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By calculating accurately the signals of wave sources following specific techniques,

one can use their induced wave fields, in order to synthesize wave patterns with prede-

fined spatial and temporal characteristics, inside various wave media.

Using the previous idea, the first part of this thesis presents a linear wave field syn-

thesis method which has potential applications in acoustic and electromagnetic media.

Virtual sound reproduction mechanisms used in theaters and teleconference systems,

as well as medical devices using ultrasound and electromagnetic radiation, could ben-

efit from this method. The method is compared with traditional acoustic wave field

synthesis techniques and simulations demonstrating its applicability on different source

topologies with different radiation characteristics are also presented.

Unlike the linear analysis of the first part, the second part of this thesis is focused

on the theoretical and experimental study of certain nonlinear wave field synthesis phe-

nomena which appear on two dimensional nonlinear LC lattices. More specifically, it is

demonstrated how nonlinearity can help in synthesizing high frequency and high power

wave pulses at the central points of these lattices, using many low power and low fre-

quency sources at the boundaries. This idea has potential applications in ultra wide band

communication and imaging systems and holds a promise of ”closing the Terahertz win-

dow” formed by the power vs. frequency performance of electronic and optical devices.
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The greatest enemy of evil is humility.

We have to treat all others as saints and ourselves as sinners and inferior of all.

Although others could be sinners,

we do not have the right to judge and treat them as sinners.

If the evil brings us disturbing thoughts in our intellectual work different from the ones

leading to the salvation of our souls we have to fight them with the internal prayer.

Ask for repentance in your prayer and nothing else, neither for divine lights, nor

miracles, nor prophecies, nor spiritual gifts, nothing but repentance. Repentance will

bring you humility. Humility will bring you the Grace of God. God will have in his

grace everything you need for your salvation or anything you might need to help

another soul.

Let your soul be thirsty for the knowledge of the truth, the forgiveness of the sins, the

peace of mind, the heavenly joy... Let your soul wait for the time when it will be

released from the vanity of the present world, the pain, the sorrow, the evil which exists

in the hearts of people.

Monk Paisios
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CHAPTER 1

INTRODUCTION

1.1 Wave Field Synthesis

Wave propagation is a subject of study in many scientific fields, such as acoustics, geo-

physics, electro-magnetics and optics [1, 4, 2, 3]. In these areas, there is an increased

interest in finding systematic methods of synthesizing wave fields with certain spatial

and temporal characteristics. This concept of wave field synthesis (WFS) is built upon

the ability to generate wave patterns using spatially distributed wave sources. The goal

of WFS is to determine the signals such that, when applied to the distributed wave

sources, their induced individual fields, synthesize a given desirable wave field.

A fundamental requirement for WFS experiments is the existence of a wave medium.

Such medium could be any material inside which waves can propagate without sig-

nificant absorption. Examples include acoustic and electromagnetic media, as well as

electrical LC lattices where electromagnetic wave propagation can be generated under

certain conditions.

Apart from the existence of the wave medium equally important is a mechanism

called wave source capable of generating wave patterns inside the medium. In the case

of acoustics, a source could be a loudspeaker or a music instrument, in the case of

electromagnetics a current dipole and in the case of electrical lattices, a voltage source.

The carefully designed cumulative action of many of such sources inside the medium

results to the accurate synthesis of desirable wave patterns.
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1.2 Organization

Based of the nature of the wave medium this thesis is divided into three chapters. The

first chapter discusses WFS principles applied in acoustic media with applications in

multichannel sound reproduction systems. Acoustic wave fields are simple scalar wave

fields which represent atmospheric pressure variations.

Unlike acoustic fields, electromagnetic fields are vector fields which are generally

more complex. In spite of this inherent complexity, the proposed method used for the

synthesis of scalar acoustic fields can be generalized to the synthesis electromagnetic

vector fields. As a consequence, electromagnetic wave field synthesis with applications

in antenna arrays is discussed in the second chapter.

In the first two chapters the wave medium is assumed to be linear meaning that the

wave field induced by many wave sources is the same as the sum of the wave fields

induced by each source individually. This assumption does not hold for nonlinear wave

media such as nonlinear LC lattices. These lattices allow electromagnetic waves to prop-

agate in a nonlinear manner. By applying voltage sources in the boundary nodes of these

lattices nonlinear electromagnetic wave field synthesis phenomena can be observed in

their central nodes. Under certain optimal conditions, and due to the nonlinear nature

of the wave medium, the input signals of the boundary source nodes can be amplified

significantly in the center of the lattice. This phenomenon is studied in the third and

final chapters. Experimental results consisting of voltage measurements on a real LC

lattice are also presented.
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1.3 Notation

Relevant notations that are used throughout the thesis are listed below:

P̂(~r, ω) acoustic pressure variation spectrum at location ~r and frequency ω.

Ŝ j(ω) is the complex spectral value of source source j at frequency ω.

{xn} represents vector xn.

{x̂n} represents the fourier transform of vector xn.

{xn}q represents the qth element of vector xn.

{x(ω)} represents a vector x of functions of ω.

[Xn] represents matrix Xn.

[Xn]pq represents the pqth element of matrix Xn.

[X(ω)] represents a matrix X of functions of ω.

{x}.{y} = {x1y1, ..., xNyN} is the element by element multiplication.

{x} ∗ {y} = {x1 ∗ y1, ..., xN ∗ yN} is the element by element convolution.

{xk:m} = {xk, xk + 1, ..., xm} part of {x} vector from k to m element (m > k).

0N×N matrix of zeros with dimensions N × N.

0k vector containing k zeros.

3



CHAPTER 2

ACOUSTICS

2.1 Wave Field Synthesis in Acoustics

In room acoustics WFS can be used to generate a good replica of the sound field of an in-

strument, using a distributed array of loudspeakers. This idea has excellent applications

in theaters and cinemas, as a sound enhancement technique [5] and in home-theaters,

simulators and teleconference systems, as a spatial sound reproduction mechanism [6].

Recently, applications of this concept in electronic music have also been proposed [7].

Figure 2.1 displays an application of WFS in acoustics. An important requirement

in every sound field synthesis experiment is the existence of a unit capable of sending

electrical signals to the acoustic sources called control center (refer to Fig. 2.1).

The idea of synthesizing ultrasound wave fields inside biological media appears also

in cancer treatment applications and more specifically in a method called hyperthermia.

Using a number of distributed ultrasound sources [8, 9] outside the human body, a fo-

cused ultrasound field can be synthesized inside the body. This focused ultrasound field

Figure 2.1: WFS in acoustics
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can overheat the tumor region and kill the cancer cells. In order to achieve optimal

focusing a space-time inverse filtering process has been introduced [10].

2.1.1 Challenges

Intuition suggests that the greater the number of wave sources, the better the quality of

the synthesis. However, difficulties in implementation arise when the number of sources

is too large, and the communications between the sources and the control center is estab-

lished through wires. A reasonable solution in such cases is to replace the wired links,

as shown in Figure 2.1, with wireless links. Inevitably, any communication impairment

between the control center and wave sources affects the quality of the synthesized field.

For example, in a wireless setting any synchronization inability or noise added to the

wave source signals causes additional error accumulation between the desirable and the

synthesized wave fields. The need of a synchronous network infrastructure to support

the WFS apparatus is also discussed in [13].

Medium heterogeneities impose another obstacle towards a successful wave field

synthesis experiment. For example, the walls of a room scatter the incident waves,

generating destructive interference to the synthesized fields. In order to cancel these

scattering effects, many algorithms have been proposed by Spors [14] and by Gauthier

et al.[15, 16] who introduced an adaptive WFS method. Temporal and spatial hetero-

geneities also appear in cancer treatment, when biological tissues are treated as a wave

medium [17]. In such cases, spatial and temporal discretization of the wave medium

and application of Finite Element Methods [18] have been suggested [19]. In all of the

above scenarios an optimal wave field synthesis method appears to be desirable.
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2.1.2 Historical overview

An early investigation of the methods of synthesizing sound fields was conducted by

M.Camras in 1968 [20]. Following similar ideas A. J. Berkhout introduced an acous-

tic holography method in 1988 [21] and defined formally WFS in 1993 [22, 23]. The

WFS method defined by Berkhout, is based on a principle discovered by a Dutch physi-

cist, Christian Huygens, in 1678. According to this principle, at any instant the wave-

front of a propagating wave of light conforms to the envelope created by spherical

wavelets emanating from every point of the wavefront at a prior instant [24]. Huygens’

principle can be expressed using the Kirchhoff-Rayleigh integral equation [4], which

states that a pressure field can be synthesized using distributed monopole or dipole

wave sources with specific amplitudes. Following Berkhout’s method, various research

groups [25, 26, 28, 27], have studied acoustic WFS synthesis implementations. Effects

of directionality in wave sources implementing WFS have also been studied [29].

Apart from acoustics, an iterative wave synthesis algorithm has been proposed by

R.Piestun, B.Spektop and J.Shamir in optics [11, 12]. This method achieves the synthe-

sis of three dimensional light wave fields and has applications in optical holography.

2.1.3 Main Contributions

This chapter introduces a spectral wave field synthesis technique different from the ap-

proach based on the Kirchhoff-Rayleigh integral equation followed by traditional WFS

methods. As mentioned in [22], in a real scenario the source arrays used for the syn-

thesis have finite a length and a finite number of sources and approximations of the

Kirchhoff-Rayleigh integral equation must be applied, which result in truncation and

aliasing effects to the synthesized fields. The proposed method overcomes these effects

6



since it is optimal in the total square error sense: given a source topology and a desirable

wave field, it determines certain optimal source signals. When these signals are applied

to the sources, an optimal wave field is induced. The total square error between the

optimal wave field and the desirable wave field is the smallest possible.

Traditional WFS methods require the synthesis sources to be located on a surface

[4] with a structured topology (e.g. a line, a circle, etc.). This constraint does not appear

in the proposed method since it can be applied to any arbitrary source topology.

Finally, the proposed method is more general than traditional WFS methods, since it

can accommodate not only dipole and monopole sources which traditional WFS meth-

ods use, but also sources with general radiation profiles.

2.1.4 Organization

The problem of WFS is introduced as an optimization problem in the subsection 2.2.2

of this chapter. A solution to this optimization problem is presented for the synthesis of

band limited sound fields. The existence and uniqueness of this solution is proven for

the cases in which the synthesis sources are located at distinct points.

A comparison between the proposed technique and traditional WFS techniques is

presented in subsection 2.3.1. The performance measure of the comparison is the total

square error between the desirable (target) and the synthesized fields. In all attempted

synthesis scenarios, the proposed method has lower total square error than the total

square error of traditional WFS techniques.

The feasibility of the proposed technique on an arbitrary source topology is inves-

tigated in subsection 2.3.2. In this scenario, the quality of synthesis is assessed using

7



energy contour plots.

Finally, the ability of the proposed method, in handling sources with different radia-

tion profiles is illustrated in subsection 2.3.3.

2.2 Optimal wave field synthesis

2.2.1 Preliminaries

Synthesis Error

In order to perform a successful wave field synthesis experiment, appropriate signals

have to be specified for the distributed wave sources. In many cases however, the loca-

tions of the wave sources become the main obstacle in accurately synthesizing a desir-

able wave field. Given any source topology, knowledge of the best possible field which

can be synthesized is required. The term “best possible wave field” refers to the wave

field that has the smallest possible difference with the desirable wave field.

Wave fields are usually scalar functions of space and time. Assume a time instant t ∈
(−∞,∞) and a point represented by ~r inside a wave medium S. By means of functional

analysis [31], one can define the difference dP1,P2
1 between two wave field functions

P1(~r, t) and P2(~r, t) inside S, as follows:

dP1,P2 = ||P1 − P2||22 =

∫

S

[∫ ∞

−∞

∣∣∣P1(~r, t) − P2(~r, t)
∣∣∣2 dt

]
d~r (2.1)

1In functional analysis the difference dP1,P2 is defined as distance in vector spaces.
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Generally, sound fields can be represented by the pressure variation fields P(~r, t), which

are scalar functions, and the difference expression (2.1) can be applied to them. Fur-

thermore, using Parseval’s theorem [31], one can pass from the time domain (t) to the

frequency domain (ω), and express the differences between pressure variation fields as

differences between pressure variation spectra:

dP̂1,P̂2
=

∫

S

1
2π

[∫ ∞

−∞

∣∣∣P̂1(~r, ω) − P̂2(~r, ω)
∣∣∣2 dω

]
d~r (2.2)

In a wave field synthesis experiment, the difference between the target spectral field

(P̂o(~r, ω) = P̂1(~r, ω)), and the synthesized spectral field using finite distributed wave

sources (P̂s(~r, ω) = P̂2(~r, ω)), is defined as the synthesis error E:

E = 2πdP̂o,P̂s
=

∫

S

[∫ ∞

−∞

∣∣∣P̂o(~r, ω) − P̂s(~r, ω)
∣∣∣2 dω

]
d~r (2.3)

2.2.2 Optimal Wave Field Synthesis using point sources

Synthesis error as a function of the source spectra

Consider the problem of synthesizing a spectral field P̂o(~r, ω) by M distributed point

sources at fixed known locations ~r j inside a medium S, with spectra Ŝ j(ω), j=1, ..., M.

