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 A series of bis(imino)pyridine iron complexes bearing monoanionic ligands, 

(PDI)Fe-X (PDI = 2,6-(ArN=CMe)2C5H3N; X = halide, alkyl, alkoxide, carboxylate) 

has been prepared and the electronic structure of each compound investigated. 

Combining spectroscopic, X-ray crystallographic, and magnetic data, the electronic 

structure of the halide, alkoxide, and carboxylate complexes has been described as 

having a high-spin ferrous center that is antiferromagnetically coupled to a 

bis(imino)pyridine radical. Magnetic and Mössbauer spectroscopic data collected on 

the carboxylate complexes revealed a lower degree of antiferromagnetic coupling for 

due to a weaker ligand field. The electronic structure of the alkyl complexes appeared 

highly dependent on field strength of the hydrocarbyl group; sp3-alkyls were found to 

have high-spin ferrous centers while acetylides had intermediate spin centers. The 

electronic structure of the alkyl complex, (iPrPDI)Fe-(η3-C3H5), was best described as 

having an intermediate-spin ferric center antiferromagnetically coupled to two chelate 

radicals. The preparation of bis(imino)pyridine iron alkyl complexes possessing β-

hydrogen atoms was accomplished from the substoichiometric addition of alkyl 

bromides to (iPrPDI)Fe(N2)2. Because the electronic structure of the alkyl and halide 

complexes was elucidated, this reaction has been described as a one-electron oxidative 

addition, where oxidation occurs at the bis(imino)pyridine ligand rather than the metal. 

For these alkyls, the kinetic stability of each complex at ambient temperature was 

inversely proportional to the number of β-hydrogen atoms present. A series of 



 

deuterium labeling experiments confirmed fast and reversible β-hydrogen elimination 

and that transfer dehydrogenation of chelate isopropyl groups was a main 

decomposition pathway. Additionally, the scope of (iPrPDI)Fe(N2)2 mediated olefin 

hydrogenation has been expanded to include amine, ether, ketone, and ester containing 

substrates. Conducting stoichiometric experiments between each substrate and 

(iPrPDI)Fe(N2)2 in the absence of 4 atmospheres of dihydrogen revealed important 

catalyst degradation pathways. The C-O bond cleavage of allylic and vinylic ethers 

was observed over the course of hours at ambient temperature while ester addition to 

(iPrPDI)Fe(N2)2 often resulted in C-O bond cleavage to form the corresponding alkyl 

and carboxylate complexes. Although the redox-active bis(imino)pyridine chelate is 

known to stabilize a reducing ferrous center, one electron processes have often 

resulted in catalyst decomposition.  
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CHAPTER 1 

PREPARATION AND ELECTRONIC STRUCTURE ELUCIDATION OF 

BIS(IMINO)PYRIDINE IRON COMPLEXES BEARING X-TYPE LIGANDS* 

 

1.1 Abstract 

 A series of bis(imino)pyridine iron monohalide complexes (ArPDI)FeX (X = 

Cl, Br; ArPDI = 2,6-(ArN=CMe)2C5H3N; Ar = 2,6-iPr2-C6H3 (iPrPDI), 2,6-Et2-C6H3 

(EtPDI), 2,4,6-Me3-C6H2 (MesPDI)) have been prepared by treatment of the 

corresponding dihalide with 1 equivalent of NaBEt3H. The reactivity of these 

complexes towards σ-donors has been investigated and the molecular structure of 

several resulting 5-coordinate complexes have been determined by single crystal X-

ray diffraction. Attempts to prepare an iron monofluoride from reaction of 

(iPrPDI)Fe(N2)2 and BF3·Et2O resulted in the formation of (iPrPDI)Fe(FBF3)(Et2O), a 5-

coordinate square pyramidal complex in which a monoanionic η1-BF4 ligand occupies 

the apical coordination site. Treatment of the monohalide halide complexes with 

alkyllithium reagents resulted in isolation of the corresponding bis(imino)pyridine iron 

alkyl complexes. In cases where a 5-coordinate iron dialkyl could not be isolated (R = 

Me, Np, C≡CtBu, C≡CPh), preparation of the monoalkyl complexes was achieved 

from the reductive alkylation of the corresponding dihalide with 2 equivalents of the 

alkyllithium reagent. Addition of either alcohols or carboxylic acids to (iPrPDI)Fe(N2)2 

resulted in immediate formation of the corresponding iron alkoxide or carboxylate 

complex, respectively. The electronic structure of representative 4- and 5-coordinate 

complexes has been investigated by X-ray crystallography, Mössbauer spectroscopy, 

                                                 
* Parts of this chapter have been taken from (a) Bouwkamp, M. W.; Bart, S. C.; Hawrelak, E. J.; 
Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. Chem. Commun. 2005, 3406-3408. Reproduced by 
permission of The Royal Society of Chemistry. (b) Fernández, I. F.; Trovitch, R. J.; Lobkovsky, E.; 
Chirik, P. J. Organometallics 2008, 27, 109-118. Copyright 2008 American Chemical Society.  
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SQUID magnetometry. Many complexes have been described as having a high-spin 

iron(II) center antiferromagnetically coupled to a monoanionic bis(imino)pyridine 

chelate. In the case of the acetylide complexes, an increase in field strength was 

observed and the electronic structure has been described as having an intermediate-

spin ferrous center antiferromagnetically coupled to a chelate radical. One complex, 

the bis(imino)pyridine iron allyl complex, exhibited spectral and structural data 

consistent with a ferric metal center and doubly reduced iPrPDI ligand.  

 

1.2 Introduction 

 Over the last decade, aryl-substituted bis(imino)pyridine ligands, ArPDI (2,6-

(ArN=CMe)2C5H3N; Ar = 2,6-iPr2-C6H3 (iPrPDI), 2,6-Et2-C6H3 (EtPDI), 2,4,6-Me3-

C6H2 (MesPDI)) have become a heavily utilized class of ligands due to their ease of 

synthesis,1,2 electronic modularity,3 and their ability to coordinate to a wide range of 

transition and alkali metal ions.4 The π-accepting capability of these ligands is well 

established: bis(imino)pyridine ligands have been found to stabilize iron complexes in 

which the metal center is formally in the 2- oxidation state.5 Electronically, the 

bis(imino)pyridine ligands appear to be as π-acidic as carbon monoxide;3 however, 

these ligands are not limited to two electron reduction and tend to participate in facile 

one electron redox events.6,7 

 One example that vividly highlights this ligand property is the stepwise 

reduction of (iPrPDI)FeCl2.8 On route to (iPrPDI)Fe(N2)2,9 aliquots of the dihalide 

reduction in the presence of excess of 0.5 % sodium amalgam at early reaction times 

allowed observation of the iron monochloride intermediate, (iPrPDI)FeCl.10 Isolation of 

this complex in high yield was accomplished by treating the dihalide with one 

equivalent of NaBEt3H.10 A comprehensive investigation into the electronic structure 

of (iPrPDI)FeCl utilizing spectroscopic, crystallographic, and computational data 
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established that the bis(imino)pyridine ligand is monoreduced and 

antiferromagnetically coupled to a high spin ferrous center.8 One electron reduction of 

(iPrPDI)FeCl to (iPrPDI)Fe(N2)2 occured at the iPrPDI ligand rather than the metal 

center and the ground state of the latter complex has been described as having a 

doubly reduced ligand that antiferromagnetically couples to an intermediate spin 

Fe(II) center.8 

 Monohalide complexes other than (iPrPDI)FeCl have also been reported. The 

preparation of (iPrPDI)FeBr and (MesPDI)FeCl has been accomplished by addition of 

one equivalent of NaBEt3H to the respective dihalide.10 Alkylation of (iPrPDI)FeCl or 

(iPrPDI)FeCl2 with one or two equivalents of MeLi, respectively, resulted in the 

isolation of (iPrPDI)FeMe.10 Subsequently, reductive alkylation of (iPrPDI)FeCl2 with 2 

equivalents of PhLi yielded (iPrPDI)FePh.11 Interest in isolating well-defined 

bis(imino)pyridine iron alkyl and dialkyl10-14 complexes stems from the observation 

that, upon activation with methylaluminoxane (MAO), (PDI)FeX2 complexes are 

highly active for the polymerization of α-olefins.15,16 Cationic iron(II) and dicationic 

iron (III) alkyl complexes have been proposed to be the active species for this 

transformation;17,18 however, it remains likely that the active species has a chemically 

modified ligand as a result of MAO addition to the iron dihalide complex.12 Examples 

of cationic bis(imino)pyridine iron alkyl complexes were later isolated from treatment 

of (iPrPDI)Fe(CH2SiMe3)2 with a borate reagent and shown to polymerize ethylene, but 

this result was independent of MAO activation.19 Over-reduction to form anionic 

bis(imino)pyridine iron alkyl complexes has been reported11,20 and these complexes 

were found to be active for ethylene polymerization upon treatment with MAO.20 

 Understanding the reversible electron transfer capabilities of the 

bis(imino)pyridine ligand framework remains a fundamental task and is crucial to the 

design of catalysts bearing redox-active ligands. Because reduction of 
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bis(imino)pyridine iron halide complexes occurs at the ligand, the oxidation of 

(iPrPDI)Fe(N2)2 was anticipated to be a viable way to prepare new PDI iron complexes. 

In this chapter, the electronic structure of several bis(imino)pyridine iron halide, alkyl, 

alkoxide, and carboxylate complexes has been investigated and comparisons made to 

the initial electronic structure description reported for (iPrPDI)FeCl.8  

 

1.3 Monohalide Complexes 

 In an attempt to expand the number of bis(imino)pyridine (PDI) monohalide 

precusors that could be employed for the preparation of iron alkyl complexes, 

(EtPDI)FeCl2 (2-Cl2) [EtPDI = 2,6-(2,6-Et2C6H3N=CMe)2C5H3N],21 and (MesPDI)FeBr2 

(3-Br2) [MesPDI = 2,6-(2,4,6-Me3C6H2N=CMe)2C5H3N]16 were prepared by stirring 

the appropriate ligand and iron dihalide in tetrahydrofuran. The reduction of these 

dihalide precursors with one equivalent of NaBEt3H resulted in the isolation of the 

respective PDI iron monohalide complexes (Figure 1.1). 

Figure 1.1. One electron reduction of PDI iron dihalide precursors. 

 

 Magnetic moments determined by Evans method solution magnetometry22 

(benzene-d6, 20 °C) for 2-Cl and 3-Br were 4.0(2) μB and 3.8(2) μB, respectively. 

While this data is consistent with an overall S = 3/2 spin state, investigating the 
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magnetic susceptibility of 1-Br by variable temperature SQUID magnetometry 

produced a plot with μeff  values ranging from 3.6 to 4.5 μB (5 – 300 K) (Figure 1.2, 

top). Plotting the inverse of χ over this range produced a linear fit, confirming that 1-

Br behaves as a simple paramagnet (Figure 1.2, bottom). The ambient temperature 

value of 4.5 μB, which was effectively reproduced from four independently prepared 

samples of 1-Br, suggests that the experimental Evans method values obtained for the 

monohalide complexes [1-Br: μeff = 3.9(2) μB (benzene-d6, 20 °C)] are systematically 

low but remain within error. A spin-Hamiltonian simulation of the magnetic data 

yielded the following values: g = 2.429, │D│ = 9.3 cm-1, and E/D = 0.  

 

 
Figure 1.2. Solid state magnetic susceptibility data for 1-Br (top, four trials) and 

Curie plot from 5 K to 300 K (bottom). 

5 



 The 1H NMR spectrum of 1-Br (Figure 1.3, top) at 20 °C exhibits 

paramagnetically broadened resonances over a 600 ppm range, with the hydrogen 

atoms in the chelate plane experiencing the greatest shift from their diamagnetic 

reference values.23 For example, the imine methyl resonance appears at -212.71 ppm 

while the p-pyridine peak is at 388.94 ppm, a direct function of being in conjugation 

with the iron center. The isopropyl methine resonance is shifted significantly upfield 

due to a through-space interaction with the metal center. The spectrum of 1-Br was 

monitored upon cooling to 193 K and movement of the resonances towards the 

diamagnetic region followed Curie behavior (Figure 1.4). However, these linear fits 

did not accurately extrapolate to the diamagnetic reference value of the resonances.23 
 
 

 
Figure 1.3. 1H NMR spectrum of 1-Br (top) and 1-Br in the presence of 10 

equivalents of tetrahydrofuran (bottom). Both spectra recorded in benzene-d6 at 20 °C. 
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Figure 1.4. Temperature dependent 1H NMR shifts of select 1-Br resonances in 
toluene-d8. 

 

 Addition of 10 equivalents of tetrahydrofuran to a benzene-d6 solution of 1-Br 

resulted in dramatic shifting of these resonances, with the imine methyl and p-pyridine 

resonances moving 37 ppm and 10 ppm upfield, respectively (Figure 1.3, bottom). The 

m-pyridine resonance generally appears around 68 ppm and is less sensitive to the 

nature of the X-type ligand or substrate coordination than the other chelate backbone 

resonances. The isopropyl methine resonance shifts the most upon tetrahydrofuran 

coordination, as this interaction shields the through space interaction between this 

position and the iron center. Recrystallization of concentrated pentane solutions of 1-

Br in the presence of tetrahydrofuran at -35 °C afforded crystals of 1-Br(THF) 

suitable for X-ray diffraction. The solid state structure of 1-Br(THF) is presented in 

Figure 1.5 with selected bond distances (Å) and angles (°) tabulated in Table 1.1. 

