional actuation method. The requirements are 

listed in Table 8 and are divided into system-level and flowed-down requirements, 

with functional and performance metrics included. Each of the three system-level 

requirements is discussed in the following paragraphs. 

First, the testbed must allow free robot motion. Air bearings provide rotational 

and translational freedom within the limits of the available flat testing surface. The 

Table 8. Testbed requirements 

System-level 
requirement Flowed-down requirements Metrics 

Unencumbered planar 
motion 

Space for at least two robot links Link length < 0.6 m 

Removable base -90 to 90 deg joint 
range of motion

CMG and joint torque 
capabilities 

Detachable joint motors 
Two control outputs 

per link Control available to operate 
CMGs and joint motors together

Measure power 
difference for a given 

maneuver 

Record current and voltage at 
motors

Six analog inputs per 
link 

Use feedback control to perform 
identical maneuver At least two links 
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testing surface is plate glass 0.013 m (0.5 in) thick and 1.22 m (4 ft) square. Glass was 

chosen to provide the stiffness necessary to maintain a flat surface when properly 

leveled so that gravity’s effects would be insignificant.The test surface limits the link 

length to less than 0.61 m (2 ft). The CMGs from the student team were placed closer 

together to attain the desired size while allowing the full range of motion. The 

grounding link is removable to permit experiments on free-floating robots as well as 

validation of the analyses of earlier chapters where the base is fixed. The joint range of 

motion was verified early in mechanical assembly as shown in Figure 31. 

Second, both CMGs and joint motors are available actuators. The joint motors are 

removable to avoid extra joint torques during CMG actuation. The joint motors are 

attached via a cogged belt so that changing from one actuation method to the other 

requires only removing the belt (see Figure 32). Two separate control channels from 

the computer permit a hybrid operation where both actuators are controlled. 

Communication between the computer and robot is achieved with a wireless USB hub 

(Belkin Wireless USB Hub) and USB DAQ board (Measurement Computing USB 

1408FS). 

Third, the power used by either method of actuation is recorded for direct 

comparison of the CMGs and joint motors. The electrical power of each motor is 

recorded, not the mechanical power. Joint-angle feedback helps ensure that the same 

base motion occurs when comparing the two actuation methods. At least two links and 

a ground are required to demonstrate the differences between the two actuation 

methods (see CHAPTER V).  
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Figure 31. Two links mechanically assembled. 
Joint range of motion and link length were verified during assembly. Sharp edges are 
protected, and the joint motor is seen in front of the gimbal structure on the left.  

 

Figure 32. Front view of testbed link. 
Cogs for joint-motor drive belt are visible at the front of the robot. Three air bearings 
provide support the robot on the glass surface. The wireless USB hub is mounted 
vertically on the left of the main beam for communication with main program.   
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B. Design 

A summary of the approximate physical values of the testbed robot is given in 

Table 9. The parameters in Table 9 are estimated from the 2008 CMG teams’ CAD 

models. The link mass and inertia are approximations that account for the addition of 

electronics and the air system. The motors purchased by the CMG team were chosen 

to permit max  =1 rad/s with max  = 1.22 rad (70 deg). However, sp is limited by the 

existing gimbal structure for the scissored pair used on our testbed. Slippage of the 

cogs used to transmit torque from a central gimbal motor to each CMG limits sp to 

approximately 0.5 N. 

The critical design choice is the selection of hr. A typical design application for 

CMGs would require a minimum output torque CMG. However, based on the analysis 

of the two-link robot, max  is chosen as the performance metric. Figures 14 and 33 

illustrate how hr and max  interact given the limitation on sp. The values used to 

Table 9. Physical parameters inherited from the CMG team. CMG inertia is half 
the inertia of the scissored pair. 