These distributed sources will synthesize an acoustic field spectrum P̂s(~r, ω) which gen-

erally differs from the desirable field spectrum P̂o(~r, ω). If the sources are monopoles,

they will synthesize a field that satisfy the Helmholtz wave PDE with Ŝ (~r, ω) =

∑M
j=1 Ŝ j(ω)δ(~r − ~r j), according to [4], or:
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∇2P̂s +
ω2

c2 P̂s +

M∑

j=1

Ŝ j(ω)δ(~r − ~r j) = 0 (2.4)

Using Green’s function notation, it can be shown that the solution of the above PDE,

assuming Sommerfeld conditions [32] at |~r| → ∞, becomes:

P̂s(~r, ω) =

M∑

j=1



Ŝ j(ω)G j(~r, ω) ω > 0

0 ω = 0

Ŝ ∗j(−ω)G∗j(~r, ω) ω < 0

G j(~r, ω) =
e− jωc |~r−~r j |

4π|~r − ~r j| (2.5)

In the case where distributed sources are not monopoles, the functions G j(~r, ω) are re-

placed by appropriate ones that capture the radiation characteristics of the sources. Sub-

stituting (3.3) into (3.2) and taking into account that all the spectral functions are real

functions (S j(−ω) = S ∗j(ω),G j(~r,−ω) = G∗j(~r, ω), P̂o(~r,−ω) = P̂∗o(~r, ω), ω > 0), the

synthesis error can be expressed as a function of the source spectra of the distributed

sources ({Ŝ (ω)} = {Ŝ 1(ω), ..., Ŝ M(ω)}):

E({Ŝ (ω)}) = 2
∫

S


∫

ω>0

∣∣∣∣∣∣∣P̂o(~r, ω) −
M∑

j=1

Ŝ j(ω)G j(~r, ω)

∣∣∣∣∣∣∣

2

dω

 ds (2.6)
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Definition of optimal WFS

Based on (2.6) one can define the optimal point WFS problem as follows:

Given:

1. A wave medium S,

2. M distributed sources at locations ~r j ∈ S ( j = 1, ..., M) and

3. A target field spectrum P̂o(~r, ω), ~r ∈ S , ω ∈ Ω ⊂ R+.

Specify:

The optimal source spectra {Ŝ opt(ω)} = {Ŝ opt
1 (ω), ..., Ŝ opt

M (ω)} from the set of square

integrable complex functions with domain Ω (denoted by L2[Ω])1, which mini-

mize the synthesis error given by (2.6):

{Ŝ opt(ω)} = arg min
Ŝ j(ω)∈L2[Ω]

[
E({Ŝ (ω)})

]
(2.7)

2.2.3 Solution in different spaces

At a first glance, solving directly the WFS optimization problem defined in section 2.2.2

for the class of square integrable spectra L2[Ω] appears to be a daunting task. Conse-

quently, the solution can be found in simpler solution spaces. For this purpose, simpler

spectral classes are defined and denoted by Σn[Ω] (n ∈ N) 2, in which the band Ω is

partitioned into a total of 2n equal-length sub-bands.
1The class L2[Ω] is formally defined in section A.3.1 of appendix.
2The classes Σn[Ω] are formally defined in section A.1.1 of the Appendix.
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Figure 2.2: Representation of a bandlimited source spectrum in spectral classes
Σk[Ω], k = 0, 1, 2, 3, 4 and L2[Ω]

The spectra contained in each of these classes are piecewise constant at each sub-

band. Fig. 2.2 illustrates how a bandlimited spectrum in L2[Ω] can be represented by

spectra belonging to the classes Σn[Ω], n = 0, 1, 2, 3, 4.

The simplest among the classes Σn[Ω] is the class Σo[Ω] in which the source spectra

Ŝ j(ω) ( j = 1, ..., M), obtain a constant complex value in Ω. Based on this, the integral

over Ω in the synthesis error expression (2.6) can be calculated explicitly. In this case,

the WFS optimization problem becomes a convex optimization problem with solution

which can be calculated by the following 3:

{Ŝ opt
0 } = arg min

Ŝ j(ω)∈Σ0[Ω]

[
E({Ŝ (ω)})

]

{Ŝ opt
0 } = {Ŝ opt

01 , ..., Ŝ
opt
0M}

{Ŝ opt
0 } = [H]−1{l}

[H] ∈ CM×M, {l} ∈ C1×M

[H]pq =

∫

S

[∫

Ω

Gp(~r, ω)G∗q(~r, ω)dω
]

ds, {l}q =

∫

S

[∫

Ω

P̂o(~r, ω)G∗q(~r, ω)dω
]

ds

p, q ∈ {1, ..., M} (2.8)

3Analytic proof in section A.22 of the Appendix.
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The solution in (2.8) is valid for narrow bands Ω. In the case where Ω is relatively

large, partition of Ω into sub-bands, must be applied and similar convex optimization

problems have to be solved in each sub-band separately. By increasing the total of

partitions 2n (n ∈ N), the solutions {Ŝ opt
n (ω)} (n ∈ N) in the classes Σn[Ω] can be

obtained.

As shown in sections A.2 and A.3.4 of the Appendix these solutions converge

asymptotically to the L2[Ω] solution {Ŝ opt(ω)}, given by:

lim
n→∞
{Ŝ opt

n (ω)} = {Ŝ opt(ω)}

{Ŝ opt(ω)} = arg min
Ŝ j(ω)∈L2[Ω]

[
E({Ŝ (ω)})

]

{Ŝ opt(ω)} = [H(ω)−1]{l(ω)}

[H(ω)]pq =

∫

S
Gp(~r, ω)G∗q(~r, ω)ds {l(ω)}q =

∫

S
P̂o(~r, ω)G∗q(~r, ω)ds

p, q ∈ {1, ..., M} (2.9)

Existence and Uniqueness of the solution

Equations (2.9) and (2.8) determine the optimal complex spectrum coefficients Ŝ opt
j

( j = 1, ..., M), of the signals of the distributed point wave sources, which perform the

synthesis. Essentially, the optimal coefficients in Ŝ opt
j define the required amplitudes and

phase shifts of the signals of these sources.

Generally, the coefficients Ŝ opt
j are complex values that depend on the matrix [H],

which is equivalent to the cross correlation matrix of Green’s functions centered at the

point source locations. In this way, the source topology affects the matrix [H]. The

coefficients Ŝ opt
j depend also on the vector {l}, which in turn depends on the cross corre-
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lation of the Green’s functions of the distributed point sources, with the field spectrum

P̂o(~r, ω).

As long as the wave sources are located at distinct spatial locations ~r j ( j = 1, ..., M),

the invertibility of the matrix [H(ω)], as well as the existence and uniqueness of the

solution given by (2.8) and (2.9), is guaranteed. This is because the matrix [H(ω)] is

positive-definite and Hermitian 4.

However, there are cases in which the [H(ω)]−1 does not exist. Consider the case of

two wave sources located at exactly the same point. Their contribution will be equivalent

to the contribution of a single wave source whose amplitude is the sum of the amplitudes

of the two sources. Since there are infinite ways of generating the same sum with two

numbers, the number of optimal solutions (in the square error sense) of our problem is

infinite.

Our intuition is correct provided that, if wave sources i and j are at the same position,

the functions Gi(~r, ω) and G j(~r, ω) will be identical. In this case, and according to (2.9),

the columns h,i = [h1ih2i...hAi] and h, j = [h1 jh2 j...hM j] will be identical. Similarly, the

rows hi, = [hi1hi2...hiM] and h j, = [h j1h j2...h jM] will be identical. This will render the

matrix [H] singular with rank at most M − 1. Such cases can be handled using singular

value decomposition techniques, which provide a solution that has minimum length out

of all solutions in the infinite solution space [33].

4Analytic proof in the section A.5 of appendix.
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2.3 Simulations

2.3.1 Comparison with the state of the art

In this section, the proposed technique is compared with WFS techniques based on the

Kirkhoff-Heltmoltz integral equations. As displayed in the left plot of Fig. 2.3, a linear

source topology was chosen for this comparison. For all the simulations the wave speed

was considered c = 340 m/sec, and the space unit 0.085 m.

The synthesis using the proposed method was performed by dipoles. The resultant

synthesized field (P̂opt
s (~r, ω)), was calculated from equation (3.3), in which the spectra

Ŝ j(ω) were replaced by the optimal Σo[Ω] spectra (specified in (2.8)), and the functions

G j(~r, ω) with the dipole radiation functions. In other words, the synthesized by the

proposed method wave field, can be calculated by:

P̂opt
s (~r, ω) =

M∑

j=1

Ŝ opt
0 j G j(~r, ω) G j(~r, ω) =

e− jωc |~r−~r j |(1 + jωc |~r − ~r j|)
4π|~r − ~r j|2 cos(φ j) (2.10)

with ~r j ∈ S the locations of the synthesis sources ( j = 1, ..., M), and φ j the angle formed

by the vector ~r j and the normal vector to the array surface at the point of the jth source.

The field synthesized by the traditional WFS method (P̂WFS
s (~r, ω)) was calculated

based on the approximation of Kirkhoff-Heltmoltz integral equation:

P̂WFS
s (~r, ω) =

M∑

j=1

P̂o(~r j, ω)
(
1 + ik|~r − ~r j|
2π|~r − ~r j|2 cos(φ j) × e− jk|~r−~r j |

)
∆x∆y (2.11)
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where:

1. ~r j ∈ S the locations of the synthesis sources j = 1, ..., M,

2. Po(~r j, ω) the sampled target wave field given by (2.13) at point source locations,

3. ∆x = ∆y = 1 unit the spatial occupancy of the point sources according to Figure

2.3 and

4. φ j is the angle formed by the vector ~r j and the normal to the array surface vector

at the point of the jth source.

The performance measure used to compare these two methods is the synthesis error

defined in (3.2). By this definition, the synthesis error of the proposed technique, de-

noted as eopt, and that of the traditional WFS method, denoted as eWFS , referring to the

frequency band Ω, can be calculated by:

eopt =
∣∣∣∣∣∣P̂opt

s − P̂o

∣∣∣∣∣∣2
2

=
1

2π

∫

S

[∫

Ω

∣∣∣P̂opt
s (~r, ω) − P̂o(~r, ω)

∣∣∣2 dω
]

d~r

eWFS =
∣∣∣∣∣∣P̂WFS

s − P̂o

∣∣∣∣∣∣2
2

=
1

2π

∫

S

[∫

Ω

∣∣∣P̂WFS
s (~r, ω) − P̂o(~r, ω)

∣∣∣2 dω
]

d~r (2.12)

In all of the simulations the square medium S was defined by the following set

of points: S = {(x, y, z) : max(|x − 5|, |z − 5|) < 15, y = 0}. The narrow band

Ω = [999Hz, 1001Hz] was selected to be the frequency range. In this band, the Σo[Ω]

solution (2.8) is close to the L2[Ω] solution (2.9). The target wave field was chosen to

be the wave field induced by a point source at ~ro = (xo, yo, zo) ∈ S (focal point), with flat

spectrum equal to 1 ∀ω ∈ Ω. The spectral distribution of this wave field is given by:

P̂o(~r, ω) = Go(~r, ω) = 1 × e− jωc |~r−~ro |

4π|~r − ~ro| (2.13)
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Figure 2.3: Left: Linear topology. Right: Distribution of the ratio values of the
synthesis error induced by the proposed method over the synthesis
error induced by traditional WFS, along the grid points.

We performed 2601 wave synthesis experiments. In each of these experiments, the

location of the focal point of the target field was changed inside a two dimensional

51 × 51 orthogonal grid, defined by the following set of points:

~ro = (0.2 ∗ k, yo, 0.2 ∗ m) (k,m) ∈ {0, ..., 50} × {0, ..., 50} yo = 0 (2.14)

For each one of the above grid points, we calculated the ratio of the resulting total

error of the proposed technique over the total error of the traditional WFS technique, i.e.,

r = eopt/eWFS . The left plot of Fig. 2.3 display the spatial distribution of the calculated

ratio values referring to all of the grid points.

Remarks

All of the obtained error ratios, displayed in the right plot of Fig. 2.3 are less than
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1. This suggests that the performance of the proposed technique is better than the con-

ventional WFS technique in all of the synthesis experiments. More specifically, when

the focal point is close to the locations of the distributed sources (near field), the perfor-

mance of the proposed method is superior. This can be justified by the truncation effects

appearing in the traditional WFS technique, when the synthesized fields are focused near

the source locations. These effects are caused by the finite number of synthesis sources.

Furthermore, the performance of the traditional WFS technique converges asymptoti-

cally to the performance of the proposed method as the focal point of the target field

moves far from the source locations.

2.3.2 Arbitrary source topologies

This section illustrates the applicability of the proposed technique on arbitrary source

topologies. We considered a synthesis experiment in which the target field is induced

by a point source at a point ~ro = (5, 5), located at the center of a 10 × 10 square 2D

region. As mentioned previously, the spectral distribution of the target field is given by

(2.13) with ~ro = (5, 5). In this scenario, the synthesis is accomplished by monopole

point sources arbitrarily distributed in a 2D square region, as shown in the left plot of

Fig. 2.4. The unit length, wave speed and frequency spectrum remained the same as

in subsection 2.3.1 (1 unit =0.085 m, c = 340 m/sec, Ω = [999, 1001]Hz). The Σo[Ω]

synthesis solution (2.8) was considered here again.

In order to evaluate the quality of the synthesized field, its energy distribution is com-

pared with that of the target field. These distributions are obtained from the following

expressions:
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Figure 2.4: Optimal wave field synthesis by an arbitrary source topology. Left:
Source Topology. Center: Energy distribution of the target field.
Right: Energy distribution of the synthesized field

Eo(~r) =
1

2π

∫

Ω

∣∣∣Po(~r, ω)
∣∣∣2 dω Es(~r) =

1
2π

∫

Ω

∣∣∣Ps(~r, ω)
∣∣∣2 dω (2.15)

The energy distributions of the target and the synthesized fields, referring to the

examined arbitrary source topology, are displayed in the center and right plots of Fig.

2.4 respectively.

Remarks

The proposed method optimally allocates the right amount of power to each source

depending on its location with respect to the focal point ~ro. Greater power is allocated

to sources closer to the focal point. As a result, the synthesized field emulates spatially

the target field in the minimum total square error sense.
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2.3.3 Optimal synthesis using directional point wave sources

Synthesis implementations using sources with different radiation characteristics can also

be accommodated by the proposed method. The only required change is to replace the

omnidirectional terms given by the Green’s functions G j(~r, ω) with functions D j(~r, ω),

describing the directional characteristics of the synthesizing sources. The rest of the

analysis remains the same.