Dissolving this complex in benzene-d6 afforded 1H NMR resonances that are slightly 

shifted for 1-Br along with broad tetrahydrofuran peaks.  
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Figure 1.5. Molecular structure of 1-Br(THF) at 30 % probability ellipsoids. 

Hydrogen atoms omitted for clarity. 

 

Table 1.1. Selected bond distances (Å) and angles (°) for 1-Br(THF). 

 

Fe(1)-N(1) 2.172(3) N(3)-C(8) 1.306(4) 

Fe(1)-N(2) 2.008(3) C(2)-C(3) 1.446(5) 

N(2)-Fe(1)-O(1) 92.64(15) 

Fe(1)-Br(1) 2.4165(6) N(2)-Fe(1)-Br(1) 167.89(9) 

Fe(1)-N(3) 2.150(3) C(7)-C(8) 1.433(5) 

Fe(1)-O(1) 2.166(5) 

N(1)-C(2) 1.299(4)   
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1-Br(THF)

p dal with an N(2)-Fe(1)-Br(1) bond angle of 167.89(9)°. The disordered 

tetrahydrofuran ligand, for which two rotamers were successfully modeled, occ

the apical position of the coordination sphere with an N(2)-Fe(1)-O(1) bond angle of 

92.64(15)°. Additionally, one aryl isopropyl substituent was successfully modeled for

positional disorder. Inspection of the bis(imino)pyridine Nimine-Cimine and Cimine-Cipso 

bond distances has been established as a valuable metric to evaluate the degree of 

ligand reduction for crystallographically characterized complexes.6 The metrical 

parameters (Table 1.1) reveal chelate distances suggestive of one electron reducti

with contracted Cimine-Cipso distances of 1.446(5) Å and 1.433(5) Å. The Nimine-Cimine 

bond lengths of 1.299(4) Å and 1.306(4) Å observed for this complex are slightly 

elongated from the free ligand values of 1.274(3) Å8 and between the values of 1.2

and 1.32 Å associated with an unreduced and monoreduced chelate, respectively.6 A 

qualitative molecular orbital diagram highlighting the electronic structure of each 

complex prepared in this Chapter is presented in Section 1.6. 

 Cooling a concentrated diethyl ether solution of 2-Cl t

quality green crystals of 2-Cl(Et2O). The molecular structure of 2-Cl(Et2O) (Figure 

1.6) reveals a similar distorted square pyramidal geometry about the metal center, 

where diethyl ether occupies the apical position. Similar to 1-Br(THF), dissolving

crystals of 2-Cl(Et2O) in benzene-d6 resulted in immediate loss of diethyl ether and

observation of 2-Cl as judged by 1H NMR spectroscopy. The metrical parameters 

reported in Table 1.2 reveal that the chlorine atom is displaced from the iron chelat

plane to a greater extent than the bromine atom in 1-Br(THF), with an N(2)-Fe(1)-

Cl(1) angle of 150.96(6)°. Although less pronounced, deviation from square pyramidal 

geometry is also highlighted by the N(2)-Fe(1)-O(1) bond angle of 108.99(8)°. The 

N(1)-C(2) and N(3)-C(8) bond lengths of 1.313(3) Å and 1.301(3) Å observed for 2-
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Cl(Et2O) are elongated from the free ligand reference value of 1.274(3) Å.8 The 

Cimine-Cipso distances, which are often a more diagnostic metric for PDI reduction 

the imine bond lengths, vide infra, are contracted to 1.443(4) Å and 1.453(4) Å for 

C(2)-C(3) and C(7)-C(8), respectively, and are consistent with a monoreduced chela

 

than 

te.  

Figure 1.6. Molecular structure of 2-Cl(Et2O) at 30 % probability ellipsoids. 
Hydrogen atoms omitted for clarity. 

Table 1.2. Selected bond distances (Å) and angles (°) for 2-Cl(Et2O). 

Fe(1

  
 

)-N(1) 2.181(2) N(3)-C(8) 1.301(3) 

Fe(1)-N(2) 2.009(2) C(2)-C(3) 1.443(4) 

Fe(1)-N(3) 2.209(2) C(7)-C(8) 1.453(4) 

Fe(1)-Cl(1) 2.2668(8) N(2)-Fe(1)-O(1) 108.99(8) 

Fe(1)-O(1) 2.213(2) N(2)-Fe(1)-Cl(1) 150.96(6) 

N(1)-C(2) 1.313(3)   
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Table 1.3. In-plane chelate hydrogen resonances of bis(imino)pyridine iron 

monohalide complexes observed by 1H NMR spectroscopy in benzene-d6 at 20 °C. 
 

 

 Contrasting the coordination of tetrahydrofuran to 1-Br, stoichiometric 

addition of pyridine to either 1-Cl or 1-Br resulted in the immediate formation of the 

5-coordinate complexes, 1-Cl(py) or 1-Br(py), respectively, as judged by 1H NMR 

spectroscopy (Table 1.3). The imine methyl and p-pyridine resonances for these 

compounds appear at -240.46 and 328.18 ppm or -241.30 ppm and 325.93 ppm, 

respectively. Repeated cycles of hydrocarbon solvent removal and dissolution did not 

change the 1H NMR spectrum of either 1-Cl(py) or 1-Br(py), confirming a preference 

for pyridine over diethyl ether coordination. Addition of 1 equivalent of pyridine-d5 to 

1-Cl resulted in the formation of 1-Cl(py)-d5, and upon investigation by 1H and 2H 

NMR spectroscopy, revealed that the pyridine resonances appear at 120.75, 40.10, and 

24.20 ppm. The solid state structure of 1-Cl(py) has been reported11and the Nimine-

Cimine and Cimine-Cipso distances of 1.3020(3)/1.2844(3) Å and 1.4533(36)/1.4773(32) 

Å, respectively, are reasonable for a one electron reduction of the PDI ligand.6 

Although both measurements are consistent with an S = 3/2 complex with 

contributions from spin-orbit coupling, a disparity between the solution and solid state 

magnetic susceptibility was observed for the 5-coordinate monohalides; a moment of 
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3.9(2) μB was observed for 1-Br(py) in benzene-d6 and a solid state value of 4.5(1) μB 

was obtained for 1-Br(THF) at ambient temperature using a magnetic susceptibility 

balance.   

 In an attempt to prepare a bis(imino)pyridine iron monofluoride complex (1-

F), one equivalent of BF3·Et2O was added to iPrPDIFe(N2)2 (1-(N2)2). Rather than 

yielding 1-F, this reaction resulted in the formation of 1-(FBF3)(Et2O), consistent 

with previously observed reactivity of this reagent with a reducing iron center.24 In 

addition to the 1H NMR spectrum of this complex, which suggested ether coordination 

in solution, crystals of 1-(FBF3)(Et2O) suitable for X-ray crystallography were 

obtained by cooling a saturated ether/pentane solution to -35 °C. The molecular 

structure of 1-(FBF3)(Et2O) (Figure 1.7) confirmed a 5-coordinate iron center and 

selected metrical parameters are reported in Table 1.4. The preparation of 1-F(py) was 

ultimately accomplished by addition of py·HF to 1-OTMS, vide infra.25  
 

 
Figure 1.7. Molecular structure of 1-(FBF3)(Et2O) at 30 % probability ellipsoids. 

Hydrogen atoms omitted for clarity. 
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Table 1.4. Selected bond distances (Å) and angles (°) for 1-(FBF3)(Et2O). 

Fe(1)-N(1) 2.177(2) N(1)-C(2) 1.312(3) 

Fe(1)-N(2) 1.977(2) N(3)-C(8) 1.330(3) 

Fe(1)-N(3) 2.169(2) C(2)-C(3) 1.454(3) 

Fe(1)-F(1) 2.0890(16) C(7)-C(8) 1.437(4) 

Fe(1)-O(1) 2.1027(18) N(2)-Fe(1)-F(1) 105.62(7) 

F(1)-B(1) 1.484(3) N(2)-Fe(1)-O(1) 165.93(8) 

 

 In striking contrast to the solid state structures of 2-Cl(Et2O), 1-Cl(py),11 and 

1-Br(THF), 1-(FBF3)(Et2O) exhibits a distorted square pyramidal geometry where 

the anionic BF4 ligand occupies the apical coordination site. This contrasts the C2v-

symmetry observed in the 1H NMR spectrum of this complex, which is likely derived 

from reversible ether binding. The measured bond angles of 105.62(7)° and 165.93(8)° 

for N(2)-Fe(1)-F(1) and N(2)-Fe(1)-O(1), respectively, closely resemble the 

distortions from square pyramidal geometry that were observed for 2-Cl(Et2O). The 

Fe(1)-F(1) bond distance of 2.0890(16) Å appears reasonable for an inner-sphere 

anionic BF4 ligand and is close to the distance of 2.0672(10) Å reported by Holland 

and co-workers.24 As expected, the F(1)-B(1) bond length of 1.484(3) Å is 

significantly longer than the other B-F bonds (1.362 Å average). The chelate distances 

observed in 1-(FBF3)(Et2O) are also consistent with one electron bis(imino)pyridine 

reduction. 

 The electronic structure of 1-Cl was investigated in a comprehensive 

structural, spectroscopic, and computational study.8 The assignment of this complex as 

a high spin ferrous center antiferromagnetically coupled to a monoreduced 
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bis(imino)pyridine chelate relied on broken symmetry calculations and the comparison 

of experimental Mössbauer parameters to those computed for each electronic structure 

possibility. X-ray crystallographic data were collected for 1-Cl; unfortunately, 

however, the metrical parameters proved to be unreliable due to the crystallization of 

two different rotamers of a single diisopropylaryl substituent.2 Consequentially, the 

bond distances computed for each electronic structure description were compared to 

those experimentally determined for 2-Cl(Et2O) without investigating the magnetic or 

spectral data observed for these structurally different complexes.8 

 Nevertheless, compilation of the newly acquired data for both structural types, 

(iPrPDI)FeX and (iPrPDI)FeX(L), provides validation and greater insight into the 

computationally determined electronic structure of these complexes. Investigation of 

tetrahydrofuran coordination to 1-Br by 1H NMR spectroscopy revealed that shifting 

of the chelate resonances was proportional to the amount of substrate added. Adding a 

stoichiometric amount of pyridine resulted in more favorable substrate coordination 

and immediate formation of 1-Br(py). Because 1-Br(THF) and 1-Br(py) have 

magnetic moments consistent with S = 3/2 complexes at 20 °C, 4.5(1) and 3.9(2) μB, 

respectively, the extrapolation of these 5-coordinate complexes to fit the electronic 

structure described for 1-Cl is valid. In fact, the solid state magnetic susceptibility 

determined for 1-Br and 1-Br(THF) (4.5 μB) is higher than expected for the S = 3/2 

spin only value of 3.87 μB and is consistent with an expected orbital contribution.26 A 

lower solid state magnetic susceptibility was expected, but not observed, for 1-

Br(THF) and 1-Br(py) because greater spacial overlap between the PDI localized 

electron and the metal center may have occurred with an increase of ligand field.8   
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1.4 Preparation and Electronic Structure of Monoalkyl Complexes 

 With a series of 4- and 5-coordinate monohalide complexes in hand, the 

reactivity of these compounds towards Grignard and alkyllithium reagents was 

investigated for two reasons. First, structural characterization of a series of monoalkyl 

complexes would allow for a proper discussion of bis(imino)pyridine chelate 

reduction for 4-coordinate bis(imino)pyridine iron complexes bearing only X-type 

ligands. One example of this type, 1-Me, was structurally characterized at the 

commencement of this study and found to exhibit parameters consistent with an 

idealized square planar geometry and one electron ligand reduction.10 Additionally, 

studying the reactivity of these complexes could provide information regarding the 

properties of the propagating species in bis(imino)pyridine iron dichloride mediated α-

olefin polymerization and other catalytic bond forming reactions. Although an iron 

alkyl cation has been proposed as the active species,17,18 preparing and studying the 

neutral counterparts of these complexes may contribute to the discussion.  

  In a similar manner to that used for 1-Me, the preparation of 2-Me and 3-Me 

was accomplished by slow, stoichiometric addition of methyllithium to a cold solution 

(-35 °C) of either 2-Cl or 3-Br in diethyl ether (Figure 1.8). Importantly, these 

complexes display 1H NMR spectra with paramagnetically broadened resonances 

spread over a 400 ppm shift range (Table 1.5). Although the range of peaks observed 

for these monomethyl complexes is significantly narrower than what was observed for 

the monohalide complexes (Table 1.3), it is important to note that the diagnostic in-

plane chelate resonances are shifted in the same direction and general location from 

their diamagnetic reference values.23 For example, the imine methyl resonances appear 

around -165 ppm, while the p-pyridine resonances were located between 210 and 270 

ppm, respectively. Notably, the Fe-CH3 resonance was not located for any of the three 

complexes.  
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Figure 1.8. Alkylation of bis(imino)pyridine iron monohalides with MeLi. 

 
 

Table 1.5. Diagnostic 1H NMR resonances of bis(imino)pyridine iron monoalkyl 
complexes in benzene-d6 at 20 °C. 