Rotor inertia, Ir Rotor speed,  Rotor momentum, hr CMG inertia, Icmg

0.0023 kg·m2 3000 rpm 0.71 N·m·s 0.009  kg·m2

 

Link inertia, Ib 
Distance from first joint to 

link center of mass, r
Link length, l Link mass, m

0.4 kg·m2 0.26 m 0.62 m 14 kg

 

Mechanical torque 
available, sp, j 

Available power, 
Pc, Pj

Target gimbal 
torque, sp

Link inertia about 
joint axis, Ibj

3.5  N·m 7.7 W 0.5  N·m 1.35 kg·m2
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generate Figures 14 and 33 satisfy sp <= 0.5 N and represent the rotors spinning at 

3000 rpm. For the parameters in Table 9, hr = 0.58, and max  = 0.8 rad/s when max = 

1.22 rad (70 deg). Even though the rotors are sized to spin at 3000 rpm, the optimal 

rotor speed is 2400 rpm (250 rad/s).  

The optimal hr of the preceding paragraph is for a single robot link rotating about 

a fixed joint, representative of the second link rotating while the first link is held fixed. 

The CMGs on the first link must act against the combined inertia of both links. The 

worst-case inertia of both links taken about the first joint is Ibj = 12.6 kg·m2. The 

optimal hr and corresponding max  for Ibj = 0.4 to 12.6 kg·m2 are shown in Figure 33. 

For a small robot, a larger CMG will not add agility unless the gimbal motor and 

structure is designed to support the additional loads. An interpretation of this is that 

 

Figure 33. Rotor sizing for testbed. 
The speed required for obtainin the optimal hr for achieving a maximal max  when sp 
is restricted as compared to a fixed speed. These data correspond to the data in 
Figure 14.  
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the CMGs provide a transmission that is inversely dependent on the robot speed, i.e., 

at low   sp is amplified onto the robot [Lappas et al., 2002], but at high speeds sp 

must overcome the added gyroscopic effects of the robot motion before effectively 

applying torque to the robot. 

The desired  , max , and max  also determine if max  is reachable by the robot. 

The value of max  is selected based on joint-motor actuation with j = 1.75 N, half the 

rated torque of the motor. For rotation of the second link only (Ibj2 = 1.35 kg·m2 taken 

about the joint axis), max  = 1.3 rad/s2. If Ibj1 = 12.6 kg·m2, i.e., the total inertia of the 

fully extended robot about the first joint, then max  = 0.14 rad/s2, and max  is found 

from Eq. (94). Equation (95) gives the minimum   that is needed to reach max  to 

verify that the joint range of motion is consistent with the other trajectory parameters. 

The robot trajectory parameters are summarized in Table 10.  

A simulation of the testbed with a single link rotating about a fixed base produces 

the joint trajectory shown in Figure 34a for a /2 rad rest-to-rest maneuver. The 

Table 10. Robot trajectory parameters. 

 Single link only Both links 

Ibj,j, kg·m2 1.35 12.6 

hr, N·m·s 0.58 1.8 

, rpm 2400 7400 

max , rad/s 0.81 0.26 

max , rad/s2 1.3 0.14 

max , rad/s3 2.1 0.073 

min  , rad 1.0 1.0 

t, s 
 = /2 rad

3.2 9.7 
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gimbal trajectory is shown in Figure 34b to emphasize the unique character of CMG 

actuation. The placement of the graphs emphasizes that the trajectories in Figure 34b 

represent a derivative shift from those in Figure 34a.  

The torque required by either actuation method is shown in Figure 35. The joint 

torque closely follows   as expected. In contrast, sp. does not follow   closely, but 

is rather a blend of all the gimbal states shown in Figure 34b. The maximum power is 

0.84 W for the CMGs and 0.77 W for the joint motor. 

C. Conclusions 

This case study of a CMG-robot testbed illustrates how the comparison of CMGs 

with joint motors in this dissertation may be used to size CMGs. Particular attention 

was given to the effect of limited gimbal torque on the optimal CMG size. The robot 

performance was expressed in terms of  ,  , and   to emphasize that momentum 

exchange is the primary means of operation for CMGs. 

a b  

Figure 34. Joint and gimbal angle trajectories for testbed simulation. 
a. The joint trajectory. b. Gimbal trajectory. Note that the gimbal position and velocity 
are closely related to the negative robot joint velocity and acceleration, respectively. 
The gimbal acceleration superimposes the robot jerk and velocity.  
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The CMG testbed is part of ongoing work to better understand CMGs for both 

traditional attitude control and space robotics. Unlike the analysis herein, the 

comparisons made between CMGs and joint motors will depend on the control 

algorithms. The CMG control given in Eq. (53) could be combined with path planning 

and trajectory control for a free-floating robot. (See [Moosavian and Papadopoulos, 

2007] for a recent review.) The hardware implementation also requires an analysis of 

the measurement uncertainties and the minimum sample rates.  

