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It has long been recognized that many distributed problems can be analyzed in terms

of how agents act based on what they know about the system they are in. To make

this intuition formal, Fagin, Halpern, Moses, and Vardi [25, 26] proposed a theory of

programs for multi-agent systems in which preconditions of actions are formulas in a

logic of knowledge. Knowledge-based programs have been successfully applied to a

number of fundamental problems. This dissertation aims at further investigating the

role of knowledge-based programs in the study of distributed systems.

We focus first on a general problem in distributed settings: given a function f whose

value depends on the whole networkN , the goal is for every agent to eventually compute

the value f(N). We call this problem global function computation. We give a necessary

and sufficient condition for the problem to be solvable and provide a knowledge-based

program that solves the global function computation problem whenever possible. The

program guarantees a certain level of optimality by having agents send messages only

when they believe it is necessary to do so, and allows for systems in which agents are

anonymous.

Second, we consider the synthesis of knowledge-based programs. In general, to pro-

duce a program guaranteed to satisfy a given specification, one can try to synthesize it

from a formal proof that a computation satisfying that specification exists. We build on a

technique proposed by Bickford and Constable [11, 12] for extracting message automata

from specifications of multi-agent systems to show how knowledge-based message au-

tomata can be synthesized using a proof development system such as Nuprl [19].



Third, we consider the problem of ensuring secrecy in a multi-agent system by dis-

allowing unwanted flows of information. We discuss knowledge-based formulations of

information-flow properties, with a focus on the basic security predicates in the Modular

Assembly Kit proposed by Mantel [62].
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CHAPTER 1

INTRODUCTION

Agents in a distributed system act based on what they know, or do not know. The

notion of action as a function of agents’ knowledge is well-established in the distributed

systems literature [15, 27, 28] and a number of fundamental results make use of it [21,

39, 42, 46, 65, 74].

Fagin, Halpern, Moses, and Vardi [25, 26] suggested the use of knowledge-based

programs to describe the connection between knowledge and actions. Formally,

knowledge-based programs [26, 40, 41, 73] are programs in which preconditions of

actions are epistemic formulas. For example, an agent i that sends a message msg to

agent j only if he does not know that j knows some fact ϕ can be seen as following the

knowledge-based program

if Ki(Kjϕ) then skip else send(msg).

(As usual, we write Kiϕ to denote that agent i knows ϕ.)

Knowledge-based programs have been successfully applied to a number of prob-

lems, such as simultaneous actions and coordination [73], sequence transmission [50],

analyzing the TCP protocol [82], and consensus [71]. They have the advantage of ab-

stracting away from details of implementations or specifics of the system. Often, a

single knowledge-based program can be written to characterize the behavior of agents

in different environments. This is particularly important in the context of distributed

systems that vary widely in the types of assumptions made about communication (e.g.,

via shared memory or message-passing), network structure, reliability, and agents (e.g.,

faulty or robust, anonymous, mobile, active participants in a protocol or passive wire-

tappers, honest or malicious, etc.).
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This thesis is concerned with the use of knowledge-based programs for solving dis-

tributed problems, and focuses on three aspects: (1) analyzing the general problem of

computing a function of the network in a distributed system and formalizing a program

that solves this problem in a message-optimal way; (2) extending existing techniques

for program synthesis to allow for knowledge-based specifications, and (3) analyzing

information-flow properties as imposing constraints on what an adversary may know or

should never learn about the system. The purpose of this section is to provide evidence

that these goals are relevant and to motivate our approach.

1.1 The global function computation problem

A number of classic distributed problems can be seen as instances of a more general

problem of computing a global function, i.e., a function of the entire network. For ex-

ample, if each agent has a certain input value, the goal may be for all agents to eventually

compute an average (maximum etc.) of all the inputs. This is the case for the well-known

leader election problem [60]: the leader is the agent with the largest (or smallest) input.

Computing characteristics of the network seen as a graph, like the diameter, size, upper

bound on the size, a minimum spanning tree [34], or the shortest paths between nodes

[10, 32], can also be seen as instances of the global function computation problem.

If the network is known by all agents, then computing a global function is typically

straightforward. However, in a distributed setting, agents have only limited informa-

tion about the network, which makes the problem more difficult. For example, agents

may have information only about their input value and a small neighborhood in the

network, but have no information about the number of agents in the network. The prob-

lem increases in complexity in settings where agents cannot be uniquely identified (by,
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for example, an IP address or input value) by others agent in the system. For instance,

when agents know their identifiers and all identifiers are unique, several solutions for the

leader-election problem have been proposed, both in the synchronous and asynchronous

settings [17, 56, 77]. On the other hand, Angluin [4], and Johnson and Schneider [54]

proved that it is impossible to deterministically elect a leader if agents may share names.

In general, the difficulty of solving the global function computation problem depends

on what agents know. The questions we want to answer are:

• What do agents need to know for the problem of computing a global function f

to be solvable?

• What is a general protocol for solving the global function computation problem?

• What do existing protocols for computing a global function f have in common?

To answer these questions, we describe a simple knowledge-based program for com-

puting a global function. The program says that, at each point in time, and for any agent,

if the agent has some new information about the network or the function value, he should

send it to all his neighbors he does not know that they know his new information. In-

tuitively, if it is possible for agents on N to compute f(N), then this program should

allow agents to do so.

There are, however, a number of subtleties in making this simple knowledge-based

program precise, like defining what means for an agent to have new information, allow-

ing settings in which agents may not know the identities of their neighbors, and formal-

izing what it means for an agent to reason about what different agents know about his

information. More explicitly, if we are to take anonymous agents into account, we can-

not write a formula KiKjϕ to denote the fact that agent i knows that j knows ϕ, since i

may not know that his neighbor has identifier j. Instead, we can assume that agent i has

a way of naming each of his neighbors (for example, by “left” or “right” if the network

3



is known to be a ring), and if i names his neighbor n, then in a program for agent i we

KiKnϕ instead of KiKjϕ.

While the knowledge-based program can be shown to solve the global function com-

putation problem whenever possible, it is not optimal. We can use fewer messages by

requiring that agents send messages only when they know this is necessary, that is, if

some goal would not be achieved if the message were not sent. For the purpose of global

function computation, the goal is for the agent to learn the function value.

Changing the knowledge-based program along these lines is not straightforward.

The key problem is that, while in all executions of the program on a given network, an

agent may actually always send his new information to his neighbors, to decide whether

to send his information or not, the agent has to reason about what would happen had he

not sent the information. In other words, the agent has to reason about counterfactual

situations. Counterfactual-based programs [43] are programs in which preconditions

on actions may contain counterfactual implications. We extend the formalization of

counterfactual-based programs to allow for anonymous agents. This allows us to write a

program that solves the global function computation problem whenever possible, where

no unnecessary messages are sent. This is the subject of Chapter 2. This material is

joint work with Joseph Halpern; a preliminary version appeared in [48].

1.2 Program synthesis from knowledge-based specifications

For the analysis of problems like global function computation, there is a clear intuition

about what the knowledge-based program for solving the problem should be; the diffi-

culty lies in formalizing the program and proving its correctness. However, in general,

finding a program that satisfies a given specification may not be easy.
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One proposed methodology builds upon refinement calculus [7] and constructive

logic [58]. In refinement calculus, the specification is given as a formula, which is then

refined into subgoals. With constructive logic, the proof of the formula characterizing

the specification actually provides a program that satisfies the specification. Moreover,

the program constructed this way is guaranteed to be correct. For this reason, this

approach is known as correct by construction program extraction.

Constructive logic has been successfully applied to extract sequential programs from

proofs that a specification is correct [1], but relatively less research has been carried out

for the extraction of distributed programs from specifications about distributed systems.

An approach for program extraction from specifications of distributed systems in an

event-based formalism has been proposed by the Nuprl group [11, 12]. Distributed sys-

tems are described in terms of sequences of events with additional structure, called event

structures. Specifications are then predicates on event structures. From the proof that a

specification is satisfiable, a program in this language that satisfies the specification can

be extracted.

Our goal is to extend the framework to express knowledge. We show how Nuprl can

be extended to allow epistemic formulas, and how the programming language can be

generalized to allow for knowledge-based programs. We give a number of axioms that

connect knowledge-based programs to the specifications they satisfy. We extend the

framework to allow for extracting knowledge-based programs from knowledge-based

specifications and apply it to the sequence transmission problem [50]. This is the subject

of Chapter 3. This material represents joint work with Mark Bickford, Robert Constable,

and Joseph Halpern; a preliminary version appeared in [13].
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1.3 Knowledge-based formulations of information-flow properties

In Chapter 4 we turn our attention to a problem that has received increased interest

in distributed systems community, secrecy. In particular, we focus on the notion of

secrecy interpreted as the lack of information flow between domains at different levels

of security [35, 36, 66, 75, 85] and on its formulation in a logic of knowledge.

A system is considered to exhibit an insecure information flow if a user at a lower

level of security can gain information about the activity at higher levels of security.

Many variations on this theme are possible, depending on what type of information is

considered sensitive, and on the capabilities of the unauthorized users. Our focus is

on one of the frameworks for expressing information-flow requirements that has gained

widespread acceptance, the Modular Assembly Kit (MAKS) proposed by Mantel [62].

The main motivation in our choice is that MAKS was proven to express a number of

well-known information-flow constraints [64]. Furthermore, a key feature of the frame-

work is modularity, as it allows building complex information-flow properties from ba-

sic security predicates. With this approach, the problem of analyzing whether a system

satisfies a complex security property reduces to verifying that the system satisfies all

the basic security predicates that make up the complex property [51]. Thus, the MAKS

framework is easily amenable to proof techniques based on refinement calculus. Indeed,

a number of automatic provers have been developed for the framework [63].

It has been long recognized that information-flow properties have simple intuitive

reformulations as restrictions on what users at lower levels of security may know about

users at higher levels of security. Formally, these restrictions can be expressed as

epistemic formulas, which have the advantage of simplicity and closeness to natural-

language formulations [47]. Up to now, the information-flow properties that have been
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expressed in epistemic logic are ones that preclude the low-level users from ever know-

ing some function of the local state of the high-level users. Some of the building blocks

in Mantel’s proposed framework do not seem to naturally fit into this category. More

specifically, Halpern and O’Neill [47] define a j-information function f as any function

that depends only on agent j’s local state, and focus on formalizing what it means for

an agent i to never learn any information about the values of such functions. Broadly

speaking, this is shown equivalent to ensuring the validity of all formulas ¬Kiϕ, where

ϕ is any nontrivial fact whose interpretation depends only on agent j’s state. MAKS

properties, on the other hand, are typically formulated as closure conditions on a set of

traces (i.e., sequences of events) that describe the executions of a system. They say that

for each trace in the system, there exists another trace in the system that satisfies some

properties. For example, one may require that removing the last confidential event in a

trace gives a trace the low-level user cannot distinguish from the original trace.

We show how we can express a number of MAKS-style definitions in terms of

knowledge. In the process of doing this, we show that, while the intuition behind the

definitions seems clear, the translation into epistemic framework is not straightforward.

A closer look at these definitions raises some questions:

• To what extent do the MAKS building blocks match the informal explanations

typically given for them?

• Can we provide intuitive explanations for the differences between MAKS proper-

ties and their natural variations?

There has been increased interest in extensions of the definitions for some of the

MAKS building blocks to take cryptography into account. Some definitions have been

given recently by Hutter and Schairer [53]. We show that the reformulations of MAKS-

style information-flow properties as knowledge-based formulas can be naturally ex-

tended to cryptographic settings, where agents’ inability to distinguish two encrypted

7



messages is taken into account. Our definitions are different from those proposed by

Hutter and Schairer. We show that the differences lie in the assumptions about the ad-

versary’s capabilities. While these assumptions are implicit elsewhere in the literature,

the knowledge-based formulation of information-flow properties has the advantage of

making explicit the connection between an adversary’s knowledge and his capabilities.
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CHAPTER 2

KNOWLEDGE-BASED ANALYSIS OF GLOBAL FUNCTION

COMPUTATION

2.1 Overview

Consider a distributed system N in which each agent has an input value and each com-

munication link has a weight. Given a global function, that is, a function f whose value

depends on the whole network, the goal is for every agent to eventually compute the

value f(N). We call this problem global function computation. Many distributed proto-

cols involve computing some global function of the network. This problem is typically

straightforward if the network is known. For example, if the goal is to compute the

spanning tree of the network, one can simply apply one of the well-known algorithms

proposed by Kruskal or Prim. However, in a distributed setting, agents may have only

local information, which makes the problem more difficult. For example, the algorithm

proposed by Gallager, Humblet and Spira [34] is known for its complexity.1 Moreover,

the algorithm does not work for all networks, although it is guaranteed to work correctly

when agents have distinct inputs and no two edges have identical weights. Computing

shortest paths between nodes in a network is another instance of global function com-

putation that has been studied extensively [10, 32]. The well-known leader election

problem [60] can also be viewed as an instance of global computation in all systems

where agents have distinct inputs: the leader is the agent with the largest (or smallest)

input.

The difficulty in solving global function computation depends on what agents know.
1Gallager, Humblet, and Spira’s algorithm does not actually solve the minimum spanning tree as

we have defined it, since agents do not compute the minimum spanning tree, but only learn relevant
information about it, such as which of its edges lead in the direction of the root.
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For example, when agents know their identifiers (names) and all ids are unique, several

solutions for the leader election problem have been proposed, both in the synchronous

and asynchronous settings [17, 56, 77]. On the other hand, Angluin [4], and Johnson and

Schneider [54] proved that it is impossible to deterministically elect a leader if agents

may share names. In a similar vein, Attiya, Snir and Warmuth [6] prove that there is no

deterministic algorithm that computes a non-constant Boolean global function in a ring

of unknown and arbitrarily large size if agents’ names are not necessarily unique. Attiya,

Gorbach, and Moran [5] characterize what can be computed in what they call totally

anonymous shared memory systems, where access to shared memory is anonymous.

We aim to better understand what agents need to know to compute a global function.

We do this using the framework of knowledge-based (kb) programs, proposed by Fagin,

Halpern, Moses and Vardi [25, 26].

We first characterize when global function computation is solvable, i.e., for which

networksN and global functions f agents can eventually learn f(N). As we said earlier,

whether or not agents can learn f(N) depends on what they initially know about N . We

model what agents initially know as a set N of networks; the intuition is that N is the set

of all networks such that it is common knowledge thatN belongs toN . For example, if it

is commonly known that the network is a ring, N is the set of all rings; this corresponds

to the setting considered by Attiya, Snir and Warmuth [6]. If, in addition, the size n of

N is common knowledge, then N is the (smaller) set of all rings of size n. Yamashita

and Kameda [86] focus on three different types of sets N : (1) for a given n, the set of

all networks of size n, (2) for a fixed d, the set of all networks of diameter at most d,

and (3) for a graph G, the set of networks whose underlying graph is G, for all possible

labelings of nodes and edges. In general, the more that is initially known, the smaller

N is. Our problem can be rephrased as follows: given N and f , for which sets N is it
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possible for all agents in N to eventually learn f(N)?

For simplicity, we assume that the network is finite and connected, that communi-

cation is reliable, and that no agent fails. Consider the following simple protocol, run

by each agent in the network: agents start by sending what they initially know to all of

their neighbors; agents wait until they receive information from all their neighbors; and

then agents transmit all that they know on all outgoing links. This is a full-information

protocol, since agents send to their neighbors everything they know. Clearly with the

full-information protocol all agents will eventually know all available information about

the network. Intuitively, if f(N) can be computed at all, then it can be computed when

agents run this full-information protocol. However, there are cases when this protocol

fails; no matter how long agents run the protocol, they will never learn f(N). This can

happen because

1. although the agents actually have all the information they could possibly get, and

this information suffices to compute the value of f , the agents do not know this;

2. although the agents have all the information they could possibly get (and perhaps

even know this), the information does not suffice to compute the function value.

In Section 2.2, we illustrate these situations with simple examples. We show that there is

a natural way of capturing what agents know in terms of bisimilarity relations [69], and

use bisimilarity to characterize exactly when global function computation is solvable.

We show that this characterization provides a significant generalization of results of

Attiya, Snir, and Warmuth [6] and Yamashita and Kameda [87].

We then show that the simple program where each agent just forwards all the new

information he obtains about the network solves the global function computation prob-

lem whenever possible. It is perhaps obvious that, if anything works at all, this program
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works. We show that the program terminates with each agent knowing the global func-

tion value iff the condition that we have identified holds.

Our program, while correct, is typically not optimal in terms of the number of mes-

sages sent. Generally speaking, the problem is that agents may send information to

agents who already know it or will get it via another route. For example, consider an

oriented ring. A simple strategy of always sending information to the right is just as

effective as sending information in both directions. Thus, roughly speaking, we want to

change the program so that an agent sends whatever information he learns to a neighbor

only if he does not know that the neighbor will eventually learn it anyway.

Since agents decide which actions to perform based on what they know, this will be

a kb program. While the intuition behind this kb program is quite straightforward, there

are subtleties involved in formalizing it. One problem is that, in describing kb programs,

it has been assumed that names are commonly known. However, if the network size is

unknown, then the names of all the agents in the network cannot be commonly known.

Things get even more complicated if we assume that identifiers are not unique. For

example, if identifiers are not unique, it does not make sense to write “agent i knows

ϕ”; Kiϕ is not well defined if more than one agent can have the id i.

We deal with these problems by using techniques introduced by Moses and Roth [72]

and further developed by Grove and Halpern [37, 38]. Observe that it makes perfect

sense to talk about each agent acting based on his own knowledge by saying “if I know

ϕ, then . . . ”. I here represents the name each agent uses to refer to himself. This

deals with self-reference; by using relative names appropriately, we can also handle the

problem of how an agent refers to other agents.

A second problem arises in expressing the fact that an agent should send information
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to a neighbor only if the neighbor will not eventually learn it anyway. As shown by

Halpern and Moses [43] the most obvious way of expressing it does not work. However,

we can capture this intuition by using counterfactuals. These are statements of the form

ϕ > ψ, which are read “if ϕ then ψ”, but the “if ... then” is not treated as a standard

material implication. In particular, the formula is not necessarily true if ϕ is false.

In Section 2.3.1, we provide a kb program that uses counterfactuals which solves the

global function computation problem whenever possible, while considerably reducing

communication overhead.

As a reality check, for the special case of leader election in networks with distinct

ids, we show in Section 2.6 that the counterfactual-based program is implemented by the

protocols of Le Lann, Chang and Roberts [56, 17], and Peterson [77], which all work in

rings (under slightly different assumptions), and by the optimal flooding protocol [60]

in networks of bounded diameter. Thus, the kb program with counterfactuals shows the

underlying commonality of all these programs and captures a key intuition behind their

design.

The rest of this paper is organized as follows. In Section 2.2 we give our character-

ization of when global function computation is possible. In Section 2.3 we formalize

the flooding protocol and prove that it solves the global function computation problem

whenever possible. In Section 2.4 we describe the kb program for global function com-

putation, and in Section 2.5 show how to optimize it so as to minimize messages. In

Section 2.6, we show that the program essentially implements some standard solutions

to leader election in a ring.
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2.2 Characterizing when a global function is computable

We model a network as a directed, simple (no self-loops and at most one edge between

each pair of nodes), strongly connected, and finite graph, where both nodes and edges

are labeled. Each node represents an agent; its label is the agent’s input, possibly to-

gether with the agent’s name (identifier). Edges represent communication links; edge

labels usually denote the cost of message transmission along links. Communication is

reliable, meaning that every message sent is eventually delivered and no messages are

duplicated or corrupted. We assume that message delivery is handled by the channel

(and is not under the control of the agents).

We assume that initially agents know their local information, i.e., their own input

value, the number and orientation of their links, and the weights associated with their

outgoing links. Moreover, agents can distinguish among links with the same orientation

and weight; that is, agents view their incoming and outgoing links an ordered tuples, not

as multisets. However, agents do not necessarily initially know the weights on non-local

edges, the weights on their incoming edges, or any topological characteristics of the net-

work, such as size, upper bound on the diameter, or the underlying graph. Additionally,

agents may not know the identity of the agents they can directly communicate with, or

if they have the same names as other agents. In order to uniquely identify agents in a

networkN of size n, we label agents with “external names” 1, . . ., n. Agents do not nec-

essarily know these external names; we use them for our convenience when reasoning

about the system. A global function f is a function on networks that does not depend on

these external names; f(N) = f(N ′) for any two networks N and N ′ that differ only in

the way that nodes are labeled.

Throughout the paper we use the following notation: We write V (N) for the set
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of agents in N and E(N) for the set of edges. For each i ∈ V (N), let OutN(i) be

the set of i’s neighbors on outgoing links, so that OutN(i) = {j ∈ V (N) | (i, j) ∈

E(N)}; let InN(i) be the set of i’s neighbors on incoming links, so that InN (i) = {j ∈

V (N) | (j, i) ∈ E(N))}; an undirected link between i and j is modeled by having both

(i, j) and (j, i) inN . The neighbors of i are the agents inOutN(i)∪InN (i). Let inpN (i)

denote i’s input value. Finally, if e is an edge in E(N), then wN(e) denotes e’s label.

Definition 2.2.1: A global function f is computable in a set N of networks if and only

if there exists a protocol P such that, for all networks N ∈ N , if agents run P on N ,

then eventually P terminates and returns f(N). In this case, we say that P computes f

in N .

Note that we consider here an information-theoretical notion of computability; we are

not concerned with computation time. Also note that computability is relative to the

set N of networks. To capture the fact that only networks in N are being considered,

we assume that N is part of each agent’s initial information (and, thus, is common

knowledge).

We consider both synchronous and asynchronous systems. In a synchronous system,

we assume that a round consists of a sending phase and a receiving phase. All round

k messages that are sent in the sending phase are received in the receiving phase of

round k. In the asynchronous setting, we assume that all messages sent are eventually

received, but make no assumptions about the delivery time. Messages can be received

in arbitrary order. Our focus in this section is on full-information protocols, where an

agent starts by sending to all his neighbors his initial information, and then forwards to

all his neighbors all the messages he receives.

Intuitively, the full-information protocol reduces uncertainty. For example, suppose
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that N consists of all directed 3-node rings, and let N be a 3-node ring in which agents

have inputs a, b, and c, and all edges have the same weight w. For simplicity, suppose

that the system is synchronous. Let i be the external name of the agent with input a.

Initially, i considers possible all 3-node rings in which the weight on his outgoing edge

is w and his input is a. After the first round, i learns from his incoming neighbor, who

has external name j, that j’s incoming edge also has weight w, and that j has input

c. Agent j learns in the first round that his incoming neighbor has input b and that his

incoming edge also has weight w. Agent j communicates this information to i in round

2. At the end of round 2, i knows everything about the network N , as do the other two

agents. Moreover, he knows exactly what the network is. More explicitly, i knows the

weighted graph N up to isomorphism. But this depends on the fact that i knows that the

ring has size 3.

Round 0 Round 1 Round 2

Figure 2.1: How i’s information changes with the full-information protocol.

Now consider the same network N , but suppose that agents do not know the ring

size, that is, N is the set of all directed rings (i.e., rings where messages can be sent

in only one direction), of all possible sizes and for all input and weight distributions.

Again, at the end of round 2, agent i has all the information that he could possibly

get, as do the other two agents. However, at no point are agents able to distinguish the

networkN from a 6-node ringN ′ in which agents look just like the agents on the 3-node

ring (see Figure 2.2). Consider the pair of agents i in N and i′ in N ′. It is easy to check
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that these agents get exactly the same messages in every round of the full-information

protocol. Thus, they have no way of distinguishing which is the true situation. If the

function f has different values on N and N ′, then the agents cannot compute f(N). On

the other hand, if N consists only of networks where inputs are distinct, then i realizes

at the end of round 2 that he must be k’s neighbor, and then he knows the network

configuration.

Figure 2.2: Two indistinguishable networks.

We want to characterize when agent i in network N thinks he could be agent i′ in

network N ′. Intuitively, at round k, i thinks it possible that he could be i′ if there is a

bijection µ that maps i’s incoming neighbors to i′’s incoming neighbors such that, at the

previous round k − 1, each incoming neighbor j of i thought that he could be µ(j).

Definition 2.2.2: Given networks N and N ′ and agents i ∈ V (N) and i′ ∈ V (N ′), i and

i′ are 0-bisimilar, written (N, i) ∼0 (N ′, i′), iff

• inpN (i) = inpN ′(i′);

• there is a bijection f out : OutN(i) −→ OutN ′(i′) that preserves edge-labels; that

is, for all j ∈ OutN(i), we have wN(i, j) = wN ′(i′, f out(j)), and

• InN(i) and InN ′(i′) have the same number of elements.

For k > 0, i and i′ are k-bisimilar, written (N, i) ∼k (N ′, i′), iff

• (N, i) ∼k−1 (N ′, i′), and
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• there is a bijection f in : InN (i) −→ InN ′(i′) such that for all j ∈ InN(i)

– wN(j, i) = wN ′(f in(j), i′), and

– (N, j) ∼k−1 (N ′, f in(j)).

Note that ∼k is an equivalence relation on the set of pairs (N, i) with i ∈ V (N), and

that ∼k+1 is a refinement of ∼k.

The following lemma relates bisimilarity and the full-information protocol in syn-

chronous systems:

Lemma 2.2.3: The following are equivalent in synchronous systems:

(a) (N, i) ∼k (N ′, i′).

(b) Agents i ∈ V (N) and i′ ∈ V (N ′) have the same initial information and receive

the same messages in each of the first k rounds of the full-information protocol.

(c) Agents i and i′ have the same initial information and receive the same messages

in each of the first k rounds of every deterministic protocol.

Proof: We first prove that (a) implies (c). Let P be an arbitrary deterministic pro-

tocol. The proof proceeds by induction on k, with the base case following from the

definition of ∼0. Suppose that, if (N, i) ∼k (N ′, i′), then i and i′ have the same ini-

tial information and receive the same messages in each of the first k rounds of protocol

P , and that (N, i) ∼k+1 (N ′, i′). Then (N, i) ∼k (N ′, i′), and there exists a bijection

f in : InN(i) −→ InN ′(i) such that (N, j) ∼k (N ′, f in(j)) for all j ∈ InN (i). From the

induction hypothesis, it follows that i and i′ have the same initial information and receive

the same messages in the first k rounds of P ; moreover, for each incoming neighbor j of

i, j and f in(j) have same initial information and receive same messages in each of the
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first k rounds of P . Hence, j and f in(j) have the same local state at time k and, since P

is deterministic, j sends i the same messages as f in(j) sends to i′. Thus, i and i′ receive

same messages in round k + 1 of protocol P .

The proof that (c) implies (b) is immediate, since the full-information protocol is a

special case of a deterministic protocol.

Finally, we prove that (b) implies (a) by induction on k. For k = 0, it is clear from

Definition 2.2.2 that (N, i) ∼0 (N ′, i′) exactly when i and i′ have the same initial infor-

mation. For the inductive step, suppose that i and i′ have the same initial information

and receive the same messages at each round k′ ≤ k + 1. Since agents are running a

full-information protocol, we can construct a mapping f in from InN (i) to InN ′(i′) such

that for all j ∈ InN(i), the information that i receives from j is the same as the infor-

mation that i′ receives from f in(j) in each of the first k+ 1 rounds. Since j is following

a full-information protocol, it follows that j must have the same initial information as j ′

and that j and j ′ receive the same messages in each of the first k rounds. By the induc-

tion hypothesis, (N, j) ∼k (N ′, f in(j)). Since part of i’s information from j is also the

weight of edge (j, i), f in must preserve edge-weights. Thus, (N, i) ∼k+1 (N ′, i′).

We now show that, even in asynchronous systems, if the function f can be computed

in a network N ∈ N at, then it can be computed using a full-information protocol. An

agent can output the value of f when he knows the value, that is, when f takes on the

same value at all networks that the agents consider possible. The exact round at which

it happens (if ever) depends on the network N , the function f , and the set N of possible

networks. Moreover, if there is no such round (i.e., at all times, there exists some agent

that considers it possible that the network is N ′ ∈ N , where f(N ′) 6= f(N)), then f is

not computable in N with respect to N . Using Lemma 2.2.3, we can characterize if and

when it happens.
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Definition 2.2.4: f is knowable with respect to N and N if

∃kN ,N,f . ∀N
′ ∈ N . ∀i ∈ V (N). ∀i′ ∈ V (N ′). ((N, i) ∼kN ,N,f

(N ′, i′) ⇒ f(N ′) = f(N));

that is, if there exists a constant kN ,N,f (which may depend on N , N and f ) such that f

takes the same value on N as on any network N ′ in N such that there exist two kN ,N,f -

bisimilar agents i in N and i′ in N ′, respectively. f is knowable with respect to N if f

is knowable with respect to N and N for all N ∈ N .

Definition 2.2.5: Agent i considers (N, i′) possible at time k in run (execution) r of

protocol P if i′ ∈ V (N), i has the same initial information as i′, and there exists a run

r′ of protocol P and time k′ such that i has received the same sequence of messages at

time k in run r as i′ has at time k′ in run r′. Agent i knows that the value of f is v at time

k in run r of protocol P if f(N) = v for all networks N such that i considers (N, i′)

possible for some i′ ∈ V (N) at time k in run r.

We remark that the notion of knowledge used here is consistent with the formal defini-

tion of knowledge given in Section 2.4.2.

Theorem 2.2.6: The global function f is computable in N if and only if f is knowable

with respect to N .

Proof: First suppose that the system is synchronous. Consider the following protocol P .

In round 1, each agent sends all its initial information to all its neighbors. For k > 1, if

agent i receives the value of f in round k−1 or knows the value of f at the beginning of

round k of the full-information protocol, then he outputs the value of f , sends the value

to all his neighbors in round k, and then halts. Otherwise, i forwards all the messages

he has received in round k − 1 to all his neighbors.
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We now show that protocol P computes f . Suppose not. Then there must be some

network N ∈ N and agent i ∈ V (N) such that agent i does not output f(N). Since N

is strongly connected, it easily follows that no agent in N outputs f(N). (If j outputs

f(N), and k is the length of the shortest path from j to i, then i will output f(N) within

at most k steps.) Thus, all agents run the full-information protocol in N . Since f is

knowable with respect to N and N , there must be some constant kN ,N,f such that ∀i ∈

V (N). ∀i′ ∈ V (N ′). ((N, i) ∼kN ,N,f
(N ′, i′) ⇒ f(N ′) = f(N)). By Lemma 2.2.3, it

follows that i knows the value of f at some round k ≤ kN ,N,f , and thus outputs f(N),

contradicting our initial assumption.

Now suppose that the system is not synchronous. We consider essentially the same

protocol P : each agent sends his initial information to all his neighbors. Suppose that

i receives a message. If the message is either the value of f or i knows the value as

the result of receiving the message using the full-information protocol, then i outputs

the value of f , sends it to all his neighbors, and terminates; otherwise, i forwards the

message to all his neighbors. We claim that, again, P computes f in N . Suppose not.

Then there must exist some N ∈ N , agent i ∈ V (N), and a run r of P such that agent

i does not output f(N) in r. Again, it easily follows that no agent in N outputs f(N)

r, so all agents are essentially following the full-information protocol in r. Since all the

messages sent are eventually received, for each all agents j and j ′ and times m, agent j

must send a message after time m in r.

We claim that, for all rounds k, and all agents j, there exists a time kj such that the

set of (N ′, j ′) pairs that j considers possible at time kj in r is a (not necessarily strict)

subset of the pairs that j considers possible at the beginning of round k of a run of the

full-information protocol in network N in a synchronous system. Roughly speaking,

this says that, even in an asynchronous system, agents eventually learn everything that
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they do in the synchronous system using the full-information protocol. We proceed

by induction on k. The base case is immediate: at time 0 in r, each agent j considers

exactly the same set of networks possible as at the beginning of round 1 of a synchronous

system, since j has the same initial information in both cases. For the inductive step, first

note that j considers (N ′, j ′) possible at the beginning of round k in the synchronous

system iff (a) j considers (N ′, j ′) possible at the beginning of round k − 1 and, (b) for

all h ∈ InN (j), there exists a neighbor h′ ∈ InN ′(j ′) such that h considers (N ′, h′)

possible at the beginning of round k − 1. Since the set of pairs that an agent considers

possible is non-increasing over time, by the induction hypothesis, there exists a time k ′

in run r such that, for all h ∈ InN (j)∪{j}, the set of pairs that h considers at time k′ in

r is a subset of the set of pairs that h considers possible at the beginning of round k − 1

of a run of the synchronous system in N . Since all agents in InN(j) send j a message

after time k′ in r, and these messages are received by some time k′′, it follows that at

time k′′, the set of pairs that j considers possible must be a subset of the set of pairs

that j considers possible at the beginning of round k in the synchronous system. Since i

eventually knows the value of f in the synchronous system, i must also eventually know

the value of f in run r, contradicting the initial assumption.

Now suppose that it is not the case that f is knowable with respect to N . There must

be some network N ∈ N such that f is not knowable with respect to N and N . We

first show that f is not computable in N in a synchronous system using the protocol P

described above. For suppose that f is computable, and let j be the first (or one of the

first, in case of a tie) that outputs f(N). Suppose that j does so in round k. Thus, j must

know the value of f at the beginning of round k. Let d be the diameter of N . It is easy

to see that all agents will know the value of f by the beginning of round k + d. But,

since f is not knowable with respect to N and N , there must be some network N ′ ∈ N

and agents i ∈ V (N) and i′ ∈ V (N ′) such that (N, i) ∼k+d (N ′, i′). By Lemma 2.2.3,
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agents i and i′ have the same initial information and receive the same messages in each

of the first k + d rounds of protocol P . Thus, they must output the same value of f in

both N and N ′; one of these values must be wrong. Thus, P does not compute f in N .

Finally, suppose that f is computable in N in an asynchronous system using some

protocol P ′. Let r′ be a run of P ′ where the network is N , and let j be the first agent

(or one of the first, in case of a tie) to output the value of f in r′. Suppose that j outputs

f(N) at time k in r′. We claim that j (and hence all agents) will output the value of f

using P in network N in a synchronous system, contradicting the previous paragraph.

For suppose not. Then P in the synchronous system works just like the full-information

protocol. For all k′, let g(k′) be one more than the total number of messages received

by all agents by time k′ in run r. We claim that for each time k′ ≤ k in r′ and each

agent j ∈ V (N), if j considers (N ′, j ′) possible at the beginning of round g(k) in the

synchronous system, using P , then j considers (N ′, j ′) possible at time k′ in r′. That

is, all agents know at least as much at the beginning of round g(k) using P as they do

at time k′ in r. We can prove this by a simple induction on g(k′); we leave details to

the reader. Since j knows the value of f at time k in r′, it follows that j must know

the value of f at time g(k) using protocol P in the synchronous system, giving us the

desired contradiction.

Intuitively, kN ,N,f in the definition of knowable is a round at which each agent i

knows that f takes on the same value at all the networks i considers possible at that

round. Since we are implicitly assuming that agents do not forget, the set of networks

that agent i considers possible never grows. Thus, if the function f takes on the same

value at all the networks that agent i considers possible at round k, then f will take

on the same value at all networks that i considers possible at round k ′ > k, so every

agent knows the value of f(N) in round kN ,N,f . In some cases, we can provide a useful
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upper bound on kN ,N,f . For example, if N consists only of networks with distinct

identifiers, or, more generally, of networks in which no two agents are locally the same,

i.e., (N, i) 6∼0 (N, j) for all i 6= j, then we can take kN ,N,f = diam(N) + 1, where

diam(N) is the diameter of N .

Theorem 2.2.7: If no network in N has two agents that are locally the same, then

all global functions are knowable (and hence computable) in N ; indeed, we can take

kN ,N,f = diam(N) + 1 for all global functions f and networks N ∈ N .

Proof: Since f(N) = f(N ′) if N and N ′ are isomorphic, by Theorem 2.2.6, it suffices

to show that (N, i) ∼diam(N)+1 (N ′, i′) implies that N and N ′ are isomorphic for all

N,N ′ ∈ N . So suppose that (N, i) ∼diam(N)+1 (N ′, i′). By an easy induction on k, if

there is a path of length k ≤ diam(N) from i to j in N , then there must exist a node

j ′ ∈ V (N ′) such that there is a path from i′ to j ′ of length k and (N, j) ∼diam(N)+1−k

(N ′, j ′). Moreover, j ′ must be unique, since if (N, j) ∼diam(N)+1−k (N ′, j ′′), then j ′

and j ′′ must be locally the same and, by assumption, no distinct agents in N ′ are locally

the same. Define a map h from N to N ′ by taking h(j) = j ′. This map is 1-1, since if

h(j1) = h(j2), then j1 and j2 must be locally the same, and hence identical.

Let N ′′ be the subgraph of N ′ consisting of all nodes of distance at most diam(N)

from i′. An identical argument shows that there is a 1-1 map h′ from N ′′ to N such that

j ′ and h′(j ′) are locally the same for all j ′ ∈ V (N ′′). The function h′ is the inverse of

h, since h(h′(j ′)) and j ′ are locally the same, and hence identical, for all j ′ ∈ V (N).

Finally, we must have that h is a graph isomorphism from N to N ′′, since the fact

that j and h(j) are locally the same guarantees that they have the same labels, and if

(j1, j2) ∈ E(N), then (h(j), h(j ′)) ∈ E(N ′′) and the two edges have the same label.