In order to illustrate this implementation, dipole and monopole point sources are

included in the synthesis procedure. Two types of dipoles were considered with radiation

characteristics described by the following spectral distributions:

DA
j (~r, ω) = 1 × e− jωc |~r−~ro |(L ∗ cos

√|φ|)(1 + jωc |~r − ~ro|)
4π|~r − ~ro|2

DB
j (~r, ω) = 1 × e− jωc |~r−~ro |(L ∗ cos φ)(1 + jωc |~r − ~ro|)

4π|~r − ~ro|2 , (2.16)

where L is the length of the dipole which is considered one space unit. The angle φ

represents the azimuth angle measured from the center of the dipole.

A mixed monopole/dipole source topology displayed in the left plot of Fig. 2.5

was considered. The space unit, wave speed and spectrum remained the same as in

subsections 2.3.1 and 2.3.2 (1 unit=0.085 m, c = 340 m/sec and Ω = [999, 1001]Hz).

Similarly, the Σo[Ω] solution from equation (2.8) was used here again. For simplicity,

the target field was selected to be the wave field induced by a point source at a point

~ro = (5, 5) located at the center of the square 10 × 10 2D region. Its spectral distribution

is described by (2.13).

Remarks
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Figure 2.5: Optimal wave field synthesis using sources with different radiation
profiles. Left: Source Topology. Center: Energy distribution of the
target field. Right: Energy distribution of the synthesized field

Since the synthesis sources are equally distant from the location of the focal point of

the target field, one should expect that the power should be equally distributed among

the synthesis sources. This does not happen since the proposed process identifies the

different radiation profile of the dipole sources and allocates less power to them.

2.4 Conclusions

An optimal spectral acoustic wave field synthesis method was demonstrated for the syn-

thesis of bandlimited wave fields. The method was compared with traditional WFS

techniques. Its performance is optimal in the square error sense, overcoming aliasing

and truncation problems which appear in its predecessors. Additionally, the method can

be applied to arbitrary source topologies, a fact that makes it a potential candidate for

sensor network applications. Finally, synthesis sources with different radiation profiles

can also be used.
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CHAPTER 3

ELECTROMAGNETICS

3.1 Introduction

3.1.1 Antennas and electromagnetic WFS

In antenna theory, wave field synthesis methods appear as solutions to antenna pattern

synthesis problems, with applications ranging from single antennas to multi-element

topologies like phase arrays and beam-formers. The goal of an antenna pattern synthesis

problem is to specify the appropriate current distribution of a single or multiple antenna

elements in order to generate a desirable radiation pattern. Early in 1948 Woodward,

started investigating this problem [34]. Various techniques were proposed afterwards

including: angular prolate spheroidal wave functions by Rhodes [35], Tikhonov reg-

ularization in the continuous function domain by Deschamps [36], discrete synthesis

methods by Mautz [37] and recently ortho-normal Bessel functions by Chang et. al[38].

As antenna structures became more complex, additional elements were added giv-

ing more options and flexibilities in synthesizing even more radiation patterns. This led

to the introduction of the phase arrays [39],[40] which were developed to replace the

mechanically steered radar systems [41]. Since then, phased arrays appeared in many

areas including radar systems [42], radio astronomy [43], high frequency on-chip radars

[44]-[46] and beam-forming [47]. By allocating appropriate phases to the various ele-

ments of a phase array, one can synthesize different radiation patterns and “steer” the

main lobe of the antenna at different angles providing different scanning properties. Us-

ing the above reasoning we can view an antenna phased array as a wave field synthesis
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mechanism [48], which produces wave fields of certain spatial characteristics and steer-

ing properties. This synthesis operation has been investigated in the past both in the far

and the close field, using spherical vector wave functions [49].

This chapter demonstrates how the wave field synthesis method, analyzed in the pre-

vious chapter, can be applied to the synthesis of electromagnetic vector wave fields. The

main advantage of this approach is the fact that the proposed method can accommodate

arbitrary, not necessary linear, antenna topologies with different radiation characteristics

and also provide a precise optimal solution to EM wave field synthesis problems, with

guaranteed existence and uniqueness. In this way one can avoid using any iterative, not

necessarily convergent optimization schemes in order to solve field synthesis problems.

To illustrate this advantage, a theoretical comparison between the performance of a con-

ventional linear phased array and an array using the proposed method, having the same

element topology and operating at the same power level, is performed.

3.1.2 Applications

In the medical arena, EM wave field synthesis methods have potential applications in

externally controlled drug delivery systems. These systems utilize materials called drug

agents to achieve precise delivery of drugs at pathogenic regions of the human body. In

this way the treatment becomes more effective. In many cases the drug agents are fer-

romagnetic materials [50]-[51], which can be moved inside the human body by forces

induced by generated magnetic fields. In this way the direction of the movement of

the agents is controlled by the induced magnetic fields which must be synthesized ac-

curately. This magnetic field synthesis process can be carried out using the proposed

method and utilizing small antenna elements around the human body as distributed wave
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sources (Fig. 3.1).

Electromagnetic imaging is another field in which EM wave field synthesis tech-

niques can be applied. When objects with different conductivity or permittivity profiles

are illuminated by incident electromagnetic waves, they induce back scattered fields.

When these back scattered fields are sampled at a sufficiently dense set of locations,

they reveal the shape and the location of their scatterers (initial objects). The above

procedure is the basis of electromagnetic imaging which is traditionally treated as an

inverse problem [52]. In this problem the input data are the back scattered EM field

measurements and the unknowns are the conductivity profiles of the scatterers. Differ-

ent approaches have been proposed to solve this problem including Genetic Algorithms

[53], Conjugate Gradient [54] and Newton-Kantorovich [52] methods. Most of these

techniques require post processing of the sensed measurements which is time consum-

ing.

The proposed wave field synthesis technique could be used in order to overcome

such difficulties. When EM fields are focused at the points of the objects-scatterers the

energy of the back scattered field is maximized. In this way the method can be used

to probe the location of objects by synthesizing EM fields focused at different points

inside the area of our interest. By measuring the total energy of the back scattered

field and collecting the maximum measurements, the locations of the objects-scatterers

can be revealed. Furthermore, if the set of focal points is sufficiently dense, the shape

characteristics of the scatterers can also be obtained.

The fact that the proposed method can accommodate any multi-source topology can

be used in small wireless networks applications [56]. Here we can utilize multi-element

antenna arrays [40],[48] in order to generate electromagnetic fields which focus their

energy at specific points in space. In this way the communications between the wireless
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nodes can be enhanced and multiuser interference can be avoided since the transmitter

can focus its field at the receiver’s location only.

Figure 3.1: Externally controlled drug delivery system

3.1.3 Organization

The rest of the chapter is organized as follows: Section 3.2 contains a theoretical

overview. A description of the proposed technique, solutions and generalizations re-

ferring to different synthesis experiments are presented in subsection 3.2.1. Subsection

3.2.2 contains the basic properties of the phased arrays. These two subsections serve

as the basis for theoretical comparisons which is the topic of section 3.3 of the chapter.

The comparisons are based on simulated energy contour plots. These plots are a good

criterion for assessment of the quality of the synthesized fields. The chapter concludes

with challenges and future directions in 3.4.
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3.2 Theory

3.2.1 Generalizations - Solution

Wave field synthesis methods can be extended from the synthesis of scalar acoustic

fields to the synthesis of three dimensional electromagnetic vector wave fields. Figure

3.2 illustrates the an EM synthesis process from a system point of view.

Figure 3.2: EM wave field synthesis (system point of view)

As we did for the case of acoustics we assume that the wave field to be synthesized

has a spectral support Ω and that the synthesis region is a set S ⊂ Rd (d being the number

of dimensions). Since EM wave fields are vector fields, generalizations of the solutions

referring to the synthesis of scalar wave fields must be applied. If we denote with n̂1,n̂2

and n̂3 the unitary vectors along the three space dimensions, we can solve a three dimen-

sional vector wave field synthesis problem using the solution of a simpler scalar wave

field synthesis problem presented in the previous chapter. In three dimensions a vector

field spectrum can be expressed as:
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φ̂(~r, ω) = n̂1φ̂1(~r, ω) + n̂2φ̂2(~r, ω) + n̂3φ̂3(~r, ω) (3.1)

The scalar wave field synthesis analyzed in the previous chapter can be applied here

individually for each dimension. Initially, one has to define the error function as the

sum of the error norms in all dimensions. If k is the index of each dimension then the

error norm can be defined as:

E =

3∑

k=1

∣∣∣∣∣∣φ̂k(~r, ω) − φ̂ks(~r, ω)
∣∣∣∣∣∣2

2

E =

3∑

k=1

∫

S

[∫ ∞

−∞

∣∣∣φ̂k(~r, ω) − φ̂ks(~r, ω)
∣∣∣2 dω

]
d~r (3.2)

If we assume that the total number of distributed sources performing the synthesis is M

then the synthesized scalar field of the kth dimension will be:

φ̂ks(~r, ω) =

M∑

j=1



f̂ j(ω)Gk j(~r, ω) ω > 0

0 ω = 0

f̂ ∗j (−ω)G∗k j(~r, ω) ω < 0

(3.3)

In the case of multi-element antenna configurations the function f̂ j(ω) refers to the spec-

trum of the current of the jth element Î j(ω) and G j(~r, ω) to its radiation pattern D j(~r, ω).

As it was done for the scalar acoustic fields equation (3.2) express the synthesis error

measure E as a function of the source spectra { f̂ j(ω)}. As it was analyzed in the previous

chapter the goal of the proposed method, is to find the optimal source spectra which

minimize this measure:
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{ f̂ opt
j (ω)} = min

{ f̂ j(ω)}

[
E({ f̂ j(ω)})

]
(3.4)

It is easy to show that in this case the Σo solution determined by equation (2.8) has to be

modified to:

{x̂0} = arg min
f̂ j(ω)∈Σ0

[
E({ f̂ (ω)})

]
(3.5)

where

{x̂0} = {x̂01, ..., x̂0M}

{x̂0} = [H]−1{l}

[H] ∈ CM×M, {l} ∈ CM×1

[H]pq =

3∑

k=1

∫

S

[∫

Ω

Gkp(~r, ω)G∗kq(~r, ω)dω
]

ds

{l}q =

3∑

k=1

∫

S

[∫

Ω

φ̂k(~r, ω)G∗kq(~r, ω)dω
]

ds

p, q ∈ {1, ..., M}

(3.6)

3.2.2 Phased arrays

A typical linear phased array is characterized by the steering angle θ. This angle is

implemented by a phase difference of

δφ =
2π
λ

(d sin θ) (3.7)
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radians between neighbor sources [40].

3.3 Comparison

The goal of this section is to compare the energy distribution of the wave field induced by

the proposed EM wave synthesis technique with the energy distribution of the field of a

linear phased array, operating at the same total power level and having the same element

topology. This comparison was implemented by three separate experiments. In each of

the experiments the target field was the field induced by a point source at ~ro (focal point)

with unity flat spectrum in the band Ω = [2π( fc − fs), 2π( fc + fs)] ∀ω ∈ Ω f̂ (ω) = 1. In

other words the spectrum distribution of the kth component of the target vector field is:

φ̂k(~r, ω) = Go(~r, ω) =
e−iωc |~r−~ro |

4π|~r − ~ro| ∀ω ∈ Ω (3.8)

The region S used in every synthesis experiment according to (3.6) was a square centered

at the focal point point ~ro = (Xo,Yo) with side 100 space units ({(x, y), |x − Xo| <=

100, |y − Yo| <= 100}).

3.3.1 Energy distribution and figure of merit

In order to assess the quality of the synthesized field we plotted the contour plot of the

energy distribution which is given at each point ~r by the following integral:

E(~r) =
1

2π

∫

Ω

|φ̂(~r, ω)|2dω (3.9)
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The comparison between the performance of proposed EM wave synthesis method ap-

plied to a certain element topology and the performance of a phased array applied to

the same topology has to be done in the same total delivered energy levels. The total

delivered energy is proportional to the actual total delivered energy to the elements. The

last can be calculated generally by:

Edel =
1

2π

∫

Ω

{ f̂ (ω)}H{ f̂ (ω)}dω (3.10)

For the Σo solution ( {x̂0} in (3.6)) the above expression is simplified to:

Edel =
1

2π
{x̂0}H{x̂0}(4π fs) (3.11)

with µ(Ω) = (4π fs) being the total length of the frequency band Ω = [2π( fc− fs), 2π( fc +

fs)]. Based on the calculation of the delivered energy we can define the figure of merit

at a point ~r as the ratio of the energy of the synthesized field at this point (calculated

based on equation (3.9)) to the total delivered energy:

fm(~r) =
E(~r)
Edel

(3.12)

Generally, the greater the figure of merit the higher field energy concentration is

achieved.

3.3.2 Different element topologies

In the first synthesis experiment the proposed EM wave synthesis method was com-

pared with a regular linear phased array technique. Ten equally distant omnidirectional
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Figure 3.3: Left: Linear array of wave sources, Right: V-shape array of wave
sources

monopole sources d = 15mm = λ
2 apart were considered (λ = 30mm, fc = 10GHz).

Fig. 3.3 displays the set up using a space scale in which 1 space unit = 7.5mm and

λ = 4space units. Using the proposed technique, we designed the signals of the ten

wave sources in order to synthesize the wave field induced by a point wave source

at ~ro = (Xo,Yo) = (0, 5λ) = (0, 20space units) = (0, 150mm) (indicated with “x” in

Fig. 3.3) with unity flat spectrum in Ω = [2π( fc − fs), 2π( fc + fs)] ( fs = 10MHz and

fc = 1GHz). The resulting figure of merit distribution according to (3.12) is displayed

in the center plot of Fig. 3.4.