  

 

Figure 35. Testbed torques. 
Notice that j follows  , whereas sp corresponds to   and   shown in Figure 34.  
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CHAPTER VIII. CONCLUSION 

In the limit of an ideal rotor, momentum actuation via CMGs is theoretically as 

efficient as rigid-body actuation via joint motors, i.e. there is no hidden cost to using 

momentum actuation comparable to thermodynamics’ second law for dynamics. 

Friction losses and electromagnetic inefficiencies represent additional power costs in 

physical CMGs. A CMG-driven robot reduces the attitude control effort required to 

respond to robot motions by distributing the attitude control among the robot joints 

and helps simplify the dynamic interactions between the spacecraft and robot. 

Although the complexity of CMGs may not warrant replacing joint motors purely for 

power savings, additional benefits of eliminating a reaction torque on a spacecraft 

cannot be ignored. Furthermore, CMGs represent a more power-efficient option for 

reactionless actuation than reaction wheels. 

Scissored-pairs are the preferred CMG array architecture for CMG-driven robots. 

Geared scissored pairs in particular eliminate potential power losses due to transverse 

rates of the base spacecraft and consolidate actuation to a single motor.  Independent 

scissored pairs do have two gimbal motors and can operate as two fully independent 

CMGs for an additional degree of freedom. 

Throughout this paper, a number of design principles and pros and cons of CMG-

driven robots have been discussed.  Results that relate to the design of a CMG robot 

are summarized in Table 11. The torque amplification and gimbal-torque-limited 

CMG sizing were obtained through a general treatment of the CMG size, allowing for 

the possibility of rapid robot-arm movement beyond motions typical of single-body 

spacecraft because a link in a robot arm may have a much smaller inertia relative to 

the CMG inertia than for an entire spacecraft.  
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A summary of the pros and cons of a CMG robot as discussed in this dissertaion 

and related references is provided in Table 12. Table 12 also discusses the utility of 

combining CMGs and joint motors. Strategically placed CMGs on the robot could 

reduce reaction forces on the spacecraft by reducing the joint torques. Joint motors in 

Table 11. Summary of design tools.  

Description Equation Reference 

Calculate CMG dynamics from 
equivalent joint-motor robot 

   , , ,T B D         
  Eq. (118) 

Conservation of angular 
momentum about joint axis 

 B/N B/N ˆ 0b
     ω I ω t

 
Eq. (76) 

Gimbal rate bound  tanmax max max     
 

Eq. (79) 

Torque amplification 
ˆ,

2 cos
cmg b

sp r

I

h


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



t

 
Eq. (83) 

Gimbal-torque-limited design 
ˆ,

2r spb
h I 

t  and 

ˆ,
2 sinmax sp maxb

I  
t


 

Eqs. (86) 
and (87) 

Gimbal acceleration and robot 
jerk 

ˆ,
22 sin

2 cos
rb

r

I h

h

  



 


 
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Eq. (88) 

Relative power costs of CMGs 
to joint motors 

ˆ,
2 22 cosmax

cmg maxb
rel

max r max

I I
P

h 


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
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


t

 
Eq. (92) 
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turn would provide a path to exchange momentum between robot links and the 

spacecraft to restore the CMGs to a neutral position, relaxing the requirement that 

angular momentum be conserved about each joint axis. Also, joint motors provide a 

means to produce or resist persistent torques that would otherwise saturate the CMGs. 

An operations concept for a combined actuation method is to use the CMGs for 

positioning the robot and payload into an anchored position on the spacecraft, and let 

the joint motors provide the torque for any operations once the payload is anchored.  

