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Future NASA missions requiring spacecraft formation flying require an extremely

high level of autonomy and robustness when compared to single spacecraft sys-

tems. This is especially true for formations with a large number of spacecraft,

which naturally have a higher likelihood of collision, and those that are to be

flown in deep space, which are located too far from the Earth to allow for direct

ground-based control. Further, it is likely that the individual spacecraft will have

a limited amount of resources for sensing and communication. This dissertation is

devoted to the development of decentralized navigation and control algorithms for

such systems. The algorithms developed efficiently utilize the limited sensing and

communication resources at each spacecraft in order to maintain an accurate esti-

mate of the formation state. Formation keeping is achieved through the calculation

of a reference point which damps noise in the formation state estimates, of which

the reference point is a function. In the absence of an intra-spacecraft communi-

cation subsystem, optimal sensor switching algorithms are developed which yield

accurate formation state estimates. With communication, individual spacecraft

state estimates are iteratively fused to form formation-optimal state estimates.

Numerical simulations demonstrate the efficacy of these methods when compared,

in terms of fuel usage and formation positioning error, to an ideal system where

each spacecraft has comparatively high sensing and communication capability.
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CHAPTER 1

INTRODUCTION

NASA is currently studying several large scale spacecraft formation missions,

many to be flown at the Earth-Sun libration points. The location affords scientists

a much clearer view of the universe, while providing a convenient gravitational

pull enabling the formation to be Earth following. The Micro-Arcsecond X-ray

Imaging Mission (MAXIM) [31] is an X-ray interferometer composed of up to

33 spacecraft and will be able to image the event horizon of a black hole. The

Terrestrial Planet Finder (TPF) [4] mission shall enable scientists to find and

study extra-solar planets similar to our own. While several designs are currently

under review, a TPF design by Lockheed Martin is composed of four, possibly six,

free flying spacecraft which will function as an infrared interferometer. The Stellar

Imager (SI) [12] mission postulates that stellar activity is key to understanding

life in the universe. Specifically, SI is a large, ultraviolet optical sparse aperture

telescope/Fizeau Interferometer designed to study distant stars. The SI formation

is designed to be flown at the Earth-Sun libration point, as is TPF. The design of SI

requires a large array of satellites in an irregular placement in order to accomplish

its goals.

The combination of interferometric sensing and high-N (N is the number of

spacecraft in the formation) formations make these and similar missions especially

challenging. Interferometry missions are especially challenging due to the high

tolerance requirements. Such missions are currently slated to employ a multiple

resolution control architecture: conventional thrusters and RF range and bearing

sensors are to be used for coarse spacecraft control, and laser sensors and adaptive

optics will provide fine optical path control [12, 31]. The Autonomous Formation
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Flying sensor (AFF) has been identified as a key component for the coarse control

component [2, 19]. The AFF provides range and bearing measurements between

spacecraft based on GPS technology. Large formations of spacecraft present in-

teresting challenges to the scientific community including: low fuel usage control

for given precision requirements, fleet estimation given limited sensor and com-

munication resources, and accurate reference point tracking to reduce fuel in the

presence of the other challenges. Developing scalable algorithm tools is critical to

the success of these missions.

Formation-based missions require an extremely high level of autonomy and

robustness when compared to single spacecraft missions. This is especially true

for dense, high-N formations, which naturally have a higher likelihood of colli-

sion, and those that are to be flown beyond earth-orbit, which are located too far

from the Earth to allow for direct ground-based control. Further, it is likely that

the individual spacecraft will have a limited amount of resources for sensing and

communication. Some current formation navigation and control techniques that

address these issues follow a leader-follower scheme [29]. These approaches are well

known to be suboptimal and provide each spacecraft with only a limited picture

of the full formation state. This lack of knowledge significantly degrades ability of

the spacecraft to detect and avoid collisions.

Chapter 2 describes the development of a decentralized formation centroid es-

timation architecture that, when coupled with a local controller, parameterizes the

degree to which a spacecraft is a leader or a follower, eliminating the rigid classifi-

cation of spacecraft as strictly leaders or followers. Measurements are provided by

a range/bearing sensor similar to the AAF sensor. A formation centroid calcula-

tion is introduced that automatically compensates for noise in the estimation and
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sensing subsystems. The centroid calculation is shown to significantly improve the

sensitivity, and therefore the reaction time, of the local controller to a collision

scenario.

In the case where there are few or one AFF sensors on each spacecraft, a sen-

sor scheduling algorithm is developed that maximizes the information collected

across the formation. Chapters 2 and 3 describe solutions to the infinite horizon

sensor scheduling problem. The scheduling problem is posed as an infinite hori-

zon optimization of either the time-averaged formation information or covariance

matrices, or the time-averaged formation centroid information or covariance ma-

trices. An approximation allows the scheduling problem to be formulated as a

mixed-integer quadratic program. This problem is initially solved using a stan-

dard quadratic programming solver for the unconstrained solution. The integer

constraint is then satisfied by rounding this solution. Optimality of the rounding

operation is improved by finding an integer-preserving linear transformation and

rounding in the integer transformed space. The transformation is found as one that

attempts to diagonalize the Hessian of the cost function. The resulting integrated

sensing/control architecture is compared via Monte Carlo simulation to an ideal

system where each spacecraft has full sensing capability of the entire fleet. Results

show that performance degradation in terms of RMS position error and fuel usage

is very small compared to the ideal, full knowledge solution, and that the system

outperforms the traditional leader-follower architecture.

In Chapter 4 a communication subsystem is introduced that allows for the

transmission of data between pairs of spacecraft. A distributed estimation system

is developed that requires only the transmission of local state estimates from one

spacecraft to the next in a circular manner about the formation. The state fusion
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algorithm performed at each spacecraft is formulated as a least squares problem

using the transmitted state estimate, the locally stored state estimate, and locally

calculated covariance and cross-covariance matrices. Time delays in the commu-

nication subsystem are accounted for by storing previous estimates and associated

covariance matrices at each spacecraft. Maneuvers in the form of thrust commands

that are unknown to the spacecraft in the formation are accounted for by model-

ing such system inputs as Gaussian process noise. Results show that the resulting

state estimates, while suboptimal (compared to an extended Kalman filter operat-

ing on the measurements), are statistically consistent and are always conservative

with respect to the optimal extended Kalman filter. Monte Carlo simulations of

the proposed estimator with a formation keeping controller in an eight spacecraft

formation show that the formation exhibits good performance even in the presence

of large single-hop time delays (20-30 s) in the communication subsystem.
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CHAPTER 2

INFORMATION WEIGHTED REFERENCE POINT AND

CONSTRAINED SENSOR SCHEDULING

2.1 Introduction

Typical single spacecraft systems are allowed to drift with respect to an external

frame, as it is not crucial (and would be fuel expensive) to reposition the satellite

with respect to a model-based reference track. Multiple satellite missions can relax

the positioning of the formation in an external reference frame over small time hori-

zons, but each individual spacecraft must control its relative position with respect

to the fleet (using minumum fuel) for mission performance and safety [31, 4, 12].

In addition, it is unlikely that the spacecraft will have the ability to sense position

in an external reference frame at a sufficiently high bandwidth to allow for control

with respect to the external frame. Moreover, sensitivity of these factors grows

with the number of spacecraft in the system. While formations of two or three

spacecraft can be designed with full relative sensing and communication to the

fleet, affording an accurate estimate the relative states of all spacecraft in the fleet,

formations of sixteen or more spacecraft will certainly be constrained in the num-

ber of relative spacecraft measurements, as well as the number of communication

links and available communication bandwidth. This, in turn, will have an effect on

the system performance (relative position error and fuel usage) of each spacecraft

in the formation.

The objective of the work in this Chapter is to develop a coordination archi-

tecture for future formations of spacecraft that is scalable in terms of integrated

sensing and estimation, and control. More specifically, under the constraints of a
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single range/bearing sensor, a relative control and estimation approach is developed

that allows the formation as a whole to drift, thereby saving fuel, yet also attains

very good relative positioning performance. Simulation results compared to the

centralized solution show minimal degradation in terms of RMS positioning error

and fuel usage. In addition, results compare favorably to current leader-follower

concepts. Information filtering theory [24] is used to develop a sensor scheduling

scheme for the AFF sensor. Maximizing information, or maximizing knowledge of

the formation at each spacecraft in the cluster, is used to develop switching logic

for relative sensing subsystem. The resulting GNC architecture can be considered

to be cyclic, using the nomenclature introduced in the survey in Ref. [29].

In related work, the virtual center formation reference point algorithm was

introduced in Ref. [30]. The algorithm is centralized based on the transmission of

relative state estimates maintained across the fleet. The weights used are based

on fuel reserve states, attempting to balance fuel usage across the fleet. The work

in this Chapter includes a decentralized calculation of the virtual center, requiring

very little communication. Also, the weights are based on the error covariance

of the the state estimates, leading to a system that compensates for increased

noise in the estimation and sensing subsystems, which can result from spacecraft

occlusions and hardware failures. The decentralized LQG architecture introduced

in Ref. [10] produces optimal performance for nonlinear plants and actuators using

a communication architecture where all spacecraft communicate with one another.

However, the resulting control law is suitable only for actuators that can produce

continuous unbounded inputs to the plant. The control used in this Chapter

is a time-optimal controller for accurate formation keeping using binary on/off

thrusters[9].
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The sensor scheduling problem was first introduced in Ref. [22]. The paper

contained several variations of the problem and algorithms for solving for optimal

sequences over short time horizons. The algorithm developed in Ref. [27] also

produces an optimal schedule for short time horizons. A real time implementation

a sliding window is used, where only the first measurement of the optimal schedule

is taken and the process is repeated at each time step. Optimality, however, is

not guaranteed over long time horizons. Reference [18] finds an infinite horizon

measurement scheme by choosing measurements at random; the probability of

choosing each sensor is determined by solving a set of Riccati equations. The

scheduling algorithm described in the sequel produces an optimal periodic infinite

horizon measurement schedule that can be determined a priori. That the optimal

infinite horizon measurement schedule is periodic was first proposed in Ref. [15].

The optimal schedule in Ref. [15] is determined by generating sequences at random.

This Chapter is outlined as follows: Section 2.2 details the general forma-

tion keeping problem in terms of the system dynamics, available measurements

and associated estimator, controller, and also includes assumptions and notation

used throughout. Section 2.3 describes the information weighted virtual center

estimation algorithm and describes the leader follower parameterization scheme.

Section 2.4 introduces the sensor scheduling problem and a solution and simple

example are presented in Section 2.5. Full simulation results are presented in

Section 2.6 followed by conclusions in Section 2.7.
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2.2 Problem Statement

The formation control problem addressed in this Chapter is motivated by SI-type

missions and is formulated as follows: given a fleet of N spacecraft, each equipped

with a single range/bearing sensor (RBS), find a sequence of measurements that

adaptively maximizes, in some sense, knowledge of the fleet. Maximizing knowl-

edge of the fleet directly benefits state error tracking, robustness and collision

avoidance, and, in Section 2.6, is shown to indirectly benefit performance in terms

of lowering fuel usage. Several assumptions are made: 1) the range/bearing gen-

erates bearing measurements expressed in the inertial reference frame, 2) the RBS

is omni-directional, i.e. it can provide range and bearing measurements with a

full spherical field of view at any range, 3) acquisition of signal at the RBS is

instantaneous and measurements within the nominal range/bearing performance

specifications of the AFF sensor (2cm, 1arcsec) as described in Ref. [2] are pro-

vided instantaneously, 4) thrust maneuvers at each spacecraft are transmitted over

a communication subsystem to all other spacecraft, 5) second order free-space dy-

namics govern the system. Assumption 1 is reasonable as future missions will

necessarily be equipped with high resolution inertial attitude sensors for the optics

subsystem. Attitude uncertainties can be incorporated into the RBS noise terms.

Assumption 4 is reasonable as binary thrust commands can be transmitted over

data links with very low bandwidth. Assumption 5 has been found to be accurate

for deep space missions on a 0.5-1 day horizon[28, 23]. The remaining assumptions

shall be addressed at the end of the Chapter.
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2.2.1 Spacecraft Dynamics

Each spacecraft is governed by second order dynamics, thus for N spacecraft, the

discrete-time dynamics of the i-th spacecraft, ∀ i ∈ {1, ..., N}, are as follows,

xi(k + 1) = Axi(k) + Buui(k) + Bwwi(k), (2.1)

xi(k) =



















x
(1)
i (k)

ẋ
(1)
i (k)

x
(2)
i (k)

ẋ
(2)
i (k)



















, ui(k) =







u
(1)
i (k)

u
(2)
i (k)






, wi(k) =







w
(1)
i (k)

w
(2)
i (k)






, (2.2)

A =



















1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1



















, Bu = Bw =
1

m



















∆T 2/2 0

∆T 0

0 ∆T 2/2

0 ∆T



















, (2.3)

where xi is the state of spacecraft i in an inertial frame, ui is the control input, wi is

zero mean white process noise with covariance Q, m is the mass of each spacecraft

(assumed to be identical for each spacecraft in the fleet) and ∆T is the sampling

time. Two dimensional systems are presented here for simplicity but the approach

is fully generalized to three dimensions. Without loss of generality, the process

noise wi and wj are considered to be uncorrelated, i.e. E
[

wi(k)wj(k)T
]

= 0.

Given the linear dynamics and the lack of an inertial position sensor, the i-th

spacecraft maintains estimates of N − 1 relative states. The relative dynamics are

found by subtracting Eq. 2.1 from itself and replacing i with j,

xji(k + 1) = Axji(k) + Buuji(k) + Bwwji(k), (2.4)

{x, u, w}ji(k) , {x, u, w}j(k)− {x, u, w}i(k) ∀ j 6= i. (2.5)

Note that this requires the mass of each spacecraft to be identical. This is for
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simplicity; the following treatment can be easily modified when this is not the

case. The key is that the state transition matrices are identical across the fleet

eliminating the need for inertial states, and thus, inertial state measurements.

Equations 2.4 and 2.5 can be rewritten to yield a full set of dynamics relative

to spacecraft i:

xi(k + 1) = Axi(k) + Buui(k) + Bwwi(k) (2.6)

{x,u,w}i(k) ,













...

{x, u, w}ji(k)

...













j∈{1,...,N}\i

, (2.7)

{A,Bu,Bw} ,













{A, Bu, Bw}

. . .

{A, Bu, Bw}













. (2.8)

Equation 2.7 is read as an augmented vector consisting of the N−1 relative vectors

defined in Eq. 2.5 such that xi ∈ R
4(N−1) and {ui,wi} ∈ R

2(N−1). Similarly, Eq. 2.8

is block diagonal such that A ∈ R
4(N−1)×4(N−1) and {Bu,Bw} ∈ R

4(N−1)×2(N−1).

It follows from the assumptions that wi is zero mean and its covariance is

E
[

wi(j)wi(k)T
]

= Qδjk where,

Q =



















2Q Q · · · Q

Q 2Q
...

...
. . . Q

Q · · · Q 2Q



















. (2.9)

The relative state vectors are shown conceptually in Figure 4.1.

10



Figure 2.1: Virtual center state xci relative to spacecraft i, denoted by *.
Also shown are reference states r·c, error states e·i and relative
state xji.

2.2.2 Virtual Center

For formation control, a reference state for each vehicle in the formation must be

defined. Following Ref. [30], a virtual center state, xc, is defined relative to the

desired formation geometry in the inertial reference frame; a local frame centered

at xc is then defined such that the difference between the inertial frame and the

virtual center frame is only a translation. A local reference frame at each spacecraft

i is similarly defined and the location of the virtual center in the i-th local frame

is denoted by xci = xc − xi, similar in notation to Eq. 2.5. Over relatively short

time horizons, the formation is allowed to drift in the inertial frame. Therefore, it

is sufficient to specify the reference states in the virtual center frame, denoted by

ric ∈ R
4 ∀ i ∈ {1, ..., N}. The set of N reference states are arranged in a single

column vector as follows:

r(k) ,













r1c(k)

...

rNc(k)













∈ R
4N . (2.10)
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It is convenient to rearrange this vector for each spacecraft such that, for space-

craft i, its reference state appears first followed by the N − 1 reference states of

the remote spacecraft. Therefore,

ri(k) ,







ric(k)

rri(k)






,∈ R

4N rri(k) ,













...

rjc(k)

...













j∈{1,...,N}\i

∈ R
4(N−1). (2.11)

These reference states are assumed to be known to each spacecraft in the system.

The relative state, reference state and error state vectors in the given system are

shown in Figure 2.1 for a small formation.

2.2.3 RBS Measurements

The measurements provided by the RBS are relative range and bearing to a remote

spacecraft, each corrupted with white Gaussian noise. Thus, at each time step k,

a measurement is made to one or more remote spacecraft,

zi(k) ,













...

zji(k)

...













j∈Mi(k)

= h (xi(k), k) + vi(k) (2.12)

zji(k) = h(xji(k)) + vji(k), (2.13)

h(xji(k)) =







Rji(k)

φji(k)






=







√

(x
(1)
ji (k))2 + (x

(2)
ji (k))2

tan−1 x
(2)
ji (k)

x
(1)
ji (k)






. (2.14)

where vji is zero mean, white Gaussian noise with covariance R and Mi(k) ⊆

{1, . . . , N}\i is the index set of measurements which may vary with time as selected

by switching logic external to the sensor. Note that typically Mi contains only one

element when each spacecraft is equipped with a single RBS. Because the space-

craft is also equipped with an inertial attitude sensor, the relative range/bearing

12



measurements are assumed to be made in the inertial frame without loss of gener-

ality; the statistical errors present in the attitude sensor are assumed to be built

into the RBS noise covariance R. The sensor is assumed to be able to provide

measurements at all ranges.

2.2.4 Extended Information Filter

At each spacecraft i, estimates of the relative states xi, denoted by x̂i, are main-

tained via an extended information filter (EIF)[24]. The EIF is a convenient choice

because it can be used to fuse measurements from multiple sensors and because the

information matrix is used as a weight in the virtual center calculation described in

Section 2.3. The filter is statistically equivalent to the extended Kalman filter and

maintains an information state, ŷi(k | l) , Yi(k | l)x̂i(k | l), and an information

matrix,

Yi(k|l) ,

(

E
[

(xi(k)− x̂i(k | l)) (xi(k)− x̂i(k | l))
T | Z l

])−1

(2.15)

where x̂i(k|l) is the estimate of xi(k) given the measurements up to and including

time step l, denoted by Z l. The EIF prediction and update steps are,

ŷi(k|k − 1) = Yi(k|k − 1) [Ax̂i(k − 1|k − 1) + Buui(k)] , (2.16)

Yi(k|k − 1) = (AY−1
i (k|k)AT + Q)−1, (2.17)

yi(k|k) = yi(k|k − 1) + Ci(k)TR−1(k)Ci(k)x̂i(k|k − 1)

Ci(k)TR−1(k) [zi(k)− h (x̂i(k|k − 1), k)] , (2.18)

Yi(k|k) = Yi(k|k − 1) + Ci(k)TR−1(k)Ci(k), (2.19)
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where,

Ci(k) =













...