In order to compare our technique with a phased array operating in the same energy

level, we considered a 10 element phased array in which the delivered energy in each

element equals Edel
10 (with Edel the total delivered energy according to (3.11)). In order to

achieve best performance at the point ~ro = (Xo,Yo) = (0, 5λ), the steering angle of the

phased array was chosen to be zero radians (all the sources are in phased according to

(3.7)). The resulting figure of merit distribution of this phased array is displayed in the

left plot of Fig. 3.4.
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Figure 3.4: Left: Figure of merit of the synthesized field using a linear phased
array, Center: Figure of merit of the synthesized field using the pro-
posed technique on a linear array, Right: Figure of merit of the syn-
thesized field using the proposed technique on a v-shape array

Finally, we considered a v-shape arrangement of the 10 sources according to the right

plot of Fig. 3.3. As we did in the linear case we implemented the proposed synthesis

technique for the same wave field (Source point: ~ro = (Xo,Yo) = (0, 5λ) = (0, 20),

fs = 10MHz and fc = 10GHz). The resulting figure of merit distribution is displayed in

right plot of Fig. 3.4.

The ratio of figure of merit of the linear array to the figure of merit of the regular

phased array at the point (X,Y) = (0, 5λ) was 2.3629. The same ratio referring to the

figure of merits of the v-shape array and the regular phased array at the same point was

2.4608. Clearly the v-shape arrangement achieves higher field concentration at the point

~ro.
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Discussion: Comparing the contour plots of Fig. 3.4, we observe that our method

achieves higher energy values concentrated around the point ~ro = (Xo,Yo) = (0, 5λ),

compared with a regular phased array. The concentration is increased as the geometry

changes from linear to a v-shape arrangement. This property could be used in medical

applications where the goal is to achieve high intensity field values at specific points us-

ing non linear element topologies (elements distributed around the human body). Con-

sequently, using the proposed technique, we could achieve best focusing given any array

geometry.

3.3.3 Different Focal Points

The characteristics of the synthesized field using the proposed wave field synthesis

method depend on the location of the point of the synthesis. In order to illustrate this,

we compared the performance of a regular linear phased array with the performance of

a linear array using the proposed technique and focusing the wave energy at different

points in space. The linear arrangement of the first experiment was repeated here (left

plot of Fig. 3.3). The location of the focal point was varied. Starting from the origin

(0, 0) and following a constant angle θ = 0o we increased the distance R from the origin

with increments equal to the wavelength λ = 4 space units (R = kλ, k = 0, ..., 20). This

way 21 focal points including the origin, are defined. The ratio of the figure of merit

achieved by the regular phased array to the figure of merit achieved by the same linear

array using the proposed technique was calculated at the previous points. The same pro-

cess was repeated for angles θ = 45o and θ = 90o by “steering” the regular phased array

at angle θ and by synthesizing a point field at ~ro = (Xo,Yo) = (R cos θ,R sin θ), using

the proposed method. The respective ratios of figures of merit referring to these three

steering angles as functions of the distance from the origin, are displayed in Fig. 3.5.
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Figure 3.5: Ratio of figure of merit of WFS over the figure of merit of the linear
phased array technique, as a function of the distance of the focal point
from the origin in wavelengths for different steering angles

Discussion: Looking at Fig. 3.5, it is obvious that the near field energy concentration

achieved by the proposed method compared with the one achieved by the regular phased

array is higher. Especially for θ = 90o this difference is relatively big for the focal points

near the origin. As the focal point moves far from the origin the energy concentrations

converge asymptotically to the same level.

3.3.4 Different number of elements

In order to study the energy concentration as a function of the number of distributed

wave sources and compare the quality of the synthesis achieved by the proposed method

with the one achieved by a regular phased array, the following experiment was per-

formed. The linear array displayed at the left plot of Fig. 3.3 was considered again.
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Figure 3.6: Ratio of figure of merit of WFS over the figure of merit of the linear
phased array technique, as a function of the total number of elements
used for synthesis for different orientation angles

This time the distance of the focal point from the origin was kept constant equal to

R = 5λ. Different number of sources were used each time ranging from 2 to 20 forming

a linear array with the same origin (0, 0) and equally distant sources (d = λ
2 ) each time.

The ratios of the figure of merit of the proposed technique to the figure of merit of the

linear phased array were calculated as a function of the number of sources. Three graphs

referring to angles θ = 0o, θ = 45o and θ = 90o were obtained. The coordinates of the

focal points were given by (X,Y) = (R cos θ,R sin θ) = (5λ cos θ, 5λ sin θ). The obtained

figure of merit ratio graphs referring to the three steering angles are displayed in the plot

of Fig. 3.6.

Discussion: Fig. 3.6 suggests that as long as the number of sources are greater

than 9 the proposed method achieves higher energy concentration at the focal point

than concentration achieved by the regular phased array. As the number of elements
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decreases the energy concentrations converge to the same level as it is expected.

3.3.5 Directional elements

In order to illustrate the applicability of the proposed method on directional wave

sources we considered a magnetic field synthesis experiment using antenna Hertz

dipoles. As antenna theory suggests, the radiation pattern of a hertz dipole exhibits

certain directional characteristics that can be utilized by the proposed technique. More

precisely the spectrum of the magnetic vector field induced by a dipole of length L, at ~r j

contains only the azimuth (φ̂) component and is given by:

~H(~r, ω) = Î j(ω)D jφ(~r, ω)φ̂

D jφ(~r, ω) =

[
L

4π|~r − ~r j|e
−ik|~r−~r j |

(
ik +

1
|~r − ~r j|

)
sin(θ)

]
(3.13)

The parameter one has to specify in order to perform magnetic field synthesis with

Hertz dipoles is the spectrum of their current Î j(ω). In order to use proposed wave field

synthesis method, the spectral functions G j(~r, ω) in equations (2.8), (3.6) and (2.9) must

be replaced by the functions D jφ(~r, ω), j = 1, ..., M of (3.13). The rest of the calculations

remain the same.

The linear topology of the left plot of Fig. 3.3 was considered again for the synthesis

experiment in this case. Directional dipoles were used instead of omnidirectional ele-

ments. The bandwidth parameters of Ω were fc = 75GHz and fs = 1MHz. Initially a

wave field induced by a point source at~ro = (Xo,Yo) = (0, 20) was optimally synthesized

using the proposed technique on an array of 10 directional dipoles placed at a line along

the x axis with origin the point (0, 0) (refer to the left plot of Fig. 3.3). This field was
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compared with a field induced by a 10 element phased array using the same directional

dipoles, at the same locations and with same total input power. The steering angle of the

array was set at θ = 0o. For simplicity we considered the length of each element to be

L = 1 (3.13).

Fig. 3.7 displays the energy distribution of the synthesized field in both cases. The

third plot also provides the distribution of the logarithm of the ratio of the energies at

each point:

R = log
[

Edir

Eomndir

]
(3.14)

Discussion: It is justified from the contour plots of Fig. 3.7 that field values achieved

at the focusing point (0,20) using the proposed field synthesis method on directional

dipoles are higher than the field values induced using a regular phased array method

on the same dipoles and consuming the same total energy. Magnetic field focusing

using the proposed field synthesis techniques could have potential medical applications

in externally controlled drug delivery systems.

3.4 Conclusions and future directions

The extension of the proposed wave field synthesis method from the synthesis of acous-

tic scalar wave fields to the synthesis of generally described electromagnetic vector wave

fields was the main of this chapter . The method appears to have potential future appli-

cations on antenna arrays for imaging purposes, in wireless LANs and medicine. Any

application which involves large arrays of distributed antennas with not necessarily lin-

ear topology can also benefit from this method. Compared with phased arrays, the
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Figure 3.7: Left: Energy distribution of synthesized field using the proposed tech-
nique, focused at the point (0,20), with directional dipoles, Center:
Energy distribution of synthesized field of a phased array (with θ = 0o)
using directional dipoles, Right: Plot of the logarithm of the ratio
of the energy distribution of the synthesized field using the proposed
technique on directional dipoles (left plot) over the energy distribution
of the synthesized field of a phased array of directional dipoles (center
plot), Colorbar: Refers to the logarithmic plot.

proposed technique gives better results in terms of energy concentration in the near field

and asymptotically the same results in the far field.

Perhaps one of the biggest obstacles towards a successful wave field synthesis exper-

iment is the fact the the underlying wave medium could be inhomogeneous anisotropic

and non-linear. Moving charged particles could potentially alter the electromagnetic

properties of the medium and therefore introduce inhomogeneities. In such scenarios

knowledge of the inhomogeneity is required. The error minimization concept of pro-

posed wave field synthesis method can be used in this case with the aid of numerical

schemes obtained by finite element [18] discretization methods [19]. Given a fixed dis-

38



cretization scheme, the computation time of these techniques increases exponentially

with the size of the synthesis region. Therefore, ways of carrying out these computa-

tions faster could be investigated.
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CHAPTER 4

WAVE FIELD SYNTHESIS IN NONLINEAR LC LATTICES

4.1 Introduction

4.1.1 LC lattices and nonlinear WFS

Wave synthesis phenomena can be created not only inside continuous acoustic or elec-

tromagnetic media but also in periodic structures [57]. An example of such structure

is the two dimensional nonlinear LC lattice in which electromagnetic wave fields with

certain spatial characteristics can be synthesized.

A two dimensional nonlinear LC lattice is an electrical circuit consisting of identical,

repeated in two dimensions, small LC elements. Each LC element consists of two coils

and a non-linear capacitor or varactor connected as illustrated in Fig. 4.1. The inputs of

the lattice are voltage sources applied at the left and bottom side as Fig. 4.1 displays.

The behavior of a LC-lattice emulates the behavior of a two dimensional wave medium.

Therefore wave synthesis principles can be applied here. Furthermore, under certain

conditions such lattices exhibit rich non-linear behavior. This behavior is the topic of

the present chapter.

If the capacitors of the lattice are constant with respect to their applied voltage the

lattice has similar properties to a continuous linear wave medium [57]. Furthermore, if

the voltage sources are in phase the electromagnetic waves originating from them prop-

agate and add up along the main diagonal of the lattice, inducing amplified waveforms

in the center of the lattice. The linear nature of the lattice ensures that the frequencies

of the signals observed in the intermediate nodes appear also in the inputs.
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Figure 4.1: Nonlinear two dimensional LC lattice

However if the capacitance value changes with respect to their applied voltage, the

lattice emulates a non-linear wave medium which is characterized by a wave-speed

which depends on the wave amplitude. In this case, due to the non-linearity the am-

plification observed in the center of the lattice can be considerably higher than that of

the linear case. Additionally, higher frequency components than the input frequencies

appear in the central nodes. By biasing the capacitors using an external DC voltage

source at a certain optimal operating voltage range, the input pulses generated by the

voltage sources in the boundaries can be added in the central nodes and significantly

amplified and sharpened. This nonlinear constructive wave synthesis phenomenon can

be explained by the high amplitude and high frequency harmonic generation observed

in such lattices and is illustrated in the figure 4.2.

The high amplitude and high frequency harmonic generation which characterizes the

behavior of a nonlinear two dimensional LC lattice can be studied theoretically using

the method of perturbations. In order to do that an approach similar to a Finite Element

procedure [18] must be followed. Initially, every LC unit is treated as a finite element

with governing equations, the voltage and current Kirchhoff laws. These equations are

assembled into a unique system equation referring to the whole lattice.
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Figure 4.2: Amplification and sharpening of input pulses in the center nodes of a
two dimensional nonlinear LC lattice

4.1.2 Potential applications

The high frequency and high amplitude harmonic generation ability of the examined

nonlinear LC lattice, holds a promise of creating electronic devices which will fill in

the Tera-Hertz gap (Fig. 4.3 [58]). This gab has been formed by the present device

technology, which is not mature enough to provide a big number of devices operating at

relatively high power levels at the Tera-hertz frequency range (100 GHz to 10 THz).

Radiation in the Tera-Hertz range can provide high resolution with minimum health

risks, since it is not ionizing. Therefore nonlinear devices such as nonlinear two di-

mensional LC lattices, could be embedded in existing devices and expand further their

frequency and power performance, materializing the advantages the Tera-hertz technol-

ogy can offer. Such devices could be oscillators or frequency multipliers for high data

rate communication and imaging systems, which can be used for security and medical

purposes.
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Figure 4.3: Terahertz gap with respect to source technology. Quantum cascade
lasers (�) are progressing downward from higher frequencies, while
electronic technology is progressing upward. Frequency multipliers
(•) dominate other electronic devices (-) above about 150 GHz. Cryo-
genic results are shown as hallow symbols.

4.1.3 Prior Art

The solutions of the governing equations of two dimensional nonlinear lattices were

studied by many authors. Traveling wave solutions of the governing equations of non-

linear 2D Sine Gordon dynamical lattices [59, 60, 61], also known as Frenkel-Kontorova

(FK) models, were investigated in [62]. The existence of time periodic, space localized

solutions (called discrete breathers), is investigated generally in [63] and for the case of

sine-Gordon lattices in [64]. Discrete breathers can be found also in Fermi Pasta Ulam

(FPU) lattices, which are associated with nonlinear LC lattices. This has been demon-

strated for the case of rectangular [65] and hexagonal [66] LC lattices. The excitation

of internal modes appears in nonlinear lattices as it is illustrated in [67]. The generation
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of pattern formations in Klein Gordon lattices is analyzed in [68]. Finally the equations

governing the behavior of a two dimensional nonlinear LC lattice are derived and solved

using the method of perturbations, for specific types of nonlinearities in [69].

Experimental work on one and two dimensional nonlinear LC-lattices has also

been performed. The idea of producing electrical solitons using nonlinear transmis-

sion lines (a 1-D version of the lattice) has been studied extensively for nearly 50 years

[70, 71, 72], and has been demonstrated on chips with GaAs [73, 74] and Si [75, 76, 77]

substrates. In 1980, Ostroviskii et al. [78] studied soliton formation caused by res-

onance phenomena in two dimensional nonlinear LC lattices with perfectly reflecting

boundaries. Stepanyants measured the Cerenkov radiation caused by wave propaga-

tion in two dimensional nonlinear LC lattices in 1984 [79], a phenomenon which also

appears in the sea wave patterns generated at the back of traveling ships.

4.1.4 Organization

The theoretical basis for the development of the system of nonlinear partial differential

equations governing the behavior of a LC lattice is presented initially in section 4.2. Two

solutions of this system of equations are proposed: one analytical based on the method

of perturbations referring to certain types of nonlinearities (subsection 4.2.1) and a more

general numerical solution (section 4.2.2). Spectrum analysis is also performed in order

for the frequency eigen-modes to be specified.