A smaller, more agile robot may need to devote a significant fraction of its mass 

and inertia to the CMGs. In such robots, gimbal inertia and rotor momentum must be 

carefully selected to limit the maximum power requirements. Gimbal motor selection 

Table 12. Pros and cons of CMG-driven robotic joints.  

Pros Cons 

Reduce reaction forces on spacecraft Adds mechanical complexity 

Simplify spacecraft attitude and 
robot control interactions 

Sensitive to conservation of angular 
momentum about each joint axis 
(but robust to transverse rates 

otherwise) 

Use existing dynamics and control 
methods from robotics with a nested 

loop for the CMGs 

Spin-up and quiescent power costs 

Theoretical power performance near 
that of joint motors, better for 

reaching motions 

Vibration from spinning rotors 

CMG dynamics limit jerk of robot 
Unable to provide persistent 

torques 
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is aided by the bound on the gimbal rate and estimated gimbal torque. For sizing the 

motor on a single CMG used in an arbitrary array, the scissored-pair gimbal angle  

corresponds to the angle between the rotor momentum and the array’s output-torque 

axis. The rate bound applies, and the gimbal torque is approximated by half the 

scissored-pair torque. The difficulty in extending these results to an arbitrary CMG 

array is that the maximum gimbal angle is not well defined because the array’s output-

torque axis is continually changing and the gimbals are typically free to rotate 

continuously. However, control based on limiting an analogous maximum gimbal 

angle so that CMGs are not asked to provide actuation when the angle between the 

rotor momentum and the desired output torque axis exceeds a specified value may also 

improve robustness to singularities. 

Simulations that include transverse rotations of the spacecraft base indicate that 

relative power use is not affected by gyroscopic torques as a consequence of the 

scissored-pair architecture used. A robot that does not conserve momentum about the 

joint axes introduces additional complexity in the design of CMG-actuated robots 

because the gimbals do not necessarily return to their original position in a rest-to-rest 

maneuver. Such concerns arise for robotic manipulation because the inertial properties 

of a payload are uncertain. CMGs redirect the momentum of the robot without 

torqueing against an inertial base. However, robotic manipulators are often called on 

to provide torques against a payload and would saturate a purely gyroscopic actuator. 

A possible solution to avoid saturating the CMGs is to combine CMG actuation with 

joint motors where the required torques are distributed among the CMGs and joint 

motors according to some design criteria.  

Recursive equations of motion for a general n-link robot facilitate simulation of 

robots with increasing numbers of links. A two-link robot with orthogonal axes can 

often be written as two independent, single-link robots. If the equations of motion 
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cannot be decoupled for such a joint topology, angular momentum is not conserved 

about the joint axes, and the CMGs may have trouble avoiding saturation.  

For a planar two-link robot, CMGs provides an advantage in power use for 

maneuvers with opposite joint motions, such as reaching motions. Replacing CMGs 

with body torques explains their advantage over joint torques for these motions, as 

well as the corresponding advantage of joint torques for other maneuvers.   

Considering a general robotics system with either joint torques or body torques 

provides context for the CMG robot. For robots with a mix of actuation methods, the 

link closest to the spacecraft may operate with a body torque (e.g. CMGs) without 

sacrificing optimal power usage. An overactuated, three-link planar robot tracing a 

closed triangular path uses less energy than either joint-torque or body-torque-only 

configurations. 

An illustrative case study sizing CMGs for a testbed currently in development 

demonstrates the importance of gimbal torque on CMG sizing. Future work with the 

testbed will implement control algorithms designed for CMGs as well as demonstrate 

the value of CMGs on robotic appendages of free-floating spacecraft. 

A further recommendation for continued work is to generalize the CMG design 

rules laid out in this work to apply to arbitrary arrays of CMGs on spacecraft. 

Scissored pairs will likely be ready replacements for reaction wheels with significant 

gains in torque available and reductions in the power requirements of the attitude 

control system. Additional, though smaller, gains from other CMG arrays would then 

have a baseline gained through much greater flight heritage than now exists. 
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