Cji(k)

...













j∈Mi(k)

=
∂h

∂xi

∣

∣

∣

∣

x̂i(k|k−1)

. (2.20)

A useful approximation to the time varying Cji(k) consists of evaluating the Jaco-

bian at the formation reference states. That is,

C̄ji =
∂h

∂xji

∣

∣

∣

∣

rjc−ric

. (2.21)

Throughout the Chapter, an information matrix with a single argument, e.g.

Y(k) will be used as shorthand for the updated information matrix, Y(k|k).

2.2.5 Time Optimal Controller

An optimal controller (minimum time) based on thrust limited (u
({1,2})
i ∈

{−Umax, 0, Umax}) propulsion is used in the same vein as that developed in Ref. [9].

Because the satellite can be represented with second order free space dynamics in

each axis (decoupled), a feed forward, formation keeping controller based on mini-

mum time optimal control is developed. The controller is activated if the satellite

drifts away from its reference position by more than an error ellipse, which is

written as
[

eii(k)

]T [

diag{e
(1)
max, ė

(1)
max, e

(2)
max, ė

(2)
max}

] [

eii(k)

]

> 1 (2.22)

where e
(·)
max, ė

(·)
max are tuning parameters and eii(k) = xci(k) + ric(k). If this occurs,

a minimum time controller is calculated in each axis. For second order dynamics,

the minimum time controller is a bang-bang controller with a single switch. Thus,
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the control is given by

u(·)(k) =











−sgn(e(·) + ė(i)|ė(·)|/2)Umax, 0 < k − ko < T
(·)
mt1,i/T

sgn(e(·) + ė(·)|ė(·)|/2)Umax, T
(·)
mt1,i/T < k − ko < T

(·)
mtF,i/T

(2.23)

where ko is the time at the start of the maneuver. The switch time and final control

time are written as

T
(·)
mt1,i =

−ė
(·)
ii (k)±

√

1/2(ė
(·)
ii (k))2 − e

(·)
ii (k)Ūmax

Ūmax

(2.24)

T
(·)
mtF,i =

−ė
(·)
ii (k)±

√

2(ė
(·)
ii (k))2 − 4e

(·)
ii (k)Ūmax

Ūmax

(2.25)

where Ūmax = Umax/m. It is noted that other control methodologies, such as

bounds on relative velocity, minimum fuel, etc. could be used, but this controller

is sufficient to evaluate the proposed architecture.

2.3 Distributed Information Weighted Virtual Center

In Ref. [30], it is proposed that the virtual center state is calculated at each time

step by minimizing a weighted squared error in the relative formation states under

the assumption that minimizing the error minimizes the control effort required to
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null the error. Relative to spacecraft i, the virtual center is written as,

x∗
ci = arg min

xci

eT
i Wiei, (2.26)

ei =



















eii












...

eji

...













j∈{1,...,N}\i



















∈ R
4N , (2.27)

eii = xci + ric ∈ R
4, (2.28)

eji = xci − (xji − rjc) ∈ R
4, (2.29)

where Wi is an arbitrary symmetric weighting matrix. The errors eji are referred

to as the remote error states and eii the local error state. In Ref. [30], the center

state is maintained at a single spacecraft, e.g. spacecraft i = 1, and W1 is related

to the fuel reserve states of each spacecraft in the fleet. The error state of a

spacecraft that has low fuel is given a higher weight than that of a spacecraft with

higher fuel, reducing the error and thus the control effort of the low fuel spacecraft.

This has the advantage of balancing fuel across the fleet, however this approach

is centralized and communication intensive because spacecraft 1 must transmit

the resulting center state to the fleet at each time step. Another disadvantage

is that it relies on N − 1 accurate relative state estimates x̂1 at spacecraft 1.

Estimates of each relative state can be maintained at spacecraft 2 through N and

transmitted to spacecraft 1 to reduce the computational load, however this would

require additional communication bandwidth.
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2.3.1 Distributed Virtual Center

A decentralized implementation of the virtual center algorithm is proposed here

where each spacecraft in the fleet calculates a local estimate of the virtual center

x̂ci = E [xci] ∀ i ∈ {1, ...N} based on relative state estimates using measurements

generated by local sensors. If each spacecraft maintains N − 1 noise-free relative

states and uses identical weights (Wi = I), then the resulting center states are

equivalent, i.e. x̂ci + xi = x̂cj + xj ∀ i, j ∈ {1, ...N}, equivalent to the centralized

implementation in Ref. [30]. This implementation, while decentralized, is infeasible

as it requires N − 1 noise-free range/bearing sensors.

Rewriting the center state in Eq. 2.26 at spacecraft i in terms of the N − 1

relative state estimates, x̂i, yields,

x̂ci = arg min
xci

(Φxci − (Γx̂i − ri))
T Wi (Φxci − (Γx̂i − ri)) , (2.30)

where

Φ =













I4

...

I4













, Γ =







04×4(N−1)

I4(N−1)






. (2.31)

The well known solution to this linear least squares problem is:

x̂ci =
(

ΦT WiΦ
)−1

ΦT Wi(Γx̂i − ri), (2.32)

= (

N
∑

j=1

N
∑

k=1

[Wi]jk)
−1ΦT Wi(Γx̂i − ri), (2.33)

where [·]jk denotes the jk-th 4-by-4 sub-block of ·. The covariance of the center
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state is:

Pci = E
[

(xci − x̂ci) (xci − x̂ci)
T
]

, (2.34)

=
(

ΦT WiΦ
)−1

ΦT WiΓPiΓ
T W T

i Φ
(

ΦT WiΦ
)−1

, (2.35)

=

(

N
∑

j=1

N
∑

k=1

[Wi]jk

)−1( N
∑

j=1

N
∑

k=1

[WiΓPiΓ
T W T

i ]jk

)

·

(

N
∑

j=1

N
∑

k=1

[Wi]jk

)−1

, (2.36)

where Pi = Y−1
i is the covariance of the relative state estimates. Care must

be taken when choosing the weights Wi because the covariance of the center state

estimate can become large or infinite if the covariance of any of the relative states of

the spacecraft are large or infinite, corresponding to poorly observed or unobserved

remote spacecraft, which is an inherent trait of the system given the large number

of spacecraft.

2.3.2 Information Weighted Virtual Center

The algorithm described in Section 2.3.1 can run locally at the spacecraft with

any number of n ≤ N − 1 relative state estimates to solve for the virtual center.

Thus, if any spacecraft are poorly observed, the corresponding entries in Wi can

be set to zero in order to avoid numerical problems and to accurately calculate the

virtual center. In the limiting case, where n = 0 at spacecraft i, the virtual center

estimate reduces to x̂ci = −ric. In this case, the spacecraft does not perform any

correcting maneuvers because the error state is eii = x̂ci +ric = 0. This idea can be

generalized by incorporating the information content of the relative state estimates

x̂i, contained in Yi, in the weighting matrix Wi. In other words, states with high

information (low uncertainty) are weighted more in the calculation. Because Yi
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serves as a weight on only the remote error states eji ∀ j ∈ [1, N ] \ i, a weight on

the local error state eii, denoted by Gi is introduced such that

Wi =







Gi

Yi






. (2.37)

This form of the weighting matrix has the benefit of preventing any poorly observed

spacecraft from hindering the virtual center estimate. Substituting the above into

Eqs. 2.33 and 2.36, and inverting Eq. 2.36 to yield the center state information

matrix yields,

x̂ci =

(

Gi +
N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)−1
(

ΦTYi (x̂i − rri)−Giric

)

, (2.38)

Yci = P−1
ci =

(

Gi +

N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)(

N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)−1

·

(

Gi +
N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)

. (2.39)

In this formulation, unobserved (poorly observed) spacecraft correspond to zero

(near zero) information on the unobserved states, resulting in a zero (near zero)

weight on those states in the virtual center calculation. In such a case, the order of

the filter, and the order of the associated center state calculation, may be reduced to

eliminate the states corresponding to the unobserved or poorly observed spacecraft.

Such reductions, however can lead to an unstable formation. For instance, in a two

spacecraft system, spacecraft 1 need not maintain a good estimate of the state of

spacecraft 2 as long as spacecraft 2 is monitoring spacecraft 1; this is the typical

leader follower scheme. However, if spacecraft 2 has a poor estimate of spacecraft

2, the spacecraft will drift apart. More detailed discussion of the connectivity

requirements is given in the next section.
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Figure 2.2: Control dependency graphs (CDG) for a four spacecraft system.
The formation in the lower right is unstable as it consists of two
independent leaders: spacecraft 1 and 3.

2.3.3 Interpretation of Information Weighting: Control

Dependency Graph

Using the information matrix as a weight also has a direct effect on the control

dependency graph (CDG). The CDG is a directed graph that illustrates the depen-

dency of each local controller on the state of each spacecraft in the formation [29].

Typically, the dependencies are considered binary with respect to the local control

laws: either there is or there is not a dependency. However, the virtual center cal-

culation allows for a continuum of dependency that is based on the entries in the

weighting matrices Wi. Considering spacecraft i, if the weight on the relative state

of a particular spacecraft j tends to zero, then state xji does not factor into the

calculation. If the same weight goes to infinity, then the virtual center approaches

xji − rjc reducing spacecraft i to a simple follower of spacecraft j.
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Consider the CDGs in Figure 2.2, where an arrow from spacecraft i to j denotes

a dependency of the control on spacecraft j on the state of spacecraft i. The

formation in the upper left results from Yij 6= 0 and Gi < ∞ ∀ i, j. Spacecraft

1 is made a leader when Y1 = 0 (equivalently, G1 → ∞), resulting in the CDG

in the upper right. Spacecraft 3 becomes a follower of spacecraft 4 when Y31 =

Y32 = 0, Y34 6= 0, resulting in the CDG in the lower left. The formation in the

lower right is unstable as both spacecraft 1 and 3 are leaders. In this case, the

system as a whole is unstable, and therefore spacecraft 1 and 3 will begin to drift

and the formation will stretch or contract depending on the relative motion of

spacecraft 1 and 3. Spacecraft 2 and 4 will attempt, unsuccessfully, to maintain

their desired relative states to both spacecraft 1 and 3. Such a fault is detectable

at spacecraft 2 and 4 by evaluating the center state cost in Eq. 2.26. As the

formation stretches or contracts, the center state cost will grow; if it reaches some

threshold, a fault can be considered to have occurred and appropriate measures

may be taken. These measures would consist of finding the source of the fault,

of which the possibilities are numerous. The fault may be due to an error in

the controller, or a bad actuator. It may also be due to errors in the inertial

attitude determination subsystem. In cases such as these, if the fault cannot be

corrected, the spacecraft should be removed from the formation and parked at a

safe distance. If this is not possible, it may be necessary to move the formation

to a safe distance while the problem is being addressed. If the problem lies within

the sensing and estimation subsystem as described above, however, an algorithm

can be developed that would traverse the CDG to find broken or weak links due

to low information. If such links are found, the faulty spacecraft can attempt to

reestablish the broken link by reinitializing the sensor/estimator, possibly with

estimates that are communicated to it from other spacecraft, or the spacecraft can
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be isolated from the formation while diagnostics can be performed.

These observations lead to a necessary, but not sufficient, condition for forma-

tion stability: that there exists at least one spacecraft from which there extends a

path along the CDG to every other spacecraft in the formation. Stability in this

case is defined as the formation being able to drive the relative error to zero in the

local reference frame.

2.3.4 Hybrid Leader Follower Using Gi

The free weights Gi in Eq. 2.37 can also be used to control the degree to which

each spacecraft “leads” or “follows” the fleet, thus allowing the designer to select a

hybrid mix of leader-follower for each spacecraft. For example, in a two spacecraft

system, and G1 =∞ and G2 = 0, a leader follower scheme results where spacecraft

1 is the leader (drifts with no control) and 2 is the follower. It is proposed to define

Gi in the general problem for N spacecraft as the following:

Gi =
gi

N − 1

N−1
∑

j=1

N−1
∑

k=1

[Yi]jk + c · I. (2.40)

This term is an average of the weights on the N − 1 remote error states (or equiv-

alently, an average of the information of the remote relative states) weighted by

gi, and an additive weight c · I. The constant c · I is necessary to keep the inverse

in Eq. 2.38 from becoming singular; as such, c can be made relatively small. Sub-

stituting Eq. 2.40 into Eqs. 2.38 and 2.39, the resulting center state estimate and
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information matrix at spacecraft i are

x̂ci =

[

c · I +

(

1 +
gi

N − 1

)N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

]−1

×

[

ΦTYi (x̂i − rri)−

(

c · I +
gi

N − 1

N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)

ric

]

(2.41)

Yci =

(

1 +
gi

N − 1

)2
(

N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)

+ 2c(1 +
gi

N − 1
)I +

c2

(

N−1
∑

j=1

N−1
∑

k=1

[Yi]jk

)−1

(2.42)

Note that as Yi approaches zero, perhaps as a result of a failure of the RBS on

spacecraft i and a lack of measurements provided to the EIF, Yci approaches ∞.

Thus the center state estimate, x̂ci approaches a constant −ric, as it should, and

no control is spent.

The designer can now adjust gi to fit mission specific needs. In missions such

as SI, which consist of a single large hub spacecraft and N − 1 smaller reflector

spacecraft, it may be desirable to place a gi on the hub spacecraft that is different

from the reflector spacecraft, depending on the mission phase. If the formation is in

the observation phase, it may be necessary to make the hub spacecraft an effective

leader. This may also be the case if the system is designed such that the hub is

responsible for stabilizing the orbit of the formation about L2. The hub is made

a leader by setting qhub = ∞ during such orbit corrections. Given the position

of the hub in the inertial frame, trajectories in the inertial frame for the follower

spacecraft can easily be translated via the reference states r(k). Conversely, the

weight on the hub spacecraft may be lowered during housekeeping activities.

The scalar gi can also be used to incorporate the local fuel reserve state by

allowing gi to approach ∞ for low fuel, and some small value or zero for high fuel.

As an example, the constant gi could be chosen based on the function gi(Fi) =
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Figure 2.3: Collision scenario for evaluating the information weighted vir-
tual center algorithm. Spacecraft 1 and 2 are stationary while
spacecraft 3 approaches spacecraft 1 at a rate of 1 mm/s.

a/Fi + b where Fi ∈ [0, 1] is the normalized fuel reserve state, and a and b are

tuning parameters that can be chosen, for example, by choosing gi values when the

spacecraft’s fuel reserves are full, and half-full. Denoting these values respectively

as qfull
i and qhalf

i such that gfull
i < ghalf

i yields,

gi(Fi) =
ghalf

i − gfull
i

Fi

+ 2gfull
i − ghalf

i . (2.43)

2.3.5 Collision Avoidance

An additional benefit of the information weighted virtual center is that the coupling

of two spacecraft grows with decreasing range between the spacecraft. This is

due to the increase in information in the nonlinear measurement with decreasing

range. As a result is the increased information, the weight in the corresponding
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virtual center increases, leading to increased sensitivity. Consider the formation in

Figure 2.3. If each spacecraft is stationary and spacecraft 1 gets RBS measurements

to spacecraft 2 and 3 at each time step, Y1 is considered to be block diagonal such

that

Y1 =







[Y1]22 [Y1]23

[Y1]
T
23 [Y1]33






(2.44)

where the subscripts denote the information in the estimate of the state spacecraft

2 or 3 relative to spacecraft 1. It can be shown that in steady state [Y1]33 > [Y1]22

due to the relative proximity of spacecraft 3 to spacecraft 1. In this case, when

solving for the virtual center x̂c1 as in Eq. 2.38, the effect of the error e31 =

xc1 − (x̂31 − r3c) will be greater than the effect of the error xc1 − (x̂21 − r2c) and

so the resulting xc1 will be more dependent on x̂31. This can be seen by the

inspection of the term
(

ΦT Yi (x̂i − rri)−Giric

)

in Eq. 2.38. Figure 2.4 shows that

the collision is detected earlier in the information weighted center calculation as

compared to the case where the unweighted virtual center is used.

2.4 Sensor Scheduling

Spacecraft in formation-based missions such as SI will most likely be equipped with

only a single RBS, and therefore, only a single range/bearing measurement is pro-

vided at each time step. Thus, an algorithm is introduced which switches the mea-

surements of the RBS among the spacecraft based on maximizing a function of the

information matrix. Maximizing both the center state information and formation

information is considered. The general sensor scheduling problem, first described

in Ref. [22] has been addressed in many settings. Many approaches[18, 27, 22]

attempt to find a schedule over a short time horizon and use heuristic algorithms
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Figure 2.4: Higher information for the closer spacecraft leads to increased
sensitivity to a collision.

to solve for optimal and near-optimal sequences. However, because most future

spacecraft missions consider long time horizons with respect to the sampling rate,

it is proposed here to pose the problem as finding a schedule that minimizes a

function of the covariance (or information) in an infinite time horizon. If the op-

timal measurement schedule can be represented by a simple measurement control

law or stored in a lookup table, less computation will be required to determine the

measurement at each time step.
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2.4.1 Infinite Time Sensor Scheduling Problem

Considering a single spacecraft (omitting the i subscripts) and a single measure-

ment, the finite time horizon sensor scheduling problem is cast as minimizing a

cost function,

JKF
,

1

KF

trace

KF
∑

k=1

f(Y(k)), (2.45)

where Y(k) is the updated information matrix as a function of sensor selection de-

cision variables. It evolves according to Eqs. 2.17 and 2.19 which can be simplified

to an information form of the Riccati equation

Y(k + 1) = A−TY(k)A−1 + C(k)T R(k)−1C(k)−

A−TY(k)A−1Bw

(

Bw
TA−TY(k)A−1Bw + Q−1

)−1
Bw

TA−TY(k)A−1.

(2.46)

The measurement matrices, C(k), are selected from the finite measurement set,

C(k) ∈ {C̄ji | j ∈ Ni}, with corresponding measurement noise covariances

R(k) ∈ {Rji | j ∈ Ni} where Ni is an index set of available measurements, via

the measurement control law µKF
= {µ(1), ..., µ(KF )} such that µ(k) ∈ Ni and

C(k) = C̄µ(k)i. For the fleet estimation problem outlined in Section 2.2, the index

set is the set of remote spacecraft measurements, Ni = {1, ..., N} \ i. Without loss

of generality, the sensor noise covariance is assumed to be identical for all mea-

surements and will be denoted by R, i.e. Rji = Rki = R ∀ j, k ∈ Ni. Since what

follows is dependent on a fixed number of (approximately) constant measurement

matrices, the resulting scheduling algorithm is therefore appropriate only for fixed

formations with constant reference states r.