It remains to show thatN ′ = N ′′. Suppose not. Then there exists a node j ′1 ∈ V (N ′)

24



of distance diam(N) + 1 from i′. Let j ′2 ∈ V (N ′) be such that j ′2 is the last last node

preceding j ′1 on a shortest path in N ′ from i′ to j ′1. It follows that the distance from i′ to

j ′2 in N ′ is diam(N), so by the definition of N ′′, j ′2 is a node of N ′′. Let j2 = h′(j ′2).

By the definition of h′, (N ′, j ′2) ∼1 (N, j2). Since j ′1 is one of the outgoing neighbors

of j ′2 in N ′, j2 must have an outgoing neighbor j1 in N such that (N ′, j ′1) ∼0 (N, j1).

Let j ′3 = h(j1). The distance in N ′ between i′ and j ′3 is the same as the distance in N

from i and j1, and so must be at most diam(N). Moreover, since j ′3 and j ′1 are locally

the same, we must have j ′3 = j ′1. It follows that the distance from i′ to j ′1 is at most

diam(N), which contradicts the assumption that j ′1 is of distance diam(N) + 1 from i′.

Attiya, Snir, and Warmuth [6] prove an analogue of Lemma 2.2.3 in their setting

(where all networks are rings) and use it to prove a number of impossibility results. In

our language, these impossibility results all show that there does not exist a k such that

(N, i) ∼k (N ′, i′) implies that f(N) = f(N ′) for Theorem 2.2.6.2

Yamashita and Kameda characterize when global functions can be computed in undi-

rected networks (which have no weights associated with the edges), assuming that an

upper bound on the size of the network is known. They define a notion of view and

show that two agents have the same information whenever their views are similar in a

precise technical sense; f(N) is computable iff for all networks N ′ such that agents in

N and N ′ have similar views, f(N ′) = f(N). Their notion of similarity is essentially

our notion of bisimilarity restricted to undirected networks with no edge labels. Thus,

their result is a special case of Theorem 2.2.6 for the case that N consists of undirected

networks with no edge labels of size at most n∗ for some fixed constant n∗; they show

that kN ,N,f can be taken to be n∗ in that case. Not only does our result generalize theirs,
2Attiya, Snir, and Warmuth allow their global functions to depend on external names given to agents

in the network. This essentially amounts to assuming that the agent’s names are part of their input.
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but our characterization is arguably cleaner.

Theorem 2.2.7 sheds light on why the well-known protocol for minimum spanning

tree construction proposed by Gallager, Humblet, and Spira [34] can deal both with

systems with distinct ids (provided that there is a commonly-known ordering on ids)

and for networks with identical ids but distinct edge-weights. These are just instances

of situations where it is common knowledge that no two agents are locally the same.

2.3 A standard program for global function computation

2.3.1 Standard programs with shared names

A standard program Pg has the form

if t1 then act1

if t2 then act2

. . . ,

where the tjs are standard tests (possibly involving temporal operators such as ♦), and

the actjs are actions. The intended interpretation is that agent i runs this program for-

ever. At each point in time, i nondeterministically executes one of the actions actj whose

test tj is satisfied; if no such action exists, i does nothing. We sometime use obvious

abbreviations like if . . . then . . . else (which can be expressed using a case statement).

Following Grove and Halpern [37, 38] (GH from now on), we distinguish between

agents and their names. We assume that programs mention only names, not agents (since

in general the programmer will have access only to the names, which can be viewed as

denoting roles). We use N to denote the set of all possible names and assume that one
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of the names is I . In the semantics, we associate with each name the agent who has that

name. In ring networks, for example, N may contain names like “left”, “right”, or the

“neighbor to the left of the left neighbor”; in arbitrary networks, N may contain names

like “the neighbor on link 1”, “the neighbor on link 2 of the neighbor on link 1”, etc.

Although we do not require the set of names to be finite, we assume that N is commonly

known. Note that this assumption is not unreasonable, since the set N of all possible

networks is common knowledge.

We assume that an agent assigns distinct names to all his neighbors on incoming and

outgoing edges. (An agent may not initially realize that a neighbor on an outgoing link is

the same as a neighbor on an incoming link, and thus will initially assign them different

names.) Different agents may use the same name for different neighbors. For example,

in a ring, each agent may name his neighbors L and R; in an arbitrary network, an agent

whose outdegree is dmay refer to his outgoing neighbors as 1, 2, ..., d. We allow actions

in a program to depend on names, so the meaning of an action may depend on which

agent is running it. For example, in our program for global function computation, if

i uses name n to refer to his neighbor j, we write i’s action of sending message msg

to j as sendn(msg). Similarly, if A is a set of names, then we take sendA(msg) to be

the action of sending msg to each of the agents in A (and not sending anything to any

other agents). Let Nbr denote the neighbors of an agent, so that sendNbr(msg) is the

action of sending msg to all of an agent’s neighbors. As already pointed out by GH,

once we work in a setting with relative names, then both propositions and names need

to be interpreted relative to an agent; we make this more precise in the next section.

We are interested in facts that an agent knows about the network. Intuitively, these

are facts about the network viewed as a weighted graph, such as the number of nodes in

the network, the number and orientation of links, the weights on the links, the number
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of neighbors of an agent i, and the input of agent i. Formally, a piece of information

can be identified with a set of pairs (N ′, i′), intuitively, the networks N ′ for which the

fact is true from the point of view of i′. In the program, we use a primitive proposition

some new info that we interpret as true for agent i if and only if i has learned some

new information in the last round. When some new info is true with respect to agent

i, we take new info to be a representation of the new information that i has learned;

that is, new info is a representation of the pairs (N ′, i′) that i learned are not possible

(or, equivalently, the set of pairs (N ′, i′) that i currently considers possible). (This is

formalized in Section 2.3.2.) The action sendn(new info) in the program has the effect

of i sending n whatever new information i learned. (We expect that in most cases

of interest, new info can be represented by a succinct formula, although defining an

appropriate language for representing new info is beyond the scope of this thesis.)

With this background, we can describe the program for global function computation,

which we call PgGC ; each agent runs the program

if some new info then sendNbr(new info).

We can modify it to get a terminating protocol for global function computation so that

an agent sends at most one message after learning the function value.

We would like to prove that PgGC solves the global function computation problem.

To do this, we need to give precise semantics to programs; that is the subject of the next

section.

2.3.2 Protocols, systems, and contexts

We interpret programs in the runs and systems framework of Fagin et al. [25], adapted

to allow for names. We start with a possibly infinite set A of agents. At each point in
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time, only finitely many agents are present. Each of these agents is in some local state.

The global state of the system at a particular point is a tuple s consisting of the local

states of the agents that exist at that point. Besides the agents, it is also convenient to

assume that there is an environment state, which keeps track of everything relevant to

the system not included in the agents’ states. In our setting, the environment state simply

describes the network.

A run is a function from time (which we take here to range over the natural numbers)

to global states. Intuitively, a run describes the evolution of the system over time. With

each run, we associate the set of agents that exist in that run. For simplicity, we assume

that the set of agents is constant over the run; that is, we are not allowing agents to enter

the system or leave the system. However, different sets of agent may be associated with

different runs. (While this is appropriate in our setting, it is clearly not appropriate in

general. We can easily extend the framework presented here to allow agents to enter or

leave the system.) Let A(r) denote the agents present in run r. A pair (r,m) consisting

of a run r and time m is called a point. If i ∈ A(r), we use ri(m) to denote agent i’s

local state at the point (r,m). A system R consists of a set of runs.

In a system for global function computation, each agent’s initial local information

is encoded in the agent’s local state; it must be consistent with the environment. For

example, if according to the environment the network is an undirected ring, each agent

must have two outgoing edges according to his local state. We assume that agents have

perfect recall, so that they keep track in their local states of everything that they have

heard and when they heard it. This means that, in particular, the local state of an agent

encodes whether the agent has obtained new information about the network in a given

round k.

We are particularly interested in systems generated by protocols. A protocol Pi for
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agent i is a function from i’s local states to nonempty sets of actions that i may perform.

If the protocol is deterministic, then Pi(`) is a singleton for each local state `. A joint

protocol is a tuple P = {Pi : i ∈ A}, which consists of one protocol for each agent.

Given a context, we can associate with each joint protocol P a system. A context

describes the environment’s protocol, the initial states, the effect of actions, and the as-

sociation of names with agents. Since names are relative to agents, we do the association

using a naming function µ : G ×A× N → A, where G is the set of global states. Intu-

itively, µ(g, i,n) = j if agent i assigns name n to agent j at the global state g. Thus, we

take a context γ to be a tuple (Pe,G0, τ, µ), where Pe is a protocol for the environment,

G0 is a set of initial global states, a subset of the set G of global states, τ : G → G is a

transition function mapping global states to global states, and µ is a naming function.3

The environment is viewed as running a protocol just like the agents; its protocol is used

to capture, for example, when messages are delivered in an asynchronous system. The

transition function τ associates with each joint action (a tuple consisting of an action

for the environment and one for each of the agents) a global state transformer, that is, a

mapping from global states to global states. As we shall see, we use the naming function

to ensure that actions that involve names are interpreted correctly. For the simple pro-

grams considered in this paper, the transition function will be almost immediate from

the description of the global states.

We focus in this paper on a family of contexts that we call contexts for global

function computation. Intuitively, the systems that represent programs in a context for

global function computation are systems for global function computation. A context

γ = (Pe,G0, τ, µ) for global function computation has the following features:
3Fagin et al. [25] also have a component of the context that describes the set of “allowable” runs. This

plays a role when considering issues like fairness, but does not play a role in this paper, so we omit it for
simplicity. Since they do not consider names, they do not have a component µ in their contexts.
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• The environment’s protocol Pe controls message delivery and is such that all mes-

sages are eventually delivered, and no messages are duplicated or corrupted. For-

mally, we assume that Pe has actions of the form deliver i(m), which result in

message m being delivered to player i. In a synchronous context, the environ-

ment’s protocol ensures that all messages sent at the beginning of round k are

received by the beginning of round k + 1.

• The initial global states are such that the environment’s state records the network

N and agent i’s local state records agent i’s initial information (which includes

N , the set of possible networks). Formally, we assume that agent i’s local state is

a sequence whose first element is i’s initial information, and the later elements are

the events of sending and receiving messages. We use Nr to denote the network

in a run r (as encoded by the initial global state in r).

• The transition function τ is such that the agents keep track of all messages sent

and delivered and the set of agents does not change over time. That is, if s is a

global state, act is a joint action, and s′ = τ(act)(s), then A(s) = A(s′) and agent

i’s local state in s′ is the result of appending all messages that i sent or received as

a result of action act to i’s local state in s. We assume that τ is such that the action

sendn(new info) has the appropriate effect, i.e., if sendn(new info) is agent i’s

component of a joint action act and agent i gives agent j name n in the global

state s (note here we need the assumption that the naming function µ depends

only on the global state) and s′ = τ(act)(s), then in s′, j’s local state records the

fact that j has received the information from i.

A run r is consistent with a joint protocol P if it could have been generated when

running P . Formally, run r is consistent with joint protocol P in context γ if its initial

global state r(0) is one of the initial global states G0 given in γ, and for all m, the

transition from global state r(m) to r(m + 1) is the result of performing one of the
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joint actions specified by P according to the agents in r, and the environment protocol

Pe (given in γ) in the global state r(m). That is, if P = {Pi : i ∈ A} and Pe is

the environment’s protocol in context γ, then r(0) ∈ G0, and if r(m) = (`e, {`i : i ∈

A(r)}), then there must be a joint action (acte, {acti : i ∈ A(r)}) such that acte ∈

Pe(`e), acti ∈ Pi(`i) for i ∈ A(r), and r(m + 1) = τ(acte, {acti : i ∈ A(r)})(r(m))

(so that r(m+1) is the result of applying the joint action (acte, {acti : i ∈ A}) to r(m).

For future reference, we will say that a run r is consistent with γ if r is consistent with

some joint protocol P in γ. A system R represents a joint protocol P in a context γ

if it consists of all runs consistent with P in γ. We use R(P, γ) to denote the system

representing P in context γ.

We want to associate with a program a protocol. To do this, we need to interpret the

tests in the program. In the programs we consider, the truth of a test may be relative

to an agent. For example, the test some new info is true relative to agent i at a point

(r,m) if i has just received some new information about the network. We actually want

the interpretation of some new info to depend, not on the point (r,m), but only the

global state r(m) at that point. Thus, given a set Φ of primitive propositions, we take an

interpretation (of the primitive propositions in Φ) to be a function π : G × A × Φ →

{true, false}. Intuitively, π(g, i, p) = true if p is true at the global state g relative to

agent i. Of course, we can easily extend this truth assignment to arbitrary propositional

formula; for example, we take π(g, i,¬ϕ) = true iff π(g, i, ϕ) = false, π(g, i, ϕ∧ ψ) =

true iff π(g, i, ϕ) = true and π(g, i, ψ) = true, etc.

An interpretation π is local (for program Pg) if the tests ϕ in Pg depend only on the

local state, in the sense that if ` is agent i’s local state in the global state g and also agent

j’s local state in the global state g′, then π(g, i, ϕ) = true iff π(g′, j, ϕ) = true. In this

case, we write π(`, ϕ) = true. Given an interpretation π that is local, we can associate
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with a program Pg for agent i a protocol Pgπ. Define Pgπ(`) = {actj | π(`, tj) = true}

if there exist tests tj such that π(`, tj) = true, and take Pgπ(`) = skip otherwise. Define

I(Pg, γ, π) = R(Pgπ, γ).

An interpreted context for global function computation is a pair η = (γ, π), where γ

is a context for global function computation and π interprets some new info appropri-

ately. Since the only information that is relevant here is what networks an agent consid-

ers possible, the interpretation of some new info is in the spirit of Definition 2.2.5.

The truth of some new info for player i depends only on i’s local state. If i’s lo-

cal state is just the sequence of length 1 consisting of i’s initial information, then

π(g, i, some new info) = true. If i’s local state ` in g has length greater than 1, then

let `′ be the prefix of ` which has all but the last element in the sequence. (That is, `′ is

i’s local state just before it was `.) Intuitively, some new info is true if i learned some-

thing in the transition from `′ to `. More precisely, let inf i(`) consist of all the pairs

(N ′, i′) that i considers possible in local state `, where i considers (N ′, i′) possible if

there exists a global state g′ such that (a) N ′ is the network encoded in the environment

state of g′ and (b) the local state of i′ in g′ is `. Then π(g, i, some new info) = true

if infi(`
′) 6= infi(`). (Note that inf i(`) ⊆ inf i(`

′); i does not consider more networks

possible after receiving messages; the only question is whether inf i(`) is a strict subset

of infi(`
′).)

Given an interpreted context η = (γ, π) for global function computation, let N (η)

denote the set of all networks encoded in the initial global states of γ.

We say that agents eventually know f with program Pg in interpreted context η if, in

all runs r in I(Pg, η), there exists a timem such that, for all agents i ∈ A(r), i knows the

value of f at (r,m) in the sense of Definition 2.2.5. Using the notation of this section,

this means that there exists a v such that for all i ∈ A(r), and all (N ′, i′) ∈ infi(ri(m)),
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f(N ′) = v. Clearly, if all agents eventually know f with program Pg in η, then we can

use a trivial modification of Pg to compute f in N (η): the agents simply output f when

they know its value.

2.3.3 Using PgGC for global function computation

The following result shows that we can use PgGC for global function computation, if

anything can be used at all.

Theorem 2.3.1: If η is an interpreted context for global function computation, then f is

computable in N (η) iff all agents eventually know f with PgGC in η.

Proof: Clearly if all agents eventually know f with PgGC in η, then f is computable in

N (η), where each agent follows the protocol P used in Theorem 2.2.6 (which acts like

PgGC up to the point where some agent learns the value of f , and then outputs the value

and forwards it). Conversely, if f is computable in N (η), then it is knowable. The proof

of Theorem 2.2.6 shows that the protocol P computes f in N (η). We leave it to the

reader to check that the proof also shows that all agents eventually know f with PgGC

in η.

2.4 Knowledge-based programs with shared names

While sending only the new information that an agent learns at each step reduces the size

of messages, it does not preclude sending unnecessary messages. One way of reducing

communication is to have agent i not send information to the agent he names n if he
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knows that n already knows the information. Since agent i is acting based on what he

knows, this is a knowledge-based (kb) program. We now formalize this notion.

2.4.1 Syntax

Consider a language with a modal operator Kn for each name n ∈ N. When interpreted

relative to agent i, Knϕ is read as “the agent i names n knows ϕ”. We allow quantifica-

tion over names; for a formula ϕ with a free variable n, we interpret ∀n. ϕ as saying that

ϕ [n/n′] (i.e., ϕ will all occurences of n replaced by n′) is true for all names n′ ∈ N.

We also have formulas of the form Calls(n1,n2,n3), where n1, n2, and n3 are names.

When interpreted relative to an agent i, Calls(n1,n2,n3) holds if the agent that i calls

n1 gives the agent that i calls n2 the name n3; that is, it holds relative to i if there exist

agents j and k such that i calls j n1, i calls k n2, and j calls k n3. For example, if N

consists only of directed rings, Calls(L, I, R), when interpreted with respect to agent i,

says that, according to i, i is the right neighbor of his left neighbor. Finally, we define

modal operators Accn, one for each name n; intuitively, Accnϕ says that ϕ is true when

interpreted relative to the agent called n. For instance, Accn(input = 10), interpreted

relative to agent i, says that, if j is the agent i calls n, then j’s input is 10. Notice that

this is different from saying that i’s input is 10; that is, when interpreting a formula

Accnϕ with respect to some agent i, ϕ is interpreted relative the agent i calls n, and

not relative to i. The need for these syntactic constructs will become clearer in the next

section, when we see how they are used in definition of a knowledge-based variant of

PgGC .
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A knowledge-based program Pgkb has the form

if t1 ∧ k1 do act1

if t2 ∧ k2 do act2

. . .

where tj and actj are as for standard programs, and kj are knowledge tests (possibly

involving belief and counterfactual tests, as we will see later in the section).

Recall from Section 2.3.1 that some new info is a proposition taken to be true with

respect to an agent i whenever i has learned some new information about the network.

We take new info to be a proposition describing the new information. For example,

suppose that N is a directed ring, and agent i learns that his left neighbor has input

value v1. Then new info is true of (N ′, i′) if the left neighbor of i′ in the ring N ′ has

value v1. As we said earlier, we do not specify here the language used to characterize

i’s information, since this will depend on the underlying set of networks. We simply

assume that the language is expressive enough to characterize all the relevant facts.

In analogy with PgGC , it seems that the following kb program should solve the

global function computation problem, while decreasing the number of messages:

if some new info then sendA(new info),

where A = {n ∈ Nbr : ¬KIKn(new info)}.
(2.1)

While this is essentially true, there are some subtleties involved giving semantics to this

program; we consider these in the next section. In the process, we will see that there are

number of ways that the message complexity of the program can be further improved.
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2.4.2 Semantics

We can use the machinery that we have developed to give semantics to formulas such

as Knϕ. As we said before, the formula Knϕ must be interpreted relative to the agent

making the statement; this means that we interpret Knϕ with respect to a point (r,m)

and an agent i in r. We call a tuple (r,m, i) a situation. If ϕ is a standard test (i.e., one

that does not involve knowledge operators), we take (I, r,m, i) |= ϕ precisely when

π(r(m), i, ϕ) = true; we define the truth of a conjunction and negation in the standard

way. Intuitively, if the agent that i names n is j, then “n knows ϕ” is true relative to i

if ϕ holds in all situations j considers possible, that is, in all situations where j has the

same local state as in (r,m). Since j may be uncertain about his own identity, these are

exactly the situations (r′, m′, j ′) such that j has the same local state in (r,m) as j ′ in

(r′, m′). Thus,

(I, r,m, i) |= Knϕ iff, for all j, j ′ and points (r′, m′) such that µ(r(m), i,n) = j

and rj(m) = r′j′(m
′), we have (I, r′, m′, j ′) |= ϕ.

As observed by GH, once we allow relative names, we must be careful about scop-

ing. For example, suppose that, in an oriented ring, i’s left neighbor is j and j’s left

neighbor is k. What does a formula such as KIKL(left input = 3) mean when it is

interpreted relative to agent i? Does it mean that i knows that j knows that k’s input

is 3, or does it mean that i knows that j knows that j’s input is 3? That is, do we in-

terpret the “left” in left input relative to i or relative to i’s left neighbor j? Similarly,

to which agent does the second L in KIKLKLϕ refer? That, of course, depends on the

application. Using a first-order logic of naming, as in [37], allows us to distinguish the

two interpretations readily. In a propositional logic, we cannot do this. In the propo-

sitional logic, GH assumed innermost scoping, so that the left in left input and the

second L in KIKLKLϕ are interpreted relative to the “current” agent considered when
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they are evaluated (which is j). We do this as well. Nevertheless, in a formula such as

KIKn new info, we want to interpret new info relative to “I”, the agent i that sends the

message, not with respect to the agent j that is the interpretation of n. To capture our in-

tended interpretation, we need the modal operator Accn, the formulas Calls(n1,n2,n3)

and quantification over names. Recall that Accnϕ says that ϕ is true when interpreted

relative to the agent i names n:

(I, r,m, i) |= Accnϕ iff (I, r,m, j) |= ϕ, where µ(r(m), i,n) = j.

The semantics of quantification is straightforward:

(I, r,m, i) |= ∀n. ϕ iff, for all n′ ∈ N, (I, r,m, i) |= ϕ [n/n′],

where ϕ [n/n′] is, ϕ with all occurences of n replaced by n′. Finally, recall that

Calls(n1,n2,n3) is intended to be true relative to agent i if the agent j that i calls

n1 calls the agent that i calls n2 n3. Thus,

(I, r,m, i) |= Calls(n1,n2,n3) iff, if µ(r(m), i,n1) = j and µ(r(m), i,n2) = k,

then µ(r(m), j,n3) = k.

With these constructs, we can express statements of the form “agent n knows the

content of my new information” as “if the agent I name n gives me name n′, then

n knows that n′ knows new info”, that is, using the formula ∀n′.Calls(n, I,n′) ⇒

Kn(Accn′new info).

We can now give semantics to kb programs. We can associate with a kb program

Pgkb and an extended interpreted system I = (R, π, µ) a protocol for agent i denoted

(Pgkb)Ii . Intuitively, we evaluate the standard tests in Pg kb according to π (and µ) and

evaluate the knowledge tests according to I. Formally, for each local state ` of agent

i, we define (Pgkb)Ii (`) to consist of all actions actj such that the test tj ∧ kj holds

with respect to a tuple (r,m, i′) in I such that ri′(m) = ` (recall that protocols can
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be nondeterministic); if there is no point in I where some agent has local state `, then

(Pgkb)Ii (`) performs the null action (which leaves the state unchanged).

A joint protocol P is said to implement Pg kb in the interpreted context (γ, π) if, by

interpreting Pgkb with respect to I(P, γ, π), we get back protocol P ; i.e., if, for each

agent i, we have Pi = (Pgkb)
I(P,γ,π)
i . Here we are implicitly assuming that all agents run

the same kb program. This is certainly true for the programs we give for global function

computation, and actually does not result in any loss of generality. For example, if

names are commonly known, the actions performed by agents can depend on tests of

the form “if your name is n then . . . ”. Similarly, if we have a system where some agents

are senders and others are receivers, the roles of agents can be encoded in their local

states, and tests in the program can ensure that all agents act appropriately, despite using

the same program.

In certain cases we are interested in joint protocols P that satisfy a condition slightly

weaker than implementation, first defined by Halpern and Moses [43] (HM from now

on). Joint protocols P and P ′ are equivalent in context γ, denoted P ≈γ P ′, if

Pi(`) = P ′
i (`) for every local state ` = ri(m) with r ∈ R(P, γ). If P ≈γ P ′, then

it easily follows that R(P, γ) = R(P ′, γ). (Proof: Suppose that r ∈ R(P, γ). By

the definition of R(P, γ), this means that r(0) is an initial state in γ, and for all times

m, there exists a joint action act such that acte ∈ Pe(re(m)), acti ∈ Pi(ri(m)) for

all i ∈ A(r), and r(m + 1) is the result of applying the joint action act to r(m). It

easily follows by induction on m, using the assumption that P ≈γ P ′, that r(m) is a

global state in R(P ′, γ) and that acti ∈ P ′
i (ri(m)) for all i ∈ A(r) and for all m. Thus,

r ∈ R(P ′, γ). The same argument shows that if r′ ∈ R(P ′, γ), then r′ ∈ R(P, γ).) P

de facto implements Pg kb in context γ if P ≈γ PgkbI(P,γ,π). Arguably, de facto imple-

mentation suffices for most purposes, since all we care about are the runs generated by

39



the protocol. We do not care about the behavior of the protocol on local states that never

arise when we run the protocol.

The kb program Pgkb solves the global function computation problem for f in the

interpreted context η = (γ, π) if, for all protocols P that de facto implement Pg kb in

γ and all runs r in R(P, γ), eventually all agents in A(r) know the value f(Nr). We

can show that the following variant of the kb program (2.1) solves the global function

computation problem for all functions f in all interpreted contexts η such that f is

computable in N (η):

if some new info then sendA(new info),

where A = {n ∈ Nbr : ¬KI(∀n
′.Calls(n, I,n′) ⇒ Kn(Accn′new info))}.

(2.2)

However, rather than proving this result, we focus on further improving the message

complexity of the kb program, and give a formal analysis of correctness only for the

improved program.

2.5 Avoiding redundant communication with counterfactual tests

2.5.1 The general approach

We can further reduce message complexity by not sending information, not only if the

recipient of the message already knows the information, but also if he will eventually

know the information. It seems relatively straightforward to capture this: we simply add

a temporal ♦ operator to the kb program (2.2) to get the following program, which we
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call Pgkb
� :

if some new info then sendA(new info),

where A = {n ∈ Nbr : ¬KI♦(∀n′. Calls(n, I,n′) ⇒ Kn(Accn′new info))}.

Unfortunately, this modification will not work: as observed by HM, Pg kb
� has no

implementation in the context γ. For suppose that there exists a protocol P that imple-

ments Pgkb
� . Let I = I(P, γ, π). Does i (the agent represented by I) send new info

to n in I? If i sends his new information to n at time m in a run r of I, then, since

communication is reliable, eventually n will know i’s new information and i knows that

this is the case, i.e., (I, r,m, i) |= KI♦(∀n′. Calls(n, I,n′) ⇒ Kn(Accn′new info)).

Since P implements Pgkb
� and I = I(P, γ, π), it follows that i does not send his new

information to n. On the other hand, if no one sends new info to n, then n will not

know it, and i should send it. Roughly speaking, i should send the information iff i does

not send the information.

HM suggest the use of counterfactuals to deal with this problem. As we said in the

introduction, a counterfactual has the form ϕ > ψ, which is read as “if ϕ were the case

then ψ”. As is standard in the philosophy literature (see, for example, [57, 80]), to give

semantics to counterfactual statements, we assume that there is a notion of closeness

defined on situations. This allows us to consider the situations closest to a given situation

that have certain properties. For example, if in a situation (r,m, i) agent i sends his

new information to neighbor n, we would expect that the closest situations (r ′, m, i) to

(r,m, i) where i does not send his new information to n are such that, in r ′, all agents

use the same protocol as in r, except that, at time m in r′, i sends his new information to

all agents to which he sends his new information at the point (r,m) with the exception

of n. The counterfactual formula ϕ > ψ is taken to be true if, in the closest situations to

the current situation where ϕ is true, ψ is also true.
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Once we have counterfactuals, we must consider systems with runs that are not runs

of the program. These are runs where, for example, counter to fact, the agent does not

send a message (although the program says it should). Once we allow the system to

include runs that are not runs of the program, it becomes necessary to distinguish the

runs of the program from the others. Following HM, we do this by associating to each

run a rank, which is a natural number. Intuitively, the higher the rank, the less likely the

run. The runs of minimal rank 0 are exactly the runs of the program. This gives us a

way of distinguishing the runs of the program from others.

In the setting where the system consisted only of runs of the program, agents knew all

properties of the program (since they were true in all runs in the system). Once we work

with a system that includes runs other than those generated by the program, agents may

no longer know that, for example, when the program says they should send a message to

their neighbor, they actually do so (since there could be a run in the system not generated

by the program, in which at some point the agent has the same local state as in a run

of the program, but he does not send a message). Agents do know, however, that they

send the message to their neighbor in all runs of minimal rank, that is, in all the runs

consistent with the program. This allows us to reason about the program by introducing

a new family of modal operators Bn. Intuitively,Bnϕ (“the agent named n believes ϕ”)

is true if ϕ holds at all points in runs of minimal rank (i.e., in all runs of the program of

interest) that the agent named n considers possible. We provide the formal semantics of

belief and counterfactuals, which is somewhat technical, in Section 2.5.2; we hope that

the intuitions we have provided will suffice for understanding what follows.

Using counterfactuals, we can modify Pg kb
� to say that agent i should send the infor-

mation only if i does not believe “if I do not send the information, then n will eventually

learn it anyway”. To capture this, we use the proposition do(sendn(new info)), which
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is true if i is about to send new info to n, and the formulas ∃v. Bn(f = v), which intu-

itively say that the agent with name n knows the value of f . (We give formal semantics

to do(sendn(new info)) and ∃v. Bn(f = v) in Section 2.5.2.) Let PgGC
cb denote the

following modification of PgGC :

if some new info then sendA(new info),

where A = {n ∈ Nbr :

¬BI [¬do(sendn(new info)) >

♦((∀n′.Calls(n, I,n′) ⇒ Bn(Accn′new info)) ∨ (∃v. Bn(f = v)))]}.

In this program, the agent i representing I sends n the new information if i does not

believe that n will eventually learn the new information or the function value even if the

message is not sent. In particular, if the recipient is bound to evnetually know the value

of f , the value is not sent. As we will show in Section 2.5.3, this improved program still

solves the global function computation problem whenever possible.

Theorem 2.5.1: If η is an interpreted context for global function computation and f is

computable in N (η), then PgGC
cb solves the global function computation problem for f

in η.

2.5.2 Counterfactual belief-based programs with names

The standard approach to giving semantics to counterfactuals [57, 80] is that ϕ > ψ is

true at a point (r,m) if ψ is true at all the points “closest to” or “most like” (r,m) where

ϕ is true. For example, suppose that we have a wet match and we make a statement

such as “if the match were dry then it would light”. Using ⇒ this statement is trivially

true, since the antecedent is false. However, with >, we must consider the worlds most
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like the actual world where the match is in fact dry and decide whether it would light in

those worlds. If we think the match is defective for some reason, then even if it were

dry, it would not light.

To capture this intuition in the context of systems, we extend HM’s approach to

deal with names. We just briefly review the relevant details here; we encourage the

reader to consult [43] for more details and intuition. Define an order assignment for an

extended interpreted system I = (R, π, µ) to be a function << that associates with

every situation (r,m, i) a partial order relation <<(r,m,i) over situations. The partial

orders must satisfy the constraint that (r,m, i) is a minimal element of <<(r,m,i), so

that there is no situation (r′, m′, i′) such that (r′, m′, i′)<<(r,m,i)(r,m, i). Intuitively,

(r1, m1, i1)<<(r,m,i)(r2, m2, i2) if (r1, m1, i1) is “closer” to the true situation (r,m, i)

than (r2, m2, i2). A counterfactual system is a pair of the form J = (I, <<), where

I is an extended interpreted system and << is an order assignment for the situations in

I.

Given a counterfactual system J = (I, <<), a set A of situations, and a sit-

uation (r,m, i), we define the situations in A that are closest to (r,m, i), denoted

closest(A, r,m, i), by taking

closest(A, r,m, i) =

{(r′, m′, i′) ∈ A : there is no situation (r′′, m′′, i′′) ∈ A such that

(r′′, m′′, i′′)<<(r,m,i)(r
′, m′, i′)}.

A counterfactual formula is assigned meaning with respect to a counterfactual sys-

tem J by interpreting all formulas not involving > with respect to I using the earlier

definitions, and defining

(J , r,m, i) |= ϕ > ψ iff for all (r′, m′, i′) ∈ closest([[ϕ]]J , r,m, i), (J , r′, m′, i′) |= ψ,
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where [[ϕ]]J = {(r,m, i) : (J , r,m, i) |= ϕ}; that is, [[ϕ]]J consists of all situations in

J satisfying ϕ.

All earlier analyses of (epistemic) properties of a protocol P in a context γ used the

runs in R(P, γ), that is, the runs consistent with P in context γ. However, counterfactual

reasoning involves events that occur on runs that are not consistent with P (for example,

we may need to counterfactually consider the run where a certain message is not sent,

although P may say that it should be sent). To support such reasoning, we need to

consider runs not in R(P, γ). The runs that must be added can, in general, depend on

the type of counterfactual statements allowed in the logical language. Thus, for example,

if we allow formulas of the form do(i, act) > ψ for process i and action act, then we

must allow, at every point of the system, a possible future in which i’s next action is act.

Following [43], we do reasoning with respect to the system R+(γ) consisting of all runs

compatible with γ, that is, all runs consistent with some protocol P ′ in context γ.

We want to define an order assignment in the system R+(γ) that ensures that the

counterfactual tests in PgGC
cb , which have an antecedent ¬do(sendn(msg)), get inter-

preted appropriately.4 HM defined a way of doing so for counterfactual tests whose

antecedent has the form do(i, act). In our programs, the counterfactual tests have an-

tecedents of the form ¬do(i, sendn(msg)). To deal with these formulas, we modify

the HM construction as follows: Given a context γ, situation (r,m, i) in R+(γ), and

a deterministic protocol P ,5 we define the closest set of situations to (r,m, i) where i

does not perform action sendn(msg), close(sendn(msg), P, γ, r,m, i), as {(r′, m, i′) :

(a) r′ ∈ R+(γ), (b) r′(m′) = r(m′) and r′i′(m
′) = ri(m

′) for all m′ ≤ m, (c) if

Pi(ri(m)) = act and either act = sendA(msg ′) and n /∈ A or msg 6= msg ′ or act does
4(J , r, m, i) |= do(a) if ri(m + 1) is the result (according to the transition function in the context) of

agent i taking action a in ri(m).
5We restrict in this paper to deterministic protocols. We can generalize this definition to randomized

protocols in a straightforward way, but we do not need this generalization for the purposes of this paper.
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not involve sending a message, then r′ = r and i = i′, (d) if Pi(ri(m)) = sendA(msg),

and n ∈ A, then i′ performs sendA−{n}(msg) in local state ri(m) = r′i′(m) in run r′,

and follows P in all other local states in run r′, (e) all agents other than i′ follow P

at all points of r′}. Condition (c) says that if i is not supposed to send n the message

msg according to Pi, then the closest point to (r,m) according to i where the message

is not sent is just (r,m) itself. Condition (d) says that if i is supposed to send n the

message msg according to Pi, then in the closest points where it does not send this

message to n, the agent i′ (who i considers it possible that he might be) still sends the

message to everyone else he was supposed to send the message to according Pi. That

is, close(sendn(msg), P, γ, r,m, i) is {r,m, i} if i does not send msg to n at the local

state ri(m); otherwise close(sendn(msg), P, γ, r,m, i) is the set consisting of situa-

tions (r′, m, i′) such that r′ is identical to r up to timem and all the agents act according

to P at later times, except that at the local state r′i′(m) = ri(m) in r′, agent i′ who is

indistinguishable from i does not send msg to n, but does send it to all other agents to

which it sent msg in ri(m).

Define an order generator o to be a function that associates with every protocol P

an order assignment <<P = o(P ) on the situations of R+(γ). We are interested in

order generators that prefer runs in which agents follow their protocols as closely as

possible. An order generator o for γ respects protocols if, for every (deterministic)

protocol P , interpreted context ζ = (γ, π) for global computation, situation (r,m, i)

in R(P, γ), and action act = sendA(msg), closest([[¬sendA(msg)]]I(P,ζ), r,m, i)

is a nonempty subset of close(sendn(msg), P, γ, r,m, i) that includes (r,m, i) if

(r,m, i) ∈ close( sendA(msg), P, γ, r,m, i). Perhaps the most obvious order gen-

erator that respects protocols just sets closest([[¬send n(msg)]]I(P,ζ), r,m, i) = close(

sendn(msg), P, γ, r,m, i), although our results hold if = is replaced by ⊆.
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Reasoning in terms of the large set of runs R+(γ) as opposed to R(P, γ) leads to

agents not knowing properties of P . For example, even if, according to P , some agent i

always performs action act when in local state li, in R+(γ) there are bound to be runs r

and times m such that ri(m) = li, but i does not perform action act at the point (r,m).

Thus, when we evaluate knowledge with respect to R+(γ), i no longer knows that,

according to P , he performs act in state li. Following HM, we deal with this by adding

extra information to the models that allows us to capture the agents’ beliefs. Although

the agents will not know they are running protocol P , they will believe that they are. We

do this by associating with each run r ∈ R+(γ) a rank κ(r), which is either a natural

number or ∞, such that minr∈R+(γ) κ(r) = 0. Intuitively, the rank of a run defines the

likelihood of the run. Runs of rank 0 are most likely; runs of rank 1 are somewhat less

likely, those of rank 2 are even more unlikely, and so on. Very roughly speaking, if ε > 0

is small, we can think of the runs of rank k as having probability O(εk). We can use

ranks to define a notion of belief (cf. [33]).