 

 In the initial report of 1-Me, it was observed that this complex could also be 

prepared from the addition of 2 equivalents of methyllithium to 1-Cl2.10 Similarly, 3-

Me was prepared in this fashion from 3-Br2. Care was taken to add only two 

equivalents of methyllithium, as over-reduction to form the corresponding alkyl anion 

has been observed.20 Although this method appears to be a straightforward way to 

prepare a series of monoalkyl complexes directly from the dihalide, the observed 

reactivity is highly dependent on the alkyllithium reagent and (iPrPDI)FeX2 precursor. 
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For example, addition of two equivalents of neosilyllithum to 1-Cl2 resulted in the 

formation of the resulting PDI iron dialkyl complex, 1-Ns2,10,12 while conducting the 

same reaction with 2-Cl2 resulted in the formation of a 4:1 ratio of 2-Ns and 2-Ns2 

(Figure 1.9, top). Obviously, a cleaner and more general route to prepare 

bis(imino)pyridine iron mononeosilyl complexes was desired. Fortunately, alkylation 

of either 1-Cl, 2-Cl, or 3-Br with one equivalent of LiCH2Si(CH3)3 resulted in 

formation of the desired mononeosilyl complex (Figure 1.9, bottom), as judged by 1H 

NMR spectroscopy (Table 1.5).  
 

 
Figure 1.9. Alkylation of bis(imino)pyridine iron halide complexes with 

neosilyllithium. 
 
 

 The solid state structure of 2-Ns was also determined by X-ray diffraction.11 

The Nimine-Cimine bond distances of 1.3177(17) Å and 1.3188(17) Å, along with the 

Cimine-Cipso distances of 1.4397(16) Å and 1.4388(19) Å are indicative of one-electron 

chelate reduction.6 In contrast to the idealized square planar geometry that was 

observed for 1-Me,10 this complex is greatly distorted from square planar geometry, as 

the neosilyl group is bent out of the chelate plane with an N(2)-Fe(1)-C(30) bond 
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angle of 147.40(5)°. This deviation could be due to a steric interaction between the 

bulky neosilyl ligand and the aryl ethyl groups that lie above and below the metal-

chelate plane. The metrical parameters of these complexes, taken alongside the 

observed magnetic moments of these compounds, vide infra, gave an initial glimpse 

that these monoalkyl complexes could be described as having high-spin ferrous 

centers that are antiferromagnetically coupled to monoreduced bis(imino)pyridine 

chelates.11  

 Following the initial reports of 1-Ns2 preparation, Cámpora and co-workers 

described the synthesis of this complex from the addition of free iPrPDI to a 

stoichiometric amount of (py)2Fe(CH2Si(CH3)3)2.13 This dialkyl precursor undergoes 

loss of both equivalents of pyridine in the presence of other bis(imino)pyridine 

ligands.14 Reagents of this type remain relatively unexplored synthons for the 

preparation of organometallic iron alkyl complexes. This methodology was also used 

to gain insight into the stability of various bis(imino)pyridine iron neopentyl 

complexes. Adding either (py)2Fe(CH2C(CH3)3)2 or (py)2Fe(CH2C(CH3)3)Cl to iPrPDI 

resulted in pyridine substitution followed by neopentyl group mitration to the para-

pyridine of the chelate.11 Knowing that 1-Np2 could not be prepared from this method, 

the addition of 2 equivalents of neopentyllithium to 1-Cl2 was investigated as a route 

to prepare 1-Np. This reaction, as well as the stoichiometric addition of NpLi to 1-Cl 

or 2-Cl, yielded clean bis(imino)pyridine iron neopentyl compound upon 

recrystallization of the crude reaction mixture from pentane (Figure 1.10). Both the 

neosilyl and neopentyl complexes display 1H NMR resonances over a similar range 

(Table 1.5) and the Fe-CH2 resonance was not located for either class of compound. In 

the case of 2-Np, single crystals suitable for X-ray diffraction were obtained and the 

solid state structure (Figure 1.11) was determined. 
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Figure 1.10. Preparation of bis(imino)pyridine iron neopentyl complexes. 

 

 
Figure 1.11. Solid state structure of 2-Np at 30% probability ellipsoids. Hydrogen 

atoms omitted for clarity.  
 

 Selected metrical parameters for 2-Np are tabulated in Table 1.6. The overall 

geometry of this complex is similar to that observed for 2-Ns,11 where the neopentyl 

group is bent out of the chelate plane at an N(2)-Fe(1)-C(30) angle of 142.24 °. The 

neopentyl methyl groups in this structure are rotationally disordered and the structure 

19 



is generally of lower quality than the one obtained for 2-Ns. Even though the inherent 

low quality of this data set is reflected by the standard deviation values calculated for 

the metrical parameters in Table 1.5, the chelate bond lengths remain unmistakably 

representative of a singly reduced ligand.6 The Nimine-Cimine bond distances of 1.314(4) 

Å and 1.329(17) Å and Cimine-Cipso distances of 1.4397(16) Å and 1.4388(19) Å are 

well within the expected values,6 even when error is considered.  

 

Table 1.6. Selected bond distances (Å) and angles (°) for 2-Np. 

Fe(1)-N(1) 2.158(3) N(3)-C(8) 1.329(4) 

Fe(1)-N(2) 1.986(3) C(2)-C(3) 1.446(5) 

Fe(1)-N(3) 2.126(3) C(7)-C(8) 1.428(5) 

Fe(1)-C(30) 2.036(4) N(2)-Fe(1)-C(30) 142.24(14) 

N(1)-C(2) 1.314(4) Fe(1)-C(30)-C(31) 123.0(2) 

 

 After preparing a series of iron alkyl complexes, the synthesis of 

bis(imino)pyridine iron complexes bearing either alkenyl, aryl, or alkynyl ligands was 

investigated to determine whether or not an increase in ligand field strength would 

result in a change of the electronic structure description. The synthesis of one aryl 

complex, 1-Ph, was previously achieved from the addition of 2 equivalents of 

phenyllithium to 1-Br2 at -35 °C in diethyl ether solution.11 Preliminary investigation 

of this compound revealed 1H NMR resonances over a slightly narrower range than 

those observed for the idealized square planar monomethyl complex 1-Me (Table 1.5). 

However, impurities from undesired overreduction of 1-Ph, mainly [1-
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(Ph)N2]Li(Et2O)3,11 prevented characterization of this complex by X-ray 

crystallography and the acquisition of meaningful magnetic data.  

 Examples of stronger field sp–hybridized alkynyl complexes were also 

prepared. Addition of one equivalent of LiC≡CPh or LiC≡CtBu to 1-Cl resulted in the 

formation of the respective acetylide complexes, 1-CCPh and 1-CCtBu (Figure 1.12). 

Additionally, 1-CCtBu was prepared from 2 equivalents of the alkyllithium reagent 

with 1-Cl2. To determine if these complexes had a square planar geometry similar to 

1-Me, crystals of 1-CCtBu suitable for X-ray diffraction were grown from a 

concentrated pentane solution at -35 °C and the solid state structure is presented in 

Figure 1.13.  

 

Figure 1.12. Synthesis of 4-coordinate iPrPDI iron acetylide complexes. 

 

 The metrical parameters of 1-CCtBu (Table 1.7) are representative of a 

monoreduced bis(imino)pyridine ligand with average Nimine-Cimine and Cimine-Cipso 

distances of 1.313(4) Å and 1.444(5) Å, respectively.6 Similar to 1-Me, this complex 

displays an idealized square planar geometry with an N(2)-Fe(1)-C(34) bond angle of 

177.77(14)°C and the sum of the angles about iron is 359.91(12)°. As expected, the 

Fe(1)-C(34) bond distance of 1.902(4) Å is significantly shorter than the same distance 

found for the sp3-hybridized monoalkyls; 1-Me (2.001(6) Å), 2-Ns (2.0343(14) Å), 
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and 2-Np (2.036(4) Å). With the increase in ligand field, the 1H NMR resonances for 

the in-plane ligand chelate hydrogens were observed over a narrower shift range at 20 

°C in benzene-d6; the imine methyl and p-pyridine resonances were detected at -133.1 

ppm and 130.7 ppm, respectively (Table 1.5). 

 
 

Figure 1.13. Molecular structure of 1-CCtBu shown at 30% probability ellipsoids. 
Hydrogen atoms and one set of rotationally disordered tert-butyl carbons omitted for 

clarity. 

 

Table 1.7. Selected bond distances (Å) and angles (°) for 1-CCtBu. 

Fe(1)-N(1) 1.921(3) N(3)-C(8) 1.325(4) 

Fe(1)-N(2) 1.855(2) C(2)-C(3) 1.451(4) 

Fe(1)-N(3) 1.948(3) C(7)-C(8) 1.437(5) 

Fe(1)-C(34) 1.902(4) C(34)-C(35) 1.211(5) 

N(1)-C(2) 1.301(4) N(2)-Fe(1)-C(34) 177.77(14) 
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 The other newly prepared bis(imino)pyridine iron acetylide complex, 1-CCPh, 

was crystallographically characterized and was also found to have an idealized square 

planar geometry with the sum of angles about iron totaling 360.01(7) ° (Figure 1.14). 

For this complex, one aryl isopropyl substituent was positionally disordered and 

successfully modeled. As with 1-CCtBu, the chelate metrical parameters (Table 1.8) 

are suggestive of a one electron reduction, with Nimine-Cimine and Cimine-Cipso distances 

of 1.325(2)/1.330(2) Å and 1.429(3)/1.436(3) Å, respectively. The Fe(1)-C(34) bond 

in 1-CCPh is similar to the one observed for 1-CCtBu at 1.915(2) Å.  

 

 
Figure 1.14. Molecular structure of 1-CCPh shown at 30% probability ellipsoids. 

Hydrogen atoms and one positionally disordered isopropyl group omitted for clarity. 
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Table 1.8. Selected bond distances (Å) and angles (°) for 1-CCPh. 

Fe(1)-N(1) 1.9407(15) N(3)-C(8) 1.330(2) 

Fe(1)-N(2) 1.8401(14) C(2)-C(3) 1.429(3) 

Fe(1)-N(3) 1.9329(15) C(7)-C(8) 1.437(5) 

Fe(1)-C(34) 1.915(2) C(34)-C(35) 1.436(3) 

N(1)-C(2) 1.325(2) N(2)-Fe(1)-C(34) 177.43(8) 

 

 When investigating reduction of bis(imino)pyridine,6-8 or other redox active 

imine based ligands,27 the analysis of crystallographically determined chelate bond 

lengths is the most straightforward method of discerning the degree of reduction. It 

has been established that Nimine-Cimine distances of approximately 1.32 Å are consistent 

with single electron reduction of the bis(imino)pyridine chelate.6 This distance is 

significantly elongated from the free ligand value of 1.274 Å and the bond length 

approximation of an unreduced PDI ligand on a metal center, 1.28 Å. However, care 

must be taken not to overanalyze Nimine-Cimine distances that lie between 1.28 Å and 

1.32 Å, as this bond distance is highly sensitive to the nature of the metal itself7 and 

other ligands that surround the metal center.23 The remote Cimine-Cipso bond is less 

influenced by these factors and is therefore a much more reliable distance to consider 

for chelate reduction. Examination of this distance also provides greater distinction 

between an unreduced (1.50 Å) and singly reduced bis(imino)pyridine ligand (1.44 

Å).6 For a doubly reduced chelate, lengths of 1.36 Å and 1.40 Å for the Nimine-Cimine 

and Cimine-Cipso bond distances, respectively, would be expected.6,23  

 Upon review of the bond lengths observed for 1-Me,10 2-Ns,11 2-Np (Table 

1.6), 1-CCtBu (Table 1.7), and 1-CCPh (Table 1.8), the bis(imino)pyridine chelate in 
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each of these complexes appears singly reduced in a similar manner to the 

aforementioned monohalide complexes. The Cimine-Cipso distances found in these 

complexes range between 1.428 Å and 1.451 Å and are all within error of the accepted 

monoreduced value of 1.44 Å.6 The somewhat less reliable Nimine-Cimine distances are 

all relatively close to 1.32 Å, with values ranging between 1.301 Å to 1.337 Å. Going 

forward, one-electron bis(imino)pyridine reduction in the alkyl complexes will be 

assumed.  

 Of all the crystallographically characterized iron alkyl complexes, the metrical 

parameters about the metal center stand out for the acetylide complexes. For 1-CCtBu 

and 1-CCPh, the average Fe-Npyridine and Fe-Nimine bond lengths are 1.848(2) Å and 

1.936(3) Å, respectively. For bis(imino)pyridine iron alkyl complexes, the average Fe-

Npyridine and Fe-Nimine bonds are considerably longer with distances of 1.958(4) Å and 

2.072(4) Å, respectively. It has been reported that dicationic, high-spin iron bipyridine 

complexes have Fe-N bond lengths that are typically 0.16 to 0.22 Å longer than their 

low-spin counterparts.28 In this case, the discrepancy in Fe-N bond distances observed 

between the acetylides and sp3-hybridized alkyls hinted that the stronger field 

acetylide complexes have intermediate-spin rather than high-spin ferrous centers.  

