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Legume-based cropping systems have the potential to improve nitrogen (N) 

retention and use efficiency in comparison with fertilizer-based systems, yet we lack 

an ecological understanding of biological nitrogen fixation (BNF) in these 

agroecosystems. My research objectives were to investigate: 1) the effects of legume-

based management on soil organic matter (SOM) pools; 2) the effects of a SOM-based 

fertility gradient on BNF; and 3) how plant phenology and species interactions affect 

BNF across the fertility gradient.  

Research plots were established on grain farm fields in New York in 2004 and 

2006. Fields represented a fertility gradient due to soil type and management 

differences, ranging from exclusive use of Haber-Bosch N to almost exclusive use of 

legumes. I estimated BNF of soybean (Glycine max), field pea (Pisum sativum), and 

perennial red clover (Trifolium pratense) using the 15N natural abundance method. 

Soil N pools were quantified ranging in microbial accessibility from extremely labile 

to primarily recalcitrant pools.  

Legume-based systems had greater quantity and quality of labile SOM pools, 

compared to fertilizer-based systems.  I found weak evidence of soil N availability 

inhibiting BNF despite a more than 2-fold range in SOM pools across study sites. This 

suggests that N mineralization from SOM pools represented a much smaller N flux 



 

than N fertilizer levels used in past BNF studies. 

Complementary, facilitative and competitive interactions influenced BNF in 

species mixtures. Relay cropping of frost-seeded clover into winter grains increased 

clover % N from fixation due to the short period of competitive species interactions 

while retaining high biomass production due to the period of monoculture growth 

following grain harvest. The longer growth period of perennials may have increased 

their ability to respond to environmental conditions through feedback mechanisms. 

Perennial mixtures outyielded their corresponding monocultures and I found evidence 

for facilitative N transfer from legumes to grasses in perennial, but not annual 

mixtures. Monoculture red clover biomass yield was more stable across field sites than 

the other plant treatments. These results suggest that the integration of perennials and 

species mixtures into rotations could increase BNF inputs while also improving 

overall agroecosystem N cycling efficiency and yield stability. 
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CHAPTER 1 

UNDERSTANDING THE VARIABILITY IN SOYBEAN NITROGEN FIXATION 

ACROSS AGROECOSYSTEMS 

 

Abstract 

Legume-based cropping systems have the potential to internally regulate N 

cycling due to the suppressive effect of soil N availability on biological nitrogen 

fixation.  We used a gradient of endogenous soil N levels resulting from different 

management legacies and soil textures to investigate the effects of soil organic matter 

dynamics and N availability on soybean (Glycine max) N2 fixation. Soybean N2 

fixation was estimated on 13 grain farm fields in central New York State by the 15N 

natural abundance method using a non-nodulating soybean reference. A range of soil 

N fractions were measured to span the continuum from labile to more recalcitrant N 

pools. Soybean reliance on N2 fixation ranged from 36% to 82% and total N2 fixed in 

aboveground biomass ranged from 40 to 224 kg N ha-1. Soil N pools were consistently 

inversely correlated with % N from fixation and the correlation was statistically 

significant for inorganic N and occluded particulate organic matter N. However, we 

also found that soil N uptake by N2-fixing soybeans relative to the non-nodulating 

isoline increased as soil N decreased, suggesting that N2 fixation increased soil N 

scavenging in low fertility fields. We found weak evidence for internal regulation of 

N2 fixation, because the inhibitory effects of soil N availability were secondary to the 

environmental and site characteristics, such as soil texture and corresponding soil 

characteristics that vary with texture, which affected soybean biomass, total N2 

fixation, and net N balance. 
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Introduction 

Humans have more than doubled the global rate of reactive nitrogen (N) input 

into terrestrial systems, resulting in major direct and indirect effects on ecosystems 

(Vitousek et al. 2002a; Galloway et al. 2003). Haber-Bosch N (HBN) fertilizer is the 

primary contributor to this increase and its application contributes to large 

environmental consequences, including surface water eutrophication and the formation 

of the annual hypoxic zone in the Gulf of Mexico (McIsaac et al. 2001; Galloway and 

Cowling 2002). The advent of HBN fertilizers increased the quantity of N additions 

and also reduced the occurrence of carbon (C) additions in conjunction with N. As a 

result of this uncoupling of C and N cycles, HBN fertilizers are needed at levels that 

saturate agroecosystems to maintain net primary productivity (NPP) (Woodmansee 

1984; Drinkwater and Snapp 2007). Soluble HBN fertilizers are readily lost from 

agricultural fields as they are typically added when plant uptake is low and residual 

HBN fertilizer often is lost due to the absence of active plant growth following annual 

crop harvest.  

Studies of agroecosystems with increased temporal plant diversity, which 

reduce bare fallow periods and rely primarily on biological N2 fixation (BNF) for N 

inputs, show that yields can be maintained while N losses are reduced, through the 

recoupling of C and N cycles (Drinkwater et al. 1998; Gregorich et al. 2001; Ross et 

al. 2008). This improved N use efficiency is due in part to significant reductions in the 

magnitude of the surplus N additions and the addition of N in more stable, organic 

forms that are mineralized through microbially-mediated processes (Drinkwater et al. 

1998). Despite the potential for legume-based systems to improve N use efficiency, 

scant research has focused on understanding the ecology of BNF in temperate, 

legume-based cash-grain agroecosystems. 

Legume-based cropping systems may have the advantage of a built-in internal 
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feedback that regulates N cycling.  As soil organic matter (SOM) levels increase in 

legume-based systems over time, the mineralization of N from larger SOM pools may 

suppress BNF (Waterer and Vessey 1993). In natural systems, soil N availability is 

one of the primary factors thought to constrain the distribution of legumes (Vitousek et 

al. 2002b). Rhizobial strains differ in their N2 fixation efficiency and effectiveness, 

but the plant partner in the symbiosis appears to be the primary regulator of t

suppressive effect of soil N availability on BNF (Kiers et al. 2003).  

It is not clear whether the inhibitory effect of soil N derived from SOM 

mineralization is a functionally important mechanism that regulates BNF in 

agroecosystems. The effect of N availability on legume N2 fixation has rarely been 

researched within the context of cropping systems in which soil N availability is 

dependent on the mineralization of SOM. Studies have typically used large N fertilizer 

additions, ranging from 50-200 kg N ha-1 added at one time point, effectively flooding 

the root zone with nitrate (Salvagiotti et al. 2008).  These studies clearly demonstrate 

that when soil conditions are held constant, large pools of inorganic N inhibit BNF and 

variations in N availability act as the major regulator of N2 fixation rates. However, 

these studies do not provide an analysis of the relative importance of inorganic N 

availability in legume-based agroecosystems dependent on the complex plant-soil-

microbe interactions that influence N mineralization from heterogeneous SOM pools 

(Clarholm 1985; Hodge 2003). Nitrate can have a localized as well as a systemic 

effect on BNF (Streeter 1985; Blumenthal et al. 1997) and extremely low 

concentrations of inorganic N have even been found to increase N2 fixation in some 

greenhouse studies (Gan et al. 2004). Nitrogen mineralization from heterogeneous 

SOM pools would be expected to create temporally variable microsite hotspots of 

inorganic N throughout the rooting zone. This is in contrast to the potential influence  



 

of the broad application of HBN fertilizers at rates that typically saturate the root 

system for a short, concentrated time period.  

Most soybeans grown in the U.S. do not receive direct HBN fertilizer 

additions during their growth and are, therefore, dependent on residual HBN fertilizer 

in the soil and on N mineralization from SOM pools for soil N uptake. In this s

we identified a gradient of endogenous soil N levels across several grain farms in Ne

York State. Our objective was to investigate whether soybean BNF was regulated by 

N availability from a typical range of SOM levels found across agroecosystems.  

tudy, 

w 

 

Materials and Methods 

Experimental sites 

We established research plots in 2004 in 13 fields on 4 commercial grain farms 

in central New York state (42 39’-42 44’ N and 77 04’-76 43’ W). All fields were 

within 30 km of each other. The climate is characterized as humid temperate with a 

mean annual precipitation of 880 mm and mean annual maximum and minimum air 

temperature of 14C and 3C, respectively. We selected fields to reflect a gradient of 

management histories (Table 1.1). All soils are moderately well to well drained, 

mixed, active, mesic Hapludalfs, except for fields H4 and L6, which fall into soil 

classes that are somewhat poorly drained (USDA-NRCS SSURGO database). Weather 

data were averaged from the Penn Yan Airport, Penn Yan, NY (within 10 km SW of 

fields L1-L3, and all HBN fields) and the Aurora Research Farm, Aurora, NY (within 

15 km NE of fields L4-L8) provided by the National Climate Data Center.  

We collected a 5-year cropping history from participating farmers including all 

N inputs and crop yields for each field. Literature values and data from several years 

of cover crop and grain N sampling in the region were combined with farmer records 

of field inputs and exports to calculate estimated N balances for each field. These 
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Table 1.1. Management history, crop rotation history, and USDA soil classification for 13 study fields. 
 

Fielda 

Years 
under 

organic 
mgmt 5-year rotation historyb Soil classification 

H1 0 corn-corn-corn-corn-kidney bean Fine sandy-loam,  Glossic Hapludalf 
H2 0 corn-corn-kidney bean-rye-corn Fine sandy-loam,  Oxyaquic Hapludalf 
H3 0 corn-corn-corn-corn-corn Fine sandy-loam,  Glossic Hapludalf 
H4 0 corn-snap bean-wheat/clover-corn-soybean Silt loam, Aeric Endoaquept 
H5 0 kidney bean-wheat/clover-corn-corn-soybean Fine sandy-loam,  Oxyaquic Hapludalf 
L1 3 soybean-oat-soybean-corn-soybean Silt loam,  Glossic Hapludalf 
L2 8 

5

soybean-spelt/clover-soybean-corn-soybean Silt loam,  Glossic Hapludalf 
L3 9 kidney bean-soybean-wheat/clover-clover-soybean Silt loam,  Glossic Hapludalf 
L4 5 spelt/clover-corn-wheat/clover-corn-soybean Silt loam,  Oxyaquic Hapludalf 
L5 7 corn-soybean-spelt/clover-corn-soybean Silt loam,  Oxyaquic Hapludalf 
L6 13 wheat/clover-soybean-spelt/clover-corn-soybean Silt loam,  Aeric Endoaqualf 
L7 20 corn-soybean-rye-spelt/clover-soybean Gravelly silt loam,  Glossaquic Hapludalf 
L8 20 wheat/clover-corn-wheat/clover-corn-soybean Gravelly silt loam,  Glossaquic Hapludalf 

 

a Fields are labeled by management type (H= Haber-Bosch N fertilizer-based; L= legume N-based management practices) 
b Crop rotation history is listed from least to most recent from left to right, ending with the 2004 season. Corn (Zea mays); kidney 
bean and snap bean (Phaseolus vulgaris); rye (Secale cereale); wheat (Triticum aestivum); spelt (Triticum spelta); clover (Trifolium 
pratense) 

 



 

balances were used to classify each field based on management history and the 

percentage of total N inputs derived from either HBN fertilizers or legume BNF 

inputs. The fields used in this study are all cash-grain operations and do not have 

livestock integrated into their farming systems. The fields that are managed with 

legume-based rotations apply an average of only 17 kg N ha-1 year-1 from compost or 

manure inputs, and are therefore reliant on BNF for the majority of total N inputs. 

Nitrogen management categories were defined as follows: 1) HBN fields received 

mainly fertilizer N (>50% of total N inputs, remainder from legume-based BNF) while 

2) LEG fields did not receive any HBN, but relied on legume-based BNF for most of 

their N additions (>50% of N inputs from BNF with remainder from compost or 

manure). All LEG fields were located on certified organic farms and had been under 

organic management regimes for 3 to 20 years (Table 1.1). 

Plot establishment and management 

Research plots were established within grain fields that were managed using 

conventional tillage practices. The surrounding field area was planted by the farmer to 

soybean, with the exception of fields H1, H2, and H3 which were in kidney beans or 

corn in 2004 (Table 1.1). We planted three varieties of soybean in a randomized 

complete block design with four replicate blocks in each field.  We used a late Group I 

nodulating soybean (M129 Nod) bred from an Altona x Chippewa cross because a 

non-nodulating isoline (M129 Non-Nod) was available to serve as a reference plant 

for the BNF estimation. M129 seed was provided by James H. Orf, University of 

Minnesota. To simulate the farmer practice in these farming systems we also planted 

Vinton 81, a high protein, food-grade late Group I soybean commonly grown by 

organic farmers in the region, because of its high market value. We seeded the plots in 

June 2004 at the rate of 26 seeds m-1, 0.76 m row spacing, in 3 m by 2 m plots (4 rows 

plot-1). Seeds of the two N2-fixing varieties (Vinton 81 and M129 Nod) were 
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inoculated with commercial soybean inoculum.  In fields where the surrounding field 

was not planted to soybeans, an additional buffer row of soybeans was planted on the 

outside edges of the research plot area and an additional 2 m was seeded on either end 

of research plot rows to reduce any shading effect particularly in corn fields (fields H2 

and H3).  Farmers did not apply fertilizers or amendments to the research plot area 

during the 2004 growing season. We supplemented farmers’ mechanical cultivation 

with hand-weeding to control weeds in research plots.  

Plant sampling and analysis 

We collected soybean aboveground biomass samples at early pod formation 

(R4) and at full pod prior to leaf senescence (R6) from 0.5 m of the center two rows in 

each plot for each sampling, leaving a 0.5 m buffer between sampling areas (Fehr et 

al. 1971). Biomass was dried at 60 C and weighed. Dried plant biomass samples were 

first coarsely ground using both a hammer mill and grinder and then finely pulverized 

using a roller grinder. Samples were analyzed for 15N natural abundance and total N 

content using a continuous flow Isotope Ratio Mass Spectrometer (Stable Isotope 

Facility, UC Davis).  

We collected nodules at the first (R4) sampling time when nodules should be 

fully established, but prior to their senescence (Zapata et al. 1987). Roots from 20 cm 

of the center two rows were excavated to 25 cm depth. Soil was gently shaken off and 

roots were rinsed briefly in water in the field and then stored at 4 C. Within 2 weeks 

of sampling, we separated nodules from roots and counted them. Roots and nodules 

were dried and weighed. Root sampling allowed for confirmation of nodulation status 

of non-nodulating soybeans. Only 1.5% of all non-nodulating plants sampled 

contained nodules (sample size = 454 plants). One plot of non-nodulating soybeans in 

field L4 had nodulated plants throughout and was obviously misplanted. This plot was 

dropped from all analyses.  
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Nitrogen fixation  

We used the 15N natural abundance method (Shearer and Kohl 1986) to 

estimate BNF at the two sampling times. The percentage of N derived from the 

atmosphere in the N2-fixing soybean (Vinton 81 or M129 Nod) biomass was 

calculated using the M129 Non-Nod as the reference plant: 

% N from fixation = 100*((δ15N Non-Nod − δ15N2-fixing)/(δ15N Non-Nod − B)) 

where B is the δ15N value of soybean grown with atmospheric N2 as the only source of 

N after accounting for seed N. Total aboveground N2 fixed was calculated from the 

aboveground dry matter of N2-fixing soybean, its biomass N concentration, and % N 

from fixation. 

We grew soybeans in N-free, autoclaved, calcined clay media (Turface®, 

AIMCOR, Deerfield, IL) in a greenhouse to quantify the B value for Vinton 81 and 

M129 Nod varieties. Seeds were surface sterilized in 70% (v/v) ethanol for 3 minutes 

and 3% (v/v) bleach solution for 2 minutes, followed by a 3 minute rinse in deionized 

water. Sterilized seeds received the same inoculant used in field plots and plants were 

fertilized with an N-free Hoagland’s nutrient solution (GreenCare Fertilizers, Chicago, 

IL). Plants were sampled at the same maturity stages as field study, dried, ground, and 

analyzed for δ15N. Seeds for each variety were also analyzed for δ15N to allow 

calculation of seed N contribution.  

Description of soil N fractions measured 

Despite decades of research, a single soil test that reliably predicts plant 

available N has not been developed. In order to capture the range of soil N pools that 

can contribute to plant available N, we quantified a range of soil N fractions spanning 

the continuum from labile to more recalcitrant N pools (Table 1.2). Different soil N 

fractions interact with environmental factors to determine soil N availability. Inorganic 

N is an ephemeral soil N pool with high temporal and spatial variability, because it 
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depends on inputs from microbially-mediated mineralization and losses from 

denitrification, volatilization, leaching, and plant and microbial immobilization. 

Microbial biomass (MB) is sensitive to temperature and moisture availability and 

represents an important sink, as well as a source, for inorganic N depending on C 

availability. Organic matter can be further partitioned into physical fractions to 

separate more labile pools from older, recalcitrant pools. Light fraction particulate 

organic matter (fPOM), also referred to as free POM because it is not associated with 

soil aggregates, is derived from recent litter inputs and can represent a sink or a source 

for inorganic N, depending on the source material C:N ratio and biochemistry (Boone 

1994; Wander 2004). Occluded particulate organic matter (oPOM), is physically 

protected within soil aggregates and is more likely than fPOM to be a net source of 

inorganic N because it typically is more decomposed, resulting in a lower C:N ratio 

(Wander 2004; Marriott and Wander 2006). 

Soil sampling and analysis 

We collected soils from all of these fields in September 2004 in conjunction 

with the second biomass sampling. Soil measurements vary greatly in their sensitivity 

to seasonality. Key factors that contribute to seasonal shifts in more labile N pools 

include recent residue inputs, plant cover, soil moisture, and temperature (Bonde and 

Roswall 1987; Ross 1987). We chose to sample soils after a season of soybean to 

provide a consistent recent plant influence across all fields, thereby reducing the short-

term influence of differences in the previous year’s crop. In addition, fall sampling 

occurred after the cessation of active plant N uptake. Labile soil N pools measured in 

the fall were, therefore, influenced by recent soybean C and N inputs as well as 

longer-term management histories and soil textural differences.  