Intuitively, of all the points considered possible by a given agent in a situation

(r,m, i), the ones believed to have occurred are the ones appearing in runs of minimal

rank. More formally, for a point (r,m) define

minκ
i (r,m) = min{κ(r′) | r′ ∈ R+(γ) and r′i′(m

′) = ri(m) for some m′ ≥ 0 and

i′ ∈ A(r′)}.

Thus, minκ
i (r,m) is the minimal κ-rank of runs r′ in which ri(m) appears as a local state

at the point (r′, m).

A counterfactual belief system (or just cb system for short) is a triple of the form

J = (I, <<, κ), where (I, <<) is a counterfactual system, and κ is a ranking function on

the runs of I. In cb systems we can define a notion of belief. We add the modal operator
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Bn to the language for each n ∈ N, and define

(I, <<, κ, r,m, i) |= Bnϕ iff, for all j, j ′ and points (r′, m′) such that µ(r,m, i,n) = j,

rj(m) = r′j′(m
′), and κ(r′) = minκ

j (r,m), we have

(I, r′, m′, j ′) |= ϕ.

Thus, whereas we earlier considered systems consisting of all (and only) the runs of

the program of interest, now we have larger systems, but can recover the runs of the

program of interest by considering runs of rank 0. In the original setting, agents know

all properties of the program of interest (and their consequences); now agents believe

that these properties hold.

The following lemma illustrates a key feature of the definition of belief. What

distinguishes knowledge from belief is that knowledge satisfies the knowledge axiom:

Kiϕ⇒ ϕ is valid. While Biϕ⇒ ϕ is not valid, it is true in runs of rank 0.

Lemma 2.5.2: [43] Suppose that J = (R, π, µ, <<, κ) is a cb system, r ∈ R, and

κ(r) = 0. Then for every formula ϕ and all times m, we have (J , r,m, i) |= BIϕ⇒ ϕ.

By analogy with order generators, we want a uniform way of associating with each

protocol P a ranking function. Intuitively, we want to do this in a way that lets us

recover P . We say that a ranking function κ is P -compatible (for γ) if κ(r) = 0 if

and only if r ∈ R(P, γ). A ranking generator for a context γ is a function σ ascribing

to every protocol P a ranking σ(P ) on the runs of R+(γ). A ranking generator σ is

deviation compatible if σ(P ) is P -compatible for every protocolP . An obvious example

of a deviation-compatible ranking generator is the characteristic ranking generator σξ,

where σξ(P ) is the ranking that assigns rank 0 to every run in R(P, γ) and rank 1 to all

other runs. This captures the assumption that runs of P are likely and all other runs are

unlikely, without attempting to distinguish among them. Another deviation-compatible
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ranking generator is σ∗, where σ∗(P ) is the ranking that assigns to a run r the total

number of times that agents deviate from P in r. Obviously, σ∗(P ) assigns r the rank 0

exactly if r ∈ R(P, γ), as desired. Intuitively, σ∗ captures the assumption that not only

are deviations unlikely, but they are independent.

It remains to give semantics to formulas of the form ∃v. Bn(f = v). Recall that the

value of f in run r is f(Nr). Intuitively, ∃v.Bn(f = v) is true at a point (r,m) if at all

runs n believes possible, f has the same value.

(I, <<, κ, r,m, i) |= ∃v. Bn(f = v) iff, if µ((r,m), i,n, ) = j, then for all r′, m′,

if rj(m) = r′j′(m
′) and κ(r′) = minκ

j (r,m), then f(Nr) = f(Nr′).

With all these definitions in hand, we can define the semantics of counterfactual

belief-based programs such as PgGC
cb . A counterfactual belief-based program (or cbb

program, for short) Pgcb is similar to a kb program, except that the knowledge modalities

Kn are replaced by the belief modalities Bn. We allow counterfactuals in belief tests

but, for simplicity, do not allow counterfactuals in the standard tests.

As with kb programs, we are interested in when a protocol P implements a cbb

program Pgcb . Again, the idea is that the protocol should act according to the high-level

program, when the tests are evaluated in the cb system corresponding to P . To make

this precise, given a cb system J = (I, <<, κ), an agent i, and a cbb program Pgcb ,

let (Pgcb)
J
i denote the protocol derived from Pgcb by using J to evaluate the belief

tests. That is, a test in Pgcb such as Bnϕ holds at a situation (r,m, i) in J if ϕ holds

at all situations (r′, m′, j ′) in J such that µ(r(m), i,n) = j, r′j′(m′) = rj(m), and

κ(r′) = minκ
j (r,m). Define a cb context to be a tuple (γ, π, o, σ), where (γ, π) is an

interpreted context with naming function µγ (for simplicity, we use µγ to refer to the

naming function in context γ), o is an order generator for R+(γ) that respects protocols,

and σ is a deviation-compatible ranking generator for γ. A cb system J = (I, <<, κ)
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represents the cbb program Pgcb in cb context (γ, π, o, σ) if (a) I = (R+(γ), π, µγ),

(b) << = o(PgJ
cb), and (c) κ = σ(PgJ

cb). A protocol P implements Pgcb in cb context

χ = (γ, π, o, σ) if P = Pg
(I,o(P ),σ(P ))
cb . Protocol P de facto implements Pgcb in χ if

P ≈γ Pg
(I,o(P ),σ(P ))
cb .

2.5.3 Proof of correctness for PgGC
cb

Theorem 2.5.1: If η is an interpreted context for global function computation and f is

computable in N (η), then PgGC
cb solves the global function computation problem for f

in η.

Proof: Suppose that f is computable in N(η). Suppose that o is an order generator that

respects protocols, σ is a deviation-compatible ranking generator, γGC is a context for

global computation such that in all initial states the network encoded in the environment

state is in N , χGC is the cb context (γGC , π, o, σ), P is a protocol that de facto imple-

ments PgGC
cb in χGC , J = (R+(γ), π, µγ, o(P ), σ(P )), and r ∈ R(P, γGC). We prove

that at some point in run r all agents in Nr know f(Nr).

We proceed much as in the proof of Theorem 2.3.1; we just highlight the differences

here. Again, we first show that some agent in r learns f(Nr). Suppose not. Let r′

be the unique run of the full-information protocol in a synchronous context starting

with the same initial global state as r. Again, we show by induction on k that there is

a time mk such that, at the point (r,mk), all the agents in A(r) have at least as much

information about the network as they do at the beginning of round k in r ′. The base case

is immediate, as before. For the inductive step, suppose that i learns some information

about the network from j during round k. Again, there must exist a timem′
k ≤ m where

j first learns this information in run r. It follows that (J , r,m′
k, j) |= some new info.
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Suppose that j names i n in r; that is µγ(r(m
′
k), j,n) = i. Now either (a) j believes

at time m′
k that, if he does not perform a sendA(new info) action with n ∈ A, i will

eventually learn his new information or the function value anyway, or (b) j does not

believe this. In case (b), it follows that

(J , r,m′
k, j) |= ¬BI [¬do(sendn(new info)) >

♦(∀n′. Calls(n, I,n′) ⇒ Bn(Accn′new info)) ∨ (∃v. Bn(f = v))].

Since P implements PgGC
cb in χGC , in case (b), j sends i new info at time m′

k, so there

is some round m′′
k by which i learns this information. On the other hand, in case (a), it

must be the case that

(J , r,m′
k, j) |= BI [¬do(sendn(new info)) >

♦((∀n′. Calls(n, I,n′) ⇒ Bn(Accn′new info)) ∨ (∃v. Bn(f = v)))].

Since σ is deviation compatible by assumption, and r is a run of P , it follows that

κ(r) = 0. Thus by Lemma 2.5.2,

(J , r,m′
k, j) |= ¬do(sendn(new info)) >

♦((∀n′. Calls(n, I,n′) ⇒ Bn(Accn′new info)) ∨ (∃v. Bn(f = v))).

Since P implements PgGC
cb in χGC , in case (a), j does not send new info to i in round

m′
k. Thus, (J , r,m′

k, j) |= ¬do(sendn(new info)). It follows that

(J , r,m′
k, j) |= (∀n′. (Calls(n, I,n′) ⇒ Bn(Accn′new info))) ∨ (∃v. Bn(f = v)).

Since, by assumption, no one learns the function value in r, we have that

(J , r,m′
k, j) |= ∀n′. (Calls(n, I,n′) ⇒ Bn(Accn′new info)).

Thus, it follows that i must eventually learn j’s information in this case too.

It now follows, just as in the proof of Theorem 2.3.1, that some agent learns f(Nr)

in r, and that eventually all agents learn it. We omit details here.
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2.6 Case study: leader election

If we take the function f to describe a method for computing a leader, and require that

all agents eventually know who is chosen as leader, this problem becomes an instance

of global function computation. We assume that agents have distinct identifiers (which

is the context in which leader election has been studied in the literature). It follows from

Corollary 2.2.7 that leader election is solvable in this context; the only question is what

the complexity is. Although leader election is only one instance of the global function

computation problem, it is of particular interest, since it has been studied so intensively

in the literature. We show that a number of well-known protocols for leader election

in the literature essentially implement the program PgGC
cb . In particular, we consider an

optimal flooding protocol [60], a protocol combining ideas of Le Lann [56] and Chang

and Roberts [17] (LCR from now on) presented by Lynch [61], which works in directed

rings, and Peterson’s [77] protocol P1 for directed rings and P2 for undirected rings.

We briefly sketch the LCR protocol, and Peterson’s protocols P1 and P2, following

Lynch’s [61] treatment.

The optimal flooding protocol takes a parameter d (intuitively, an upper bound on the

network diameter), and proceeds in rounds. Agents keep track of the maximum id they

have seen. Initially agents send their id to their neighbors, and, in each round, if they

have heard of a value larger than the current maximum, they forward it on all outgoing

links. After d rounds, the agent whose id is the maximum he has seen declares himself

leader. It is easy to see that this protocol is correct in all networks whose diameter is

bounded by d, since by round d, all agents will have heard about the maximum id in the

network, and will know that the leader is the agent whose id is the maximum.

The LCR protocol works in directed rings, and does not assume a bound on their
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size. Each agent starts by sending his id along the ring; whenever it receives a value,

if the value is larger than the maximum value seen so far, then the agent forwards it; if

not, it does nothing, except when he receives his own id. If this id is M , the agent then

sends the message “the agent with id M is the leader” to his neighbor. Each agent who

receives such a message forwards it until it reaches the agent with id M again. The LCR

protocol is correct because it ensures that the maximum id travels along the ring and is

forwarded by each agent until some agent receives his own id back. That agent then

knows that his id is larger than that of any other agent, and thus becomes the leader.

Peterson’s protocol P2 for undirected rings operates in phases. In each phase, agents

are designated as either active or passive. Intuitively, the active agents are those still

competing in the election. Once an agent becomes passive, it remains passive, but con-

tinues to forward messages. Initially all agents are active. In each phase, an active agent

compares his id with the ids of the closest active agent to his right and to his left. (We

assume that agents keep track of message received, and that ids are numbers, so that any

two ids can be compared.) If his id is the largest of the three, it continues to be active;

otherwise, it becomes passive. Just as with the LCR protocol, when an agent receives

back his own id, it declares himself leader. Then if his id is M , it sends the message

“the agent with id M is the leader”, which is forwarded around the ring until everyone

knows who the leader is.

Peterson shows that, at each phase, the number of active agents is at most half that

of the previous phase, and always includes the agent with the largest id. It follows

that, eventually, the only active agent is the one with the largest id. Peterson’s protocol

terminates when the agent that has the maximum id discovers that it has the maximum

id by receiving his own id back. The message complexity of Peterson’s protocol is thus

O(n logn), where n is the number of agents.
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Peterson’s protocol P1 for directional rings is similar. Again, passive agents forward

all messages they receive, at each round at most half of the agents remain active, and

the agent with the largest value becomes leader. There are, however, a number of differ-

ences. Like P2, P1 operates in phases, and agents are either active or passive; passive

agents just forward messages. With P1, in addition to their actual id, agents also main-

tain a “temporary” id. Initially, the temporary id of a process is his id. But at the end

of phase p > 0, an active process’s temporary id becomes the temporary id in phase

p − 1 of the closest active process to his left. While with P2 agents compare the ids

they receive with their own id in order to decide whether they stay active or not, with

P1 they compare the ids they receive to their temporary ids. The rule with P1 is that an

agent stays active if his temporary id is larger than the temporary ids of the following

and preceding active agents in the ring. Since the ring is directed, the way to discover

if this is the case is for an active agent to forward his temporary id to the following two

active agents. An active agent can then tell if the preceding active agent’s temporary id

was greater than the following and preceding active temporary id’s. If so, he remains

active, and takes as his temporary id what was the temporary id of the preceding active

agent. Otherwise, the agent becomes passive. It is not hard to check that an agent is

active in P2 iff his id is active in P1 (i.e., iff his id is the temporary id of an active agent

in P1). When an agent receives his original value, then he declares himself leader and

sends a message describing the result of the election around the ring.

We remark that, although they all work for rings, the LCR protocol is quite different

from P1 and P2. In the LCR protocol, agents forward their values along their unique

outgoing link. Eventually, the agent with the maximum input receives his own value

and realizes that it has the maximum value. In P1 and P2, agents are either active or

passive; in each round, the number of active agents is reduced, and eventually only the

agent with the maximum value remains active.

54



Despite their differences, LCR, P1, and P2 all essentially implement PgGC
cb . There

are two reasons we write “essentially” here. The first, rather trivial reason is that, when

agents send information, they do not send all the information they learn (even if the

agent they are sending it to will never learn this information). For example, in the LCR

protocol, if agent i learns that his left neighbor has value v and this is the largest value

that it has seen, it passes along v without passing along the fact that his left neighbor

has this value. We can easily deal with this by modifying LCR, P1, and P2 so that all

the agents send new info rather than whatever message they were supposed to send.

However, this modification does not suffice. The reason is that the modified protocols

send some “unnecessary” messages. To see this, let LCRfullinfo be the result of modify-

ing LCR so that agents send all the newn information they have learned, rather than just

maximum ids. Suppose that j is the agent with highest id. When j receives the message

with his id back and sends it around the ring again in LCRfullinfo (this is essentially the

message saying that j is the leader), j’s second message will include the id j ′ of the

agent just before j. Thus, when j ′ receives j’s second message, it will not need to for-

ward it to j. Let LCR′ be the result of modifying LCRfullinfo so that the last message is

not sent. We can show that LCR′ indeed de facto implements PgGC
cb .

The modifications to P2 that are needed to get a protocol P2′ that de facto implements

PgGC
cb are somewhat more complicated. Each agent i running P2′ acts as it does in P2

(modulo sending new info) until the point where it first gets a complete picture of who

is in the ring (and hence who the leader is). What happens next depends on whether i

is the first to find out who the leader is or not and whether i is active or not. We leave

details to Chapter 6.

In the following, we say that a protocol P ′ agrees with P2 up to the last phase if

there exist functions F1 from runs of P2 to runs of P ′ and F2 from runs of P ′ to runs of
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P2 such that, for every run r of P2 (resp., run r′ of P ′) and every agent i and j, i sends

a message to j at the point (r,m) and i does not yet know the maximum id iff i sends

a message to j at the point (F1(r), m) (resp., (F2(r
′), m)) and i does not yet know the

maximum id. (In the case of P2, i knows the maximum id iff i receives its own id or

receives a message with the value of the maximum id.) Notice that the messages sent

at (r,m) and (F1(r), m) might, in general be different. Indeed, whereas in P1 i may

send j an id, in F (r), i may send a potentially longer message containing all the new

information it has learned. We can similarly define what it means for P ′ to agree with

P1 up to the last phase.

If N is a set of graphs where each node inN has an associate id, then let fmaxid(N)

be the maximum id in N , for N ∈ N .

Theorem 2.6.1: The following all hold:

(a) The optimal flooding protocol with parameter d de facto implements PgGC
cb (with

f = fmaxid) in contexts where (i) all networks have diameter at most d and (ii)

all agents have distinct identifiers.

(b) LCR′ de facto implements PgGC
cb (with f = fmaxid) in all contexts where (i) all

networks are directed rings and (ii) agents have distinct identifiers.

(c) There exists a protocol P1′ that agrees with P1 up to the last phase and implements

PgGC
cb (with f = fmaxid) in all contexts where (i) all networks are directed rings

and (ii) agents have distinct identifiers.

(d) There exists a protocol P2′ that agrees with P2 up to the last phase and de facto

implements PgGC
cb (with f = fmaxid ) in all contexts where (i) all networks are

undirected rings and (ii) agents have distinct identifiers.
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Theorem 2.6.1 points out a significant commonality among these protocols. More-

over, the process of modifying P1 and P2 to obtain programs that implement PgGC
cb

(and thus ensure that agents send messages only when they believe it is necessary to

do so) suggests a general approach for finding message-optimal protocols: starting with

a high-level knowledge-based program that uses counterfactuals to ensure that mes-

sages are not sent unnecessarily, and then implementing it with a standard program.

For example, although P2′ has the same order-of-magnitude message complexity as P2

(O(n logn)), it typically sends O(n) fewer messages. While this improvement comes

at the price of possibly longer messages, it does suggest that this approach can result

in nontrivial improvements. Indeed, our hope is that we will be able to synthesize stan-

dard programs by starting with high-level knowledge-based specifications, synthesizing

a knowledge-based program that satisfies the specification, and then instantiating the

knowledge-based program as a standard program. This makes the subject of the next

chapter.
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CHAPTER 3

PROGRAM SYNTHESIS FROM KNOWLEDGE-BASED SPECIFICATIONS

Synthesis is a methodology of producing programs from specifications. With correct-

by-construction program synthesis [9] programs are constructed from proofs that the

specifications are satisfiable. That is, a constructive proof that a specification is satis-

fiable gives a program that satisfies the specification. Correct-by-construction program

synthesis has been successfully used to construct large complex sequential programs,

but it has not yet been used to create substantial realistic distributed programs.

The Cornell Nuprl proof development system was among the first tools used to pro-

duce correct-by-construction functional and sequential programs [19]. Nuprl has also

been used extensively to optimize distributed protocols, and to specify them in the lan-

guage of I/O Automata [60]. Recent work [11] has resulted in the definition of a frag-

ment of the higher-order logic used by Nuprl tailored to specifying distributed protocols,

called event theory, and the extension of Nuprl methods to synthesize distributed proto-

cols from specifications written in event theory. However, as has long been recognized

[25], designers typically think of specifications at a high level, which often involves

knowledge-based statements.

In this chapter, we add knowledge operators to event theory raising its level of ab-

straction and show by example that knowledge-based programs can be synthesized from

constructive proofs that specifications in event theory with knowledge operators are sat-

isfiable. Our example uses the sequence-transmission problem (STP from now on),

where a sender must transmit a sequence of bits to a receiver in such a way that the re-

ceiver eventually knows arbitrarily long prefixes of the sequence. Halpern and Zuck [50]

provide knowledge-based programs for STP, prove them correct, and show that a num-

ber of standard programs proposed for solving STP implement them. Here we show that
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one of these knowledge-based programs can be synthesized from the specifications of

the problem, expressed in event theory augmented by knowledge. We can then translate

the arguments of Halpern and Zuck to Nuprl, to show that the knowledge-based program

can be transformed to the standard programs in the literature.

This chapter is organized as follows. In the next section we give a brief overview of

the Nuprl system, review event theory, discuss the type of programs we use (distributed

message automata), and show how automata can be synthesized from a specification.

In Section 3.2 we show how epistemic logic can be translated into Nuprl, and how to

formalize knowledge-based automata in Nuprl. The sequence transmission problem is

analyzed in Section 3.3. We conclude with references to related work in Section 3.4.

3.1 Synthesizing programs from constructive proofs

3.1.1 Nuprl: a brief overview

Much current work on formal verification using theorem proving, including Nuprl, is

based on type theory (see [18] for a recent overview). A type can be thought of as a

set with structure that facilitates its use as a data type in computation; this structure also

supports constructive reasoning. The set of types is closed under constructors such as

× and →, so that if A and B are types, so are A × B and A → B , where, intuitively,

A → B represents the computable functions from A into B .

Constructive type theory, on which Nuprl is based, was developed to provide a foun-

dation for constructive mathematics. The key feature of constructive mathematics is that

“there exists” is interpreted as “we can construct (a proof of)”. Reasoning in the Nuprl
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type theory is intuitionistic [14], in the sense that proving a certain fact is understood as

constructing evidence for that fact. For example, a proof of the fact that “there exists x

of type A” builds an object of type A, and a proof of the fact “for any object x of type A

there exists an object y of type B such that the relation R(x, y) holds” builds a function

f that associates with each object a of type A an object b of type B such that R(a, b)

holds.

One consequence of this approach is that the principle of excluded middle does not

apply: while in classical logic, ϕ ∨ ¬ϕ holds for all formulas ϕ, in constructive type

theory, it holds exactly when we have evidence for either ϕ or ¬ϕ, and we can tell from

this evidence which of ϕ and ¬ϕ it supports. A predicate Determinate is definable in

Nuprl such that Determinate(ϕ) is true iff the principle of excluded middle holds for

formula ϕ. (From here on in, when we say that a formula is true, we mean that it is

constructively true, that is, provable in Nuprl.)

In this chapter, we focus on synthesizing programs from specifications. Thus we

must formalize these notions in Nuprl. As a first step, we define a type Pgm in Nuprl

and take programs to be objects of type Pgm. Once we have defined Pgm, we can define

other types of interest.

Definition 3.1.1: A program semantics is a function S of type Pgm → Sem assigning

to each program Pg of type Pgm a meaning of type Sem = 2Sem ′ . Sem ′ is the type of

executions consistent with the program Pgm under the semantics S . A specification is a

predicate X on Sem ′. A program Pg satisfies the specification X if X (e) holds for all

e in S (Pg). A specification X is satisfiable if there exists a program that satisfies X .

As Definition 3.1.1 suggests, all objects in Nuprl are typed. To simplify our dis-

cussion, we typically suppress the type declarations. Definition 3.1.1 shows that the
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satisfiability of a specification is definable in Nuprl. The key point for the purposes

of this chapter is that from a constructive proof that X is satisfiable, we can extract a

program that satisfies X .

Constructive type logic is highly undecidable, so we cannot hope to construct a proof

completely automatically. However, experience has shown that, by having a large library

of lemmas and proof tactics, it is possible to “almost” automate quite a few proofs, so

that with a few hints from the programmer, correctness can be proved. For this general

constructive framework to be useful in practice, the parameters Pgm, Sem ′, and S must

be chosen so that (a) programs are concrete enough to be compiled, (b) specifications

are naturally expressed as predicates over Sem ′, and (c) there is a small set of rules for

producing proofs of satisfiability.

To use this general framework for synthesis of distributed, asynchronous algorithms,

we choose the programs in Pgm to be distributed message automata. Message automata

are closely related to IO-Automata [60] and are roughly equivalent to UNITY programs

[16] (but with message-passing rather than shared-variable communication). We de-

scribe distributed message automata in Section 3.1.3. As we shall see, they satisfy

criterion (a).

The semantics of a program is the system, or set of runs, consistent with it. Typical

specifications in the literature are predicates on runs. We can view a specification as a

predicate on systems by saying that a system satisfies a specification exactly if all the

runs in the system satisfy it. To satisfy criterion (b), we formalize runs as structures

that we call event structures, much in the spirit of Lamport’s [55] model of events in

distributed systems. Event structures are explained in more detail in the next section.

We have shown [11] that, although satisfiability is undecidable, there is indeed a small

set of rules from which we can prove satisfiability in many cases of interest; these rules
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are discussed in Section 3.1.3.

3.1.2 Event structures

Consider a set AG of processes or agents; associated with each agent i in AG is a set Xi

of local variables. Agent i’s local state at a point in time is defined as the values of its

local variables at that time. We assume that the sets of local variables of different agents

are disjoint. Information is communicated by message passing. The set of links is Links .

Sending a message on some link l ∈ Links is understood as enqueuing the message on

l , while receiving a message corresponds to dequeuing the message. Communication is

point-to-point: for each link l there is a unique agent source(l) that can send messages

on l , and a unique agent dest(l) that can receive message on l . For each agent i and link

l with source(l) = i, we assume that msg(l) is a local variable in Xi.

We assume that communication is asynchronous, so there is no global notion of

time. Following Lamport [55], changes to the local state of an agent are modeled as

events. Intuitively, when an event “happens”, an agent either sends a message, receives a

message or chooses some values (perhaps nondeterministically). As a result of receiving

the message or the (nondeterministic) choice, some of the agent’s local variables are

changed.

Lamport’s theory of events is the starting point of our formalism. To help in writing

concrete and detailed specifications, we add more structure to events. Formally, an event

is a tuple with three components. The first component of an event e is an agent i ∈ AG,

intuitively the agent whose local state changes during event e. We denote i as agent(e).

The second component of e is its kind, which is either a link l with dest(l) = i or a

local action a, an element of some given set Act of local actions. The only actions in
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Act are those that set local variables to certain values. We denote this component as

kind(e). We often write kind(e) = rcv(l) rather than kind(e) = l to emphasize the fact

that e is a receive event; similarly we write kind(e) = local(a) rather than kind(e) = a

to emphasize the fact that a is a local action. The last component of e is its value v , a

tuple of elements in some domain Val ; we denote this component as val(e). If e is a

receive event, then val(e) is the message received when e occurs; if e is a local event a,

then val(e) represents the tuple of values to which the variables are set by a. (For more

details on the reasons that led to this formalism, see [12].)

Rather than having a special kind to model send events, we model the sending of a

message on link l by changing the value of a local variable msg(l) that describes the

message sent on l. A special value ⊥ indicates that no message is sent when the event

occurs; changing msg(l) to a value other than ⊥ indicates that a message is sent on l .

This way of modeling send events has proved to be convenient. One advantage is that

we can model multicast: the event e of i broadcasting a message m to a group of agents

just involves a local action that sets msg(l) to m for each link l from i to one of the

agents in the group. Similarly, there may be an action in which agent i sends a message

to some agents and simultaneously updates other local variables.

Following Lamport [55], we model an execution of a distributed program as a se-

quence of events satisfying a number of natural properties. We call such a sequence an

event structure. We take an event structure es to be a tuple consisting of a set E of events

and a number of additional elements that we now describe. These elements include the

functions dest, source, and msg referred to above, but there are others. For example,

Lamport assumes that every receive event e has a corresponding (and unique) event

where the message received at e was sent. To capture this in our setting, we assume

that the description of the event structure es includes a function send whose domain
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is the receive events in es and whose range is the set of events in es; we require that

agent(send(e)) = source(l). Note that, since we allow multicasts, different receive

events may have the same corresponding send event.

For each i ∈ AG , we assume that the set of events e in es associated with i is totally

ordered. This means that, for each event e, we can identify the sequence of events

(history) associated with agent i that preceded e. To formalize this, we assume that, for

each agent i ∈ AG, the description of es includes a total order ≺i on the events e in

es such that agent(e) = i. Define a predicate first and function pred such that first(e)

holds exactly when e is the first event in the history associated with agent(e) in es;

if first(e) does not hold, then pred(e) is the unique predecessor of e in es. Following

Lamport [55], we take ≺ to be the least transitive relation on events in es such that

send(e)≺e if e is a receive event and e≺e′ if e≺ie
′. We assume that ≺ is well-founded.

We abbreviate (e′≺e) ∨ (e = e′) as e ′�e, or e�e′. Note that ≺i is defined only for

events associated with agent i: we write e≺ie
′ only if agent(e) = agent(e′) = i.

The local state of an agent defines the values of all the variables associated with the

agent. While it is possible that an event structure contains no events associated with

a particular agent, for ease of exposition, we consider only event structures in which

each agent has at least one local state, and denote the initial local state of agent i as

initstate i. In event structures es where at least one event associated with a given agent i

occurs, initstate i represents i’s local state before the first event associated with i occurs

in es . Formally, the local state of an agent i is a function that maps Xi and a special

symbol vali to values. (The role of vali will be explained when we give the semantics

of the logic.) If x ∈ Xi, we write s(x) to denote the value of x in i’s similarly, s(vali)

is the value of vali in s. If agent(e) = i, we take state before e to be the local state

of agent i before e; similarly, state after e denotes i’s local state after event e occurs.
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The value (state after e)(x) is in general different from (state before e)(x). How it

differs depends on the event e, and will be clarified in the semantics. We assume that

(state after e)(vali) = val(e); that is, the value of the special symbol vali in a local

state is just the value of the event that it follows. If x ∈ Xi, we take x before e to be an

abbreviation for (state before e)(x); that is, the value of x in the state before e occurs;

similarly, x after e is an abbreviation for (state after e)(x).

Example 3.1.2: Suppose that Act contains send and send+inc(x ), where x ∈ Xi, and

that V al contains the natural numbers. Let n and v be natural numbers. Then

• the event of agent i receiving message m on link l in the event structure es is

modeled by the tuple e = (i, l, m), where agent(e) = i, kind(e) = rcv(l), and

val(e) = m;

• the event of agent i sending message n on link l in es is represented by the tuple

e = (i, send , m), where msg(l) after e = m;

• the event e of agent i sending m on link l and incrementing its local variable

x by v in es is represented by the tuple e such that agent(e) = i, kind(e) =

send+inc(x ), and val(e) = 〈m, v〉, where msg(l) after e = m and x after e =

x before e+ v.

Definition 3.1.3: An event structure is a tuple es = 〈AG ,Links, source, dest ,Act ,

{Xi}i∈AG ,Val , {initstate i}i∈AG , E, agent , send , first , {≺i}i∈AG ,≺〉 where AG is a

set of agents, Links is a set of links such that source : Links −→ AG , dest : Links −→

AG , Act is a set of actions, Xi is a set of variables for agent i ∈ AG such that, for

all links l ∈ Links, msg(l) ∈ Xi if i = source(l), Val is a set of values, initstate i

is the initial local state of agent i ∈ AG , E is a set of events for agents AG , kinds

Kind = Links ∪ Act , and domain Val , functions agent , send and first are defined as

65



explained above, ≺is are local precedence relations and ≺ is a causal order such that the

following axioms, all expressible in Nuprl, are satisfied:

• if e has kind rcv(l), then the value of e is the message sent on l during event

send(e), agent(e) = dest(l), and agent(send(e)) = source(l):

∀e ∈ es.∀l . (kind(e) = rcv(l)) ⇒

(val(e) = msg(l) after send(e)) ∧ (agent(e) = dest(l))∧

(agent(send(e)) = source(l))

• for each agent i , events associated with i are totally ordered:

∀e ∈ es.∀e′ ∈ es.(agent(e) = agent(e′) = i⇒ e≺ie
′ ∨ e′≺ie ∨ e = e′).

• e is the first event associated with agent i if and only if there is no event associated

with i that precedes e:

∀e ∈ es ∀i . (agent(e) = i) ⇒ (first(e) ⇔ ∀e ′ ∈ es. ¬(e ′≺ie)).

• the initial local state of agent i is the state before the first event associated with i,

if any:

∀i . (∀e ∈ es. (agent(e) = i ⇒ (first(e) ⇔ (state before e = initstate i)))).

• the predecessor of an event e immediately precedes e in the causal order:

∀e ∈ es. ∀i . ((agent(e) = i) ∧ ¬first(e)) ⇒

((pred(e)≺ie) ∧ (∀e ′ ∈ es. ¬(pred(e)≺ie
′≺ie))).

• the local variables of agent agent(e) do not change value between the predecessor

of e and e:

∀e ∈ es. ∀i . (agent(e) = i ∧ ¬first(e)) ⇒

∀x ∈ Xi . (x after pred(e) = x before e).
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• the causal order ≺ is well-founded:

∀P . (∀e. (∀e ′≺e. P(e ′)) ⇒ P(e)) ⇒ (∀e. P(e)),

where P is an arbitrary predicate on events. (It is easy to see that this axiom is

sound if ≺ is well-founded. On the other hand, if ≺ is not well-founded, then let

P be a predicate that is false exactly of the events e such that there there is an

infinite descending sequence starting with e. In this case, the antecedent of the

axiom holds, and the conclusion does not.)

In our proofs, we will need to argue that two events e and e′ are either causally

related or they are not. It can be shown [11] that this can be proved in constructive

logic iff the predicate first satisfies the principle of excluded middle. We enforce this

by adding the following axiom to the characterization of event structures:

∀e ∈ es. Determinate(first(e)).

The set of event structures is definable in Nuprl (see [11]). We use event structures

to model executions of distributed systems. We show how this can be done in the next

section.

3.1.3 Distributed message automata

As we said, the programs we consider are message automata. Roughly speaking, we

can think of message automata as nondeterministic state machines, though certain dif-

ferences exist. Each basic message automaton is associated with an agent i ; a message

automaton associated with i essentially says that, if certain preconditions hold, i can

take certain local actions. (We view receive actions as being out of the control of the
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agent, so the only actions governed by message automata are local actions.) At each

point in time, i nondeterministically decides which actions to perform, among those

whose precondition is satisfied. We next describe the syntax and semantics of message

automata.

Syntax

We consider a first-order language for tests in automata. Fix a set AG of agents, a set

Xi of local variables for each agent i in AG , and a set X∗ of variables that includes

∪i∈AGXi (but may have other variables as well). The language also includes special

constant symbols vali, one for each agent i ∈ AG, predicate symbols in some finite set

P , and function symbols in some finite set F . Loosely speaking, vali is used to denote

the value of an event associated with agent i; constant symbols other than val1, . . . ,valn

are just 0-ary function symbols in F . We allow quantification only over variables other

than local variables; that is, over variables x /∈ ∪i∈AGXi.

Message automata are built using a small set of basic programs, which may involve

formulas in the language above. Fix a set Act of local actions and a set Links of links

between agents in AG.1 There are five types of basic programs for agent i:

• @i initially ψ;

• @i if kind = k then x := t, where k ∈ Act ∪ Links and x ∈ Xi;

• @i kind = local(a) only if ϕ;

• @i if necessarily ϕ then i.o. kind = local(a); and

• @i only L affects x, where L is a list of kinds in Act ∪ Links and x ∈ Xi.
1We are being a little sloppy here, since we do not distinguish between an action a and the name for

the action that appears in a program, and similarly for links and the variables in Xi.
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Note that all basic program for agent i are prefixed by @i.

We can form more complicated programs from simpler programs by composition.

We can compose automata associated with different agents. Thus, the set (type) Pgm of

programs is the smallest set that includes the basic programs such that if Pg 1 and Pg2

are programs, then so is Pg1 ⊕ Pg2.2

Semantics

We give semantics by associating with each program the set of event structures consis-

tent with the program. Intuitively, a set of event structures is consistent with a distributed

message automaton if each event structure in the set can be seen as an execution of the

automaton. The semantics can be defined formally in Nuprl as a relation between a dis-

tributed program Pg and an event structure es . In this section, we define the consistency

relation for programs and give the intuition behind these programs.

In classical logic, we give meaning to formulas using an interpretation. In the Nuprl

setting, we are interested in constructive interpretations I , which can be characterized

by a formula ϕI . We can think of ϕI as characterizing a domain Val I and the meaning of

the fuction and predicate symbols. If I is an interpretation with domain Val I , an I-local

state for i maps Xi ∪ {vali} to Val I ; an I-global state is a tuple of I-local states, one

for each agent in AG . Thus, if s = (s1, . . . , sn) is an I-global state, then si is i’s local

state in s. (Note that we previously used s to denote a local state, while here s denotes

a global state. We will always make it clear whether we are referring to local or global

states.)

For consistency with our later discussion of knowledge-based programs, we allow
2Here we are deliberately ignoring the difference between sets and types.
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the meaning of some predicate and function symbols that appear in tests in programs to

depend on the global state. We say that a function or predicate symbol is rigid if it does

not depend on the global state. For example, if the domain is the natural numbers, we

will want to treat +, ×, and < as rigid. However, having the meaning of a function or

predicate depend on the global state is not quite as strange as it may seem. For example,

we may want to talk about an array whose values are encoded in agent 1’s variables

x1, x2, and x3. An array is just a function, so the interpretation of the function may

change as the values of x1, x2, and x3 change. For each nonrigid predicate symbol P

and function symbol f in P ∪ F , we assume that there is a predicate symbol P + and

function symbol f+ whose arity is one more than that of P (resp., f ); the extra argument

that is a global state. We then associate with every formula ϕ and term t that appears

in a program a formula ϕ+ and term t+ in the language of Nuprl. We define ϕ+ by

induction on the structure of ϕ. For example, for an atomic formula such as P (c), if P

and c are rigid, then (P (c))+ is just P (c). If P and c are both nonrigid, then (P (c))+ is

P+(c+(s), s), where s is a variable interpreted as a global state.3 We leave to the reader

the straightforward task of defining ϕ+ and t+ for atomic formulas and terms. We then

take (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+, (¬ϕ)+ = ¬ϕ+, and (∀xϕ)+ = ∀xϕ+.