 Investigation of the spectroscopic features and magnetic susceptibility of the 4-

coordinate iron alkyls is also an important component of the electronic structure 

discussion of these complexes. All of the iron alkyl complexes displayed similar 1H 

NMR spectroscopic features and the stronger field (1-CCR and 1-Ph) and in-plane (1-

CCR, 1-Me) alkyls exhibited the narrowest shift ranges (Table 1.5). This 

spectroscopic observation bears little experimental weight, however, because it 

provides no direct information regarding the spin or oxidation state of the metal 

center. Confirmation that the ligand centered radical is antiferromagnetically coupled 

to both the high-spin and intermediate-spin iron centers was obtained by investigating 
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the magnetic susceptibility of each alkyl complex. The benzene-d6 solution magnetic 

data for all of the discussed monoalkyl complexes at 20 °C is presented in Table 1.9. 

The iron alkyl complexes exhibit moments consistent with an S = 3/2 metal center and 

range from 3.5 μB to 4.2 μB. The solution magnetic susceptibility values of 2.0(2) μB 

and 2.5(2) μB observed for 1-CCtBu and 1-CCPh, respectively, along with the 

observation of shorter Fe-N bonds in the solid state structure, strongly suggest that the 

electronic structure of the acetylide complexes are best described as having 

intermediate-spin iron(II) metal centers that are antiferromagnetically coupled to the 

monoreduced PDI ligands. Additionally, the solid state magnetic moment of 1-CCPh 

was determined to be 2.6(1) μB (Guoy balance). This value is once again slightly 

higher than the solution value but remains within experimental error. 

 
Table 1.9. Solution magnetic susceptibility of bis(imino)pyridine iron alkyl 

complexes determined in benzene-d6 at 20 °C. 
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 Variable temperature, solid-state magnetic susceptibility data was collected for 

1-Np and 2-Np, to see whether or not these alkyls exhibit spin-crossover behavior 

upon cooling. In accordance with the data obtained for 1-Br, the solid state magnetic 

susceptibility of 1-Np ranged from 2.8 μB to 4.4 μB (5 – 300 K) (Figure 1.15), without 

evidence for spin-crossover. Similarly, the magnetic susceptibility of 2-Np ranged 

from 3.6 μB to 4.7 μB over the same temperature range. The ambient temperature 

values of 4.4 μB and 4.7 μB observed for 1-Np and 2-Np, respectively, are higher than 

their determined solution values of 4.0(2) μB and 4.2(2) μB but remain within error. 

Overall the structural, spectral, and magnetic data acquired for 1-Np and 2-Np 

establish that these sp3-hybridized alkyl complexes have the same electronic structure 

as the one calculated for 1-Cl.8 Without reliable variable temperature magnetic 

susceptibility data for 1-Me and 1-Ph, the spin-state of the iron center in these 

complexes remains ambiguous and may cross from high-spin to intermediate-spin at 

low temperatures.  

Figure 1.15. Solid state magnetic susceptibility data for 1-Np. 
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 During the preparation of bis(imino)pyridine iron alkyl complexes, one 

complex in particular had drastically different 1H NMR spectroscopic properties. This 

complex, the bis(imino)pyridine iron allyl complex, 1-Allyl, was prepared from the 

addition of allylmagnesium bromide to 1-Br (Figure 1.16). This complex proved 

difficult to isolate because the allyl complex and magnesium bromide byproduct 

remained in equilibrium during workup.29 The addition of excess 1,4-dioxane to aid 

MgBr2 precipitation proved to be only marginally successful.  

Figure 1.16. Preparation of 1-Allyl from Grignard addition to 1-Br. 

 

 All of the (PDI)Fe-X complexes previously discussed in this chapter exhibit 

resonances that are paramagnetically broadened and shifted over a 600 ppm chemical 

shift range (Tables 1.3 and 1.5). Importantly, the hydrogen atoms located in the 

chelate plane appear the most shifted from their diamagnetic reference values due to a 

Fermi contact interaction with the high- or intermediate-spin, d6 metal center. 

Additionally, the isopropyl methine resonances are shifted significantly upfield (to 

around -110 ppm) due to a through space interaction with the metal center. For the 

alkyl complexes, the resonances associated with the alkyl chain (other than the 

hydrogens on the α-carbon) show up downfield of 20 ppm, consistent with a directly 

delocalized through-bond interaction.  
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 For 1-Allyl, the paramagnetically broadened 1H NMR resonances are dispersed 

over a much narrower chemical shift range (175 ppm) with the imine methyl 

resonance appearing at -26.64 ppm and the m-pyridine resonance at 47.64 ppm. The 

narrow shift range of these peaks is likely due an η3, rather than η1, allyl ligand in 

solution. The observed C2v-symmetry of 1-Allyl could be the result of fast left-right 

flipping/rotation of the bound η3-allyl ligand or an interconversion between η1- and η3-

hapticity on the NMR timescale. Interestingly, the isopropyl methine resonances of 

this complex appear at 2.99 ppm; their dipolar interaction with the metal center is 

shielded by the η3-allyl ligand. Unfortunately, the p-pyridine peak for 1-Allyl was not 

located.  

The solid-state structure of 1-Allyl (Figure 1.17) revealed that the allyl ligand 

is coordinated in an η3-fashion, with the three carbon plane oriented nearly 

perpendicular to the iron chelate plane and the methine carbon, C(35), directed toward 

an imine nitrogen. Notably, the central carbon atom is not in the iron chelate plane, 

providing a molecule with a more idealized square pyramidal rather than trigonal 

bipyramidal geometry. The allyl ligand was positionally disordered with nearly equal 

populations of the rotamer where the methine carbon is directed toward N(1) and the 

opposite rotamer where it is directed toward N(3). Although successfully modeled, the 

disorder compromises discussion of the metrical parameters of the allyl ligand itself.  

The distortions observed in the bond distances of the bis(imino)pyridine ligand 

for 1-Allyl (Table 1.10) clearly establish that this ligand is doubly reduced, with 

Cimine-Cpyridine distances of 1.420(2) Å and 1.410(2) Å.6 Although less convincing, the 

Nimine-Cimine distances are elongated to 1.3273(18) Å and 1.3369(18) Å and also 

suggest a doubly reduced bis(imino)pyridine. The iron-nitrogen distances for this 

complex of 1.9934(11) Å, 1.8418(11) Å, and 2.0017(12) Å suggest that this is an 
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intermediate rather than high-spin complex. This two electron chelate reduction is the 

likely explanation for the unusual 1H NMR properties of 1-Allyl.  
 

 
Figure 1.17. Molecular structure of 1-Allyl at 30 % probability ellipsoids. Hydrogen 

atoms and one positionally disordered allyl ligand omitted for clarity. 

 

Table 1.10. Selected bond distances (Å) and angles (°) for 1-Allyl. 

Fe(1)-N(1) 1.9934(11) N(1)-C(2) 1.3273(18) 

Fe(1)-N(2) 1.8418(11) N(3)-C(8) 1.3369(18) 

Fe(1)-N(3) 2.0017(12) C(2)-C(3) 1.420(2) 

Fe(1)-C(34) 2.115(4) C(7)-C(8) 1.410(2) 

Fe(1)-C(35) 2.074(3) N(2)-Fe(1)-C(34) 124.24(13) 

Fe(1)-C(36) 2.151(3) N(2)-Fe(1)-C(36) 167.86(13) 
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Even though analytically pure samples of 1-Allyl could not be obtained, the 

two electron bis(imino)pyridine chelate reduction sparked interest in determining the 

magnetic susceptibility of this complex. Two independently prepared samples of 1-

Allyl that each contained approximately 10 % 1-Br were analyzed by Evans method22 

and determined to have an average magnetic susceptibility of 2.4(2) μB at 20 °C in 

benzene-d6. While this is an unreliable way to assay the magnetic moment of this 

complex, the relatively low moment (especially with 1-Br impurity, S = 3/2, μeff = 

3.9(2) μB) does hint that the doubly reduced chelate antiferromagnetically couples to 

an intermediate spin, iron(III) center (S = 1/2). If a synthetic route to pure 1-Allyl is 

discovered, a more detailed spectroscopic, magnetic, and computational study is 

required to describe the electronic structure of this compound indisputably.  

 

1.5 Other PDI Iron Complexes with X-type Ligands 

 Because the electronic configuration of (PDI)Fe-X complexes appeared highly 

sensitive to the nature of the X group, as observed between the acetylide and sp3-

hybridized iron alkyl complexes, the preparation of complexes containing 

monoanionic ligands from each extreme of the spectrochemical series was desired. 

With the electronic structure of the weak field bis(imino)pyridine iron complexes in 

hand (X = Br, Cl), routes to the iron cyanide complex, 1-CN, were explored. 

Unfortunately, both the addition of cyanogen to 1-(N2)2 and NaCN addition to either 

1-Cl or 1-Br proved unsuccessful. Addition of a stoichiometric amount of 

trimethylsilyl isocyanide to 1-(N2)2 or 1-OEt (Chapter 4), resulted in the formation of 

the bis(isocyanide) complex, 1-(CNTMS)2, rather than N-Si bond cleavage. The 

preparation of a strong field iron monohydride, 1-H, or monosilyl, 1-SiR3, complex 

has also proven to be problematic. Addition of PhSiH3 or SiH4 to 1-(N2)2 resulted in 

the formation of the corresponding iron bis(η2-silane) complex.9 Attempts to 
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synthesize 1-H from the addition of H2 to 1-(N2)2 or an iron alkyl complex have 

resulted in the formation of the dihydrogen complex, 1-H2,9 which rapidly loses 

hydrogen upon re-exposure to a nitrogen atmosphere.  

 Because oxidative addition was not observed for either dihydrogen or Si-H 

bonds with 1-(N2)2, substrates containing weak O-H bonds were added to the reducing 

metal center in substoichiometric quantities. This strategy was first attempted with 

alcohols for two reasons; oxidative addition of the O-H bond could result in the 

formation of a five coordinate bis(imino)pyridine iron alkoxy hydride complex or 

occur across two metal centers, yielding both 1-OR and 1-H. The first alcohol added 

to 1-(N2)2 was allyl alcohol. The addition of 0.5 equivalents resulted in the formation 

of a new paramagnetic complex along with the observation of unreacted 1-(N2)2 and 

free bis(imino)pyridine ligand by 1H NMR spectroscopy. This newly formed 

paramagnetic complex was identified as the iron alkoxide complex, 1-OAllyl, by X-

ray crystallography. The metrical parameters of the ligand in 1-OAllyl were 

suggestive of one electron reduction with Nimine-Cimine and Cimine-Cipso bond distances 

of 1.312(3)/1.306(2) Å and 1.459(3)/1.460(3) Å, respectively.6 Similarly, this alkoxide 

complex displayed a 1H NMR spectrum reminiscent of the aforementioned 

monohalide complexes with the imine methyl resonance at -219.87 ppm. The alcohol 

hydrogen atom was not located for this reaction and could account for the observation 

of free ligand. 

 A second bis(imino)pyridine iron alkoxide complex has also been 

characterized by X-ray crystallography, the iron silanolate complex, 1-OTMS.25 This 

compound was prepared from the stoichiometric addition of NaOSiMe3 to 1-Br. In an 

unrelated experiment, 1-OTMS was isolated as a byproduct of wet 

(trimethylsilyl)acetylene addition to 1-(N2)2 and crystallographically characterized. 

One data set was fitted for a triclinic space group and had two equivalent iron 

32 



environments in the unit cell. The second data set was fit to a monoclinic space group 

and the unit cell contained two inequivalent iron environments. For this collection, one 

bis(imino)pyridine iron silanolate molecule had a positionally disordered isopropyl 

aryl substituent, while the other had a rotationally disordered trimethylsilyl group. The 

chelate metrical parameters for all three crystallographically determined examples of 

1-OTMS were consistent with a monoreduced ligand. The Nimine-Cimine bond lengths 

ranged between 1.2966(35) Å and 1.3051(17) Å, while the Cimine-Cipso bond distances 

between were between 1.4406(36) Å and 1.4602(38) Å among the 3 molecules (2 data 

sets).6 The average Fe-Npy and Fe-Nimine bond distances of 1.987(2) Å and 2.120(2) Å, 

respectively, are consistent with a high-spin metal center.  

 Additionally, pyridine has been added to 1-OTMS and the resulting 5-

coordinate complex, 1-OTMS(py), has been crystallographically characterized.25 The 

overall geometry of this complex is distorted square pyramidal, similar to 1-Br(THF) 

and 1-Cl(Et2O), with N(2)-Fe(1)-O(1) and N(2)-Fe(1)-N(4) angles of 160.99(12) ° 

and 95.38 °, respectively. Importantly, the Nimine-Cimine and Cimine-Cipso distances of 

1.299(5)/1.322(5) Å and 1.454(6)/1.447(6) Å, respectively, are consistent with one 

electron bis(imino)pyridine reduction.  

 The chelate metrical parameters in the solid state structures of 1-OAllyl, 1-

OTMS, and 1-OTMS(py) are all consistent with a monoreduced chelate and the Fe-N 

distances suggest that the iron center for each complex is high spin. Each complex 

displays a 1H NMR spectra suggestive of a high-spin ferrous center; peaks were 

observed over a 600 ppm range in analogy to the monohalide complexes. Solution 

magnetic moments collected for 1-OAllyl (4.0(2) μB) and 1-OTMS (4.0(2) μB) in 

benzene-d6 solution at 20 °C confirmed the presence of a high-spin iron center in these 

complexes. Unfortunately, the magnetic susceptibility of 1-OTMS(py) has not been 

investigated and the spin-state of this complex remains open for investigation. 
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 The addition of carboxylic acids to 1-(N2)2 was also investigated as a way to 

prepare bis(imino)pyridine complexes with weak field carboxylate ligands. 