Twenty soil cores (2 cm diameter by 20 cm depth) were taken and composited 

from each plot within each field. For N mineralization potential (N min), a subsample 



Table 1.2. Soil N fractions measured, their relative turnover times, and descriptions of which soil N pools they represent. 
 

Soil N fraction 
Estimated 
turnover time Pool description Source 

Extractable NO3
-
 and 

NH4
+

 (Inorganic N) 
Hours to days Inorganic N immediately available for 

plant or microbial uptake 
Corre et al. 2002 

Chloroform extractable N 
(MBN) 

Days to years Microbial biomass N McGill et al. 1986; 
Schmidt et al. 2007 

Dissolved organic N 
(DON) 

Days to decades Heterogeneous pool of labile and more 
recalcitrant organic molecules 

Jones et al. 2004; von 
Lutzowa et al. 2007 

N mineralization potential 
(N min) 

* 

10

Integrated measure of microbial 
activity and labile N availability 

Drinkwater et al. 1996 

Light fraction POM N 
(fPOM N) 

Weeks to years  Recent plant and animal residue inputs  Boone 1994; Wander 
2004 

Occluded POM N  
(oPOM N) 

Years to decades Partially decomposed residues, 
particularly root residues, physically 
protected within soil aggregates 

Gale et al. 2000; 
Wander 2004 

Total soil N (Soil N) Up to centuries 
to millenia 

Majority of pool in recalcitrant 
mineral-associated compounds 

Stevenson 1994 

 

* N min represents an integrated rate of labile N availability rather than a distinct pool with a turnover time.

 



 

of soil was sieved in the field for inorganic N and 7-day anaerobic N mineralization 

incubation using a 2 M KCl extraction (Drinkwater et al. 1996). Total NH4
+ and NO3

-

were analyzed using a continuous flow analyzer (AlpKem, OI Analytical, College 

Station, TX). Remaining sieved and unsieved soils were stored at 4 C.  Dissolved 

organic C and N and microbial biomass extractions for each plot were completed 

within 1 to 3 wk of field sampling on field moist samples using the chloroform 

fumigation-extraction method (24 h fumigation and 30 min extraction with 0.5 M 

H2SO4) as in Horwath and Paul (1994). Samples were lyophilized and analyzed for 

total N using a continuous flow Isotope Ratio Mass Spectrometer (Stable Isotope 

Facility, UC Davis). Inorganic N values were subtracted from total dissolved N to 

calculate dissolved organic N. 

Gravimetric water content was recorded for samples and remaining soil was 

air-dried. We separated fPOM and oPOM using size and density separation as in 

Marriott and Wander (2006). Briefly, fPOM was separated by floating on sodium 

polytungstate (1.7 g cm-3). The remaining soil sample was shaken with 10% sodium 

hexametaphosphate to disperse soil aggregates and then rinsed through a 53 μm filter. 

The fraction larger than 53 μm, which included sand and particulate organic matter, 

was retained. Total C and N of POM fractions and total soil were measured using a 

LECO 2000 CN Analyzer (Leco Corporation, St. Joseph, MO). To correct for 

carbonate content of each soil, a subset of samples from each field was treated with 6 

M HCl and then analyzed for total C (Midwood and Boutton 1998). Carbonate C, the 

difference between untreated and HCl treated soil C, was subtracted from total soil C 

to calculate total soil organic C content for each field. 

Replicate composite samples of air-dried soil sieved to 2 mm for each field 

were analyzed for Morgan-extractable P, K, Ca, Mg, Cu, Zn, Fe, Al, and Mn (Cornell 
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Nutrient Analysis Laboratory, Ithaca, NY) and particle size (Agricultural Analytical 

Services Laboratory, Penn State University, University Park, PA).  

Statistical analysis 

We computed statistics using JMP v.7 and SAS v.9.1 software (SAS Institute 

Inc., Cary, NC). Variables were assessed for normal distribution. Nitrogen 

mineralization potential, oPOM N, fPOM N, and inorganic N were log-transformed to 

fit a normal distribution. Data were analyzed using mixed models including field and 

replicate as nested random factors. Least squares means from mixed models were used 

for comparisons between varieties, sampling time points, and fields. Multiple 

comparisons were calculated using Tukey’s HSD and pairwise comparisons were 

calculated using Student’s t-tests.  

Field means were used to calculate simple correlations using Pearson 

correlations and for multivariate forward stepwise regressions. If variety was not a 

significant predictor (p>0.05), the two varieties were assumed to have a similar 

response to soil variables and values were averaged across both field and variety.  

Due to the multicollinearity of the soil variables measured, we used principal 

components analysis (PCA) to generate independent variables that represent a 

composite of several soil variables. Principal components analysis was conducted 

using the SAS PRINCOMP procedure and soils data from plots of both N2-fixing 

varieties were used for the PCA. Variables for PCA were selected in two ways. From 

the paired soil N and C pools, only the soil N pools were included. All soil nutrient 

variables and soil texture (sand, clay) were included. Variables with low loadings 

(<0.30) across all components were dropped from the analysis (O’Rourke et al. 2005).  

Principal components with eigenvalues greater than 1 were retained. 

Stepwise regressions were conducted using the SAS REG procedure. 

Multicollinearity of the selected variables was assessed using condition indices and 
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variance proportions. If the condition index was greater than 30 and variance 

proportion for two variables was greater than 0.50 in regression results, the variables 

were considered to be collinear (Freund and Littell 2000). Collinear variables were 

dropped sequentially from the model to determine which variable explained more of 

the total variability in the response variable. Non-collinear variables selected using 

stepwise regressions on field average values were then used in mixed models 

including all N2-fixing soybean plots. Variety was included as a fixed effect in 

regression models to determine whether M129 Nod and Vinton 81 BNF variables 

differed in response to soil variables. The percentage of variation explained by each 

fixed effect in multivariate mixed models was calculated as the proportion of the 

variance component explained by adding each individual fixed effect relative to the 

variance component explained by the model containing only random effects (Snijders 

and Bosker 1999).  

 

Results  

Weather 

The climate during the 2004 growing season was slightly cooler and wetter 

than historical averages. The temperatures in 2004 followed the 30-year average with 

the exception of cooler temperatures at the beginning of the growing season (Figure 

1.1a). Annual precipitation was 910 mm, which was slightly above normal due to 

higher precipitation during the beginning and end of the growing season (Figure 1.1b).  

Soil analysis 

The fields we used for our experimental plots were selected to represent a 

fertility gradient due to their wide range in SOM content. Total soil N varied more 

than two-fold across the fields from 0.9 to 2.3 mg N g soil-1 (Figure 1.2). Occluded 

POM N had the widest range of variation across fields of all soil variables measured, 



Month

1 2 3 4 5 6 7 8 9 101112

M
ea

n 
ai

r 
te

m
pe

ra
tu

re
 (

C
)

-10

0

10

20

30 2004
Historical

a

Month

1 2 3 4 5 6 7 8 9 101112

M
ea

n 
pr

ec
ip

ita
tio

n 
(c

m
)

0

5

10

15

20
2004
Historical

b

Figure 1.1.  Average monthly a) temperature and b) precipitation sums for 2004 and 
30-year historical averages for Penn Yan and Aurora, New York. 
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Figure 1.2.  Correlations between soil clay concentration and N pools across 13 farm 
fields. P-values represent significance test results from covariate analysis of 
management type effects on soil N pools (total soil N, microbial biomass N (MBN), 
occluded particulate organic matter N (oPOM N), and inorganic N (extractable NO3

- 
and NH4

+)), including soil clay concentration as a covariate. HBN= Haber-Bosch N 
fertilizer-based management; LEG= legume-based N management (LEG).
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ranging from 68 to 328 mg N kg soil-1. Inorganic N ranged from 2.3 to 9.6 mg N kg 

soil-1 across the fields and differed by soybean variety. Inorganic N in M129 Non-Nod 

plots was lower than in the two N2-fixing varieties (p<0.0001). Only the inorganic N 

data from the M129 Non-Nod plots, which ranged from 2.5 to 6.8 mg N kg soil-1, was 

used to represent inorganic N pools in all analyses (Figure 1.2).  

Soil N pool sizes were influenced by a combination of soil texture and 

management history. Soil clay concentration was greater in LEG fields compared to 

HBN fields (p=0.09) and, as a result, soil texture is confounded with management 

regime, making it necessary to use covariate analyses to assess management effects on 

soil properties. The LEG fields tended to have larger labile N pools (Figure 1.2). 

Covariance analysis using clay as the covariate indicated that management history 

explained a significant proportion of the variance for inorganic N (p=0.03) and oPOM 

N (p=0.06). The variance in MBN and total N was correlated with soil texture (Figure 

1.2). When controlling for soil clay content, LEG fields had lower pH and higher N 

min than HBN fields (Table 1.3). 

Soybean varietal characteristics 

The two N2-fixing soybean varieties were similar for most plant variables 

measured. The M129 Nod and Vinton 81 varieties were similar in total aboveground 

biomass and total N, supporting the use of the M129 Non-Nod as a reference plant for 

both varieties (Table 1.4).  The % N from fixation did not differ between varieties at 

early pod formation (R4), but was greater in the Vinton 81 variety by full pod 

formation (R6). Varietal differences for N2 fixation variables were primarily due to 

the different B values and the higher N concentration of the food-grade, high prote

Vinton 81 soybeans (Table 1.4). Both the specific number and mass of nodules 

measured at R4 were greater for M129 Nod compared to Vinton 81 even though % N 

from fixation and total N

in 

2 fixed did not differ by variety at R4 (Table 1.4). As  
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Table 1.3. Subset of soil properties measured for each field and results for analysis of management effects on soil variables. Fields 
are labeled by management type (H= Haber-Bosch N fertilizer-based; L= legume N-based management practices). 
 

Field Sand Clay pH P K Ca fPOMNa DONb N mine 

  
 g kg-1  

 
 mg kg-1   mg kg soil-1  

mg N kg 
soil-1 week-1 

H1 470 260 7.37  9.4 90 1880 27 10.0  3.8 
H2 400 280 7.57  3.9 84 3610 19 8.7  6.1 
H3 480 210 7.04  8.7  120 1530 24 10.0 10.1 
H4 380 290 7.49  9.0 64 3160 27 7.4  5.4 
H5 510 170 6.12  5.3 51 816 34 13.5 11.2 
L1 480 250 6.79  3.7 78 1810 32 8.1  9.1 
L2 400 240 7.35 11.3 60 2710 25 

18

14.3 15.2 
L3 480 250 6.49  1.7 47 1660 25 7.8  6.8 
L4 310 340 6.81  6.0 45 1590 35 9.7  8.1 
L5 400 300 6.56  3.6 47 1780 33 12.6  9.3 
L6 270 400 7.23 16.9 53 2960 34 10.7  5.2 
L7 390 310 6.60  7.4 42 1900 35 8.9  7.5 
L8 330 290 6.37 20.1 86 2440 38 11.3  8.1 

Significance test of management effect, controlling for textural differencesd 
p value    0.04 ns ns ns ns ns 0.05 

 

a free particulate organic matter N; b dissolved organic N; c N mineralization potential;   
d Soil clay content included as a covariate in models to test soil variable difference between fields under Haber-Bosch N-based and 
legume N-based management practices

 



Table 1.4. Average shoot biomass, shoot N, shoot N concentration, biomass δ15N, B values (shoot δ15N of legumes grown in N-free 
media), specific nodule number and weight, N2 from fixation and N assimilated from soil for all soybean varieties at early pod-fill 
(R4) and full pod-fill (R6). 
 

 R4  R6 

 Vinton 81 M129 Nod Non-Nod  Vinton 81 M129 Nod Non-Nod 
Aboveground biomass (Mg ha-1) 1.3 ba 1.4 a 0.9 c 5.3 a 5.3 a 3.2 b 
Aboveground total N (kg N ha-1) 41 a 41 a 22 b 185 a 172 a 62 b 
Aboveground N concentration (mg g-1) 3.19 a 2.90 b 2.43 c 3.51 a 3.23 b 1.91 c 
Aboveground δ15N (‰) 3.22 a 3.07 a 6.06 b 0.43 a 
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0.54 a 4.32 b 
B value (‰) -2.28 a -2.70 b  -1.98 a -2.26 b  
# of nodules (# g root-1) 73 a 86 b      

nodule weight (mg g root-1) 180 a 200 b      

% N from fixation 34 a 34 a  62 a 57 b  
N2 from fixation (kg N ha-1) 16 a 14 a  116 a 98 b  
N from soil (kg N ha-1) 26 ab 27 a 22 b 69 a 74 a 62 a 

 

a Different letters within rows indicate significant differences by variety at each sampling (p<0.05).

 



expected, aboveground biomass and total N were significantly lower for the non-

nodulating M129 isoline than for the N2-fixing varieties at both sampling times. 

15N natural abundance  

The 15N natural abundance method relies on the natural 15N enrichment of soil 

N pools relative to atmospheric N2 to distinguish between N sources. The δ15N 

signatures of the N2-fixing and non-nodulating soybeans showed clear separation and 

the magnitude of the difference ranged from 2.2 ‰ to 6.7 ‰ across the fields at R6 

(Figure 1.3). The δ15N natural abundance signature of M129 Non-Nod soybeans 

varied across the 13 fields over time. Average δ15N of the non-nodulating soybean 

biomass decreased between R4 and R6 (p<0.0001). The δ15N of the two nodulating 

soybean varieties did not significantly differ at either sampling point. The significant 

positive correlations between % N from fixation at R4 and specific nodule mass for 

both soybean varieties support our 15N natural abundance results (r=0.67, p=0.01 for 

M129, and r=0.78, p=0.002 for Vinton 81).  

Biomass and BNF variability across fields 

Biomass and BNF varied considerably across the 13 fields. At R4, field 

average % N from fixation varied 4-fold, ranging from 12 % to 63 % (data not 

shown). By R6, the variation in the relative reliance on N2 fixation ranged from 36 % 

to 82 % (Figure 1.4). Total N2 fixed had wider variation, from 40 to 224 kg N ha-1, 

and was strongly correlated with aboveground biomass (Table 1.5). 

Total N uptake by the non-nodulating soybean provides one indicator of soil N 

availability across fields. Soil N uptake by the non-nodulating soybean varied more 

than 4-fold across the fields from 28 to 116 kg N ha-1 (data not shown). At R6, average 

soil N uptake between the N2-fixing and non-fixing varieties did not differ (Table 1.4), 

however, the N2-fixing soybean varieties accumulated more soil N compared to the 

non-nodulating soybean in several fields. The difference in soil N uptake by
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Figure 1.3.  Field average δ15N signatures of N2-fixing and non-nodulating soybean 
aboveground biomass at full pod-fill (R6). Error bars represent standard errors (n=4 
for non-nod and n=8 for N2-fixing soybeans).
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Figure 1.4.  Field averages for a) % N from fixation by soybean variety; and b) N2 
fixed and soil N uptake by variety (M129 (open bars) and Vinton 81 (hashed bars)). 
Error bars represent standard errors (n=4).
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Table 1.5. Coefficients of correlation between aboveground biomass of N -fixing 
soybeans, N  fixed, % N from fixation, soil N uptake, and non-nodulating soybean 
biomass N at full pod-fill (R6). 

2

2

 

 N2 fixed 
Soil N 
uptake 

% N from 
fixation Non-nod Nb 

Biomass 0.89*** 0.66* 0.36 0.28 
N2 fixed  0.35 0.61* 0.05 
Soil N uptake   -0.38 0.74** 
% N from fixation    -0.53 

 

nodulating and non-nodulating soybeans was correlated with several soil N fractions. 

The ratio of nodulating to non-nodulating soybean soil N uptake increased with 

decreasing total soil N (Figure 1.5), microbial biomass N (r= -0.69, p=0.009), and 

oPOM N (r= -0.63, p=0.02).  

Analyzing variation in BNF 

Aboveground N2 fixed was strongly correlated with both soybean 

aboveground biomass production and % N from fixation (Table 1.5). Soil N uptak

the non-nodulating soybeans, a potential indicator of soil N availability, was pos

correlated with soil N uptake of the N

e by 

itively 

2-fixing soybeans, but was not significantly 

correlated with either total N2 fixed or % N from fixation (Table 1.5).  

The full continuum of soil N pools we measured was negatively correlated 

with the % N from fixation at R6 with significant correlations for inorganic N and 

oPOM N (Table 1.6). All of the soil N variables were positively correlated with each 

other as expected, indicating the strong linkages among soil N pools that play different 

roles in N cycling and have extremely different turnover times (Table 1.6). The 

relationship between the % N from fixation and soil N pools did not differ by variety. 

There were no significant correlations between other soil nutrients (including P, K, Ca, 

Mg, etc.) and soybean biomass, total N2 fixed, or % N from fixation (data not shown). 
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Figure 1.5.  Regression between the ratio of N2-fixing soybean soil N uptake to non-
nodulating soybean soil N uptake and total soil N, measured in the top 20 cm, across 
13 fields with a history of legume-based N (LEG) and Haber-Bosch N-based (HBN) 
management. 
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Table 1.6. Coefficients of correlation between soybean % N from fixation at the final 
sampling and total soil N (total N), occluded particulate organic matter N (oPOM N), 
microbial biomass N (MBN), and extractable NO3

-1 and NH4
+ (inorganic N). 

 
 Total N log(oPOM N) MBN log(Inorganic N) 
%N from fixation -0.32 -0.65*    -0.27             -0.68** 
Total N  0.62*     0.58* 0.43 
Log(oPOM N)   0.40                 0.84*** 
MBN    0.45 

 
* p <0.05, ** p <0.01, ***p <0.001 

 

Due to the collinearity of soil variables, we used multivariate analyses to assess 

the relative importance of soil N pools, other soil nutrients, pH, and soil texture in 

regulating N2 fixation and biomass production. We used both principal components 

analysis (PCA) and forward stepwise regressions to identify which soil variables were 

the most important in explaining the variation in BNF. PCA resulted in three principal 

components that accounted for 77% of variation in the soils data (Table 1.7).  