An I-valuation V associates with each non-local variable (i.e., variable not in

∪i∈AGXi) a value in Val I . Given an interpretation I , an I-global state s, and an I-

valuation V , we take IV (ϕ)(s) to be an abbreviation for the formula (expressible

in Nuprl) that says ϕI together with the conjunction of atomic formulas of the form

x = V (x) for all non-local variables x that appear in ϕ, x = si(x) for variables x ∈ Xi,

i ∈ AG , that appear in ϕ, and s = s implies ϕ+. Thus, IV (ϕ)(s) holds if there is a con-

structive proof that the formula that characterizes I together with the (atomic) formulas

that describe V (x) and s, and a formula that says that s is represented by s, imply ϕ+.
3Since Nuprl is a higher-order language, there is no problem having a variable ranging over global

states that is an argument to a predicate.
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It is beyond the scope of this thesis (and not necessary for what we do here) to discuss

constructive proofs in Nuprl; details can be found in [20]. However, it is worth noting

that, for a first-order formula ϕ, if IV (ϕ)(s) holds, then ϕ+ is true in state s with respect

to the semantics of classical logic in I . The converse is not necessarily true. Roughly

speaking, IV (ϕ)(s) holds if there is evidence for the truth of ϕ+ in state s (given valua-

tion V ). We may have evidence for neither ϕ+ nor ¬ϕ+. We also take IV (t)(s) to be the

value v such that there is a constructive proof of IV (t = v)(s). Note that this says that,

just as we may not have evidence for either ϕ nor ¬ϕ in constructive logic, not all terms

are computable in Nuprl and IV (t)(s) may not be defined for all terms and states s.

A formula ϕ is an i-formula in interpretation I if its meaning in I depends only in

i’s local state; that is, for all global states s and s′ such that si = s′i, IV (ϕ)(s) holds

iff IV (ϕ)(s′) does. Similarly, t is an i-term in I if x = t is an i-formula in I , for x a

non-local variable. It is easy to see that ϕ is an i-formula in all interpretations I if all

the predicate and function symbols in ϕ are rigid, and ϕ does not mention variables in

Xj for j 6= i and does not mention the constant symbol valj for j 6= i. Intuitively, this

is because if we have a constructive proof that ϕ holds in s with respect to valuation

V , and ϕ is an i-formula, then all references to local states of agents other than i can

be safely discarded from the argument to construct a proof for ϕ based solely on si. If

ϕ is an i-formula, then we sometimes abuse notation and write IV (ϕ)(si) rather than

IV (ϕ)(s). Note that the valuation V is not needed for interpreting formulas whose free

variables are all local; in particular, V is not needed to interpret i-formulas. For the rest

of this chapter, if the valuation is not needed, we do not mention it, and simply write

I(ϕ). Given a formula ϕ and term t, we can easily define Nuprl formulas i-formula(ϕ,I)

and i-term(t,I) that are constructively provable if ϕ is an i-formula in I (resp., t is an

i-term in I).
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We define a predicate Consistent I on programs and event structures such that, in-

tuitively, Consistent I (Pg, es) holds if the event structure es is consistent with pro-

gram Pg , given interpretation I . We start with basic programs. The basic program

@i initially ψ is an initialization program, which is intended to hold in an event struc-

ture es if ψ is an i-formula and i’s initial local state satisfies ψ. Thus,

ConsistentI(@i initially ψ, es) =def i-formula(ψ, I) ∧ I(ψ)(initstate i).

(This notation implicitly assumes that initstate i is as specified by es , according to Def-

inition 3.1.1. For simplicity, we have opted for this notation instead of es.initstate i.)

We call a basic program of the form @i if kind = k then x := t an effect program.

It says that, if t is an i-term, then the effect of an event e of kind k is to set x to t. We

define

Consistent I(@i if kind = k then x := t, es) =def

i-term(t, I)∧

∀e@i ∈ es. (kind(e) = k ⇒ (state after e)(x ) = I (t)(state before e)),

where we write ∀e@i ∈ es. ϕ as an abbreviation for ∀e ∈ es.agent(e) = i ⇒ ϕ. As

above, the notation above implicitly assumes that before and after are as specified by

es . Again, this expression is an abbreviation for a formula expressible in Nuprl whose

intended meaning should be clear; Consistent I(@i if kind = k then x := t, es) holds

if there is a constructive proof of the formula.

We can use a program of this type to describe a message sent on a link l. For

example,

@i kind = local(a) then msg(l) := f(vali)

says that for all events e, f(v) is sent on link l if the kind of e is a, the local state of

agent i before e is si, and v = si(vali).
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The third type of program, @i kind = local(a) only if ϕ, is called a precondition

program. It says that an event of kind a can occur only if the precondition ϕ (which

must be an i-formula) is satisfied:

Consistent I(@i kind = local(a) only if ϕ, es) =def

i-formula(ϕ, I) ∧ ∀e@i ∈ es. (kind(e) = local(a) ⇒ I(ϕ)(state before e)).

Note that we allow conditions of the form kind(e) = local(a) here, not the more gen-

eral condition of the form kind(e) = k allowed in effect programs. We do not allow

conditions of the form kind(e) = rcv(l) because we assume that receive events are not

under the control of the agent.

Standard formalizations of input-output automata (see [60]) typically assume that

executions satisfy some fairness constraints. We assume here only a weak fairness con-

straint that is captured by the basic program @i if necessarily ϕ then i.o. kind =

local(a), which we call a fairness program. Intuitively, it says that if ϕ holds from some

point on, then an event with kind local(a) will eventually occur. For an event sequence

with only finitely many states associated with i, we take ϕ to hold “from some point on”

if ϕ holds at the last state. In particular, this means that the program cannot be consistent

with an event sequence for which there are only finitely many events associated with i

if ϕ holds of the last state associated with i. Define

ConsistentI(@i if necessarily ϕ then i.o. kind = local(a), es) =def

i-formula(ϕ, I)∧

[((∃e@i ∈ es) ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′) ∨ (kind(e′) = local(a)))

∨ (¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))].

The last type of basic program, @i only L affects x, is called a frame program. It

ensures that only events of kinds listed in L can cause changes in the value of variable
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x . The precise semantics depends on whether x has the form msg(l). If x does not have

the form msg(l), then

Consistent I(@i only L affects x,es) =def

∀e@i ∈ es. ((x after e) 6= (x before e)⇒(kind(e) ∈ L)).

If x has the form msg(l), then we must have source(l) = i. Recall that send-

ing a message m on l is formalized by setting the value of msg(l) to m. We assume

that messages are never null (i.e., m 6= ⊥). No messages are sent during event e if

msg(l)after e = ⊥. If x has the form msg(l), then

ConsistentI(@i only L affects msg(l),es) =def

∀e@i ∈ es. ((msg(l) after e 6= ⊥)⇒(kind(e) ∈ L)).

Finally, an event structure es is said to be consistent with a distributed program Pg

that is not basic if es is consistent with each of the basic programs that form Pg:

Consistent I(Pg1 ⊕ Pg2, es) =def Consistent I(Pg1, es) ∧ Consistent I(Pg2, es).

Definition 3.1.4: Given an interpretation I , the semantics of a program Pg is the set

of event structures consistent with Pg under interpretation I . We denote by SI this

semantics of programs: SI (Pg) = {es | Consistent I (Pg , es)}. We write Pg |≈I X if

Pg satisfies X with respect to interpretation I; that is, if X (es) is true for all es ∈

SI (Pg)).

Note that SI (Pg1 ⊕ Pg2 ) = SI (Pg1 ) ∩ SI (Pg2 ). Since the Consistent I predicate is de-

finable in Nuprl, we can formally reason in Nuprl about the semantics of programs.

A specification is a predicate on event structures. Since our main goal is to derive

from a proof that a specification X is satisfiable a program that satisfies X , we want
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to rule out the trivial case where the derived program Pg has no executions, so that it

vacuously satisfies the specification X .

Definition 3.1.5: Program Pg is consistent (with respect to interpretation I) if SI(Pg) 6=

∅. The specification X is realizable (with respect to interpretation I) if it is not vacu-

ously satisfied, that is, if ∃Pg .(Pg |≈I X∧SI(Pg) 6= ∅). Pg realizes X (with respect to

I) if Pg |≈I X and Pg is consistent (with respect to I).

Thus, a specification is realizable if there exists a consistent program that satisfies it,

and, given an interpretation I , a program is realizable if there exists an event structure

consistent with it (with respect to I). Since we reason constructively, this means that a

program is realizable if we can construct an event structure consistent with the program.

This requires not only constructing sequences of events, one for each agent, but all the

other components of the event structure as specified in Definition 3.1.3, such as AG and

Act .

All basic programs other than initialization and fairness programs are vacuously sat-

isfied (with respect to every interpretation I) by the empty event structure es consisting

of no events. The empty event structure is consistent with these basic programs because

their semantics in defined in terms of a universal quantification over events associated

with an agent. It is not hard to see that an initialization program @i initially ψ is

consistent with respect to interpretation I if and only if ψ is satisfiable in I; i.e., there

is some global state s such that I(ψ)(si) holds. For if es is an event structure with

initstate i = si, then clearly es realizes @i initially ψ.

Fair programs are realizable with respect to interpretations I where the precondition

ϕ satisfies the principle of excluded middle (that is, ϕI ⇒ Determinate(ϕ+) is provable

in Nuprl), although they are not necessarily realized by a finite event structure. To see

75



this, note that ifϕ satisfies the principle of excluded middle in I , then either there is an I-

local state s∗i for agent i such that I(¬ϕ)(s∗i ) holds, or I(ϕ)(si) holds for all I-local states

si for i. In the former case, consider an empty event structure es with domain Val I and

initstate i = s∗i ; it is easy to see that es is consistent with @i if necessarily ϕ then

i.o. kind = local(a). Otherwise, let Act = {a}. Let es be an event structure where Act

is the set of local actions, Val I is the set of values, the sequence of events associated

with agent i in es is infinite, and all events associated with agent i have kind local(a).

Again, it is easy to see that es is consistent with @i if necessarily ϕ then i.o. kind =

local(a).

If ϕ does not satisfy the principle of excluded middle in I , then @i if necessarily ϕ

then i.o. kind = local(a) may not be realizable with respect to I . For example, this

would be the case if for example, neither I(ϕ)(si) nor I(¬ϕ)(si) holds for any local

state si.

Note that two initialization programs may each be consistent although their com-

position is not. For example, if both ψ and ¬ψ are satisfiable i-formulas, then each of

@i initially ψ and @i initially ¬ψ is consistent, although their composition is not.

Nevertheless, all programs synthesized in this chapter can be easily proven consistent.

Axioms

Bickford and Constable [11] derived from the formal semantics of distributed message

automata some Nuprl axioms that turn out to be useful for proving the satisfiability of a

specification. We now present (a slight modification of) their axioms. The axioms have

the form Pg |≈I X , where Pg is a program and X is a specification, that is, a predicate

on event structures; the axiom is sound if all event structures es consistent with program
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Pg under interpretation I satisfy the specification X . We write |≈I to make clear that

the program semantics in given with respect to an interpretation I . There is an axiom for

each type of basic program other than frame programs, two axioms for frame programs

(corresponding to the two cases in the semantic definition of frame programs), together

with an axiom characterizing composition and a refinement axiom.

Ax-init:

@i initially ψ |≈I λes. i -formula(ψ, I ) ∧ I (ψ)(initstate i).

(Note that the right-hand side of |≈ is a specification; given an event structure

es, it is true if i-formula(ψ, I) ∧ I(ψ)(initstate i) holds in event structure es .)

Ax-cause:

@i if kind = k then x:=t |≈I

λes. i -term(t , I ) ∧ ∀e@i ∈ es. (kind(e) = k ⇒

(state after e)(x ) = I (t)(state before e)).

Ax-if:

@i kind = local(a) only if ϕ |≈I

λes. i -formula(ϕ, I )∧

∀e@i ∈ es. (kind(e) = local(a) ⇒ I (ϕ)(state before e)).

Ax-fair:

@i if necessarily ϕ then i.o. kind = local(a) |≈I

λes. i-formula(ϕ, I)∧

[((∃e@i ∈ es) ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′)

∨(kind(e′) = local(a)))

∨(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))].
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Ax-affects:

@i only L affects x |≈I

λes. ∀e@i ∈ es. (x after e 6= x before e)⇒(kind(e) ∈ L).

Ax-sends:

@i only L affects msg(l) |≈I

λes. ∀e@i ∈ es. (msg(l) after e 6= ⊥)⇒(kind(e) ∈ L).

Ax-⊕: (Pg1 |≈I P) ∧ (Pg2 |≈I Q) ⇒ (Pg1 ⊕ Pg2 |≈I P ∧ Q).

Ax-ref: (Pg |≈I P) ∧ (P ⇒ Q) ⇒ (Pg |≈I Q).

Lemma 3.1.6: Axioms Ax-init, Ax-cause, Ax-if , Ax-fair, Ax-affects, Ax-sends,

Ax-⊕, and Ax-ref hold for all interpretations I .

Proof: This is immediate from Definitions 3.1.1 and 3.1.4, and the definition of

Consistent I .

A general scheme for program synthesis

Recall that, given a specification ϕ and an interpretation I , the goal is to prove that ϕ

is satisfiable with respect to I , that is, to show that ∃Pg. (Pg |≈I ϕ) holds. We now

provide a general scheme for doing this. Consider the following scheme, which we call

GS:

1. Find specifications ϕ1, ϕ2, . . ., ϕn such that ∀es. (ϕ1(es)∧ϕ2(es)∧. . .∧ϕn(es) ⇒

ϕ(es)) is true under interpretation I .

2. Find programs Pg1, Pg2, . . ., Pgn such that Pgi |≈I ϕi holds for all i ∈ {1, . . . n}.
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3. Conclude that Pg |≈I ϕ, where Pg = Pg1 ⊕ Pg2 ⊕ . . .⊕ Pgn.

Step 1 of GS is proved using the rules and axioms encoded in the Nuprl system; Step

2 is proved using the axioms given in Section 3.1.3. It is easy to see that GS is sound in

the sense that, if we can show using GS that Pg satisfies ϕ, then Pg does indeed satisfy

ϕ. We formalize this in the following proposition.

Proposition 3.1.7: Scheme GS is sound.

3.1.4 Example

As an example of a specification that we use later, consider the run-based specification

FairI (ϕ, t , l), where i 6= j, l is a link with source(l) = i and dest(l) = j, ϕ is an

i-formula, and t is an i-term. FairI (ϕ, t , l) is a conjunction of a safety condition and a

liveness condition. The safety condition asserts that if a message is received on link l ,

then it is the term t interpreted with respect to the local state of the sender, and that ϕ,

evaluated with respect to the local state of the sender, holds. The liveness condition says

that, if (there is a constructive proof that) condition ϕ is enabled from some point on in

an infinite event sequence, then eventually a message sent on l is delivered. (Thus, the

specification imposes a weak fairness requirement.) We define FairI(ϕ, t, l) as follows:

FairI(ϕ, t, l) =defλes. i-formula(ϕ, I) ∧ i-term(t, I)

(∀e′ ∈ es. (kind(e′) = rcv(l) ⇒

I (ϕ)(state before send(e′)) ∧ val(e′) = I(t)(state before send(e′))) ∧

((∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′))∨

(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))∨

(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. kind(e′) = rcv(l) ∧ send(e′) �i e)).
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We are interested in this fairness specification only in settings where communication

satisfies a (strong) fairness requirement: if infinitely often an agent sends a message on a

link l, then infinitely often some message is delivered on l. We formalize this assumption

using the following specification:

FairSend(l) =def λes. (∀e@i ∈ es. ∃e′ �i e. msg(l) after e′ 6= ⊥)

⇒ (∀e@i ∈ es. ∃e ′. kind(e ′) = rcv(l) ∧ send(e ′) �i e).

We explain below why we need communication to satisfy strong fairness rather than

weak fairness (which would require only that if a message is sent infinitely often, then a

message is eventually delivered).

For an arbitrary action a, let Fair -Pg(ϕ, t , l, a) be the following program for agent

i :
@i kind = local(a) only if ϕ ⊕

@i if kind = local(a) then msg(l):=t ⊕

@i only events in [a] affect msg(l) ⊕

@i if necessarily ϕ then i.o. kind = local(a).

The first basic program says that i takes action a only if ϕ holds. The second basic

program says that the effect of agent i taking action a is for t to be sent on link l; in

other words, a is i’s action of sending t to agent j. The third program ensures that only

action a has the effect of sending a message to agent j. With this program, if agent j (the

receiver) receives a message from agent i (the sender), then it must be the case that the

value of the message is t and that ϕ was true with respect to i’s local state when it sent

the message to j. The last basic program ensures that if ϕ holds from some point on in

an infinite event sequence, then eventually an event of kind a holds; thus, i must send

the message t infinitely often. The fairness requirement on communication ensures that

if an event of kind a where i sends t occurs infinitely often, then t is received infinitely

often.
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Lemma 3.1.8: For all actions a, Fair -Pg(ϕ,t, l, a) satisfies λes.FairSend(l)(es) ⇒

FairI(ϕ, t, l)(es) with respect to all interpretations I such that ϕ is an i-formula and t

is an i-term in I .

Proof: We present the key points of the proof here, omitting some details for ease of

exposition. We follow the scheme GS . We assume that i-formula(ϕ, I) and i-term(t, I)

both hold.

Step 1. For each event structure es, FairI(ϕ, t, l)(es) is equivalent to a conjunction

of three formulas:

ϕ1(es) : ∀e′ ∈ es. (kind(e′) = rcv(l)) ⇒ I(ϕ)(state before send(e′))

ϕ2(es) : ∀e′ ∈ es. (kind(e′) = rcv(l)) ⇒ val(e′) = I(t)(state before send(e′))

ϕ3(es) : (∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′))∨

(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i)∨

(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′.kind(e′) = rcv(l) ∧ send(e′) �i e).

We want to find formulas ψ1(es), . . . , ψ4(es) that follow from the four basic pro-

grams that make up Fair -Pg(ϕ,t, l, a) and together imply ϕ1(es) ∧ ϕ2(es) ∧ ϕ3(es). It

will simplify matters to reason directly about the events where a message is sent on link

l. We thus assume that, for all events e, agent i sends a message on link l during event e

iff kind(e) = local(a). This assumption is expressed by:

ψ1(es) =def ∀e@i ∈ es. (msg(l) after e 6= ⊥) ⇒ (kind(e) = local(a)).

It is easy to check that (ψ1(es) ∧ ψ2(es)) ⇒ ϕ1(es)) is true, where ψ2(es) is

∀e@i ∈ es. (kind(e) = local(a)) ⇒ I(ϕ)(state before e).

Similarly, using the axiom of event structures given in Section 3.1.2 that says that the

value of a receive event e on l is the value of msg(l) after send(e), it is easy to check
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that (ψ1(es) ∧ ψ3(es)) ⇒ ϕ2(es)) is true, where ψ3(es) is

∀e@i ∈ es.(kind(e) = local(a)) ⇒msg(l) after e = I(t)(state before e).

We can show that (ψ3(es) ∧ ψ4(es) ∧ FairSend(l)) ⇒ ϕ3(es) is true, where ψ4 is

(∃e@i ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′))∨

(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))∨

(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. kind(e′) = local(a)).

It follows that

(∀es.(ψ1 (es) ∧ ψ2 (es) ∧ ψ3 (es) ∧ ψ4 (es)) ⇒ (FairSend(l)(es) ⇒ FairI (ϕ, t , l)(es))).

Step 2. By Ax-sends

@i only [a] affects msg(l) |≈I ψ1.

By Ax-if ,

@i kind = local(a) only if ϕ |≈I ψ2.

By Ax-cause,

@i if kind = local(a) then msg(l):=t |≈I ψ3;

and by Ax-fair

@i if necessarily ϕ then i.o. kind = local(a) |≈I ψ4.

By the soundness of GS (Proposition 3.1.7), Fair -Pg(ϕ, t , l , a) satisfies

λes.FairSend(l)(es) ⇒ FairI(ϕ, t, l)(es) with respect to I .
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Lemma 3.1.9 : For all interpretations I such that ϕ is an i-formula and t is an

i-term in I , if ϕ satisfies the principle of excluded middle with respect to I , then

Fair-Pg(ϕ,t, l, a) is consistent with respect to I .

Proof: This argument is almost identical to that showing that fair programs are real-

izable with respect to interpretations where the precondition satisfies the principle of

excluded middle. Since ϕ satisfies the principle of excluded middle with respect to I ,

either there exists an I-local state s∗i for agent i such that I(¬ϕ)(s∗i ) holds, or I(ϕ)(si)

holds for all I-local states si for i. In the former case, let es be an empty event structure

such that i, j ∈ AG , l ∈ Links, a ∈ Act, and initstate i = s∗i . In the latter case, choose

es with AG and Links as above, let Act = {a, b}, and where i and j alternate sending

and receiving the message t on link l, where these events have kind a and b, respectively.

Corollary 3.1.10: For all interpretations I such that if ϕ is an i-formula and t is an

i-term in I , if ϕ satisfies the principle of excluded middle with respect to I , then the

specification FairI(ϕ, t, l) is realizable with respect to I .

Proof: This is immediate from Lemmas 3.1.8 and 3.1.9, and from the fact that the event

structure constructed in Lemma 3.1.8 satisfies FairSend(l).

The notion of strong communication fairness is essential for the results above:

FairI (ϕ, t , l) may not be realizable if we assume that communication satisfies only a

weak notion of fairness that says that if a message is sent after some point on, then it is

eventually received. This is so essentially because our programming language is replac-

ing standard “if condition then take action” programs with weaker variants that ensure

that, if after some point a condition holds, then eventually some action is taken.
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We now show that the composition of Fair -Pg(ϕ, t , l , a) and Fair -Pg(ϕ, t , l ′, a)

for different links l and l′ satisfies the corresponding fairness assumptions.

Lemma 3.1.11: For all distinct actions a and a ′, and all distinct links l and l′,

Fair-Pg(ϕ, t, l, a) ⊕ Fair-Pg(ϕ′, t′, l′, a′) satisfies

λes.(FairSend(l)(es) ∧ FairSend(l′)(es)) ⇒

(FairI(ϕ, t, l)(es) ∧ FairI(ϕ
′, t′, l′)(es))

with respect to all interpretations I such that ϕ is an i-formula, t is an i-term, ϕ′ is an

i′-formula, and t′ is an i′-term in I .

Proof: Suppose a 6= a ′. We again use scheme GS .

Step 1. Clearly, we can take ϕ1 to be λes. FairSend(l)(es) ⇒ FairI(ϕ, t, l)(es)

and ϕ2 to be λes. FairSend(l′)(es) ⇒ FairI(ϕ
′, t′, l′)(es).

Step 2. By Lemma 3.1.8, Fair-Pg(ϕ,t , l, a) |≈I ϕ1 and Fair-Pg(ϕ′,t′, l′, a′) |≈I ϕ2.

Finally, we can show that Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′) is consistent,

where l is a link from i to j, l′ is a link from i′ to j ′, and l 6= l′ (so that we may

have i = i′ or j = j ′, but not both), and thus the specification λes.(FairSend(l)(

es) ∧ FairSend(l ′)(es)) ⇒ (FairI(ϕ, t, l)(es) ∧ FairI(ϕ
′, t ′, l ′)(es)) is realizable

with respect to I . if both ϕ and ϕ′ satisfy the principle of excluded middle with re-

spect to I .

Lemma 3.1.12: For all interpretations I such that ϕ is an i-formula, t is an i-term, ϕ′ is

an i′-formula, and t′ is an i-term in I , if both ϕ and ϕ′ satisfy the principle of excluded

middle with respect to I , then, for all distinct actions a and a′ and all distinct links l and

l′, Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′) is consistent with respect to I .
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Proof: If I(¬ϕ ∧ ¬ϕ)(s) holds for some global state s, then let es be the empty event

structure such that initstate i = si and initstate i′ = si′ . Clearly es is consistent with

Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′). Otherwise, let es be an event structure with

domain Val I , i, j, i′, j ′ ∈ AG , and l, l′ ∈ Links, consisting of an infinite sequence of

states such that if I(ϕ) holds for infinitely many states, then i sends t on link l infinitely

often; if I(ϕ′) holds for infinitely many states, then i′ sends t′ on link l′ infinitely often;

if t is sent on l infinitely often, then j receives it on link l infinitely often; and if t′ is

sent on l′ infinitely often, then j ′ receives it on l′ infinitely often. It is straightforward to

construct such an event structure es . Again, it should be clear that es is consistent with

Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′).

3.2 Adding knowledge to Nuprl

We now show how knowledge-based programs can be introduced into Nuprl.

3.2.1 Consistent cut semantics for knowledge

We want to extend basic programs to allow for tests that involve knowledge. For sim-

plicity, we take AG = {1, 2, . . . , n}. As before, we start with a finite set P ∪ F of

predicates and functions, and close off under conjunction, negation, and quantification

over non-local variables; but now, in addition, we also close off under application of the

temporal operators and ♦, and the epistemic operators Ki, i = 1, . . . , n, one for each

process i.

We again want to define a consistency relation in Nuprl for each program. To do that,
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we first need to review the semantics of knowledge. Typically, semantics for knowledge

is given with respect to a pair (r,m) consisting of a run r and a time m, assumed to be

the time on some external global clock (that none of the processes necessarily has access

to [29]). In event structures, there is no external notion of time. Fortunately, Panangaden

and Taylor [76] give a variant of the standard definition with respect to what they call

asynchronous runs, which are essentially identical to event structures. We just apply

their definition in our framework.

The truth of formulas is defined relative to a pair (Sys, c), consisting of a system Sys

(i.e., a a set of event structures) and a consistent cut c of some event structure es ∈ Sys ,

where a consistent cut c in es is a set of events in es closed under the causality relation.

Recall from Section 3.1.2 that this amounts to c satisfying the constraint that, if e′ is an

event in c and e is an event in es that precedes e′ (i.e., e ≺ e′), then e is also in c. We

write c ∈ Sys if c is a consistent cut in some event structure in Sys .

Traditionally, a knowledge formula Kiϕ is interpreted as true at a point (r,m) if ϕ

is true regardless of i’s uncertainty about the whole system at (r,m). Since we interpret

formulas relative to a pair (Sys, c), we need to make precise i’s uncertainty at such a

pair. For the purposes of this chapter, we assume that each agent keeps track of all the

events that have occurred and involved him (which corresponds to the assumption that

agents have perfect recall); we formalize this assumption below. Even in this setting,

agents can be uncertain about what events have occurred in the system, and about their

relative order. Consider, for example, the scenario in the left panel of Figure 3.1: agent

i receives a message from agent j (event e2), then sends a message to agent k (e3), then

receives a second message from agent j (e6), and then performs an internal action (e7).

Agent i knows that send(e2) occurred prior to e2 and that send(e6) occurred prior to e6.

However, i considers possible that after receiving his message, agent k sent a message
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to j which was received by j before e7 (see the right panel of Figure 3.1).

Figure 3.1: Two consistent cuts that cannot be distinguished by agent i.

In general, as argued by Panangaden and Taylor, agent i considers possible any

consistent cut in which he has recorded the same sequence of events. To formalize this

intuition, we define equivalence relations ∼i, i = 1, . . . , n, on consistent cuts by taking

c ∼i c
′ if i’s history is the same in c and c′. Given two consistent cuts c and c′, we say

that c � c′ if, for each process i, process i’s history in c is a prefix of process i’s history

in c′. Relative to (Sys, c), agent i considers possible any consistent cut c′ ∈ Sys such

that c′ ∼i c.

Since the semantics of knowledge given here implicitly assumes that agents have

perfect recall, we restrict to event structures that also satisfy this assumption. So, for the
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remainder of this chapter, we restrict to systems where local states encode histories,

that is, we restrict to systems Sys such that, for all event structures es, es ′ ∈ Sys , if e

is an event in es , e′ is an event in es ′, agent(e) = agent(e′) = i, and state before e =

state before e′, then i has the same history in both es and es ′. For simplicity, we guar-

antee this by assuming that each agent i has a local variable history i ∈ Xi that encodes

its history. Thus, we take initstate i(history i) = ⊥ and for all events e associated with

agent i, we have (s after e)(history i) = (s before e)(historyi) · e. It immediately fol-

lows that in two global states where i has the same local state, i must have the same

history. Let System be the set of all such systems.

Recall that events associated with the same agent are totally ordered. This means

that we can associate with every consistent cut c a global state sc: for each agent i, sc
i

is i’s local state after the last event ei associated with i in c occurs. Since local states

encode histories, it follows that if sc
i = sc′

i , then c ∼i c
′. It is not difficult to see that the

converse is also true; that is, if c ∼i c
′, then sc

i = sc′

i . We also write sc ≺ sc′ if c ≺ c′.

In the following, we assume that all global states in a system Sys have the form sc for

some consistent cut c.

Nuprl is rich enough that epistemic and modal operators can be defined within Nuprl.

Thus, to interpret formulas with epistemic operators and temporal operators, we just

translate them to formulas that do not mention them. Since the truth of an epistemic

formula depends not just on a global state, but on a pair (Sys, c), where the consistent

cut c can be identified with a global state in some event structure in Sys , the translated

formulas will need to include variables that, intuitively, range over systems and global

states. To make this precise, we expand the language so that it includes rigid binary

predicates CC and �, a rigid binary function ls, and rigid constants s and Sys. Intu-

itively, s represents a global state, Sys represents a system, CC(x, y) holds if y is a
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consistent cut (i.e., global state) in system x, ls(x, i) is i’s local state in global state x,

and � represents the ordering on consistent cuts defined above.

For every formula that does not mention modal operators, we take ϕt = ϕ. We

define

(Kiϕ)t =def ∀s
′((CC(Sys, s′) ∧ ls(s′, i) = ls(s, i)) ⇒ ϕt[s/s′])),

( ϕ)t =def ∀s
′((CC(Sys, s′) ∧ s′ � s ⇒ ϕt[s/s′]),

and

(♦ϕ)t =def ∃s
′((CC(Sys, s′) ∧ s′ � s ∧ ϕt[s/s′]).

Given an interpretation I , let I ′ be the interpretation that extends I by adding to ϕI

formulas characterizing Sys, s, CC, ls, and � appropriately. That is, the formulas force

Sys to represent a set of event structures, s to be a consistent cut in one of these event

structures, and so on. These formulas are all expressible in Nuprl. More specifically,

we restrict here to constructive systems, that is, systems that can be defined in Nuprl.

A constructive system Sys can be characterized by a formula ϕSys in Nuprl. ϕSys has a

free variable Sys ranging over systems such that ϕSys holds under interpretation I ′ and

valuation V iff V (Sys) = Sys . We now define a predicate I ′V (ϕ) on systems and global

states by simply taking I ′V (ϕ)(Sys, s) to hold iff ϕI′ together with the conjunction of

atomic formulas of the form x = V (x) for all non-local variables x that appear in ϕ,

x = si(x) for variables x ∈ Xi, i ∈ AG , that appear in ϕ, s = s, and ϕSys , imply (ϕt)+

(where, in going from ϕt to (ϕt)+, we continue to use the s). Thus, we basically reduce

a modal formula to a non-modal formula, and evaluate it in system Sys using IV .

Just as in the case of non-epistemic formulas, the valuation V is not needed to inter-

pret formulas whose only free variables are in ∪i∈AGXi. For such formulas, we typically

write I ′(ϕ)(Sys, s) instead of I ′V (ϕ)(Sys, s). We can also define i-formulas and i-terms,
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but now whether a formula is an i-formula or a term is an i-term depends, not only on the

interpretation, but on the system. A formula ϕ is an i-formula in interpretation I ′ and

system Sys if, for all states s, s′ in Sys , I ′V (ϕ)(Sys, s) = I ′V (ϕ)(Sys, s′) if si = s′i; simi-

larly, t is an i-term in interpretation I ′ and system Sys if I ′V (t)(Sys, s) = I ′V (t)(Sys, s′)

if si = s′i. We write this as i-formula(ϕ, I, Sys) and i-term(t, I, Sys), respectively. If ϕ

is an i-formula and t is an i-term in I and Sys for all systems Sys , then we simply write

i-formula(ϕ, I) and i-formula(t, I). For an i-formula, we often write I ′V (ϕ)(Sys, si)

rather than I ′V (ϕ)(Sys, s). Note that a Boolean combination of epistemic formulas

whose outermost knowledge operators are Ki is guaranteed to be an i-formula in ev-

ery interpretation, as is a formula that has no nonrigid functions or predicates and does

not mention Kj for j 6= i. The former claim is immediate from the following lemma.

Lemma 3.2.1: For all formulas ϕ, systems Sys , and global states s and s ′, if si = s′i,

then I ′(Kiϕ)(Sys, s) holds iff I ′(Kiϕ)(Sys, s′) does.

Proof: Follows from the observation that if we have a proof in Nuprl that an i-formula

holds given I ′, Sys , and s ∈ Sys , then we can rewrite the proof so that it mentions

only si rather than s. Thus, we actually have a proof that the i-formula holds in all stats

s′ ∈ Sys such that s′i = si.

3.2.2 Knowledge-based programs and specifications

In this section, we show how we can extend the notions of program and specification

presented in Section 3.1 to knowledge-based programs and specifications. This allows

us to employ the large body of tactics and libraries already developed in Nuprl to syn-

thesize knowledge-based programs from knowledge-based specifications.
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Syntax and semantics

Define knowledge-based message automata just as we defined message automata in Sec-

tion 3.1.3, except that we now allow arbitrary epistemic formulas in tests. If we want to

emphasize that the tests can involve knowledge, we talk about knowledge-based initial-

ization, precondition, effect, and fairness programs. For the purposes of this chapter, we

take knowledge-based programs to be knowledge-based message automata.

We give semantics to knowledge-based programs by first associating with each

knowledge-based program a function from systems to systems. Let (Pg kb)t be the result

of replacing every formula ϕ in Pgkb by ϕt. Note that (Pgkb)t is a standard program,

with no modal formulas. Given an interpretation I and a system Sys let I(Sys) be the

result of adding to ϕI the formula ϕSys .

Now we can apply the semantics of Section 3.1.3 and get the system

SI(Sys)((Pgkb)t). In general, the system SI(Sys)((Pgkb)t) will be different from the sys-

tem Sys . A system Sys represents a knowledge-based program Pg kb (with respect to

interpretation I) if it is a fixed point of this mapping; that is, if SI(Sys)((Pgkb)t) = Sys .

Following Fagin et al. [29, 26], we take the semantics of a knowledge-based program

Pgkb to be the set of systems that represent it.

Definition 3.2.2: A knowledge-based program semantics is a function associating with a

knowledge-based program Pg kb and an interpretation I the systems that represent Pg kb

with respect to I; that is, S kb
I (Pgkb) = {Sys ∈ System | SI(Sys)((Pgkb)t) = Sys}.

As observed by Fagin et al. [29, 26], it is possible to construct knowledge-based pro-

grams that are represented by no systems, exactly one system, or more than one system.

However, there exist conditions (which are often satisfied in practice) that guarantee that
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a knowledge-based program is represented by exactly one system. Note that, in particu-

lar, standard programs, when viewed as knowledge-based programs, are represented by

a unique system; indeed, S kb
I (Pg) = {SI (Pg)}. Thus, we can view S kb

I as extending SI .

A (standard) program Pg implements the knowledge-based program Pg kb with

respect to interpretation I if SI(Pg) represents Pgkb with respect to I , that is, if

SI(SI(Pg))((Pgkb)t) = SI(Pg). In other words, by interpreting the tests in Pgkb with

respect to the system generated by Pg , we get back the program Pg .

Knowledge-based specifications

Recall that a standard specification is a predicate on event structures. Following [26], we

take a knowledge-based specification (kb specification from now on) to be a predicate

on systems.

Definition 3.2.3 : A knowledge-based specification is a predicate on System . A

knowledge-based program Pg kb satisfies a knowledge-based specification Y kb with re-

spect to I , written Pg kb |≈I Y kb , if all the systems representing Pg kb with respect to I

satisfy Y kb , that is, if the following formula holds: ∀Sys ∈ S kb
I (Pgkb). Y kb(Sys). The

knowledge-based specification Y kb is realizable with respect to I if there exists a (stan-

dard) program Pg such that SI(Pg) 6= ∅ and Pg |≈I Y
kb (i.e., Y kb(SI(Pg)) is true).

As for standard basic programs, it is not difficult to show that knowledge-based

precondition, effect, and frame programs are trivially consistent: we simply take Sys

to consist of only one event structure es with no events. A knowledge-based initial-

ization program is realizable iff ϕI ∧ ψt is satisfiable. Finding sufficient conditions

for fair knowledge-based programs to be realizable is nontrivial. We cannot directly
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translate the constructions sketched for the standard case to the knowledge-based case

because, at each step in the construction (when an event structure has been only partially

constructed), we would have to argue that a certain knowledge-based fact holds when

interpreted with respect to an entire system and an entire event structure. However, in

the next section, the knowledge-based programs used in the argument for STP (which

do include fairness requirements) are shown to be realizable.

Axioms

We now consider the extent to which we can generalize the axioms characterizing (stan-

dard) programs presented in Section 3.1.3 to knowledge-based programs.

Basic knowledge-based message automata other than knowledge-based precondition

and fairness requirement programs satisfy analogous axioms to their standard counter-

parts. The only difference is that now we view the specifications as functions on systems,

not on event structures. For example, the axiom corresponding to Ax-init is

Ax-initK : @i initially ψ |≈I λSys. i -formula(ψ, I , Sys)∧

∀es ∈ Sys. I (ψ)(Sys, initstate i).