Simulation results using the developed numerical approach are discussed in section

4.3 of the chapter. A two dimensional frequency plot, containing the lattice responses

when it is excited by various input frequencies, is also presented in subsection 4.3.2.

This plot reveals the nonlinear frequency shifting properties of the lattice.
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The theoretically derived properties studied in sections 4.2 and 4.3 are verified ex-

perimentally with a series of experiments in section 4.4. The goal of these experiments

was to determine the optimal conditions under which maximum amplification and fre-

quency shift are observed at the middle nodes of the lattice.

4.2 Theory

4.2.1 Finite element approach using the method of perturbations

In order to study the nonlinear wave interactions in a general N × N LC lattice we have

to express the coupled governing current/voltage equations at the LC element level.

These are the Kirkhoff voltage and current laws. These laws referring to the i, j ((i, j) ∈
{1, ...,N} × {1, ...,N} Fig. 4.4) node of the lattice are:

∂

∂t

∫

Vi, j

Ci, j(Vi, j)dVi, j = IH
i, j + IV

i, j − IH
i, j+1 − IH

i+1, j

LH
i, j

∂IH
i, j

∂t
= Vi, j − Vi, j−1 − rIH

i, j

LV
i, j

∂IV
i, j

∂t
= Vi, j − Vi−1, j − rIV

i, j

(4.1)

where Ci, j, LH
i, j, L

V
i, j are the capacitance and the inductances of the vertical and horizontal

edge of the LC element with node i, j. The fact that the inductors are non ideal is

modeled by a small ohmic resistance r. The node voltage and the flowing currents in the

horizontal and vertical edge of the LC element i, j are denoted by Vi, j, IH
i, j and IV

i, j.

45



Figure 4.4: Modeling of two dimensional LC lattice

For small perturbations around a fixed voltage value a linear relation between the

capacitance and the observed voltage value at the node i, j can be assumed, i.e:

Ci, j(Vi, j) = Co(1 − bVi, j) (4.2)

Applying (4.2) to the element equations (4.1) leads to:

Co
∂Vi, j

∂t
= IH

i, j + IV
i, j − IH

i, j+1 − IH
i+1, j + bCoVi, j

∂Vi, j

∂t

LH
i, j

∂IH
i, j

∂t
= Vi, j − Vi, j−1 − rIH

i, j
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LV
i, j

∂IV
i, j

∂t
= Vi, j − Vi−1, j − rIV

i, j

(4.3)

As one can observe, the nonlinearity is introduced by the last term of the first equation

of (4.3).

Our next step towards establishing a global system of equations describing the behavior

of the whole lattice is to define a mapping from the “local” node coordinates (i, j) to a

“global” system index k. This mapping can be obtained using the following expression:

k = i + ( j − 1)N

(i, j) ∈ {1, ...,N} × {1, ...,N}

k ∈ {1, ...,N2}

(4.4)

Then based on the above mapping we define a state vector {w} = {V1:N2 , IH
1:N2 , IV

1:N2} as

follows:

{w} = {V1,1, ...,VN,N , IH
1,1, ..., I

H
N,N , I

V
1,1, ..., I

V
N,N} (4.5)

In order to express a global system equation combining all of the equations (4.3) we

have to define a source voltage vector {s}:

{s} = {0N2 , sH
1:N2 , sV

1:N2}
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{sH
1:N2} = {0, S H

1:N−1, 0N(N−1)}

{sV
1:N2} = {0N , S V

1 , 0N−1, S V
2 , 0N−1, ..., 0N−1, S V

N−1}

(4.6)

and boundary currents:

IH
1,1 =

V1,1

rb

IV
1,1 =

V1,1

rb

IH
i+1,1 =

1
rs

(S H
i − Vi+1,1) i = {1, ...,N − 1}

IV
1, j+1 =

1
rs

(S V
j − V1, j+1) j = {1, ...,N − 1}

IH
i,N+1 =

Vi,N

rb
i = {1, ...,N}

IV
N+1,i =

VN,i

rb
j = {1, ...,N},

(4.7)

where rb is the boundary termination resistance of the lattice and rs is the source resis-

tance.

In practice rs ≈ 0 and therefore we can assume that:

Vi+1,1 ≈ S H
i i = {1, ...,N − 1}

V1, j+1 ≈ S V
j j = {1, ...,N − 1}

(4.8)

The previous currents and voltages (contained in the voltage and source vectors {w} and

{s}) are displayed analytically in Fig. 4.4.
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The boundary vector {s} describes the external driving voltage sources. Given the

boundary conditions of (4.6),S equations (4.3) can be assembled in a global system:

[E]{∂w
∂t
} = [F]{w} + {s} + b[C]{w}.{∂w

∂t
}, (4.9)

where [E] is a diagonal matrix containing the capacitance Co and inductance values LH
i, j,

LV
i, j and [F] is a sparse matrix containing 1.-1 and r values depending on the lattice node

connections. The matrix [C] is the following capacitance matrix:

[C] =



CoIN×N 0N×N 0N×N

0N×N 0N×N 0N×N

0N×N 0N×N 0N×N


(4.10)

In order to solve for the vector {w} using the method of perturbations, we have to express

{w} as a power series of the nonlinear coefficient b:

{w} = {w0} + b{w1} + b2{w2} + ... (4.11)

plugging (4.11) into (4.9) and isolating the coefficients of the powers of b, leads to:

[A0(w0)] + b[A1(w0,w1)] + b2[A2(w0,w1,w2)] + ... = 0 (4.12)

Where Ak is an expression of the vectors {w0}, ..., {wk}.

A0(w0) = [E]{∂w0

∂t
} − [F]{w0} − {s}
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An(w0, ...,wn) = [E]{∂wn

∂t
} − [F]{wn} − [C]

∑

l+m=n−1

{wl}.{∂wm

∂t
}

(4.13)

In order (4.12) to be true for every value of b all the expressions An must be equal to

zero, i.e.:

[E]{∂w0

∂t
} = [F]{w0} − {s}

[E]{∂wn

∂t
} = [F]{wn} − [C]

∑

l+m=n−1

{wl}.{∂wm

∂t
}

(4.14)

Taking the fourier transform of the last set of equations leads to the following systems:

{ŵ0} =
[
jω[E] − [F]

]−1 {ŝ}

{ŵn} =
[
jω[E] − [F]

]−1 [C]
∑

l+m=n−1

{ŵl} ∗ { jωŵm}

(4.15)

Here, the element by element multiplication in the time domain is replaced by convolu-

tion in the frequency domain.

Remarks

Equations (4.15) suggest an iterative way of determining the components {ŵi} of the

expansion of the system solution. As one can observe, the key point here is the inversion

of the matrix:
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[M(ω)] =
[
jω[E] − [F]

]
(4.16)

There is a specific frequency ωcuto f f = 2π fcuto f f after which the magnitudes of all of

the eigenvalues of the matrix [M(ω)] are increasing considerably, forcing the output of

the lattice (voltages and currents) to be subsided. This cutoff frequency can be identified

by plotting the magnitude of the minimum eigenvalue of the matrix [M(ω)] versus the

frequency ω. It can be shown [69], that for a linear lattice with constant capacitance C,

coils with inductance L and resistance r, the cutoff frequency can be derived by:

fcuto f f =

√
8

2π
√

LC
(4.17)

Furthermore, it is apparent that {ŵ0} represents the linear part of the solution and

{ŵi}, (i > 0) represents the non-linear terms since the convolution {ŵl} ∗ { jωŵm} amplify

higher order frequency harmonics of the previous solutions. However this higher har-

monics amplification is considerably reduced due to the cutoff frequency bound. If we

assume that the input of the lattice is a pure tone at frequency ωo then the result of the

convolution introduced by the nonlinear terms (b terms) of equation (4.15) will be the

generations of multiple tones at frequencies ω = nωo, n ∈ N.

Therefore, there exist an integer ncuto f f = bωcutto f f

ωo
c such that for n > ncuto f f inversion

of [M(nωo)] will be subsided considerably. Consequently terms of order higher than

ncuto f f will not contribute substantially to the nonlinear solution of (4.15) and it is not

necessary to be included.
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4.2.2 Numerical Approach

The proposed analytic solution assumes a linear dependance between the capacitance of

the varactors and their applied voltage. This is however an ideal behavior. Consequently,

if we want to model non-linear capacitance variations we have to follow a numerical

approach. The discrete nature of the lattice favors a finite difference scheme in which

the time derivatives are approximated by finite differences. The simplest approach is a

two step calculation in which the lattice currents are intermediate variables.

Initially one 3-dimensional voltage and two (horizontal and vertical) 3-dimensional

current matrices are defined:

[V] = [Vi, j,t]

[IH] = [IH
i, j,t]

[IV] = [IV
i, j,t]

i, j ∈ {1, ...,N} t ∈ {1, ...,N}, (4.18)

where i,j are the indices of the node of the lattice and t is the index of a time frame.

Assuming:

• A function C(V) representing the capacitance/voltage dependence of the varac-

tors.

• Coil inductance L with resistance r.

• Time step dt.

• Offset varactor voltage value Vo f f .
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Then the Kirchhoff laws of 4.3 can be numerically approximated by:

IH
i, j,t = (1 + dt

r
L

)IH
i, j,t−1 +

dt
L

(Vi, j−1,t−1 − Vi, j,t−1)

IV
i, j,t = (1 + dt

r
L

)IV
i, j,t−1 +

dt
L

(Vi−1, j,t−1 − Vi, j,t−1)

Vi, j,t = Vi, j,t−1 +
dt(IH

i, j,t + IV
i, j,t − IH

i, j+1,t − IV
i+1, j,t)

C(Vi, j,t−1 − Vo f f )

(4.19)

Initial knowledge of the voltage values at the lattice nodes is required in order for the nu-

merical scheme to work. Without loss of generality these voltage values can be assumed

to be zero.

4.3 Simulations

In order to verify theoretically the previous results, a two dimensional non-liner lattice

with characteristics displayed in table 4.1, was considered.

The voltage inputs applied to this lattice are simple AC voltage sources with variable

amplitude A and variable frequency ωo. All of the inputs are in phase. In the frequency

domain these inputs are represented by delta functions and are contained in the boundary

vector {ŝ}:

{ŝ} =
A
2

[δ(ω − ωo) + δ(ω + ωo)]{s}

{s} = {0N2 , S V
1:N2 , S H

1:N2}

{S V
1:N2} = {0, 11:N−1, 0N(N−1)}

{S H
1:N2} = {0N , 1, 0N−1, 1, 0N−1, ..., 0N−1, 1}
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Table 4.1: Parameters of the 20 × 20 lattice.

Inductance L = 380 nH

Inductor resistance r = 0.461 Ohm

Inductor tolerance 2%

Boundary termination resistance rb = 57 Ohm

Varactors See Fig. 4.5

Varactor tolerance 5%

Nonlinear coefficient b = 0.2823 V−1

Constant capacitance Co = 162 pF.

Figure 4.5: Capacitor C-V curve

(4.20)
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Based on the varactor C-V plot the steepest descend interval is the interval [0,0.5] Volts

and is characterized by a nonlinear coefficient b = 0.2823 according to (4.2). As it was

determined experimentally, the optimal operating point is at Vo f f = 200 mV which is

characterized by capacitance C(Vo f f ) = 144 pF.

4.3.1 Lattice modal analysis

The specific lattice studied here, given that L = 380nH and C(Vo f f ) = 144 pF has cutoff

frequency according to (4.17) fcuto f f = 60.838MHz. Therefore, before studying the

behavior of the non-linear lattice, an eigen-mode analysis is required in order to specify

optimal operating frequencies. This analysis can be done by plotting the magnitude of

the minimum eigenvalue of the matrix [M(ω)] in (4.16), as a function of the frequency

f = ω
2π . Such a plot for the lattice studied here is displayed in Fig. 4.6

Figure 4.6: Eigen-mode analysis of the LC lattice
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Based on Fig. 4.6 and in order to observe higher order harmonic amplification we

have to excite the lattice at frequencies which have harmonics near the minima (modes)

of Fig. 4.6. These minima appear at fmode = 43MHz and fcuto f f = 60MHz. These modes

are ∆ f = 60 − 43 = 17MHz apart. However an operating frequency at fo = 17MHz

is not going to excite them both since it will excite the frequencies {17, 34, 51, 68}MHz.

A better choice choice for an operating frequency is at fo = 14.3MHz. This frequency

will excite the harmonics {14.3, 28.6, 42.9, 57.2}MHz of which the harmonic 42.9MHz

is close to the mode fmode = 43MHz and the harmonic 57.2MHz is close to the cutoff

frequency mode fcuto f f = 60MHz. It is noteworthy to point out that these modes can be

excited by high order harmonics of lower operating frequencies (Ideally, if the operating

frequency was at fo = 1 MHz all the modes of the lattice could have been excited).

However in these cases the high order harmonics will be subsided by the effect of the

coefficient bk in the solution (4.11) when k is relatively large and b < 1.

4.3.2 Theoretical spectral analysis

In order to verify the above observations we simulated the behavior of the LC lattice

mentioned previously using the proposed numerical scheme with in-phase sinusoidal

sources of constant amplitude and variable frequency ranging from 1-70 MHz with 1

MHz step. The sources were located at the bottom and left side of the lattice as Fig. 4.4

displays. We plotted the magnitude of the fourier transform of the lattice response at the

central node (9,9) for each driving frequency in a two dimensional plot displayed in Fig.

4.7.
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Figure 4.7: Theoretical spectral analysis of the LC lattice

Remarks

If the input and the output frequencies are treated as the x,y coordinates in a two

dimensional cartesian map, then peak values of the plot of Fig. 4.7 appear at lines (rays)

passing from the origin and satisfying y = ax. The most intense peaks appear in the

a = 1 ray which constitutes the linear response of the lattice ( fin = fout).