Several cost functions are considered, consisting of, respectively, maximizing

the center state information (CI) and formation information (FI), and minimizing

27



the center state covariance (CC) and formation covariance (FC):

JCI
KF

, −
1

KF

trace

KF
∑

k=1

ΦTY(k)Φ (2.47)

JFI
KF

, −
1

KF

trace

KF
∑

k=1

Y(k) (2.48)

JCC
KF

,
1

KF

trace

KF
∑

k=1

(

ΦT Y(k)Φ
)−1

(2.49)

JFC
KF

,
1

KF

trace

KF
∑

k=1

Y(k)−1. (2.50)

The summation is important to give an average over the full period K. Note that

the information costs JCI
KF

and JFI
KF

are defined in the negative to allow minimiza-

tion.

The infinite time problem consists of minimizing J
(·)
∞ = limKF→∞ J

(·)
KF

with cor-

responding measurements µ∞. An analytical solution to this general problem has

not yet been found. In a recent paper by Gupta and Murray [18], the sensor sched-

ule is modeled as a random process such that at each time step, a measurement j

is selected from the measurement set Ni with probability λr
j , with the constraint

∑

j∈Ni

λr
j = 1. (2.51)

The algorithm in Ref. [18] solves for the set of probabilities that minimize an

upper bound on the expected value of the covariance, which is determined by a

set of Riccati-like equations. Although the algorithm produces the optimal λr
j ,

it converges only for stable systems and can be shown to be sub-optimal for the

formation keeping problem. Consider the scheduling of a single RBS for a three

spacecraft system, where spacecraft 1 and 2 are equidistant to spacecraft 3, which

is estimating the virtual center based on measurements and estimates to space-

craft 1 and 2. Figure 2.5 shows the center state information for several random
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Figure 2.5: Comparison of periodic and random measurement sequences.

and periodic sequences. The figure shows that the instantaneous information of

the random sequence is always less than that of the periodic sequence with mea-

surement sequence µ = {1, 2, 1, 2, . . .}.

2.4.2 Periodic Sensor Scheduling Problem

It is proposed that the optimal infinite horizon measurement sequence for any

linear time invariant system is periodic. This was originally suggested in Ref. [15]

and an algorithm to find the optimal periodic measurements based on generating

sequences at random was developed. Here, the periodic formulation is posed as

finding the periodic measurement sequence that minimizes J
(·)
∞ . Thus for a given

periodic measurement sequence,

µ∞ = {µ̄K , µ̄K , ...}, µ̄K = {µ̄(0), µ̄(1), ..., µ̄(K − 1)}, (2.52)
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where K is the (dimensionless) period of the sequence, the resulting cost is

J (·)
∞ =

1

K
trace

K−1
∑

k=0

f(Yp(ko + k)), (2.53)

where Yp(k) is a steady state periodic information matrix which is found by solving

a periodic Riccati equation [7], ko is an arbitrary constant and f corresponds to

the variants in Eqs. 2.47-2.50.

The information resulting from a periodic measurement sequence can be de-

termined by a modified algebraic Riccati equation. Using the periodic identity

C(k) = C(τK + k) ∀ τ, k ∈ {0, 1, ...}, the periodic system is represented by the

time-invariant dynamics,

x̃(τ + 1) = Ãx̃(τ) + B̃ww̃(τ), (2.54)

z̃(τ) = C̃τKx̃(τ) + D̃τKw̃(τ − 1) + ṽ(τ), (2.55)

x̃(τ) , x (τK) , (2.56)

w̃(τ) ,

[

w (τK)T · · · w (τK + K − 1)T

]T

, (2.57)

z̃(τ) ,

[

z (τK − (K − 1))T · · · z (τK)T

]T

, (2.58)

ṽ(τ) ,

[

v (τK − (K − 1))T · · · v (τK)T

]T

, (2.59)

Ã , AK , (2.60)

B̃w ,

[

AK−1Bw AK−2Bw · · · Bw

]

, (2.61)

C̃k ,



















C (k − (K − 1))A−(K−1)

C (k − (K − 2))A−(K−2)

...

C (k)



















, (2.62)

[

D̃k

]

ij
,











−C(k − (K − i))Ai−jBw if i < j

0 otherwise
(2.63)
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The matrices in Eqs. 2.54 and 2.55 are time invariant with respect to τ when the

system dynamics are time invariant and the measurements are periodic with period

K. Thus an EIF can be run on the system represented by Eqs. 2.54 and 2.55 and

will yield an identical estimate and information matrix as when running the EIF

on the system represented by Eqs. 2.6 and 2.12. The information matrix prediction

step is,

Ỹ(τ + 1|τ) =
(

ÃỸ(τ |τ)−1ÃT + B̃wQ̃B̃T
w

)−1

(2.64)

where Q̃ , diag(Q, . . . ,Q). This equation is the standard EIF prediction equation

analogous to Eq. 2.17. However, the D̃τKw̃(τ −1) term in Eq. 2.55 leads to a non-

standard update step

Ỹ(τ + 1|τ + 1) = Ỹ(τ + 1|τ) +
(

C̃T
τK + Ỹ(τ + 1|k)S̃τK

)

·
(

R̃ + D̃τKQ̃D̃T
τK + S̃T

τKỸ(τ + 1|τ)S̃τK

)−1 (

C̃T
τK + Ỹ(τ + 1|τ)S̃τK

)T (2.65)

where S̃τK , B̃wQ̃D̃T
τK and R̃ , diag(R, . . . ,R). The information matrix Ỹ(τ |τ)

is the information matrix corresponding to the state estimate x(τK), i.e. Ỹ(τ |τ) =

Y(τK).

2.5 Numerical Solution

The cost associated with a given sequence µ̄K can be determined by combining

Eqs. 2.64 and 2.65 and setting Ỹ(τ + 1|τ + 1) = Ỹ(τ |τ) = Yp(τK), solving for

Yp(τK) and propagating the result forward K − 1 times via Eq. 2.46 to solve for

Yp(τK+i), i ∈ {1, . . . , K−1}. Finding the optimal µ̄K using an exhaustive search

would require repeating this process |Ni|
K times, where typically |Ni| = N − 1 if

all spacecraft are observed. This could be computationally expensive for large N

or K.
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A relaxation of the scheduling problem can be shown to be convex in a set of

variables which correspond to the number of measurements made to each space-

craft, normalized by the period K. These variables are denoted by λj where

λj = |{k | µ̄K(k) = j}|/K ∀ j ∈ Ni and each λj represents a quantity similar to

the λr
j defined in Ref. [18] where each λj can be interpreted as a duty cycle value.

For example, if measurements are being made to two spacecraft, denoted by 1 and

2, and if λ1 = 0.1 and λ2 = 0.9 then 10% of the duty is spent measuring range

and bearing to spacecraft 1 and 90% is spent on spacecraft 2. The set of λj shall

be denoted by Λ such that Λ , {λj | j ∈ Ni}. Clearly,
∑

j∈Ni
λj = 1 and λjK

is constrained to be an integer such that λj ∈ {0, 1/K, 2/K, . . . , 1}. If the integer

constraint is relaxed such that λj ∈ [0, 1], then the optimal set of duty cycles can

be found by solving a linear matrix inequality (LMI) problem. Note that there are

many sequences µ̄K which satisfy a given Λ.

Based on the convexity of the relaxed version of the scheduling problem, a

two-level algorithm is developed to solve for the optimal measurement schedule

for a given K: (1) a (non-exhaustive) steepest descent search over the set of all

possible Λ and (2) for each Λ a (non-exhaustive) search over all possible µ̄K .

The remainder of this section consists of a description of this algorithm and the

results of the algorithm as applied to a simple system consisting of three spacecraft.

Denoted by 1,2 and 3, spacecraft 3 is equipped with a single RBS. The spacecraft

are nominally located at the vertices of an equilateral triangle in the x-y plane

such that spacecraft 3 is at the origin, spacecraft 1 is located 50 m from spacecraft

3 at a bearing of −π/6 rad from the y-axis, and spacecraft 2 is located 50 m from

spacecraft 3 at a bearing of +π/6 rad from the y-axis. This example is used to

explore the trends and solutions associated with the sensor scheduling problem. It

should be noted that the trends described in this section have been observed for
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larger and more complex systems.

Section 2.5.1 outlines the steepest descent search algorithm for the optimal Λ

on the relaxed version of the problem, Section 2.5.2 presents a modification of

the steepest descent search algorithm to find the true cost using three different

methods of finding a suitable measurement sequence µ̄K , and Section 2.5.3 is a

modified version of the algorithm that allows for a constraint on the minimum

switching time of the RBS.

2.5.1 Duty Cycle Search (DCS)

For a fixed Λ, the LMI solution to the relaxed version of the problem can be

rewritten as the solution to the Riccati equation

Ŷ = Ã−T ŶÃ−1 + K Î−

Ã−T ŶÃ−1B̃w

(

B̃T
w
Ã−T ŶÃ−1B̃w + KQ̃−1

)−1

B̃T
w
Ã−T ŶÃ−1 (2.66)

where

Ŷ =

K−1
∑

i=0

Yp(τK + i) (2.67)

Î =
∑

j∈Ni

λj Īj (2.68)

Īj =

K−1
∑

i=0

(A−i)TCT
j R−1CjA

−i (2.69)

with cost

Ĵ (·)
∞ =

1

K
tracef(Ŷ), (2.70)

Given the convexity of the relaxed problem in Λ, a steepest descent search algo-

rithm is developed, shown in Algorithm 1. The convexity over the unconstrained
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Λ guarantees convergence for small step size ∆λ, however, the algorithm may con-

verge slowly. For faster convergence, the step size may be set to 1/K, which has

the added benefit of satisfying the integer constraint on Λ.

Algorithm 1: Steepest Descent Search Algorithm for Optimal Duty Cycles

1: procedure GradMinCost(Λ0)

2: Λ∗ ← Λ0, J∗ ←∞, m← 1

3: while done = FALSE do

4: Λm ← Λ∗, done ← TRUE

5: for j, k ∈ Ni, j 6= k do

6: Λm+1 ← Λm

7: λm+1
j ← λm+1

j + ∆λ

8: λm+1
k ← λm+1

k −∆λ

9: Jm+1 ← Ĵ
(·)
∞ (Λm+1)

10: if Jm+1 < J∗ then

11: Λ∗ ← Λm+1, J∗ ← Jm+1, done ← FALSE

12: end if

13: end for

14: m← m + 1

15: end while

16: end procedure

17: function J = Ĵ
(·)
∞ (Λ)

18: Solve Eq. 2.66 for Ŷ

19: J ← trace f(Ŷ)/K

20: end function
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Figure 2.6: DCS results for K = 1, 30, 50. Shown is the optimal λ∗
1 found

for each case using DCS, the relaxed cost Ĵ
(·)
∞ for all Λ and and

the truth cost J
(·)
∞ found by the solution to the Riccati equation

described in Section 2.5.2.

Figure 2.6 shows the results of the algorithm for the duty cycles Λ on the

three spacecraft system using the information-based cost functions JCI
∞ and JFI

∞ .

Because of the constraint λ1 + λ2 = 1, the cost as a function of only λ1 is shown.

The increase in information with K for the DCS case is due to the lack of the

cross-covariance terms in the LMI-based cost. The results suggest that, although

K is always necessarily greater than 1, it is sufficient to solve the LMI for K = 1

because the solution for Λ are identical for each K and yield cost that is closest to

the truth solution. This is advantageous because the dimension of Q̃ in Eq. 2.66

grows with increasing K. The resulting Λ can be rounded up or down to meet the

integer constraint and can then be used as an initial guess for the SS algorithm.
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2.5.2 Sequence Search

The convexity of the relaxed version of the problem as described in the previous

section suggests that a steepest descent search algorithm may be used for the full

problem as well. The Sequence Search (SS) algorithm is therefore identical to the

DCS algorithm in Algorithm 1 with the exception of the cost function evaluation

in line 9. For the SS algorithm, this function consists of choosing a sequence µ̄K

which satisfies the duty cycles Λ and evaluating the cost J
(·)
∞ by solving Eqs. 2.64

and 2.65 for the steady state periodic information matrix Yp(τK), propagating

the result via Eq. 2.46 to find Yp(τK + i) for i ∈ {1, . . . , K − 1} and Eq. 2.53 to

find the cost. Clearly, for the SS algorithm it is necessary to set ∆λ = 1/K. This

modification is shown in Algorithm 2.

Algorithm 2: Sequence Search Cost Function for the Steepest Descent Search
Algorithm

1: function J = J
(·)
∞ (Λ)

2: Generate µ̄K

3: Solve Eqs. 2.64 and 2.65 for Yp(τK)

4: Find Yp(τK + i) for i ∈ {1, . . . , K − 1} via Eq. 2.46

5: J ←
[

trace
∑K−1

k=0 f(Yp(τK + k))
]

/K

6: end function

The SS algorithm requires a specific measurement sequence for a given Λ. There

are, however, many sequences that yield the same Λ. In the three spacecraft

example, let K = 6 and consider the measurement sequence on spacecraft 3 such

that Λ = {λ1, λ2} = {0.5, 0.5}. Three sequences that match these parameters are:

{1, 2, 1, 2, 1, 2}, {1, 1, 1, 2, 2, 2} and {1, 1, 2, 2, 1, 2}. There are others, but these

three are of interest because they are considered, in some sense, to be the fastest,
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Table 2.1: Inter-sampling times ∆kj and sequence variances σ2, σ2
tot for sev-

eral measurement sequences.

µ̄ ∆k1 = ∆k2 σ2(∆k1) = σ2(∆k2) σ2
tot(µ̄)

{1, 2, 1, 2, 1, 2} {2, 2, 2} 0 0

{1, 1, 2, 2, 1, 2} {1, 2, 3} 0.67 1.33

{1, 1, 1, 2, 2, 2} {1, 1, 4} 2 4

the slowest and intermediate, respectively. In order to quantify the switching

speed, a variance in the sampling times to each spacecraft is defined. For a given

sequence µ̄K , the set of times between each sample to spacecraft j is

∆kj = {n−m : µ(m) = µ(n) = j, µ(p) 6= j ∀ m < p < n} (2.71)

The mean of these inter-sample times is clearly 1/λj and |∆kj| = Kλj. For a given

Λ, the variance of the entire sequence is the sum of the variances of the individual

inter-sampling times to each spacecraft:

σ2
tot(µ̄) =

∑

j∈Ni

σ2(∆kj) =
∑

j∈Ni





1

Kλj

Kλj
∑

n=1

(

∆kj(n)−
1

λj

)2


 , (2.72)

where ∆kj(n) is the n-th element in ∆kj. This quantity is easily computed for

periodic sequences. Table 2.1 shows ∆kj and σ2
tot for the three sequences.

Figure 2.7 illustrates the change in cost with σ2
tot for sequences with varying

K. Three types of sequences are considered:

• Slow switching: all measurements are grouped together, e.g. µ̄ =

{1, 1, . . . , 2, 2, . . . , 3, 3, . . .},

• Fast switching: the sequence which minimizes σ2
tot for each K, and

• Random switching: randomly generated sequences which satisfy the duty

cycles Λ.
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While the plot shows that the mean covariance JFC
∞ is not monotonically decreasing

with decreasing σ2
tot, the minimum cost for this case occurs when σ2

tot = 0. This

property has been seen in all other examples the authors have explored, including

many higher order problems (i.e. larger N and K). This understanding is clearer

still when considering the slow switching case (σ2
tot large). In this case, as K

increases only a single spacecraft is observed for an increasingly long period of

time. In the limit, as K approaches infinity only a single spacecraft is observed

and the information on all other spacecraft will go to zero, resulting in a high cost.

Conversely, for fast switching, as K increases the cost can be made at least as

small as the cost found for smaller K. Consider the optimal sequence for some

fixed K, denoted by µ̄∗
K . For a period length of 2K, 3K, etc., the sequences

{µ̄∗
K , µ̄∗

K}, {µ̄
∗
K , µ̄∗

K , µ̄∗
K}, etc., will yield the same cost (as well as the same σ2

tot).

This places an upper bound on the cost for large K which will be lower than the

cost associated with the slow switching case. Finally, for random switching, as K

approaches infinity, the switching sequence approaches the random sequence found

by the algorithm presented in Ref. [18].

This suggests that for systems with larger K or N , the optimal sequence may be

found by minimizing σ2
tot. An exhaustive search for the sequence with the minimum

sampling variance would be computationally prohibitive for large K and N , how-

ever a fast switching sequence with minimum or near-minimum sampling variance

can be found in a manner similar to the integer steepest descent search algorithm

described above. Starting with an initial sequence µ̄0
K the algorithm proceeds by

swapping measurements for each pair of time instances k1, k2 ∈ {0, · · · , K−1} and

evaluates the variance in Eq. 2.72. The sequence is updated by swapping the pair

of measurements that yields the greatest decrease in variance, and the algorithm

repeats until a minimum is achieved.
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Algorithm 3: Sequence Search Algorithm for Fast Measurement Sequences

1: function µ̄∗(µ̄0)

2: µ̄∗ ← µ̄0, J∗ ←∞, m← 1

3: while done = FALSE do

4: µ̄m ← µ̄∗, done ← TRUE

5: for j, k ∈ {1, . . . , K}, j 6= k do

6: µ̄m+1 ← µ̄m

7: µ̄m+1(j)← µ̄m(k)

8: µ̄m+1(k)← µ̄m(j)

9: Jm+1 ← result of Eq. 2.72

10: if Jm+1 < J∗ then

11: µ̄∗ ← µ̄m+1, J∗ ← Jm+1, done ← FALSE

12: end if

13: end for

14: m← m + 1

15: end while

16: end function

2.5.3 Constrained Sequence Search

The scheduling algorithm is extended to allow for a constraint on the minimum

switching time of the RBS. The SS steepest descent search algorithm is modified

to produce the optimal measurement schedule based on two parameters: K, the

integer number of time steps in the periodic sequence, and Kmin, the minimum

switching time of the sensor, also in time steps. The algorithm proceeds in the
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Figure 2.7: Shown is the resulting formation mean covariance JFC

and peak-to-peak relative amplitude of trace (Y−1(k))
for the three spacecraft system for various K where
Λ = {1/2, 1/2}. The peak-to-peak relative amplitude is
(maxk [trace (Y−1(k))]−mink [trace (Y−1(k))]) / JFC .

same manner as SS and DSC, with the added constraint that λi ≥ Kmin/K. The

implementation of the sequence generating algorithm is easily modified to account

for the minimum switching time. As with the slow switching case, a decrease in

performance is expected for increasing Kmin. Figure 2.8 shows the center state

information with increasing Kmin, demonstrating this effect.

Figure 2.9 shows the effect of varying K and Kmin on a modified version of the

three spacecraft example. In this example, spacecraft 2 is nominally located 100

m from spacecraft 3 and remains at a bearing of +π/6 rad. Larger Kmin requires
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Figure 2.8: Mean information decreases with increasing Kmin and peak-to-
peak amplitude increases for K = 1000.

larger K in order to achieve higher mean information. Note that λ∗
1 is always within

1/K of the optimal λ1 as determined by the faster DCS algorithm. Figure 2.10

shows the optimal measurement sequences for each Kmin when K = 64.