Each principal component represents an independent variable that is a 

composite of several soil variables. PC 1 explained 47% of the variation in the soils 

data with soil texture (sand and clay) having the strongest, but inverse loadings, 

followed closely by total soil N, P, MBN and oPOM N (Table 1.7). Total soil N and 

MBN vectors clustered directionally with soil clay on PC 1 (Figure 1.6). Soil Ca, 

inorganic N and oPOM N had the strongest loadings on PC 2 which explained 17% of 

the variation (Table 1.7). Soil P and K had the strongest loadings on PC 3 which 

explained an additional 13% of the variation. 

The PCA results indicated a strong influence of soil texture on the % N from 

fixation, but did not explain a significant proportion of the variance in total N2 fixed. 

The % N from fixation was significantly negatively correlated with PC 1, but not with 

PC 2 (Table 1.8). The negative correlation with PC 1 indicated decreased reliance on 

N2
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Table 1.7. Principal Components Analysis eigenvalues and variable loadings for the 
first 3 principal components explaining a total of 77% of the variation in the data. 
 

 PC1 PC2 PC3 

% variation 
explained 47% 17% 13% 
Eigenvalue 4.19 1.55 1.17 

Variable loadings   
Sand -0.43 -0.13 0.19 
Clay 0.41 0.10 -0.34 
P 0.32 0.29 0.43 
K -0.16 0.44 0.61 
Ca 0.26 0.53 -0.12 
Total soil N 0.38 0.05 0.22 
MBNa 0.35 -0.04 -0.16 
Log (oPOM N)b 0.34 -0.40 0.27 
Log (Inorganic N)c 0.26 -0.50 0.36 

 

a microbial biomass N;  b occluded particulate organic matter N;  c extractable NO3
-1 

and NH4
+.
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Figure 1.6.  Principal components biplot of PC 1 and PC 2. Vectors represent 
correlations between soil variables and principal components. Open circles represent 
fields under Haber-Bosch N based management and filled circles represent fields 
under legume-based management.
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fixation with increasing soil clay and total N content. Nitrogen fixation variables were 

not correlated with PC 2, despite the strong loadings of labile N pools on this 

component. Aboveground biomass and N2 fixed were not significantly correlated with 

any of the principal components (Table 1.8). Fields clustered by management history 

across PC 1, reflecting the slightly higher average clay content for LEG fields than 

HBN fields (Figure 1.6). Using covariate analysis, management history did not explain 

a significant proportion of the variance in the % N for fixation or total N2 fixed when 

controlling for soil clay content. 

 

Table 1.8. Coefficients of correlation between plant variables measured at full pod-fill 
(aboveground biomass of N2-fixing soybeans (Biomass), N2 fixed, soil N uptake, % of 
N from fixation, and non-nodulating biomass N (Non-nod N)), and principal 
components 1 and 2 (PC 1 and PC 2). 
 

 PC 1 PC 2 
Biomass -0.37 -0.33 
N2 fixed -0.49 -0.19 
Soil N uptake 0.12 -0.58* 
% N from fixation -0.65* 0.27 
Non-nod N 0.66* -0.34 

 * p<0.05 
 

The effects of texture and soil N availability on soybean soil N assimilation 

differed for N2-fixing and non-nodulating soybeans. The N uptake of the non-

nodulating soybeans was positively correlated with PC 1, possibly reflecting the 

overlap between the N fertility and textural gradients across the fields (Table 1.8). The 

more labile soil N pools represented by PC 2 were positively correlated with soil N 

uptake of the N2-fixing soybeans (Table 1.8).  

Stepwise regression results reinforced the importance of soil texture followed 

by N availability as regulators of N2 fixation across these fields.  Sand concentration 

and inorganic N explained 20% and 14% of the variation in % N from fixation, 

respectively (Table 1.9a). The model results did not differ by soybean variety. 
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Variation in total N2 fixed was also best explained by a combination of soil texture 

and soil N variables. Sand concentration and MBN explained a combined 41% of 

variability in N

the 

ss 

the 13 

 of 

2 fixed and the slopes were positive for both variables (Table 1.9b). 

Soil sand concentration was the best indicator of site productivity for soybeans across 

these fields, having the strongest correlation of all soil variables with both soybean 

biomass and total N2 fixed (r = 0.54, p = 0.06; r = 0.66, p = 0.01, respectively).  

 

Discussion 

Variability in soybean nitrogen fixation 

While the average proportion of N2 fixed by soybean plants in this study 

(60%) is similar to literature values (Unkovich and Pate 2000; Goss et al. 2002), we 

observed significant variability in both the % N from fixation and total N2 fixed acro

these fields.  Both biomass production and the relative reliance on N2 fixation 

contributed to the nearly 6-fold variation we observed in total N2 fixed across 

fields.  

The suppressive effect of soil N availability on BNF was secondary to the 

environmental and site characteristics that determined the % N from fixation and total 

N2 fixed. For example, soil sand content was a strong predictor of % N from fixation 

(Table 1.9a), suggesting a texture-related effect on the efficiency and effectiveness

the N2 fixation symbiosis. Soil texture differences also contributed to most of the 

variation in N2 fixed with sandier soils supporting greater aboveground biomass and 

N2 fixed (Table 1.9b). In contrast, the non-nodulating soybean N uptake was 

positively correlated with PC 1, reflecting a positive correlation with soil clay content 

and total soil N (Table 1.8). One of the few other studies that attempted to parse the 

factors that affect BNF across variable soil types also found higher rates of perennial 

clover BNF on sandier soils across pastures in Australia (Riffkin et al. 1999). Oxygen 
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availability is an important regulator of nitrogenase activity and legume nodules can 

have 4 times the oxygen demand of an equal biomass of roots (Layzell and Hunt 

1990). Therefore, BNF may be more sensitive to an increased frequency of water 

saturated conditions in finer textured soils than root assimilation of mineralized so

in non-fixing plants. Soil textural effects on soil moisture and aeration can also affect 

plant pathogens. While we did not observe evidence of disease pressure, finer-textu

il N 

red 

ils can have increased prevalence of soybean stem and root pathogens (Workneh et 

1.9. Mixed model results with variables selected using forward stepwise 
g ed a) the var bility  the relative reliance of N2-fixing 

soy nd b  the variability in aboveground N2 
fix
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Soil N availability did reduce the % N from fixation, but its impact was 

secondary to that of soil texture. Soil inorganic N measured at the end of the growing

season in a year when no fertilizers were applied represented N that was recently 

mineralized from endogenous soil N pools. Soil inorganic N concentrations had the 

strongest negative correlation with % N from fixation (Table 1.6) and, of all of the soil 

N pools measured, was the best predictor of % N from fixation as selected through 

stepwise regression (Table 1.9a). The strong positive correlation between inor
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and oPOM N suggests that oPOM N may be a major source of inorganic N, which, in 

turn, inhibited BNF (Table 1.6).  Occluded POM N is a pool that responds to 

differences in management legacies over the timeframe of years to decades (Wander et 

 P or K and soybean 

growth

on-

an 

 

e 

 

 The 

sed 

 

ybeans to the fertility  and textural gradients reveals the 

comple s.  

al. 1994; Wander 2004). We found no relationship between soil

, suggesting that these nutrients were not limiting in these fields. 

Interactions of plant N acquisition strategies and soil nitrogen 

While indicators of soil N availability were negatively correlated with the 

proportion of N from fixation, the response of soil N uptake was more complex. In 

soils at the more fertile, finer-textured end of the gradient, soil N assimilation by n

nodulating and N2-fixing soybeans was essentially the same. However, at the lower 

end of the scale, where reduced soil fertility limited growth of the non-nodulating 

soybeans, the N2-fixing soybeans tended to accumulate greater amounts of soil N th

the non-nods (Figure 1.5). George et al. (1993) found similar differences across an 

elevation and fertility gradient with more soil N uptake at low soil N availability in

N2-fixing soybeans compared to the non-nodulating plants.  They concluded that thes

differences indicated a weakness of the 15N natural abundance method. However, 

these differences in N uptake may not be methodological artifacts, but instead result 

from a combination of texture- and fertility-related effects. The differences may reflect

the ability of the N2-fixing soybeans to avoid N limitation, increase carbon allocation 

belowground, and increase access to soil nutrients even as soil reservoirs decline.

increase in belowground carbon allocation could represent a combination of increa

root biomass to explore a larger soil volume (Hodge 2003) and increased root C 

exudation which has been shown to stimulate net N mineralization of SOM pools

(Liljeroth et al. 1994; Hamilton and Frank 2001). This differential response of N2-

fixing and non-fixing so

xity of the influence of soil properties on BNF across heterogeneous field site
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Agroecosystem context 

Conducting research in intact agroecosystems provides unique opportunities 

and challenges. Due to the heterogeneity of farm fields resulting from differe

short- and long-term management histories and soil texture, multicollinear variable

make it difficult to conclusively identify causal relationships. However, this 

heterogeneity allows for analysis of the relative importance of different factors on 

working farms. For example, we found weak evidence that BNF is regulated by soil

availability from the mineralization of endogenous soil N pools. This contrasts with 

results from fertilizer-based field studies and hydroponic greenhouse experiments, 

which have consistently reinforced the concept that soil N availability is the dominant 

edaphic regulator of BNF (e.g., Hardarson et al. 1984; Streeter 1985; Waterer and 

Vessey 1993; Goss et al. 2002). Field experiments usually are carried out in the same 

field and N availability is manipulated across a relatively constant background soil 

environment (Boller and Nosberger 1994; Goss et al. 2002). We found that N

nces in 

s 

 N 

 

ct suppressive effect of soil N availability and other soil 

propert d 

The 

s 

 

 

applied, the N assimilation of non-nodulating soybeans was 28 kg N ha-1
 in the least 

2 fixation

was impacted by both the dire

ies, such as soil texture that may indirectly impact N2 fixation via oxygen an

water saturation dynamics.   

The effect of soil N on BNF depends on the relative level of N availability. 

Fertilizer studies clearly demonstrate that large pools of inorganic N inhibit BNF. 

subtle influence of soil N availability on BNF measured in this study suggests that N 

mineralization from SOM pools represented a much smaller N flux than even the 

lower levels of N fertilizer used in past studies, which are typically around 50 kg N  

ha-1 (Salvagiotti et al. 2008). The 2-fold range in total soil N across farm fields in thi

study represents a typical range found across fields in the Northeastern United States.

The fields were all productive agricultural fields. In a year when no fertilizers were
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fertile field and increased to a maximum of 116 kg N ha-1 in the most fertile field. 

Taken together, our results suggest that soil N availability from SOM mineralization is 

rms in this region.  

Implica
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ping 
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d legume root incorporation into 

stable s
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N 

mall 

, 

due 

a relatively minor regulator of soybean BNF on grain fa

tions for agroecosystem nitrogen management 

Due to the limited number of sites and confounding issues of soil texture in 

this study, we were not able to confidently distinguish management history from so

type effects on SOM and related soil N pools.  The influence of management was 

significant for only inorganic N availability, oPOM N and N mineralization potential

measured at the end of the growing season.  Despite a history of surplus fertilizer N 

additions, the HBN systems had smaller labile N pools and N mineralization potenti

at the end of the growing season than the LEG fields. Legume-based systems build

SOM pools over time (Drinkwater et al. 1998; Gregorich et al. 2001; Marriott and 

Wander 2006). Mariott and Wander (2006) found that legume-based organic crop

systems had larger POM pools than conventionally managed systems. Puget and 

Drinkwater (2001) provided an example of one mechanism for improved retention o

legume C and N inputs in their finding of increase

oil aggregates in legume-based systems.  

Grain legumes vary in their N contributions to agroecosystems depending o

the proportion of plant N removed in harvested seed and the proportion of plant 

derived from fixation. Seed N exports commonly exceed N2 fixation inputs for 

soybean, resulting in a net removal of soil N (Salvagiotti et al. 2008). Nitrogen 

management recommendations in the Northeast suggest that soybeans provide a s

N benefit in the range of 20-30 kg N ha-1 for succeeding crops, which reflects N2 

fixation inputs, effects of soybean above- and belowground residue mineralization

and the indirect stimulation of SOM decomposition by low C:N soybean resi

inputs (Ketterings et al. 2007). Because we harvested soybeans prior to leaf 
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 fixation was greater than 60%, the 

average measured in this study (Figure 1.7).  

senescence to measure total NPP and due to plot size limitations, we did not directly 

measure seed yields. However, we can estimate soybean net N balances using our N

measurements because harvest index (ratio of seed yield to total abovegro

s) is typically stable within a given variety (Spaeth et al. 1984).   

Using measurements of N2 fixation and shoot N, and estimates of harvest 

index (HI), seed N concentration, and belowground plant N, we estimated the annual 

net soybean N balance for Vinton 81 soybeans in each field. We estimated an HI of 

0.36, based on measurements from farms included in this study of plant biom

Vinton 81 soybeans at peak growth and seed yields at full maturity during previous 

experiments (unpublished data). This value is in agreement with the average HI valu

measured by Johnson and Major (1979) across Maturity Group I soybean varieties. 

We assumed an average seed N concentration of 6.8% N, based on average values 

measured for Vinton 81 soybean seed N concentration across 15 fields in the study 

area in 2002, 2003, and 2004 (unpublished data).  To estimate belowground N, we 

assumed that 24% of total plant N was in belowground biomass at soybean maturi

based on data from Rochester et al. (1998). Field average soybean N inputs were 

estimated using our measurements of aboveground soybean biomass multiplied by 

1.24 to inc

.  

We estimate that N balances for Vinton 81 soybeans varied more than 5-fo

across the 13 farm fields, from -16 to +73 kg N ha-1, and averaged +20 kg N ha-1 

(Figure 1.7). The % N from fixation is a stronger predictor of soybean N balances tha

total biomass accumulation due to the constant ratio between biomass accumula

and seed N removal (Peoples and Craswell 1992). For the Vinton 81 soybeans, 

positive balances occurred when the % N from
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Figure 1.7.  Relationship between Vinton 81 soybean % N from fixation and 
estimated annual soybean N balance for fields with a history of legume-based N 
(LEG) and Haber-Bosch N-based (HBN) management. Error bars represent standard 
errors (n=4). 
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The relatively small influence of soil N availability on N2 fixation and, 

therefore, soybean N balance, suggests that soybeans do not serve as internal 

regulators of N cycling dynamics in these agroecosystems. Soybeans have undergone 

intensive breeding selection, often under high soil N conditions, which has altered 

their interactions with rhizobial symbionts. For example, Kiers et al. (2007) found that 

newer soybean varieties were less effective at sanctioning ineffective rhizobial 

symbionts than older varieties. These changes and other modifications may have 

impaired their ability to effectively down-regulate N2 fixation in the presence of soil 

N. Non-grain, perennial and winter annual legumes, which have undergone less 

intensive breeding selection, typically provide the main source of N inputs within most 

legume-based systems.  For example, the legume-based farms in this study integrated 

legumes into diversified cash-grain rotations at intervals that balanced crop N exports 

primarily through the use of red clover (Trifolium pratense) interseeded into winter 

grain fields. Further research is required to understand whether BNF of legume species 

used commonly as green manures respond to edaphic factors similarly to soybean, 

when used within diversified, temperate cropping systems.  

 

Conclusion 

Soil N availability is often considered to be a central factor affecting BNF. We 

found that the suppressive effects of soil N availability on BNF were secondary to site 

characteristics, such as soil texture and corresponding soil characteristics that 

determined total NPP. BNF interacted with the fertility gradient and conferred an 

advantage to accessing soil N in low fertility sites through increased C fixation of N2-

fixing plants relative to non-fixing plants. We found weak evidence of management 

history influence on either soil N pools or N2 fixation due to soil textural differences 

across the sites.  
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This study contributes to our understanding of the ecology of legume N2 

fixation in agroecosystems and the interactions of plant N acquisition strategies and 

SOM dynamics. It illustrates the importance of testing relationships indentified under 

relatively controlled experimental conditions within the context of heterogeneous 

agroecosystems to understand their functional significance. This study also provides a 

starting point for future research to develop decision-support tools for farmers that 

provide field-specific estimates of BNF to improve nutrient management practices. 

Further research is necessary to understand how to manage legume BNF in legume-

based systems across a range of soil types to improve N cycling efficiency and 

maintain crop productivity.  
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CHAPTER 2 

THE ECOLOGY OF RED CLOVER NITROGEN FIXATION INTERSEEDED 

WITH WINTER CEREAL GRAINS 

 

Abstract 

Incorporating legume cover crops into annual grain agroecosystems can reduce 

the negative environmental impacts of farming systems and improving our 

understanding of the ecology of nitrogen (N) fixation in agroecosystems can reduce 

farmers’ risks of relying on variable legume N inputs. Using the 15N natural 

abundance method, we estimated the N fixation of red clover (Trifolium pratense) 

interseeded into winter cereal grains, a common farmer practice, across a 

management-induced fertility gradient. Farm fields were classified as being under 

either legume-based (LEG) or Haber Bosch N fertilizer (HBN)-based management 

practices using the relative contributions of legume N fixation and HBN to total N 

inputs. To understand the interactive effects of grains on legume N fixation, we 

compared interseeded clover to monoculture clover and clover-orchardgrass (Dactylis 

glomerata) mixtures. The LEG fields had greater quantity and quality of soil organic 

matter and lower P and K availability than HBN fields. Particulate organic matter 

(POM) N and POM C:N were greater in LEG than HBN fields. Orchardgrass biomass 

was positively correlated with the management-induced N fertility gradient, but we 

found no evidence of soil N availability suppressing BNF. The average % N from 

fixation in interseeded clover was 73% in the fall and 65% the following spring, which 

was similar to the % N from fixation in clover-grass mixtures. Total N fixed in 

interseeded clover aboveground biomass ranged from 23 to 87 kg N ha-1 at the end of 

the first growing season and the average was similar to clover monocultures. 