(Note that here, just as in the definition of Ax-init, for simplicity, we write initstate i

instead of es.initstate i. Since ψ is constrained to be an i-formula in makes sense

to talk about I(ψ)(Sys, initstate i) instead of I(ψ)(Sys, s) for a global state s with

si = initstate i.) The knowledge-based analogues of axioms Ax-cause, Ax-affects,

and Ax-sends are denoted Ax-causeK, Ax-affectsK, and Ax-sendsK, respec-

tively, and are identical to the standard versions of these axioms. The knowledge-based

counterparts of Ax-if and Ax-fair now involve epistemic preconditions, which are in-
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terpreted with respect to a system:

Ax-ifK : @i kind = local(a) only if ϕ |≈I λSys. i-formula(ϕ, I, Sys)∧

∀es ∈ Sys . ∀e@i ∈ es. (kind(e) = local(a)) ⇒ I(ϕ)(Sys, state before e)

Ax-fairK :

@i if necessarily ϕ then i.o. kind = local(a) |≈I λSys. i-formula(ϕ, I, Sys)∧

∀es ∈ Sys. ((∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e.

I(¬ϕ)(Sys, state after e′) ∨ kind(e′) = local(a))∨

(¬(∃e@i ∈ es) ∧ I(¬ϕ)(Sys, initstate i(es)))).

There are also obvious analogues axioms Ax-ref and Ax-⊕, which we denote

Ax-refK and Ax- ⊕ K respectively.

Lemma 3.2.4 : Axioms Ax-initK, Ax-causeK, Ax-affectsK, Ax-sendsK,

Ax-ifK, Ax-fairK, and Ax-refK hold for all interpretations I .

Proof: Since the proofs for all axioms are similar in spirit, we prove only that Ax-ifK

holds for all interpretations I ′. Fix an interpretation I . Let Pgkb be the program

@i kind = local(a) only if ϕ, where ϕ is an i-formula. Let Y kb be an instance of

Ax-ifK:

λSys. i-formula(ϕ, I, Sys)∧

∀es ∈ Sys. ∀e@i ∈ es. (kind(e) = local(a)) ⇒ I(ϕ)(Sys, state before e).

By Definition 3.2.3, Pgkb |≈I Y kb is true if and only if, for all systems Sys ∈

Skb
I (Pgkb), Y kb(Sys) holds. That is, for all systems Sys such that SI(Sys)((Pgkb)t) =

Sys , the following holds:

∀es ∈ Sys. i-formula(ϕ, I, Sys) ∧ ∀e@i ∈ es. (kind(e) = local(a)) ⇒

I(ϕ)(Sys, state before e).
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Let Sys be a system such that SI(Sys)((Pgkb)t) = Sys . By Definition 3.1.4, all event

structures in Sys are consistent with the program (Pg kb)t with respect to interpretation

I(Sys). Recall that (Pg kb)t is the (standard) program @i kind = local(a) only if ϕt,

where I(Sys)(ϕt)(s) = I(ϕ)(Sys, s). We can thus apply axiom Ax-if and conclude

that the following holds for all event structures es consistent with I (Sys)((Pg kb)t) with

respect to I(Sys) (i.e., for all es ∈ Sys):

i-formula(ϕt, I(Sys))∧∀e@i ∈ es. (kind(e) = local(a)) ⇒ I(Sys)(ϕt)(state before e).

The first conjunct says that, for all global states s and s′ in Sys , if si = s′i then

I(Sys)(ϕt)(s) = I(Sys)(ϕt)(s′), which is equivalent to saying that I(ϕ)(Sys, s) =

I(ϕ)(Sys, s′), that is, i-formula(ϕ, I, Sys) holds. The second conjunct is equivalent to

∀e@ies . (kind(e) = local(a)) ⇒ I(ϕ)(Sys, state before e),

by the definition of ϕt and I(Sys). Thus, Y kb(Sys) holds under interpretation I .

The proof of Lemma 3.2.4 involves only unwinding the definition of satisfiability

for knowledge-based specifications and the application of simple refinement rules, al-

ready implemented in Nuprl. In general, proofs of epistemic formulas will also involve

reasoning in the logic of knowledge. Sound and complete axiomatizations of (nonin-

tuitionistic) first-order logic of knowledge are well-known (see [29] for an overview)

and can be formalized in Nuprl in a straightforward way. This is encouraging, since

it supports the hope that Nuprl’s inference mechanism is powerful enough to deal with

knowledge specifications, without further essential additions.

Note that Ax-⊕K is not included in Lemma 3.2.4. That is because it does not always

hold, as the following example shows.

Example 3.2.5: Let Y kb
i =def (¬K2−i(xi = i)) for i = 1, 2, where xi ∈ Xi, and let

I = ∅. Let Pgi, i = 1, 2 be the standard program for agent i such that SI(Pg i) consists

95



of all the event structures such that xi = i at all times; that is, Pg i is the program

@i initially xi = i ⊕ @i only ∅ affects xi .

Since Pg i places no constraints on x2−i, is straightforward to prove that Pgi |≈I Y
kb
2−i,

for i = 1, 2. On the other hand, SI(Pg1⊕Pg2) consists of all the event structures where

xi = i at all times, for i = 1, 2, so Pg1 ⊕ Pg2 |≈I ¬Y kb
1 ∧ ¬Y kb

2 .

3.2.3 Example

Recall from Section 3.1.4 that the specification FairSend(l) ⇒ FairI (ϕ, t , l) is satisfied

by the program Fair -Pg(ϕ,t, l, a), for all actions a. We now consider a knowledge-

based version of this specification. If ϕ is an i-knowledge-based formula and t is an

i-term in I , define

Fairkb
I (ϕ, t, l) =def λSys. ∀es ∈ Sys. FairI(Sys)(ϕ

t, t, l)(es),

that is

Fairkb
I (ϕ, t, l) =def

λSys.i-formula(ϕ, I, Sys) ∧ i-term(t, I, Sys)∧

∀es ∈ Sys.((∀e′ ∈ es. (kind(e′) = rcv(l)) ⇒

I (ϕ)(Sys, state before send(e′)) ∧ val(e′) = I(t)(Sys, state before send(e′)))

∧ ((∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(Sys, state after e′))∨

(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′. kind(e′) = rcv(l) ∧ send(e′) �i e)∨

(¬(∃e@i ∈ es) ∧ I(¬ϕ)(Sys , initstatei))).

For example, Fairkb
I (Kiϕ, t, l) says that every message received on l is given by the

term t interpreted at the local state of the sender i, and that i must have known fact ϕ

when it sent this message on l; furthermore, if from some point on i knows that ϕ holds,

then eventually a message is received on l.
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As in Section 3.1.4, we assume that message communication satisfies a strong fair-

ness condition. The knowledge-based version of the condition FairSend(l) simply as-

sociates with each system Sys the specification FairSend(l); that is, FairSend kb(l) is

just λSys. ∀es ∈ Sys.FairSend(l)(es).

Lemma 3.2.6: For all interpretations I such that ϕ is an i-formula and t is an i-term in

I , and all actions a, we have that

Fair-Pg(ϕ,t, l, a) |≈I FairSendkb(l) ⇒ Fairkb
I (ϕ, t, l).

The proof is similar in spirit to that of Lemma 3.2.4; by supplying a system Sys as

an argument to the specification, we essentially reduce to the situation in Lemma 3.1.8.

We leave details to the reader.

We can also prove the following analogue of Lemma 3.1.11.

Lemma 3.2.7: For all interpretations I such that ϕ is an i-formula, ϕ′ is a j-formula, t

is an i-term, and t′ is a j-term in I , all distinct links l and l ′, and all distinct actions a

and a′, we have that

Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′) |≈I

(FairSendkb(l) ∧ FairSendkb(l′)) ⇒ (Fairkb
I (ϕ, t, l) ∧ Fairkb

I (ϕ′, t′, l′)).

3.3 The sequence transmission problem (STP)

In this section, we give a more detailed example of how a program satisfying a

knowledge-based specification X can be extracted from X using the Nuprl system. We

do the extraction in two stages. In the first stage, we use Nuprl to prove that the spec-

ification is satisfiable. The proof proceeds by refinement: at each step, a rule or tactic
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(i.e., a sequence of rules invoked under a single name) is applied, and new subgoals are

generated; when there are no more subgoals to be proved, the proof is complete. The

proof is automated, in the sense that subgoals are generated by the system upon tactic

invocation. From the proof, we can extract a knowledge-based program Pg kb that sat-

isfies the specification. In the second stage, we find standard programs that implement

Pgkb. This two-stage process has several advantages:

• A proof carried out to derive Pg kb does not rely on particular assumptions about

how knowledge is gained. Thus, it is potentially more intuitive and elegant than a

proof based on certain implementation assumptions.

• By definition, if Pg kb satisfies a specification, then so do all its implementations.

• This methodology gives us a general technique for deriving standard pro-

grams that implement the knowledge-based program, by finding weaker (non-

knowledge-based) predicates that imply the knowledge preconditions in Pg kb .

We illustrate this methodology by applying it to one of the problems that has received

considerable attention in the context of knowledge-based programming, the sequence

transmission problem (STP).

3.3.1 Synthesizing a knowledge-based program for STP

The STP involves a sender S that has an input tape with a (possibly infinite) sequence

X = X (0 ),X (1 ), . . . of bits, and wants to transmit X to a receiver R; R must write this

sequence on an output tape Y . (Here we assume that X (n) is a bit only for simplicity;

our analysis of the STP does not essentially change once we allow X (n) to be an element

of an arbitrary constructive domain.) A solution to the STP must satisfy two conditions:
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1. (safety): at all times, the sequence Y of bits written by R is a prefix of X , and

2. (liveness): every bit X (n) is eventually written by R on the output tape.

Halpern and Zuck [50] give two knowledge-based programs that solve the STP, and

show that a number of standard programs in the literature, like Stenning’s [81] protocol,

the alternating bit protocol [8], and Aho, Ullman and Yannakakis’s algorithms [2], are

all particular instances of these programs.

If messages cannot be lost, duplicated, reordered, or corrupted, then S could simply

send the bits in X to R in order. However, we are interested in solutions to the STP

in contexts where communication is not reliable. It is easy to see that if undetectable

corruption is allowed, then the STP is not solvable. Neither is it solvable if all messages

can be lost. Thus, following [50], we assume (a) that all corruptions are detectable and

(b) a strong fairness condition: for any given link l, if infinitely often a message is sent

on l, then infinitely often some message is delivered on l. We formalize strong fairness

by restricting to systems where FairSend(l) holds for all links l.

The safety and liveness conditions for STP are run-based specifications. As argued

by Fagin et al. [26], it is often better to think in terms of knowledge-based specifications

for this problem. The real goal of the STP is to get the receiver to know the bits. Writing

KR(X (n)) as an abbreviation for KR(X(n) = 0) ∨KR(X(n) = 1), we really want to

satisfy the knowledge-based specification

ϕkb
stp =def ∀n ♦KR(X (n)).

This is the specification we now synthesize.

Since we are assuming fairness, S can ensure that R learns the nth bit by sending it

sufficiently often. Thus, S can ensure that R learns the n th bit if, infinitely often, either
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S sends X (n) or S knows that R knows X (n). (Note that once S knows that R knows

X(n), S will continue to know this, since local states encode histories.) We can enforce

this by using an appropriate instantiation of Fairkb.

Let cS be a (nonrigid) constant that, intuitively, represents the smallest n such that S

does not know that R knows X(n), if such an n exists. That is, we want the following

formula to be true:

∀n. ∀k < n. KSKR(X(k)) ∧ ¬KSKR(X(n)) ⇒ n = cS.

Let ϕS be the knowledge-based formula that holds at a consistent cut c if and only if

there exists a smallest n such that, at c, S does not know that R knows X(n):

ϕS =def ∃n. ∀k < n. KSKR(X(k)) ∧ ¬KSKR(X(n)).

Let tS be the term 〈cS, X(cS)〉.4 Let lSR denote the communication link from

S to R. Now consider the knowledge-based specification Fairkb
I (ϕS, tS, lSR).

Fairkb
I (ϕS, tS, lSR) holds in a system Sys if, (1) whenever R receives a message from

S , the message is a pair of the form 〈n,X(n)〉; (2) at the time S sent this message to

R, S knew that R knew the first n elements in the sequence X , but S did not know

whether R knew X (n); and (3) R is guaranteed to either eventually receive the message

〈n,X(n)〉 or eventually know X (n).

How does the sender learn which bits the receiver knows? One possibility is for S

to receive from R a request to send X (n). This can be taken by S to be a signal that

R knows all the preceding bits. We can ensure that S gets this information by again

using an appropriate instantiation of Fair kb. Define cR be a (nonrigid) constant that,

intuitively, represents the smallest n such that R does not know X(n), if such an n

4We are implicitly assuming here that the pairing function that maps x and y to 〈x, y〉 is in the lan-
guage.
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exists. In other words, we want the following formula to be true:

∀n. ∀k < n. KR(X(k)) ∧ ¬KR(X(n)) ⇒ n = cR.

We take ϕR to be the knowledge-based formula

ϕR =def ∃n. ∀k < n. KR(X(k)) ∧ ¬KR(X(n)),

which says that there exists a smallest n such that R does not know X(n) (or, equiva-

lently, such that cR = n holds). Finally, let lRS denote the communication link from R

to S. Fairkb
I (ϕR, tR, lRS) implies that whenever S receives a message n from R, it is

the case that, at the time R sent this message, R knew the first n elements of X , but not

X (n). Note that, for all n, S is guaranteed to eventually receive a message n unless R

eventually knows X (n).

We can now use the system to verify our informal claim that we have refined the

initial specification ϕkb
stp . That is, the system can prove

(Fair kb
I (ϕS , tS , lSR) ∧ Fair kb

I (ϕR, cR, lRS )∧

(∀n. ∀k < n. KSKR(X (k)) ∧ ¬KSKR(X (n)) ⇒ n = cS )∧

(∀n. ∀k < n. KR(X (k)) ∧ ¬KR(X (n)) ⇒ n = cR)) ⇒ ϕkb
stp .

No new techniques are needed for this proof: we simply unwind the definitions of the

semantics of knowledge formulas and of the fairness specifications, and proceed with a

standard proof by induction on the smallest n such that R does not know X (n).

It follows from Lemma 3.2.7 that Fair kb
I (ϕS , tS , lSR) ∧ Fair kb

I (ϕR, cR, lRS ) is sat-

isfied by the combination of two simple knowledge-based programs, assuming that

message communication on links lSR and lRS satisfies the strong fairness conditions

FairSendkb(lSR) and FairSendkb(lRS). That is, for any two distinct actions aS and aR,

the following is true:

Fair -Pg(ϕS , tS , lSR, aS) ⊕ Fair -Pg(ϕR, cR, lRS , aR) |≈I

(FairSendkb(lSR) ∧ FairSendkb(lRS )) ⇒(Fair kb
I (ϕS , tS , lSR) ∧ Fair kb

I (ϕR, cR, lRS )).
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As explained in Section 3.1.4, FairSendkb(lSR) ∧ FairSendkb(lRS) says that if infinitely

often a message is sent on lSR then infinitely often a message is received on lSR, and,

similarly, if infinitely often a message is sent on lRS then infinitely often a message is

received on lRS; as mentioned at the beginning of this section, we restrict to systems

where these conditions are met. Furthermore, it is not difficult to show that we can use

simple initialization clauses to guarantee that the constraints on the interpretation of cS

and cR are satisfied:

@S initially (∀n. ∀k < n. KSKR(X(k)) ∧ ¬KSKR(X(n)) ⇒ n = cS) |≈I

∀n. ∀k < n. KSKR(X (k)) ∧ ¬KSKR(X (n)) ⇒ n = cS ,

@R initially (∀n. ∀k < n. KR(X(k)) ∧ ¬KR(X(n)) ⇒ n = cR) |≈I

∀n. ∀k < n. KR(X (k)) ∧ ¬KR(X (n)) ⇒ n = cR.

Thus, Pgkb
S (ϕS , tS , lSR, aS ) ⊕ Pgkb

R (ϕR, cR, lRS , aR)) |≈I ϕ
kb
stp , where

Pgkb
S (ϕS , tS , lSR, aS ) =def Fair -Pg(ϕS , tS , lSR, aS)⊕

@S initially (∀n. ∀k < n. KSKR(X(k)) ∧ ¬KSKR(X(n)) ⇒ n = cS),

Pgkb
R (ϕR, cR, lRS , aR)) =def Fair -Pg(ϕR, cR, lRS, aR)⊕

@R initially (∀n. ∀k < n. KR(X(k)) ∧ ¬KR(X(n)) ⇒ n = cR).

From the definition of Fair -Pg(ϕR, cR, lRS, aR) in Section 3.2.3, it follows that

Pgkb
S (ϕS, tS, lSR, aS) is the following composition:

@S initially (∀n. ∀k < n. KSKR(X(k)) ∧ ¬KSKR(X(n)) ⇒ n = cS)⊕

@S kind = local(aS) only if ∃n. (∀k < n. KSKR(X (k))) ∧ ¬KSKR(X (n)) ⊕

@S if kind = local(aS) then msg(lSR) := tS ⊕

@S only events in [aS] affects msg(lSR)⊕

@S if necessarily ∃n. (∀k < n. KSKR(X (k))) ∧ ¬KSKR(X (n))

then i.o. kind = local(aS).
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Using the program notation of Fagin et al. [29], Pgkb
S (ϕS , tS , lSR, aS) is essentially

semantically equivalent to the following collection of programs, one for each value n:

if KS(KRX(0) ∧ . . . ∧KRX(n− 1)) ∧ ¬KSKRX(n)

then sendlSR
(〈n,X(n)〉)

else skip.

In both of these programs, S takes the same action under the same circumstances, and

with the same effects on its local state. That is, given a run r (i.e., a sequence of global

states) consistent with the collection of knowledge-based programs, we can construct an

event structure es consistent with Pg kb
S (ϕS , tS , lSR, aS ) such that the sequence of local

states of S in es , with stuttering eliminated, is the same as in r. The converse is also true.

More precisely, in a run r consistent with the collection of knoweldge-based programs,

at each point of time, either S knows that R knows the value of X(n) for all n, or there

exists a smallest n such that ¬KSKR(X(n)) holds. In the first case, S does nothing,

while in the second case S sends 〈n,X(n)〉 on lSR. Similarly, in an event structure es

consistent with Pgkb
S (ϕS , tS , lSR, aS ), if S knows that R knows X (n) for all n, then S

does nothing; if not, then it is impossible for S to know that R knows the first n bits, but

never know that R knows X (n), without eventually S taking an aS action with value

〈n,X(n)〉. This means that for each run r consistent with the collection of knowledge-

based programs, the event structure es in which S starts from the same initial state as in

r and performs action aS as soon as it is enabled has the same sequence of local states

of S as r . For each event structure es consistent with Pg kb
S (ϕS , tS , lSR, aS ), in the run r

of global states in es with stuttering eliminated, S takes action aS as soon as enabled;

subsequently, r is consistent with the collection of knowledge-based programs.

Similarly, Pgkb
R (ϕR, cR, lRS , aR) is essentially semantically equivalent to the follow-

ing collection of programs, one for each value n:

if KRX(0) ∧ . . . . . . ∧KRX(n− 1) ∧ ¬KRX(n) then sendlRS
(n) else skip.

103



Thus, the derived program is essentially one of the knowledge-based programs consid-

ered by Halpern and Zuck [50]. This is not surprising, since our derivation followed

much the same reasoning as that of Halpern and Zuck. However, note that we did not

first give a knowledge-based program and then verify that it satisfied the specification.

Rather, we derived the knowledge-based programs for the sender and receiver from the

proof that the specification was satisfiable. And, while Nuprl required “hints” in terms of

what to prove, the key ingredients of the proof, namely, the specification Fair kb
I (ϕ, t , l)

and the proof that Fair -Pg(ϕ, t , l , a) realizes it, were already in the system, having

been used in other contexts. Thus, this suggests that we may be able to apply similar

techniques to derive programs satisfying other specifications in communication systems

with only weak fairness guarantees.

3.3.2 Synthesis of standard programs for STP

This takes care of the first stage of the synthesis process. We now want to find a standard

program that implements the knowledge-based program. As discussed by Halpern and

Zuck [50], the exact standard program that we use depends on the underlying assump-

tions about the communications systems. Here we sketch an approach to finding such a

standard program.

The first step is to identify the exact properties of knowledge that are needed for

the proof. This can be done by inspecting the proof to see which properties of the

knowledge operators KS and KR are used. The idea is then to replace formulas involving

the knowledge operators by standard (non-epistemic formulas) which have the relevant

properties.

Suppose that ϕ̃kb
S is a formula that mentions the function X , has a free variable m,
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and is guaranteed to be an S-formula in all interpretations I and systems Sys . (Recall

that, as noted just before Lemma 3.2.1, there are simple syntactic conditions that guar-

antee that a formula is an i-formula for all I and Sys .) Roughly speaking, we can think

of ϕ̃kb
S as corresponding to KSKR(X(m)). Let ϕkb

S be an abbreviation of

∃n. ((∀k < n. ϕ̃kb
S [m/k]) ∧ ¬ϕ̃kb

S [m/n]).

Similarly, suppose that ϕ̃kb
R is a formula that mentions X , has a free variable m, and is

guaranteed to be an R-formula in all interpretations I; let ϕkb
R be an abbreviation of

∃n. ((∀k < n. ϕ̃kb
R [m/k]) ∧ ¬ϕ̃kb

R [m/n]).

Thus, ϕkb
S and ϕkb

R are the analogues of ϕS and ϕR in Section 3.3.1. While ϕS is a

formula that says that there is a least n such that KSKRX(n) does not hold, ϕkb
S says

that there is a least n such that ϕ̃kb
S (n) does not hold. Similarly, while ϕkb

R says that there

is a least n such that KRX(n) does not hold, ϕkb
R says that there is a least n such that

ϕ̃kb
R (n) does not hold.

We also use we use constants c̃S, and c̃R that are analogues to cS , cR; ϕ̃kb
S plays the

same role in the definition of c̃S as KSKR(X(m)) played in the definition of cS, and

ϕ̃kb
R plays the same role in the definition of c̃R as KR(X(m)) played in the definition

of cR. Thus, we take c̃S to be a constant that represents the least n such that ϕ̃kb
S [m/n]

does not hold (that is, we want ∃n. ∀k < n. ϕ̃kb
S [m/k] ∧ ¬ϕ̃kb

S [m/n] ⇒ (n = c̃S) to

be true), and define t̃S as the pair 〈c̃S, X(c̃S)〉, Similarly, we take c̃R to be a constant

that represents the least n such that ϕ̃kb
R [m/n] does not hold (that is, we want ∃n. ∀k <

n. ϕ̃kb
R [m/k] ∧ ¬ϕ̃kb

R [m/n] ⇒ (n = c̃R) to be true).

Let ϕkb
stp(ϕ̃

kb
R ) be the specification that results by using ϕ̃kb

R instead of KR in ϕkb
stp :

ϕkb
stp(ϕ̃

kb
R ) =def ∀n. ♦ϕ̃

kb
R [m/n].
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We prove the goal ϕkb
stp(ϕ̃

kb
R ) by refinement: at each step, a rule (or tactic) of Nuprl is

applied, and a number of subgoals (typically easier to prove) are generated; the rule

gives a mechanism of constructing a proof of the goal from proofs of the subgoals.

Some of the subgoals cannot be further refined in an obvious manner; this is the case,

for example, for the simple conditions on ϕ̃kb
S or ϕ̃kb

R . The new theorem states that, under

suitable conditions on ϕ̃kb
S and ϕ̃kb

R , ϕkb
stp(ϕ̃

kb
R ) is satisfiable if both Fair kb

I (ϕkb
S , t̃S , lSR)

and Fair kb
I (ϕkb

R , c̃R, lRS) are satisfiable.

We now explain the conditions placed on the predicates ϕ̃kb
S and ϕ̃kb

R . One condition

is that ϕ̃kb
R be stable, that is, once true, it stays true:

Stable(ϕ̃kb
R ) =def λSys. ∀es ∈ Sys. ∀eR@R ∈ es. ∀n.

I(ϕ̃kb
R [m/n])(Sys , state before eR) ⇒

I (ϕ̃kb
R [m/n])(Sys , state after eR).

Assuming Stable(ϕ̃kb
R ) allows us to prove ϕkb

R by induction on the least index n such that

¬ϕ̃kb
R [m/n] holds.

To allow us to carry out a case analysis on whether ϕ̃kb
R holds, we also as-

sume that ϕ̃kb
R satisfies the principle of excluded middle; that is, we assume that

Determinate(ϕ̃kb
R ) =def Determinate(∀n. (ϕ̃kb

R [m/n])t). For similar reasons, we also

restrict ϕ̃kb
S to being stable and determinate; that is, we require that Stable(ϕ̃kb

S ) and

Determinate(ϕ̃kb
S ) both hold.

The third condition we impose establishes a connection between ϕ̃kb
S and ϕ̃kb

R , and

ensures that, for all values n, if ϕ̃kb
S [m/n] holds, then eventually ϕ̃kb

R [m/n] will also

hold:

Implies(ϕ̃kb
S , ϕ̃

kb
R ) =def λSys . ∀es ∈ Sys. ∀n. ∀eS@S ∈ es.

I(ϕ̃kb
S [m/n])(Sys , state before eS) ⇒

∃eR � eS@R ∈ es. I (ϕ̃kb
R [m/n])(Sys, state after eR).
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To explain the next condition, recall that ϕ̃R is meant to represent KR(X(m)). With

this interpretation, I(∀k ≤ n. ϕ̃kb
R [m/k])(Sys , state before send(eS)) says that R knows

the first n bits before it sends a message to S . We would like it to be the case that, just

as with the knowledge-based derivation, when S receives R’s message, S knows that

R knows the n th bit. Since we think of ϕ̃kb
S as saying that KSKR(X(m)) holds, we

expect I(ϕ̃kb
S [m/n])(Sys, state after eS) to be true. Define Rcv(ϕ̃kb

S , ϕ̃
kb
R , lRS ) to be an

abbreviation of

λSys.∀es ∈ Sys. ∀eS@S ∈ es. (kind(eS ) = rcv(lRS )) ⇒

∀n. (∀k ≤ n. I (ϕ̃kb
R [m/n])(Sys , state after send(eS ))) ⇒

I (ϕ̃kb
S [m/n])(Sys, state after eS ).

With this background, we can describe the last condition. Intuitively, it says that if

n is the least value for which ϕ̃kb
S fails when S sends a message to R, then ϕ̃kb

R holds for

n upon message delivery:

Rcv(ϕ̃kb
R , ϕ̃

kb
S , lSR) ≡

λSys. ∀es ∈ Sys. ∀eR@R ∈ es. (kind(eR) = rcv(lSR)) ⇒

∀n. (I (ϕkb
S [m/n])(Sys , state before send(eR)) ⇒

I (ϕ̃kb
R [m/n])(Sys, state after eR)).

We denote the conjunction of these conditions as ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S , c̃R, lSR, lRS ). The

new theorem says

ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S , c̃R, lSR, lRS )∧

Fair kb
I (ϕkb

S , t̃S , lSR) ∧ Fair kb
I (ϕkb

R , c̃R, lRS )∧

∀n. ∀k < n. ϕ̃kb
S [m/k ] ∧ ¬ϕ̃kb

S [m/n] ⇒ (n = c̃S )∧

∀n. ∀k < n. ϕ̃kb
R [m/k ] ∧ ¬ϕ̃kb

R [m/n] ⇒ (n = c̃R)

⇒ϕkb
stp(ϕ̃

kb
R ).
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We can prove that the following is true for any two distinct actions aS and aR:

Pgkb
S (ϕkb

S , t̃S , lSR, aS) ⊕ Pgkb
R (ϕkb

R , c̃R, lRS , aR) |≈I

ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S, c̃R, lSR, lRS) ∧ FairSendkb(lRS) ∧ FairSendkb(lSR) ⇒ ϕkb

stp(ϕ̃
kb
R ),

where

Pgkb
S (ϕkb

S , t̃S , lSR, aS) =def

Fair -Pg(ϕkb
S , t̃S , lSR, aS)⊕

@S initially (∀n. ∀k < n. ϕ̃kb
S [m/k] ∧ ¬ϕ̃kb

S [m/n] ⇒ n = c̃S),

Pgkb
R (ϕkb

R , c̃R, lRS , aR)) =def

Fair -Pg(ϕkb
R , c̃R, lRS , aR)⊕

@R initially (∀n. ∀k < n. ϕ̃kb
R [m/k] ∧ ¬ϕ̃kb

R [m/n] ⇒ n = c̃R).

In particular, for the terms tS and cR defined in the previous section, we can show that

ψkb(KSKRX(m), KRX(m), tS, cR, lSR, lRS) is true. Thus, the new theorem is indeed

a generalization of the previous results.

The formulas KSKRX(m) and KRX(m) are not the only ones that satisfy these

conditions. Most importantly for the purpose of extracting standard programs, the con-

ditions are satisfied by non-epistemic formulas, that is, formulas whose interpretations

do not depend on the entire system, just on the local states of the sender or the receiver

agents, respectively. Note that Lemma 3.1.12 guarantees that the extracted program is

consistent.

For example, we can take xS to be an S-local variable that stores the largest n such

that S has received requests from R for all of the first n bits in X; that is, initially xS

is set to to −1, and if S receives a request for X(n) and xS = n − 1, then xS is set

to n. We similarly take xR to be an R-local variable that stores the largest n such that

R has received the first n − 1 bits of X from S . That is, initially, xR is set to 0; if
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R receives a message of the form 〈n,msg〉 from S and xR = n − 1, then xR is set

to n. We have in mind a setting in which the receiver requests bits from the sender in

order, that is, R starts by requesting X(0), and does not request X(n) before receiving

X(n− 1). Similarly, the aim is to have the sender send bits in order; that is, S does not

not send X(n + 1) before S knows that X(n) has been received. For the generalized

knowledge-based formulation of the STP problem, we use a formula ϕ̃kb
S that is meant

to correspond to KSKRX(m). Given the intuition above, at all times, S knows that R

has received bits 0, . . . , xS − 1; that is, ϕ̃kb
S (m) holds here iff xS > m. Since ϕkb

S holds

iff there is a least m such that ¬ϕ̃(m) holds, ϕkb
S is vacuously true here. Moreover, the

term c̃s that represents the least such m is just xS . Similarly, the formula ϕ̃kb
R is meant

to correspond to KRX(m); here we can take ϕ̃kb
R to be xR > m. Again, ϕkb

R becomes

vacuously true, and the corresponding term c̃R, which represents the least m such that

ϕ̃kb
R does not hold, is just xR.

It is not hard to show that ψkb(xS > mxR > m, 〈xS, X(xS)〉, xR, lSR, lRS) holds

in the system generated by Pg(true, 〈xS, X(xS)〉, lSR, aS) ⊕ Pg(true, xR, lRS, aR), for

any distinct actions aS and aR; this specification is not knowledge-based. Recall that

ϕkb
stp(ϕ̃

kb
R ) is ∀n.�ϕ̃kb

R [m/n]. In this context, it is the formula ∀n.�(xR = n). In addition,

ϕkb
stp(xR > m) impliesϕkb

stp (in the system generated by Pg(true, 〈xS, X(xS)〉, lSR, aS)⊕

Pg(true, xR, lRS, aR)), so if message communication is fair,

Pg(true, 〈xS, X(xS)〉, lSR, aS) ⊕ Pg(true, xR, lRS, aR)

satisfies the STP specification, as long as aS and aR are distinct actions. We can eas-

ily give a justification for this result: If R follows Pg(true, xR, lRS, aR) and S fol-

lows Pg(true, 〈xS, XS(xS), lSR, aS), then R starts by sending message 0 to S; since

communication is fair, eventually S receives this message, and xS is set to 0; S

starts sending 〈0, X(0)〉 to R; since communication is fair, eventually R receives

this message, so R sets xR to 1, stops sending message 0 to S, and starts sending
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message 1 to S. It is not difficult to show that, for all values n, there is a time

when xR is set to n, which triggers R to send message n to S. S eventually re-

ceives this message and starts sending 〈n,X(n)〉 to R. This, in turn, ensures that

R eventually receives this message and thus learns X(n). Note that the program

Pg(true, 〈xS, XS(xS)〉, lSR, aS) ⊕ Pg(true, xR, lRS, aR) is realizable. We have thus ex-

tracted a standard program that realizes the STP specification. In fact, the program turns

out to be essentially equivalent to Stenning’s [81] protocol.

The key point here is that by replacing the knowledge tests by weaker predicates

that imply them and do not explicitly mention knowledge, we can derive standard pro-

grams that implement the knowledge-based program. We believe that other standard

implementations of the knowledge-based program can be derived in a similar way.

3.4 Remarks

We have shown that the mechanism for synthesizing programs from specifications in

Nuprl can be extended to knowledge-based programs and specifications and that ax-

ioms much in the spirit of those used for standard programs can be used to synthesize

knowledge-based programs as well. We applied this methodology to the analysis of

the sequence transmission problem and showed that the knowledge-based programs

proposed by Halpern and Zuck for solving the STP problem can be synthesized in

Nuprl. We also sketched an approach for deriving standard programs that implement

the knowledge-based programs that solve the STP. A feature of our method is that the

extracted standard programs are close to the type of pseudocode designers write their

programs in, and can be translated into running code.

There has been work on synthesizing both standard programs and knowledge-based
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programs from knowledge-based specifications. In the case of synchronous systems

with only one process, Van der Meyden and Vardi [83] provide a necessary and suffi-

cient condition for a certain type of knowledge-based specification to be realizable, and

show that, when it holds, a program can be extracted that satisfies the specification. Still

assuming a synchronous setting, but this time allowing multiple agents, Engelhardt, van

der Meyden, and Moses [23, 24] propose a refinement calculus in which one can start

with an epistemic and temporal specification and use refinement rules that eventually

lead to standard formulas. The refinement rules annotate formulas with preconditions

and postconditions, which allow programs to be synthesized from the leaf formulas.

A search up the tree generated in the refinement process suffices to build a program

that satisfies the specification. The extracted programs are objects of a programming

language that allows concurrent and sequential executions, variable assignments, loops

and conditional statements. We see their work as complementary to ours. Since our

work is based on Nuprl, we are able to take advantage of the library of tactics provided

by Nuprl to be able to generate proofs. The expressive power of Nuprl also allows us

to express all the high-level concepts of interest (both epistemic and temporal) easily.

We see our method for synthesizing programs from knowledge-based specifications as

an alternative to this approach. As in the Engelhart et al. approach, the programs ex-

tracted in Nuprl are close to realistic programming languages. Arguably, distributed I/O

message automata are general enough to express most of the distributed programs of

interest when communication is done by message passing. Our approach has the addi-

tional advantage of working in asynchronous settings. The refinement rules proposed

by Engelhardt, van der Meyden, and Moses can be captured as tactics in Nuprl, though

we have not formalized them in the system yet.
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CHAPTER 4

A KNOWLEDGE-BASED ANALYSIS OF INFORMATION-FLOW

PROPERTIES

4.1 Overview

Secrecy has often been cast as lack of information flow between domains at different

levels of security [35, 36, 66, 75, 85]. Typically, a system is considered to exhibit an

insecure information flow if a user at a lower level of security can gain information

about the activity at higher levels of security. Many variations on this theme are possible,

depending on what type of information is considered sensitive (e.g., should unauthorized

users be prevented from learning whether some confidential event has ever occurred, or

is it the non-occurrence of such events that has to be kept secret), and on the capabilities

of the unauthorized users.

A framework for studying information-flow properties should allow (1) natural for-

malizations of properties classically accepted as building blocks for expressing more

complex requirements, (2) analyzing whether a given system (typically thought of as

arising from the executions of a protocol) satisfies a given information-flow restriction,

as well as (3) the development of systems and protocols that provably preclude informa-

tion flows. One such framework that has gained widespread acceptance is the Modular

Assembly Kit (MAKS) proposed by Mantel [62]. MAKS has been shown to fulfill all

three of these desiderata. It can express a number of well-known information-flow con-

straints [64]. Thanks to its modularity, complex information-flow properties can be built

from basic security predicates. Thus, the problem of analyzing whether a system sat-

isfies a complex security property reduces to verifying that the system satisfies all the

basic security predicates that make up the complex property [51]. Proof techniques and
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automatic provers have been developed for the framework. Recent research has mainly

focused on extending the framework to cryptographic systems [53], and on decompos-

ing global confidentially requirements into local confidentiality requirements, in order

to construct secure systems from secure components [79].

It has been long recognized that information-flow properties have simple intuitive

reformulations as restrictions on what users at lower levels of security may know about

users at higher levels of security. Formally, these restrictions can be expressed as epis-

temic formulas [25]. Such epistemic representations of information-flow properties have

the advantage of simplicity and closeness to natural-language formulations [47]. Once

we have a logical representation of information-flow properties, known techniques for

proof refinement and program synthesis can be applied to deal with desiderata (2) and

(3) in the context of information-flow analysis.

In this chapter, we focus on some of the building blocks of the MAKS framework

and formally analyze the extent to which they match the informal explanations typi-

cally given for them. A case-by-case analysis shows that there are subtle differences.

We show that simple properties that preclude lack of information about occurrences or

non-occurrences of confidential events, like Backwards (Strict) Insertion of Confiden-

tial Events or Deletion of Confidential Events, are actually more involved than usually

thought. In particular, they preclude a low-level user (better thought of as an adver-

sary) from knowing whether confidential events have occurred, even if he is told about

all events (including the confidential ones) in the past. Techniques for reasoning about

counterfactual situations [43], and about multiple adversaries, extending the work of

Halpern and Pucella [49], can be applied to formally capture the properties above as

knowledge-based requirements.