2.6 Simulation Results

An eight spacecraft 2D simulation of a formation similar in context to the SI mis-

sion is simulated in order to evaluate the estimation and fuel(control) performance.

The eight spacecraft are randomly placed, as shown in Figure 2.11. Each space-

craft is simulated using free body dynamics with differing constant disturbance

biases at each spacecraft in the range of 20-25 µN and a small random white noise

component with a standard deviation of 1µN in X1 and X2. Each spacecraft is
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equipped with 1mN thrusters in X1 and X2, and each RBS provides measurements

with sensor noise standard deviation of (2cm, 1arcsec) in range and bearing at a

rate of 0.25 Hz. The controller error ellipse is defined such that e
(1)
max = e

(2)
max = 1m

and ė
(1)
max = ė

(2)
max = 0; Figure 2.12 shows the effect of the control law acting on a

sample spacecraft.

Table 2.2 shows the results of the SS algorithm for each spacecraft i on

the system shown in Figure 2.12 using the cost JCI
∞ . The resulting duty cy-

cles are Λi = {λij | j ∈ Ni}, Ni = {1, ..., N} \ i. The nominal ranges

R̄ij ,

√

(r
(1)
ic − r

(1)
jc )2 + (r

(2)
ic − r

(2)
jc )2 between each pair of spacecraft are also shown

for comparison. The algorithm produces identical results for various initial guesses
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Figure 2.12: Spacecraft 8 position error and controller error ellipse.

including those generated by the LMI solution. The results show that there is

a strong correlation between ranges and the λij. Also, the formation and center

state information vary little over the period K, and it is never advantageous to

not observe a spacecraft, i.e. λij is never zero. Figure 2.13 shows the measurement

sequence and steady-state information for spacecraft 3. For the fast switching

sequence shown, the information is relatively constant over the period K.

Figure 2.14 illustrates the effect of using the different cost functions J
(·)
∞ to

optimize the measurement schedule at spacecraft 1. The horizontal axis represents

each of the four cost functions for each of the seven spacecraft being sensed in order

of decreasing range; spacecraft 2 is closest and spacecraft 3 is farthest away. Each
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Table 2.2: Nominal Range R̄ij and Corresponding λij for K = 28

R̄ij (m) λijK

i, j 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 - 25 112 41 35 112 90 97 - 12 1 5 7 1 1 1

2 25 - 87 29 57 121 74 90 12 - 1 10 2 1 1 1

3 112 87 - 86 142 176 81 115 3 6 - 6 2 1 7 3

4 41 29 86 - 77 99 98 61 7 13 1 - 2 1 1 3

5 35 57 142 77 - 129 101 128 14 6 1 3 - 1 2 1

6 112 121 176 99 129 - 194 68 4 3 2 5 3 - 1 10

7 90 74 81 98 101 194 - 154 4 7 6 4 4 1 - 2

8 97 90 115 61 128 68 154 - 3 4 2 9 2 7 1 -

cost function results in a measurement schedule that takes more measurements to

spacecraft that are closer except JFC
∞ , which prefers spacecraft that are further

away. Of the three that prefer closer spacecraft, JCC has the largest variation of

the duty cycle λj , i.e. highest lambda for spacecraft 2 and smallest for spacecraft 3;

and JFI
∞ has the smallest variation. Figure 2.14 (bottom) represents the resulting

information on each individual spacecraft normalized by the maximum (i.e. each

group of seven is normalized by its max). The information resulting from the

cost function JFC
∞ shows the least variation while the information resulting from

JCC
∞ shows the most variation in information. This suggests that minimizing JFC

attempts to balance information throughout the formation.

In a final study, the distributed virtual center and sensor scheduling concepts

are brought together in one comparison. All eight spacecraft are simulated, and
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Figure 2.13: Top: Optimal measurement sequence at spacecraft 3; each hor-
izontal tick represents a single measurement. Note that the
sampling sequences to each sensor are nearly uniform. Bottom:
The peak-to-peak amplitude of the resulting periodic informa-
tion is several orders of magnitude less than the mean (due to
fast switching, i.e. low σ2

tot(µ̄)).

several cases are tested:

n > 1 Unweighted Each spacecraft is equipped with n range/bearing sensors

that run concurrently and provide measurements to n spacecraft. Each sensor

provides range/ bearing measurements to a single remote spacecraft through-

out the simulation. In order to balance the network and ensure coupling, each

spacecraft is sensed by exactly n spacecraft. The weights Wi = I in the vir-

tual center calculations. The sensor architecture is static, i.e. the RBSs do

not switch between multiple remote spacecraft.

n > 1 Weighted Identical to the n > 1 Unweighted case except Wi =

diag(Gi,Yi) when calculating the virtual center and gi = 5.

Switched Unweighted (SU) Each spacecraft is equipped with a single RBS and
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the infinite horizon scheduling algorithm described in Section 2.4 is used. The

weighting matrix Wi = I when calculating the virtual center. Three different

switching sequences are used: those determined by minimizing JCI
∞ , JFI

∞ and

JFC
∞ are denoted by SUCI, SUFI, and SUFC respectively.

Switched Weighted (SI) Same as SU except the weighting matrix is Wi = Yi

when calculating the virtual center.

Leader Follower (LF) Unweighted virtual center where each spacecraft main-
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tains an estimate to spacecraft 1 only. Spacecraft 1 performs no correction

maneuvers.

For each case, multiple forty-eight hour simulations are performed. Figure 2.15

shows the mean fuel usage and RMS position error for each case with 1-σ error

bars. Note that the n > 1 cases are unrealistic because they require more than one

RBS, but are presented here for comparison purposes only. The results show that

the switched network exhibits positioning performance superior in almost every

case to the LF network, and superior even to the n > 1 solutions. Results suggest

that the switched network with a single sensor is equivalent in performance to a

nearly centralized (n=7) static sensor schedule solution. Also, there is a trade

off between the robustness of the information weighted virtual center versus the

performance of the unweighted weighted virtual center. The information weighted

virtual center should therefore be used if failures in the estimation and sensing

subsystems have a higher probability in order to allow for an accurate and stable

estimate of the virtual center. Finally, it is noted that tuning gi results in greatly

improved performance for all information weighted cases.

2.7 Conclusions

The information weighted virtual center algorithm combined with the sensor

switching algorithm has been presented. The algorithm is highly decentralized,

requiring only the low bandwidth transmission of maneuvers, scalable and nat-

urally mitigates errors in the estimation/sensor subsystem. These errors may be

due to unobservability of spacecraft due to the limited field of view of the RBS and

occlusions, loss of lock at the RBS, and changes in the measurement and process
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noise covariances. The assumption that the RBS sensor provides omni-directional

measurements can be relaxed by having the spacecraft select measurements based

on a reduced set of available measurements. The periodic scheduling algorithm

has been shown to be convex under mild assumptions and the LMI-based approxi-

mate solution can be used in the more accurate steepest descent search algorithm.

Limitations in sensor switching frequency are incorporated by adding the appro-

priate constraints in the steepest descent search scheduling algorithm. Simulation

results show the decentralized information weighted virtual center calculation cou-

pled with optimal sensor scheduling to yield performance (estimation, fuel usage

and positioning) that is superior to leader-follower using a single RBS sensor and

comparable to a fully connected architecture where each spacecraft is equipped

with N − 1 range/bearing sensors.
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CHAPTER 3

SENSOR SCHEDULING ANALYSIS AND NEAR-OPTIMAL

SOLUTIONS

3.1 Introduction

The work in Chapter 2 focused on a problem similar to the one presented herein

and an integer-constrained steepest descent search algorithm was developed. Al-

though the algorithm performs well, it has been shown[25] that such algorithms

are inherently flawed and may converge to suboptimal solutions. In this chap-

ter, assuming the sensor schedule to be periodic, a linear matrix inequality (LMI)

problem is formed. The LMI formulation is driven by assuming the process noise

intensity to be small. The relaxed version of the problem is shown to be inde-

pendent of the the schedule itself, but is convex in the measurement rates of each

sensor. The LMI problem, however, is subject to an integer constraint on the mea-

surement rates. Relaxing this constraint leads to a standard LMI problem which

can be solved using off the shelf optimization software such as the MATLAB LMI

toolbox. The integer constraint is then imposed via a set of algorithms which are

based on judicious rounding of the elements of the unconstrained solution. These

methods are inspired by algorithms which are based on solving integer constrained

least squares problems, which are common in Global Positioning System (GPS)

estimation problems[32, 25].

This Chapter is outlined as follows: the infinite horizon periodic sensor schedul-

ing problem is formulated in Section 3.2. An approximation of the cost function

and integer constrained solution is described in Section 3.3. Several examples

which explore the accuracy of the approximation and associated solution are also
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described. The Chapter concludes with Section 3.4.

3.2 Problem Statement

The dynamics of the system under consideration are,

x(k + 1) = Ax(k) + Bw(k) (3.1)

z(k) = Cµ(k)x(k) + vµ(k)(k) (3.2)

where w(k) is zero-mean, Gaussian white noise, µ(k) ∈ M is a predetermined

measurement schedule, M = {1, . . . , N} is a set of indices of measurements con-

sisting of the measurement matrices {Cj | j ∈ M} and associated measurement

noises {vj | j ∈ M}, each being white, Gaussian sources with covariance Rj .

The measurement schedule µ∞ = {µ(1), µ(2), . . .} minimizes the infinite horizon

information based cost function,

J , lim
KF→∞

−
1

KF

trace

KF
∑

k=1

Y (k | k). (3.3)

where Y (k | k) is the information matrix. The information matrix is defined as

the inverse of the state estimate error covariance matrix,

Y (k | l) ,

(

E
[

(x(k)− x̂(k | l)) (x(k)− x̂(k | l))T | Z l
])−1

(3.4)

where x̂(k | l) is the estimate of x(k) given the measurements up to and including

time step l, denoted by

Z l , {z(0), · · · , z(l)}. (3.5)

The state estimate and information matrix are determined by an information filter

(IF), which is statistically equivalent to the Kalman filter[24]. Instead of recursively

updating an estimate x̂(k) and error covariance P (k), an information state ŷ(k)
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and information matrix Y (k) are updated. The IF is used in order to formulate

the convex optimization problem. The IF prediction equations are,

ŷ(k | k − 1) = Y (k | k − 1)
[

AY −1(k − 1 | k − 1)ŷ(k − 1 | k − 1) + Buu(k)
]

,(3.6)

Y (k | k − 1) = (AY −1(k | k)AT + BQBT )−1, (3.7)

and the update steps are,

ŷ(k | k) = ŷ(k | k − 1) + zI(k) (3.8)

Y (k | k) = Y (k | k − 1) + I(k), (3.9)

where zI(k) and I(k) are, respectively, the measurement information vector and

matrix, defined as,

zI(k) , Cµ(k)
T R−1

µ(k)z(k), (3.10)

I(k) , CT
µ(k)R

−1
µ(k)Cµ(k). (3.11)

Throughout this chapter, an information matrix with a single argument, e.g. Y (k)

will be used as shorthand for the updated information matrix, Y (k | k).

To the authors knowledge, an analytical solution to this general problem has not

yet been found. In a recent paper by Gupta and Murray[18], the sensor schedule

is modeled as a random process such that at each time step, a measurement j is

selected from the measurement set M with probability λr
j , with the constraint

∑

j∈M

λr
j = 1. (3.12)

Ref. [18] introduces an algorithm which solves for the set of probabilities by mini-

mizing an upper bound on the expected value of the covariance as determined by a

set of Riccati-like equations. Although the algorithm produces the optimal sensor

scheduling probability λr
j , it converges only for stable systems. This makes the
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approach unsuitable for use in deep space mission examples, which are governed

by second order dynamics.

It is proposed that the optimal infinite horizon measurement sequence for any

linear time invariant system is periodic. This was originally suggested in Ref. [15]

and an algorithm to find the optimal periodic measurements based on generating

sequences at random was developed. In Chapter 2 it was shown that a periodic

schedule yields a lower cost than a random schedule. The periodic formulation is

posed as finding the periodic measurement sequence which minimizes J in Eq. 3.3.

Thus for a given periodic measurement sequence,

µ∞ = {µK , µK , ...}, µK = {µK(1), ..., µK(K)}, (3.13)

where K is the period of the sequence. The infinite horizon cost is independent of

the initial information matrix Y (0), leading to a reformulation of the cost as[5]

J = −
1

K
trace

K−1
∑

k=0

Y u(k + k0), (3.14)

where k0 is an arbitrary integer constant and Y u(k) = Y (k | k) is the updated

information matrix Y (k | k) in steady state, which can be found by solving a

periodic Riccati equation[7]. Similarly, Y p(k) = Y (k +1 | k) denotes the predicted

information matrix Y (k + 1 | k) in steady state.
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3.3 LMI-based Solutions to Periodic Scheduling Problems

Given a periodic measurement sequence µK , the time varying system in Eqs. 3.1

and 3.2 can be written in LTI form as,

xi(τ + 1) = Axi(τ) + Bwi(τ), (3.15)

zi(τ) = Cixi(τ) + Diwi(τ − 1) + vi(τ), i ∈ {0, . . . , K − 1} (3.16)

xi(τ) , x (τK + i) , (3.17)

wi(τ) ,

[

w (τK + i)T · · · w (τK + i + K − 1)T

]T

, (3.18)

zi(τ) ,

[

z (τK + i− (K − 1))T · · · z (τK + i)T

]T

, (3.19)

vi(τ) ,

[

vµK(i−(K−1)) (τK + i− (K − 1))T · · ·

vµK (i) (τK + i)T
]T

, (3.20)

A , AK , (3.21)

B ,

[

AK−1B AK−2B · · · B

]

, (3.22)

Ci ,



















CµK(i−(K−1))A
−(K−1)

CµK(i−(K−2))A
−(K−2)

...

CµK(i)



















, (3.23)

[Di]mn ,











−CµK(i−(K−m))A
m−nB if m < n,

0 otherwise,
(3.24)

where [·]mn is the mn-th nz-by-nw subblock of the matrix [·]. It is noted that for

ease of notation µK(τK + i) = µK(i) for all integers i and τ . The matrices in

Eqs. 3.15 and 3.16 are time invariant with respect to τ when the system dynamics

are time invariant and the measurements are periodic with period K. The process

and measurement noise vectors wi(τ) and vi(τ) are zero mean and white with co-
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variances of Q = diag(Q, . . . , Q) and Ri = diag(RµK(i−(K−1)), . . . , RµK(i)), respec-

tively. Thus, an IF can be run on the system represented by Eqs. 3.15 and 3.16

and will yield an identical estimate and information matrix as when running the

IF on the system represented by Eqs. 3.1 and 3.2. In this case the information

matrix prediction step is,

Yi(τ + 1 | τ) =
(

AYi(τ | τ)−1AT + BQBT
)−1

(3.25)

where Yi (k | l) = Y (kK + i | lK + i). This equation is the standard IF prediction

equation analogous to Eq. 3.7. Applying the matrix inversion lemma yields

Yi(τ + 1 | τ) = A−TYi(τ | τ)A−1−

A−TYi(τ | τ)A−1B
[

Q−1 + BA−TYi(τ | τ)A−1BT
]−1

BTA−TYi(τ | τ)A−1.

(3.26)

The DτKwi(τ − 1) term in Eq. 3.16 leads to a non-standard update step

Yi(τ + 1 | τ + 1) = Yi(τ + 1 | τ) +
(

CT
i + Yi(τ + 1 | τ)Si

)

·
(

Ri + DiQDT
i − ST

i Yi(τ + 1 | τ)Si

)−1 (
CT

i + Y(τ + 1 | τ)Si

)T
(3.27)

where Si , BQDT
i . The steady state predicted and updated information matrices

for this LTI system shall be denoted by Yp
i and Yu

i , respectively. It is noted that

in steady state

Yu
i = Y u(τK + i) ∀ τ = {0, 1, . . .}. (3.28)

Substituting this in Eq. 3.14 and letting k0 = 0 yields the cost in terms of the steady

state solution of Eqs. 3.26 and 3.27 for the periodic system in Eqs. 3.15–3.24

J = −
1

K
trace

K−1
∑

i=0

Yu
i . (3.29)
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3.3.1 Cost Approximation

A relaxation is desired in order to simplify the problem from a combinatorial

optimization over µK to a convex one that can be solved using standard algorithms.

Because there are many problems where Q is small or zero, such as the deep space

problem considered here, we will consider an approximation of the cost J for small

values of Q in the update equation only (Eq. 3.27), because only this equation

contains a coupling which does not allow for a closed form solution. Note that

assuming Q = 0 in Eqs. 3.26 and 3.27 is not valid. In this case, combining

Eqs. 3.26 and 3.27 in order to eliminate Yi(τ + 1|τ) and denoting the steady state

solution by Υ such that Yi(τ + 1|τ + 1) = Yi(τ |τ) = Υ leads to the equation

Υ = A−TΥA−1 + CT
i RiCi. (3.30)

And since A−T is not stable, there exists no solution to this equation.

An alternative is to assume the process noise Q that appears in Eq. 3.27 is small

under the assumption that Ci and Ri are the dominant terms. First, Eqs. 3.26

and 3.27 are rewritten in terms of two process noise terms, denoted by Qp and Qu.

In steady state, these are:

Yp
Qi = −A−TYu

QiA
−1B

[

(Qp)−1 + BA−TYu
QiA

−1BT
]−1

BTA−TYu
QiA

−1 +

A−TYu
QiA

−1 (3.31)

and

Yu
Qi = Yp

Qi +
(

CT
i + Yp

QiBQuDT
i

)

·

(

R + DiQ
uDT

i −DiQ
uBTYp

QiBQuDT
i

)−1
·

(

CT
i + Yp

QiBQuDT
i

)T
, (3.32)
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where Yp
Qi and Yu

Qi denote, respectively, the predicted and updated information

matrices in steady state. The cost is now a function of the two process noise terms

Qp and Qu and is denoted by JQ such that,

JQ(Qp,Qu) = −
1

K
trace

K−1
∑

i=0

Yu
Qi (3.33)

where Yu
Qi satisfies Eqs. 3.31 and 3.32. In this case, JQ(Q,Q) = J . Equations 3.31–

3.33 form the basis for the approximation Qu = 0 in the measurement update. The

zero-th order approximation of the cost is denoted by J0 and is given by

J = JQ(Q,Q) = JQ(Q, 0) + O(Qu) (3.34)

≈ JQ(Q, 0) = J0 (3.35)

The zero-th order term, J0, can be found by setting Qu = 0 in Eq. 3.32, Qp = Q

in Eq. 3.31, and eliminating Yp
Qi by combining Eqs. 3.32 and 3.31. The resulting

Riccati equation is:

Yu
0i = A−TYu

0iA
−1 + Ii −

A−TYu
0iA

−1B
(

BTA−TYu
0iA

−1B + Q̃−1
)−1

BTA−TYu
0iA

−1, (3.36)

where Ii , CT
i R−1

i Ci and at steady state it is assumed that Yu
0i ≈ Yu

i . Eq. 3.36

can be easily solved for a given a measurement schedule µK . The resulting zero-th

order cost is

J0 = J(Q, 0) = −
1

K
trace

K−1
∑

i=0

Yu
0i, (3.37)

where the information matrices Yu
0i, i ∈ {0, . . . , K − 1} are evaluated by either

solving Eq. 3.36 for some i = i and propagating Yu
0i forward K−1 time steps using

Eqs. 3.7 and 3.9, or by solving a total of K Riccati equations for i = {0, . . . , K−1}.