Stoichiometric, dropwise addition of either benzoic or hydrocinnamic acid to a dilute 

pentane solution of 1-(N2)2 resulted in the carboxylate complexes 1-OBz (76% yield) 

and 1-H2CIN (41% yield), respectively (Figure 1.18). As observed for the alcohol 

addition, this method of preparation yielded reasonable amounts of free ligand (~20 

%), which was readily removed from the product mixture upon crystallization from 

concentrated toluene solutions layered with pentane at -35 °C.  

Figure 1.18. Preparation of bis(imino)pyridine iron carboxylate complexes. 

 

 Both iron carboxylate complexes, 1-OBz and 1-H2CIN, were characterized by 

X-ray cyrstallographically. For both 1-OBz (Figure 1.19) and 1-H2CIN (Figure 1.20), 

the κ2-carboxylate ligand is nearly symmetrically disposed about the iron-chelate 

plane with N(2)-Fe(1)-O(1/2) bond angles of 158.21(6)/137.69(5) ° and 

156.61(12)/140.23(12) °, respectively. In either case, the Fe(1)-C(34) bond is well 

outside the sum of the covalent radii of a high-spin iron center and an sp2-hybridized 

carbon atom (2.25 Å)30 at 2.437(2) Å (1-OBz) and 2.383(4) Å (1-H2CIN). The chelate 

distances for both complexes are consistent with a one electron reduction, with 

average Nimine-Cimine and Cimine-Cipso distances of 1.301 Å and 1.452 Å, respectively. In 
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metrical parameters of 1-OBz (Table 1.11) suggest that the chelate reduction is 

delocalized, while the same distances in 1-H2CIN (Table 1.12) appear highly 

localized. This localization is likely an artifact of the lower quality crystallographic 

data collected for this carboxylate complex and further comment will be offered in 

Chapter 4 of this dissertation.  

 
Figure 1.19. Molecular structure of 1-OBz at 30 % probability ellipsoids. Hydrogen 

atoms omitted for clarity. 

 

Table 1.11. Selected bond distances (Å) and angles (°) for 1-OBz. 

Fe(1)-N(1) 2.1678(14) N(1)-C(2) 1.305(2) 

Fe(1)-N(2) 1.9842(15) N(3)-C(8) 1.308(2) 

Fe(1)-N(3) 2.1269(15) C(2)-C(3) 1.450(3) 

Fe(1)-O(1) 2.1166(13) C(7)-C(8) 1.410(2) 

Fe(1)-O(2) 2.1033(13) N(2)-Fe(1)-O(1) 158.21(6) 
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Figure 1.20. Molecular structure of 1-H2CIN at 30 % probability ellipsoids. 

Hydrogen atoms omitted for clarity. 

 

Table 1.12. Selected bond distances (Å) and angles (°) for 1-H2CIN. 

Fe(1)-N(1) 2.143(3) N(1)-C(2) 1.264(4) 

Fe(1)-N(2) 2.005(3) N(3)-C(8) 1.327(4) 

Fe(1)-N(3) 2.109(3) C(2)-C(3) 1.494(5) 

Fe(1)-O(1) 2.127(3) C(7)-C(8) 1.408(5) 

Fe(1)-O(2) 2.102(3) N(2)-Fe(1)-O(1) 156.61(12) 

 

 The 1H NMR spectra of 1-OBz and 1-H2CIN display paramagnetically 

broadened resonances shifted over 650 ppm range, with the imine methyl resonance at 

-284.10 and -284.97 ppm, respectively. Even though this peak appears significantly 
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more upfield than for the monohalides or alkyls, the remaining resonances are shifted 

in the same direction and general range as these other compounds. The solution 

magnetic susceptibility measured for these complexes was found to be 4.9(2) μB for 1-

OBz and 4.4(2) μB for 1-H2CIN, confirming that the iron center is high-spin. These 

values are slightly higher than observed for the other high-spin (PDI)Fe-X complexes 

and may be due to a weaker degree of antiferromagnetic coupling (lower degree of 

covalency) between the chelate and high-spin metal center caused by the weak field 

κ2-carboxylate ligand. Similar reactivity was observed when unprotected lactams such 

as δ-valerolactam, succinimide, and phthalimide were added to 1-(N2)2; however, 

these κ2-N,O complexes were not fully investigated because they displayed 1H NMR 

shifts that were nearly identical to the carboxylates.  

 

1.6  Mössbauer Spectroscopy 

 With a series of (PDI)Fe-X compounds in hand, a representative example for 

each type of complex described in this Chapter was chosen for investigation by 

Mössbauer spectroscopy. The spectrum obtained for 1-H2CIN is presented in Figure 

1.21 as a representative example and the Mössbauer parameters (δ, ΔEQ) determined 

for this complex, 1-Cl, 1-Np and 1-CCPh are tabulated in Table 1.13. Additionally, 

the sample purity for each complex (%) is reported in Table 1.13. As expected, the 

complex with the weakest ligand field, 1-H2CIN, produced the highest isomer shift (δ 

= 0.96 mm·s-1). This establishes a lower degree of covalency between the metal and 

bis(imino)pyridine ligand and explains the higher magnetic susceptibility of this 

complex as compared to the other high-spin complexes. The observed isomer shift 

decreases as the field strength increases for this set of complexes; 1-Cl (δ = 0.77 

mm·s-1), 1-Np (δ = 0.57 mm·s-1), and 1-CCPh (δ = 0.31 mm·s-1). 
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Figure 1.21. Zero-field Mössbauer spectrum of 1-H2CIN at 80 K. 

 

Table 1.13. Mössbauer parameters (mm·s-1) for (PDI)Fe-X complexes at 80 K. 

 

 Although the zero-field Mössbauer spectrum of 1-CCPh is contaminated with 

minor quantities of undesired iron containing species (13 %, 8 %), the isomer shift 

observed for this complex (δ = 0.31 mm·s-1) is more consistent with an intermediate 

rather than high-spin ferrous center.31 Inspection of the quadrupole splitting values 

(ΔEQ) obtained for this series of complexes further substantiates this claim. The values 

obtained for the high spin cases, 1-H2CIN (ΔEQ = 1.66 mm·s-1), 1-Cl (ΔEQ = 0.73 

mm·s-1), and 1-Np (ΔEQ = 1.16 mm·s-1), are all considerably lower than the 

quadrupole splitting of ΔEQ = 3.66 mm·s-1 observed for 1-CCPh. Based on the relative 
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d-orbital energies determined for 1-Cl (Figure 1.22) with a (4,1) B3LYP broken 

symmetry calculation that placed four unpaired electrons on the metal and one on the 

chelate,8 an increase in quadrupole splitting would be expected when going from a 

high to an intermediate-spin metal center. Placement of the dx2-y2 based electron into 

any of the other SOMOs (dxy, dxz, or dz2) would greatly decrease the electric field 

gradient oriented in the xy-plane and increase the electron density along the z-axis. 

Increasing the charge along the z-axis, when the complex already has an electronic 

environment heavily oriented in that direction, would therefore produce a larger 

quadrupole splitting value.   

Figure 1.22. Qualitative molecular orbital calculated for 1-Cl. 
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 As presented in Figure 1.22, the electronic structure of 1-Cl is best described 

as a high-spin ferrous center that is antiferromagnetically coupled to a singly reduced 

bis(imino)pyridine chelate. This electronic structure is also proposed for many of the 

complexes presented in this work (Figure 1.23, middle), including all of the newly 

prepared halide, alkoxide, and carboxylate complexes. The magnetic, structural, and 

Mössbauer spectroscopic data presented in this work establishes that 1-CCtBu, 1-

CCPh (Figure 1.23, left), and 1-Allyl (Figure 1.23, right) do not fit this model. The 

electronic structure the acetylide complexes is best described as having an 

intermediate-spin ferrous center antiferromagnetically coupled to a chelate radical, 

while 1-Allyl is proposed to have an intermediate spin ferric center that is 

antiferromagnetically coupled to two bis(imino)pyridine radicals. The parentage of 

each orbital has been labeled for the complexes with a high-spin ferrous center (Figure 

1.23, middle), in analogy to 1-Cl,8 but the ordering of the low energy orbitals may be 

different for other complexes in this category. The parentage of each metal-based 

orbital in the electronic description of 1-CCtBu, 1-CCPh, and 1-Allyl (Figure 1.23) is 

based on the computational data obtained for 1-Cl. Definitive assignment of these 

orbitals is dependent on open shell, broken-symmetry DFT calculations. The iron 

center in 1-Me, 2-Me, 3-Me, and 1-Ph appears high-spin at 20 °C (Table 1.9); 

however, the 1H NMR shifts observed for these complexes (Table 1.5) suggest that 

spin crossover may occur at a lower temperature. Additionally, EPR data has been 

collected for many of the complexes discussed in this Chapter and is presented in 

Appendix B.  

 

 

 

 

40 



Figure 1.23. Proposed electronic structure of each compound prepared in this work. 

 

1.7 Conclusion 

 The electronic structure of several bis(imino)pyridine iron monohalide 

complexes, with and without σ-donors in the fifth coordination site, was investigated 

and found to have high-spin ferrous centers that  antiferromagnetically couple to 

singly reduced bis(imino)pyridine ligands. Similarly, four-coordinate iron monoalkyl 
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complexes were prepared and the electronic structure examined. For this class of 

compound, the spin state of the metal center is dependent on the field strength of the 

alkyl ligand. For example, the iron alkyls have an electronic structure similar to the 

monohalide complexes, while the bis(imino)pyridine iron acetylide complexes were 

found to have an intermediate-spin iron center. One alkyl complex in particular, 1-

Allyl, was found to have an entirely different electronic structure. Elucidation of the 

solid-state structure of this complex confirmed that the bis(imino)pyridine chelate in 

this complex was doubly reduced, leaving the metal center in the ferric oxidation state. 

The difference in electronic structure observed between the iron alkyl, alkynyl, and 

allyl complexes highlights the redox flexibility of the bis(imino)pyridine ligand. 

Preparation and electronic structure elucidation of bis(imino)pyridine iron alkoxide 

complexes revealed that these complexes are also best described as having a high-spin 

ferrous center that is antiferromagnetically coupled to the chelate. In an attempt to 

prepare weak field (PDI)Fe-X complexes, iron carboxylate complexes were targeted. 

The 1H NMR properties and solid-state structure of these κ2-carboxylate compounds 

suggested single reduction of the bis(imino)pyridine chelate and magnetic 

susceptibility measurements revealed a higher moment than observed for the other 

high-spin complexes. Investigation of this series by Mössbauer spectroscopy 

confirmed a lower degree of covalency for the carboxylates, as well as the 

intermediate-spin electronic configuration proposed for the iron acetylide complexes.  

 

1.8  Experimental Procedures 

General Considerations. All air- and moisture-sensitive manipulations were carried 

out using standard vacuum line, Schlenk, and cannula techniques or in an MBraun 

inert atmosphere dry box containing an atmosphere of purified nitrogen. Solvents for 

air- and moisture-sensitive manipulations were initially dried and deoxygenated using 
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literature procedures.32 Hydrogen and deuterium gas were passed through a column 

containing manganese oxide supported on vermiculite and 4 Å molecular sieves before 

admission to the high vacuum line. Benzene-d6 and toluene-d8 were purchased from 

Cambridge Isotope Laboratories and dried over 4 Å molecular sieves or titanocene, 

respectively. The complexes 1-(N2)2
9 and 1-Cl10 were prepared according to literature 

procedures. 

 Sodium triethylborohydride, boron trifluoride diethyl etherate, methyllithium, 

and allylmagnesium bromide were purchased from Aldrich and used as received. 

Neosilyllithium was purchased as a solution from Aldrich and the solvent was 

evacuated before use. Sodium cyanide (J. T. Baker), benzoic acid (Acros), and 

hydrocinnamic acid (Aldrich) were all dried on the high-vacuum line before use. 

Trimethylsilyl cyanide was purchased from Aldrich and dried over sieves before use. 

Allyl alcohol was obtained from Aldrich and carefully dried over a small amount of 

sodium before use. Cyanogen gas was purchased from Matheson and used as received. 

Similarly, silane was purchased from Voltaix and used as received. Neopentyllithium 

was prepared according to literature procedure.33 Both LiCCPh and LiCCtBu were 

prepared by deprotonation of the respective acetylene with nBuLi in diethyl ether 

(LiCCPh) or tetrahydrofuran (LiCCtBu). The resulting solutions were evacuated, 

filtered through Celite with ether, and washed with pentane to obtain the desired 

reagent as a white solid.  
1H NMR spectra were recorded on Varian Mercury 300, Inova 400, 500, and 

600 spectrometers operating at 299.76, 399.78, 500.62, and 599.78 MHz, respectively. 