Interseeding clover with grain improved clover N fixation in comparison to a red 
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clover monoculture without affecting the grain crop. Grain type exerted a strong top-

down effect on clover biomass likely due to competition for light between clover and 

taller spelt varieties.  

 

Introduction 

Legume cover crops can serve multiple functions in agroecosystems, including 

weed suppression, soil erosion reduction, nutrient retention, and increased nitrogen 

(N) availability from biological N fixation (BNF). Incorporation of legume cover 

crops into annual grain rotations remains limited, despite extensive evidence that they 

can reduce negative environmental impacts of agroecosystems while maintaining crop 

yields (Lotter et al. 2003; Snapp et al. 2005; Tonitto et al. 2006). Two primary 

constraints to the further reliance on legume cover crops are the limited niches 

available for including cover crops without foregoing a crop harvest every year and 

the uncertainty of the actual N inputs from legume cover crops.  

Diversified grain rotations that include a winter cereal grain harvested mid-

summer have a unique niche for the inclusion of cover crops. Interseeding perennial 

red clover (Trifolium pratense) into winter grains is a common practice in some 

regions of North America. Red clover is typically frost-seeded into a winter grain and 

then allowed to grow as a monoculture following grain harvest. Interseeded red clover 

can provide sufficient N for a succeeding corn (Zea mays) crop in addition to 

suppressing weeds in the winter grain and providing soil cover if allowed to grow 

through the winter (Bruulsema and Christie 1987; Vyn et al. 1999). Because only 

some of the legume N will become available to the following crop during the first year 

following incorporation, research on red clover N contributions have focused on 

measuring the N fertilizer replacement value rather than measurement of the biomass 

N inputs (Bruulsema and Christie 1987). No published studies have measured N 
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fixation inputs in these systems.  

Understanding legume N fixation inputs is critical for N mass balance 

calculations. Nutrient mass balances are useful performance-based metrics that can aid 

in nutrient management decision-making (Watson et al. 2002). Large positive balances 

indicate the potential for management practices to result in nutrient losses to the 

surrounding environment and negative balances indicate the potential for the 

degradation of soil pools over time. Multi-year nutrient mass balances are a 

particularly useful management tool for diversified, legume-based systems because 

legume N inputs cycle through SOM pools and become available over several years. 

Single year measurements of crop responses following legume incorporation do not 

capture these longer-term dynamics. Mass balances are also an important tool for 

understanding the ecology of agroecosystems. For example, connecting longer-term 

mass balance data with soils data can reveal the relative efficiency of nutrient cycling 

and retention in legume-based systems relative to conventionally fertilized systems 

(Drinkwater et al. 1998; Ross et al. 2008).  

Legume N inputs are a source of uncertainty in constructing mass balances due 

to the high spatial and temporal variability of BNF (Carlsson and Huss-Danell 2003). 

Soil N availability may be one important driver of N fixation in agroecosystems. Due 

to the high energetic costs of N fixation to the host plant, legumes preferentially take 

up soil N when available and reduce their reliance on N fixation. The increased soil N 

availability measured in legume-based systems could regulate N fixation inputs by 

inhibiting N fixation rates. However, the ability of endogenous soil N reservoirs, and 

internal N cycling processes such as mineralization, to regulate BNF has been studied 

only rarely because inorganic N additions typically are used to produce N-fertility 

gradients (e.g., Elgersma et al. 2000; Gan et al. 2002; Goss et al. 2002). 

In addition to the potential for bottom-up effects of soil fertility to influence N 
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fixation of red clover interseeded with winter grains, top-down competitive effects of 

the grain crop can influence clover growth and N fixation. Earlier studies of 

interseeded clover-winter grain systems identified light competition as a factor 

influencing clover growth, and shorter-statured spring grains were recommended for 

the establishment of perennial legume-based forages (Bula et al. 1954). Winter wheat 

(Triticum aestivum L. subsp. aestivum)-clover intercrops have been increasingly 

recommended because modern wheat cultivars are now similar in stature to spring 

grains (Blaser et al. 2006). Crop rotations on organic grain farms in the Northeast 

commonly include spelt (Triticum aestivum L. subsp. spelta), a winter grain that has 

undergone less intensive breeding selection than modern wheat varieties and is similar 

in stature to taller, older varieties of wheat. Spelt also has a later harvest date than 

wheat, extending the overlap period of clover and grain. There have been no published 

studies of the effects of spelt production on interseeded clover growth and N fixation.  

Intercropping species in agroecosystems can confer several advantages over 

monocultures, including increased land equivalent production due to complementary 

resource use (Vandermeer 1989). However, competitive interactions between species 

for resources such as light availability can overwhelm facilitative interactions. Relay 

intercrops, in which the period of interspecies competition is limited, can have higher 

productivity in comparison to simultaneous intercrops because each crop has a 

compensatory monoculture growth period (Zhang and Li 2003).  

To study the ecology of nitrogen fixation in red clover-winter grain intercrops, 

we established research plots across 15 farm fields in central New York. Our primary 

objective was to investigate how management-driven soil fertility differences 

influenced N fixation of red clover interseeded with a winter grain. In particular, we 

asked whether farm fields under legume-based management practices differed in soil 

organic matter quantity and quality compared with fields under HBN-based 
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management practices and how these differences influenced N fixation. To understand 

the relative effects of the grain-clover relay intercrop on clover growth and N fixation, 

we compared the interseeded clover-grain management practice to red clover grown in 

monoculture and in mixture with a grass. 

 

Materials and Methods 

Experimental sites 

Research plots were established in 2006 in 15 fields on seven commercial 

grain farms in central New York state (42 36’-42 44’ N and 77 03’-76 42’ W). All 

fields were located within 30 km of each other. The climate is characterized as humid 

temperate with a mean annual precipitation of 880mm and mean annual maximum and 

minimum air temperature of 14C and 3C, respectively. Weather data from the Penn 

Yan Airport, Penn Yan, NY (within 10 km SW of fields L2, L3, L4, H2, H5, H6, and 

M1), and the Aurora Research Farm, Aurora, NY (within 15 km NE of the remaining 

fields) were averaged for data covering the study period and the 30-year historical 

average (National Climate Data Center).  

Fields were selected to reflect a gradient of management histories across soils 

with similar texture (Table 2.1). All soils are moderately well to well drained, mixed, 

active, mesic, Hapludalfs (USDA-NRCS SSURGO database). All fields had similarly 

diverse rotations including corn, annual grain legumes, and winter cereal grains. Three 

fields had no history of legume cover crop use and the other fields ranged from one to 

17 years of legume cover crop use. To expand the gradient to include fields that have 

been under longer-term legume-based management, fields managed using organic 

practices were included. Organic growers in the region primarily grow spelt rather 

than wheat. Therefore, four of the fields in the study were in spelt, one field was  



 

Table 2.1. Field management history, including years under organic management, % of N inputs from legume BNF over 5-year 
rotation cycle, crop rotation, and soil type. 
 

Fielda 
Years 
Org 

% N 
inputs 

from BNF 5-year rotationb Soil classification 

H1 0 8 corn-corn-corn-kidney beans-wheat/clover Fine sandy-loam, Oxyaquic Hapludalf 

H2 0 34 corn-soybean-corn-snap bean-wheat Silt loam, Oxyaquic Hapludalf 

H3 0 49 snap beans-wheat/clover-corn-snap beans-wheat/clover Fine sandy-loam, Oxyaquic Hapludalf 

H4 0 33 soybean-corn-corn-soybean-wheat Silt loam, Oxyaquic Hapludalf 

H5 0 49 snap beans-wheat/clover-corn-snap beans-wheat/clover Fine sandy-loam, Oxyaquic Hapludalf 

H6 0 16 hay-corn-corn-snap beans-wheat Silt loam, Oxyaquic Hapludalf 

M1 0 60 soybean-wheat/clover-corn-soybean-wheat/clover Gravelly loam, Glossic Hapludalf 

M2 16 46 
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soybean-wheat/clover-corn-kidney bean-spelt/clover Fine silt loam, Glossic Hapludalf 

M3 6 42 fallow-clover-corn-fallow-wheat/clover Silt loam, Oxyaquic Hapludalf 

L1 3 62 hay-hay-soybean-fallow-spelt/clover Silt loam, Oxyaquic Hapludalf 

L2 12 65 soybean-spelt/clover-corn-oats/peas-barley/clover Fine silt loam, Glossic Hapludalf 

L3 16 57 cabbage-spelt/clover-corn-kidney bean-wheat/clover Fine silt loam, Glossic Hapludalf 

L4 7 88 spelt/clover-cabbage-clover-clover-spelt/clover Fine sandy-loam, Glossic Hapludalf 

L5 17 60 soybean-wheat/clover-corn-soybeans-wheat/clover Silt loam, Oxyaquic Hapludalf 

L6 7 68 hay-soybean-wheat/clover-snap beans-spelt/clover Gravelly silt loam, Glossaquic Hapludalf 
 

a H=Haber-Bosch fertilizer N-based management; M=mixed HBN-legume or legume-manure management; L=legume-based management 
b Cropping years are separated by dashes and intercroppings are separated by slashes with 2006 crop on right. Corn (Zea mays); kidney bean and snap bean 

(Phaseolus vulgaris); rye (Secale cereale); wheat (Triticum aestivum); spelt (Triticum spelta); clover (Trifolium pratense); oats (Avena sativa); peas (Pisum 
sativum); cabbage (Brassica oleracea)

 



 

planted to winter barley (Hordeum vulgare), and the remaining 10 fields were planted 

to different varieties of winter wheat.  

A 5-year cropping history was compiled from participating farmers including 

all N inputs and crop yields for each field. Published values and data from several 

years of compost, manure, cover crop, and grain N sampling and analysis in the region 

were combined with farmer records of field inputs and exports to calculate estimated 

N inputs for each field. Nitrogen fixation inputs were the greatest source of 

uncertainty in N inputs. To estimate BNF inputs, we used the following equations: 

Red clover BNF = biomass * (biomass %N/100) * % Nfix * (1+root N)   (1) 

Grain legume BNF = (Grain yield/HI) * (biomass %N/100) * % Nfix * (1+root N) (2)  

Harvest index (HI) is the ratio of seed yield to total plant biomass. Values used for 

each legume are presented in Table 2.2. 

 
Table 2.2. Values for biomass N concentration, harvest index, the % N from fixation 
(% Nfix), and root N (proportion of total plant N in roots) used in equations 1 and 2 to 
estimate legume N fixation inputs over a 5-year crop rotation for each field.   
 

Crop 
Biomass 

% N 
Harvest 
Index % Nfix Root N  

Red clover 3.5 NA 65 0.43a 
Snap beans 2.5 0.50b 50c 0.18d 
Kidney beans 2.5 0.50b 50c 0.18d 
Soybeans 2.5 0.36e 60e 0.24f 
Field pea 3.2 0.50g 80 h 0.15i 

 

a Hogh-Jensen et al. 2004 ; b Bliss 1993; c Hardarson et al. 1993; d Fageria and Santos 2008; e 
See Chapter 1 ; f Rochester et al. 1998 ; g Lecouer and Sinclair 2001; h Hauggard-Nielsen et al. 
2008; i Mayer et al. 2003 
 

The 5-year management histories were used to classify each field based on the 

percent of total N inputs derived from either HBN fertilizers or legume BNF inputs. 
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The fields under primarily legume-based management relied on BNF for the majority 

of total N inputs. Nitrogen management categories were defined as: 1) >50% N inputs 

from HBN (HBN); and 2) >50% N inputs from legume BNF (LEG). All LEG fields 

were certified organic, ranging from 3 to 17 years since conversion to organic 

management practices (Table 2.1). Three fields did not fit into either management 

category because they either used HBN, but relied on BNF for more than 50% of N 

inputs (Field M1), or did not use HBN, but relied on BNF for less than 50% of N 

inputs with the remainder of N inputs from manure inputs (Fields M2 and M3). These 

three fields were grouped into a mixed category (MIX).  

Plot establishment and management 

Plots were established in a split-plot design with four replicate blocks per field. 

All collaborating farmers used conventional tillage practices and had seeded fields in 

the study to spelt, barley or wheat in the fall of 2005 using 19cm row spacing. The 

‘medium’ red clover variety was used in all fields. Paired plots of 1.5-m by 9.1-m 

were established with and without red clover in each block. For all LEG fields, except 

field L4, and fields H2, H5, and M1, farmers broadcast red clover seed between 

February 22 and April 21 at the rate of 11.2 kg/ha. To maintain grain plots without 

clover, we covered plots in each block with row cover during farmer seeding. In the 

remaining fields, we hand broadcast red clover seed into winter grain strips at the 

same rate of 11.2 kg/ha between March 8 and April 21.  

Winter grains were removed from a separate set of adjacent plots within each 

block to establish red clover monocultures, clover-orchardgrass (Dactylis glomerata) 

mixtures, and monoculture orchardgrass to serve as a reference plant for N fixation 

estimates. Within each block, spring winter grain growth was removed from a 1.5-m 

by 9.1-m area using flame weeding in LEG fields and field M1, or glyphosate 
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treatment in HBN fields and fields M2 and M3, in March and April 2006. We 

removed senescent aboveground biomass from herbicide-treated fields to produce 

similar starting conditions in all plots. Into cleared subplots measuring 1.5-m by 3.0-

m, we hand-broadcast perennial red clover and orchardgrass seed from May 5-7, 2006 

at the rates of 35 kg/ha for monoculture red clover (RC), 30 kg/ha for monoculture 

orchardgrass (OG), and 20 kg/ha for red clover and 15 kg/ha for orchardgrass in mixed 

plots (RC/OG).   

Farmers applied no fertilizers or amendments to the plots during the 

experiment with two exceptions. Composted poultry manure was spread on L2 at the 

rate of 3.4 t/ha and composted dairy manure was spread on H4 at an unknown rate in 

October 2006. Weeds were controlled by hand-weeding. Field M3 was inadvertently 

plowed after sampling in 2006 and, therefore, no spring data were collected from this 

field. 

Grain harvest and analysis 

Grains were harvested by hand from 0.25 m2 quadrats and straw height was 

measured within each plot between July 3 and July 17. Grain was dried, threshed, 

weighed, and ground. Grain samples were analyzed for total N and C using a LECO 

CN-2000 (Leco Corporation, St. Joseph, MO). Farmers harvested grain straw from 

some of the fields. Estimates of straw yields were supplied by farmers and N removed 

in straw was calculated using straw nutrient content data from the USDA NRCS Plant 

Nutrient Content Database. 

Plant sampling and analysis 

We sampled 0.25 m2 of aboveground biomass from all subplots, avoiding plot 

edges, between October 8 and October 26 and then again between April 24 and May 7, 

2007. If weeds were present, weed weights were measured. Weed biomass never 
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amounted to more than 9% of total biomass and was not included in biomass estimates 

for analysis. Biomass was dried at 60 C and first coarsely ground using both a 

hammer mill and grinder and then finely pulverized using a roller grinder. Samples 

were analyzed for 15N natural abundance and total N content using a continuous flow 

Isotope Ratio Mass Spectrometer (Stable Isotope Facility, UC Davis).  

Nitrogen fixation  

Nitrogen fixation was calculated using the 15N natural abundance method 

(Shearer and Kohl 1986). The proportion of N derived from atmosphere in legume 

biomass (% N from fixation) was calculated using the orchardgrass as the reference 

plant for the red clover: 

% N from fixation = 100*(( δ15N Grass − δ15N legume)/( δ15N Grass − B))  (3) 

where B is the δ15N value of the legume grown with atmospheric N2 as the only source 

of N after accounting for seed N. Total N fixed was calculated from the aboveground 

dry matter of the legume and its biomass N concentration and % N from fixation. 

To quantify the B value, we grew red clover in N-free, autoclaved, calcined 

clay media (Turface©, AIMCOR, Deerfield, IL) in a greenhouse. We surface 

sterilized seeds in 70% (v/v) ethanol for 3 minutes and 3% (v/v) bleach solution for 2 

minutes, followed by a 3 minute rinse in deionized water. We applied the same 

inoculant as used in field plots to sterilized seeds and fertilized plants with an N-free 

Hoagland’s nutrient solution (GreenCare Fertilizers, Chicago, IL). Plants were 

sampled at 17 weeks after planting and were processed using the same methods as 

plant samples from field plots. The resulting B value used for N fixation calculations 

was -1.65. 
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Description of soil N fractions measured 

A range of soil N fractions were quantified to span the continuum from labile 

to more recalcitrant N pools based on their availability for microbial mineralization. 

The different soil N fractions measured interact with environmental factors to 

determine soil N availability. Inorganic N is an ephemeral soil N pool with high 

temporal and spatial variability. Inorganic N pool size depends on inputs from 

microbially-mediated mineralization and losses from denitrification, volatilization, 

leaching, and plant and microbial immobilization. Microbial biomass (MB) is 

sensitive to temperature and moisture availability and represents an important sink, as 

well as a source, for inorganic N depending on C availability. Organic matter can be 

further partitioned into physical fractions to separate more labile pools from older, 

recalcitrant pools. Light fraction particulate organic matter (fPOM), also referred to as 

free POM because it is not associated with soil aggregates, is derived from recent litter 

inputs and can represent a sink or a source for inorganic N, depending on the source 

material C:N ratio and biochemistry (Boone 1994; Wander 2004). Occluded 

particulate organic matter (oPOM), is physically protected within soil aggregates and 

is more likely to be a net source of inorganic N than fPOM because it typically is more 

decomposed, resulting in a lower C:N ratio (Wander 2004; Marriott and Wander 

2006). 