Alternatively, the information matrix Yu
0i can be found by solving an LMI
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problem[26, 8] corresponding to Eq. 3.36:

min
Yu

0i

− [trace (Yu
0i)] , subject to Li < 0 (3.38)

where

Li ,







Yu
0i −A−TYu

0iA
−1 − Ii A−TYu

0iA
−1B

− −BTA−TYu
0iA

−1B−Q−1






(3.39)

and where the − in the mn-th position denotes the transpose of the element in

the nm-th position. Instead of solving K LMI problems for each Yu
0i in order

to find the cost J0, the mean information 1/K
(

∑K−1
i=0 Yu

0i

)

and thus the zero-th

order cost J0 can be found by adding the costs and constraints for each LMI for

i = {0, · · · , K − 1} and solving

min
Ȳ0

−
[

trace
(

Ȳ0

(

ΛI
))]

, subject to L̄
(

ΛI
)

< 0 (3.40)

where

Ȳ0

(

ΛI
)

,
1

K

K−1
∑

i=0

Yu
0i (3.41)

L̄
(

ΛI
)

,
1

K

K−1
∑

i=0

Li (3.42)

=







Ȳ0 −A−T Ȳ0A
−1 − Ī

(

ΛI
)

A−T Ȳ0A
−1B

− −BTA−T Ȳ0A
−1B−Q−1






(3.43)

Ī
(

ΛI
)

,
1

K

K−1
∑

i=0

Ii =
∑

j∈M

λI
j Îj (3.44)

Îj ,

K−1
∑

i=0

(A−i)T CT
j R−1

j CjA
−i (3.45)

Note that the argument of Ȳ0

(

ΛI
)

has been suppressed in the right hand side of

Eq. 3.43 for clarity. In Eq. 3.44, λI
j is interpreted as the number of measurements

made to spacecraft j over a single period, normalized by the period K. The vector
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of λI
j is denoted by ΛI such that ΛI ,

[

· · · λI
j · · ·

]T

j∈M
. By definition, λI

jK is an

integer such that λI
jK > 0 and

∑

j∈M λI
jK = K. These constraints are summarized

as follows

C1ΛI : λI
j > 0

C2ΛI :
∑

j∈M

λI
j = 1

C3ΛI : KλI
j ∈ {1, 2, . . .}

The derivation of Eqs. 3.40– 3.45 represents the key step in the process which

converts the sensor scheduling problem from a combinatorial optimization problem

over µK to an integer-constrained LMI problem over λI
j . Each λI

j can be interpreted

as a duty cycle value, e.g. if measurements are being made to two spacecraft,

denoted by 1 and 2, and if λI
1 = 0.1 and λI

2 = 0.9 then 10% of the duty is spent

measuring range and bearing to spacecraft 1 and 90% is spent on spacecraft 2.

Note that the ordering of the measurements does not factor into the solution of

this LMI problem. This is a consequence of the assumption that the process noise

terms Si and DiQDT
i terms in Eq. 3.27 are negligible.

If the integer constraint C3ΛI is relaxed and the duty cycles are included as

optimization variables, the scheduling problem can be posed as the following

Λ∗ = arg min
Ȳ0,Λ
−
[

trace
(

Ȳ0 (Λ)
)]

, subject to L̄ (Λ) < 0, C1Λ,
∑

j∈M

λj < 1 (3.46)

where each element of Λ , [· · · λj · · ·]
T

j∈M
, is allowed to very continuously between

0 and 1. Note that the last constraint
∑

j∈M λj < 1 in the LMI problem is similar

to C2Λ. Later in the chapter, it will be shown that the optimal solution to this

LMI lies along the constraint C2Λ by showing the gradient of the cost is always

negative in the space enclosed by C1Λ and C2Λ. Once the LMI problem is solved,
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the unconstrained solution Λ∗ can then be rounded up or down to satisfy the

integer constraint C3ΛI, such that

ΛI∗ =
1

K
round(KΛ∗) (3.47)

or Λ∗ can be used as an initial guess in the sensor scheduling algorithm described

in Chapter 2. Note, however, that arbitrarily rounding each element of Λ∗ as in

Eq. 3.47 may violate one or both of the constraints C1ΛI∗ and C2ΛI∗ . Later in

the chapter, several methods are developed to find the optimal ΛI∗ which satisfies

C1ΛI∗–C3ΛI∗ given the unconstrained solution Λ∗ found via Eq. 3.46. The accuracy

of the approximation is explored in the example that follows.

3.3.2 Examples

Several examples are presented in order to analyze the accuracy of the LMI so-

lution. Each example consists of a system of spacecraft in 2D deep space. The

spacecraft are governed by double-integrator LTI dynamics and driven by low in-

tensity process noise. Considering an estimation subsystem which is running on

spacecraft N , the state consists of the position and velocity of spacecraft 1 through

N − 1 relative to a local frame centered at spacecraft N , referred to as the sensing

spacecraft. The dynamics of the relative position and velocity of spacecraft j with
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respect to spacecraft N is given by,



















pj,N
X (k + 1)

pj,N
Y (k + 1)

vj,N
X (k + 1)

vj,N
Y (k + 1)



















=







I2 ∆T · I2

0 I2

























pj,N
X (k)

pj,N
Y (k)

vj,N
X (k)

vj,N
Y (k)



















+
1

m







∆T 2

2
· I2

∆T · I2



















wj
X(k)

wj
Y (k)






−







wN
X (k)

wN
Y (k)












. (3.48)

where p represents the relative position states and v represents the relative velocity

states. The state of the system at spacecraft N is,

x(k) ,

[

p1,N
X (k) p1,N

Y (k) v1,N
X (k) v1,N

Y (k) · · ·

pN−1,N
X (k) pN−1,N

Y (k) vN−1,N
X (k) vN−1,N

Y (k)
]T

, (3.49)

and the dynamics matrices (cf. Eq. 3.1) are,

A = IN−1 ⊗







I2 ∆T · I2

0 I2






(3.50)

B =













−1

IN−1 −1

−1













⊗







∆T 2

2
· I2

∆T · I2







1

m
(3.51)

where IN−1 is the N − 1-by-N − 1 identity matrix and ⊗ represents the Kronecker

product.

The measurements at spacecraft N are based on a relative range/bearing sensor

(RBS) that can take a measurement to only one spacecraft at a time. Thus, the

measurement equation is,

z(k) = hµ(k)[x(k)] + vµ(k)(k), (3.52)
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where the index set µ(k) ∈ {1, . . . , N−1} and the nonlinear measurement function

h is (neglecting the k time indices),

hµ [x] =







Rµ

φµ






=







√

[

pµ,N
X

]2

+
[

pµ,N
Y

]2

tan−1 p
µ,N
Y

p
µ,N
X






. (3.53)

The system is clearly not observable when measuring the range and bearing of a

single spacecraft exclusively. Therefore, sensor scheduling must be employed to

switch measurements between each spacecraft.

Three separate formations are considered. In the first formation, three space-

craft are nominally spaced 50 m apart, forming the vertices of a virtual equilateral

triangle. Spacecraft 1 is located 50 m from spacecraft 3, at a bearing of −π/6 rad

and spacecraft 2 is located 50 m from spacecraft 3, at a bearing of π/6 rad. The

bearings are referenced from the X axis. These states denote the system operating

point, defined as xS, where the subscript denotes a symmetrical formation. The

second formation is an asymmetrical case, which is the same as the first, except

the range and bearing to spacecraft 1 is (200 m, π/2 rad). The system operating

point in this case is denoted by xA where the subscript denotes the asymmetrical

case. The third formation consists of five spacecraft. The nominal positions of

each spacecraft have been chosen at random and the system operating point is

denoted by xF . These formation parameters are summarized in Table 3.1. The

system sampling time is ∆T = 4 s and the mass of each spacecraft is 100 kg. The

noise covariances are, Q = qI2N and, following the nominal performance of the

Autonomous Formation Flying sensor[2], Rµ = [diag(2 cm, 1 arcsec)]2. Lineariz-

ing the sensor output equation hµ [x(k)] about the operating point x(·), yields the

nominal measurement matrices used in the optimization,

Cµ =
∂hµ(x)

∂x

∣

∣

∣

∣

x(·)

, (3.54)
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Table 3.1: Nominal range and bearing to each spacecraft relative to the sens-
ing spacecraft for each of the three example formations.

x(·) N h1[x(·)] h2[x(·)] h3[x(·)] h4[x(·)]

xS 3 50 m, −π/6 rad 50 m, π/6 rad - -

xA 3 200 m, −π/6 rad 50 m, π/6 rad - -

xF 5 25.1 m, 2.60 rad 112 m, 2.56 rad 41.2 m, 1.82 rad 35.4 m, -1.21 rad

where the subscript (·) is either S, A or F .

In this section, the truth cost is compared to the zero-th order cost for varying

period K and process noise q. The truth cost is found by solving a covariance

Riccati equation for a given measurement sequence as outlined in the Appendix.

In the N = 3 cases, the truth optimal measurement sequence is found by enu-

merating all possible sequences and evaluating the cost J . This can be done for

relatively low K; for example, K = 15 yields a total of approximately 215 = 32768

possible measurement sequences. However, in the case where N = 5, the number

of sequences becomes prohibitively large for even small values of K. In this case,

and in the N = 3 case for K > 15, the truth optimal sequence is found by enumer-

ating all possible Λ and, for each Λ, evaluating the truth cost at several sequences,

typically four to six. These sequences include: a “slow” switching sequence, where

µK = {1, 1, . . . , 2, 2, . . . , 3, 3, . . .}; a “fast” sequence which is found via the greedy

algorithm described in Chapter 2; and several randomly generated sequences. It

will be shown that solutions derived from the zero-th order approximation are op-

timal for low values of K and q. In this chapter, it is assumed that the nominal

value of q in deep space is (10µN)2.

Figures 3.1 and 3.2 illustrate the validity of the zero-th order approxima-

tion for small process noise q over several values of the period K. For the
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Figure 3.1: Comparison of the approximate cost −J0 = trace
(

Ŷ0

)

and the

truth cost −J = (1/K)
[

trace
(

∑K−1
i=0 Yu

i

)]

for K = 4, 8 and

15 for the three formations. The vertical dotted line denotes the
nominal Q and R matrices for deep space missions.

cases where N = 3, the costs are evaluated for the measurement sequence

µK = {1, 2, 1, 2, . . .}. For the N = 5 case, the sequence µK = {1, 2, 3, 4, 1, . . .}

is used. Figure 3.1 shows the zero-th order information, Ȳ0 and the truth infor-

mation (1/K)
[

trace
(

∑K−1
i=0 Yu

i

)]

as a function of the process noise q. Figure 3.2

shows the error for the zero-th order costs |(J0−J)/J | ≪ 1. The results show that

the approximation degrades with increasing K and q.

Figure 3.2 shows that for K = 15, the approximation in each case breaks down

at approximately q/ ‖R‖ = 10−2. For process/sensor noise ratios below this value,

the ordering of the measurements is a small factor in the cost and the cost is

dominated by the duty cycles Λ. Conversely, for q/ ‖R‖ > 10−2 the ordering of the

measurements increasingly affects the cost. Figure 3.3 illustrates this point for the
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Figure 3.2: Error in the approximate cost J0 relative to the truth cost |(J0−
J)/J | for K = 4, 8 and 15 for the three formations. The vertical
dotted line denotes the nominal Q and R matrices for deep space
missions. The approximation is considered to be valid for error
values |(J0 − J)/J | ≪ 1, denoted by the horizontal line.

symmetric formation. This figure plots the truth information vs. Λ for all possible

measurement sequences µK for four values of q/ ‖R‖. For each value of q/ ‖R‖,

the information resulting from all possible periodic sequences is determined and is

plotted as a series of points. As an example, for q/ ‖R‖ = 0.001 (Figure 3.3(a)),

the sequence µ15 = {1, 2, 2, . . .} yields λ1 = 1/15 and −J = 5.2. This results in the

point (1/15,5.2). The sequence µ15 = {2, 1, 2, 2, . . .} also yields the point (1/15,5.2)

since the periodicity of the sequence results in the same mean information. The

sequence µ15 = {2, 1, 1, . . .} results in the point (14/15,5.2), as does the sequence

µ15 = {1, 2, 1, 1, . . .}.

For q/ ‖R‖ < 10−2 as in 3.3(a) (q/ ‖R‖ = 0.001) and 3.3(b) (q/ ‖R‖ = 0.005)

plotting the mean information (1/K)
[

trace
∑K−1

i=0 Yu
i

]

for every possible sequence

µK shows the information (and cost J) is approximately constant for a given
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Λ. This is not the case for higher process noise as in 3.3(c), q/ ‖R‖ = 0.02,

and 3.3(d), q/ ‖R‖ = 0.1 where, for a given Λ, different measurement schedules

result in varying costs (as shown by the spread of points, or costs, for different

sequences with the same Λ). Similar results are found for the other two example

formations, as can be seen in Figure 3.4 for the asymmetrical three spacecraft

formation and Figure 3.5 for the five spacecraft case.

The sensitivity of the optimal Λ∗ in each example to variations in q is explored

to find the optimal measurement sequence for several values of K. Figure 3.6 plots

Λ as found by the exhaustive search algorithm using the truth cost J . The figure

shows that for the symmetric three spacecraft formation, Λ∗ remains constant even

for high process noise. However, for the asymmetric N = 3 and N = 5 formations

as shown in Figures 3.7 and 3.8, for very large q the duty cycles converge to a

solution where λi0 = 1 for some i0 and λi = 0 for all other i 6= i0. This is because

as q gets very large, the optimization at each time step can be considered to be one

with no prior information, i.e. Y (k | k− 1) ≈ 0. And so, the choice on whether to

take one measurement over the other results in taking the one with the greatest

measurement information matrix I(k) (i.e. the spacecraft that is closest; in the

case of the asymmetric N = 3 formation, spacecraft 2). At the next time step, the

high process noise eliminates this information, and the sensor scheduling problem

repeats, again resulting in a measurement of spacecraft 2.

Figures 3.9 and 3.10 illustrate the sensitivity of the zero-th order solution with

the period length K for each of the three cases. Plotted are the truth solutions

and the solutions to the zero-th order approximation versus the period length K

for the nominal values of q and R. Results for the N = 3 formations are shown in

Figure 3.9, while Figure 3.10 shows the results for the N = 5 case. In each case, the
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Figure 3.3: Truth mean information −J = (1/K)
[

trace
∑K−1

i=0 Yu
i

]

in the

symmetrical three spacecraft formation for all possible µK where
K = 15, yielding a total of approximately 215 possible measure-
ment sequences. Each point represents the duty cycle Λ and
resulting information for a single measurement sequence. Note
that the symmetry of the three spacecraft example yields equiv-
alent cost for Λ = [a b]T and Λ = [b a]T .

68



0 0.2 0.4 0.6 0.8 1
4.2

4.4

4.6

4.8

5

5.2
x 10

8

λ
1

m
ea

n 
in

fo
rm

at
io

n 
(t

ra
ce

)

(a) q/norm(R) = 0.00121

0 0.2 0.4 0.6 0.8 1
1.45

1.5

1.55

1.6

1.65

1.7

1.75
x 10

8

λ
1

m
ea

n 
in

fo
rm

at
io

n 
(t

ra
ce

)

(b) q/norm(R) = 0.00517

0 0.2 0.4 0.6 0.8 1
4.8

5

5.2

5.4

5.6

5.8

6
x 10

7

λ
1

m
ea

n 
in

fo
rm

at
io

n 
(t

ra
ce

)

(c) q/norm(R) = 0.0221

0 0.2 0.4 0.6 0.8 1
1.6

1.7

1.8

1.9

2
x 10

7

λ
1

m
ea

n 
in

fo
rm

at
io

n 
(t

ra
ce

)

(d) q/norm(R) = 0.0948

Figure 3.4: Truth mean information −J = (1/K)
[

trace
∑K−1

i=0 Yu
i

]

for the

asymmetric three spacecraft case where K = 15 for several values
of process noise process noise and all possible µK .

truth solution approaches a constant, and in the symmetric case, the zero-th order

LMI solution never deviates from this constant. However, in the asymmetric cases,

the zero-th order LMI solution diverges from the optimal solution with increasing

K. This is likely due to the increasing error in the zero-th order cost. Interestingly,

the constant that the truth solutions approach is the solution to the zero-th order

LMI problem with K = 1. In almost every case, the truth solution lies within

an envelope with a width of 1/K centered around the optimal LMI solution for
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Figure 3.5: Truth mean information −J = (1/K)
[

trace
∑K−1

i=0 Yu
i

]

in the

five spacecraft case where K = 15 for increasing process noise
and all possible µK where λ3 = λ4 = 2/15.

K = 1, as shown by the dashed lines. The cases where the optimal solutions lie

slightly outside the envelope are due to the constraint
∑

i λi = 1. For instance, in

Figure 3.10, the truth solution for the lowest K = 5 lies outside the envelope for

i = 1, however the solution λ1 = 0.2, which is within the envelope, is inadmissible

because Λ = [0.2, 0.2, 0.2, 0.2] violates the constraint. The results suggest that for

large K, the optimal solution may be found by solving for the case where K = 1.

At the very least, the system designer should check the two solutions–the solutions
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Figure 3.6: Plot of optimal λ∗
1 found by an exhaustive search over all possible

µK for the symmetrical three spacecraft formation. Increasing
process noise does not affect the optimal measurement duty cy-
cles.

resulting from K = 1 and the desired period K–against the truth cost and take

the one which yields the highest information.

3.3.3 Integer Optimization Techniques

Since the LMI based optimization in Eq. 3.46 finds a continuous optimal schedule

Λ∗ which does not satisfy the problem’s integer constraint C3ΛI , and since arbitrar-

ily rounding the unconstrained solution according to Eq. 3.47 may violate one of

both of the constraints C1ΛI and C2ΛI, alternative methods are developed based on

integer least squares optimization techniques. The objective, therefore, is to find

the optimal integer-constrained solution ΛI∗ which satisfies constraints C1ΛI, C2ΛI
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Figure 3.7: Plot of optimal λ∗
1 found by an exhaustive search over all pos-

sible µK for the asymmetrical three spacecraft formation. The
optimal measurement duty cycles are constant for small q/ ‖R‖
but diverge to λ2 ≈ 1 for large q/ ‖R‖.

and C3ΛI based on an initial solution Λ∗ found by the LMI problem in Eq. 3.46.