All 1H chemical shifts are reported relative to SiMe4 using the 1H (residual) shift of the 

solvent as a secondary standard. Solution magnetic moments were determined by 

Evans method22 using a ferrocene standard and are the average value of at least two 

independent measurements. Gouy balance measurements were performed with a 
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Johnson Matthey instrument that was calibrated with HgCo(SCN)4. Peak width at half 

height is given for paramagnetically broadened resonances. Elemental analyses were 

performed at Robertson Microlit Laboratories, Inc., in Madison, NJ. 

Single crystals suitable for X-ray diffraction were coated with polyisobutylene 

oil in a drybox, transferred to a nylon loop and then quickly transferred to the 

goniometer head of a Bruker X8 APEX2 diffractometer equipped with a molybdenum 

X-ray tube (λ = 0.71073 Å). Preliminary data revealed the crystal system. A 

hemisphere routine was used for data collection and determination of lattice constants. 

The space group was identified and the data were processed using the Bruker SAINT+ 

program and corrected for absorption using SADABS. The structures were solved 

using direct methods (SHELXS) completed by subsequent Fourier synthesis and 

refined by full-matrix least-squares procedures. 

Mössbauer data were collected on an alternating constant-acceleration 

spectrometer. The minimum experimental line width was 0.24 mm s-1 (full width at 

half height). A constant sample temperature was maintained with an Oxford 

Instruments Variox or an Oxford Instruments Mössbauer-Spectromag 2000 cyrostat. 

Reported isomer shifts (δ) are referenced to iron metal at 293 K. 

 

Preparation of (EtPDI)FeCl (2-Cl). A 250 mL round-bottom flask was charged with 

0.500 g (0.906 mmol) of 2-Cl2 and approximately 100 mL of diethyl ether. The 

resulting solution was cooled to -35 °C over the course of 20 minutes. A second 

solution containing 0.11 g (0.906 mmol) of sodium triethylborohydride (from 1.0 M 

solution in toluene) in 25 mL of diethyl ether was added dropwise to the cold solution. 

The resulting reaction mixture turned dark green in color immediately after the 

addition. After stirring for 3 hours, the solution was filtered through Celite. The 

solvent was removed in vacuo to afford 0.352 g (75 %) of a dark green solid identified 
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as 2-Cl. Analysis for C29H35N3FeCl: Calc. C, 67.38; H, 6.83; N, 8.13. Found C, 67.00; 

H, 6.50; N, 7.87. Magnetic susceptibility (benzene-d6, 293 K) μeff = 4.0(2) μB. 1H 

NMR (benzene-d6, 293 K): δ = 369.3 (238 Hz, 1H, p-pyr), 68.1 (85 Hz, 2H, m-pyr), -

6.5 (32 Hz, 4H, m-aryl), -15.3 (24 Hz, 2H, p-aryl), -31.9 (87 Hz, 12H, CH2CH3), - 

52.1 (197 Hz, 4H, CH2CH3), - 61.5 (236 Hz, 4H, CH2CH3), -214.0 (166 Hz, 6 H, 

C(CH3)).  

 

Preparation of (MesPDI)FeBr (3-Br). This complex was prepared in a manner similar 

to 2-Cl with 0.500 g (0.86 mmol) of 3-Br2 and 0.105 g of sodium triethylborohydride 

solution (0.86 mmol, 1.0 M in toluene) to yield 0.317 g (74%) of a dark green solid 

identified as 3-Br. Analysis for C27H31N3FeBr: Calc. C, 60.80; H, 5.87; N, 7.88. 

Found C, 60.47; H, 5.53; N, 7.48. Magnetic susceptibility (benzene-d6, 293 K) μeff = 

3.8(2) μB. 1H NMR (benzene-d6, 293 K): δ = 354.01 (258 Hz, 1H, p-pyr), 65.78 (113, 

2H, m-pyr), 18.83 (14 Hz, 6H, p-CH3), -6.44 (37 Hz, 4H, m-aryl), -41.44 (214 Hz, 

12H, o-CH3), -209.73 (233 Hz, 6H, C(CH3)). 

 

Addition of tetrahydrofuran to 1-Br. A J. Young tube was charged with 0.015 g 

(0.024 mmol) of 1-Br and approximately 0.7 mL of benzene-d6. Using a microsyringe, 

0.017 g (20 μL, 0.240 mmol) of tetrahydrofuran was added. This solution was 

analyzed by 1H NMR spectroscopy and a small deviation from the resonances of 1-Br 

was observed. 1H NMR (benzene-d6, 293 K): δ = 351.87 (833 Hz, 1H, p-pyr), 69.27 

(165 Hz, 2H, m-pyr), -0.75 (36 Hz, 4H, m-aryl), -10.05 (57 Hz, 12H, CH(CH3)2), -

11.32 (26 Hz, 2H, p-aryl), -18.63 (173 Hz, 12H, CH(CH3)2), -54.96 (717 Hz, 4H, 

CH(CH3)2), -223.06 (194 Hz, 6H, C(CH3)). Upon removing the solvent and 

redissolving the green solid in benzene-d6, 1H NMR spectroscopy revealed that a small 

amount of tetrahydrofuran remained and the resonances shifted towards free 1-Br. 1H 
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NMR (benzene-d6, 293 K): δ = 383.05 (314 Hz, 1H, p-pyr), 68.97 (93 Hz, 2H, m-pyr), 

-4.75 (33 Hz, 4H, m-aryl), -12.29 (29 Hz, 2H, p-aryl), -19.51 (42 Hz, 12H, 

CH(CH3)2), -31.25 (141 Hz, 12H, CH(CH3)2), -102.92 (674 Hz, 4H, CH(CH3)2), -

212.21 (156 Hz, 6H, C(CH3)). Greenish-brown crystals of 1-Br(THF) suitable for X-

ray diffraction and Gouy balance magnetic susceptibility determination were obtained 

by chilling a concentrated solution of 1-Br in pentane/tetrahydrofuran to -35 °C. 

Magnetic susceptibility (Gouy balance, 293 K) μeff = 4.5(1) μB. 

 

Preparation of (iPrPDI)FeBr(py) (1-Br(py)). A 20 mL scintillation vial was charged 

with 0.075 g (0.121 mmol) of 1-Br and approximately 10 mL of diethyl ether and set 

to stir. A second solution of 0.011 g (11 μL, 0.134 mmol) of pyridine in approximately 

5 mL of pentane was added slowly dropwise and the resulting greenish-brown solution 

was allowed to stir at ambient temperature for 18 hours. The reaction mixture was 

filtered through Celite with toluene and all solvent was removed in vacuo to yield a 

rust colored solid. Recrystallization from a concentrated toluene solution layered with 

pentane at -35 °C afforded 0.056 g (0.080 mmol, 66 %) of rust colored crystals 

identified as 1-Br(py). Analysis for C38H48BrFeN4: Calc. C, 65.52; H, 6.95; N, 8.04.  

Found: C, 65.44; H, 7.19; N, 7.71. Magnetic susceptibility (benzene-d6, 293 K): μeff = 

3.9(2) μB. 1H NMR (benzene-d6, 293 K): δ = 325.93 (712 Hz, 1H, p-pyr), 114.75 

(4301 Hz, 2H, py), 101.75 (174 Hz, 2H, m-pyr), 38.80 (400 Hz, 1H, py), 23.78 (312 

Hz, 2H, py), 10.81 (239 Hz, 4H, CH(CH3)2), -0.30 (361 Hz, 12H, CH(CH3)2), -7.96 

(620 Hz, 12H, CH(CH3)2), -8.63 (32 Hz, 2H, p-aryl), -241.30 (525 Hz, 6H, C(CH3)), 

m-aryl resonance not located. 

 

Preparation of (iPrPDI)FeCl(py) (1-Cl(py)). This complex was prepared in a manner 

similar to 1-Br(py) with 0.050 g (0.087 mmol) of 1-Cl and 0.010 g (14 μL, 0.174 
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mmol) of pyridine to yield 0.11 g (20 %) of 1-Cl(py) as a reddish-brown solid upon 

recrystallization. 1H NMR (benzene-d6, 293 K): δ = 328.18 (104 Hz, 1H, p-pyr), 

120.75 (4670 Hz, 2H, py), 97.84 (181 Hz, 2H, m-pyr), 40.10 (275 Hz, 1H, py), 24.20 

(211 Hz, 2H, py), -1.34 (768 Hz, 12H, CH(CH3)2), -6.58 (1437 Hz, 12H, CH(CH3)2), -

8.85 (31 Hz, 2H, m-aryl), -10.11 (93 Hz, 1H, p-aryl), -240.46 (594 Hz, 6H, C(CH3)), 

one resonance not located. 

 

Preparation of (iPrPDI)Fe(FBF3)(Et2O) (1-(FBF3)(Et2O)). A 20 mL scintillation vial 

was charged with 0.100 g (0.168 mmol) of 1-(N2)2 and approximately 10 mL of 

diethyl ether and set to stir. With a microsyringe, 0.018 g (16 μL, 0.168 mmol) of 

boron trifluoride diethyl etherate was added to the solution. The resulting green 

solution turned brown in color over the course of 18 hours while stirring. At that time, 

the solution was filtered through Celite and the solvent was removed in vacuo. Upon 

recrystallization of the resulting brown solid from diethyl ether at -35 °C, brown 

crystals identified as 1-(FBF3)(Et2O) were isolated. Analysis for C33H43N3FeBF4 1-

(FBF3): Calc. C, 63.48; H, 6.94; N, 6.73. Found C, 63.07, H, 6.83; N, 5.88. 1H NMR 

(benzene-d6, 293 K): δ = 114.47 (1769 Hz, p-pyr or m-pyr), -5.48 (140 Hz, aryl), -

25.14 (567 Hz, 12H, CH(CH3)2), -35.55 (542 Hz, 12H, CH(CH3)2), -155.46 (1405 Hz, 

4H, CH(CH3)2), -267.95 (186 Hz, 6H, C(CH3)), several resonances not located. 

 

Preparation of (EtPDI)FeMe (2-Me). A 100 mL round-bottomed flask was charged 

with 0.500 g (0.971 mmol) of 2-Cl and 50 mL of diethyl ether. The resulting brown 

solution was chilled to -35 °C in the dry box freezer. With stirring, 0.606 mL (0.971 

mmol) MeLi (1.6 M in diethyl ether) was added forming a dark reddish-brown 

reaction mixture. The slurry was stirred for 30 minutes and then filtered through 

Celite. The filtrate was collected and the solvent removed in vacuo leaving a reddish-
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purple solid. The product was washed twice with pentane to afford 0.374 g (78 %) of 

2-Me. Analysis for C30H33N3Fe: Calc. C, 72.57; H, 7.71; N, 8.46. Found C, 72.43; H, 

7.46; N, 8.63. Magnetic susceptibility (benzene-d6, 293 K) μeff = 4.1(2) μB. 1H NMR 

(benzene-d6, 293 K): δ = 264.7 (123 Hz, 1H, p-pyr), 63.2 (58 Hz, 2H, m-pyr), -5.2 (19 

Hz, 4H, m-aryl), -24.6 (52 Hz, 12H, CH2CH3), -32.6 (78 Hz, 2H, p-aryl), -48.1 (142 

Hz, 4H, CH2CH3), -57.2 (198 Hz, 4H, CH2CH3), -167.8 (132 Hz, 6 H, C(CH3)), Fe-

CH3 not located.  

 

Preparation of (MesPDI)FeMe (3-Me). This compound was prepared using the same 

general procedure as 2-Me but instead by addition of 0.3 mL (0.48 mmol) of 1.6 M 

methyllithium solution in diethyl ether to 0.160 g (0.25 mmol) of 3-Cl2. This 

procedure afforded 0.032 g (27 %) of a green solid identified as 3-Me. Analysis for 

C28H29N3Fe: Calc. C, 71.32; H, 7.32; N, 8.97. Found C, 71.32; H, 6.98; N, 8.52. 

Magnetic susceptibility (benzene-d6, 293 K) μeff = 3.9(2) μB.  1H NMR (benzene-d6, 

293 K): δ = 264.5 (150 Hz, 1H, p-pyr), 61.5 (54 Hz, 1H, m-pyr), 12.6 (10 Hz, 6H, p-

CH3), -6.2 (22 Hz, 4H, m-aryl), -41.7 (119 Hz, 12H, o-CH3), -161.5 (142 Hz, 6H, 

C(CH3)), Fe-CH3 not located.  

 

Preparation of (EtPDI)FeCH2SiMe3 (2-Ns). A 20 mL scintillation vial was charged 

with 0.035 g (0.068 mmol) of 2-Cl and approximately 5 mL of diethyl ether. After 

cooling to -35 °C for 25 minutes, 0.006 g (0.068 mmol) of LiCH2SiMe3 dissolved in a 

minimal amount of diethyl ether was added dropwise. The resulting dark green 

solution was stirred for 5 hours after which time it was filtered through Celite. 

Removal of the solvent in vacuo yielded 0.028 g (72 %) of a green solid identified as 

2-Ns. Analysis for C33H46N3SiFe: Calc. C, 69.21; H, 8.10; N, 7.34. Found C, 68.92; H, 

7.67; N, 7.06. Magnetic susceptibility (benzene-d6, 293 K) μeff = 4.0(2) μB.  1H NMR 
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(benzene-d6, 293 K): δ = 341.5 (187 Hz, 1H, p-pyr), 67.9 (115 Hz, 2H, m-pyr), 42.3 

(219 Hz, 9H, SiMe3), -10.88 (57 Hz, 4H, m-aryl), -16.9 (50 Hz, 2H, p-aryl), -23.9 (83 

Hz, 12H, CH2CH3), -61.9 (249 Hz, 4H, CH2CH3), -75.4 (315 Hz, 4H, CH2CH3), -

194.0 (189 Hz, 6H, C(CH3)), Fe-CH2 not located.  