Soil sampling and analysis 

We collected soil samples at three time points during 2006. Between June 7 

and June 15, we sampled soils across each replicate block (Sampling 1). Eighteen soil 

cores (2-cm diameter by 20-cm depth) were taken and composited from each block 

within each field. Between August 9 and August 11, we sampled soils following 

winter grain harvest (Sampling 2). Six soil cores (2-cm diameter by 20-cm depth) 
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were taken and composited from each block within each field. In October, we sampled 

soils from each individual subplot at the time of fall biomass sampling (Sampling 3). 

We used 7-cm Dutch augers to collect approximately 2 kg of soil from each plot to 20-

cm depth. To measure soil bulk density, we collected four soil cores of exactly 2-cm 

diameter by 20-cm depth from 8 randomly selected plots within each field. Table 2.3 

outlines the analyses completed for the different sampling times.  

 
Table 2.3. Soil analyses completed for different soil sampling points during 2006. 
 

Sampling Month  Soil analyses 
1 June Inorganic Na, N minb, texture, Morgan-extractable 

nutrientsc, total C and N 
2 August Inorganic N, N min 

3 Inorganic N, N min, DOCd, DONd, MBe, bulk 
density, POMf 

October 

 
a Extractable NO3

- and NH4
+ 

b N mineralization potential 
c Morgan-extractable P, K, Ca, Mg, Cu, Zn, Fe, Al, and Mn 
d Dissolved organic C and N 
e Chloroform-extractable C and N 
f Particulate organic matter 
 

For inorganic N and N mineralization potential (N min), we sieved a 

subsample of soil in the field for inorganic N and 7-day anaerobic N mineralization 

incubation using a 2 M KCl extraction (Drinkwater et al. 1996). We analyzed Total 

NH4
+ and NO3

- using a continuous flow analyzer (AlpKem, OI Analytical, College 

Station, TX). We stored the remaining sieved and unsieved soils at 4 C.  We 

completed dissolved organic C and N and microbial biomass extractions for each plot 

within 1 to 3 wk of field sampling on field moist samples using a modified chloroform 

fumigation-extraction method (Horwath and Paul 1994).  Soil samples (15 g) were 

shaken for 4 h at 150 rpm in 40 mL 0.5 M K2SO4 with or without 0.5 mL chloroform, 

centrifuged and filtered through a 0.45 μm filter. Samples were lyophilized and analyzed 
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for total C and N using a Vario El III CHNOS Elemental Analyzer (Elementar, Hanau, 

Germany). We present data as chloroform-extractable C and N since we did not use a 

Kc correction factor. 

We separated fPOM and oPOM using size and density separation as in 

Marriott and Wander (2006). Briefly, fPOM was separated by floating on sodium 

polytungstate (1.7 g/ cm3). The remaining soil sample was shaken with 10% sodium 

hexametaphosphate to disperse soil aggregates and then rinsed through a 53μm filter. 

The fraction larger than 53μm, which included sand and particulate organic matter, 

was retained. Total C and N of POM fractions and total soil were measured using a 

LECO 2000 CN Analyzer (Leco Corporation, St. Joseph, MO). To correct for 

carbonate content of each soil, a subset of samples from each field was treated with 6 

M HCl and then analyzed for total C (Midwood and Boutton 1998). Carbonate C, the 

difference between untreated and HCl treated soil C, was subtracted from total soil C 

to calculate total soil organic C content for each field. 

We sieved replicate composite samples of air-dried soil to 2mm for each field 

and analyzed for Morgan-extractable P, K, Ca, Mg, Cu, Zn, Fe, Al, and Mn (Cornell 

Nutrient Analysis Laboratory, Ithaca, NY) and particle size (Agricultural Analytical 

Services Laboratory, Penn State University, University Park, PA).  

Statistical analysis 

We computed statistics using JMP v.7 and SAS v.9.1 software (SAS Institute 

Inc., Cary, NC). Grain and no-grain treatments were compared using least squares 

means from mixed models including field and block as nested random factors. Least 

squares means from mixed models including field as a random factor were used to 

compare grain type and management type across fields. Multiple comparisons were 

calculated using Tukey’s HSD and pairwise comparisons were calculated using 
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Student’s t-tests. Correlations presented represent Pearson correlations of field means.  

Due to the multicollinearity of soil variables, we used principal components 

analysis (PCA) to generate independent variables that represented soil texture and 

nutrient availability. Prior to conducting PCA, variables were assessed for normal 

distribution. Microbial biomass N, oPOM N, P and K were log-transformed to fit a 

normal distribution. Principal components analysis was conducted using a correlation 

matrix due to the different units and ranges of variables. A subset of C and N pools 

was selected to span the range from labile to more recalcitrant organic matter pools 

and C:N ratios were included to reflect organic matter quality. A subset of non-

nitrogen soil nutrient variables and soil texture (sand, clay) was included that resulted 

in the greatest explained variability with the least redundancy. Principal components 

with eigenvalues greater than 1 and accounting for more than 10% of the variability in 

the data were retained. An orthogonal, Varimax rotation was used to improve the 

interpretability of the principal components. Principal component scores were then 

used as independent variables in mixed models to determine whether soil fertility 

explained the variability in plant response variables. 

 

Results 

Weather 

Average temperatures during the 12 months of the experiment were similar to 

the 30-year average, with the exception of a warmer fall in 2006 (Figure 2.1a). Total 

recorded precipitation was 1000 mm for the study period, which was slightly less than 

normal. The precipitation distribution through the year differed from historical 

averages with drier periods at the beginning and end of the growing season and more 

precipitation than normal during the middle of the growing season. (Figure 2.1b).  
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Figure 2.1. Monthly a) temperature average and b) precipitation sums for 2006-2007 study period and 30-year historical averages 
for Penn Yan and Aurora, New York.  

 



 

Management history effects on soils 

The 15 fields represented a fertility gradient due to management history and 

soil type. Both the quantity and quality of organic matter varied across the fields. Total 

organic carbon varied more than 2-fold across the fields from 13.5 to 29.3 mg g-1 

(Table 2.4). Occluded POM C:N ranged from 15 to 24. Several soil variables differed 

by management history when soil clay concentration was included as a covariate. 

Phosphorus was higher in HBN than LEG fields and K followed a similar trend (Table 

2.4). Inorganic N, fPOM N and oPOM N pools were larger in LEG fields. Differences 

in the quality of recent litter inputs are reflected in the greater N enrichment of fPOM 

in LEG fields (Table 2.4).  

Principal components analysis resulted in three independent variables 

representing soil texture, N availability, and P and K availability (Figure 2.2). The 

three components explained 75% of the variability in the soils dataset. Textural 

variables (sand and clay) had the strongest loadings on principal component (PC) 1, 

which explained 31% of the variability (Table 2.5). Total organic carbon and Ca were 

highly correlated with clay concentration and also had high loadings on PC1.  Soil 

carbon, chloroform-extractable N (MBN), and oPOM N were correlated with both 

PC1 and PC2, but had stronger loadings on PC2 (Figure 2.3). Labile organic matter 

quantity and quality and N availability were represented on PC2 with positive loadings 

for MBN, oPOM N, and inorganic N, and negative loadings for the C:N of oPOM and 

fPOM. The third PC explained 17% of the variability and had strong loadings for 

extractable P and K (Table 2.5). 

Principal components analysis confirmed the influence of management history 

on soil N, P and K availability. Management history was not correlated with soil 

texture and the management types did not separate along PC1 (Figure 2.2). The fields 

separated by management type along PC2 and PC3. LEG fields had higher average 
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Figure 2.2. Bi-plot of principal component (PC) scores for each field and variable 
loadings (correlations between soil variables and PCs) for PC 1 and PC 2, which 
explained 31% and 27%, respectively, of total variability in the dataset. Haber-Bosch 
N-based systems (HBN) and legume N-based systems (LEG) are significantly 
different for PC 2 (p=0.03), but not for PC 1 (p>0.05). MIX-HBN = mixed HBN and 
legume N-based management history; MIX-LEG = mixed legume N and manure N-
based management history 

60 



 

61 

PC2: N availability

-2 -1 0 1 2

P
C

3:
 P

 &
 K

-3

-2

-1

0

1

2
HBN

LEG
MIX-HBN
MIX-LEG

TOC

Sand

ClayCa
Inorg NoPOM C:N

fPOM C:N

PK

MBN
oPOMN

 
 
Figure 2.3. Bi-plot of principal component (PC) scores for each field and variable 
loadings (correlations between soil variables and PCs) for PC 2 and PC 3, which 
explained 27% and 17%, respectively, of the variability in the dataset. Haber-Bosch 
N-based systems (HBN) and legume N-based systems (LEG) are significantly 
different for both PC 2 and PC 3 (p=0.03 and p=0.01, respectively). MIX-HBN = 
mixed HBN and legume N-based management history; MIX-LEG = mixed legume N 
and manure N-based management history 



 

Table 2.4. Subset of soil variables for each field and differences by management type. Fields are sorted from low to high N fertility 
as defined by principal components analysis. H=history of Haber-Bosch fertilizer N-based management; L=history of legume-
based management; M=mixed HBN-legume or legume-manure management. 

Field TOCa Sand Clay P K Ca Inorg Nb MBNc 
fPOM 

Nd 
oPOM 

Ne 
fPOM 
C:N 

oPOM 
C:N 

   g kg-1   mg kg-1   mg kg soil-1      

L1 14.4 491 202 1.28 38 1218 2.41 4.80 23 42 26.7 23.7 
H1 19.2 478 227 8.83 88 2531 2.63 6.39 16 38 25.8 23.1 
H2 25.2 375 364 3.05 66 2645 3.87 8.32 25 58 27.3 22.9 
H3 15.7 519 219 8.43 123 998 3.29 6.24 21 46 29.3 23.7 
H4 22.8 373 351 5.38 90 2191 2.78 7.81 22 66 26.5 20.9 
H5 13.5 488 226 3.83 66 1287 3.13 8.54 15 42 25.3 20.7 
L2 17.8 472 276 2.50 77 2041 5.22 13.81 17 54 23.3 23.6 
H6 20.3 371 325 6.70 71 2406 2.15 12.13 23 70 23.2 18.9 
L3 17.2 421 264 3.03 76 1892 3.40 8.93 27 60 

62 21.8 18.6 
M1 14.0 543 169 9.25 124 645 3.04 9.58 27 56 25.2 19.5 
M2 21.1 483 246 3.83 66 2281 3.14 6.91 26 88 24.6 15.1 
M3 24.4 360 370 6.83 81 2623 4.31 14.78 32 78 20.9 18.4 
L4 17.3 483 216 4.90 72 1415 5.09 6.86 27 90 24.1 16.8 
L5 18.8 337 362 2.90 46 2023 4.29 15.00 30 93 21.2 14.7 
L6 29.3 374 309 1.35 51 2322 5.93 22.41 30 116 21.0 18.5 
SEf 1.0     0.57 4 135 0.48 0.88 3 6 0.8 0.7 

Management 
effectsg ns ns ns H>L H>L ns L>H ns L>H L>H H>L ns 

p-value       0.02 0.07   0.04   0.03 0.04 0.01   
a Total organic carbon; b Extractable NO3

- and NH4
+ measured in June 2006; c Microbial biomass nitrogen;  

d eFree particulate organic matter nitrogen; Occluded particulate organic matter nitrogen 
f Pooled standard errors; g Student’s t-test comparing H and L management categories, including soil clay as a covariate. 

 



 

scores than HBN fields for PC2, indicating higher soil N availability (p=0.03; Figure 

2.2). The LEG field with the lowest score on PC2 is the one transitional field included 

in the study which has been under organic management for only three years. HBN 

fields had higher average scores than LEG fields for PC3, indicating higher P and K 

availability (p=0.01; Figure 2.3).  
 
Table 2.5. Rotated principal component eigenvalues, variation explained, and loadings 
for three principal components that explain a total of 75% of the variation in the soils 
dataset.  
 

  PC1 PC2 PC3 
Eigenvalue 3.4 2.9 1.9 
Variation 
explained 

31% 27% 17% 

Rotated variable loadings   
Sand -0.86 -0.27 0.21 
Clay 0.92 0.17 -0.09 
Ca 0.88 0.11 -0.05 
Total organic C 0.81 0.33 0.00 
log(MBN)a 0.44 0.65 -0.08 
log(oPOM N)b 0.35 0.84 0.03 
Inorg Nc 0.12 0.57 -0.16 
oPOM C:N -0.05 -0.82 -0.11 
fPOMd C:N -0.18 -0.74 0.24 
log(P) -0.06 -0.04 0.96 
log(K) -0.14 -0.13 0.92 

 
a Microbial biomass nitrogen; b Occluded particulate organic matter nitrogen;  
c Extractable NO3

- and NH4
+ measured in June 2006; d Free particulate organic matter 

nitrogen 
 

Species interactions and clover N fixation 

Interseeded clover (IRC) average % N from fixation was similar to the % N 

from fixation of intercropped clover/ orchardgrass (RC/OG) and greater than 

monoculture clover (RC) and these differences remained in the spring (Figure 2.4). 

Interseeded clover had greater fall clover biomass production and N fixed than RC, 

despite a lower seeding rate (Figures 2.5a and 2.5b). Spring biomass production and N 
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Figure 2.4. Fall and spring average % N from fixation for interseeded red clover 
(IRC), monoculture red clover (RC) and red clover grown in mixture with 
orchardgrass (RC/OG). Different letters across a sampling period indicate significant 
differences between treatments (p<0.05). 
 

Figure 2.5. Fall and spring average (a) biomass and (b) N fixed for interseeded red 
clover (IRC), monoculture red clover (RC), red clover-orchardgrass mixtures 
(RC/OG), and orchardgrass monocultures (OG). Different letters across a sampling 
period indicate significant differences among treatments (p<0.05).  
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fixed did not differ between IRC and RC. Fall biomass N concentration of IRC was 

similar to RC/OG (Figure 2.6).  
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Figure 2.6. Fall and spring average aboveground biomass N concentration for 
interseeded red clover (IRC), monoculture red clover (RC), red clover grown in 
mixture with orchardgrass (RC/OG), and orchardgrass monoculture (OG). Different 
letters across a sampling period indicate significant differences among treatments 
(p<0.05). 
 

Grain and clover interactions 

The interseeded clover neither benefitted nor constrained grain production. 

Grain and straw N removal varied more than 2-fold across the study fields (Figure 

2.7). Grain yields, grain N concentration, and total grain N did not differ between 

paired plots with and without clover (Table 2.6).  

Grain type impacted fall clover biomass and N fixation. Management history 

and grain type interact because all spelt fields were fields under legume-based 

management. To control for management history effects on soil nutrient pools, the 

three PCs were included as covariates when comparing the effects of grain type on 

clover growth and N fixation. Despite large differences in grain biomass and grain N 

concentration between wheat and spelt, total N exported in grains did not differ by 
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Figure 2.7. Nitrogen exported in grain and straw from spelt (s), winter wheat (w), and 
barley (b) crops. Error bars represent standard errors (n=8). Fields are sorted from low 
to high N fertility as defined by principal components analysis. H=history of Haber-
Bosch fertilizer N-based management; L=history of legume-based management; 
M=mixed HBN-legume or legume-manure management. 
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Table 2.6. Least squares means for grain yield, N concentration, and total grain N in 
paired plots with and without clover.  
 

 Yield  N Grain N 
Treatment kg ha-1 g kg-1 kg ha-1 
Clover 2959 17.6 51 
No clover 2906 17.6 49 
Significance ns ns ns 

 

grain type (Table 2.7). Crop height was the most striking difference between spelt and 

wheat crops (Table 2.7). Controlling for differences in soil variables, fall clover 

biomass and N fixed were lower in spelt fields (Table 2.7).  There was no residual 

effect of grain type on spring biomass and N fixation.  There was also no effect of 

grain type on the % N from fixation in fall or spring.  

Because the majority of LEG fields were planted to spelt and spelt fields had 

lower fall clover biomass and N fixation, the effects of management history on soil 

fertility and the effects of grain type on clover biomass coincided. Therefore, grain 

height was included as a covariate in models to study the effects of soil nutrient 

availability on fall clover variables. Barley was similar in height to wheat (70 cm). 
 
 
Table 2.7. Least squares means for grain yield, grain N concentration, total N 
exported in grain, grain crop height, and average fall clover biomass and N fixed for 
spelt (n=4) and wheat (n=10) fields.  
 

  
Grain 
yield 

Grain 
N 

Grain N 
export 

Grain 
crop 

height 

Fall 
clover 

biomass 

Fall 
clover N 

fixed 

Crop Mg ha-1 g kg-1 kg ha-1 cm Mg ha-1 kg ha-1 

Spelt 1.91 20.5 39 128 2.04 35 
Wheat 3.01 17.2 50 69 3.28 65 

Significance 0.07 0.007 0.3 <.0001 0.02 0.02 

 

 



 

Clover N fixation variability 

Clover biomass and N fixation varied across the fields and the % of N from 

fixation was higher in fall than the following spring. Clover seeding date, which 

ranged from February 22 to April 21, did not affect fall clover biomass production 

(p>0.05). Fall biomass varied by over 300% from 1.3 to 4.2 Mg ha-1. The N fixed was 

correlated with biomass in both the fall and the spring (r=0.73, p=0.004 and r=0.89, 

p<.0001, respectively). The relative reliance of clover on N fixation (% N from 

fixation) in the fall ranged from 53% to 88% and averaged 73%. Spring % N from 

fixation ranged from 35% to 78% and averaged 65% (Figure 2.8). Total N fixed in 

aboveground biomass averaged 57 kg N ha-1
 in the fall and 36 kg N ha-1 in the spring. 

Spring clover biomass and N fixation measurements were not correlated with 

corresponding fall measurements. In contrast, fall and spring orchardgrass biomass N 

were strongly correlated (r=0.78, p=0.001).  