Ref. [25] presents a set of algorithms for solving integer constrained quadratic least

squares problems for estimates of GPS integer parameters. A similar implemen-

tation is used here in order to minimize the zero-th order approximate cost J0 for

the integer solution. Although the relaxed scheduling problem described herein is

not a linear least squares problem, it is approximated as such using the gradient

and Hessian of the cost function in the neighborhood of a candidate solution, in

this case, the unconstrained solution Λ∗.

To begin, the zero-th order cost J0 is expanded to second order about the
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Figure 3.8: Plot of optimal λ∗
1 found by an exhaustive search over all pos-

sible µK for the asymmetrical five spacecraft formation. The
optimal measurement duty cycles are constant for small q/ ‖R‖
but diverge to λ1 ≈ 1 for large q/ ‖R‖.

continuous solution Λ∗ as,

J0(Λ
I) = J0(Λ

∗) +
∂J0

∂Λ

∣

∣

∣

∣

T

Λ∗

(

ΛI − Λ∗
)

+
1

2

(

ΛI − Λ∗
)T ∂2J0

∂Λ2

∣

∣

∣

∣

Λ∗

(

ΛI − Λ∗
)

+ O(Λ̄3)

(3.55)

where ∂J0/∂Λ̄ and ∂2J0/∂Λ̄2 are the gradient and Hessian, respectively, defined as

[

∂J0

∂Λ

]

j

=
∂J0

∂λj
= −trace

∂Ȳ0

∂λj

(3.56)

and
[

∂2J0

∂Λ2

]

j1j2

=
∂2J0

∂λj1∂λj2

= −trace
∂2Ȳ0

∂λj1∂λj2

. (3.57)

The gradient and Hessian are found by noting that, given a value of the un-

constrained duty cycle Λ, the solution to the LMI in Eq. 3.40 for the zero-th

order mean information matrix Ȳ0 (Λ) is equivalent to the solution to the Riccati
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Figure 3.9: Truth solution and LMI-based zero-th order solution for Λ∗ for
the symmetric and asymmetric three spacecraft cases. The LMI-
based solution drifts from the truth optimal value with increasing
K in the asymmetric case.

equation[26, 8]

Ȳ0 = A−T Ȳ0A
−1 +

∑

j∈M

λj Îj −

A−T Ȳ0A
−1B

(

BTA−T Ȳ0A
−1B−Q−1

)−1
BTA−T Ȳ0A

−1 (3.58)

where the argument of Ȳ0 (Λ) is suppressed for clarity. The gradient in Eq. 3.56

is now found by differentiating 3.58 and collecting terms to yield a Lyapunov
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Figure 3.10: Truth solution and LMI-based zero-th order solutions for Λ∗ for
the five spacecraft example. As in the three spacecraft asym-
metric example, the LMI-based solution drifts from the truth
optimal value with increasing K.
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equation,

∂Ȳ0

∂λj

= Φ
∂Ȳ0

∂λj

ΦT + Îj (3.59)

where

Φ = A−T −A−T Ȳ0A
−1B

(

BTA−T Ȳ0A
−1B + Q−1

)−1
BTA−T . (3.60)

A compact expression for Φ is found by post-multiplying this expression by Ȳ0A
−1

and adding Î resulting in

ΦȲ0A
−1 + Î = A−T Ȳ0A

−1 + Î−

A−T Ȳ0A
−1B

(

BTA−T Ȳ0A
−1B−Q−1

)−1
BTA−T Ȳ0A

−1

= Ȳ0 (3.61)

which yields

Φ = (Ȳ0 − Î)AȲ−1
0 . (3.62)

Note that since Īj is nonzero and positive semidefinite, ∂Ȳ0/∂λI
j is also nonzero

and positive semidefinite. Therefore [∂J0/∂Λ]j < 0. This justifies replacing the

equality constraint
∑

j∈M λj = 1 with the inequality constraint
∑

j∈M λj < 1 in

the LMI problem of Eq. 3.46 because the minimum cost always approaches the

equality constraint.

The Hessian in Eq. 3.57 can be found by differentiating Eq. 3.59 to yield the

Lyapunov equation

∂2Ȳ0

∂λj1∂λj2

= Φ
∂2Ȳ0

∂λj1∂λj2

ΦT +
∂Φ

∂λj2

∂Ȳ0

∂λj1

ΦT + Φ
∂Ȳ0

∂λj1

∂Φ

∂λj2

T

, (3.63)

where ∂Φ/∂λj2 if found by differentiating Eq. 3.62

∂Φ

∂λj2

=
∂Ȳ0

∂λj2

AȲ−1
0 −

(

Ȳ0 − Î
)

AȲ−1
0

∂Ȳ0

∂λj2

Ȳ−1
0 . (3.64)

and where ∂Ȳ0/∂λj1 and ∂Ȳ0/∂λj2 are found via Eq. 3.59 with j = j1 and j = j2

respectively.
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The constant term J0(Λ
∗) in Eq. 3.55 can be eliminated from the optimization

because it is not a function of the unknown constrained duty cycle ΛI. And, in

order to simplify the quadratic problem formulation, the first order term in Eq. 3.55

is eliminated using the first order necessary condition that the gradient of the cost

J0 with respect to Λ is zero at Λ∗. However, this condition is satisfied only along

the constraint
∑

j∈M λI
j = 1. This is achieved by using the constraint to eliminate

one of the elements of Λ. Thus, let

λI
l = 1−

∑

j∈M\l

λI
j (3.65)

for some l ∈ M . For simplicity, l = N is chosen, however, the methods described

herein are easily generalized to remove an arbitrary element of ΛI. Denoting the

reduced N − 1 element vector as ΛI
R =

[

λI
1 · · · λI

N−1

]T
leads to the equation

ΛI = eN + GΛI
R (3.66)

where

eN =



















0

...

0

1



















, G =



















IN−1

−1 · · · −1



















. (3.67)

Reduced vectors ΛR and Λ∗
R are similarly defined as satisfying

Λ = eN + GΛR (3.68)

Λ∗ = eN + GΛ∗
R. (3.69)

Subtracting Eq. 3.69 from Eq. 3.66 leads to the equation

ΛI − Λ∗ = G
(

ΛI
R − Λ∗

R

)

. (3.70)

Substituting this in Eq. 3.55 yields the cost J0 as a function of ΛI
R

J0(Λ
I
R) = J0(Λ

∗) + ∂J0

∂Λ

∣

∣

T

Λ∗
G
(

ΛI
R − Λ∗

R

)

+

1
2

(

ΛI
R − Λ∗

R

)T
GT ∂2J0

∂Λ2

∣

∣

∣

Λ∗

G
(

ΛI
R − Λ∗

R

)

+ O
(

(

ΛI
)3
)

.
(3.71)
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The constant term J0(Λ
∗
R) in Eq. 3.71 is not a function of the unknown ΛI

R and is

eliminated, and the first order term is eliminated due to the first order necessary

condition that the gradient ∂J0/∂Λ|TΛ∗ G = 0 along the constraint C2ΛI. Neglecting

the higher order terms, the quadratic cost is

JΛI(ΛI
R) = J0(Λ

I
R)− J0(Λ

∗) ≈
1

2

(

ΛI
R − Λ∗

R

)T
GT ∂2J0

∂Λ2

∣

∣

∣

∣

Λ∗

G
(

ΛI
R − Λ∗

R

)

(3.72)

The Hessian GT (∂2J0/∂Λ2|Λ∗)G is now used to search for the optimal integer

constrained solution. Note that the derivation of Eq. 3.72 could have been derived

by introducing Eq. 3.65 in the LMI problem in Eq. 3.46 before the Taylor expansion

in Eq. 3.55. In this case, the resulting cost in a Taylor expansion of this reduced

LMI problem would similarly yield Eq. 3.71.

Note that the calculation of the cost, gradient and Hessian can be used to

implement the optimization for Λ∗ in a Newton-type minimization algorithm. This

can potentially yield much faster solution times than an LMI solver used for the

optimization in Eq. 3.38.

A typical small-scale problem is shown in Figure 3.11. In this problem, the

number of remote spacecraft N = 3 and the period length K = 10. In the up-

per left, the inverted triangle denotes the optimal solution Λ∗ which lies on the

constraint C2ΛI∗ , denoted by the shaded triangular plane. Also shown is a level

curve of the cost function J0(Λ) projected on to the constraint plane, as well as the

planes of each of the three λ1–λ3 axes. Each of the three projections are shown in

detail in the remaining three figures. Also shown on each are the ellipsoidal level

sets given by the Hessian in Equation 3.72, illustrating the accuracy of the second

order approximation, and the admissible and inadmissible points for the integer

constrained solution, as defined by constraints C1ΛI–C3ΛI.

Using the gradient and Hessian, three solution methods are presented, in in-
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Figure 3.11: Comparison of the Hessian and the level sets of J0. Also shown
are the admissible and inadmissible points of the integer solution
due the constraints on Λ.

creasing order of complexity, to find the optimal integer -constrained ΛI∗ which

satisfies the constraints C1ΛI∗–C3ΛI∗ , given the unconstrained solution Λ∗. The

methods are based on the principle of iterating from the unconstrained solution

Λ∗ to find a constrained solution which yields the smallest increase in cost. The

three methods are:

• Batch Rounding (BR): rounding Λ∗
R to the nearest integer,

• Successive Rounding (SR): successive rounding of individual elements of Λ∗

coupled with solving reduced order problems in a manner analogous to the
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back substitution method of Ref. [25], and

• Integer Transformed Batch Rounding (ITBR): applying an integer-preserving

transformation[32] to Λ and rounding in the transformed space similar to (1).

Batch Rounding (BR)

In this method, ΛI
R = 1

K
round(KΛ∗

R). Since the rounding operation may violate

the constraint C1ΛI , the Hessian in Eq. 3.57 is used to find the direction in which

to increment or decrement the element of ΛI which results in the smallest change

in cost J0 in Eq. 3.71. The algorithm is as follows:

1. ΛI−BR∗ = eN + 1
K

Ground(KΛ∗
R)

2. SI−BR = {j | λI−BR
j = 0}, SI−BR

⊥ = M \ SI−BR, λI−BR∗
j = 1/K ∀ j ∈ SI−BR,

3. for κ = 1, . . . ,
∣

∣SI−BR
∣

∣ , jκ = arg minj∈SI−BR
⊥

eT
j (∂2J0/∂Λ2|Λ∗) ej , SI−BR

⊥ =

SI−BR
⊥ \ jκ, λI−BR∗

jκ
= λI−BR∗

jκ
− 1/K

where
∣

∣SI−BR
∣

∣ denotes the cardinality of the set SI−BR and \ denotes set subtrac-

tion. Step 1 performs the initial rounding operation in the reduced space which

ensures that constraint C2ΛI−BR∗ is satisfied. Step 2 initializes the set SI−BR to the

indices of the elements of ΛI−BR∗ which are zero, and SI−BR
⊥ to those which are

nonzero, and sets the zero elements of ΛI−BR∗ to the minimum value of 1/K. Step

3 is the main loop, which finds the smallest change in cost via the Hessian, and

decrements those values of ΛI−BR∗ by 1/K to preserve the constraint C2ΛI−BR∗ .
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Successive Rounding (SR)

In this method, the gradient and the Hessian in Eqs. 3.56 and 3.57, respectively,

are used to guide the direction of the rounding of a single element of ΛI
R. This

element is then fixed, and the LMI problem 3.46 is solved for the remaining N − 1

elements of ΛI
R. The gradient and Hessian are recalculated, and a new rounding

direction is chosen. This process repeats until all the elements of ΛI
R have been

found. The algorithm proceeds as follows:

1. SI−SR = {1, . . . , N − 1}, ΛI−SR
R = Λ∗

R, g = (∂J0/∂Λ|Λ∗) G, H =

GT (∂2J0/∂Λ2|Λ∗)G

2. J∗ = ∞, for j ∈ SI−SR, Λ+ = Λ− = ΛI−SR
R , λ+

j = 1
K

⌈

KλI−SR
Rj

⌉

, λ−
j =

1
K

⌊

KλI−SR
Rj

⌋

J+ = gT (Λ+ − ΛI−SR
R ) +

1

2
(Λ+ − ΛI−SR

R )T H(Λ+ − ΛI−SR
R )

J− = gT (Λ− − ΛI−SR
R ) +

1

2
(Λ− − ΛI−SR

R )T H(Λ− − ΛI−SR
R )

if J+ < J∗, J∗ = J+, ΛI−SR∗
R = Λ+, j∗ = j

if J− < J∗, J∗ = J−, ΛI−SR∗
R = Λ−, j∗ = j

3. ΛI−SR
R = ΛI−SR∗

R , SI−SR = SI−SR \ j∗, solve LMI problem 3.46 with constant

λI−SR
j ∀ j /∈ SI−SR, g =

(

∂J0/∂Λ|ΛI−SR
R

)

G, H = GT
(

∂2J0/∂Λ2|ΛI−SR
R

)

G

4. if SI−SR 6= ∅, go to line 2; otherwise, ΛI−SR∗ = eN + GΛI−SR
R

5. if λI−SR∗
N = 0, λI−SR∗

N = 1/K, j = arg minj∈{1,...,N−1} eT
j (∂2J0/∂Λ2|ΛI−SR∗) ej ,

λI−SR∗
j = λI−SR∗

j − 1/K

Line 1 performs the initialization of SI−SR, which contains the indices of measure-

ments to be optimized; this set will be empty upon completion of the algorithm.
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Also, the gradient, g, and Hessian, H , are initialized. Lines 2, 3 and 4 constitute

the main loop. Line 2 rounds each free element of ΛI−SR
R up and down via the floor

and ceiling operations ⌊·⌋ and ⌈·⌉, and selects the duty cycle change which results

in the lowest cost perturbation. In Line 3, the index of the rounded measurement

j∗ is removed from the set SI−SR. The LMI problem is resolved for the elements of

Λ which have not been rounded while holding constant those elements which have

already been rounded. The gradient and Hessian are then reevaluated at the new

solution. In Line 4, if SI−SR is not empty, the algorithm loops back to line 2. Line

5 ensures that constraint C1ΛI−SR∗ is met via a calculation similar to a single step

in the BR algorithm.

Integer Transformed Batch Rounding (ITBR)

This method is similar to BR, but before Λ∗
R is rounded, a full rank integer-

preserving transformation, denoted by Z, is applied such that Γ∗
R = ZΛ∗

R and

ΓI∗
R = ZΛI∗

R . The transformation Z is defined such that the entries of Z and Z−1

are integers in order to preserve ΓI
R being an integer. Ref. [32] presents an algo-

rithm to find Z, which, when applied to the Hessian of a least squares cost function,

attempts to diagonalize the resulting transformed Hessian. The transformation Z

is found via an LDL decomposition[16] of the form

GT ∂2J0

∂Λ2

∣

∣

∣

∣

Λ∗

G = LDLT (3.73)

where D is diagonal, and L is lower triangular with ones along the diagonal such

that Lii = 1. The individual elements of L are rounded to yield

Z = round(LT ). (3.74)

Note that because Z is lower upper triangular and unimodular (i.e. integer-

preserving), then Z−1 is also upper triangular and unimodular. The transformation
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is applied to Eq. 3.72 to yield

JΛ(ΓI
R) =

1

2

(

ΓI
R − Γ∗

R

)T
Z−T GT ∂2J0

∂Λ2

∣

∣

∣

∣

Λ∗

GZ−1
(

ΓI
R − Γ∗

R

)

(3.75)

If the resulting matrix Z−T GT ∂2J0/∂Λ2|Λ∗ GZ−1 is exactly diagonal, and the

rounded solution in Eq. 3.79 satisfies the constraints C1ΛI–C3ΛI , then the rounded

solution is the optimal integer solution (to third order). However, the integer

constraint on Z does not guarantee diagonalization of the Hessian.

Thus, given the unconstrained solution Λ∗, the integer solution is obtained via

ΓI−ITBR∗
R =

1

K
round (KΓ∗

R) (3.76)

=
1

K
round

(

KZ−1Λ∗
R

)

. (3.77)

The final solution is

ΛI−ITBR∗
R = ZΓI−ITBR∗

R (3.78)

=
1

K
Z
[

round
(

KZ−1Λ∗
R

)]

. (3.79)

Note that the choice of ΛR, i.e. the choice of which element to remove from Λ

in order to eliminate the constraint C2Λ, can affect the result of the SR and ITBR

algorithms. A solution to this is to run either algorithm for the N possible choices

of ΛR. Since running a single SR algorithm requires solving N individual LMI

problems, running the algorithm N times is considered to be prohibitively expen-

sive. However, the LDL decomposition in the ITBR algorithm can be performed

quickly and so the algorithm can be run multiple times.
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Table 3.2: Formation parameters for testing the integer optimization algo-
rithms.

N 3 3 3 3 3 3 3 3 3 4 5 6

K 4 6 8 10 14 18 22 26 30 16 20 24

Integer Rounding Algorithm Performance

Each of the three algorithms were run on several formations consisting of between

three and six remote spacecraft. The parameters for each test are outlined in

Table 3.2. For each case, the optimization was performed for three formations and

two different cost functions: (1) the cost defined in Eq. 3.40, referred to as the

system information, and (2) a modified version of Eq. 3.40, based on the center

state information, as it is defined in Chapter 2 to be

min
Y0C

[

− trace
{

ΘT Ȳ0Θ
}]

, subject to L̄ < 0 (3.80)

where Θ = [I · · · I]T , yielding a total of 12×2×2 = 48 cases. In every case but one,

at least one of the three algorithms finds the correct solution. The BR algorithm

finds the correct solution in 41 of the 48 cases, the SR algorithm finds the correct

solution in 36 of the cases, and the ITBR algorithm finds the correct solution in

47 of the 48 cases. The relatively poor performance of the SR algorithm is likely

due to the choice of ΛR when solving the problem. Since the ITBR algorithm uses

all N possible ΛR, it finds the optimal solution much more frequently.

Note that each algorithm is open to modification. For example, in step 2 of the

SR algorithm the perturbations to the cost, J+ and J− can be evaluated exactly

using the Riccati equation in Eq. 3.58. In Ref. [32], the integer transformation Z

is found by rounding the elements of L−T instead of LT . However, based on the

performance, the algorithms described here are considered to be complete.
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3.4 Conclusions

Solutions to the sensor scheduling problem have been presented based on LMI

analysis and an assumption that the process noise in deep space is relatively low.

The relaxation of the scheduling problem described allows for a fast convex op-

timization of the individual measurement duty cycles of each sensor. Once the

optimal duty cycles are determined, they are used as an initial guess in established

integer least squares algorithms which account for the finite measurement sequence

period. Results show that the affects of the approximation are negligible.

Key insights gained into the scheduling problem are:

• The scheduling problem is convex for low process noise if the integer con-

straint on the measurement rates Λ is relaxed, i.e. Λ is continuous.

• The zero-th order cost is independent of the ordering of the measurements.