 

Preparation of (MesPDI)FeCH2SiMe3 (3-Ns). A 20 mL scintillation vial was charged 

with 0.075 g (0.141 mmol) of 3-Br, approximately 15 mL of diethyl ether, and a stir 

bar. After cooling at -35 °C for 20 minutes, a second solution composed of 0.010 g 

(0.141 mmol) of LiCH2Si(CH3)3 in approximately 3 mL of diethyl ether was added 

dropwise over the course of 5 minutes. This solution was warmed to room temperature 

and allowed to stir for 5 hours. After filtering through Celite, the solvent was removed 

in vacuo to yield 0.054 g (71 %) of a dark green solid characterized as 3-Ns. Analysis 

for C31H42N3SiFe: Calc. C, 68.86; H, 7.85; N, 7.77. Found C, 68.65; H, 7.85; N, 7.46. 

Magnetic susceptibility (benzene-d6, 293 K) μeff = 4.0(2) μB. 1H NMR (benzene-d6, 

293 K): δ = 334.58 (183, 1H, p-pyr), 66.75 (88 Hz, 2H, m-pyr), 38.25 (200 Hz, 9H, 

SiMe3), 14.87 (7 Hz, 6H, p-CH3), -11.59 (23 Hz, 4H, m-aryl), -50.99 (169.52, 12H, o-

CH3), -189.43 (159 Hz, 6H, C(CH3)), Fe-CH2 not located. 

 

Preparation of (iPrPDI)FeCH2CMe3 (1-Np). A 250 mL round-bottomed flask was 

charged with 0.100 g (0.175 mmol) of 1-Cl and approximately 100 mL of diethyl 

ether. The resulting solution was placed in a liquid nitrogen chilled cold well for 

approximately 20 minutes. A second diethyl ether solution containing 0.014 g (0.175 

mmol) of neopentyllithium in 15 mL of solvent was prepared and added dropwise to 

the cold stirring solution of 1-Cl. The solution changed color slightly over the course 

of 2 hours from bright green to brownish-green. At this time, the solution was filtered 

through a Celite fitted frit and the solvent was removed in vacuo to yield 0.090 g 
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(85%) of a dark olive colored powder identified as 1-Np. Analysis for C38H54N3Fe: 

Calcd C, 74.98; H, 8.94; N, 6.90. Found: C, 74.63; H, 9.19; N, 6.47. Magnetic 

susceptibility (benzene-d6, 293 K): μeff = 4.0(2) μB 1H NMR (benzene-d6, 293 K): δ = 

374.05 (169 Hz, 1H, p-pyr), 86.68 (367 Hz, 9H, C(CH3)3), 63.80 (67 Hz, 2H, m-pyr), -

11.27 (23 Hz, 4H, m-aryl), -16.21 (20 Hz, 2H, p-aryl), -19.56 (29 Hz, 12H, 

CH(CH3)2), -33.94 (87 Hz, 12H, CH(CH3)2), -118.94 (371 Hz, 4H, CH(CH3)2), -

199.95 (143 Hz, 6H, C(CH3)), Fe-CH2C(CH3)3 resonance not located. 

 

Preparation of (EtPDI)FeCH2CMe3 (2-Np). This complex was prepared in a manner 

similar to 1-Np with 0.250 g (0.484 mmol) of 2-Cl and 0.045 g (0.484 mmol) of 

neopentyllithium to yield 0.143 g (54%) of a dark green powder identified as 2-Np. 

Analysis for C34H46N3Fe: Calcd C, 73.90; H, 8.39; N, 7.60.  Found: C, 73.84; H, 8.03; 

N, 7.28. Magnetic susceptibility (benzene-d6, 293 K): μeff = 4.2(2) μB. 1H NMR 

(benzene-d6, 293 K): δ = 347.84 (235 Hz, 1H, p-pyr), 91.06 (443 Hz, 9H, C(CH3)3), 

67.38 (87 Hz, 2H, m-pyr), -11.90 (37 Hz, 4H, m-aryl), -16.09 (31 Hz, 2H, p-aryl), -

27.70 (68 Hz, 12H, CH2CH3), -66.10 (257 Hz, 2H, CH2CH3), -82.35 (308 Hz, 2H, 

CH2CH3), -192.59 (62 Hz, 6H, C(CH3)), Fe-CH2C(CH3)3 resonance not located. 

 

Preparation of (iPrPDI)FeCCtBu (1-CCtBu). A 200 mL round-bottomed flask was 

charged with 0.150 g (0.262 mmol) of 1-Cl and approximately 100 mL of diethyl 

ether and placed in the cold well for 20 minutes. A second solution of 0.023 g (0.262 

mmol) of LiCCtBu in approximately 10 mL of diethyl ether was added slowly 

dropwise and within minutes the solution became brownish-red in color. After stirring 

for 18 hours, the solution was filtered through Celite and the solvent was removed in 

vacuo. Recrystallization from concentrated ether/pentane solution at -35 °C allowed 

collection of 0.055 g (20 %) analytically pure 1-CCtBu. Analysis for C39H52N3Fe: 
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Calcd C, 75.71; H, 8.47; N, 6.79.  Found: C, 75.32; H, 8.72; N, 7.00. Magnetic 

susceptibility (benzene-d6, 293 K): μeff = 2.5(1) μB. 1H NMR (benzene-d6, 293 K): δ = 

132.26 (201 Hz, 1H, p-pyr), 44.22 (44 Hz, 2H, m-pyr), 23.12 (32 Hz, 9H, tBu), -1.03 

(12 Hz, 4H, m-aryl), -8.77 (23 Hz, 12H, CH(CH3)2), -11.57 (87 Hz, 12H, CH(CH3)2), -

64.99 (338 Hz, 4H, CH(CH3)2), -130.68 (241 Hz, 6H, C(CH3)), one resonance not 

located.  

 

Preparation of (iPrPDI)FeCCPh (1-CCPh). This complex was prepared in a manner 

similar to 1-CCtBu with 0.200 g (0.349 mmol) of 1-Cl and 0.038 g (0.349 mmol) of 

LiCCPh to yield 0.055 g (35 %) 1-CCPh as a crystalline brown solid. Analysis for 

C41H48N3Fe: Calcd C, 77.10; H, 7.57; N, 6.58. Found: C, 76.77; H, 7.58; N, 6.58. 

Magnetic susceptibility (Gouy Balance, 293 K): μeff = 2.6(2) μB. 1H NMR (benzene-

d6, 293 K): δ = 117.29 (249 Hz, 1H, p-pyr), 39.75 (13 Hz, 2H, m-pyr), 18.78 (20 Hz, 

2H, phenyl), 17.58 (27 Hz, 2H, phenyl), 14.91 (23 Hz, 1H, phenyl), -0.62 (25 Hz, 4H, 

m-aryl), -8.05 (25 Hz, 12H, CH(CH3)2), -10.66 (83 Hz, 12H, CH(CH3)2), -61.45 (397 

Hz, 4H, CH(CH3)2), -121.27 (219 Hz, 6H, C(CH3)), one resonance not located.  

 

Preparation of (iPrPDI)Fe(C3H5) (1-Allyl). This compound was directly synthesized 

by the slow addition of 0.053 g of allylmagnesium bromide (362 μL of a 1.0 M 

solution in ether, 0.362 mmol) to a cold stirring pentane solution containing 0.175 g 

(0.283 mmol) of 1-Br. Approximately 1 mL of 1,4-dioxane was added to the reaction 

mixture to aid MgBr2 precipitation. After stirring for 1 hour, the reddish-brown 

solution was filtered through a Celite and the solvent was removed in vacuo to yield a 

reddish-brown solid. This residue was washed with approximately 2 mL of pentane 5 

times and the resulting concentrated pentane solution was chilled to -35 °C for days. 

Recrystallization yielded 0.035 g (21 %) of a brown solid identified as 1-Allyl. 
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Analysis for C36H48FeN3: Calcd C, 74.73; H, 8.36; N, 7.26. Found: C, 74.66; H, 8.49; 

N, 6.90. Magnetic susceptibility (benzene-d6, 293 K): μeff = 2.4(2) μB. 1H NMR 

(benzene-d6, 293 K): δ = 148.64 (770 Hz, 2H, allyl), 98.47 (795 Hz, 1H, allyl), 72.80 

(619 Hz, 2H, allyl), 47.64 (42 Hz, 2H, m-pyr), 8.07 (39 Hz, 2H), 2.99 (59 Hz, 4H, 

CH(CH3)2), 0.09 (48 Hz, 12H, CH(CH3)2), -0.46 (50 Hz, 12H, CH(CH3)2), -26.64 (184 

Hz, 6H, C(CH3)), two peaks not located. 

 

Preparation of (iPrPDI)Fe(OCH2CH=CH2) (1-OAllyl). A 20 mL scintillation vial 

was charged with 0.050 g (0.084 mmol) of 1-(N2)2 and approximately 15 mL of 

pentane. Using a microsyringe, 0.005 g (6 μL, 0.084 mmol) of allyl alcohol was added 

to 5 mL of pentane and this mixture was added slowly to the stirring 1-(N2)2 solution. 

After one hour, the resulting solution was filtered through Celite and the solvent was 

removed in vacuo to yield 0.026 g (52%) of a dark brown solid identified as 1-

OCH2CH=CH2. Analysis for C35H48FeN3O: Calcd C, 72.15; H, 8.30; N, 7.21. Found: 

C, 71.94; H, 8.30; N, 6.99. Magnetic susceptibility (benzene-d6, 293 K): μeff = 4.0(2) 

μB. 1H NMR (benzene-d6, 293 K): δ =112.09 (190 Hz, 1H), 92.59 (298 Hz, 1H), 73.61 

(73 Hz, 2H), 54.76 (52 Hz, 1H), -8.90 (28 Hz, 2H, m-aryl), -14.82 (24 Hz, 1H, p-aryl), 

-24.26 (29 Hz, 12H, CH(CH3)2), -38.47 (149 Hz, 12H, CH(CH3)2), -118.79 (394 Hz, 

4H, CH(CH3)2), -219.87 (131 Hz, 6H, C(CH3)), one peak not located. 

 

Preparation of (iPrPDI)Fe(O2CPh) (1-OBz). Preparation of (iPrPDI)Fe(O2CPh) (1-

OBz). This complex was prepared from the addition of 0.031 g (0.253 mmol) of 

benzoic acid to 0.150 g (0.253 mmol) of 1-(N2)2 in toluene solution. After 

approximately 1 hour, the solvent was evacuated in vacuo. Crystallization and removal 

of iPrPDI impurity was accomplished by recrystallization from a toluene and pentane 

solution at -35 °C. Recrystallization of the remaining material from a concentrated 
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diethyl ether and pentane solution yielded 0.127 g (76%) of a brownish-green solid 

identified as 1-OBz. Analysis for C40H48FeN3O2: Calcd C, 72.94; H, 7.35; N, 6.38. 

Found: C, 72.71; H, 7.65; N, 6.16. Magnetic susceptibility (benzene-d6, 293 K): μeff = 

4.9(2) μB. 1H NMR (benzene-d6, 293 K): δ = 373.68 (355 Hz, 1H, p-pyr), 119.63 (113 

Hz, 2H, m-pyr), 69.35 (165 Hz, 2H, o-phenyl), 34.43 (25 Hz, 2H, m-phenyl), 19.99 (17 

Hz, 1H, p-phenyl), -3.16 (25 Hz, 2H, m-aryl), -16.87 (21 Hz, 1H, p-aryl), -20.10 (26 

Hz, 12H, CH(CH3)2), -30.10 (102 Hz, 12H, CH(CH3)2), -117.12 (516 Hz, 4H, 

CH(CH3)2), -284.10 (214 Hz, 6H, C(CH3)). 