The N fertility gradient did not explain the variability in clover N fixation. 

Positive correlations between both fall and spring orchardgrass N and PC2 provide 

evidence of a plant response to the N fertility gradient across field sites (Figure 2.9). In 

contrast, clover soil N uptake and N fixed were not correlated with soil N availability 

in fall or spring (Figure 2.9).  Soil N availability also did not explain the variability in 

the % N from fixation in fall or spring. 

Soil texture and the availability of P and K accounted for a significant 

proportion of the variability in fall clover soil N uptake and spring N fixation. 

Including grain crop height as a covariate, fall clover soil N uptake had a significant, 

negative relationship with PC1, indicating increased soil N uptake in sandier soils 

(F=6.51, p=0.02). PC1 was also a significant predictor of the % N from fixation in the 

spring (F=6.86, p=0.01), and the % N from fixation was higher in sandier soils. The 

variability in fall soil N uptake was also explained by PC3, suggesting P and K, in 

 68



 

Field

L1 H1 H2 H3 H4 H5 L2 H6 L3 M1M2M3 L4 L5 L6

%
 N

 fr
om

 fi
xa

tio
n

20

30

40

50

60

70

80

90

100
Fall
Spring

 
 
Figure 2.8. Clover interseeded with grain relative reliance on N fixation estimated in 
fall and spring clover aboveground biomass across 15 fields. Horizontal lines 
represent averages across all fields for fall (solid line) and spring (dashed line). Error 
bars represent standard errors (n=4). Fields are sorted from low to high N fertility as 
defined by principal components analysis. H=history of Haber-Bosch fertilizer N-
based management; L=history of legume-based management; M=mixed HBN-legume 
or legume-manure management. 
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addition to soil texture, may have limited clover growth (F=7.40, p=0.01). 

 

Discussion 

 We identified a management-induced N fertility gradient across farm fields. 

Fields under legume-based management had greater overall N availability as 

determined by principal components analysis (Figure 2.2). The differences in N 

availability were due to differences in both the quantity and quality of SOM pools. 

The differences in quality are reflected in the significant differences in fPOM C:N by 

management type (Table 2.4) and the strong loadings of fPOM C:N and oPOM C:N 

on PC2 (Table 2.5). These results support the finding of previous studies that have 

found a greater proportional retention of N inputs in legume-based systems than HBN-

based systems (Clark et al. 1998; Drinkwater et al. 1998; Ross et al. 2008).  

 Soils data from the three fields that did not fall into our categories of legume-

based or HBN-based management histories highlight important distinctions between 

legume-based, HBN-based, and manure-based systems due to the quantity and quality 

of N inputs. The coupling of C and N inputs in legume-based systems increases N 

retention and incorporation into stable soil aggregates, reducing its susceptibility to 

leaching losses in contrast to HBN fertilizer additions (Puget and Drinkwater 2001; 

Marriott and Wander 2006). The grouping of the one field with a history of HBN use 

and a high reliance on BNF for N inputs with the LEG fields along PC2 provides 

additional support for this conclusion (Figure 2.3). Manure-based systems also have 

C-N coupled inputs, but the quantity and fate of these inputs can be distinctly different 

than legume inputs. Manure-based systems tend to apply N, P, and K at levels that 

exceed exports (Nielsen and Kristensen 2005). The organically managed fields that 

relied on manure inputs for the majority of N inputs clustered with the HBN fields in 

terms of P and K availability, and with LEG fields in terms of N availability (Figure 
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2.3). Maintaining P and K fertility is a key challenge of legume-based systems (Berry 

et al. 2003). 

Comparing relay crops, intercrops and monocultures 

The relay cropping of clover interseeded into a grain combined the benefits of 

high reliance on N fixation of a mixture with the high legume biomass of a 

monoculture. Red clover interseeded with a winter grain fixed more N than both red 

clover monocultures and clover grown in mixture with a grass. Interseeded red clover 

had similar reliance on N fixation as the clover-orchardgrass mixture, which was 

higher than the clover monoculture (Figure 2.4). This suggests that the grain decreased 

soil N availability, increasing clover reliance on N fixation. The period of monoculture 

clover growth following grain harvest resulted in similar biomass accumulation in the 

interseeded and monoculture clovers (Figure 2.5), which is particularly interesting 

because the monoculture seeding rate was approximately 3-times greater than the 

interseeded clover seeding rate. Blaser et al. (2007) found small or no effect of seeding 

rate on clover biomass when interseeded with cereal grains. We observed distinct 

differences in interseeded clover stature compared to monoculture clover. The 

competition with the grain for light availability appeared to result in greater 

investment in vertical growth for interseeded clover. This is reflected in the lower N 

concentration of interseeded clover relative to monocultures (Figure 2.6).  

Top-down grain effects on clover growth 

 Winter grain type had strong top-down effects on clover biomass. Spelt fields 

had lower clover biomass and total N fixed at the end of the first year of growth (Table 

2.7). Reduced clover biomass in spelt fields was likely due to light competition from 

taller spelt plants (Klebesadel and Smith 1959). Because the spelt fields were all 

legume-based fields that had higher N availability and lower P and K availability on 

average, it is difficult to separate the effects of soil fertility and grain type on clover 
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dynamics. We did not find any evidence of P and K limitation in monoculture clover 

growth, but total biomass accumulation in RC/OG mixtures was positively correlated 

with P and K availability (Chapter 3).  

Farmers have observed the influence of crop stature on clover biomass. In 

years with higher than normal precipitation prior to grain harvest, red clover biomass 

accumulation can interfere with harvest of shorter stature wheat varieties. Some 

farmers prefer using taller varieties of wheat or spelt for intercropping with clover 

because their taller stature reduces the risk of clover interference with grain growth 

and harvest in wet years (Fred Sepe and Klaas Martens, personal communications). 

Clover competition with grain harvest was not a problem during the year when this 

study was conducted.  

Soil fertility effects on clover N fixation 

 We found no evidence of soil N availability inhibiting N fixation across the 

fertility gradient. Nitrogen additions typically exceed N harvests from farm fields in 

this region, placing these fields on the upper end of a scale of N availability ranging 

from N limited to N saturated (Drinkwater and Snapp 2007). The presence of a N 

fertility gradient across sites was confirmed by the positive correlation between 

orchardgrass N accumulation and PC2 (Figure 2.9). The lack of a response of N 

fixation to the N fertility gradient was not isolated to the IRC treatment. Monoculture 

RC N fixation also was not correlated with N fertility (Chapter 3). The RC/OG 

mixture showed a small response, with a weak correlation between PC2 and red clover 

biomass relative to total mixture biomass (Chapter 3). In a separate study, we found a 

slightly stronger influence of soil N availability across a similar set of sites and 

soybean (Glycine max) N fixation, but soil texture was a much stronger driver of 

soybean N fixation than N availability (Chapter 1).  

 The accepted concept that soil N availability is a dominant edaphic factor 
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influencing legume N fixation has rarely been tested across a gradient of N availability 

driven by the mineralization of endogenous SOM pools. Most research has focused on 

the response of N fixation to recent, short-term pulses of labile N additions through the 

addition of HBN fertilizers at different rates (Boller and Nosberger 1994; Hogh-Jensen 

and Schjoerring 1997). The only study we are aware of that measured N fixation 

response to soil N availability on farms without recent fertilizer additions found a 

negative relationship between soil nitrate and legume N fixation (Schwenke et al. 

1998). However, the soil nitrate levels measured by Schwenke et al. (1998) on farms 

in Australia following fallow periods were more than an order of magnitude larger 

than the levels we measured, which are within a typical range for farms in the 

Northeast. Our results suggest that N fixation is not sensitive to the range of soil N 

availability driven by mineralization of organic matter in these systems.  

 While grass biomass accumulation was primarily N limited, clover biomass 

accumulation was affected by soil texture and P and K availability. In agreement with 

other studies, lighter textured soils supported improved legume growth and N fixation 

(Chapter 1 (Riffkin et al. 1999). Textural effects on BNF may be a result of increased 

frequency of water saturated conditions in finer textured soils, which can inhibit BNF 

and root and soil biological activity. Soil textural effects on soil moisture and aeration 

can also affect plant pathogens. Finer-textured soils may have increased prevalence of 

legume root pathogens (Workneh et al. 1999).  

Estimating N fixation inputs 

Estimating clover N fixation inputs requires improved tools and additional 

research on relationships between clover physiology and N fixation. Clover N fixation 

was positively correlated with total biomass for both fall and spring measurements. 

Developing tools for farmers to quickly estimate clover biomass could lead to 

improved N management through more accurate accounting of N inputs. For example, 
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if the average measurement of 73% N from fixation was used in conjunction with 

accurate aboveground biomass estimates across sites, N fixation estimates would be 

within ± 20 kg N ha-1 of our fall measurements for all fields.  

Estimates of red clover root biomass are another area of uncertainty in N 

fixation inputs for calculating legume-based agroecosystem N balances. The 

development of 15N shoot-labelling techniques to quantify belowground plant N has 

led to much higher estimates than standard root sampling methods. For example, 

Hogh-Jensen and Schjoerring (2001) measured approximately 60% of total red clover 

N in belowground roots and rhizodeposits within the first year. Root estimates need to 

be incorporated into estimates of legume N inputs when calculating N balances. 

Due to the translocation and recycling of fall fixed N inputs into spring clover 

biomass, spring N fixation inputs remain poorly understood. Fall aboveground plant N 

is either translocated into plant roots, incorporated into soil organic matter, or lost 

from the system. The translocation of N from roots to shoots during regrowth has been 

estimated to account for half of annual aboveground N in perennial grasses (Blair et al. 

1998). Losses of 30-40% for fall shoot N from white clover (Trifolium repens) over 

the winter have been measured, with approximately 40% of this N being captured in 

soil and available for possible uptake again during spring growth (Sturite et al. 2006; 

Sturite et al. 2007). The 15N natural abundance method is unable to differentiate recent 

fixed N in spring growth from N fixed the previous fall. Spring measurements provide 

a useful estimate of labile N additions that may become rapidly available for the 

following crop. More research is needed to understand the overwinter dynamics of N 

cycling in perennial legumes. 

 

Conclusion 

Legume-based management increased soil N availability, but we found no 
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evidence that increased N availability serves as an internal regulator of BNF in 

legume-based cropping systems. Interseeding red clover into winter grain increased 

the relative reliance of clover on N fixation due to the short period of competitive 

plant species interactions while retaining high biomass production due to the period of 

monoculture growth following grain harvest. Winter grain type had a strong top-down 

effect on clover growth and, consequently, on N fixation during the establishment 

year. Diversifying grain rotations to include winter grains provides an excellent niche 

for the inclusion of legume cover crops that can serve multiple ecosystem services. 
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CHAPTER THREE 

LEGUME NITROGEN FIXATION ACROSS A FERTILITY GRADIENT: THE 

EFFECTS OF PLANT PHENOLOGY AND SPECIES INTERACTIONS  

 

Abstract  

The selection of legume cover crop species and species mixtures can influence 

agroecosystem nitrogen (N) and carbon cycling. We utilized a management-driven 

fertility gradient across 15 farm fields to study the ecology of N fixation of an annual 

legume (Pisum sativum) and perennial legume (Trifolium pratense) grown in 

monoculture and mixtures with orchardgrass (Dactylis glomerata) or oats (Avena 

sativa). Evidence of complementary and facilitative species interactions was stronger 

for the perennial red clover-orchardgrass mixture than for the annual field pea-oat 

mixture. The average Land Equivalency Ratios were 1.6 and 1.2 for perennial and 

annual mixtures, respectively. We estimated that the transfer of fixed N from red 

clover to orchardgrass increased total aboveground N fixation by an average of 5 kg N 

ha-1, representing a 15% increase in N fixation estimates. Mixtures, however, did not 

exhibit increased stability of biomass production across field sites. Biomass yield of 

monoculture red clover was more stable across field sites than the other plant 

treatments. Despite a more than 2-fold range in soil organic matter levels and more 

than 6-fold range in soil N assimilation by grasses across field sites, the management-

induced N fertility gradient was not a strong predictor of N fixation. While grass N 

assimilation was positively correlated with soil N availability, we found only weak 

correlations between legume N fixation and soil N availability. The longer growth 

period of perennials may have increased their ability to respond to environmental 

conditions through feedback mechanisms. These results suggest that increasing 

diversity of cropping systems, particularly the incorporation of perennials into 
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rotations, could improve overall agroecosystem N cycling efficiency and yield 

stability. 

 

Introduction 

The industrialization of agriculture relies on external fertilizer inputs to 

regulate nitrogen (N) availability, reducing agroecosystem reliance on internal nutrient 

cycling dynamics (Woodmansee 1984).  The application of synthetic N fertilizers in 

plant available forms and the adoption of less diverse crop rotations have reduced 

plant cover in time and space and uncoupled carbon (C) and N cycles. As a result of 

this uncoupling of C and N cycles, synthetic N additions are needed at levels that often 

saturate the system (Drinkwater and Snapp 2007). Large synthetic N additions 

combined with the absence of living plant cover between harvested crops have 

resulted in large leaching losses of N to surface waters (Galloway and Cowling 2002; 

McIsaac et al. 2001; Mitsch et al. 2001)  

Cropping systems that rely on C-N coupled inputs from legume biological 

nitrogen fixation (BNF) rely on complex plant-soil-microbe interactions to regulate N 

cycling. Legume cover crops increase the time of soil coverage and net primary 

productivity (NPP), resulting in increased C fixation, reduced soil erosion, and weed 

suppression, in addition to improving N availability and retention (Ranells and 

Wagger 1997; Tonitto et al. 2006). Despite the multiple functions that legume cover 

crops support, N management research has focused primarily on adjusting applications 

of synthetic N fertilizer to improve N retention (Gardner and Drinkwater, in press). 

Improving our understanding of the ecology of legume cover crops is critical to 

designing sustainable agroecosystems that rely on plant and microbially-mediated N 

cycling from SOM reservoirs and BNF inputs. 

In natural systems, soil N availability is one of the primary factors thought to 
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constrain the distribution of legumes due to the suppressive effect of soil N availability 

on BNF (Vitousek et al. 2002). However, the relationship between endogenous soil N 

reservoirs and BNF has been studied only rarely because inorganic N additions 

typically are used to produce N-fertility gradients (Elgersma et al. 2000; Nesheim and 

Oyen 1994). In systems where N availability is driven by soil organic matter 

dynamics, plant species interact with the soil environment through complex plant-soil-

microbe interactions. 

The effects of competitive and facilitative interactions on BNF in grass-legume 

mixtures vary at different levels of soil N availability. Including legume-grass 

mixtures in agricultural systems may increase the yield stability and N cycling 

efficiency of cover crops in response to shifting resource availability (Malezieux et al. 

2009). The ability of grasses to effectively scavenge soil N can improve total N 

retention and recycling in legume-grass mixtures relative to monocultures while still 

maintaining modest additions of fixed N. Competitive interactions in mixtures can 

increase legume reliance on N fixation, compared with legume monocultures, even 

under conditions with relatively high soil N availability because grasses out-compete 

legumes for available soil N (Hogh-Jensen and Schjoerring 1997; Munoz and Weaver 

1999). However, competitive interactions can result in a net decrease in total N fixed 

despite greater N fixation rates when grasses suppress legume biomass production 

(Boller and Nosberger 1994; Elgersma et al. 2000).  Finally, the transfer of fixed N 

from legume to grass can facilitate grass NPP in legume-grass mixtures when N is 

limiting (Hogh-Jensen and Schjoerring 2000). The benefits of mixtures for total N 

retention and N fixation additions may depend on background soil N availability.  

Annual and perennial legume BNF may respond differently to a gradient of 

soil N availability. Annual and perennial legume responses to soil N availability have 

not been directly compared within a single study. However, cross-study comparisons 
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suggest that N fixation of annual grain soybeans is more sensitive to N fertilization 

than it is for perennial legumes such as red clover and alfalfa (Boller and Nosberger 

1994; Hardarson et al. 1984; Lamb et al. 1995). Intensive breeding selection of annual 

grain legumes under high soil N conditions may have affected their ability to 

effectively down-regulate BNF as soil N availability increases compared with 

perennial forage legumes (Kiers et al. 2007). 

We utilized a management-driven fertility gradient across 15 farm fields to 

study the ecology of N fixation of an annual and perennial legume grown in 

monoculture and mixtures with a grass. Our objective was to investigate the effects of 

plant phenology and plant species interactions on net primary productivity (NPP) and 

BNF responses to shifting soil resource availability.  

 

Materials and Methods 

Experimental sites 

Research plots were established in 2006 in 15 fields on 7 commercial grain 

farms in central New York state (42 36’-42 44’ N and 77 03’-76 42’ W). Fields 

were selected to reflect a gradient of soil nitrogen availability due to differences in 

management history (Table 3.1). Full site descriptions and weather data can be found 

in Chapter 2. 

Briefly, 5-year management histories were used to classify each field based on 

the percentage of total N inputs derived from either HBN fertilizers or legume BNF 

inputs. Nitrogen management categories were defined as: 1) >50% N inputs from 

HBN (HBN); and 2) >50% N inputs from legume BNF (LEG). All L fields were 

certified organic, ranging from 3 to 17 years since conversion to organic management 



 

Table 3.1. Field management history, including years under organic management, % of N inputs from legume BNF over 5-year 
rotation cycle, crop rotation, and soil type. 
 