• As the period K becomes large, the measurement rates as found by per-

forming an exhaustive search using the truth schedule approaches a constant

Λconst, as denoted by the envelopes in Figures 3.9 and 3.10. Also, as K be-

comes large, the error in the zero-th order cost J − J0 grows. In some cases,

this will affect the optimal Λ̄ found using the cost J0.

• This Λconst is equivalent to the optimal Λ∗ found by the unconstrained solu-

tion to the zero-th order cost when K = 1. Note that the zero-th order cost

J0 = J when K = 1. This is because the information update in Eq. 3.32

does not contain the Q̃ cross-terms for K = 1.

• The increase in error between the continuous solution Λ∗ and the truth integer

constrained solution ΛI∗, with increasing K, as shown in Figures 3.9 and 3.10,
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is due to the increase in the error between the zero-th order cost J0 and the

truth J as K increases.
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CHAPTER 4

COMMUNICATION-ENABLED DISTRIBUTED STATE FUSION

4.1 Introduction

In this Chapter, a sequential state fusion algorithm is developed. Related work in-

cludes Ref. [14] in which the authors present the least squares fusion method for N

Kalman filters in a batch method by combining all estimates at once. The method

described in this chapter fuses each estimate iteratively and can account for time

delays in the communication subsystem in between iterations. Another benefit of

fusing sequentially is that the intermediate results are valid state estimates and can

be used for command and control while the algorithm proceeds. Ref. [11] uses a

similar method for fusing so that two existing Kalman filters need not be altered.

Among the different methods presented in that paper, the author describes the

method of reinitializing the two filters with the least squares solution in what is

essentially a feedback loop. However, this was done for only two filters. In the

algorithm developed in this Chapter, the result of the state fusion, performed on

one spacecraft at a time, is used to reinitialize the local estimator, which operates

on the locally generated RBS measurements.

The covariance intersection algorithm [20] has been explored as a method for

state fusion when cross-correlations are unknown. However, it has been shown that

such a filter can actually converge to a state where new information is discarded [1].

The authors of Ref. [1] propose a tuning method to avoid this, however this method

does not lend itself easily to automation. The least squares method proposed in

this Chapter uses cross correlation matrices which are calculated online via the

suboptimal steady state extended Kalman filter gains. For the formation keeping

87



problem, steady state filter gains for the local measurements can be found and

these are assumed to be known at each spacecraft. If the initial covariances and

cross covariance matrices are known, then they can be propagated forward in time

assuming the

In our previous work, Ref. [21] describes a circular communication/estimation

system which is based on the information filter[24]. By making the assumption

of low process noise in deep space missions, an approximation is arrived at that

enables the separate local measurements to be encapsulated in a single information

vector and associated information (i.e. inverse covariance) matrix having dimen-

sions equivalent to the number of states in the system. This measurement vector

and matrix is transmitted from one spacecraft to another and is augmented by

each spacecraft with locally stored measurements. The measurement vector and

matrix is also updated at each time step with the dynamics model, accounting

for time delays in the communication subsystem. However, the approximation

leads to an optimistic estimate at each spacecraft with a covariance that is smaller

than the optimal covariance as given by the standard Kalman filter. The work

presented herein is shown to yield a conservative estimate at each spacecraft with

covariance that is always larger than the Kalman filter covariance. In addition,

although it uses the same circular communication architecture, it does not re-

quire the transmission of a large information matrix. Only local estimates, each

with a dimension equivalent to the number of states in the formation system, are

communicated throughout the formation.

This Chapter is outlined as follows: Section 4.2 outlines the communication-

constrained estimation problem and assumptions such as dynamics, the sensor

model, and elements of the formation keeping controller. The distributed fusion
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filter is described in Section 4.3. Section 4.4 details the performance of the filter as

compared to a standard Kalman filter which operates on the raw measurements,

as well as the performance of the system in terms of fuel usage and RMS position

error.

4.2 Problem Statement and Assumptions

The central assumption in this Chapter is that each spacecraft must use only a

single fixed transmit and receive communication link. This is considered to be

the minimal communication requirement in that each spacecraft is an information

source via the local RBS sensor, and therefore must transmit this information in

some form to the fleet. Similarly, each spacecraft in the fleet must also posses some

means of receiving information from the fleet. Therefore, for a fleet of N space-

craft, a total of N unidirectional communication links are required. In contrast,

the channel filter method [17] uses a spanning tree network which requires N − 1

bidirectional communication links. In addition, almost every node in the network

requires two bidirectional communication links. The problem lies in forming ac-

curate state estimates while transmitting local state estimates only, as opposed

to transmitting raw measurements or estimates and associated covariances. The

remainder of this Section describes the governing dynamics, and the components

of the sensing, communication and control subsystems.

89



4.2.1 Spacecraft Dynamics

Each spacecraft is governed by second order dynamics, thus for N spacecraft, the

discrete-time dynamics of the i-th spacecraft, ∀ i ∈ {1, ..., N}, are as follows,

xi(k + 1) = Axi(k) + Biui(k) + Biwi(k), (4.1)

xi(k) =
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
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, (4.3)

where xi is the state of spacecraft i in an inertial frame, ui is the control input,

wi is zero mean white process noise with covariance Qi, Mi is the mass of the i-th

spacecraft and ∆T is the sampling time. Two dimensional systems are presented

here for simplicity but the approach is fully generalized to three dimensions.

Given the linear dynamics and the lack of an inertial position sensor, the i-th

spacecraft maintains estimates of N − 1 relative states. The relative dynamics are

found by subtracting Eq. 4.1 from itself and replacing i with j,

xj,i(k + 1) = Axji(k) + Bjuj(k)− Biui(k) + Bjwj(k)−Biwi(k), (4.4)

xj,i(k) , xj(k)− xi(k) ∀ j 6= i. (4.5)

Note that this does not require the mass of each spacecraft to be identical. The

key is that the state transition matrices are identical for each spacecraft across the
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fleet eliminating the need for inertial states, and thus, measurements in an inertial

frame.

Equations 4.4 and 4.5 can be rewritten to yield a full set of dynamics of the

formation relative to spacecraft i:

xi(k + 1) = Axi(k) + Biu(k) + Biw(k) (4.6)

xi(k) =













...

xj,i(k)

...













j∈{1,...,N}\i

, (4.7)
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. (4.10)

where the column of −Bi matrices is in the i-th (block) column of Bi. The defini-

tion of the formation relative state xi(k) in Equation 4.7 is read as a vector consist-

ing of the N−1 relative states defined in Eq. 4.5 such that xi ∈ R
4(N−1). It follows

from the definitions that w is zero mean and its covariance is E
[

w(j)w(k)T
]

=
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Figure 4.1: Virtual center state xci relative to spacecraft i, denoted by *.
Also shown are reference states r·c, error states e·i and relative
state xji.

Qδjk where,

Q =


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. (4.11)

The relative state vectors are shown conceptually in Figure 4.1.

Transformation matrices from the frame of one spacecraft to another are useful

when communicating local state estimates. First, a transformation matrix from

the inertial state to the relative state of the i-th spacecraft is found. Denoting the

system state in the inertial frame by x(k) such that x(k) =
[

x1(k)T · · ·xN(k)T
]T

,

a matrix, Ti, is found such that xi(k) = Tix(k). Such a matrix is defined similar
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to the definition of Bi and as such, it takes the form

Ti =
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(4.12)

where the column of −I matrices is in the i-th (block) column of Ti. Note that the

range of each Ti spans the same subspace of R
4N . This is shown by noting that the

null space of each Ti is the same and is given by [I · · · I]T . Therefore, a matrix,

Ti,j, can be found such that xi(k) = Ti,jxj(k). This transformation is given by

Ti,j = TiT
†
j (4.13)

where T †
j denotes the Moore-Penrose pseudoinverse of Tj defined as T †

j =

T T
j

(

TjT
T
j

)−1
.

4.2.2 Virtual Center Reference States

For formation control, a reference state for each vehicle in the formation must be

defined. Following the development in Chapter 2, a virtual center state, xc, is

defined relative to the desired formation geometry in the inertial reference frame;

a local frame centered at xc is then defined such that the difference between the

inertial frame and the virtual center frame is only a translation. A local reference

frame at each spacecraft i is similarly defined and the location of the virtual center

in the i-th local frame is denoted by xci = xc − xi, similar in notation to Eq. 4.5.

Over relatively short time horizons, the formation is allowed to drift in the inertial
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frame. Therefore, it is sufficient to specify the reference states in the virtual center

frame, denoted by rci ∈ R
4 ∀ i ∈ {1, ..., N}.

4.2.3 RBS Measurements

The measurements provided by the RBS at each spacecraft i ∈ {1, . . . , N} are

relative range and bearing to a remote spacecraft mi, each corrupted with white

Gaussian noise. Thus, at each time step k, a measurement is made to a single

spacecraft,

zi(k) = hi (xi(k)) + vi(k) (4.14)

= h(xmi,i(k)) + vi(k), (4.15)

h(xmi,i(k)) =


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x
(1)
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




. (4.16)

where vi is zero mean, white Gaussian noise with covariance Ri. The state of

spacecraft mi relative to spacecraft i is denoted by xmi,i, as per Eq. 4.5 with j = mi.

Because the spacecraft is assumed equipped with an inertial attitude sensor, the

relative range/bearing measurements are assumed to be made in the inertial frame

without loss of generality; the statistical errors present in the attitude sensor are

assumed to be built into the RBS noise covariance Ri. The sensor is also assumed

to be able to provide measurements at all ranges under consideration.

The set {m1, . . . , mN} describes the sensing topology of the formation. Note

that care must be taken with the selection of the {m1, . . . , mN} in order to ensure

that the system is observable with the measurements {z1(k), . . . , zN(k)}.
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4.2.4 Local Steady State Extended Kalman Filter

For the formation keeping problem, the measurement hi(·) is linearized about the

reference formation and the steady state EKF gains are found for each spacecraft

for the observable part of the formation state. Assuming that at spacecraft i a

relative range/bearing measurement to spacecraft mi is made, the observable part

of the system is governed by the reduced system Equations 4.4 and 4.15 with

j = mi. The steady state gain is given by

Ki = PiCi

(

CiPiC
T
i + Ri

)−1
(4.17)

such that Pi satisfies the Riccati equation

Pi = APiA
T + [Bi]mi

Q [Bi]
T

mi
− APiC

T
i

[

CiPiC
T
i + Ri

]−1
CiPiA

T (4.18)

and where [Bi]mi
is the mi-th block row of Bi corresponding to the effect the process

noise w(k) has on the observable state xmi,i(k). The linearized measurement matrix

Ci is given by

Ci =
∂h

∂x

∣

∣

∣

∣

rcmi
−rci

. (4.19)

The gain Ki corresponding to the observable state can be integrated into a

filter that operates on the full relative state xi(k). The equation for the full state

estimate is given by

x̂i(k + 1) = Ax̂i(k) + Biu(k) + Ki [zmi,i(k + 1)− h (Ax̂i(k) + Biu(k))] (4.20)
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where
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(4.21)

such that the mi-th row of Ki contains Ki and is zeros elsewhere, thereby updating

the observable state corresponding to xmii in Eq. 4.20. Similarly, a full linearized

measurement matrix, denoted by Ci is defined such that

Ci =

[

0 · · · 0 Ci 0 · · · 0

]

(4.22)

=

[

0 · · · 0 ∂h
∂x

∣

∣

rmic−ric
0 · · · 0

]

(4.23)

such that the mi-th column of Ci contains Ci and is zeros elsewhere, corresponding

to the relative state to the observed spacecraft mi. Note that, in the absence of

additional measurements or communication, the filter in Eq. 4.20 will diverge due

to the lack of observability of the unmeasured spacecraft.

4.2.5 Time Optimal Controller

An optimal controller (minimum time) based on thrust limited (u
({1,2})
i ∈

{−Umax, 0, Umax}) propulsion is used in the same vein as that developed in Ref. [9].

Because the satellite can be represented with second order free space dynamics in

each axis (decoupled), a feed forward, formation keeping controller based on mini-

mum time optimal control is developed. The controller is activated if the satellite
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drifts away from its reference position by more than an error ellipse, which is

written as

[

eii(k)

]T [

diag{e
(1)
max, ė

(1)
max, e

(2)
max, ė

(2)
max}

] [

eii(k)

]

> 1 (4.24)

where e
(·)
max, ė

(·)
max are tuning parameters and eii(k) = xci(k) + ric(k). If this occurs,

a minimum time controller is calculated in each axis. For second order dynamics,

the minimum time controller is a bang-bang controller with a single switch time.

Thus, the control is given by

u
(·)
i (k) =











−sgn(e(·) + ė(·)|ė(·)|/2)Umax, 0 < k − ko < T
(·)
mt1,i/T

sgn(e(·) + ė(·)|ė(·)|/2)Umax, T
(·)
mt1,i/T < k − ko < T

(·)
mtF,i/T

(4.25)

where ko is the time at the start of the maneuver. The switch time and final control

time are written as

T
(·)
mt1,i =

−ė
(·)
ii (k)±

√

1/2(ė
(·)
ii (k))2 − e

(·)
ii (k)Ūmax
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(4.26)

T
(·)
mtF,i =

−ė
(·)
ii (k)±

√

2(ė
(·)
ii (k))2 − 4e

(·)
ii (k)Ūmax

Ūmax

(4.27)

where Ūmax = Umax/m. It is noted that other control methodologies, such as

bounds on relative velocity, minimum fuel, etc. could be used, however this con-

troller is sufficient to evaluate the proposed estimation architecture.

4.3 Iterated Fusion Filter

The proposed distributed iterated fusion filter (IFF) is based on each spacecraft

i = {1, · · · , N}maintaining an estimate of the relative formation state xi(k), which

is denoted by x̂i(k). These estimates are updated on each spacecraft from time k−1
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to time k with the data being generated by the local RBS zi(k) and the steady

state extended Kalman filter gain according to Eq. 4.20. At certain times the

individual estimates x̂i(k) are fused in an sequential manner using a communication

architecture and the one-way transmission of the full system state estimate at one

spacecraft to a single neighboring spacecraft. The process is analogous to sequential

least squares estimation. Existing methods are focused on batch implementations

of the state fusion operation (analogous to batch least square estimation) where all

local estimates are transmitted to a single centralized node, the fusion is performed

and the result is broadcast to the network. Such an approach places a high burden

on the central node in terms of the computation and communication resources

required.

The circular communication architecture is described in Section 4.3.1. The

algorithm consists of two distinct steps. The global covariance update step occurs

when the local Kalman filters are updated using the local measurements on the

transition from time step k to time step k + 1 and is outlined in Section 4.3.2.

The fusion update step described in Section 4.3.3 occurs when an estimate is

transmitted from one spacecraft to another. Square root implementations of each

step are described in Section 4.3.4.

4.3.1 Circular Communication Architecture

In the proposed communication architecture, information, in the form of locally

stored formation state estimates is transmitted from one spacecraft to another in a

circular manner. Consider a simple formation, composed of two spacecraft denoted

by i ∈ {1, 2}. At some initial time k0, spacecraft 1 transmits its local estimate

x̂1(k0) to spacecraft 2. Due to time delays in the channel, this estimate is received
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Figure 4.2: Illustration of the circular communication architecture and it-
erated state fusion. At time kF

i spacecraft i receives the time
delayed state estimate x̂fi

(kF
i − Tc) from spacecraft fi, which is

fused with the local estimate x̂fi
(kF

i ). At time kF
i +Ts spacecraft

i sends the estimate x̂i(k
F
i + Ts) to the next spacecraft in the

circuit, i.e. spacecraft j such that fj = i.

by spacecraft 2 at time k0 + Tc where Tc denotes the communication delay time.

Spacecraft 2 fuses its estimate x̂2(k0 + Tc) with the received x̂1(k0) and updates

x̂2(k0 + Tc) accordingly. There is an internal delay at each spacecraft, denoted

by Ts, between the fusion and transmission times, during which each spacecraft

updates its local estimate using the local RBS measurements. Therefore, at time

k0 + Tc + Ts, spacecraft 2 transmits its estimate x̂2(k0 + Tc + Ts) to spacecraft 1.

Spacecraft 1 receives this estimate at time k0 + 2Tc + Ts and fuses x̂2(k0 + Tc + Ts)

with its local estimate x̂1(k0+2Tc+Ts). After Ts time steps, spacecraft 1 transmits

x̂3(k0 +2Tc +2Ts) to spacecraft 2, completing the cycle. This process is illustrated

in Figure 4.2 for N spacecraft. The spacecraft from which spacecraft i receives
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the formation estimate is denoted by fi, which is analogous to mi, defined in

Section 4.2.3.

The time delay between successive fusion steps at any given spacecraft is equal

to the round trip communication delay in the circular network and is denoted by

TRT such that

TRT = N (Ts + Tc) (4.28)

The times at which a fusion occurs at spacecraft i is denoted by kF
i . In the above

example, kF
1 = {k0 − Ts + TRT, k0 − Ts + 2TRT, . . .}. Similarly, for spacecraft 2,

kF
2 = {k0 − Ts + TRT/2, k0 − Ts + 3TRT/2, . . .}.

This approach is advantageous because it requires only a single transmit and

receive communication link at each spacecraft. Moreover, transmitting the state is

preferred over a method where individual measurements are transmitted through-

out the formation and implementing a standard Kalman filter using the mea-

surements delayed by the communication channel. This is due to the effects

of the round trip time TRT. If the communication proceeds from spacecraft

1 → 2 → · · · → N → 1 → · · · , at time step kF
N , and EKF at spacecraft N

would be required to incorporate all of the measurements generated in the forma-

tion, subject to the time delays described above. These measurements are {z1(k
F
N−

2TRT), . . . , z1(k
F
N − TRT), z2(k

F
N − 2TRT + Tc + Ts), . . . , z2(k

F
N − TRT + Tc + Ts), . . .},

the number of which is O(N2(Tc + Ts)). Section 4.4.2 compares the performance

of such a filter with the IFF.
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4.3.2 Global Covariance Measurement Update

In the absence of any communication, the local estimates are updated using the

local RBS measurements only. At the transition from time step k to time stop k+1

the covariance matrices are stored at each spacecraft and are updated using the

steady state Kalman filter gains. Consider the filter error dynamics at spacecraft

i, found by subtracting Eq. 4.20 from Eq. 4.6 and linearizing in order to eliminate

h(·):

ei(k + 1) = (A−KiCiA)ei(k) + (B−KiCiB)w(k)−Kivi(k + 1), (4.29)

where ei(k) = xi(k) − x̂i(k). In block form, the collected KF error dynamics are

written as

eG(k + 1) = AGeG(k) + BGw(k)−KGv(k) (4.30)

where,
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and,
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. (4.34)
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The global error covariance is denoted by PG(k) = E
[

eG(k)eG(k)T
]

and is

composed of the individual covariance and cross-covariance matrices such that

[PG(k)]i,j = Pi,j where [·]i,j denotes the ij-th sub-block of the matrix ·. If no

communication (and therefore, no fusion) occurs and if PG is known at time step

k, PG(k) can be propagated via the linear equation

PG(k + 1) = AGPG(k)AT
G + BGQBT

G + KGRKT
G (4.35)

where R = diag (R1, . . . , RN). Note that, at each transition from time step k to

time step k + 1, each spacecraft updates its local estimate x̂i(k), and the global

error covariance PG(k) using Eq. 4.35.