The reformulations of MAKS-style information-flow properties as knowledge-based
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formulas can be naturally extended to cryptographic settings, where agents’ inability to

distinguish two encrypted messages is taken into account. Interestingly, the natural

extensions of both Backwards (Strict) Insertion of Confidential Events or Deletion of

Confidential Events to cryptosystems differ slightly from the notions proposed by Hutter

and Schairer [53]. We show that the difference lies in the assumptions regarding the

adversary’s capabilities: Hutter and Schairer (HS from now on) implicitly assume a

very weak adversary that does not keep track of the messages received in the past and

does not perform any operation on the received messages in order to compute a set of

available keys. A knowledge-based formulation of information-flow properties has the

advantage of making explicit the connection between adversary’s knowledge and his

capabilities; this allows us to express a number of variants of HS definitions, making

different assumptions about the adversary’s capabilities.

Relating the MAKS approach and the epistemic approach in a principled way ben-

efits both. Further work is needed to express all MAKS-style properties as epistemic

formulas in our logic. This could potentially identify other subtle differences between

the formal definitions and their informal explanations, and suggest variants of these

properties that also make sense.

In Section 4.2 we present the syntax of first order epistemic logic and its semantics

with respect to event systems. We proceed in Section 4.3 with a review of some of the

basic event-system definitions of information-flow properties, and show how these prop-

erties can be expressed as knowledge-based formulas. In Sections 4.4.1 and 4.4.2 we

explain the need for reasoning about different types of adversaries and counterfactual

situations. More involved MAKS-style properties and their corresponding characteri-

zations as knowledge-based formulas are discussed in Section 4.4.3. In Section 4.5 we

extend the knowledge-based characterizations to cryptographic systems, and relate our
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formalism with the one proposed by Hutter and Schairer.

4.2 Epistemic logic interpreted in event systems

4.2.1 Event systems

We assume a fixed and finite set A of agents, typically the agents participating in a given

protocol. As usual [55, 59, 66, 70], changes in the local states of agents, most often trig-

gered by agents taking certain actions, are modeled as events. The behavior of each

agent i in A is described as a set Tri of finite sequences (also called traces) of events

over a set Ei. Events in a trace are recorded in the order in which they have occurred;

there is, however, no precise information on the time each event in a trace has occurred.

Among events in Ei, some are considered confidential, i.e., to be kept secret; some are

considered visible, i.e., their occurrence can be detected by a passive observer; and the

rest are considered neutral. Agent i’s view, denoted Vi, is simply a partition (Ci, Vi, Ni)

of Ei into confidential events Ci, visible events Vi, and neutral events Ni. (We follow

here the standard approach [62, 88] and consider a fixed, context-independent classifica-

tion of events into confidential, neutral and visible events. In general, the classification

may depend on context; for example, an event may be confidential at some points in

a trace, and visible at other points of the trace, say for example after a declassification

event occurs. We leave the context-dependent case to future research.)

Since we focus here on message-passing systems, that is, systems in which agents

communicate by exchanging messages, Ei may contain events corresponding to agent i

sending or receiving messages on a certain link. We assume that, when agent i sends a

message to agent j, the message is placed in a buffer (or queue) on the communication
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link between i and j; agent j is said to receive the message once he consumes (dequeues)

the message from the communication buffer. We denote the event of agent i sending

message msg to agent j as send i,j(msg), and the event of agent i receiving message

msg as recv i(msg) 1. The set of queuing and dequeuing events on the communication

link between i and j is denoted Comm i,j. We assume that Commi,j and Commi,k are

disjoint for all j 6= k. The set of all communication events involving agent i (i.e.,
⋃

j∈A Commi,j) is denoted Commi. Note that we are not imposing the restriction that

events in Ei and Ej for distinct agents i and j be disjoint.

Information-flow properties are typically studied in settings where there are two

agents (see [63, 66, 67, 68]): a low-level user L and a high-level user H . We can model

this by taking H’s view of the system to be VH = (C, V,N), and L’s view of the system

to be VL = (∅, V, ∅), formalizing the assumption that all confidential and neutral events

are associated with the high-level user H , and all events visible to L are also visible to

H .

The set of all events in a system with agents A is E =
⋃

i∈AEi. We define the global

view V (also called an A-view) as the tuple 〈Vi : i ∈ A〉. A sequence of events in E

is simply an element of the set E∗. The global behavior of the system is modeled as

a set of traces Tr over events in E, best thought of as arising from the execution of a

protocol. We use the notation τ ′ ≤ τ (resp., τ ′ < τ ) to indicate that τ ′ is a prefix (resp.,

strict prefix) of trace τ . We assume that all traces are finite and Tr is closed under

prefixes. For a given subset E ′ of events in E, the sequence of events in E ′ occurring in

a sequence τ (preserving the order of occurrence) is denoted as τ |E′; for example, τ |Vi

is the sequence of agent i’s visible events in the sequence τ .
1Note that the sender is not specified in recv i(msg); it is possible the receiver may not be able to

determine the sender of the message. We can model cases when the receiver knows the sender of a
message by assuming that msg is signed by the sender.
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The set of traces Tr represents the composition of the sets of traces TrX and TrY , for

two disjoint sets X and Y of agents, if Tr is precisely the set of traces whose projection

over the set of events EX and EY associated with agents X , and Y respectively, are the

traces in TrX , and TrY respectively; that is, τ belongs to Tr if and only if there exist τX

in TrX and τY in TrY such that τ |EX
= τX and τEY

= τY (where EX and EY represent

the set of all events associated with agents in X and Y , respectively). Note that this

definition ensures that, for all pairs of executions τX in TrX and τY in TrY , we can find

an execution τ in Tr such that τ |EX
= τX and τ |EY

= τY , as long as τX and τY coincide

on the common events, that is, τX |EX∩EY
= τY |EX∩EY

.

4.2.2 Syntax

We consider a standard first-order logic of knowledge and time. Formulas are built up

from a set P of predicate symbols on events, a set Var , and a set C of constants with

one constant symbol e for each event e in E. (In the sequel, we often do not distinguish

between the syntactic symbol e and the semantic e; it will be clear to which we refer.)

For simplicity, we assume that all predicates have arity either 0 or 1, and that P contains

unary predicates conf i, one for each agent i in A, and the predicate occ. To each agent

i, we associate a knowledge operator Ki; we read Kiϕ as “agent i knows fact ϕ”. To

each set X of agents, we associate the symbols EX and DX , and read EXϕ (resp.,

DXϕ) as “everybody in the group X knows ϕ” (resp., “ϕ is distributed knowledge

among the agents in X”). Formulas are closed under negation ¬, conjunction ∧, the

knowledge operators Ki, EX and DX , universal and existential quantification, and the

temporal operators © (“next”), ♦ (“eventually”), (“always”), ©- (“previously”), �-

(“some time in the past”), - (“always in the past”), S (“since”), and A (“immediately

after”). ϕ S ψ means that ψ held at some point in the past, and since the last time it held,
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ϕ held also; ϕ A ψ means that ψ held at some point in the past, and ϕ held at the step

after. As it is standard, we take ϕ =def ¬♦¬ϕ, and - ϕ =def ¬�- ¬ϕ. We also take

Piϕ =def ¬Ki¬ϕ, and read it as “agent i thinks ϕ possible”. Note that �- ϕ = true S ϕ.

4.2.3 Semantics

Let ν be a valuation that associates to each variable x in Var an event in the set E. Let

I be a function that associates to each constant symbol e an event in E. For simplicity,

throughout this chapter we assume that I is fixed. We define Iν(t) to be I(t) if t is a

constant symbol, or ν(t) if t is a variable. Let π be a mapping from views to functions

that map a trace τ in Tr and a predicate symbol in P of arity k (where k ∈ {0, 1}) to a

function mapping Ek to {true, false}. For an event e ∈ E we take π(V)(τ, conf i)(e) to

be true if and only if, according to V , e is one of i’s confidential events, that is, e is an

element of the set Ci recorded in Vi. (Notice that the meaning of predicate conf i does

not depend on the trace τ .) We take π(V)(τ, occ)(e) to be true if and only if e is the last

event in τ , that is, there exists trace γ such that τ = γ · 〈e〉. In the following, we refer to

π as an interpretation.

Let τ and τ ′ be two traces in Tr, and let i, j be agents in A. Let ν [x/e] be a valuation

just like ν, except that ν(x) = e holds. An interpreted system I is a tuple (E, Tr,V, π)

consisting of a set E of events, a set Tr of traces with events in E, a view V , and an

interpretation π. We define what it means for formula ϕ to be true with respect to a

system I, a trace τ , and valuation ν, written (I, τ, ν) |= ϕ, inductively:
• if p is a predicate symbol in P of arity 0, then (I, τ, ν) |= p iff π(V)(τ, p) = true;

if p is a predicate symbol in P of arity 1, and t is a term, then (I, τ, ν) |= p(t) iff

π(V)(τ, p)(Iν(t)) = true

• (I, τ, ν) |= ¬ϕ iff (I, τ, ν) 6|= ϕ

118



• (I, τ, ν) |= ϕ1 ∧ ϕ2 iff (I, τ, ν) |= ϕ1 and (I, τ, ν) |= ϕ2

• (I, τ, ν) |= ∀x. ϕ iff (I, τ, ν[x/e]) |= ϕ for all events e in E

• (I, τ, ν) |= ©ϕ iff there exists an event e such that τ ·〈e〉 ∈ Tr and (I, τ ·〈e〉, ν) |=

ϕ; (I, τ, ν) |= ©- ϕ iff there exist a trace τ ′ and event e such that τ = τ ′ · 〈e〉 and

(I, τ ′, ν) |= ϕ

• (I, τ, ν) |= ♦ϕ iff there exists a trace τ ′ ∈ Tr such that τ ≤ τ ′ and (I, τ ′, ν) |=

ϕ; (I, τ, ν) |= �- ϕ iff there exists τ ′ with τ ′ ≤ τ and (I, τ ′, ν) |= ϕ

• (I, τ, ν) |= ϕ2 A ϕ1 iff there exist τ1, e, τ2 such that τ = τ1 · 〈e〉 · τ2, (I, τ1, ν) |=

ϕ1, (I, τ1 · 〈e〉, ν) |= ϕ2 and (I, τ1 · 〈e〉 · τ ′2, ν) 6|= ϕ1 for all τ ′2 ≤ τ2

• (I, τ, ν) |= ϕ2 S ϕ1 iff there exist τ1, τ2 such that τ = τ1 · τ2, (I, τ1, ν) |= ϕ1, and

(I, τ1 · τ ′2, ν) |= ϕ2 ∧ ¬ϕ1 for all τ ′2 with τ ′2 ≤ τ2 and τ ′2 6= 〈〉.

Note that we use here a branching time operator (see [22]): since there is no explicit

notion of time in the event systems formalism, ©ϕ does not mean that ϕ holds at the

next point in time; when interpreted with respect to a trace τ , ©ϕ holds when there

exists an event e that can occur next (i.e., immediately after the last event in τ ), and ϕ

holds after e occurs (i.e., ϕ holds when interpreted with respect to τ · 〈e〉).

Traces τ and τ ′ are indistinguishable to agent i, written τ ∼i τ
′, if and only if i’s

sequence of events is the same in τ and τ ′, that is, τ |Ei
= τ ′|Ei

. We interpret knowledge-

based formulas in the standard way, and say that agent i knows fact ϕ at trace τ precisely

when the fact ϕ holds at all traces τ ′ agent i cannot distinguish from τ :

• (I, τ, ν) |= Kiϕ if and only if (I, τ ′, ν) |= ϕ for all traces τ ′ in Tr such that

τ ∼i τ
′.

As it is standard, we say that “everybody in group X knows ϕ” (written as EXϕ) if

every agent i in X knows ϕ, and say that “ϕ is distributed knowledge among agents in
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group X” if ϕ is known by an agent that knows what each agent in the group X knows:
• (I, τ, ν) |= EXϕ iff (I, τ, ν) |= Kiϕ for all i ∈ X , and

• (I, τ, ν) |= DXϕ iff (I, τ ′, ν) |= ϕ for all traces τ ′ such that τ ′ ∼i τ for all agents

i ∈ X .

4.3 Formalizing basic information-flow properties

As mentioned before, information-flow properties are typically studied in settings where

there are two agents, a low-level user L and a high-level user H , all confidential and

neutral events are visible only to H , and all events visible to L are also visible to H .

Recall that we model this by taking H’s view of the system as VH = (C, V,N), and L’s

view of the system as VL = (∅, V, ∅). In the following, let Vs = 〈Vh,VL〉.

4.3.1 Noninterference and simple variants of it

The well-known notion of noninterference [75] can be formalized as a richness condi-

tion on the set of executions of a system. It says that, for any trace in the system, there

exists a trace in the system with the same sequence of visible events, except that no

confidential events have occurred. We can write the condition that the set Tr of traces

satisfies noninterference as follows:

NI(Tr) ≡ ∀τ ∈ Tr. ∃τ ′ ∈ Tr. (τ ′|V = τ |V ) ∧ (τ ′|C = 〈 〉).

It is intuitively clear that noninterference ensures that the low-level user never knows

whether some confidential events have occurred, since it is always consistent with the

low-level view of an execution that no confidential event has occurred. Following the

approach of Fagin et al. [25], this intuition can be made precise:
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I1(Tr) : IV(Tr) |= ∀x. conf H(x) ⇒ ¬KL(occ(x));
∀τ ∈ Tr. ∀c ∈ C. ∃τ ′ ∈ Tr. ∀β ∈ E∗. (τ ′|V = τ |V ) ∧ (τ ′ 6= β · 〈c〉)

I2(Tr) : IV(Tr) |= ∀x. conf H(x) ⇒ ¬KL(�- occ(x));
∀τ ∈ Tr. ∀c ∈ C. ∃τ ′ ∈ Tr. (τ ′|V = τ |V ) ∧ (c 6∈ τ ′|C)

I3(Tr) : IV(Tr) |= ¬KL(∃x. conf H(x) ∧ occ(x));
∀τ ∈ Tr. ∃τ ′ ∈ Tr. (τ ′|V = τ |V ) ∧ (∀β ′ ∈ E∗. ∀c ∈ C. τ ′ 6= β · 〈c〉)

I4(Tr) : IV(Tr) |= ∀x. conf H(x) ⇒ ¬KL(¬occ(x));
∀τ ∈ Tr. ∀c ∈ C. ∃τ ′ ∈ Tr. ∃β ∈ E∗. (τ ′|V = τ |V ) ∧ (τ ′ = β · 〈c〉)

I5(Tr) : IV(Tr) |= ∀x. conf H(x) ⇒ ¬KL( - ¬occ(x));
∀τ ∈ Tr. ∀c ∈ C. ∃τ ′ ∈ Tr. (τ ′|V = τ |V ) ∧ (c ∈ τ ′|C)

I6(Tr) : IV(Tr) |= ¬KL(∀x. conf H(x) ⇒ ¬occ(x));
∀τ ∈ Tr. ∃τ ′ ∈ Tr. (τ ′|V = τ |V ) ∧ (∃β ∈ E∗. ∃c ∈ C. τ ′ = β · 〈c〉)

I7(Tr) : IV(Tr) |= ¬KL(∀x. conf H(x) ⇒ - ¬occ(x));
∀τ ∈ Tr. ∃τ ′ ∈ Tr. (τ ′|V = τ |V ) ∧ (τ ′|C 6= 〈 〉).

Figure 4.1: Simple information-flow restrictions.

Lemma 4.3.1: Let Tr be a set of traces in a system for a high-level user H with

view VH = (C, V,N) and a low-level user L with view VL = (∅, V, ∅). Let I =

(E, Tr,Vs, π). Then NI(Tr) is satisfied if and only if I |= ¬KL(∃x.conf H(x) ∧

�- occ(x)).

Proof: Let τ be an arbitrary trace in Tr, and ν an arbitrary valuation. It suffices to note

that (I, τ, ν) |= ¬KL(∃x.conf H(x)∧ �- occ(x)) iff there exists a trace τ ′ in Tr such that

τ ′ ∼L τ (i.e., τ ′|V = τ |V ) and (I, τ ′, ν) |= ∀x. conf H(x) ⇒ ¬occ(x) (i.e., τ ′|C = 〈 〉).
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In Figure 4.3.1, we give a number of simple knowledge-based formulations of

information-flow restrictions, together with their equivalent representation in the event-

system formalism. I1(Tr) (resp. I2(Tr)) says that, for each confidential event, the ad-

versary considers it possible that the event has not occurred (resp., has never occurred).

I3(Tr) says that the adversary considers it possible that no confidential event has just

occurred. I4(Tr) (resp., I5(Tr)) says that, for any confidential event, the adversary

considers it possible that the event has just occurred (resp., occurred at some point in

the past), while I6(Tr) (resp., I7(Tr)) says that the adversary considers it possible that

some confidential event has just occurred (resp., some confidential event occurred at

some point in the past). While both the event-based and the knowledge-based formu-

lations of these properties are simple, we believe that the knowledge-based formulation

makes it easier for the reader to assign a meaning to these properties and manipulate

them in more complex arguments.

4.3.2 Generalized noninterference and backwards insertion of

events

As has been noted before, and is clear from the knowledge-based reformulation above,

noninterference alone does not prohibit a low-level user from knowing that no confiden-

tial event has occurred. Arguably, knowing that no confidential event has occurred is a

form of information flow. For example, in a protocol where high-level users perform a

confidential action only if some secret bit is 0, a low-level user that knows that no confi-

dential event has occurred actually knows that the secret bit is 1. A well-known property

that strengthens noninterference to restrict this type of information flow is generalized

noninterference (GNI) [66]. Informally, GNI says that “any interleaving of the high-
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level input (i.e., confidential) events of one trace with the low-level (i.e., visible) events

of another trace can be made a possible trace by adapting the outputs”. As shown by

Mantel [62], GNI is equivalent to the conjunction of NI and a property known as back-

wards strict insertion of admissible events (BSIA). According to Hutter [51], BSIA

“demands that observing the visible part v of a system run does not imply that (confi-

dential event) c has not happened at some point”. Formally,BSIA is defined as follows:

BSIA(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.

(β · α ∈ Tr ∧ α|C = 〈 〉)∧

(∃γ ∈ E∗. (γ|C = β|C) ∧ (γ · 〈c〉 ∈ Tr)) ⇒

∃α′ ∈ E∗. (β · 〈c〉 · α′ ∈ Tr ∧ α′|V = α|V ∧ α′|C = 〈 〉)

GNI(Tr) ≡ NI(Tr) ∧ BSIA(Tr).

Essentially, BSIA(Tr) says that we can insert a confidential event at any point in a

trace in Tr, provided that (1) the confidential event is admissible, that is, a user that has

access only to confidential events in a trace thinks it possible that the event occurred at

the point where it is inserted, and (2) we insert confidential events only at points of the

trace after which no confidential events occur.

The formal definition of BSIA does not completely capture the intuition that

BSIA(Tr) precludes low-level users from knowing that no confidential event has oc-

curred. Consider a system in which, for no confidential event c, is it the case that the

low-level user knows that c has not occurred, that is, a system in which the formula

∀x. conf H(x) ⇒ ¬KL( - ¬occ(x)) is valid. We can show that such a system satisfies a

much simpler property than BSIA, which we call BSIAs:

BSIAs(Tr) ≡ ∀c ∈ C. ∀τ ∈ E∗. (τ ∈ Tr) ⇒

∃τ ′ ∈ Tr. ∃β ′, α′ ∈ E∗. (τ ′ = β ′ · 〈c〉 · α′) ∧ (τ ′|V = τ |V ).

Lemma 4.3.2: Let Tr be a set of traces in a system for high-level user H with view

VH = (C, V,N) and low-level user L with view VL = (∅, V, ∅). Let I = (E, Tr,Vs, π).
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Then

I |= ∀x. conf H(x) ⇒ ¬KL( - ¬occ(x))

if and only if BSIAs(Tr) is satisfied.

Proof: Let τ be an arbitrary trace in Tr and ν be an arbitrary valuation. The proof

follows from the observation that (I, τ, ν) |= ∀x. conf H(x) ⇒ ¬KL( - ¬occ(x)) iff,

for all c ∈ C, there exists a trace τ ′ such that τ ′ ∼L τ (that is, τ ′|V = τ |V ), and

(I, τ ′, ν[x/c]) |= �- occ(x) (that is, c ∈ τ ′|C).

It is not obvious how BSIAs(Tr) and BSIA are related. One important difference

between them is that BSIA requires α and α′ to coincide on V ∪C, while BSIAs(Tr)

requires τ and τ ′ to coincide on V . Qualitatively, we can interpret this difference as

saying that, while BSIAs assumes that the low-level user has access only to the visible

events in a trace, BSIA talks about precluding information flow from a low-level user

that may have access to confidential events as well. In other words, BSIA refers to a

low-level user that, even when given access to all confidential events that have occurred

in an execution, still considers it possible that one more confidential event has occurred.

4.4 More complex MAKS-style information-flow properties

4.4.1 Multiple adversaries

The distinction between BSIAV and BSIAs
V suggests that it is useful to distinguish

between a low-level user that has access only to low-level events, and a low-level user

that may have access to confidential events. We call the latter an adversary.
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Following Halpern et al. [45, 49], we model the adversary as another agent in the

system. For our analysis, we allow systems with more than one adversary, and focus in

particular on the following adversaries, all passive observers of the system. For all sets

X , Y of agents in A,

• X’s eavesdropper advX is the adversary that can intercept all (and only) visible

events of agents in the group X;

• X’s communication eavesdropper advComm
X is the adversary that can intercept all

(and only) communication events involving agents in the group X;

• (X, Y )’s communication eavesdropper advComm
X,Y is the adversary that can inter-

cept all (and only) communication events between agents in the group X and

agents in the group Y .

For ease of exposition, all agents in A are taken to be honest, and we consider only

passive adversaries, with capabilities as defined above. In the following, Aadv represents

the set of all adversaries advX , advComm
X , and advComm

X,Y , for all sets X , Y in A.

The notion of two traces being indistinguishable to an agent extends naturally to

adversaries: Let τ and τ ′ be two arbitrary traces in Tr, and let X and Y be sets of

agents. We define

• τ ∼advX
τ ′ if and only if τ |VX

= τ ′|VX
, where VX =

⋃
i∈X Vi;

• τ ∼advComm
X

τ ′ if and only if τ |CommX
= τ ′|CommX

, where CommX =

⋃
i∈X Commi;

• τ ∼advComm
X,Y

τ ′ if and only if τ |CommX,Y
= τ ′|CommX,Y

, where CommX,Y =

⋃
i∈X,j∈Y Commi,j.

We extend our logic so that it can express an adversary’s knowledge of the system by as-

sociating with each adversary adv the knowledge operator Kadv . As before, Kadvϕ says
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that “adversary adv knowsϕ”, and (I, τ, ν) |= Kadvϕ holds if and only if (I, τ ′, ν) |= ϕ

holds for all traces τ ′ in Tr such that τ ′ ∼adv τ .

A number of connections can be established between what observers of a group of

agents know and what observers of each agent in the group know, individually or by

sharing their knowledge with the other observers. While a thorough analysis is beyond

the scope of this chapter, we present one such result, which shows that the passive

observers of a group X of agents know precisely what is distributed knowledge among

the group of individual passive observers of each agent in X , provided that no two

distinct agents may share the same event:

Lemma 4.4.1: Suppose that Ei ∩ Ej = ∅ for all distinct agents i, j in A. Then, for

all sets of traces Tr, views V , and formulas ϕ, the following formulas are all valid with

respect to I:

• KadvX
ϕ⇔ D{adv i | i∈X}ϕ;

• KadvComm
X

ϕ⇔ D{advComm
i | i∈X}ϕ;

• KadvComm
X,Y

ϕ⇔ D{advComm
i,j | i∈X,j∈Y }ϕ.

Proof: For the first equivalence, it suffices to note that, by definition, τ ∼X τ ′ iff

τ |∪i∈XVi
= τ ′|∪i∈XVi

, which, asEi∩Ei′ = ∅ for distinct agents i and i′ inX , is equivalent

to τ |Ei
= τ ′|Ei

for all i in X . For the second equivalence, we remark that τ ∼advComm
X

τ ′ iff τ |∪i,j∈ACommi,j
= τ ′|∪i,j∈AComm i,j

, which, as Commi,j ⊆ Ei and Ei ∩ Ei′ =

∅, is equivalent to τ |∪j∈ACommi,j
= τ ′|∪j∈AComm i,j

for all i ∈ A, and also equivalent

to τ |Comm i
= τ ′|Commi

for all i ∈ A. The proof for the last equivalence proceeds

similarly, once we note that, since Comm i,j ∩Comm i,k = ∅ for all distinct j and k, and

Commi,j∩Comm i′,k = ∅ for all distinct i and i′ inX , it follows that τ |∪i∈X,j∈Y Comm i,j
=

τ ′|∪i∈X,j∈Y Commi,j
is equivalent to τ |Commi,j

= τ ′Comm i,j
for all i in X and j in Y .
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4.4.2 Reveal events and counterfactuals

When analyzing information flows in systems with adversaries as above, it makes sense

to consider a number of counterfactual situations. Preserving the secrecy of certain facts

even in such hypothetical situations provides strong security guarantees. We consider

the following situations:

• All confidential events of group Y are revealed to group X’s eavesdropper. We

denote the event of revealing all confidential events of Y to advX as revX,Y ; for

simplicity, we also define the 0-ary predicate that stands for “event revX,Y occurs”

as revX,Y . It will be clear from context whether we refer to the reveal event or the

corresponding formula. If Y = X , we simply write revX .

• All events of group Y (not just the confidential ones) are revealed to advX . We

denote both the occurrence of such a reveal event and the corresponding predicate

as revall
X,Y (resp., revall

X if Y = X).

• All confidential events of group Y are revealed to advComm
X , respectively, all

events of group Y are revealed to advComm
X . We denote these events (resp., predi-

cates) as revComm
X,Y and rev

all ,Comm
X,Y (resp., revComm

X and rev
all ,Comm
X if Y = X).

• All confidential (resp., all) events of group Z are revealed to advComm
X,Y . We denote

these events as revComm
X,Y ,Z , and rev

all ,Comm
X,Y ,Z , respectively.

We remark that, intuitively, the occurrence of revX (resp. rev all
X ) is not equivalent to

the simultaneous occurrence of events rev i (resp., revall
i ) for all agents i in X . This

is because rev i (resp., rev all
i ) reveals i’s confidential events (resp., all i’s events) to the

observer of agent i, while revX (resp., rev all
X ) reveals i’s confidential events (resp., all

i’s events) to the observer of the entire group X .
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In the following, let Erev be the set of all events in E, together with the reveal events

above. The set Trrev of extended traces corresponding to the set Tr is the set of all

sequences τ ′ of events in Erev such that τ |E is a trace in Tr. For ease of exposition,

we consider only extended traces with at most one reveal event. (It follows from the

semantics of counterfactual implications, as defined later in the section, that we do not

lose any generality by making this assumption.)

The indistinguishability relations for each adversary can be naturally extended to

the set of extended traces in the obvious way. We give one example here. Consider two

arbitrary extended traces τ and τ ′. We take τ ∼adv i
τ ′ to hold if and only if one of the

following is true: (1) neither τ nor τ ′ contains a confidential event and τ |Vi
= τ |Vi

, (2)

adv i learned i’s confidential events at some point in the past, that is, τ = β · 〈rev i〉 · α,

τ ′ = β ′ ·〈rev i〉·α′, β ′|Vi∪Ci
= β|Vi∪Ci

, and α′|Vi
= α|Vi

, (3) adv i learned all of i’s events

at some time in the past, that is, τ = β · 〈rev all
i 〉 · α, τ ′ = β ′ · 〈revall

i 〉 · α′, β ′|Ei
= β|Ei

,

and α′|Vi
= α|Vi

, (4) adv i learned the confidential events of a group Y at some point in

the past, that is, τ = β · 〈rev i,Y 〉 · α, τ ′ = β ′ · 〈rev i,Y 〉 · α′, β ′|Vi∪CY
= β|Vi∪CY

, and

α′|Vi
= α|Vi

, or (5) adv i learned all events of group Y at some point in the past, that is,

τ = β · 〈rev all
i,Y 〉 · α, τ ′ = β ′ · 〈revall

i,Y 〉 · α
′, β ′|Vi∪EY

= β|Vi∪EY
, and α′|Vi

= α|Vi
.

We would like to express in our logic strong secrecy requirements that involve adver-

saries not gaining knowledge of certain facts, even when they have obtained confidential

information, including information regarding all the events associated with some group

of agents. For example, if ϕ is a fact to be kept secret, we want to express the condition

that ϕ remains secret even if agent i’s observer/adversary obtained all of i’s confidential

events at some time in the past. However, we cannot write this as (�- rev i) ⇒ ϕ, since

typically that would hold trivially, as we would not expect rev i to hold at any point in a

realistic security system.
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As explained by Halpern and Moses [43], we need to replace the implication ⇒

with a counterfactual implication, denoted �. Counterfactual implications ϕ � ψ are

interpreted as being true at a trace τ in Tr if ψ holds at all traces τ ′ just like τ , except

that ϕ holds at τ ′. As ϕ may not hold at any trace in Tr, traces τ ′ range over the set

Erev ∗ of all possible sequences of events in Erev . To make this precise, to each trace τ in

Tr we associate a relation <τ on the Erev ∗, with τ ′ <τ τ
′′ standing for “trace τ is closer

to τ ′ than τ ′′”. To match this intuition, <τ is taken to be a partial order on Erev ∗, with

τ its unique minimal point (since, intuitively, the closest sequence of events to a given

trace is the trace itself). Let J be an extended interpreted system, that is, an interpreted

system I = (Erev ∗, T rrev ,V, π) equipped with relations <τ , one for each trace τ in Tr.

The set of extended traces just like τ except that ϕ holds can now be formally defined as

closest([[ϕ]]J , τ, ν) =

{τ ′ ∈ Trrev | (J , τ ′, ν) |= ϕ and, if (J , τ ′′, ν) |= ϕ, then τ ′ ≤τ τ
′′}.

We define (J , τ, ν) |= ϕ � ψ iff (J , τ ′, ν) |= ψ for all τ ′ ∈ closest([[ϕ]]J , τ, ν).

In this chapter, we consider only relations <τ such that, for all τ, τ ′, τ ′′, if τ = β ·α,

τ ′ = β · 〈e〉 · α, τ ′′ = β ′′ · 〈e〉 · α′′, and e does not occur in either α, β, α′′ or β ′′,

then τ ′ ≤τ τ
′′ holds. This essentially says that the closest trace to τ , among traces in

which a given event e occurs exactly once, is a trace τ ′ such that the same events have

occurred in τ ′ and τ , except that event e occurs in τ ′. In particular, in systems J where

the relations <τ for traces τ in Tr satisfy the restriction above, the following holds for

all reveal events rev and valuations ν:

closest([[�- rev ]]J , τ, ν) =

{τ ′ ∈ Trrev | there exist β, α ∈ E∗
such that τ ′ = β · 〈rev〉 · α and τ = β · α}.

(4.1)

Thus, closest([[�- rev ]]J , τ, ν) ⊆ Trrev holds for all traces τ in Tr and valuations ν.
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4.4.3 Capturing backwards insertion and deletion of events

We can now express more involved information-flow properties in the MAKS frame-

work as constraints on adversaries’ knowledge.

We start our analysis by defining the following formula:

ϕBI ≡ (�- rev all
H ) � ((∀x. conf H(x) ⇒ (¬occ(x) S rev all

H )) ⇒

(∀x. conf H(x) ⇒ ¬KadvH
¬(occ(x) A revall

H ))).

ϕBI says that, if, at some point in the past, the adversary observed all events and no

confidential events have occurred since, then, for all confidential events c, the adversary

would still think it possible that c occurred immediately after all events were revealed to

him. We can show that ϕBI is valid with respect to a set of traces Tr iff the following

condition on Tr is satisfied:

BI(Tr) ≡ ∀α, β ∈ E∗. ∀C ∈ C. (β · α ∈ Tr ∧ α|C = 〈 〉) ⇒

∃α′ ∈ E∗. (β · 〈c〉 · α′ ∈ Tr ∧ α′|V = α|V ).

Lemma 4.4.2: Let Tr be a set of traces in a system where the high-level user H has

view VH = (C, V,N) and the low-level user L has view VL = (∅, V, ∅). Let J =

(Erev ∗, T r,Vs, π, {<τ | τ ∈ Tr}). Then BI(Tr) holds if and only if J |= ϕBI .

Proof: By definition, (J , τ, ν) |= ϕBI if and only if, for all τ ′ ∈ closest(

[[�- revall
H ]]J , τ, ν), if

(J , τ ′, ν) |= ∀x. conf H(x) ⇒ (¬occ(x) S revall
H ), (4.2)

then

(J , τ ′, ν) |= ∀x. conf H(x) ⇒ PadvH
(occ(x) A revall

H ). (4.3)

By (4.1), we can restrict to extended traces τ ′ for which there exist sequences of events

β and α in E∗ with τ ′ = β · 〈rev all
H 〉 ·α and τ = β ·α. (4.2) is satisfied for τ ′ if and only
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if α|C = 〈 〉. (4.3) says that, for all confidential events c, there exists an extended trace

τ ′′ such that τ ′′ ∼advH
τ ′ and

(J , τ ′′, ν [c/x]) |= occ(x) A rev all
H . (4.4)

Since τ ′ = β · 〈rev all
H 〉 · α, τ ′′ ∼advH

τ ′ if and only if there exist sequences β ′′, α′′ in

E∗ such that τ ′′ = β ′′ · 〈revall
H 〉 · α′′, β ′′|E = β|E (by the semantics of the rev all

H event),

and α′′|V = α|V . This means that (4.4) holds if and only if β ′′ = β and the first event

in α′′ is c, that is, there exists α′ such that α′′ = 〈c〉 · α′. We can now take β ′ = β ′′ and

conclude that BIV(Tr) is satisfied. The reverse implication follows immediately.

Note that, unlike BI(Tr), BSIA requires that α′ and α agree on the confidential

events. To move one step closer to BSIA, we refine ϕBI to say that the adversary

thinks it possible that c is the last confidential event, where we abbreviate conf H(x)∧

((∀y. conf H(y) ⇒ ¬occ(y)) S occ(x)) as lastC (x):

ϕBSI ≡ (�- rev all
H ) � ((∀x. conf H(x) ⇒ (¬occ(x) S rev all

H )) ⇒

(∀x. conf H(x) ⇒ ¬KadvH
¬(lastC (x) A revall

H ))).

Lemma 4.4.3: Let Tr be a set of traces in a system where the high-level user H has

view VH = (C, V,N) and the low-level user L has view VL = (∅, V, ∅). Let J =

(Erev ∗, T r,Vs, π(Vs), {<τ | τ ∈ Tr}). Then J |= ϕBSI if and only if the following

property holds:

BSI(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C. (β · α ∈ Tr ∧ α|C = 〈 〉) ⇒

∃α′ ∈ E∗. (β · 〈c〉 · α′ ∈ Tr ∧ α′|V = α|V ∧ α′|C = α|C).

Proof: The proof essentially follows from the argument for Lemma 4.4.2.

Note that BSI is just like BSIA, except that the admissibility restriction has been

dropped; that is why it is also known as backwards strict insertion of events [62]. There
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is no difficulty in expressing the admissibility restriction: it simply says that, if H s is a

user who has access only to confidential events (call this a restricted high-level user, to

distinguish it from a standard high-level user, who is assumed to have access to visible

events as well), then c is admissible precisely when H s thinks it possible that c occurs

immediately after the reveal event has occurred. With this observation, the knowledge-

based formulation of BSIA becomes

ϕBSIA =def

(�- rev all
H ) � ((∀x. conf H(x) ⇒ (¬occ(x) S rev all

H )) ⇒

∀x. (conf H(x) ∧ (PHs(©occ(x))) A rev all
H ) ⇒

¬KadvH
¬(lastC (x) A revall

H )).

Theorem 4.4.4: Let Tr be a set of traces in a system where the high-level user H has

view VH = (C, V,N) and the low-level user L has view VL = (∅, V, ∅). Let J =

(Erev ∗, T r,Vs, π(Vs), {<τ | τ ∈ Tr}). Then BSIA(Tr) holds if and only if J |=

ϕBSIA.

Proof: The proof is similar similar to that of Lemma 4.4.2.

The exercise of reformulating NI and BSIA in terms of what users with different

views of the system think possible or never learn has exposed most of the necessary

elements for similar interpretations of other known information-flow properties. For

example, for systems in which only high input events are considered confidential, the

formulas above capture backwards insertion of (HI-admissible) inputs; if we consider

as admissible a confidential event considered possible by a user that has access to all

events, not just the confidential ones, then we can characterize the insertion of admissi-

ble inputs (see [63]). Furthermore, if we interpret a reveal event as revealing not just the

confidential events, but also all the neutral ones, the formulas above characterize back-
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wards insertion of (admissible) events; that is, the formulas above with all occurrences

of revall
H replaced by revH capture backwards insertion of (admissible) events.

The properties above restrict the flow of information about non-occurrences of

events. It is not difficult to refine NI to capture restrictions on the flow of informa-

tion about occurrences of events. For example, strict deletion of events [62] requires

that, for any trace τ in the system, if c is the last confidential event in τ , then there exists

a trace τ ′ in the system that is just like τ , modulo neutral events, except that c does not

occur in τ ′:

D(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.