Fielda 
Years 
Org 

% N 
inputs 

from BNF 5-year rotationb Soil classification 

H1 0 8 corn-corn-corn-kidney beans-wheat/clover Fine sandy-loam, Oxyaquic Hapludalf 

H2 0 34 corn-soybean-corn-snap bean-wheat Silt loam, Oxyaquic Hapludalf 

H3 0 49 snap beans-wheat/clover-corn-snap beans-wheat/clover Fine sandy-loam, Oxyaquic Hapludalf 

H4 0 33 soybean-corn-corn-soybean-wheat Silt loam, Oxyaquic Hapludalf 

H5 0 49 snap beans-wheat/clover-corn-snap beans-wheat/clover Fine sandy-loam, Oxyaquic Hapludalf 

H6 0 16 hay-corn-corn-snap beans-wheat Silt loam, Oxyaquic Hapludalf 

M1 0 60 soybean-wheat/clover-corn-soybean-wheat/clover Gravelly loam, Glossic Hapludalf 

M2 16 46 
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soybean-wheat/clover-corn-kidney bean-spelt/clover Fine silt loam, Glossic Hapludalf 

M3 6 42 fallow-clover-corn-fallow-wheat/clover Silt loam, Oxyaquic Hapludalf 

L1 3 62 hay-hay-soybean-fallow-spelt/clover Silt loam, Oxyaquic Hapludalf 

L2 12 65 soybean-spelt/clover-corn-oats/peas-barley/clover Fine silt loam, Glossic Hapludalf 

L3 16 57 cabbage-spelt/clover-corn-kidney bean-wheat/clover Fine silt loam, Glossic Hapludalf 

L4 7 88 spelt/clover-cabbage-clover-clover-spelt/clover Fine sandy-loam, Glossic Hapludalf 

L5 17 60 soybean-wheat/clover-corn-soybeans-wheat/clover Silt loam, Oxyaquic Hapludalf 

L6 7 68 hay-soybean-wheat/clover-snap beans-spelt/clover Gravelly silt loam, Glossaquic Hapludalf 
 

a H=Haber-Bosch fertilizer N-based management; M=mixed HBN-legume or legume-manure management; L=legume-based management 
b Cropping years are separated by dashes and intercroppings are separated by slashes with 2006 crop on right. Corn (Zea mays); kidney bean and snap bean 

(Phaseolus vulgaris); rye (Secale cereale); wheat (Triticum aestivum); spelt (Triticum spelta); clover (Trifolium pratense); oats (Avena sativa); peas (Pisum 
sativum); cabbage (Brassica oleracea)

 



 

practices (Table 3.1). Three fields did not fit into either management category because 

they either used HBN, but relied on BNF for more than 50% of N inputs (Field M1), 

or did not use HBN, but relied on BNF for less than 50% of N inputs with the 

remainder of N inputs from manure inputs (Fields M2 and M3). These three fields 

were lumped into a mixed category (MIX).  

Soil sampling and analysis 

Soil sampling and analysis details are described in Chapter 2. Here, we briefly 

summarize our approach and the findings used to analyze plant responses to soil 

characteristics. 

We collected soil samples at three time points during 2006. Between June 7 

and June 15, we sampled soils across each replicate block (Sampling 1). Eighteen soil 

cores (2-cm diameter by 20-cm depth) were taken and composited from each block 

within each field. Between August 9 and August 11, we sampled soils following 

winter grain harvest (Sampling 2). Six soil cores (2-cm diameter by 20-cm depth) 

were taken and composited from each block within each field. In October, we sampled 

soils from each individual subplot. We used 7-cm Dutch augers to collect 

approximately 2 kg of soil from each plot to 20-cm depth. To measure soil bulk 

density, we collected four soil cores of exactly 2-cm diameter by 20-cm depth from 8 

randomly selected plots within each field.  

A range of soil N fractions was quantified to span the continuum from labile to 

more recalcitrant N pools based on their availability for microbial mineralization. 

Chapter 2 provides a full description of soil fractions measured and methods used. 

Briefly, C and N pools measured included total soil C and N, free and occluded 

particulate organic matter (fPOM and oPOM), microbial biomass N (MBN), N 

mineralization potential, and inorganic N. In addition, we analyzed soils for Morgan-
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extractable P, K, Ca, Mg, Cu, Zn, Fe, Al, and Mn (Cornell Nutrient Analysis 

Laboratory, Ithaca, NY) and particle size (Agricultural Analytical Services 

Laboratory, Penn State University, University Park, PA).  

Due to the multicollinearity of soil variables, we used principal components 

analysis (PCA) to generate independent variables that represented soil texture and 

nutrient availability. As described in Chapter 2, PCA resulted in three independent 

variables representing soil texture (PC1), N availability (PC2), and P and K 

availability (PC3) (Table 3.2). The fields separated by management type along PC2 

and PC3. LEG fields had higher average scores than HBN fields for PC2, indicating 

higher soil N availability (Chapter 2). HBN fields had higher average scores than LEG 

fields for PC3, indicating higher P and K availability. 
 
Table 3.2. Rotated principal component eigenvalues, variation explained, and loadings 
for three principal components that explain a total of 75% of the variation in the soils 
dataset.  
 

  PC1 PC2 PC3 
Eigenvalue 3.4 2.9 1.9 
Variation 
explained 

31% 27% 17% 

Rotated variable loadings   

Sand -0.86 -0.27 0.21 
Clay 0.92 0.17 -0.09 
Ca 0.88 0.11 -0.05 
Total organic C 0.81 0.33 0.00 
log(MBN) 0.44 0.65 -0.08 
log(oPOM N) 0.35 0.84 0.03 
Inorg N 0.12 0.57 -0.16 
oPOM C:N -0.05 -0.82 -0.11 
fPOM C:N -0.18 -0.74 0.24 
log(P) -0.06 -0.04 0.96 
log(K) -0.14 -0.13 0.92 

 

a Microbial biomass nitrogen; b Occluded particulate organic matter nitrogen;  
c Extractable NO3

- and NH4
+ measured in June 2006; d Free particulate organic matter 

nitrogen 
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Plot establishment and management 

Legume cover crop niches vary for temperate cropping systems. In annual 

grain systems, perennial species are integrated into rotations as either forages or as 

green manures to increase N availability for a subsequent crop. In annual vegetable 

systems, winter-killed annual cover crop species are more commonly integrated into 

rotations to provide soil cover through the winter without conflicting with early spring 

planting dates. We utilized realistic cover crop niches in annual grain agroecosystems 

to measure the BNF of red clover (Trifolium pratense), a perennial legume commonly 

integrated into annual grain systems, and field pea (Pisum sativum), an annual legume 

cover crop used in annual vegetable systems, grown in monoculture and mixture with 

a grass.  

We established six plant treatments in a split-plot design with four replicate 

blocks per field. All collaborating farmers used conventional tillage practices and had 

seeded all fields in the study to a winter grain in the fall of 2005. Plots measured 1.5-m 

by 3.0-m. For perennial plots, spring winter grain growth was removed using flame 

weeding in LEG fields and field M1, or glyphosate treatment in HBN fields and fields 

M2 and M3, in March and April 2006. We mowed and removed senescent 

aboveground biomass from herbicide-treated fields to produce similar starting 

conditions in all plots. Into cleared plots, we broadcast perennial ‘Medium’ red clover 

and orchardgrass (Dactylis glomerata) as monocultures and mixture during May 5-7, 

2006, at the rates of 35 kg/ha for monoculture red clover (RC), 30 kg/ha for 

monoculture orchardgrass (OG), and 20 kg/ha for red clover and 15 kg/ha for 

orchardgrass in mixed plots (RC/OG).  Annual plots were established adjacent to 

perennial plots following winter grain harvest. In July 2006, we rototilled remaining 

grain stubble and drill-seeded annual ‘Maxim’ field peas and oats (Avena sativa) as 

monocultures and mixture on August 14 at the rates of 224 kg/ha for the field pea 
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monocultures (FP), 123 kg/ha for oat monocultures (O), and 112 kg/ha for field pea 

and 67 kg/ha for oats in mixed plots (FP/O). All legumes were inoculated with 

commercial inoculum. We controlled weeds in the subplots by hand-weeding.  

Due to farmer management inconsistencies, some data were omitted from 

analysis. The RC treatment was excluded from analysis for Field L6 because more 

than 1 replicate was compromised due to accidental mowing shortly before sampling. 

All annual plots for Field M3 were excluded from analysis due to dense clover growth 

in plots prior to planting. Farmers applied no fertilizers or amendments to the plots 

during the experiment with two exceptions. Composted poultry manure was spread on 

L2 at the rate of 3.4 t/ha and composted dairy manure was spread on H3 at an 

unknown rate in October 2006. We did not detect a strong response in plant variables 

to these late additions and data were retained for analysis with a few exceptions. Grass 

N uptake in Field L2 was highly variable, likely due to the influence of manure N 

uptake shortly before sampling, and these plots were omitted from analysis when they 

caused non-normal distribution of model residual errors.  

Plant sampling and analysis 

We sampled 0.25 m2 of aboveground biomass from all subplots, avoiding plot 

edges, between October 8 and October 26, 2006. We separated legumes and grass 

biomass in mixed plots. If weeds were present, we measured weed weights for 

subplots. Weed biomass never amounted to more than 9% of total biomass and was 

not included in biomass estimates for analysis. Biomass was dried at 60 C and first 

coarsely ground using both a hammer mill and grinder and then finely pulverized 

using a roller grinder. Samples were analyzed for 15N natural abundance and total N 

content using a continuous flow Isotope Ratio Mass Spectrometer (Stable Isotope 

Facility, UC Davis).  
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The Land Equivalency Ratio (LER) was calculated for annual and perennial 

mixed plots as a measure of the facilitative benefit of intercropping. The LER 

represents the land area required to achieve the same biomass yield as single crops. An 

LER greater than 1.0 suggests that the intercrop confers an advantage due to stronger 

effects of interspecific facilitation than competition (Vandermeer 1989). To answer the 

question of whether intercrops increased total biomass N accumulation relative to 

monocultures, we calculated LER on the basis of biomass nitrogen (N LER). The N 

LER was calculated as follows: 

N LER = (NLM/ NL) + (NGM/NG) 

where NLM and NL are the dry matter N content of legumes grown in mixture 

and monoculture, and NGM and NG are the dry matter N content of grasses grown in 

mixture and monoculture, respectively. 

Nitrogen fixation  

Nitrogen fixation was calculated using the 15N natural abundance method 

(Shearer and Kohl 1986). The proportion of N derived from atmosphere in legume 

biomass (% N fixed) was calculated using orchardgrass as the reference plant for the 

red clover and oats as a reference plant for the peas: 

% N fixed = 100*(( δ15N Grass − δ15N legume)/( δ15N Grass − B))  

where B is the δ15N value of the legume grown with atmospheric N2 as the 

only source of N after accounting for seed N. Total N fixed was calculated from the 

aboveground dry matter of the legume and its biomass N concentration and % N fixed. 

To quantify the B value for red clover and field pea, we grew each legume in 

N-free, autoclaved, calcined clay media (Turface©, AIMCOR, Deerfield, IL) in a 

greenhouse. We surface sterilized seeds in 70% (v/v) ethanol for 3 minutes and 3% 
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(v/v) bleach solution for 2 minutes, followed by a 3 minute rinse in deionized water. 

We applied the same inoculant as used in field plots to sterilized seeds and fertilized 

plants with an N-free Hoagland’s nutrient solution (GreenCare Fertilizers, Chicago, 

IL). We sampled plants at 9 weeks after planting for peas and 17 weeks after planting 

for clover, dried, ground, and analyzed for δ15N. Seeds for peas, due to their larger 

size, were also analyzed for δ15N to allow calculation of seed N contribution. The 

resulting B values used for calculations were -1.65 for red clover and -1.55 for field 

pea. 

An estimate of transferred fixed N from legume to grass in mixed plots was 

calculated in a similar fashion, by comparing the δ15N of the grass in the mixture to 

that of the grass grown in monoculture:  

% grass N from transfer = 100*(( δ15N grass monoculture − δ15N grass in 

mix)/( δ15N grass monoculture − C))  

where C is the δ15N value of the integrated fractionation of δ15N during N 

fixation in legume roots and between roots and sampled shoots of grass.  For our 

purposes, C was set to the lowest δ15N value of grass grown in mixture or zero, 

whichever was lowest. For oat, C was zero because all oat δ15N values were positive 

and for orchardgrass, C was 1.37‰.  

Statistical analysis 

We computed statistics using JMP v.7 and SAS v.9.1 software (SAS Institute 

Inc., Cary, NC). Treatment means were compared using least squares means from 

mixed models including field and block as nested random factors. Treatment was 

nested within phenology type to reflect the different management histories of the 

annual and perennial plots. Multiple comparisons were calculated using Tukey’s HSD 

and pairwise comparisons were calculated using Student’s t-tests. To compare in-field 
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variability for each treatment, coefficients of variance (CV) were calculated and 

compared using an analysis of variance (ANOVA). The % CV was calculated as the 

standard deviation divided by the sample mean, multiplied by 100. Correlations 

presented represent Pearson correlations of field means.  

 

Results 

Aboveground biomass and total N accumulation differed between mixtures and 

monocultures. The perennial mixture (RC/OG) produced more aboveground biomass 

than its constituent monocultures; however, the total N in aboveground biomass was 

similar for the perennial mixture and legume monoculture due to the lower average N 

concentration of mixture biomass (Table 3.3). The annual mixture (P/O) did not yield 

more than its constituent monocultures and the annual legume monoculture 

accumulated more total N in aboveground biomass than the annual mixture. All of the 

annual treatments assimilated a similar amount of soil N (Table 3.3). The perennial 

mixture assimilated more soil N than either perennial monoculture (Table 3.3).  

Perennials accumulated more total biomass than annuals, but annuals had a 

faster growth rate (Table 3.3). The average growth period for the perennials was 

almost 3 times the growth period for the annuals (163 days and 63 days, respectively). 

The earlier seeding date for the perennial was likely the primary cause of its greater 

biomass accumulation and total N fixed compared to the fall-seeded annual field pea 

(Table 3.3). Controlling for the differences in growth periods, the average biomass 

accumulation rate for the annuals was greater compared to the perennials (22 and 16 

kg ha-1 d-1, respectively).  

The complementary interactions of grasses and legumes in mixtures conferred 

an advantage in total N mobilization when compared with corresponding 



 

Table 3.3. Least squares means for aboveground plant biomass and nitrogen variables for 6 plant treatments across 15 farm fields. 
O = oats; FP = field pea monoculture; FP/O = field pea-oat mixture, OG = orchardgrass; RC = red clover monoculture; RC/OG = 
red clover-orchardgrass mixture. Different letters within a column represent significant differences between plant treatments 
(p<0.05).  
 

Plant 
treatment 

Above-
ground 
biomass 

Legume 
biomass

Grass 
biomass

Total 
plant N 

Soil N 
uptake 

Legume 
soil N 

uptake 

Grass 
soil N 

uptake N fixed 95

  kg ha-1 
O 1104 d  1104 b 20 d 20 c  20 b  
FP 1627 c 1627 b  55 b 18 c 18 b  37 b 
FP/O 1417 cd 690 c 747 c 37 c 20 c 4 d 16 b 17 c 
OG 2221 b  2221 a 32 c 32 b  32 a  
RC 2364 b 2364 a  75 a 27 b 27 a  48 a 
RC/OG 2894 a 1522 b 1371 b 74 a 41 a 13 c 29 a 33 b 

 



 

monocultures. The average N LER for perennial and annual mixtures was 1.6 and 1.2, 

respectively. The N LER for perennials was equal to or greater than 1 for all fields, 

while 3 fields had an N LER less than 1 for the annual (Figure 3.1).  

Competitive plant species interactions influenced both legume reliance on N 

fixation and total N fixed for both the annual and perennial legume in mixtures. The 

relative reliance on N fixation (% N from fixation) was greater for both mixtures than 

their respective monocultures (Figure 3.2). The average % N from fixation for 

mixtures and monocultures was 72% and 64% for perennial clover, and 80% and 68% 

for annual pea, respectively. Legume biomass as a proportion of total mixture biomass 

was more variable than the % N from fixation and ranged from 26% to 99% and from 

18% to 84% for the perennial and annual, respectively (Figure 3.3).  Due to the lower 

legume biomass in the mixtures compared with monoculture plots, the total N fixed 

was lower in mixtures than monocultures (Table 3.3).  

We found evidence of the facilitative transfer of N from legumes to grasses in 

mixed plots. Estimates of N transfer from legumes to grasses in mixed plots were 

greater for perennials compared to annuals. The average δ15N signature of 

orchardgrass grown in mixtures was significantly less enriched than orchardgrass in 

monocultures (Figure 3.4). There was no significant difference in the average δ15N 

signature of oats grown in mixtures or monocultures. Using this shift in δ15N 

signatures to estimate the proportion of grass N derived from legume N fixation, N 

transfer was positively correlated with the relative abundance of legumes in mixed 

plots (Figure 3.5). Using the δ15N abundance method, field average estimates of the 

amount of fixed N transferred to orchardgrass in RC/OG ranged as high as 17 ± 2 kg 

N ha-1. If the average fixed N transferred of 5 ± 1 kg N ha-1 was added to the average 

of 33 kg N ha-1 fixed by clover in mixed plots, this would add an additional 15% to N 
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Figure 3.1. Field average N Land Equivalence Ratio (N LER) for perennial red 
clover/orchardrass and annual field pea/oat mixtures. Fields are sorted by increasing 
soil N availability as defined by PC 2 from principal components analysis. Error bars 
represent standard errors (n=4). 
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Figure 3.2. Field average % N from fixation of perennial red clover and annual field pea grown in monoculture or in mixture with 
a grass. Horizontal lines represent overall means for legumes in monoculture (solid line) and mixtures (dashed line). Fields are 
sorted by increasing soil N availability as defined by PC 2 from principal components analysis. Error bars represent standard errors 
(n=4).
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Figure 3.3. Grass and legume aboveground biomass in mixtures across fields. FP= 
field pea; RC= red clover; OG= orchardgrass. Fields are sorted by increasing soil N 
availability as defined by PC 2 from principal components analysis. Error bars 
represent standard errors (n=4)

 99



 

100

 
Figure 3.4. Field average δ15N for grasses grown in monoculture or in legume mixture. Horizontal lines represent overall means for 
monoculture (solid line) and mixtures (dashed line). Fields are sorted by increasing soil N availability as defined by PC 2 from 
principal components analysis. Error bars represent standard errors (n=4).

perennial OG

Field

L1 H1 H2 H3 H4 H5 L2 H6 L3 M
1

M
2
M

3 L4 L5 L6

1
5 N

0

2

4

6

8

10

12monoculture

-2

0

2

4

6

8
grass in mix annual Oat

Field

1
5
N

L1 H1 H2 H3 H4 H5 L2 H6 L3 M
1

M
2

M
3 L4 L5 L6

 



 

relative clover abundance in mix (%)

0 20 40 60 80 100

%
 g

ra
ss

 N
 fr

om
 fi

xa
tio

n

0

20

40

60

80

100

 

Figure 3.5. Correlation between the relative abundance of red clover in clover-
orchardgrass mixtures and the estimated percentage of orchardgrass N derived from 
red clover fixed N increased (% grass N from fixation).  
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fixation estimates. 