As it is expected and based on the theoretical results of Fig. 4.7 the nonlinear LC

lattice amplify selectively the harmonics of a certain desirable frequency range. This

range is between the input frequencies 10-25MHz. It is clear that in these frequencies

part of the energy of the linear output of the lattice (a = 1 ray of the plot of Fig. 4.7) is

used in order to amplify the higher order harmonics (a > 1 rays of the plot of Fig. 4.7)

Furthermore the lattice behaves linearly for input frequencies greater than 30MHz,
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fact that is expected since the first harmonic of > 30 MHz (> 60 MHz) is considerably

suppressed by the lattice cutoff frequency (plot of Fig. 4.6).

4.4 Experiments

A nonlinear two dimensional LC lattice with characteristics mentioned in the previous

section was implemented on a PCB board. This lattice is displayed in Fig. 4.8

Figure 4.8: Photo of the LC lattice

The units which appear with blue color are the input voltage sources. Each one has

a variable amplitude/phase capability. These voltage sources were applied at the nodes

satisfying (i = 1, 2 <= j <= 20) and (2 <= i <= 20, j = 1) (refer to Fig. 4.1).
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4.4.1 Voltage offset sweep

The first experiment one should perform in order to characterize the nonlinear behavior

of the previous LC lattice is to specify the optimal varactor operating voltage. Looking

at the C-V curve of Fig. 4.5 one can point out that there are voltage regions where the

capacitance descent is steepest. The steeper capacitance descent is, the more intense

the nonlinear harmonic generation is. This is due to the fact that steeper capacitance

descent points are associated with higher b coefficient values (4.11) amplifying higher

harmonics. In order to examine the point of the steepest descent the following simple

experiment was performed.

All the varactors have to be biased at a negative V offset voltage. This can be accom-

plished by forcing all of their pins that are not connected to the coils of the lattice to have

a constant negative DC voltage value - Voff. Setting the input peak to peak amplitude

of all the sources at 1 volt we calculated the highest among all the lattice nodes peak to

peak voltage value. This measurement was performed for different offset voltage values

ranging from 25 to 500 mV. Since the input amplitude was kept at 1 V peak to peak, the

observed maximum peak to peak values at the lattice nodes, are also the boost ratios for

the respective V offset values defined by:

Rboost =
maxi, j V p−p

i j

V p−p
in

(4.21)

In (4.21) V p−p
i j is the measured peak to peak voltage value at node i, j and V p−p

in is the

input peak to peak value.

The plot of Fig. 4.9 contains the measured boost ratios as a function of the varactor

DC voltage offset value.
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Figure 4.9: Boost ratios as a function of V offset voltage

Remarks

As it can be derived from the plot of Fig. 4.9 the optimal biasing V offset value is

200 mV. This value is at the close to the middle of the optimal 0 − 0.5 V voltage range

in which the steepest capacitance descent is observed (refer to the C-V curve of Fig.

4.5 which is provided by the manufacturer of the varactor diodes). For the rest of the

experiments the varactor voltage offset value of 200mV was retained.

4.4.2 Input amplitude sweep

In order to find the point of greatest non-linear amplification as a function of the input

peak to peak voltage, we calculated the greatest observed peak to peak value among all

the nodes of the lattice. As it was expected based on symmetry arguments the highest

peak to peak values were observed along the main diagonal of the lattice (nodes satisfy-

ing i=j). Calculating the ratios of the highest measured peak to peak voltage value over
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the input peak to peak voltage, the boost ratios were derived according to (4.21). The

plot of Fig. 4.10 displays the obtained boost ratios as a function of the input peak to

peak value.

Figure 4.10: Boost ratios as a function of input peak to peak voltage

Remarks

The plot of Fig. 4.10 suggest that the optimal input peak to peak voltage value which

will result to the highest non-linear boost ratio is 1 Volt. Therefore, for the rest of the

experiments this optimal 1 Volt peak to peak input amplitude was retained.

4.4.3 Experimental spectral analysis

In order to characterize the behavior of the lattice and determine the optimal operating

frequency, an experimental spectral analysis was performed. Sinusoidal voltage inputs

of amplitude 1 V peak to peak were applied at the bottom and left side of the lattice

(blue regions of Fig. 4.8). All the inputs were in phase. Their frequency varied from 1
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to 70 MHz with 1 MHz step. We measured the responses at the central node (9, 9) for

each frequency. The magnitude of the fourier transform of each of the 70 obtained wave

forms is displayed in the two dimensional plot of Fig. 4.11.

Figure 4.11: Experimental spectral analysis of the LC lattice

Remarks

The experimental results of Fig. 4.11 conform with the simulated ones in Fig. 4.7.

There are however noteworthy differences.

The non-linear harmonic generation starts for input frequencies 7MHz as opposed to

10MHz which appear in the theoretic results. A possible reason for this inconsistency is

the overestimated constant capacitance C(Vo f f ) = 144pF. A possible lower real constant

capacitance will force all the phenomena to appear in lower frequencies.

A DC output component appears at input frequencies which generate higher order
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harmonics (range 10-35 MHhz). This phenomenon does not appear in the numerical

simulation results. Based on the perturbation analysis this DC generation is expected as

a result of the convolution operations appeared in (4.12).

4.4.4 Frequency sweep

In order to verify the results of the spectral analysis we plotted the maximum measured

peak to peak voltage value as a function of the input frequency. Furthermore since the

input amplitude was kept constant at 1 Volt peak to peak, these observed maximum peak

to peak values, are equal with the lattice boost ratios. These measurements are displayed

in the plot of Fig. 4.12.

Figure 4.12: Boost ratios as a function of input frequency

63



Remarks

The experimental results of Fig. 4.12 agree with the conclusions of the eigenvalue

analysis mentioned in section 4.3.1. Nonlinear amplification appear in frequencies

8, 13, 18, 28 MHz with boost ratios greater than 5. Additionally, as the frequency in-

creases, and for frequencies higher than 30 MHz the amplification becomes linear with

boost ratios < 4.5. This is expected, since for fundamental frequencies higher than 30

MHz the excited higher order harmonics exceed the cutoff frequency bound of 60 MHz.

The amplification observed at frequency 13.5 Mhz can be explained by the exci-

tation of both of the lattice modes: at 40-43Mhz (Fig. 4.6) by the third harmonic

(3 × 13.5 = 40.5MHz), and at 55-60 Mhz (Fig. 4.6) by the “near by” forth harmonic

(4 × 13.5 = 54Mhz). The effects of these excitations are added to the effects caused by

the fundamental and the second harmonic. In this way the final amplification is maxi-

mized.

Additionally, the amplification observed at frequency 28 Mhz can be explained by

the excitation of the lattice mode at 55-60Mhz (Fig. 4.6) by the second harmonic (2 ×
28 = 56MHz) which is added to the effect caused by the fundamental frequency. The

effects generated by the third (3 × 28 = 84MHz) or higher harmonics are subsided by

the 61 Mhz cutoff frequency bound.

In the same way, the amplification observed at frequency 18.5 Mhz can be explained

by the excitation of the lattice mode at 55-60 Mhz by the third harmonic (3 × 18.5 =

55.5MHz), effect which is added to the contributions of the fundamental and the second

harmonic.

The small peaks observed in the boot ration vs frequency plot of Fig. 4.12 at fre-

quencies 42 Mhz and 57 Mhz are inside the intervals of the theoretically calculated

64



lattice modes (40-43Mhz and 55-60 Mhz in Fig. 4.6).

Finally, the cutoff frequency value calculated based on (4.17) (≈ 61Mhz) agrees with

the experimental results of Fig. 4.12 since after 61 Mhz the boost ratio becomes smaller

than 1. Based on these results, the operating frequency for the rest of the experiments

was chosen to be 13.5 MHz.

4.4.5 Optimal results

Based on previous experimental measurements the optimal conditions at which the

greatest nonlinear harmonic amplifications is observed are:

Input peak to peak amplitude V in
p−p = 1 Volt.

Operating frequency fin = 13.5MHz.

Varactor bias voltage Vbias = 200mV.

In these conditions the maximum voltage peak to peak value is obtained at the node

(9,9). The waveform measured at node (9,9) is compared with the input waveform at

node (1,10). Both waveforms are displayed in the left plot of Fig. 4.13. Their respective

fourier transforms are displayed in the right plot of Fig.4.13.

Remarks

As Fig. 4.13 indicates, when the lattice operates at the optimal conditions the 3rd

(40.5MHz) and the 4th harmonic (54MHz) of the input are significantly amplified. This

fact conforms with our eigen-mode analysis discussed in section 4.3.1. Furthermore the

harmonics > 5th are suppressed since they exceed the cutoff frequency of 61MHz.
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Figure 4.13: Output (Node (9,9)) vs. input (Node (1,10)). Left: Waveforms.
Right: Fourier transforms.

4.4.6 Peak to peak voltage distribution

In order to study the intensity of the constructive interference at all of the lattice nodes,

we plotted the measured peak to peak amplitude values at every node of the lattice. For

this measurement we set the operating frequency at 13.5 Mhz and the input amplitude

at 2 Volts peak to peak. The obtained measurements were compared with the theoretical

ones obtained from a linear lattice (with C = C(Vo f f ) = 144pF), having the same

topology, same input and same operating frequency. Fig. 4.14 displays the peak to peak

voltage distribution for the linear lattice (Left) and the Non-Linear lattice (Right).

Remarks

It is evident based on the plots of Fig. 4.14 that the amplitude amplification observed

at the nonlinear lattice is higher than the amplification observed at its linear counterpart.

Furthermore, the areas of the observed amplification are smaller in the nonlinear lattice

than in the linear equivalent. This suggests that the amplification of the nonlinear lattice
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Figure 4.14: Peak to peak voltage values. Left: Linear lattice. Right: Non-linear
Lattice.

is significantly localized. This amplification and localization observed in the nonlinear

lattice compared with its linear equivalent can be explained from an energy conservation

point of view. The input energy coming from the sine sources at the sides of the lattice

is focused in the center nodes of the nonlinear lattice without being wide spread as it

happens in its linear equivalent.

The results observed in the nonlinear lattice are not symmetrical with respect to the

i=j diagonal nodes. This effect is caused by the non identical capacitance and induc-

tance values (Based on the manufacturer’s specifications inductor tolerance was 2% and

varactor tolerance was 5 %).
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4.5 Conclusions

It was verified using theoretical and experimental tools that when nonlinear LC lattices

operate at optimal conditions they exhibit a rich nonlinear behavior characterized by

high frequency harmonic generation and voltage amplification. These conditions can

be specified by applying a sequence of tests starting from the optimal biasing voltage

value of the varactors to the specification of the optimal input peak to peak amplitude

and frequency operating points. Towards this direction a minimum eigenvalue plot (like

the one in Fig. 4.6) and a varactor CV curve, can provide useful intuition about these

optimal conditions.
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CHAPTER 5

EPILOGUE

Wave fields could potentially be synthesized in every wave medium. In order for

one to determine an efficient method of synthesizing wave fields, the knowledge of the

wave propagation law, is essential.

As it was demonstrated in the second and third chapter of this thesis, when the wave

medium behaves linearly, an optimal wave field synthesis method can be established.

This method finds applications in multichannel sound systems achieving synthesis of

acoustic wave fields and in antenna arrays providing synthesis of electromagnetic wave

fields.

When the nature of medium is nonlinear such optimal wave field synthesis method is

difficult to be determined. In this case approximate solution techniques give useful intu-

ition about the nature of the synthesized fields. An example of nonlinear wave field syn-

thesis was studied in the forth chapter where the behavior of a discrete two dimensional

nonlinear LC electrical lattice was analyzed both theoretically and experimentally.

Generally the knowledge of effective wave field synthesis methods enables the de-

signer to determine the appropriate source signals, given specific source locations, in

order for the synthesis results to be the desirable ones. Furthermore, in the case of two

dimensional nonlinear LC lattices, this knowledge gives also the appropriate tools for

the design of devices capable of shaping wave fields, as well.
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APPENDIX A

SYNTHESIS OF WAVE FIELDS USING POINT SOURCES

The goal of this appendix is to specify the optimal square integrable spectra

Ŝ opt
j (ω) ∈ L2(R), satisfying Ŝ opt

j (ω) = Ŝ ∗opt
j (−ω) ∀ω ∈ R, which minimize the error

given by:

E({Ŝ (ω)}) = 2
∫

S


∫

R
|P̂o(~r, ω) −

∑

j

Ŝ j(ω)G j(~r, ω)|2dω

 ds (A.1)

where {Ŝ (ω)} = {Ŝ 1(ω), ..., Ŝ M(ω)}.

Since the spectral distribution P̂o(~r, ω) is assumed to be bandlimited inside a band Ω the

error expression of (A.1) can be written as:

E({Ŝ (ω)}) = 2
∫

S


∫

Ω

|P̂o(~r, ω) −
∑

j

Ŝ j(ω)G j(~r, ω)|2dω

 ds +

2
∫

S


∫

R/Ω
|0 −

∑

j

Ŝ j(ω)G j(~r, ω)|2dω

 ds

(A.2)

Our goal is to determine the optimal spectra Ŝ opt
j (ω) which minimize the above double

integrals. Clearly since the last integral in the above equation is always positive, it

follows that the optimal spectra Ŝ opt
j (ω) that minimize E must have support the interval

Ω. In other words it must be Ŝ j(ω) = 0 ∀ω ∈ R/Ω. After this conclusion the error

E({Ŝ (ω)}) is reduced to:

E({Ŝ (ω)}) = 2
∫

S


∫

Ω

|P̂o(~r, ω) −
M∑

j=1

Ŝ j(ω)G j(~r, ω)|2dω

 ds (A.3)
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In the next two sections we define two classes of functions Σn[Ω] ,n ∈ N and L2[Ω]

which will be used in the process of the minimization of E({Ŝ (ω)}).