(β · 〈c〉 · α ∈ Tr ∧ α|C = 〈 〉) ⇒

∃α′ ∈ E∗. (β · α′ ∈ Tr ∧ α′|V = α|V ∧ α′|C = 〈 〉).

We can show that D(Tr) holds if and only if, even if all the confidential events in a trace

but the last one are revealed to the adversary, the adversary would still think it possible

that no confidential event has occurred after the last reveal event; that is, the following

is valid with respect to Tr:

ϕD =def (�- revall
H ) �

∀x. ((lastC (x) A rev all
H ) ⇒ PadvH

(∀y. conf H(y) ⇒ (¬occ(y) S rev all
H ))).

Theorem 4.4.5: Let Tr be a set of traces in a system where the high-level user H has

view VH = (C, V,N) and the low-level user L has view VL = (∅, V, ∅). Let J =

(Erev ∗, T r,Vs, π(Vs), {<τ | τ ∈ Tr}). Then D(Tr) holds if and only if J |= ϕD.

Proof: By the semantics of counterfactual implication and (4.1), (J , τ, ν) |= ϕD if

and only if, for all extended traces τ ′ in Trrev such that there exist β, α in E∗ with

τ ′ = β · 〈rev〉 · α and τ = β · α, and for confidential events c, if

(J , τ ′, ν [c/x]) |= lastC (x) A rev all
H (4.5)
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then

(J , τ ′, ν [c/x]) |= PadvH
(∀y. conf H(y) ⇒ (¬occ(y) S rev all

H )). (4.6)

(4.5) is satisfied if and only if there exists α0 in E∗ such that α = 〈c〉 · α0 (i.e., τ =

β · 〈c〉 · α0 and τ ′ = β · 〈rev all
H 〉 · 〈c〉 · α0) and α0|C = 〈 〉. (4.6) is satisfied if and only if

there exists an extended trace τ ′′ in Trrev such that τ ′′ ∼advH
τ ′ and

(J , τ ′′, ν [c/x]) |= ∀y. conf H(y) ⇒ (¬occ(y) S rev all
H ). (4.7)

Since τ ′ = β · 〈rev all
H 〉 · 〈c〉 · α0, it follows that τ ′′ ∼advH

τ ′ holds if and only if there

exists α′ ∈ E∗ such that α′|V = (〈c〉 · α0)|V , so α′|V = α0|V . The theorem now follows

from the observation that (4.7) is equivalent to the condition α′|C = 〈 〉 = α0|C .

We remark that the formula above with all occurrences of rev all
H replaced by revH

characterizes backwards deletion of confidential events [63].

Simple logical reasoning proves that backwards strict deletion of confidential events

is stronger than deletion of confidential events, which in turn implies NI . Similarly, we

can show that backwards strict insertion of HI-admissible inputs is stronger than back-

wards insertion of admissible confidential events. The classification of such properties

has been studied extensively, both in the event-system formulation of the Assembly Kit

and in the context of process algebras [30, 31]. While our reformulations allow alter-

native derivations of the relations among such information-flow properties, rather than

rederiving known results, we focus on finding intuitive explanations for information-

flow properties. In the process, we identify simple variants of known properties that

have natural knowledge-based formulations and express basic restrictions likely to be

desired in realistic settings. For instance, as shown in Figure 2, a number of reasonable

requirements similar toBSIA andD can be defined: I8 says that, even if all confidential

events were revealed, for all confidential events c, the adversary would still consider it
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I8(Tr) : (�- revall
H ) � ((∀x. conf H(x) ⇒ (¬occ(x) S revall

H )) ⇒
∀x. conf H(x) ⇒ PadvH

((♦occ(x)) A revall
H ))

I9(Tr) : (�- revall
H ) � ((∀x. conf H(x) ⇒ (¬occ(x) S revall

H )) ⇒
PadvH

(∃y. conf H(y) ∧ (♦occ(y) A rev all
H )))

I10(Tr) : (�- revall
H ) � ∀x. conf H(x) ⇒ (((lastC (x) A rev all

H ) ⇒
∀y. conf H(y) ⇒ PadvH

((¬occ(y) S rev all
H ))).

Figure 4.2: Variants of BSIA and D.

possible that cwill occur at some time in the future; I9 is a weaker property, as it requires

that, in similar circumstances, the adversary considers it possible that some confidential

event will occur, without precluding the adversary from knowing that some other con-

fidential event will not occur at any time in the future; I10 says that, if all but the last

confidential event were revealed to the adversary, for all confidential events c, the adver-

sary would still consider it possible that c has not occurred since the rev all event. I10 is

a weaker variant of D, as it allows executions in which different confidential events are

ruled out by the low-level user at different points in time after the rev all event.

4.5 Extension to cryptographic settings

Recently, there has been increased interest in adapting information-flow properties to

cryptographic settings. One approach, due to Hutter and Schairer [51] (HS from now

on), specifically addresses possibilistic information-flow properties in the MAKS frame-

work. In this section, we shed light on the HS results by translating them into our

framework.
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4.5.1 The Hutter and Schairer approach

We start by presenting the HS results. The main assumption is that, in cryptographic

systems, it is possible that an agent cannot distinguish between two different messages

encrypted with unknown keys. Taking {|x|}k to stand for message x encrypted with

key k, we express the fact the x and x′ encrypted with possible different keys are in-

distinguishable as {|x|}k ≈ {|x′|}k′. The indistinguishability relation ≈ on messages

initially applies only to encrypted messages. But we can extend it to all messages,

under the assumption that messages are either keys, plaintexts, encrypted messages or

concatenations of such messages: if msg is a key or plaintext, we take msg ≈ msg ′

if and only if msg ′ = msg; if msg = msg1 · msg2 (i.e., msg is the concatenation of

msg1 and msg2 ), then we take msg ≈ msg ′ if and only if there exist msg ′
1, msg ′

2

such that msg1 ≈ msg ′
1, msg2 ≈ msg ′

2, and msg ′ = msg ′
1 · msg ′

2 . This extension

is not present in the HS paper, but it will be useful in clarifying our comparison with

the HS approach later on in this chapter. We extend ≈ to receive events be defining

recv i(msg) ≈ recv i(msg ′) if msg ≈ msg ′.

The executions τ ′ the low-level user cannot distinguish from τ are defined such that

the visible events at the same position in τ and in τ ′ are related by ≈. We write τ ≈ τ ′

iff τ |V = e1 · · · en, τ ′|V = e′1 · · · e
′
n, and ei ≈ e′i for i = 1, . . . , n.

HS define the extension of deletion of events and backwards strict insertion of con-
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fidential events in a cryptographic setting as follows:

DHS
≈ (Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.

(β · 〈c〉 · α ∈ Tr ∧ α|C = 〈 〉) ⇒

∃α′ ∈ E∗. (β · α′ ∈ Tr ∧ α′|V ≈ α|V ∧ α′|C = 〈 〉);

BSIAHS
≈ (Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.

(β · α ∈ Tr ∧ α|C = 〈 〉) ∧ (∃γ ∈ E∗. (γ|C = β|C)∧

(γ · 〈c〉 ∈ Tr)) ⇒

∃α′ ∈ E∗. (β · 〈c〉 · α′ ∈ Tr ∧ α′|V ≈ α|V ∧ α′|C = 〈 〉).

We do not believe that these definitions are always appropriate. Whether the event

of agent i sending {|x|}k on a link l is indistinguishable from the event of agent i sending

{|x′|}k′ on link l should depend on what an agent knows. For example, from the point of

view of a sender i the events are distinct, as i is the one choosing both the message and

the key to encrypt with; from the point of view of one of i’s observers, the two events

are indistinguishable. Thus, rather than using a single indistinguishability relation ≈, we

define an equivalence relation ≈i for each agent i in the system or observer. From the

point of view of i’s observer, the events of i sending two indistinguishable messages on

the same link are indistinguishable; thus, we define send i,j(msg1) ≈adv i
send i,j(msg2)

for all messages msg1 ≈ msg2. To connect with the HS notion of indistinguishability,

we take recv i(msg1) ≈adv i
recv i(msg2) if and only if recv i(msg1) ≈ recv i(msg2). We

assume that the relations ≈i can be extended to all events that agent i can observe; how

this is done depends on the specifics of the system we are analyzing. In particular, we

assume that an adversary adv can always distinguish the events of being told confidential

information from all other events; that is, rev adv ≈adv e if and only if e = rev adv and

rev all
adv ≈adv e if and only if e = rev all

adv .

In order to extend the indistinguishability relations ≈adv from events to traces, we
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must make clear what we assume about an adversary’s capabilities. The first type of

adversary we consider is quite weak: to decide whether it is possible for trace τ =

e1 · . . . ·en to be the current trace, the adversary looks at the sequence of events visible to

him, looks at the sequence of events that would be visible to him if the trace were τ , and

then checks that corresponding events look the same. Note that if a reveal event occurs

in τ , the events that are intuitively visible to the adversary include the reveal event and

all the events it reveals. To formalize this, we use V A
adva

(τ) to denote the events visible

to the adversary in trace τ and define

• V V
adva

(τ) = τ |Va
if no reveal event occurs in τ ,

• V V
adva

(τ) = α|Va∪Ca
· revadva

· β|Va
if τ = α · rev adva

· β, and

• V V
adva

(τ) = α · revall
adva

· β|Va
if τ = α · rev all

adva
· β.

Definition 4.5.1: Given an A-view V , two extended traces τ and τ ′ are indistinguishable

to the first type of adversary, written τ ≈HS
adva

τ ′, if and only if, if V V
adva

(τ) = e1 · . . . · en

and V V
adva

(τ ′) = e′1 · . . . · e
′
n′ , then n = n′ and ei ≈adva

e′i for all i = 1, . . . , n.

It is straightforward to extend the semantic model to include such indistinguisha-

bility relations on traces. The new semantic model is a tuple (J , {≈adv}adv ), where

J is a model as defined in Section 4.4.2 and ≈adv is defined as above. We de-

fine (J , {≈adv}adv , τ, ν) |= ϕ in the same way as (J , τ, ν) |= ϕ, except that

(J , {≈adv}adv , τ, ν) |= Kadvϕ if and only if (J , {≈adv}a, τ
′, ν) |= ϕ for all traces

τ ′ with τ ≈adv τ
′. Note that the semantics of knowledge formulas is unchanged, as it

is still the case that adversary knows a fact ϕ if and only if ϕ holds in all traces that he

cannot distinguish from the current trace; we have just changed the indistinguishability

relation.
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We can now prove that the HS extensions of deletion of events and backwards strict

insertion of events implicitly assume the first type of adversary:

Proposition 4.5.2: Let J = (Erev ∗, T r,Vs, π, {<τ | τ ∈ Tr}). The following both

hold:

(a) DHS
≈ (Tr) holds if and only if (J , {≈HS

adv}adv) |= ϕD;

(b) BSIAHS
≈ (Tr) holds if and only if (J , {≈HS

adv}adv ) |= ϕBSIA.

Proof: We prove part (a); the proof for (b) proceeds similarly. The argument closely

follows the reasoning for Theorem 4.4.5. By the semantics of counterfactual implication

and (4.1), (J , {≈HS
adv}adv , τ, ν) |= ϕD if and only if, for all extended traces τ ′ in Trrev

such that there exist β, α ∈ E∗ with τ ′ = β · 〈rev〉 · α and τ = β · α, and for all

confidential events c, if

(J , {≈HS
adv}adv , τ

′, ν [c/x]) |= lastC (x) A rev all
H (4.8)

then

(J , {≈HS
adv}adv , τ

′, ν [c/x]) |= PadvH
(∀y. conf H(y) ⇒ (¬occ(y) S rev all

H )). (4.9)

(4.8) is satisfied if and only if there exists α0 ∈ E∗ such that α = 〈c〉 · α0, (i.e., τ =

β · 〈c〉 · α0 and τ ′ = β · 〈revall
H 〉 · 〈c〉 · α0), and α0|C = 〈 〉. (4.9) is satisfied if and only

if there exists an extended trace τ ′′ in Trrev such that τ ′′ ≈HS
advH

τ ′ and

(J , {≈HS
adv}adv , τ

′′, ν [c/x]) |= ∀y. conf H(y) ⇒ (¬occ(y) S rev all
H ). (4.10)

Since τ ′ = β · 〈rev all
H 〉 · 〈c〉 · α0, it follows that τ ′′ ≈HS

advH
τ ′ holds if and only if there

exists α′ such that α′|V ≈ (c · α0)|V , i.e., α′|V ≈ α0|V . The theorem follows from the

observation that (4.10) is equivalent to the condition α′|C = 〈 〉 = α0|C .
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Technically, note that the difference between DHS
≈ (Tr) and D(Tr), as well as the

difference between BSIAHS
≈ (Tr) and BSIA(Tr), is in relaxing the constraint on the

equality of the visible events in α and α′ to equivalence according to the indistinguisha-

bility relation ≈. But what exactly does this mean? One possible interpretation is that

the change from equality to equivalence is due to the change from the adversary’s view

of a trace β · 〈revall
advH

〉 ·α being the same as his view of any trace β · 〈rev all
advH

〉 ·α′ with

α′|V = α|V (in a system where cryptography is not taken into account) to being the same

as his view at any trace β · 〈rev all
advH

〉 · α′ with α′|V ≈ α|V (in a cryptographic setting).

However, it is not clear why the prefix of the trace should be β in the cryptographic

case. Suppose, for example, that DHS
≈ (Tr) holds and 〈sendH,L({|x|}k) · c〉 · rev all

advH
is

a trace in Trrev , where c is a confidential event. Let β = sendH,L({|x|}k) and α = 〈 〉.

DHS
≈ (Tr) requires that sendH,L({|x|}k) be a trace in the system, and essentially says

that, even if advH learnt all but the last (in our case, the only) confidential event, he

would still consider it possible that no confidential event occurred and that the trace is

sendH,L({|x|}k). It is not clear why it is not enough to require that advH would consider

it possible that no confidential event occurred, but other than that cannot rule out any

of encrypted messages {|y|}k indistinguishable from {|x|}k as the message he intercepted

on the communication link between H and L. Requiring β ′ and β to coincide not only

on the confidential and neutral events, but also on the visible events, suggests that the

implicit assumption is that the HS extensions of BSIA(Tr) and D(Tr) guard against

leaking information to an adversary that, when told all the confidential events up to

some point, is also able to “crack” the encryption scheme. An alternative explanation

is that the HS definition guards against the adversary gaining knowledge about certain

confidential facts even if he is told, not only all confidential events up to some point in

the past, but also the content of the encrypted messages and the keys used to encrypt

them on all communication links on which the adversary eavesdrops.
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Now suppose that DHS
≈ (Tr) holds and c · sendH,L(k−1) · sendH,L({|x|}k) is a trace

in Tr in which a confidential event c occurs, after which H sends two messages to L,

a decryption key k−1 and a message x encrypted with key k. DHS
≈ (Tr) requires that

there exist messages msg1 and msg2 such that sendH,L(msg1) ≈ sendH,L(k−1) and

sendH,L(msg2) ≈ sendH,L({|x|}k). Since the decryption key k−1 is sent in the clear,

it must be the case that msg1 = k−1. However, we would expect that the adversary,

after intercepting a decryption key k−1, could use it for decrypting subsequent inter-

cepted message; in other words, we expect the adversary to decrypt {|x|}k and compute

that x is the message H sent to L. The requirement above that some msg2 exists such

that sendH,L(msg2) ≈ sendH,L({|x|}k) (as opposed to requiring msg2 to be precisely

{|x|}k) seems too weak. More generally, the definition of two sequences e1 . . . en and

e′1 . . . e
′
n of visible events as equivalent from advH’s point of view when the correspond-

ing events are ≈-equivalent implicitly assumes a very weak adversary, either forgetful

(not able to keep track of any message intercepted in the past) or not able to perform

any cryptographic operations on intercepted messages. Arguably, this is not a realistic

adversary.

4.5.2 A more realistic adversary

To model more realistic adversaries, we have to consider scenarios in which agents keep

track of the messages they have intercepted and of the set of keys they have obtained

from these messages. We define a notion of event indistinguishability from the point of

view of an agent with respect to a set of keys. We write e ≈Keys
a e′ to denote the fact

that events e and e′ are indistinguishable from the point of view of agent a with respect

to a set Keys of keys. The details of the definition of ≈Keys
a depend on the system we

are analyzing. However, if a is either an agent in the system or an adversary, we require
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e ≈Keys
a e′ to hold if e = recva(msg), e′ = recv a(msg ′), and messages msg and msg ′ are

indistinguishable to an agent who has obtained the set Keys , written msg ≈Keys msg ′.

We define msg ≈Keys msg ′ as follows:

(1) if there exists a key k−1 ∈ K such that msg = {|x|}k, then msg ≈Keys msg ′ if and

only if msg ′ = {|x′|}k for some x′ such that x ≈Keys x′;

(2) if there exist messages msg1, msg2 such that msg = msg1 ·msg2, then msg ≈Keys

msg ′ if and only there exist messages msg ′
1 and msg ′

2 such that msg ′ = msg ′
1 ·

msg ′
2, msg1 ≈

Keys msg ′
1, and msg2 ≈

Keys msg ′
2;

(3) if msg is neither a message encrypted with a key in Keys nor a concatenation of

messages, then msg ≈Keys msg ′ if and only if msg ≈ msg ′.

In addition, we require that senda,b(msg) ≈
Keys
adva

senda,b(msg
′) if and only ifmsg ≈Keys

msg′, as a’s adversary cannot distinguish a’s sending two undistinguishable messages.

Generalizing the approach of Halpern and Pucella [49], we would like to talk

about the set of keys agent a obtains in a trace τ , denoted as keysof a(τ). Intuitively,

keysof a(τ) is the result of agent a applying all possible decompositions, decryptions

and encryptions to the messages received, starting with all the keys observed in the

clear. We start by defining the set keysof a(e,Keys) of keys agent a can compute from

an event e using a set Keys of keys in one pass. (Note that a can be an adversary, as

defined in Section 4.4.1, and that e can be an event that agent a observes or is revealed

to a.) We proceed by induction on the structure of e:

• keysof a(recva(k),Keys) = {k} ∪ Keys (for k ∈ Keys)

• keysof a(recva({|msg ′|}k−1),Keys) = keysof a(recva(msg ′),Keys) ∪Keys if k ∈

Keys
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• keysof a(recva(msg · msg ′),Keys) = keysof a(recv a(msg),Keys) ∪ keysof a(

recva( msg ′), Keys)

• keysof a(rev adva
,Keys) = keysof a(rev adv

full
a
,Keys) = Keys .

To compute keysof a(τ), the set of keys a can compute from trace τ , in general

we need more than one pass. Consider for example the case when τ = recv a(k
−1) ·

recva({|msg|}k), where k is a key. In one pass over τ , a can observe key k−1 from

recva(k
−1) and no key from recv a({|msg|}k). However, it is clear that, once he knows

k−1, a can observe msg . Furthermore, msg may also contain keys that a can observe.

The definition of keysof (τ) deals with this problem by iterating.

Definition 4.5.3: For all traces τ ∈ Trrev and agents a (including adversaries), define

keysof a(τ) to be the result Keys of the following computation:

Keys ′ := { }

repeat

Keys := Keys ′

Keys ′ := ∪{e event in τ} keysof a(e,Keys)

until Keys = Keys ′.

Note that, without loss of generality, we have assumed that no keys are initially

known by any agent. It is straightforward to model scenarios where it is possible for

agents to have access to a set of keys before participating in any kind of protocol: we

simply assume that the first event associated with a given agent in any trace in the system

is a receive event for a message consisting of the concatenation of all such keys, in the

clear.
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With this notation, we can refine the indistinguishability relations ≈HS
adv on traces

to take into account the set of keys an adversary can compute. If traces τ and τ ′ do

not include reveal events, the keys are computed based only on the sequence of events

visible to the adversary. If the adversary learns confidential information, the confidential

or neutral events revealed also play a role in defining the set of keys the adversary can

compute.

Definition 4.5.4: For any two traces τ, τ ′ ∈ Trrev , τ ≈crypto
adv τ ′ if and only if, if

V V
adva

(τ) = e1 ·. . .·en and V V
adva

(τ ′) = e′1 ·. . .·e
′
n′ , then n = n′, and for all i = 1, . . . , n, if

Keys i = keysof adva
(e1·. . .·ei) and Keys ′i = keysof adva

(e′1·. . .·e
′
i), then Keys i = Keys ′i

and ei ≈
Keysj

adva
e′i for all j = i, . . . , n.

We give some examples to provide more intuition for this definition. Consider the simple

case when trace τ contains no reveal events rev adva
or rev all

adva
. If only one event e1

visible to adva occurs in τ , then, intuitively, adv a cannot distinguish τ from any trace

τ ′ such that only one event, say e′1, visible to adva has occurred in τ ′, adva can compute

the same set of keys Keys1 from e1 as from e′1, and adva cannot distinguish e1 and e′1

given the keys Keys1. If τ |Va
= e1 · · · en, then adva cannot distinguish τ from any trace

τ ′ such that the same number of events are visible to adv a in τ ′ as in τ (i.e., τ ′|Va
has the

form e′1 · · · e
′
n), and, at any point in τ ′, agent adva cannot distinguish τ ′ from τ . We need

to be careful when making this intuition formal: Clearly, we want the set Keys i of keys

adva has in τ after ei occurs to be the same as the set Keys ′i of keys adva has in τ ′ after

e′i occurs. Moreover, we want e1 and e′i to be indistinguishable by adv a given this set of

keys; that is, ei ≈
Keysi

adva
e′i. But we require more: ei should remain indistinguishable from

e′i at all times after ei occurs. Thus, we require that ei ≈
Keysj

adva
e′i for all j = i, . . . , n.

Example 4.5.5: Consider the traces τ1 = sendH,L(k−1) · sendH,L({|x|}k) and τ2 =
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sendH,L(k−1) · sendH,L({|y|}k). These traces are indistinguishable by the HS adversary.

However, keysof advH
(τ1) = {k−1} and {|x|}k 6≈{k−1} {|y|}k. It follows that τ1 6≈crypto

advH
τ2;

that is, advH can distinguish between τ1 and τ2. Similarly, traces τ3 = sendH,L({|k|}k′ ·

{|x|}k−1) · sendH,L(k′−1) and τ4 = sendH,L({|k|}k′ · {|y|}k−1) · sendH,L(k′−1) are indistin-

guishable by the HS adversary, but are distinguishable by the crypto adversary if x 6= y,

since the adversary can apply the key k′−1 received in the second message to the first

message received.

This example supports the claim that the relations ≈crypto
adv model a more realistic

adversary than ≈HS
adv .

Define

DHS
≈crypto(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C. (β · 〈c〉 · α ∈ Tr ∧ α|C = 〈 〉) ⇒

∃β ′, α′ ∈ E∗. (β ′ · α′ ∈ Tr ∧ β ′ ≈crypto
advH

β ∧ α′|V ≈crypto
advH

α|V ∧ α′|C = 〈 〉);

BSIAHS
≈crypto(Tr) ≡

∀α, β ∈ E∗. ∀c ∈ C. (β · α ∈ Tr ∧ α|C = 〈 〉)∧

(∃γ ∈ E∗. (γ|C = β|C) ∧ (γ · 〈c〉 ∈ Tr)) ⇒

∃β ′, α′ ∈ E∗. (β ′ · 〈c〉 · α′ ∈ Tr ∧ β ′ ≈crypto
advH

β ∧ α′|V ≈crypto
advH

α|V ∧ α′|C = 〈 〉).

We can show that the properties above represent the translation of backwards dele-

tion and insertion of events information-flow properties with respect to our more realistic

type of adversary:

Proposition 4.5.6: Let J = (Erev ∗, T r,Vs, π, {<τ | τ ∈ Tr}).

(a) (J , {≈crypto
adv }adv ) |= ϕD if and only if D≈crypto(Tr) holds;

(b) (J , {≈crypto
adv }adv ) |= ϕBSIA if and only if BSIA≈crypto(Tr) holds.
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Propostion 4.5.6 shows that assuming a more realistic adversary yields information-

flow properties slightly different from the ones proposed by HS. One difference between

D≈crypto and BSIA≈crypto and their HS counterparts comes from relaxing the require-

ment of exact equality between the sequences of events revealed to the adversary. A

second difference comes from strengthening the constraints on the events visible to the

adversary: once cryptography is taken into account, the events visible to H’s observer

are constrained to be equivalent with respect to the set of all keys H’s observer is able

to compute based on all the events intercepted in the past.

4.6 Remarks

The main contribution of this chapter is to provide a framework for characterizing some

of the best-known MAKS-style information-flow requirements as knowledge-based for-

mulas in a standard first-order logic of knowledge with counterfactual statements. This

allows us to make contributions in a number of areas. First, knowledge-based char-

acterizations can be used to identify subtle differences between the generally accepted

explanations of information-flow requirements in the MAKS framework and their actual

meaning. Second, a knowledge-based characterization allows for a more systematic ap-

proach for writing useful variants of MAKS properties. Lastly, we have shown that

knowledge-based characterizations of information-flow properties can be naturally gen-

eralized to settings where cryptography is taken into account.
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CHAPTER 5

CONCLUSION

This dissertation aimed at providing further evidence of the usefulness of knowledge-

based programs in distributed settings. We focused on a number of aspects of

knowledge-based programs: their applicability in solving the global function compu-

tation problem in a way that, in a precise sense, no unnecessary messages are sent;

extending existing techniques for program synthesis from specifications in the Nuprl

proof development system to knowledge-based specifications and programs; and for-

malizing information-flow properties as restrictions on what an adversary should never

know about the system, allowing for a principled way of extending existing definitions

to settings where cryptography and adversarial capabilities are taken into account.

We have identified a number of open problems and extensions to the analysis in this

dissertation, which we now discuss.

5.1 Counterfactual belief-based programs

We believe that counterfactual knowledge-based programs are suited for writing pro-

grams that minimize the number of messages sent. Our use of counterfactual-based

programs for solving global function computation in Chapter 2, as well as the results

of Halpern and Moses [43] are evidence to this claim. Recently, Halpern and Moses

[44] showed that different solution concepts (Nash equilibrium, correlated equilibrium

etc.) in game theory can be understood as resulting from agents following the same

knowledge-based program, but under different assumptions (such as whether players’

strategies are independent or nor, or uncertainty is represented by a standard probability

measure or not). The knowledge-based program says that each player chooses a certain
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strategy (move) if he believes that, if he were to choose any other strategy (move), the

expected utility would not be higher. Technically, this program is similar in spirit to the

program derived for solving the global function computation problem, as it relies on the

notions of counterfactual implication and belief to express the fact that agents take “op-

timal” actions given their knowledge of the system. The difference is that, while in the

context of global function computation problem, “optimality” is understood as sending

only necessary messages (i.e., messages that, if not sent, their intended recipient would

either never know the function value or the contents of the message), in the case of game

theory, “optimality” is seen as choosing strategies of highest expected utility among all

strategies players can choose from.

One area of possible interest comes from routing, that is, choosing paths in a network

for sending data. Different approaches have been proposed for optimizing the path

selection, in order to minimize either the number of hops or the cost associated with

the data transmission along different links. In principle, one can define the goal of the

problem so that eventually the intended recipient will know the data, and analyze to

what extent different algorithms ensure that agents choose the next link to forward the

data on in an optimal way given their knowledge of the network.

In a different vein, note that when considering global function computation, we made

a number of simplifying assumptions. For example, we have assumed a fixed set of

agents running the protocol, and that agents are reliable. This rules out systems in which

agents may leave or join the network at different times. Moreover, the semantics of the

knowledge and belief-based programs, as defined here and elsewhere in the literature,

implicitly assumes a fixed number of agents in the system and that these agents run

the protocol at all times. More work is needed in order to extend the framework to

dynamic settings. Such an extension will not be trivial; for example, one subtlety comes
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from reasoning about agents that have participated in the protocol for some time, went

off-line and later on rejoin the system.

5.2 Distributed program extraction from proofs

With respect to distributed program extraction from proofs about distributed systems, a

number of questions, both theoretical and more applied, still remain open. While syn-

thesis of distributed programs from epistemic and temporal specifications is undecidable

in general, recent results [84] show that, under certain assumptions about the setting in

which agents communicate, the problem is decidable. It would be worth understanding

the extent to which these assumptions apply to our setting. To prove a result of this type,

we need a better understanding of how properties of a number of knowledge-based pro-

grams relate to the properties of their composition; this would also allow us to prove

stronger composition rules than the one presented in Section 3.2.2.

As we said, we believe that the approach that we sketched for extracting a stan-

dard program from the knowledge-based specification for the STP problem can be ex-

tended into a general methodology. As pointed out by Engelhart et al. [23], the key

difficulty in extracting standard programs from abstract specifications is in coming up

with good standard tests to replace the abstract tests in a program. However, it is likely

that, by reducing the complexity of the problem and focusing only on certain classes of

knowledge-based specifications, “good” standard tests can be more easily identified.

149



5.3 Knowledge-based analysis of information-flow

We have made the case that knowledge-based formulations of some of the building

blocks of the Modular Assembly Kit framework are intuitive. However, more work is

needed to extend MAKS-style security properties for more realistic adversaries. This

effort ties in nicely with more recent results on modeling adversaries through their ob-

servational capabilities [78].

There is also potential in using the logical language for expressing information-flow

properties, such as by syntactic manipulations of formulas based on a set of rules. Of

particular interest is the recent work of Schairer et al. [52, 79] that focus on decomposing

global confidentiality requirements into local confidentiality requirements, in order to

construct secure systems from secure components. Roughly speaking, any fact about an

agent a’s confidential information being kept secret from a’s observer can be seen as a

local confidentiality requirement for agent a. Similarly, a local requirement for agent a

with respect to agent b is a fact about confidential events of agent a being maintained

secret from the observer of agent b. By contrast, a global confidentiality requirement

is a confidentiality requirement that is not local, i.e., any requirement for maintaining

secret confidential events of two or more agents.

We believe that we can gain insight by expressing the rules in a logic of knowl-

edge. In the longer run, the goal is to put all the pieces together in a framework that

allows us to (a) express global secrecy requirements as epistemic specifications, (b) ma-

nipulate the decomposition rules for refining the global requirement into local secrecy

requirements, (c) extract knowledge-based programs that satisfy the secrecy specifica-

tions, and (d) suggest assumptions about the setting that allow knowledge-based tests

in the extracted programs to be replaced with standard tests on agents’ local states (and
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thus implementable in C/Java-like programming languages). The steps above should

essentially remain the same when assumptions about the cryptographic model and the

observational algorithms available to the adversaries vary.
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CHAPTER 6

PROOF OF THEOREM ??

In this chapter we prove Theorem 2.6.1, which says that the flooding algorithm, LCR′,

P1′, and P2′ de facto implement PgGC
cb . The most interesting cases are for the leader

election in a ring, as it is not difficult to notice that the argument for the flooding protocol

is mostly straightforward. We start by sketching the proof for LCR′, and then provide a

detailed proof for P2′. The proof for P1′ is similar and is omitted here.

6.1 The argument for LCR′

The pseudocode for LCR and LCR′ is given in Figures 6.1 and 6.2 respectively. In the

code for LCR, we use id to denote the agent’s initial id. We assume that each agent has

one queue, denoted RQ, which holds messages received from the right. The placing of

messages in the queue is controlled by the channel, not the agent. We use RQ = ⊥

to denote that the right queue is empty. We write valR := dequeue(RQ) to denote

the operation of removing the top message from the right queue and assigning it to the

variable valR. If RQ = ⊥ when a dequeue operation is performed, then the agent

waits until it is nonempty. Each agent has a local variable status that is initially set to

nonleader and is changed to leader only by the agent with the maximum id in the ring

when it discovers it is the leader. We take done to be a binary variable that is initialized

to 0 and changed to 1 after the maximum id has been computed. Agents keep track of

the maximum id seen so far in the variable maxid . We call a message of the form “M

is the leader” a leader message. Note that in our version of LCR, after the leader finds

out that it is the leader, it informs all the other agents of this fact. This is not the case for

the original LCR protocol. We include it here for compatibility with our global function
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status := nonleader ; maxid := id ; valR :=⊥; done := 0

sendL(id)
do until done = 1

if RQ 6= ⊥ then

valR := dequeue(RQ)
if (valR = id) then

status := leader ; sendL(“id is the leader”); done := 1

else if (valR > maxid) then

maxid := valR; sendL(maxid)
else if (valR is a leader message) then

sendL(valR); done := 1

Figure 6.1: The LCR protocol.

do until (id ∈ valR) ∧ (sent leader message ∨ maxid = idL)
if some new info then

if ((id /∈ valR ∧ max(valR) > maxid) ∨ (id ∈ valR) then sendL(new info)

Figure 6.2: The LCR′ protocol.

computation protocol. (Similar remarks hold for P2.)

In the code for LCR′, valR encodes all the new information that the sender sends

(and thus is not just a single id). Let max (valR) be the maximum id encoded in valR.

Since an agent sends all the new information it has, there is no need for special messages

of the form “M is the leader”. The leader can be computed from valR if the message has

gone around the ring, which will be the case if id ∈ valR. Moreover, if id ∈ valR, an

agent can also compute whether the leader is his left neighbor, and whether has earlier

essentially sent an “M is the leader” message (more precisely, an agent can tell if it

has earlier been in a state where id ∈ valR and it sent a message). We take the test

idL = maxid to be true if an agent knows that the leader is his left neighbor (which

means that a necessary condition for idL = maxid to be true is that id ∈ valR); we

take sent leader message to be true if id ∈ valR and the agent earlier sent a message
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when i ∈ valR was true. Notice that in LCR′ we do not explicitly set valR; valR can be

computed from the agent’s state, by looking at the new information received.

The basic idea of the proof is simple: we must show that PgGC
cb and LCR′ act the

same at all points in a system that represent LCR′. That means showing that an agent

sends a message iff it believes that, without the message, his neighbor will not eventually

learn the information that it has or the function value. Since LCR′ solves the leader

election problem, when agents do not send a message, they believe (correctly) that their

neighbor will indeed learn the function value. So consider a situation where an agent i

sends a message according to LCR′. (We do not want to set these variables explicitly,

since then LCR’ would not implement PgGC
cb , which does not have these assignment

statements.) That means that either valR is a message that says which id is the leader’s

id, or valR contains an id larger than the value of maxid so far. In the first case, if he

does not forward his new information, then it is clear that all the agents between i and

the leader (of which there must be at least one) will not learn who the leader is, because

no further messages will be sent. In the latter case, it is possible that the largest id seen

so far is indeed the maximum in the ring. Then it is easy to see that, if i does not send

his new information, then again i will never receive any further messages, and no agent

will ever find out who the leader is. Since this ring is consistent with i’s information, i

does not believe that, if it does not forward the message, i’s left neighbor will learn the

information or learn who the leader is. Thus, according to PgGC
cb , i should forward the

message. We omit the formal details of the proof here, since we do the proof for P2′

(which is harder) in detail.
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6.2 The argument for P2′

We start by describing P2. Since P2 works in undirected rings, rather than just having

one queue, as in LCR, in P2, each agent has two queues, denoted LQ and RQ, which

hold messages received from the left and right, respectively. While an agent is active, it

processes a message fromRQ, thenLQ, thenRQ, and so on. The status of an agent, i.e.,

whether it is active, passive or the leader, is indicated by the variable status . Initially,

status is active. Finally, we take wl to be a binary variable that indicates whether the

agent is waiting to receive a message from his left. When an active agent receives valR,

it compares valR to his id. If valR = id (which can happen only if i is active) then, as

in the LCR protocol, i declares himself to be the leader (by setting status to leader ),

and it sends out a message to this effect. If i is active and valR > id , then i becomes

passive; if valR < id , then i remains active and sends his id to the right. Finally, if

i is passive, then i forwards valR to the left. The situation is symmetric if i receives

valL. The pseudocode for P2 is given in Figure 6.3. Note that, since with P2′ agents

keep track of all the information they have learned from the beginning of the protocol

execution, the status of an agent can be inferred from the agent’s local state: if the local

state encodes an id larger than the agent’s id, then the agent is passive; otherwise, the

agent is active. Just as with LCR′, we have not made the assignments to valR and wl

explicit, since they can also be inferred from the local states (they are determined by the

messages received by the agent).

To understand in more detail how P2 and P2′ work, it is helpful to characterize the

order in which agents following P2 send and process messages. Since P2 and P2′ are

identical up to the point that an agent knows the leader, the characterization will apply

equally well to P2′. We can give such a characterization despite the fact that we do

not assume synchrony, nor that messages are received in FIFO order. As usual, we
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status := active; valL :=⊥; valR :=⊥; done := 0 ; wl = 0
sendL(id);
do until done = 1

if (RQ 6=⊥) ∧ (wl = 0) then

valR := dequeue(RQ)
wl := 1
if (valR = id) then status := leader ;

sendR(“id is the leader”);
done := 1

if status = active ∧ valR > id then status := passive

if status = active ∧ valR < id then sendR(id)
if status = passive then sendL(id);

if (valR is a leader message) then done := 1

if (LQ 6=⊥) ∧ (wl = 1) then

valL := dequeue(LQ)
wl := 0
if (valL = id) then status := leader ;

sendL(“id is the leader”);
done := 1

if status = active ∧ valL > id then status := passive

if status = active ∧ valL < id then sendL(id)
if status = passive then sendR(id);

if (valL is a leader message) then done := 1

Figure 6.3: Peterson’s protocol P2.

use (a1, . . . , ak)
∗ to denote 0 or more repetitions of a sequence of actions a1, . . . , ak.