Plant N concentrations also provided evidence of increased N availability to 

grasses in both the perennial and annual mixtures. Grass N concentrations were 

significantly higher in mixed plots than in monocultures and the difference was greater 

for OG than O (Figure 3.6). In contrast, legume N concentration was lower in mixtures 

than in monoculture plots (Figure 3.6).  

Total biomass accumulation was strongly correlated with total N fixed in all 

treatments except for the perennial monoculture. Both soil N assimilation and the 

amount of N fixed were strongly positively correlated with total biomass for FP, FP/O, 

and RC/OG (Figure 3.7). Soil N assimilation was positively correlated with biomass 

for RC, but total N fixed was not (Figure 3.7). The % N from fixation was positively 

correlated with N fixed for RC (r2 = 0.55, p=0.003), but not for the other treatments 

(p>0.05).  

Particularly striking was the relative stability of RC biomass across the 15 

fields compared to the other plant treatments. The coefficients of variation (CV) for 

RC biomass N and N fixed were less than half of the CVs for the other treatments 

(Figure 3.8). In contrast, the variance for the % N from fixation across sites was 

greater for RC than the other treatments (Figure 3.8). Total aboveground biomass 

variability was similar for all treatments, except RC, both within and across fields.  

Mixtures had higher within and across field variability in N fixed than 

monocultures. The total N fixed in mixtures was highly variable across fields (Figure 

3.8). The variability in N fixed was driven primarily by the relative abundance of 

legumes within mixtures (r=0.78, p=0.0006). The % of N from fixation was not 

significantly correlated with total N fixed in mixtures (p>0.05). 

Principal component analysis was used to investigate the effects of soil fertility 
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Figure 3.6. Comparison of average shoot N concentration between mixed and 
monoculture plots of annual (open bars) and perennial (filled bars) grasses and 
legumes. Stars indicate significant pair-wise differences (p<0.05).  O= oats; OG= 
orchardgrass; FP= field pea; RC= red clover
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Figure 3.7. Relationships between total legume aboveground biomass, N from 
fixation (open circles), and N from soil (filled circles) for pea in monoculture (FP), 
pea in mixture with oats (FP/O), red clover in monoculture (RC), and red clover in 
mixture with orchardgrass (RC/OG). Scale is constant across graphs to emphasize 
differences in variability across treatments. 
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Figure 3.8. Coefficients of variation (% CV) for total aboveground N, N fixed, and % N from fixation (% Nfix) for all six plant 
treatments a) across the 15 fields; and b) within fields. Different letters above bars represent significant differences between plant 
treatment in-field variability (p<0.05). Plant treatmentds include orchardgrass (OG), oats (O), field pea in monoculture (FP), field 
pea in mixture with oats (FP/O), red clover in monoculture (RC), and red clover in mixture with orchardgrass (RC/OG).  
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and texture on N fixation. Labile N availability was represented by PC2 (Table 3.2) 

and explained a significant proportion of the variability in soil N uptake for both grass 

treatments. Oat and OG soil N uptake were correlated with PC2 (Table 3.4). Soil N 

uptake for oat grown in mixture was also positively correlated with PC2. The positive 

relationships between PC2 and the grass treatments indicate that there was an N-based 

fertility gradient across the 15 fields. Grass N assimilation, one potential indicator of 

soil N availability, ranged from 12 to 84 kg N ha-1 for orchardgrass and from 7 to 49 

kg N ha-1 for oats among field sites (data not shown). 

Evidence of soil N availability inhibiting N fixation was limited. Monoculture 

field pea % N from fixation had the strongest negative correlation with PC2 of any of 

the legumes (p=0.15; Table 3.4). Pairwise correlations with individual soil N variables 

revealed that the % N from fixation for field pea was negatively correlated with 

microbial biomass N (r= -0.59, p=0.03). Soil N availability may have indirectly 

reduced N fixation of clover in mixed plots by supporting increased orchardgrass 

biomass, thereby, suppressing clover biomass. The biomass of red clover in mixtures 

relative to total RC/OG biomass was negatively correlated with June soil nitrate 

measurements (r= -0.52, p=0.05) and, correspondingly, was weakly correlated with 

PC2 (p=0.08; Table 3.4). 

Red clover growth and N fixation were influenced by soil texture. Texture, 

represented by PC1, was correlated with RC % N from fixation indicating increased 

reliance on N fixation in finer textured soils. The negative correlation between PC1 

and OG biomass in mixtures may be a result of increased RC competition in fields 

with finer textured soils. Texture effects on red clover were also reflected by a 

significant correlation between PC1 and the relative abundance of legume biomass in 

RC/OG mixtures (Table 3.4).
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Table 3.4. Pearson correlations between principal components and aboveground biomass, soil N uptake, the % N from fixation, 
and the relative abundance of legumes in mixtures for oats (O), orchardgrass (OG), field pea in monoculture (FP), field pea in 
mixture with oats (FP/O), red clover in monoculture (RC), and red clover in mixture with orchardgrass (RC/OG). PC1 represents 
soil texure and total organic matter, PC2 represents soil N availability, and PC3 represents soil P and K availability.  
 

 Biomass  Soil N uptake  % N from fixation Leg biomass as % of total 
Treatment PC1 PC2 PC3  PC1 PC2 PC3  PC1 PC2 PC3 PC1 PC2 PC3 
O -0.30 0.46 0.19  -0.23 0.65* 0.14        
OG -0.05 0.55* 0.16  -0.02 0.60* -0.04        
FP -0.26 -0.18 0.67**  -0.32 0.10 0.52  0.03 -0.41 -0.18    
FP in mix 0.43 -0.20 0.32  0.22 -0.02 0.30  -0.21 -0.02 0.01  
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O in mix 0.05 0.39 0.12  0.00 0.57* 0.08        
FP/O total 0.47 0.20 0.43  0.09 0.57* 0.23  -0.26 -0.07 -0.01 0.31 -0.37 0.06 
RC 0.18 -0.33 0.18  -0.47 -0.06 0.26  0.54* -0.04 -0.43    
RC in mix 0.32 -0.31 0.41  0.06 -0.26 0.27  0.25 0.01 -0.29    
OG in mix -0.59* 0.42 0.24  -0.57* 0.39 0.37        
RC/OG total -0.37 0.21 0.57*  -0.50 0.34 0.53*  0.31 -0.26 -0.43 0.62* -0.48 0.08 

 
* p<0.05, **p<0.01 

 



 

The availability of other soil nutrients may have limited growth of both annual 

and perennial legumes. PC3, for which P and K had the strongest loadings, explained a 

significant percentage of the variation in field pea biomass and RC/OG biomass and 

soil N uptake, suggesting that P and K availability may have limited biomass 

accumulation for these treatments (Table 3.4).  

 

Discussion 

Complementary and competitive interactions in mixtures 

Species mixtures can improve total nutrient cycling efficiency due to 

complementary nutrient acquisition in space and time (Hooper and Vitousek 1998; 

Vandermeer 1989). We found evidence of complementary resource use in mixtures, 

reflected by the greater biomass N accumulation of grass-legume mixtures than 

corresponding monocultures. The average N LER values for mixtures were greater 

than 1.0 for both annual and perennial mixtures (Figure 3.1). The evidence for 

complementary resource use was stronger for perennials than annuals. Perennial 

mixtures had higher N LER values, total biomass, and soil N uptake than either 

corresponding monoculture. In contrast, total biomass and soil N uptake of 

monoculture field pea were equivalent to the field pea/oat mixture (Table 3.3). The 

complementarity of the species in the perennial mixture may be due to niche 

differentiation resulting from differences in root architecture and phenology 

(Malezieux et al. 2009). Red clover is a tap-rooted species while orchardgrass has a 

more fibrous root system typical of grass species. Fornara and Tilman (2008) found 

that the complementarity of grass-legume resource use in grasslands increased total 

biomass, particularly root biomass, resulting in greater soil C and N accumulation 

relative to corresponding monocultures. 
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Complementarity in species mixtures can also result from facilitative 

interactions (Brooker et al. 2008). We found evidence for facilitative N transfer from 

legumes to grasses in perennial mixtures, but not in annual mixtures. Based on shifts 

in δ15N of grasses grown in mixture and monoculture, relative contributions of fixed N 

to perennial orchardgrass N ranged from -7% to 77% (Figure 3.5). Moyer-Henry et al. 

(2006) found a similar range of N transfer rates from soybean to associated weed 

species using the 15N natural abundance method. However, due to the spatial 

variability in soil 15N natural abundance, small differences in 15N natural abundance 

alone do not provide conclusive evidence of N transfer (Walley et al. 2001). Rooting 

patterns can also shift when grasses are grown in mixtures, which could result in N 

uptake from different soil N pools of grasses in monoculture and mixtures 

(Hauggaard-Nielsen and Jensen 2001). Higher δ15N values for grasses in mixtures than 

monocultures for some fields, particularly for annual grasses, indicate the uncertainty 

of transfer estimates based on 15N natural abundance methods alone. In addition, fixed 

N in grasses can also be derived from associative N fixation (Reis et al. 2000). 

We found two forms of supporting evidence for the transfer of N from legumes 

to grasses. The correlation between shifts in δ15N values and the relative abundance of 

red clover in perennial mixtures, and the increased concentration of N in grasses in 

mixtures confirm that legumes improved grass N accumulation (Figures 3.5 and 3.6). 

In addition, similarly high levels of N transfer in red clover-orchardgrass mixtures 

were also measured by Farnham and George (1993) using the 15N isotope dilution 

method.  

While facilitative interactions contributed to increased total grass N 

assimilation and may have supported greater biomass production in grass-legume 

mixtures, competition for soil N and light availability influenced N fixation inputs. 
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The higher reliance on N fixation in mixtures than monocultures is in agreement with 

previous studies (Carlsson and Huss-Danell 2003). Legume N fixation rates are 

increased in mixtures because grasses tend to outcompete legumes for available soil N 

(Munoz and Weaver 1999). While the average % N from fixation across sites was 

higher in mixtures than monocultures, values were not statistically different in several 

fields for both annuals and perennials (Figure 3.2). Total legume N fixation in 

mixtures was strongly correlated with aboveground legume biomass. The species 

composition in mixtures shifted across fields (Figure 3.3), and was likely caused by 

the interaction of differential species responses to soil resources and competition for 

light availability.  

Phenological differences 

Facilitative species interactions require time to develop. The greater N transfer 

from legumes to grasses in perennial mixtures than annual mixtures is likely due to 

differences in growth period. Evidence of N transfer in annual pea-grain intercrops has 

been inconsistent, while consistently higher levels of N transfer have been measured in 

perennial grass-legume pastures (Hogh-Jensen and Schjoerring 2000; Jensen 1996). 

Nitrogen transfer can occur directly through mycorrhizal hyphae and indirectly 

through legume root turnover and N-rich root exudates (Paynel and Cliquet 2003; Ta 

and Faris 1987). The short growth period of the annual mixture (63 days) was too 

short for fine root turnover, in particular, to play a significant role in N transfer (Goins 

and Russelle 1996). 

Including estimates of root biomass and N rhizodeposition would accentuate 

the differences between annuals and perennials. Perennials develop more extensive 

root systems than most annuals (Schenk and Jackson 2002), which can confer an 

advantage to accessing soil N in a heterogeneous soil environment (Casper and 
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Jackson 1997) and reducing N leaching from agroecosystems (Crews 2005). Hogh-

Jensen and Schjoerring (2001) measured approximately 60% of total red clover N in 

belowground roots and rhizodeposits within the first year. Using similar methods, field 

pea belowground N represented less than 20% of total plant N (Mayer et al. 2003).  

Direct comparisons between annual and perennial % N from fixation are 

problematic due to the high sensitivity of the 15N natural abundance method to the 

reference plant used (Pate et al. 1994). Oat δ15N signatures were consistently higher 

than orchardgrass δ15N (Figure 3.4). This could be due to a combination of temporal 

differences in the δ15N of available soil N and differences in rooting patterns resulting 

in the acquisition of soil N from different soil depths and pools. The relative shifts in 

N fixation of the two legumes, however, are robust measurements due to the consistent 

use of the same reference species across all sites. 

Soil effects on BNF and species interactions 

The accepted concept that soil N availability is a dominant edaphic factor 

influencing legume N fixation has rarely been tested across a gradient of N availability 

driven by the mineralization of endogenous SOM pools. We found limited evidence of 

N fixation inhibition by soil N availability. Annual field pea monoculture % N from 

fixation had the strongest negative correlation with soil N availability. The lack of any 

correlation between the % N from fixation and soil N availability for the other 

treatments is consistent and in contrast to the response of grass N uptake (Table 3.4). 

This suggests that legume N fixation alleviated N limitation, but N availability was 

insufficient to suppress BNF. Most research has focused on the response of N fixation 

to recent pulses of labile N additions through HBN fertilizer applications at different 

rates (e.g., Boller and Nosberger 1994; Hogh-Jensen and Schjoerring 1997).  

Our results suggest that N fixation is not sensitive to the range of soil N 
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availability driven by mineralization of organic matter levels included in this study. 

Soil organic matter levels varied more than 2-fold across field sites and soil N 

assimilation of grasses varied more than 6-fold. Monoculture orchardgrass N 

assimilation in more fertile fields was as high as 84 kg N ha-1 in a year when no 

fertilizers were added. The lack of a relationship between BNF estimates and soil N 

availability is likely because nitrogen mineralization from heterogeneous SOM pools 

created temporally variable microsite hotspots of inorganic N throughout the rooting 

zone. This is in contrast to the potential influence of the broad application of HBN 

fertilizers at rates that typically saturate the root system for a short, concentrated time 

period.  

The low variability in NPP of the perennial monoculture among fields 

compared to all other plant treatments was unexpected. A central tenet of ecological 

theory is that increasing biodiversity increases the stability of ecosystem properties, 

such as NPP (Hooper et al. 2005). Increasing species diversity confers greater stability 

of ecosystem properties because species composition can shift in response to 

environmental changes, buffering the different sensitivities of species to 

environmental change (Frank and McNaughton 1991). While legume-grass mixtures 

out-yielded corresponding monocultures, mixtures did not have greater NPP stability 

across field sites in this study (Figure 3.8). The stability of clover NPP across sites 

suggests that in low fertility sites it possessed the plasticity to maintain productivity, 

while in more fertile sites it was less able to take advantage of greater resource 

availability, compared with the perennial grass-legume mixtures. Red clover has 

undergone less intensive breeding selection than commodity grain crops and the 

genetic diversity within individual cultivars is similar to the diversity between 

cultivars (Yu et al. 2001). Intra-cultivar diversity may have contributed to the stability 

of clover NPP in this study. Due to this stability in NPP, differences in the % N from 
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fixation were more important in determining total N fixed than aboveground NPP in 

clover.  

Species relative abundance in mixtures did shift across sites, but soil variables 

did not explain the variability in mixture composition. The total N fixed in mixtures 

was strongly correlated with legume biomass. The weak negative correlation between 

PC2 and the biomass of legumes relative to total mixture biomass for perennial 

mixtures suggests that soil N availability did not influence N fixation rates directly.  

Instead, greater soil N availability influenced N fixation indirectly by supporting 

greater biomass production by the grass, which in turn suppressed the total legume 

biomass produced. At high soil N availability, grasses tend to outcompete legumes for 

resources, including light and soil N (Nesheim and Oyen 1994). 

Management implications 

Plants can be utilized as tools for nutrient management through identification 

of species and species assemblages that serve different functional roles for integration 

at different times in crop rotations and at different stages of soil fertility development. 

For example, annual field pea provided a substantial input of fixed N within a short 

time window, while perennial grass-legume mixtures increased soil N uptake, which 

can be important for reducing losses of residual N fertilizers or in soils with high N 

mineralization rates. In addition, a challenge in legume management is the lack of 

synchrony between the rapid, initial decomposition of N-rich litter following 

incorporation and the N uptake of a subsequent crop (Crews and Peoples 2005). 

Grass-legume mixtures may improve synchrony through the slower decomposition of 

litter with higher C:N, resulting in short-term N immobilization and retention into 

microbial biomass and SOM pools. 
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Conclusions 

Understanding the ecology of legume cover crops is critical for the selection of 

species and species assemblages to design sustainable agroecosystems. The effects of 

species interactions and plant phenology on ecosystem properties have received little 

attention in agricultural research due to the dominance of annual, monocrop systems 

(Malezieux et al. 2009). We found evidence for improved nutrient use efficiency and 

yield stability in perennial mixtures and monocultures. The lack of an influence of soil 

N availability on N fixation across the fields in this study illustrates the importance of 

testing relationships indentified under relatively controlled experimental conditions 

within the context of heterogeneous agroecosystems to understand their functional 

significance. These results support the need for more systems-based tools and research 

approaches for the development of sustainable, multispecies agroecosystems.  
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