A.1 Synthesis in Σn[Ω], n ∈ N

A.1.1 Class Σn[Ω], n ∈ N definition

Class Σn[Ω] is defined as the following set of simple functions:

Σn[Ω] =

Ŝ : Ω→ C Ŝ (ω) =

n∑

i=1

siIΩi(ω)

 (A.4)

with

IΩi(ω) =


1 ω ∈ Ωi

0 ω ∈ Ω/Ωi

(A.5)

|si| < ∞

Ωi =

(
2π( fc − fs) + 4π fs

(i − 1)
2n , 2π( fc − fs) + 4π fs

i
2n

]

i ∈ {1, ..., 2n} (A.6)

These classes are nested i.e.:

Σ0[Ω] ⊂ Σ1[Ω] ⊂ .... ⊂ Σ∞[Ω] (A.7)
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A.1.2 Synthesis in Σn[Ω], n ∈ N

In order to synthesize optimally wave fields with sources having Σn[Ω] spectra we have

to find vector of functions {Ŝ n(ω)} = {Ŝ n1(ω), ..., Ŝ nA(ω)} with Ŝ n j(ω) ∈ Σn[Ω], j =

1, ..., M and n ∈ N such that the error in equation (A.3) is minimized. Equivalently we

have to find:

{Ŝ n(ω)}opt = arg min
Ŝ n j(ω)∈Σn[Ω]

[
E({Ŝ n(ω)})

]
(A.8)

In order to solve the above minimization problem we have to restrict ourselves in the

class of spectra Ŝ n j(ω) ∈ Σn. In this case, the inner integral of the error expression of

(A.3) becomes a sum of n integrals over each interval Ωi that is defined in the class

Σn[Ω] with i ∈ {1, ..., 2n}:

E({Ŝ n(ω)}) = 2
∫

S

2n∑

i=1


∫

Ωi

|P̂o(~r, ω) −
M∑

j=1

Ŝ n j(ω)G j(~r, ω)|2dω

 ds (A.9)

Now since Ŝ n j(ω) ∈ Σn[Ω] the value of Ŝ n j(ω) is constant ∀ω ∈ Ωi. Without loss of

generality we can set:

Ŝ n j(ω) = si j ∈ C ∀ω ∈ Ωi j = {1, ..., M} i = {1, ..., 2n} (A.10)

Based on the above notation the spectra Ŝ n j(ω) ∈ Σn[Ω] can be written as:

Ŝ n j(ω) =

2n∑

i=1

S i jIΩi(ω) (A.11)

72



Let us define the following vectors: {S i} = {S i1, ..., S iM}. Based on this definition and

according to (A.10) the error E({Ŝ n j(ω)}) becomes a function of the vectors {S i}, i =

{1, ..., 2n}.

E({S i}) = 2
∫

S

2n∑

i=1


∫

Ωi

|P̂o(~r, ω) −
M∑

j=1

S i jG j(~r, ω)|2dω

 ds (A.12)

Furthermore we can write the above error as a sum of positive error quantities E({S i})
that depend only of the vector {S i}:

E({Ŝ n(ω)}) = 2
2n∑

i=1

E({S i})

E({S i}) =

∫

S


∫

Ωi

|P̂o(~r, ω) −
M∑

j=1

S i jG j(~r, ω)|2dω

 ds

(A.13)

This inner integral of (A.13) can be written in a more convenient quadratic form as:

E({S i}) = [{S i}H[Hi]{S i} + {S i}H{li} + {li}H{S i} + ci] (A.14)

where the matrix [Hi], the vector {li} and the constant ci are defined by:

[Hi]pq =

∫

S

[∫

Ωi

Gp(~r, ω)G∗q(~r, ω)dω
]

ds p, q ∈ {1, ..., M}

{li}q =

∫

S

[∫

Ωi

P̂o(~r, ω)G∗q(~r, ω)dω
]

ds p ∈ {1, ..., M}

ci =

∫

S

[∫

Ωi

|P̂o(~r, ω)|2dω
]

ds

(A.15)
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According to equations (A.13) and (A.14) the error E({S i}) can be written as:

E({Ŝ n(ω)}) = 2
2n∑

i=1

E({S i})

E({S i}) = {S i}H[Hi]{S i} + {S i}H{li} + {li}H{S i} + ci

(A.16)

As it is proven in section A.4 the quadratic E({S i}) obtains a minimum which is:

min [E({S i})] =
[
ci − {li}H[H−1

i ]{li}
]

(A.17)

when

{S i}opt = [H−1
i ]{li} ∀i = {1, ..., 2n} (A.18)

Now based on equations (A.16) and (A.17) and the fact that E({S i}) > 0, i = {1, ..., 2n} it

will be true that:

min
[
E({Ŝ n(ω)})

]
= 2

2n∑

i=1

min [E({S i})]

min
[
E({Ŝ n(ω)})

]
= 2

2n∑

i=1

[
ci − {li}H[H−1

i ]{li}
]

(A.19)

Therefore the minimum of E will be obtained when:

{S i}opt = [H−1
i ]{li} ∀i = {1, ..., 2n} (A.20)
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or when

S opt
i j =

A∑

q=1

[H−1
i ] jq{li}q ∀i = {1, ..., 2n} (A.21)

Therefore we can conclude that the minimum of E({Ŝ n(ω)}) with {Ŝ n(ω)} =

{Ŝ n1(ω), ..., Ŝ nM(ω)}, Ŝ n j(ω) ∈ Σn[Ω] is obtained when equation (A.21) is satisfied or

when the spectra Ŝ n j(ω) according to (A.11) are given by:

Ŝ opt
n j (ω) =

2n∑

i=1


M∑

q=1

[H−1
i ] jq{li}q

 IΩi(ω) (A.22)

with

[Hi]pq =

∫

S

[∫

Ωi

Gp(~r, ω)G∗q(~r, ω)dω
]

ds p, q ∈ {1, ..., M}

{li}q =

∫

S

[∫

Ωi

P̂o(~r, ω)G∗q(~r, ω)dω
]

ds p ∈ {1, ..., M}

(A.23)

A.2 Synthesis in Σ∞

Given the fact that the optimal spectra Ŝ jn(ω) ∈ Σn which minimize the square synthe-

sis error are given by (A.22) we would like to calculate the limit of all these optimal

solutions as n→ ∞. Equivalently we wish to calculate:

Ŝ opt
j (ω) = lim

n→∞
Ŝ opt

jn (ω) (A.24)
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or based on (A.22):

Ŝ opt
j (ω) = lim

n→∞


2n∑

i=1


M∑

q=1

[H−1
i ] jq{li}q

 IΩi(ω)

 (A.25)

The functions P̂o(~r, ω) and G j(~r, ω), j = 1, ..., M are continuous and bounded with re-

spect to ω. Our goal is to show that the limit of (A.25) converges to the following

function:

Ŝ opt
j (ω) =

M∑

q=1

[H(ω)−1] jq{l(ω)}q (A.26)

with

[H(ω)]pq =

∫

S
[Gp(~r, ω)G∗q(~r, ω)]ds p, q ∈ {1, ..., M}

{l(ω)}q =

∫

S
[P̂o(~r, ω)G∗q(~r, ω)]ds p ∈ {1, ..., M}

(A.27)

In order to show that the limit of (A.25) converges to the function in equation (A.26) we

first have to show that ∀ωo ∈ Ω:

∀e > 0 ∃N ∈ N : n > N ⇒ |Ŝ opt
jn (ωo) − Ŝ opt

j (ωo)| < e (A.28)

Lets define the difference:

∆Ŝ opt
n j (ω) = Ŝ opt

n j (ω) − Ŝ opt
j (ω) (A.29)
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Assuming that the inverse of the matrix [H(ω)]pq of (A.26) exists for every ω ∈ Ω then

the difference ∆Ŝ opt
n j (ω) can be written as:

∆Ŝ opt
n j (ω) =

2n∑

i=1

∑M!
l=1

∏M
m=1 nlm∑M!

q=1
∏M

r=1 dqr
IΩi −

∑M!
l=1

∏M
m=1 Nlm(ω)∑M!

q=1
∏M

r=1 Dqr(ω)
(A.30)

with

Nlm(ω),Dqr(ω) ∈
{
±[H(ω)]pq, {l(ω)}q, p, q = 1, ..., M

}

nlm =

∫

Ωi

Nlm(ω)dω

dqr =

∫

Ωi

Dqr(ω)dω (A.31)

Let us consider a random ωo ∈ Ω. There there exist an interval Ωk, k ∈ {1, ..., 2n} for

every n ∈ N , such that ωo ∈ Ωk. Since the functions Nlm,Dqr are all continuous with

respect to ω we can apply Rolle’s in Ωk which will give us that there exists ωlm, ωqr ∈ Ωk

such that:

nlm =

∫

Ωk

Nlm(ω)dω = Nlm(ωlm)µ(Ωk)

dqr =

∫

Ωk

Dqr(ω)dω = Dqr(ωqr)µ(Ωk) (A.32)

with µ(Ωk) being the total length (measure) of the interval Ωk.

Now based on (A.30) and (A.32) we will have that:

|∆Ŝ opt
jn (ωo)| = |

∑M!
l=1

∏M
m=1 Nlm(ωlm)∑M!

q=1
∏M

r=1 Dqr(ωqr)
−

∑M!
l=1

∏M
m=1 Nlm(ωo)∑M!

q=1
∏M

r=1 Dqr(ωo)
| (A.33)
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or:

|∆Ŝ opt
jn (ωo)| = 1

|Do||Di|
M!∑

l,q=1

|∆xlq|

∆xlq =

M∏

m,r=1

Nlm(ωlm)Dqr(ωo) −
M∏

m,r=1

Nlm(ωo)Dqr(ωqr) (A.34)

with the denominators Do, Di equal to the following determinants:

Do = det [H] =

M!∑

q=1

M∏

r=1

Dqr(ωo)

Di = det [Hi] =

M!∑

q=1

M∏

r=1

Dqr(ωqr) (A.35)

If we set ∆Nlm = Nlm(ωlm) − Nlm(ωo) and ∆Dqr = Dqr(ωqr) − Dqr(ωo) then:

|∆Ŝ opt
jn (ωo)| = 1

|Do||Do + δDo|
M!∑

l,q=1

|∆xlq|

∆xlq =

M∏

m,r=1

[∆Nlm + Nlm(ωo)]Dqr(ωo) −
M∏

m,r=1

Nlm(ωo)[∆Dqr + Dqr(ωo)]

(A.36)

where the determinant Di is equal to:

Di = Do + δDo

Di =

M!∑

q=1

M∏

r=1

[Dqr(ωo) + ∆Dqr]
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Di =

M!∑

q=1

M∏

r=1

Dqr(ωo) +

M!∑

q=1

M∏

r,s

Dqr(ωo)∆Dqs

δDo =

M!∑

q=1

M∏

r,s

Dqr(ωo)∆Dqs (A.37)

After some eliminations we will obtain:

|∆Ŝ opt
n j (ωo)| = 1

|Do||Do + δDo|
M!∑

l,q=1

|∆slq| ∀n ∈ N

∆slq =

M∏

m,r=1

∆NlmDqr(ωo) −
M∏

m,r=1

∆DqrNlm(ωo) (A.38)

Since the inverse of [H(ω)]−1 in (A.26) exists for all ω ∈ Ω we will have that |Do| =

det [H] , 0. Using the triangular inequality on (A.38) we obtain:

|∆Ŝ opt
n j (ωo)| <

∑M!
l,q=1

∏M
m,r=1 |Dqr(ωo)||∆Nlm|

|Do|||Do| − |δDo|| +

∑M!
l,q=1

∏M
m,r=1 |Nlm(ωo)||∆Dqr|

|Do|||Do| − |δDo|| (A.39)

Furthermore, since the functions Nnm and Dqr are continuous and bounded in Ω it will

be true that ∀e1 > 0 ∃N ∈ N such that ∀n > N:

|∆Nlm| = |Nlm(ωlm) − Nnm(ωo)| < e1

|∆Dqr| = |Nqr(ωqr) − Nqr(ωo)| < e1

∃P > 0 max
[
|Nlm(ωo)|, |Dqr(ωo)|

]
< P

ωlm, ωqr, ωo ∈ Ωk

(A.40)
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Based on the above bounds we have that for sufficiently small e1 > 0 ∃L > 0 such that:

|δDo| =
∣∣∣∣∣∣∣

M!∑

q=1

M∏

r,s

Dqr(ωo)∆Dqs

∣∣∣∣∣∣∣ ≤ M!
M∑

k=1


M

k

 ek
1PM−k

|δDo| ≤ e1

M!
M∑

k=1


M

k

 ek−1
1 PM−k


L ≤ ||Do| − |δDo||

L =

∣∣∣∣∣∣∣∣∣
|Do| − e1

M!
M∑

k=1


M

k

 ek−1
1 PM−k



∣∣∣∣∣∣∣∣∣
(A.41)

Inequality (A.39) given the bounds of (A.40) and (A.41) becomes:

|∆Ŝ opt
n j (ωo)| < eM

1
2M!PM

|Do|L (A.42)

If we set

e = eM
1

2M!PM

|Do|L (A.43)

then we have just showed that ∀e > 0 ∃N ∈ N such that ∀n > N:

|∆Ŝ opt
n j (ωo)| = |Ŝ opt

n j (ω) − Ŝ opt
j (ω)| < e (A.44)
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A.3 Synthesis in L2[Ω]

A.3.1 Class L2[Ω] definition

ClassL2[Ω] is defined as the following set of all square integrable functions with domain

the set [Ω]:

L2[Ω] =

{
Ŝ : Ω→ C ∃M > 0 :

∫

Ω

|Ŝ (ω)|2dω < M
}

(A.45)

A.3.2 Density of Σn[Ω] in L2[Ω]

It is obvious that Σn[Ω] ⊂ L2[Ω] ∀n ∈ N . Furthermore the set L2[Ω] is dense in Σn[Ω]

according to the following lemma [30]:

Density lemma

For all e > 0 if Ŝ (ω) ∈ L2[Ω] exists a simple function Ŝ n(ω) ∈ Σn such that:

||Ŝ − Ŝ n||2 < e and n ∈ N .