We denote the action of sending left (resp., right) as SL (resp., SR), and the action of

processing from the left (resp., right) as PL (resp., PR).

Lemma 6.2.1: For all runs r of P2, times m, and agents i in Nr

(a) if i is active at time m, then i’s sequence of actions in the time interval [0, m) is a

prefix of the sequence (SL, PR, SR, PL)∗;

(b) if i is passive at time m, i does not yet know which agent has the maximum id,

and i became passive at time m′ ≤ m after processing a message from the right
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(resp., left), then i’s history in the time interval [m′, m] is a prefix of the sequence

(PL, SR, PR, SL)∗ (resp., (PR, SL, PL, SR)∗).

Proof: We proceed by induction on the time m. The result is trivially true if m = 0,

since no actions are performed in the interval [0, 0]. Suppose the result is true for time

m; we show it for time m + 1. If i is active at time m + 1, then the result is immediate

from the description of P2 (since it is immediate that, as long as i is active, it cycles

through the sequence SL, PR, SR, PL). So suppose that i is passive at time m + 1. It

is clear from the description of P2 that, while i is passive, PL is immediately followed

by SR and PR is immediately followed by SL. Thus, it suffices to show that (i) if i was

active when it performed his last action, and this action was PR, then i’s next action is

PL; (ii) if i was active when it performed his last action, and this action was PL, then

i’s next action is PR; (iii) if i was passive when it performed his last action, and this

action was SR, then i’s next action is PR; and (iv) if i was passive when it performed

his last action, and this action was SL, then i’s next action is PL. The proofs of (i)–(iv)

are all essentially the same, so we just do (i) here.

Suppose that i’s last action before timem+1 was PR, and then i became passive. It

is clear from the description of P2 that i’s next action is either PR or PL. Suppose, by

way of contradiction, that i performs PR at time m + 1. It follows from the induction

hypothesis that there must exist some k such that i performed SR k times and PR k+2

times in the interval [0, m + 1]. But then the agent Ri to i’s right performed SL at

least k + 2 times and PL at most k in the interval [0, m]. This contradicts the induction

hypothesis.

Intuitively, P2 and P2′ act the same as long as agents do not know who the leader

is. In P2′, they will know who the leader is once they know all the agents on the ring.
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To make this latter notion precise, define the sets IL(i, r,m) and IR(i, r,m) of agents as

follows: IR(i, r, 0) = IL(i, r, 0) = {i}. If, at time m + 1, i processes a message from

his right, and this message was sent by Ri at time m′, then

IR(i, r,m + 1) = IR(i, r,m) ∪ IR(Ri, r,m
′)

and

IL(i, r,m+ 1) = IL(i, r,m) ∪ IL(Ri, r,m
′) − {Ri}.

If, at time m + 1, i processes a message from his left, and this message was sent by Li

at time m′, then

IL(i, r,m+ 1) = IL(i, r,m) ∪ IL(Li, r,m
′)

and

IR(i, r,m+ 1) = IR(i, r,m) ∪ IR(Li, r,m
′) − {Li}.

Finally, if i does not process a message at time m+ 1, then

IR(i, r,m+ 1) = IR(i, r,m) and IL(i, r,m+ 1) = IL(i, r,m).

IR(i, r,m) and IL(i, r,m) characterize the set of agents to i’s right and left, re-

spectively, that i knows about at the point (r,m). IL(i, r,m) and IR(i, r,m) are al-

ways intervals for agents running a full-information protocol (we prove this formally

below). Thus, agent i has heard from everybody in the ring, denoted heard from all , if

IL(i, r,m) ∪ IR(i, r,m) contains all agents in the ring. More formally, (J , r,m, i) |=

heard from all if IL(i, r,m) ∪ IR(i, r,m) consists of all the agents in the network N

encoded in the environment state in (r,m). Note that heard from all may hold rel-

ative to agent i without i knowing it; i may consider it possible that there are agents

between the rightmost agent in IR(i, r,m) and the leftmost agent in IL(i, r,m). We

define the primitive proposition has all info to be true at the point (r,m) relative to i

if IL(i, r,m) ∩ IR(i, r,m) − {i} 6= ∅. It is not difficult to show that has all info is
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equivalent to KI(heard from all); thus, we say that i knows it has all the information

if has all info holds relative to i.

The pseudocode for P2′ while agents do not know that they have all the information

is given in Figure 6.4. (We describe what an agent does when he knows all the informa-

tion at the end of this section.) Note that the pseudocode does not describe what happens

if an agent is active and valR ≥ id. Intuitively, at this point, the agent becomes passive,

but with P2′ there is no action that changes an agent’s status; rather, the status is inferred

from the messages that have been received, just as with LCR′. Since agents running P2

perform the same actions under essentially the same conditions as agents running P2′ up

to the point that an agent knows that it has all the information, Lemma 6.2.1 also applies

to all runs r of P2′, times m, and agents i in Nr such that i did not know that he had all

the information at time m− 1 in r.

sendL(new info)
do until has all info

if (RQ 6=⊥) ∧ (wl = 0) then

if status = active ∧ valR < id then sendR(new info)
if status = passive then sendL(new info)

if (LQ 6=⊥) ∧ (wl = 1) then

if status = active ∧ valL < id then sendL(new info)
if status = passive then sendR(new info).

Figure 6.4: The initial part of protocol P2′.

We now prove a number of properties of IL(i, r,m) and IR(i, r,m) that will be useful

in our analysis of P2′.

Lemma 6.2.2: For all runs r of P2′ and times m the following hold:

(a) IR(i, r,m) is an interval of agents starting with i and going to the right of i, and

IL(i, r,m) is an interval of agents starting with i and going to the left of i.

159



(b) If, at time m, i processes a message from the right sent by Ri at time m′, and Ri

did not know that he had all the information at time m′, then

(i) IR(Ri, r,m
′) ⊃ IR(i, r,m − 1) − {i}, IR(i, r,m) ⊃ IR(i, r,m − 1), and

IR(i, r,m) = {i} ∪ IR(Ri, r,m
′); and

(ii) IL(i, r,m) = IL(i, r,m− 1).

(c) If, at time m, i processes a message from the left sent by Li at time m′, and Li did

not know that he had all the information at time m′, then

(i) IL(Li, r,m
′) ⊃ IL(i, r,m − 1) − {i}, IL(i, r,m) ⊃ IL(i, r,m − 1), and

IL(i, r,m) = {i} ∪ IL(Li, r,m
′); and

(ii) IR(i, r,m) = IR(i, r,m− 1).

(d) If i processed a message from the right in the interval [0, m], and Ri did not know

that he had all the information when he last sent a message to i, then

max
{m′≤m:valR(i,r,m′)6=⊥}

valR(i, r,m′)

is the maximum id of the agents in IR(i, r,m) − {i}, where valR(i, r,m′) is the

value of agent i’s variable valR at the point (r,m′); if i processed a message from

the left in the interval [0, m], then

max
{m′≤m:valL(i,r,m′)6=⊥}

valL(i, r,m′)

is the maximum id in IL(i, r,m) − {i}.

(e) i is active at time m if and only if i has the largest id in IL(i, r,m) ∪ IR(i, r,m).

Proof: We prove all parts of the lemma simultaneously by induction on m. The result

is immediate if m = 0, since i is active at time 0, i does not process a message at

time 0, and IL(i, r, 0) = IR(i, r, 0) = {i}. Suppose that parts (a)–(e) hold for all times
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m′ < m. We show that they also hold at time m. They clearly hold if i does not process

a message at time m, since in that case IL(i, r,m) = IL(i, r,m − 1) and IR(i, r,m) =

IR(i, r,m − 1). So suppose that i processes a message msg from his right at time m,

and msg was sent by Ri at time m′. (The proof is similar if i receives from the left,

and is left to the reader.) If msg is the first message received by i from the right, then it

follows from Lemma 6.2.1 that i has sent no messages to the right, and Ri has sent only

one message to i. Thus, IR(i, r,m− 1) = {i}. Parts (a)–(e) now follow easily from the

induction hypothesis.

So suppose that msg is not the first message that i has received from Ri. Part (a) is

immediate from the induction hypothesis. To prove part (b), let m1 be the last time prior

to m′ that Ri sent a message, say msg ′, to his left. It easily follows from Lemma 6.2.1

(which, as we observed, also applies to P2′ while agents do not know that they have all

the information) that there are times m2 and m3, both in the interval (m1, m
′), such that

i received msg ′ at time m2 and Ri processed a message from his right at m3; moreover,

i did not process any messages from the right between timem2 and m. By the induction

hypothesis, IR(i, r,m2) = {i} ∪ IR(Ri, r,m1), IL(i, r,m2) = IL(i, r,m2 − 1), and

IR(Ri, r,m3 + 1) ⊃ IR(Ri, r,m1). Since m3 + 1 ≤ m′, it follows that IR(Ri, r,m
′) ⊃

IR(Ri, r,m1). Since i does not process any messages from his right between time m2

and m, by definition, IR(i, r,m − 1) = IR(i, r,m2). It follows that IR(Ri, r,m
′) ⊃

IR(i, r,m− 1) and that

IR(i, r,m) = IR(i, r,m− 1) ∪ IR(Ri, r,m
′) = {i} ∪ IR(Ri, r,m1) ∪ IR(Ri, r,m

′)

= {i} ∪ IR(Ri, r,m
′) ⊃ {i} ∪ IR(Ri, r,m1) = IR(i, r,m− 1).

This proves part (i) of (b) for time m. For part (ii), by definition, IL(i, r,m) =

IL(i, r,m−1)∪IL(Ri, r,m
′)−{Ri}. By the induction hypothesis, it easily follows that

IL(Ri, r,m
′)−{Ri} ⊆ IL(i, r,m′) ⊆ IL(i, r,m−1). Thus, IL(i, r,m) = IL(i, r,m−1).
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Part (c) is immediate, since i does not process a message from the left at time m.

For the first half of part (d), there are two cases to consider. If Ri was active at

the point (r,m′), then the result is immediate from part (e) of the inductive hypothesis.

Otherwise, by the inductive hypothesis, valR = valR(i, r,m) = valR(Ri, r,m
′). By the

inductive hypothesis, valR is greater than or equal to the maximum id in IR(Ri, r,m
′)−

{Ri}. Since the first value of valR must be Ri’s id, it follows that

max
{m′≤m:valR(i,r,m′)6=⊥}

valR(i, r,m′)

is greater than or equal to the maximum id in IR(i, r,m) − {i} = IR(Ri, r,m
′). Since

valR(i, r,m′) must be an id in IR(i, r,m), we are done. The second half of part (d) is

immediate from the induction hypothesis, since IL(i, r,m) = IL(i, r,m−1) by part (b),

and valL(i, r,m) = val(i, r,m− 1).

Finally, part (e) is immediate from the induction hypothesis if i is passive at time

m−1. So suppose that i is active at timem−1. By the induction hypothesis, i’s id is the

largest in IL(i, r,m−1)∪IR(i, r,m−1). If i is active at timem then, by the description

of P2′, i’s id must be greater than valR(i, r,m). By part (d) of the induction hypothesis

and the fact that i’s id is at least as large as all those in IR(i, r,m− 1), it follows that i’s

id is at least as large as max{m′≤m:valR(i,r,m′)6=⊥} valR(i, r,m′). By part (d), at time m,

i’s id is at least as large all those in IR(i, r,m). Since IL(i, r,m) = IL(i, r,m − 1), it

follows that i’s id is the maximum id in IR(i, r,m) ∪ IL(i, r,m). Conversely, if i’s id is

the maximum id in IR(i, r,m) ∪ IL(i, r,m), then by part (d) at time m, i’s id must be

greater than valR(i, r,m), and hence by the description of P2′, i is active at (r,m).

It is not difficult to see that P2′ ensures that, for all agents i, IL(i, r,m)∪ IR(i, r,m)

increases m (as long as it does not contain all the ids). Thus, eventually at least one

agent must know he has all the information. (Recall that we have not yet given the
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pseudocode for P2′ for the case that an agent knows that he has all the information.)

Corollary 6.2.3: In all runs r consistent with P2′, eventually at least one agent knows

that he has all the information, i.e., there exist an agent i and time m such that

IL(i, r,m) ∩ IR(i, r,m) − {i} 6= ∅.

We say that message msg received by i at time m originated with j at time m′ if,

j is the active agent who first sent msg , and msg was sent by j at time m′. This is not

quite right, since the message sent by j is not msg , unless j is i’s neighbor. Thus, we

define what it means for msg originated with j at time m′ by induction on the time m

that msg was received by i. If msg is received by i from the right, then msg originated

with Ri at the time that Ri sent it if Ri was not passive when it sent msg ; otherwise, if

if msg ′ was the last message received by Ri from its right before sending msg to i, and

msg ′ was received by Ri at time m′′, then msg originated with the same agent and at

the same time as the message msg ′ received by Ri at m′′. The definition is analogous if

msg is received by i from the left.

Let [i..j]R denote the agents to i’s right starting at i and going to j; similarly, let

[i..j]L denote the agents to i’s left starting at i and going to j.

Lemma 6.2.4: For all runs r of P2′ and agents i, j in r,

(a) if at time m agent i processes a message msg from the right that originated with

j at m′, msg is the pth message j sent left, and no agent in [i..j]R knows that

it has all the information when it sends msg , then msg is the pth message that i

processes from the right, and IR(i, r,m) = IR(j, r,m′) ∪ [i..j]R.

(b) if at time m agent i processes a message msg from the left that originated with j

at m′, and msg is the pth message j sent right, and no agent in [i..j]L knows that
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it has all the information when it sends msg , then msg is the pth message that i

processes from the left and IL(i, r,m) = IL(j, r,m′) ∪ [i..j]L.

Proof: We do the proof for case (a); the proof of (b) is similar and left to the reader.

The proof proceeds by induction on the number of agents in [i..j]R. Since i 6= j, there

are at least two agents in [i..j]R. If there are exactly two, then j = Ri. Since the only

messages that i processes from the right are those sent by j, it is immediate that msg

is the pth message i processed from the right. Moreover, by definition IR(i, r,m) =

IR(j, r,m′) ∪ {i} = IR(j, r,m′) ∪ [i..j]R.

Now suppose that (a) holds for all pairs of agents i′, j ′ such that [i′..j ′]R consists of

d ≥ 2 agents and [i..j]R consists of d + 1 agents. Let mRi
be the time Ri sends the

message msg to i. Since [i..j]R consists of at least 3 agents, it cannot be the case that

Ri = j. Thus, Ri was passive when it received the message msg . Let m′
Ri

be the time

Ri processed msg . Since [Ri..j]R has d agents, by the induction hypothesis, it follows

that msg was the pth message that Ri processed from the right. By Lemma 6.2.1, prior

tom′
Ri

, Ri sent exactly p−1 messages to the left. Moreover, sinceRi must process p−1

messages from the left before processing his pth message from the right, it follows from

Lemma 6.2.1 that i must have processed all the p − 1 messages Ri sent to it before Ri

processed msg . It now easily follows that msg is the pth message processed by i from

the right. By the induction hypothesis, IR(Ri, r,m
′
Ri

) = IR(j, r,m′) ∪ [Ri..j]R. Thus,

IR(i, r,m) = IR(Ri, r,m
′
Ri

) ∪ {i} = IR(j, r,m′) ∪ [i..j]R.

By Lemma 6.2.1, we can think of P2′ as proceeding in phases while agents do not

know that they have all the information. For p = 1, 2, 3, . . ., we say that in run r, phase

2p−1 begins for agent i when i sends left for the pth time and phase 2p begins for agent

i when i sends right for the pth time; phase p for agent i ends when phase p+ 1 begins.
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The following lemma provides some constraints on what agents know about which

agents are active and passive.

Lemma 6.2.5: For all runs r of P2′, times m, and agents i, if m > 0, the last message

that i processed before time m was the pth message, and no agent knows that he has all

the information at time m− 1, then

(a) if j1, . . . , jk are the active agents at time m in IR(i, r,m), listed in order of close-

ness to i on the right (so that j1 is the closest active process to i’s right with j1 = i

if i is active, and jk is the farthest) then (i) id j1 > . . . > id jk
, (ii) if j1 6= i, then jl

will be passive after having processed his (p− l+ 1)st message, for l = 2, . . . , k,

provided that jl processes his (p− l+1)st message before knowing that he has all

the information; (iii) if j1 = i, then jl will be passive after having processed his

(p− l+3)rd message, for l = 2, . . . , k, provided that jl processes his (p− l+3)rd

message before knowing that he has all the information; and (iv) if j1 6= i, the last

message that i processed from the right originated with j1.

(b) if h1, . . . , hk′ are the active agents at time m in IL(i, r,m) listed in order of close-

ness to i on the left, then (i) idh1
> . . . > idhk′

, (ii) if h1 6= i, then hl will be

passive after having processed his (p − l + 1)st message, for l = 2, . . . , k ′, pro-

vided that hl processes his (p − l + 1)st message before knowing that he has all

the information; (iii) if h1 = i, then hl will be passive after having processed his

(p− l+3)rd message, provided that he processes his (p− l+3)rd message before

knowing that he has all the information; and (iv) if h1 6= i, the last message that i

processed from the left originated with h1.

Proof: We proceed by induction on m. The lemma is trivially true if m = 1, since

IL(i, r, 1) = IR(i, r, 1) = {i}. If m > 1, then the result is trivially true if i does not
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process a message at time m− 1 (since IL(i, r,m) = IL(i, r,m− 1) unless i processes

a message from the left at time m − 1, and similarly for IR(i, r,m); and even if some

agents in IL(i, r,m) ∪ IR(i, r,m) may become passive between time m − 1 and time

m, the result continues to hold). So suppose that i processes a message from the left

at time m − 1. Since IR(i, r,m) = IR(i, r,m − 1), it is immediate from the induction

hypothesis that part (a) continues to hold. For part (b), by Lemma 6.2.4, we have that

IL(i, r,m) = IL(j, r,m′) ∪ [i..j]L, where the message that i processed from the left at

time m − 1 originated with j at time m′. By the definition of origination, all agents in

[i..j]L − {i, j} must be passive at time m − 1. Thus, the result follows immediately

from the induction hypothesis applied to j and time m′, together with the following

observations:

• If j originated the message at time m′, then it follows easily from Lemma 6.2.1

that it is the pth message sent by j. Moreover, either IL(j, r,m′) = {j} or

IL(j, r,m′) = IL(j, r,m′′), wherem′′−1 is the time that j processed his (p−2)nd

message (since this is the last message that j processed from the left prior to time

m′).

• If i is active at time m, then id i > id j , and the (p+ 1)st message that j processes

will originate from i (if j does not know that he has all the information before

processing the message) and will cause j to become passive.

The argument is similar if i processes a message from the right at time m− 1.

We say that agent i can be the first to learn all the information in network N if there

is a run r of P2′ such thatNr = N and, in run r, i knows that he has all the information at

some time m and no agent knows that he has all the information at the point (r,m− 1).

Our goal is to prove that there can be at most two agents that can be first to learn all
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the information in a network N .1 To prove this result, we first show that, although we

are considering asynchronous systems, what agents know depends only on how many

messages they have processed.

Lemma 6.2.6: If Nr = Nr′ = N , no agent knows that he has all the information at

the point (r,m) or the point (r′, m′), and agent i has processed exactly k messages at

both the points (r,m) and (r′, m′), then IL(i, r,m) = IL(i, r′, m′) and IR(i, r,m) =

IR(i, r′, m′). Moreover, the kth message that i processed in run r originated with j iff

the kth message that i processed in run r′ originated with j.

Proof: We proceed by a straightforward induction onm+m′. Clearly the result is true if

m = m′ = 1. If i does not process a message at the point (r,m− 1), then IL(i, r,m) ∪

IR(i, r,m) = IL(i, r,m − 1) ∪ IR(i, r,m − 1), and the result is immediate from the

induction hypothesis; similarly, the result follows if i does not process a message at the

point (r′, m′ − 1). Thus, we can assume that i processes a message at both (r,m − 1)

and (r′, m′ − 1). Moreover, it follows from Lemma 6.2.1 that i either processes from

the left at both (r,m − 1) and (r′, m′ − 1) or processes from the right at both of these

points. Assume without loss of generality that i processes from the left. Then, using the

induction hypothesis, we have that IR(i, r,m) = IR(i, r,m − 1) = IR(i, r′, m′ − 1) =

IR(i, r′, m′). Moreover, IL(i, r,m) = IL(Li, r,m1) ∪ {i}, where m1 is the time Li sent

the message that i processes at time m − 1 in r; IL(i, r′, m′) = IL(Li, r
′, m′

1) ∪ {i},

where m′
1 is the time that Li sent the message that i processes at time m′ − 1 in r′. It

follows from Lemma 6.2.1 that we must have k = 2k′, Li has sent k′ messages left at

the points (r,m1) and (r′, m′
1), and has processed k−1 messages at both of these points.

By the induction hypothesis, IL(Li, r,m1) = IL(Li, r
′, m′

1). The desired result follows
1In all the examples we have constructed, there is in fact only one agent that can be first to learn all

the information in network N , although that agent may not be the eventual leader. However, we have not
been able to prove that this must be the case.
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immediately.

Lemma 6.2.7: If an agent that can be first to learn all the information is active when he

learns all the information, then he must be the agent with the largest id. Moreover, there

are at most two agents that can be first to learn all the information in network N .

Proof: We begin with the first claim. Suppose that i can be first to learn all the infor-

mation and is active when he learns all the information. That means that there must be

a run r with Nr = N such that i learns all the information in r at some time m, and no

agent has all the information at point (r,m− 1). By Lemma 6.2.5, if j1, . . ., jk are the

active agents at time m in IR(i, r,m), listed in the order of closeness to i’s right, then

id j1 > . . . > id jk
; since i is active at time m, this means that i has the largest id in

IR(i, r,m). Similarly, we can show that i has the largest id in IL(i, r,m). Since i has all

the information at time m, IL(i, r,m)∪ IR(i, r,m) must be the full ring. Thus, i has the

largest id in the network.

For the second claim, suppose, by way of contradiction, that more than two agents

can be the first to learn all the information in a run r of P2′. Let i∗ be the agent in Nr

with the largest id. If i is an agent that is among the first to learn all the information,

suppose that it was pith message that i received that resulted in i knowing that he has all

the information. It easily follows from Lemma 6.2.5 that if i 6= i∗, then either the pith

message or the (pi − 1)st message that i processed must have originated with i∗.

First suppose that i∗ is not among the first agents to learn all the information. Then

there must be two agents who are among the first to learn all the information that receive

messages that originated with i∗ from the same side. Suppose, without loss of generality,

that these two agents are i1 and i2, and that they receive the message from i∗ from the

right. Now a simple case analysis shows that either i1 or i2 cannot be the first to learn
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all the information in r. For suppose that the message that originated with i∗ is the p′hth

message that ih processed, for h = 1, 2. (By Lemma 6.2.6, p′h is same in all runs r′ such

that Nr = Nr′ .) If p′1 > p′2, then it follows from Lemma 6.2.1 that p′1 ≥ p′2 + 2. It easily

follows that pi1 < pi2 , and that ii must receive any message that originates from i∗ and

comes from the right before i2 does. It follows that i1 must learn all the information

before i2 does. Similarly, if p′2 > p′1, then it is easy to see that i2 must learn all the

information before i1. Finally, suppose that p′1 = p′2. Without loss of generality, assume

that going from i∗ left on the ring, we reach i1 before i2. Then it is easy to see that if

p′1 = pi1 , so that i1 knows he has all the information after processing the message from

i∗, then i1 knows he has all the information before i2 in all runs r′ with Nr = Nr′ , while

if pi1 = p′1 + 1, then i1 must learn it after i2 in all runs r′ with Nr′ = Nr (since the p1th

message processed by i1 must originate with an agent farther to the left of i∗ than i2, and

there can be no active agents between i1 and i2 at this point). Thus, it cannot be the case

that both i1 and i2 can be first to learn all the information in r, a contradiction.

Thus, we can assume that i∗ is among the first agents to learn all the information.

Let i1 and i2 be two agents other than i∗ that are among the first agents to learn all

the information. Again, if both of i1 and i2 process i∗’s message from the left, or both

process it from the right, then we get a contradiction as above. So suppose without loss

of generality that i1 processes i∗’s message from the left, i2 processes i∗’s message from

the right, and these are the p′1th and p′2th messages processed by i1 and i2, respectively,

and that i∗ processes his pi∗th message from the left. We cannot have p′2 = pi∗ . If

p′2 < pi∗ , then it is easy to show that i2 must learn all the information before i∗ in all

runs r′ with Nr′ = Nr, while if pi∗ < p′2, then i∗ must learn all the information before i2

in all runs r′ with Nr′ = Nr (indeed, i∗ must know that he has all the information before

he sends his message to i2). Either way, we have a contradiction.
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The next result shows that whether an agent is active or passive after having received

p messages in run r depends only on Nr.

Lemma 6.2.8: Suppose that r and r′ are two runs such that Nr = Nr′ . For all agents i,

i has the same state and status after processing the first p messages in r as f(i) in r ′.

Proof: A straightforward induction on p shows that, for all agents i, the first p messages

that i receives in r and r′ are the same, and they come from the same direction in these

two runs. Since i’s state and status depends only on the messages it receives and the

direction they come from, the lemma immediately follows. We leave details to the

reader.

We can now describe the remainder of protocol P2′, after an agent i learns all the

information. What happens depends on (a) which agents can be first to learn all the

information, and whether i is one of them; (b) whether i is active or passive just after

learning all the information, and (c) whether the message that results in i learning all the

information is processed from the left or the right. Note that when an agent learns all the

information, it can easily determine which agents can be first to learn all the information.

Rather than writing the pseudocode for P2′, we give just an English description; we do

not think that the pseudocode would be more enlightening.

• Suppose that the only agent that can be first to learn all the information is the

agent i∗ with the largest id. We now do essentially what is done in Peterson’s

algorithm. Suppose that the message that resulted in i∗ learning all the information

was processed from the left (if the message was processed from the right, the rest

of the argument remains the same, replacing “left” by “right” everywhere), the

message originated with agent i, and was the pth message processed by i∗. It
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follows from parts (a)(ii) and (b)(ii) of Lemma 6.2.5 (taking i to be i∗ and using

the fact that IL(i∗, r,m)∪ IR(i∗, r,m) consists of all agents in the ring if i∗ learns

all the information at the point (r,m)) that after processing the pth message, all

agents other than i∗ will be passive. Agent i∗ then sends his (p + 1)st message to

the left. After an agent processes the i∗’s (p + 1)st message, he will then know

that he has all the information. We require it to send a message to the left with all

the information unless he is i∗’s right neighbor. (Of course, once he knows that

he has all the information, i∗’s right neighbor will realize that the neighbor to the

left is the leader and that i∗ already knows all the information, so he does not need

to forward the information.) After this process is completed, all the agents know

that they have all the information.

• Suppose that agent i is the only agent that can be first to learn all the information

and i is passive when it first knows all the information. Suppose that the message

that resulted in i’s learning all the information was processed from the left (again,

the argument is similar if it was processed from the right), the message originated

with agent j, and was the pth message processed by i. It is easy to see that i

must have been active just prior to processing the pth message, for otherwise the

agent to i’s left will learn all the information before i. Moreover, i’s pth message

must have originated with the leader (since i could not have known about the

leader prior to receiving the message, or it would not have been active). Then i

sends the message with all the information back to the leader, who forwards the

message all the way around the ring up to the agent to i’s right, at which point

all the agents know that they have all the information.(Recall that it follows from

Lemma 6.2.8 that, with P2′, whether an agent is active or passive after processing

the pth message in run r depends only on Nr.)

• Suppose that two agents, say i and i′, can be first to know that they have all
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the information, and that i are i′ are passive when they learn all the information.

Again, it is not hard to see that i and i′ must have been active just before learning

all the information. If i and i′ both first learn all the information after processing

the pth message, then by Lemma 6.2.5, the pth message of one of them, say i,

originated with i∗. Suppose without loss of generality that i and i′ received this

message from the left. Then i sends a message with all the information to the left,

where it is forwarded up to and including i∗; similarly, i′ sends a message to the

left, which is forwarded up to but not including i. Note that i′ will also receive

a (p + 1)st message that originates with i∗ from the right. After receiving this

message, i′ sends a message with all the information to the right up to but not

including i∗.

• Suppose that two agents, say i and i∗, can be first to learn all the information, and

that i is passive when he learns all the information, while i∗ is active (and is thus

the agent with the highest id). If they both learn all the information after receiving

their pth message, then i must have been active just before receiving the message,

i’s message originated with i∗, and i∗’s message either originated with i or with an

agent i′ such that the pth message received by i′ originated with i, and i′ becomes

passive after receiving this message. Suppose without loss of generality that the

pth message was received from the left. Then i sends a message with all the

information to the left where it is forwarded up to but not including i∗; similarly,

i∗ sends a message with all the information to the left, where it is forwarded up

to but not including i. A straightforward case analysis shows that it cannot be the

case that there exist p and p′ with p 6= p′ such that i learns all the information after

receiving his pth message and i∗ learns all the information after receiving the p′th

message. For if p < p′, then i must learn all the information before i∗ in all runs,

and if p′ < p, then i∗ must learn all the information before i in all runs.
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This completes the description of P2′.

We can now finally prove that P2′ de facto implements PgGC
cb in the interpreted

context (γbr ,u , π) where the networks encoded in the initial states are the undi-

rected rings with unique identifiers. Suppose that o is an order generator that re-

spects protocols, σ is a deviation-compatible ranking function, and J = (R+(γbr ,u),

π, µγbr,u , o(P2 ′), σ(P2 ′)) is the interpreted system corresponding to P2′ in the cb con-

text χbr ,u = (γbr ,u , π, o, σ). Proving that P2′ de facto implements PgGC
cb in the cb context

χbr ,u amounts to showing that P2′
i(`) = PgGC

cb

J

i (`) for every local state ` such that there

exists r ∈ R(P2′, γur ,u) and m such that ` = ri(m). That is, for all r ∈ R(P2′, γur ,u)

and times m, we must show that P2′
i(ri(m)) = act iff (J , r,m, i) |= ϕact, where ϕact is

the precondition in Pgcb for action act.

Lemma 6.2.9: For all runs r of P2′ in the context γbr ,u , times m, and agents i in Nr,

P2′i(ri(m)) = PgGC
cb

J

i (ri(m)).

Proof: As we observed above, we must show that for all r ∈ R(P2′, γbr ,u) and timesm,

we have that P2′
i(ri(m)) = act iff (J , r,m, i) |= ϕact. So suppose that P2′

i(ri(m)) =

act. The relevant actions act have the form sendn(new info), where n ∈ {L,R}. We

consider the case that n = L here; the proof for n = R is almost identical, and left to

the reader. The precondition of sendL(new info) is

¬BI [¬do(sendL(new info)) >

♦(∀n′. Calls(L, I,n′) ⇒ BL(Accn′new info)) ∨ (∃v. BL(f = v))].

Since R is the unique name that i’s left neighbor calls i in a ring, we have that

(J , r,m, i) |= Calls(L, I, R). By the definitions in Section 2.5.2, (J , r,m, i) |=

ϕsendL(new info) if and only if there exists a situation (r′, m′, i′) such that

(a) r′i′(m′) = ri(m),
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(b) σ(P2′)(r′) = min
σ(P2′)
i (r,m), and

(c) the following holds

(I, r′, m′, i′) |= ¬[¬do(sendL(new info)) >

♦(BL(AccRnew info) ∨ (∃v. BL(f = v)))],

so there exists a situation

(r′′, m′′, i′′) ∈ closest([[¬do(sendL(new info))]]I(P2′ ,χbr,u), r
′, m′, i′)

such that

(J , r′′, m′′, i′′) |= (¬BL(AccRnew info) ∧ ¬BL(f)).

Thus, we must show that there exists a situation (r′, m′, i′) satisfying conditions

(a), (b), and (c) above iff P2′
i(ri(m)) = sendL(new info). To prove this, we need to

consider the various cases where i sends left.

• Case 1: at (r,m), i is active, does not know that he has all the informa-

tion, and sends his first message at time m. In this case, we can take r ′ to

be a run of P2′ on the network [i] (i.e., the network where the only agent is

i), m′ = 0, and i′ = i, and take (r′′, m′′, i′′) to be an arbitrary situation in

close(do(sendL(new info)), P2′, γbr ,u , r′, m′, i′) such that |Nr′′| > 1. In r′′,

Li′′ does not receive a message from i′′, so will never process any message. It

easily follows that, in r′′, Li′′ does not learn the content (i′′)’s initial information,

nor does he learn who the leader is.

• Case 2: i is active, does not know all the information, and does not send his first

message to the left at time m. In this case, Li must be passive. Suppose that i is

about to send his kth message left at the point (r,m). By Lemma 6.2.1, i must

have received k − 1 message from Li, so Li must have processed k− 1 messages
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from i. Moreover, i considers it possible that Li has already sent his kth message

left, and is waiting to process his kth message from i. Since i does not have all the

information at time m, it is easy to see that i must also consider it possible that

Li does not have all the information at time m. Thus, there exists a run r ′ such

that ri(m) = r′i(m) and, at the point (r′, m), Li does not have all the information

and is waiting to process the kth message from i. Let (r′′, m′′, i′′) be an arbitrary

situation in close(do(sendL(new info)), P2′, γbr ,u , r′, m, i). Since i′′ does not

send left at (r′′, m′′), Li′′ will wait forever to process a message from i′′. Thus, in

r′′, Li′′ never learns the content of (i′′)’s kth message, nor does he learn who the

leader is.

• Case 3: i is passive at the point (r,m) and does not have all the information. Since

i is about to send left and he is passive, i must have last processed a message from

his right; without loss of generality, assume that i has processed p messages from

his right, and so must have processed (p − 1) messages from his left by time

m. It easily follows from Lemma 6.2.1 that p > 1. Suppose that the (p − 1)st

message that i processed from his left originated with k. Since i does not have

all the information at time m, k did not have all the information when he sent this

message to the right. After receiving his (p − 1)st message from the left, i must

consider it possible that the ring is sufficiently large that, even after k processes

his (p− 1)st message from the left, k will still not know all the information. That

is, there exists a situation (r′, m′, i′) with r′ ∈ R(P2′, γbr ,u) such that conditions

(a) and (b) are satisfied, and if i′’s (p− 1)st message from the left in r′ originated

with k′, then k′ does not have all the information at the point (r′, m′), despite have

processed his (p− 1)st message from the left by this point. Let (r ′′, m′′, i′′) be an

arbitrary situation in close(do(sendL(new info)), P2′, γbr ,u , r′, m′, i′). Suppose

that (i′′)’s (p − 1)st message from the left in r′′ originated with k′′. At the point
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(r′′, m′′), k′′ has already processes his (p−1)st message from the left and does not

have all the information (because this was the case for the agent k ′ corresponding

to k′′ in r′). In r′′, all agents between i′′ and k′′ are passive. Thus, regardless of

whether k′′ is active or passive, in r′′, k′′ and i′′ and all agents between them are

deadlocked, because k′′ is waiting from a message from the right, which must pass

through i′′, and i′′ is waiting for a message from his left, which must pass through

k′′. It easily follows that Li′′ does not learn (i′′)’s new information in r′′, nor does

Li′′ learn who the leader is.

• Case 4: i has all the information at timem in r. There are a number of subcases to

consider. We focus on one of them here, where two agents, the leader i∗ and i, are

the first to learn all the information; the arguments for the other cases are similar in

spirit, and left to the reader. We have shown that, in this case, i turns passive when

he learns all the information as a result of processing a message that originated

with i∗, and that the number of messages i∗ and i have processed by the time

they learn all the information is the same. Without loss of generality, assume that

both i∗ and i first learned all the information after processing their pth message

from the left. We showed that either the pth message that i∗ processed from his

left originated with i, or it originated with some agent i′ whose pth message from

the left originated with i. It is easy to see that all agents other than i∗ and i

are passive after they process their pth message, do not know that they have all

the information, and are waiting to receive a message from the right. Thus, if i

does not send left, then all agents to the left of i up to but not including i∗ are

deadlocked. Since i is supposed to send left, it cannot be the case that Li = i∗.

It easily follows that if i does not send left, and (r′, m, i′) is an arbitrary situation

in close(do(sendL(new info)), P2′, γbr ,u , r,m, i), then Li′ does not learn (i′)’s

new information nor who the leader is in r′.
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We have shown that, for all r ∈ R(P2′, γbr ,u) and timesm, if P2′
i(ri(m)) = act then

(J , r,m, i) |= ϕact. For the converse, suppose that P2′
i(ri(m)) 6= act. Again, suppose

that act is sendL(new info). Let (r′, m′, i′) be a situation that i considers possible at

time m in run r (i.e., such that conditions (a) and (b) above hold). Since i does not send

left at the point (r,m), i′ does not send left at the point (r′, m′). Thus, by definition,

close(do(sendn(new info)), P2′, γbr ,u , r′, m′, i′) = {(r′, m′, i′)}. Since r′ is a run of

P2′, and every agent eventually learns who the leader is in every run of P2′, it follows

that (J , r′, m′, i′) |= ♦BL(f = v), and hence

(J , r,m, i) |= ¬do(sendL(new info)) > ♦((BL(AccRnew info))∨(∃v. BL(f = v))).

Thus, (J , r,m, i) |= ¬ϕsendL(new info). This completes the proof.
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