4.3.3 Fusion Update

When an estimate is transmitted from one spacecraft to the next, the receiving

spacecraft performs a least squares fusion using the received estimate and its locally

maintained estimate. These estimates are modeled as

x̂i(k) = xi(k) + ei(k) (4.36)

where xi(k) is considered a constant, and ei(k) is modeled as a zero-mean nor-

mally distributed random variable with covariance E
[

ei(k)eT
i (k)

]

= Pi,i(k). The

cross covariance between any two of these errors is denoted by Pi,mi
(k) such that

Pi,mi
(k) = E

[

ei(k)eT
mi

(k)
]

. Note that Eq. 4.36 is an approximation because xi(k)

is not a constant. In Ref. [13] it is shown that this approximation leads to a state

fusion algorithm that is suboptimal. However, the resulting fused estimates were

shown to be conservative (i.e. having greater covariance) when compared to an

EKF solution.
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At time kF
i , spacecraft i receives from spacecraft fi the measurement x̂fi

(kF
i −Tc

where Tc is the time delay in the communication channel. Consider, first, the case

where Tc = 0. Because the estimates are jointly Gaussian and are modeled as in

Eq. 4.36, fusing estimates from spacecraft i and fi at time step kF
i can be posed as

a linear least squares problem. The log-likelihood function resulting from Eq. 4.36

is

ln p
(

xi(k
F
i ) | x̂i(k

F
i ), x̂fi

(kF
i )
)

∝

−
[

Tfi,ixi(k
F
i )− x̂F

i,fi
(kF

i )
]T

PF
i,fi

(kF
i )−1

[

Tfi,ixi(k
F
i )− x̂F

i,fi
(kF

i )
]

, (4.37)

where

PF
i,fi

(kF
i ) =







Pi,i(k
F
i ) Pi,fi

(kF
i )

PT
i,fi

(kF
i ) Pfi,fi

(kF
i )






, (4.38)

Tfi,i =







I

Tfi,i






, x̂F

i (kF
i ) =







x̂i(k
F
i )

x̂fi
(kF

i )






(4.39)

Maximizing the likelihood function in Eq. 4.37 is therefore equivalent to solving

the least squares problem

x̂i(k
F
i )← min

xi(kF
i )

[

Tfi,ixi(k
F
i )− x̂F

i,fi
(kF

i )
]T

PF
i,fi

(kF
i )−1

[

Tfi,ixi(k
F
i )− x̂F

i,fi
(kF

i )
]

,

(4.40)

where the ← denotes the updating of x̂i(k
F
i ) with the RHS of Eq. 4.40, which is a

function of x̂i(k
F
i ) and x̂fi

(kF
i ) . The solution to Eq. 4.40 is

x̂i(k
F
i ) ←

(

TT
fi,i

PF
i,fi

(kF
i )−1Tfi,i

)−1
TT

fi,i
PF

i,fi
(kF

i )−1x̂F
ij(k

F
i ) (4.41)

=

[

KF
i KF

fi

]







x̂i(k
F
i )

x̂fi
(kF

i )






. (4.42)
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In batch form, the global covariance update, reflecting the state fusion update, is

PG(kF
i )← KF

i PG(kF
i )KF

i

T
, KF

i =







































I

. . .

I

KF
i KF

fi

I

. . .

I







































(4.43)

such that
[

KF
i

]

i,i
= KF

i and
[

KF
i

]

i,fi
= KF

fi
. Note that KF

i is full rank.

Although the minimization in Eq. 4.40 is optimal in a maximum a posteriori

sense, it was shown in Ref. [13] that it is not optimal in a minimum mean square

error sense. This is because of the lack of a priori information in Eq. 4.37. It can

be argued that the lack of a priori information leads to a conservative estimate of

xi(k
F
i ). The results in Ref. [13] confirm this in several numerical results.

As with the global covariance measurement update, when a fusion occurs at

a spacecraft in the formation, only that spacecraft performs the state fusion in

Eq. 4.42. However, each spacecraft performs the update in Eq. 4.43 and updates

PG(kF
i ) accordingly.

Known time delays in the communication subsystem are accounted for by stor-

ing and recalling past estimates and global covariance matrices. Therefore, when,

at time step kF
i , spacecraft i receives from spacecraft fi the estimate x̂fi

(kF
i − Tc),

spacecraft i recalls from memory the estimate x̂i(k
F
i −Tc) along with the associated

global covariance matrix PG(kF
i − Tc). It performs the fusion to yield x̂i(k

F
i − Tc)

and runs the filter forward, using the locally stored measurements, to time step

kF
i .
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4.3.4 Square Root Implementation

The global covariance and fusion update steps can be implemented in a square

root fashion[6] to improve numerical accuracy and filter stability. Denoting the

square root of the system covariance matrix, PG(k), as SG(k) such that

PG(k) = SG(k)TSG(k) (4.44)

allows Eq. 4.35 to be written as

SG(k + 1)TSG(k + 1) = AGSG(k)TSG(k)AT
G + N. (4.45)

where N = BGQBT
G + KGRKT

G. Taking the square root of the right side leads to

SG(k + 1)TSG(k + 1) =

[

AGSG(k)T ST
N

]







SG(k)AT
G

SN






(4.46)

where SN denotes the square roots of the noise covariance matrix N such that

N = ST
NSN . The QR decomposition of

[

AGSG(k)T ST
N

]T

yields the desired

SP (k + 1) as






SG(k + 1)

0






= ZT

G







SG(k)AT
G

SN






(4.47)

where ZG is unitary. Similarly, the square root noise SN is found by a QR decom-

position by noting that, by definition

N = ST
NSN =

[

BGST
Q KGST

R

]







SQBT
G

SRKT
G






. (4.48)

where SQ and SR are the square roots of the process and measurement noise

covariance matrices Q and R, respectively, such that Q = ST
QSQ and R = ST

RSR.

The QR decomposition of

[

BGST
Q KGST

R

]T

yields







SN

0






= ZT

N







SQBT
G

SRKT
G






(4.49)
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where ZN is unitary. Note that the computation in Eq. 4.49 can be performed off

line and stored in memory.

The square root version of the fusion update step in Eqs. 4.42 and 4.43 proceeds

by first finding the square root of the matrix PF
i,fi

(k), denoted by Si,fi
(k), given

SG(k). Note that by definition

PF
i,fi

(k) = Si,fi
(k)TSi,fi

(k)

= AT
i,fi

PG(k)Ai,fi

= AT
i,fi

SG(k)TSG(k)Ai,fi
(4.50)

where

Ai,fi
=

























I

I

























(4.51)

such that [Ai,fi
]
i,1 = I and [Ai,fi

]
fi,2

= I and zeros elsewhere. The QR decomposi-

tion of PG(k)Ai,fi
yields the square root of Pi,fi

(k) as







Si,fi
(k + 1)

0






= ZT

i,fi
PG(k)Ai,fi

(4.52)

where Zi,fi
is unitary.
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The least squares cost in Eq. 4.40 is rewritten in square root form as

JF =
[

Tfi,ixi(k)− x̂F
i,fi

(k)
]T (

Si,fi
(k)TSi,fi

(k)
)−1
·

[

Tfi,ixi(k)− x̂F
i,fi

(k)
]

(4.53)

=
[

Tfi,ixi(k)− x̂F
i,fi

(k)
]T

Si,fi
(k)−1Si,fi

(k)−T ·

[

Tfi,ixi(k)− x̂F
i,fi

(k)
]

(4.54)

= eF(k)TeF(k) (4.55)

where

eF(k) = Si,fi
(k)−T

[

Tfi,ixi(k)− x̂F
i,fi

(k)
]

(4.56)

= Si,fi
(k)−TTfi,ixi(k)− Si,fi

(k)−T x̂F
i,fi

(k). (4.57)

Performing a QR decomposition on Si,fi
(k)−TTfi,i yields







SF(k)

0






= ZT

FSi,fi
(k)−TTfi,i. (4.58)

where ZF is unitary. Premultiplying Eq. 4.57 by ZT
F yields

ZT
FeF(k) =







SF(k)

0






xi(k)− ZT

FSi,fi
(k)−T x̂F

i,fi
(k) =







eJ (k)

eR(k)






, (4.59)

where eR(k)TeR(k) is the residual cost and is not a function of x+
j (k). Because

SF(k) is invertible, the error eJ(k) can be chosen to be zero by the appropriate

choice of xi(k), thus minimizing the cost JF. In order to isolate eJ(k), Eq. 4.59 is

premultiplied by AI =

[

I 0

]

and is set equal to zero resulting in

0 = AI







SF(k)

0






xi(k)− AIZ

T
FSi,fi

(k)−T x̂F
ij(k) (4.60)

= SF(k)xi(k)− AIZ
T
FSi,fi

(k)−T x̂F
ij(k). (4.61)
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Solving for xi(k) and updating x̂i(k) with the result yields

x̂i(k) ← SF(k)−1AIZ
T
FSi,fi

(k)−T x̂F
i,fi

(k) (4.62)

=

[

KF
i KF

j

]







x̂i(k)

x̂fi
(k)






(4.63)

Finally, the fused global square root covariance is updated by recalling Eq. 4.43

SG(k)TSG(k)← KF
i SG(k)TSG(k)KF

i

T
(4.64)

resulting in

SG(k)← SG(k)KF
i

T
. (4.65)

As previously noted, prior to the fusion update in Eq. 4.65, both SG(k) and KF
i

are square and full rank and so no other processing needs to be performed on the

updated SG(k). In other words, although SG(k) may not be upper triangular, it

is a valid square root matrix.

Numerical performance of the combined communication/estimation system is

presented in the following section. The filter is shown to be consistent[3] and give

performance in steady state that is close to optimal when compared to a Kalman

filter operating, at each spacecraft on the raw measurements, subject to the delays

as described in Section 4.3.1.

4.3.5 Thrust Compensation

Note that the time update of Eq. 4.20 requires that control maneuvers u(k) be

known instantaneously at each spacecraft. Given time delays in the communication

subsystem described herein, this would require additional sensing or communica-

tion resources in order to achieve this knowledge. If these additional resources are
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not available, the thrust inputs are neglected by augmenting the process noise to

include the effects of the thrust input. Because the thrust is clearly not Gaussian

noise, this is only an approximation. However, simulations in Section 4.4 show

that the proper choice of Q yields system performance that is comparable to a

system which includes instantaneous knowledge of u(k).

4.4 Numerical Results

In this section, formations of three and eight spacecraft are simulated to verify the

performance of the filter. Consistency testing results are detailed in Section 4.4.1.

Results of a numerical comparison of the IF filter to the optimal Kalman filter

in steady state are presented in Section 4.4.2. The full system is simulated for a

period of forty-eight hours and results are presented in Section 4.4.3.

4.4.1 Consistency Testing

Monte Carlo testing on the estimation system presented herein has shown that

the filter is consistent in steady state, i.e. that the errors are zero mean and that

the numerically calculated covariance (across trials) is statistically equivalent to

the covariance output of the IFF[3]. This has been determined for formations

consisting of between three and eight spacecraft and for various values of Tc and

Ts. The consistency test consists of a chi-square test on the null hypothesis: that

the filter error is zero mean, and has mean square magnitude stastically equivalent

to the filter covariance matrix PG. Recalling the definition of the filter error

ei(k) = xi(k)− x̂i(k), (4.66)
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the normalized squared estimate error is

ǫi(k) = ei(k)TPi,i(k)−1ei(k). (4.67)

where Pi,i(k) = [PG(k)]i,i. Under the null hypothesis, ǫi(k) is chi-square distrituted

with nx(N − 1) degrees of freedom. The Monte Carlo test consists of running the

filter a number of times, using identical initial conditions, but different sequences

of process and measurement noise. A total of NT trials a run, each generating, for

some fixed kT, the normalized squared estimate error ǫm
i (kT) for m = {1, . . . , NT}.

The sum of these errors is

ǭi(kT) =
1

NT

NT
∑

m=1

ǫm
i (kT) (4.68)

and thus, NTǭi(kT) chi-squared with nx(N − 1)NT degrees of freedom. The filter

is considered to be consistent if ǭi(kT) ∈ [ǫmax, ǫmin]. The interval [ǫmax, ǫmin] is

defined by the error probability α such that

P {ǭi(kT) ∈ [ǫmax, ǫmin]} = 1− α. (4.69)

For the consistency tests performed, α = 0.05, NT = 20, N = 8, and, in 2D,

nx = 4. This results in [ǫmax, ǫmin] = [24.8, 31.4].

4.4.2 Comparison to Optimal Kalman Filter

Figure 4.3 illustrates the difference between the IFF and optimal EKF. In this

simulation, N = 8 and fi = mi = i−1 for i = {2, . . . , 8} and f1 = m1 = 8 yielding

a circular communication and sensing topology. The nominal formation is shown

in Figure 2.11 and the simulation parameters described in Section 2.6 are used for

the simulations herein. The position and velocity errors are shown with 3σ bounds

for the error in the estimate of the states x1
61 and ẋ1

61. The fusion process does not
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Figure 4.3: Iterated fusion filter performance for an N = 8 formation.

begin until 400 s into the simulation, resulting in increasing error in the estimates.

At 400 s, the EKF estimate rapidly converges, because it uses the optimal gains on

all the measurements it receives. Since it uses static local gains and the suboptimal

fusion ste, the IFF filter takes longer to converge. However, at steady state, the

filters perform almost identically.

The covariance resulting from the optimal extended Kalman filter (EKF), sub-

ject to the same communication delays as the IFF, at the i-th spacecraft is denoted

by PKF
i (k). The performance metric by which the two filters are compared is the

mean (over time) of the trace of the covariance matrix when the filters are in steady

state. Since both the IFF and EKF are consistent, according to the definition of
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Figure 4.4: Relative error EN(Tc, Ts) between the mean steady state Iterated
Fusion filter (IFF) and optimal EKF covariances (trace) for N =
3 and N = 8.

consistency in Section 4.4.1, this metric can be used for evaluating the perfor-

mance in lieu of a computationally intensive Monte Carlo simulation where the

mean square error is calculated numerically. If the mean of the IF filter is always

larger then the mean of the steady state optimal filter, the normalized error

EN(Tc, Ts) =
trace

[

∑kf

k=k0
Pi,i(k)

]

− trace
[

∑kf

k=k0
PKF

i (k)
]

trace
[

∑kf

k=k0
PKF

i (k)
] (4.70)

is always positive and denotes how well the IFF performs. If this error is close

to zero, then the filter is performing well. Simulations were performed for various

values of the time delays Tc and Ts. Note that k0 must be chosen to be large

enough so that the filter is in steady state, and the integration time kf − k0 must

be chosen to be large enough to capture the variations in the filter due to the cyclic

communication. For N spacecraft, the round trip time of the filter is N (Ts + Tc)

and so kf − k0 is at least several times this value.

The simulations verify that in steady state, not only is the error ratio greater
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Figure 4.5: Mean delta-V and RMS position error for a formation with N =
8 over various values of Tc and Ts.

than zero, but that for all j, [Pi,i(k)]
j,j

>
[

PKF
i (k)

]

j,j
for all values of Ts and

Tc. The results are consistent with the trend found in Ref. [13], i.e. that the IFF

provides conservative estimates. Interestingly, the filter covariance error decreases

for larger N .

4.4.3 System Performance

Performance of the system in terms of fuel usage and RMS position error is deter-

mined via Monte Carlo simulation. The simulation consists of an eight spacecraft

formation running continuously for forty-eight hours for two cases: (1) the case

there thrust inputs are known instantaneously at each spacecraft, and (2) where

the filter process noise is augmented to accommodate for the lack of this infor-

mation. For the case where the thrust inputs are known, Figure 4.5 shows the

system performance as a function of the communication delay Tc and the internal
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Figure 4.6: Mean delta-V and RMS position error for a formation with N =
8 over various values of Tc and Ts for a formation where the thrust
is unknown to the local estimators.

delay Ts. Each point in the figure represents the performance of a forty-eight hour

simulation run. For all values of Tc and Ts the system exhibits good performance

of about 3.5 % thruster on-time and 0.55 m in position error.

For the case where the thrust inputs are not known at any spacecraft, the

system equations are augmented to include an additional noise term wu(k) such

that

xi(k + 1) = Axi(k) + Biwu(k) + Biw(k) (4.71)

where the covariance of wu(k) is Qu = quI. The value of qu is chosen to be

U2
max, i.e. the covariance resulting from the thrusters being on all the time. The

system exhibits good performance for small values of Tc and Ts. Figure 4.6 shows

the system performance and Figure 4.7 is a contour map for the position error.

Interestingly, the contours are nearly coincident with the lines given by the function

Tc + Ts = c where c is a constant. This suggests that performance is a function
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Figure 4.7: Contour map of the formation position error in Figure 4.6 (right).

of the overall delay Tc + Ts. The contour map shows that the system performance

rapidly degrades for delays above Tc + Ts = 9. Note that for large overall delay

Tc + Ts, the system becomes unstable resulting in performance values that are too

large to plot in Figure 4.6.
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CHAPTER 5

CONCLUSIONS

The major contributions contained in this dissertation are as follows: in Chap-

ter 2, the information weighted virtual center algorithm is shown to add robustness

to the system by dampening the effects of noisy state estimates. It is also shown

to significantly decrease the controller reaction time to a collision, while providing

near-optimal performance in terms of the two key formation performance metrics

identified herein: RMS position error and fuel usage.

Chapters 2 and 3 contain similar algorithms for finding the optimal periodic

measurement sequence. The steepest descent search in Chapter 2 uses the full

cost model when evaluating candidate solutions, assuming convexity of the cost

function, which is not guaranteed. In Chapter 3 it is shown that even when con-

vexity is guaranteed, the integer constraint may cause a gradient solver to converge

to a suboptimal solution. In contrast, the approximation of the cost function in

Chapter 3 leads to a convex optimization problem when the integer constraint

is relaxed. Imposing the integer constraint uses established integer least squares

methods by approximating the cost function using the Hessian, guaranteeing opti-

mality (in the cases where the Hessian can be fully diagonalized with a unimodular

transformation) to third order.

The GNC architecture developed in Chapter 2 does not assume the presence of

a communication subsystem for state fusion. It assumed that the RBS sensor could

be switched at a fairly high rate (comparable to the measurement rate) assuring

formation observability at each spacecraft. The architecture proposed in Chapter

4 uses the minimal amount of communication hardware in terms of the number of

required unidirectional Tx and Rx channels for fusing state estimates maintained
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at each spacecraft. The estimation system is shown to yield statistically consistent

estimates while being conservative when compared to a computationally inten-

sive, high communication extended Kalman filter. Simulations show that an eight

spacecraft formation performs well in the presence of single hop communication

delays of up to 30 seconds.
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