A.3.3 Error Convergence Lemma

Lets consider the error expression in (A.3), for functions Ŝ n j(ω) ∈ Σn that are e far from

a function Ŝ j(ω) ∈ L2[Ω].
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E({Ŝ n(ω)}) = 2
∫

S

∫

Ω

En(~r, ω)dωds

En(~r, ω) =

∣∣∣∣∣∣∣G(~r − ~ro) −
M∑

j=1

Ŝ n j(ω)G(~r − ~r j)

∣∣∣∣∣∣∣

2

(A.46)

The goal of this section is to prove the following error convergence lemma.

Error Convergence lemma

For every spectrum Ŝ j(ω) ∈ L2[Ω] there exist spectrum Ŝ n j(ω) ∈ Σn[Ω] such that

∀e > 0:

√∫

Ω

|Ŝ j(ω) − Ŝ n j(ω)|2dω < e ∀ j ∈ {1, ..., M} (A.47)

and

|E({Ŝ (ω)}) − E({Ŝ n(ω)})| ≤ C(e) (A.48)

with

C(e) = 2Pµ(S )[M2e + 2M
√
µ(Ω)]e (A.49)

with µ(S ), µ(Ω) the measures of the medium S and the bandwidth Ω and P > 0.
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The existence of an e distant sequence {Ŝ n j(ω)} is guaranteed by the density lemma. In

order to prove this error convergence lemma we define:

∆Ŝ n j(ω) = Ŝ j(ω) − Ŝ n j(ω) (A.50)

Then equation (A.3) according to (A.50) becomes:

E({Ŝ (ω)}) = 2
∫

S

∫

Ω

E(~r, ω)dωds

E(~r, ω) =

∣∣∣∣∣∣∣P̂o(~r, ω) −
M∑

j=1

[Ŝ j(ω)]G j(~r, ω)

∣∣∣∣∣∣∣

2

E(~r, ω) =

∣∣∣∣∣∣∣P̂o(~r, ω) −
M∑

j=1

[Ŝ n j(ω) + ∆Ŝ n j(ω)]G j(~r, ω)

∣∣∣∣∣∣∣

2

(A.51)

Now based on (A.46) and (A.51) we can relate the quantities En(~r, ω) and E(~r, ω) using:

∆En(~r, ω) = E(~r, ω) − En(~r, ω)

∆En(~r, ω) =


M∑

j=1

∆Ŝ n j(ω)G j(~r, ω)




M∑

j=1

∆Ŝ ∗n j(ω)G∗j(~r, ω)

 −
P̂o(~r, ω) −

M∑

j=1

Ŝ n j(ω)G(~r − ~r j)


M∑

j=1

[∆Ŝ ∗n j(ω)]G∗j(~r, ω) −
P̂∗o(~r, ω) −

M∑

j=1

Ŝ ∗n j(ω)G∗j(~r, ω)


M∑

j=1

[∆Ŝ n j(ω)]G j(~r, ω)

(A.52)

Essentially based on equations (A.46) (A.51) (A.52) we have:
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|E({Ŝ j(ω)}) − E({Ŝ n j(ω)})| = 2
∣∣∣∣∣
∫

S

∫

Ω

∆En(~r, ω)dωds
∣∣∣∣∣ (A.53)

Consider the functions:

Ki j(~r, ω) = Gi(~r, ω)G∗j(~r, ω)

L j(~r, ω) =

P̂o(~r, ω) −
M∑

k=1

Ŝ nk(ω)Gk(~r, ω)

G∗j(~r, ω)

(A.54)

Furthermore, based on these functions ∆En(~r, ω) takes the form of:

∆En(~r, ω) =


M∑

i, j=1

Ki j(~r, ω)∆Ŝ ni(ω)∆Ŝ ∗n j(ω)

 −


M∑

j=1

L j(~r, ω)∆Ŝ ∗n j(ω)

 −


M∑

j=1

L∗j(~r, ω)∆Ŝ n j(ω)

 (A.55)

Since the domain S does not include the singular points of the functions G j(~r, ω), the

K, L functions are bounded in the set S ×Ω and all the simple functions Ŝ n j(ω) are also

bounded. In other words:

∃P > 0 max
[
|Ki j(~r, ω)|, |L j(~r, ω)|

]
< P (A.56)

Applying the triangular inequality on ∆En(~r, ω) in (A.55):

|∆En(~r, ω)| ≤


M∑

i, j=1

|Ki j(~r, ω)||∆Ŝ ni(ω)∆Ŝ ∗n j(ω)|
 +


M∑

j=1

|L j(~r, ω)||∆Ŝ ∗n j(ω)|
 +


M∑

j=1

|L∗j(~r, ω)||∆Ŝ n j(ω)|
 (A.57)
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The last equation given the bounds of (A.56) and the fact that |x∗| = |x|∀x ∈ C becomes:

|∆En(~r, ω)| ≤ P
M∑

i, j=1

|∆Ŝ ni(ω)∆Ŝ n j(ω)| + 2P
M∑

j=1

|∆Ŝ n j(ω)| (A.58)

Application of the triangular inequality on equation (A.53) yields:

|E({Ŝ j(ω)}) − E({Ŝ n j(ω)})| ≤ 2
∫

S

∫

Ω

|∆En(~r, ω)|dωds (A.59)

The last inequality given (A.58) becomes:

|E({Ŝ j(ω)}) − E({Ŝ n j(ω)})| ≤ 2Pµ(S )
M∑

i, j=1

∫

Ω

|∆Ŝ ni(ω)∆Ŝ n j(ω)|dω +

4Pµ(S )
M∑

j=1

∫

Ω

|∆Ŝ n j(ω)|dω, (A.60)

with µ(S ) =
∫

S
ds being the measure of the medium.

Based on the definition of ∆Ŝ n j(ω) in (A.50) we can write equation (A.47) as:

√∫

Ω

|∆Ŝ n j(ω)|2dω < ε ∀ j ∈ {1, ..., M} (A.61)

Making use of the Schwartz inequality we can write:

∫

Ω

|∆Ŝ ni(ω)∆Ŝ n j(ω)|dω ≤
√∫

Ω

|∆Ŝ ni(ω)|2dω
∫

Ω

|∆Ŝ n j(ω)|2dω (A.62)

Based on (A.61) equation (A.62) can be written as:
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∫

Ω

|∆Ŝ ni(ω)∆Ŝ n j(ω)|dω ≤ e2 ∀i, j ∈ {1, ..., M} (A.63)

Substituting ∆Ŝ ni(ω) = IΩ(ω) in (A.62) will result to:

∫

Ω

|∆Ŝ n j(ω)|dω ≤
√
µ(Ω)

√∫

Ω

|∆Ŝ n j(ω)|2dω, (A.64)

with µ(Ω) being the measure (length) of the bandwidth Ω.

Using again (A.61) the last inequality becomes:

∫

Ω

|∆Ŝ n j(ω)|dω ≤ e
√
µ(Ω) ∀ j ∈ {1, ..., M} (A.65)

Inequality (A.60) based on inequalities (A.63) and (A.65) becomes:

|E({Ŝ (ω)}) − E({Ŝ n(ω)})| ≤ 2Pµ(S )
[
M2e2 + 2Me

√
µ(Ω)

]
(A.66)

Or

|E({Ŝ (ω)}) − E({Ŝ n(ω)})| ≤ C(e), (A.67)

with

C(e) = 2Pµ(S )
[
M2e + 2M

√
µ(Ω)

]
e (A.68)
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A.3.4 Synthesis in L2[Ω]

The goal of this sections is to specify functions Ŝ j(ω) ∈ L2[Ω] j = 1, ..., M contained in

a vector {Ŝ (ω)} = {Ŝ 1(ω), . . . , Ŝ M(ω)} such that the error in equation (A.3) is minimized.

Equivalently we have to find:

{Ŝ (ω)}opt = arg min
Ŝ j(ω)∈L2[Ω]

[
E({Ŝ (ω)})

]
(A.69)

Contradiction is used in order to show that the solution to the above optimization prob-

lem is given by equation (A.26). Let’s assume for the moment that the optimal spectra

Ŝ L
2opt

j (ω) ∈ L2[Ω], j = 1, ..., M are not the spectra Ŝ opt
j (ω) ∈ Σ∞[Ω], j = 1, ..., M given

by (A.26).

Based on the solution of (A.26) we know that:

E({Ŝ opt(ω)}) = min
Ŝ j(ω)∈Σ∞[Ω]

[
E({Ŝ (ω)})

]
(A.70)

Since the error E is always positive and because the optimal spectra Ŝ L
2opt

j (ω) ∈ L2[Ω],

j = 1, ..., M are different from the spectra Ŝ opt
j (ω) ∈ Σn[Ω] given by (A.26), and because

Σ∞[Ω] ⊂ L2[Ω], we can write that:

∃δ > 0 : E({Ŝ opt(ω)}) = E({Ŝ L2opt(ω)}) + δ (A.71)

Based on the error convergence lemma we know that given a spectrum Ŝ L
2opt

j (ω) ∈
L2[Ω], there exist spectrum Ŝ opt

n j (ω) ∈ Σn[Ω] for some n ∈ N such that:
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∣∣∣∣E({Ŝ L2opt(ω)}) − E({Ŝ opt
n (ω)})

∣∣∣∣ < C(e) (A.72)

or

−C(e) + E({Ŝ L2opt(ω)}) < E({Ŝ opt
n (ω)}) < C(e) + E({Ŝ L2opt(ω)}) (A.73)

Since C(e) = 2Pµ(S )[M2e + 2M
√
µ(Ω)]e we can choose e such that C(e) < δ. Then

based on (A.71) and (A.73) we will obtain:

E({Ŝ opt
n (ω)}) < E({Ŝ opt(ω)}) (A.74)

with

Ŝ opt
n j (ω) ∈ Σn[Ω], j = 1, ..., M (A.75)

But this is a contradiction since we know that:

min
Ŝ n j(ω)∈Σ∞[Ω]

[
E({Ŝ n(ω)})

]
= E({Ŝ opt(ω)}) Σn[Ω] ⊂ Σ∞[Ω] ∀n ∈ N (A.76)

Therefore:

min
Ŝ j(ω)∈L2[Ω]

[
E({Ŝ (ω)})

]
= E({Ŝ opt(ω)}) (A.77)
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A.4 Minimization of the quadratic form E({S i})

In this part of the appendix we specify the minimum of the following quadratic form:

E({S i}) = {S i}H[Hi]{S i} + {S i}H{li} + {S i}H{li} + ci (A.78)

In order to convert the square error E({S i}) to a more familiar form we have to apply

a technique similar to the “completing the squares” method. At this point we have

to assume that the matrix [Hi] is hermitian and positive definite. (The proof of this

assumption is developed in section A.5). Under this assumption we can define the square

root matrix of [Hi] as a matrix [Ki] such that:

[Hi] = [Ki]H[Ki] (A.79)

Also if we define vector {mi} as {mi} = [K−1
i ]H{li} we have that:

{li} = [Ki]H{mi} (A.80)

Finally based on (A.79) and (A.80), (A.78) becomes:

E = {S i}H[K]H[K]{S i} − {S i}H[K]H{m} − {m}H[K]{ f } + c (A.81)

By adding and subtracting the quantity {mi}H{mi} we obtain:
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E = {S i}H[Ki]H[Ki]{S i} − {S i}H[Ki]H{mi} − {mi}H[Ki]{S i} + {mi}H{mi} + [ci − {mi}H{mi}]
(A.82)

or

E = {[Ki]{S i} − {mi}}H{[Ki]{S i} − {mi}} + [ci − {mi}H{mi}] (A.83)

Now it is easy to find the optimal vector {S i}opt which minimizes E:

{S i}opt = [K−1
i ]{mi} {S i}opt = [K−1

i ][K−1
i ]H{li} (A.84)

Based on equation (A.79) it is true that [K−1
i ][K−1

i ]H[Hi] = [I] or [K−1
i ][K−1

i ]H = [H−1
i ].

Therefore the optimal {S i}opt becomes:

{S i}opt = [H−1
i ]{l} (A.85)

Substituting back this optimal value to the initial expression of E({S i}) one has that:

min [E({S i})] = ci − {li}H[H−1
i ]{li} (A.86)

A.5 Hermitian and positive definite matrices [H], [Hi]

In this section we show that if the wave sources are located in distinct points the matrices

[H(ω)] and [Hi] defined by:
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[H(ω)]pq =

∫

S
[Gp(~r, ω)G∗q(~r, ω)]ds

[Hi]pq =

∫

S

[∫

Ωi

Gp(~r, ω)G∗q(~r, ω)dω
]

ds

p, q ∈ {1, ..., M} i ∈ {1, ..., 2n} (A.87)

are hermitian and positive definite.

The fact that [H(ω)] is hermitian is trivial to show. In order to show that [H(ω)] is

positive definite we have to look at the functions G j(~r, ω) which are continuous, non-

zero and non-linear with respect to ~r. Therefore each one of them cannot be written as a

linear combination of the others.

M∑

j=1

f̂ j(ω)G j(~r, ω) = 0⇒ f̂ j(ω) = 0 ∀ j ∈ {1, ..., M} (A.88)

Therefore, there exists a non-zero measure area δS ∈ S such that:

∀~r ∈ δS ⇒
∣∣∣∣∣∣∣

M∑

j=1

f̂ j(ω)G j(~r, ω)

∣∣∣∣∣∣∣ , 0 ω ∈ Ω (A.89)

Therefore:

∫

S

∣∣∣∣∣∣∣
M∑

j=1

f̂ j(ω)G j(~r, ω)

∣∣∣∣∣∣∣

2

ds = { f̂ (ω)}H[H(ω)]{ f̂ (ω)} > 0 ∀{ f̂ (ω)} , {0}, ω ∈ Ω

(A.90)

The last equation shows that the matrix [H] is positive definite. Based on the last equa-

tion it will be also true that:
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∫

S


∫

Ωi

∣∣∣∣∣∣∣
M∑

j=1

fi jG j(~r, ω)

∣∣∣∣∣∣∣

2

dω

 ds = { fi}H[Hi]{ fi} > 0 ∀{ fi} , {0}, ω ∈ Ωi i ∈ {1, ..., 2n}
(A.91)

The above proves that the matrix [Hi] is also positive definite.
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