 

Preparation of (iPrPDI)Fe(O2CCH2CH2Ph) (1-H2CIN). This compound was 

prepared in a manner similar to 1-OBz with 0.250 g (0.421 mmol) of 1-(N2)2 and 

0.063 g (0.421 mmol) of hydrocinnamic acid to yield 0.120 g (41%) of a dark green 

solid identified as 1-H2CIN. Analysis for C42H52FeN3O: Calcd C, 73.46; H, 7.63; N, 

6.12. Found: C, 73.38; H, 7.47; N, 5.81. Magnetic susceptibility (benzene-d6, 293 K): 

μeff = 4.4(2) μB. 1H NMR (benzene-d6, 293 K): δ = 372.36 (116 Hz, 1H, p-pyr), 181.60 

(379 Hz, 2H, COCH2), 119.57 (124 Hz, 2H, m-pyr), 65.59 (159 Hz, 2H, CH2(C6H5)), 

33.60 (42 Hz, 2H, o-phenyl), 17.34 (16 Hz, 2H, m-phenyl), 15.08 (16 Hz, 1H, p-

phenyl), -3.05 (27 Hz, 2H, m-aryl), -16.55 (23 Hz, 1H, p-aryl), -19.89 (29 Hz, 12H, 

CH(CH3)2), -30.04 (118 Hz, 12H, CH(CH3)2), -117.26 (533 Hz, 4H, CH(CH3)2), -

284.97 (270 Hz, 6H, C(CH3)). 
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CHAPTER 2 

β-HYDROGEN CONTAINING BIS(IMINO)PYRIDINE IRON ALKYL 

COMPLEXES: PREPARATION, KINETIC STABILITY, AND DECOMPOSITION 

PATHWAYS* 

 

2.1 Abstract 

 Bis(imino)pyridine iron alkyl complexes bearing β-hydrogen atoms, 

(iPrPDI)FeR ((iPrPDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C5H3N; R = Et, nBu, iBu, 

CH2
cC5H11; 1-R), were synthesized either by direct alkylation of (iPrPDI)FeCl (1-Cl) 

with the appropriate Grignard reagent or more typically by oxidative addition of the 

appropriate alkyl bromide to the iron bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (1-

(N2)2). In the latter method, the formal oxidative addition reaction produced 

(iPrPDI)FeBr (1-Br), along with the desired iron alkyl, 1-R. Because both compounds 

are known to contain high spin ferrous centers that are antiferromagnetically coupled 

to a singly reduced chelate, the oxidative process is bis(imino)pyridine ligand-based 

(one electron is formally removed from each chelate, not the metal center). The kinetic 

stability of each 1-R compound was assayed in benzene-d6 solution and found to 

produce a mixture of the corresponding alkane and alkene upon decomposition. The 

stability of each alkyl complex was inversely correlated with the number of β-

hydrogens present. For example, the iron ethyl complex, (iPrPDI)FeEt (1-Et), 

underwent clean loss of ethane over the course of 3 hours at 23 °C, while the 

corresponding isobutyl complex, (iPrPDI)FeiBu (1-iBu), had a half-life of over 12 

hours under identical conditions. The mechanism of decomposition was studied with a 

series of deuterium labeling experiments and supports a pathway involving initial β-

                                                 
* Parts of this chapter have been reproduced with permission from Trovitch, R. J.; Lobkovsky, E.; 
Chirik, P. J. J. Am. Chem. Soc. 2008, ASAP (DOI: 10.1021/ja803296f). Copyright 2008 American 
Chemical Society.  
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hydrogen elimination followed by cyclometalation of an aryl isopropyl substituent, 

demonstrating an overall transfer hydrogenation pathway. The relevance of such 

pathways to chain transfer in bis(imino)pyridine iron catalyzed olefin polymerization 

reactions is also presented.   

 

2.2  Introduction 

 When activated with methylalumoxane (MAO), aryl-substituted 

bis(imino)pyridine iron and cobalt dihalide compounds exhibit productivities for 

ethylene polymerization that rival the most efficient group 4 metallocene catalysts.1-3 

Accordingly, this class of compounds has attracted considerable attention from both 

academic and industrial laboratories.4 Systematic evaluation of aryl substituent effects 

has established structure-reactivity relationships that allow tuning of the 

polymerization activity by straightforward manipulation of ligand architecture.5 For 

example, bis(imino)pyridine iron dihalide pre-catalysts bearing two large 2,6-

substituents on the aryl ring are known to produce linear polyethylene whereas those 

with only a single ortho aryl substituent are selective for α-olefin production with near 

ideal Schultz-Flory distributions.1,2,6-8 

  Despite the tremendous successes with bis(imino)pyridine iron catalysts, short 

catalyst lifetimes and formation of large amounts of 1-butene during ethylene 

oligomerization to α-olefins have been identified as potential obstacles to 

commercialization.7 Ideally, new catalyst discovery would be guided by well-

understood mechanistic principles – an approach that has proven invaluable in group 4 

metallocene catalyst development and implementation.9 For example, an 

understanding of counter ion effects, the nature of the transition structure and the 

influence of cyclopentadienyl substituents has resulted in the formulation of improved 

catalysts with remarkable selectivities, productivities, and lifetimes.10  
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 In contrast, few mechanistic details are known for bis(imino)pyridine iron 

catalyzed polymerizations. The mode of propagation and the oxidation state of the 

active species remain matters of controversy. Initial theoretical studies assumed 

formation of cationic monoalkyl iron(II) compounds upon activation with 

methylalumoxane (MAO),11,12,13 which has been experimentally supported by both 

NMR spectroscopy14 and ESI mass spectrometry.15 Alternatively, Mössbauer 

spectroscopic and EPR studies suggested that the iron(II) pre-catalysts are oxidized to 

iron(III) upon treatment with MAO.16 Studies into the MAO-activation of 

bis(imino)pyridine iron dihalides by optical spectroscopy revealed gross spectral 

changes and a decrease of the d-d transitions as a function of time, temperature, and 

activator concentration and were interpreted as an iron centered spin transition.17 Both 

the paramagnetism of the iron center and well-established redox and chemical 

participation of the bis(imino)pyridine ligand complicate characterization of the active 

species.18,19 

 In principle, these ambiguities could be resolved by preparation of well-

defined, single component bis(imino)pyridine iron catalysts. Bis(imino)pyridine iron 

alkyl cations are worthy targets as these compounds may allow study of fundamental 

transformations related to chain initiation, growth and termination. For many years, 

however, the requisite bis(imino)pyridine iron dialkyl species remained elusive.20 

During the initial investigation of bis(imino)pyridine iron alkyl chemistry, which is 

discussed in detail in Chapter 1, the preparation of 1-Ns2 was achieved from the 

addition of two equivalents of LiCH2SiMe3 to 1-Cl2 followed by recrystallization from 

cold pentane.21 Shortly thereafter, Gambarrotta and coworkers described a more 

detailed investigation into this reaction and provided evidence for chemical 

participation of the bis(imino)pyridine chelate.22 Cámpora and coworkers later 

described a more versatile synthetic method whereby addition of free 
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bis(imino)pyridine to (pyridine)2Fe(CH2SiMe3)2 furnished the corresponding iron 

dialkyls in high yield.23 This methodology was also utilized to explore the relative 

stability of neosilyl and neopentyl bis(imino)pyridine iron alkyl complexes.24  

With synthetic routes to 1-Ns2 in hand, the bis(imino)pyridine iron alkyl cations, 

[(iPrPDI)Fe-R]+X- (R = CH2SiMe3, X- = BPh4
-; R = CH2SiMe2CH2SiMe3, X- = 

MeB(C6F5)3
-), were synthesized and shown to be active for ethylene polymerization.25 

While these results demonstrate the catalytic competency of a formally iron(II) alkyl 

cation as the propagating species, they by no means validate that such compounds are 

formed from MAO-activation of a bis(imino)pyridine iron dihalide. In fact, studies by 

Budzelaar,26 Gambarotta22,27,28 and Kissin29 with bis(imino)pyridine ferrous dihalide-

aluminum alkyl mixtures establish that ligand alkylation and transmetallation to 

aluminum are likely during polymerization. 

 Despite these complexities, preparation of well-defined bis(imino)pyridine iron 

alkyl compounds may provide insight into fundamental transformations related to 

catalytic olefin oligomerization and polymerization and allow for a deeper 

understanding of empirically established structure-reactivity relationships. In addition, 

these compounds allow evaluation of the chemical and electronic participation of the 

bis(imino)pyridine chelate and its role during catalysis. All of the bis(imino)pyridine 

iron alkyl complexes that are discussed in Chapter 1 are protected from β-hydrogen 

elimination and are persistent at ambient temperature in benzene-d6 solution. While 

these compounds have proven useful in determining the stability of the iron-carbon 

bond and as synthons to certain iron alkyl cations, the lack of β-hydrogen atoms limits 

relevance to the propagating species during olefin polymerization. In addition, 

preliminary studies concerning the cationic iron alkyl complexes indicated slow 

initiation relative to propagation.25 Seeking to expand the number of well-defined, 

single component iron pre-catalysts and better mimic the potential propagating 
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species, the synthesis, characterization, and thermal stability of bis(imino)pyridine 

iron alkyl complexes bearing β-hydrogens are described in this chapter. Investigation 

of alkyl bromide oxidative addition to 1-(N2)2
30 established the loss of one electron 

from two different bis(imino)pyridine ligands. The mechanism of iron alkyl complex 

decomposition was studied and found to proceed by transfer dehydrogenation of the 

bis(imino)pyridine chelate. 

 

2.3 Preparation and Characterization of β-Hydrogen Containing Alkyls 

 The bis(imino)pyridine iron isobutyl complex, (iPrPDI)FeCH2CHMe2 (1-iBu), 

was the initial synthetic target of an iron alkyl complex bearing β-hydrogen atoms. 

Because the synthesis of β-hydrogen stabilized bis(imino)pyridine iron alkyls (Chapter 

1) was accomplished by straightforward salt metathesis of 1-Cl or 1-Br with the 

appropriate alkyl lithium reagent (e.g. LiCH3, LiCH2SiMe3, LiCH2CMe3), this route 

was initially explored. Stirring a diethyl ether solution of 1-Br with one equivalent of 
iBuLi under a dinitrogen atmosphere for less than 30 minutes furnished only a small 

amount (~ 10 %) of a paramagnetic compound identified as 1-iBu (vide infra). 

Examination of the diamagnetic region of the 1H NMR spectrum established that the 

major iron product was the bis(dinitrogen) complex, 1-(N2)2, formed from the 

reduction of 1-Br (Figure 2.1).30  

Figure 2.1. Reaction of isobutyllithium with 1-Br. 
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 In Chapter 1, the preparation of 1-Allyl was accomplished from reaction of 

allylmagnesium bromide with 1-Br; however, this procedure failed to result in 

complete consumption of the starting material, even when excess Grignard reagent 

was added. Because reduction, rather than alkylation, was observed for isobutyllithium 

addition to the iron monohalide, the less reducing isobutylmagnesium chloride was 

explored as a potential synthetic route to 1-iBu. Addition of iBuMgCl to a diethyl ether 

solution of 1-Cl furnished the desired iron monoalkyl in greater yield and purity than 

by the corresponding lithiation. Only small (~ 10%) quantities of 1-(N2)2 were 

obtained using this procedure. However, the kinetic instability of the compound (vide 

infra) complicated isolation of 1-iBu on a preparative scale.  

 Because other bis(imino)pyridine iron alkyl complexes may be shorter lived 

than 1-iBu, a more reliable synthetic method that obviated the complications of work 

up, titration of Grignard reagents, and the possibility of competing reduction reactions 

was targeted. In an attempt to expand upon the one electron oxidation of 1-(N2)2 

observed upon reaction with alcohols or carboxylic acids (Chapter 1), oxidative 

addition of alkyl halides to 1-(N2)2 was explored as a possible synthetic route to 

bis(imino)pyridine iron alkyls bearing β-hydrogens. This approach remains of interest 

because the electronic structure of 1-(N2)2 has been described as an intermediate spin 

ferrous complex with a bis(imino)pyridine diradical dianion.31 Thus, oxidative 

transformations can result in formal electron loss either at the metal center or the 

bis(imino)pyridine ligand.32 

 Studies into the oxidative addition of alkyl halides to 1-(N2)2 began with ethyl 

bromide. Preparation of a neutral bis(imino)pyridine iron ethyl complex was of 

interest given the significance of this class of compound in ethylene polymerization. 

Treatment of a benzene-d6 solution of 1-(N2)2 with 0.5 equivalents of CH3CH2Br 

resulted in immediate formation of two new paramagnetic products. The first was 
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readily identified as the previously reported bis(imino)pyridine iron bromide, 1-Br, 

while the second compound was assigned as the desired iron ethyl species, 1-Et 

(Figure 2.2). The latter compound was characterized using a combination of 1H NMR 

spectroscopy as well as degradation studies. Full details of the spectral assignment and 

the relative stability of each prepared β-hydrogen containing iron alkyl complex will 

be discussed.  

Figure 2.2. Addition of ethyl bromide to 1-(N2)2. 

 

 The identification of 1-Et following addition of ethyl bromide to 1-(N2)2 

suggested that alkyl halide addition was an effective method for the synthesis of 

bis(imino)pyridine iron alkyl complexes bearing β-hydrogens. Addition of one 

equivalent of either n-butyl bromide or isobutyl bromide to a benzene-d6 solution of 

two equivalents of 1-(N2)2 yielded 1-Br in both cases and the bis(imino)pyridine iron 

n-butyl and i-butyl compounds, 1-nBu and 1-iBu, respectively (Figure 2.3). Vacuum 

transfer of the volatiles immediately following each of the aforementioned alkyl 

bromide addition reactions and analysis by 1H NMR spectroscopy revealed formation 

of small amounts (25 % for n-BuBr, 12 % for i-BuBr) of alkane along with trace 

amounts of alkene immediately following mixing of the reagents. Addition of more 

than 0.5 equivalents of alkyl bromide to 1-(N2)2 furnished a detectable quantity of 1-

Br2 along with other unidentified products. Again, analysis of the volatile components 

by 1H NMR spectroscopy following vacuum transfer established formation of the 

corresponding alkane and alkene. 
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Figure 2.3. Preparation of 1-nBu and 1-iBu. 

 

Because these results suggested the intermediacy of radicals during the formal 

oxidative addition event, the addition of 6-bromo-1-hexene to 1-(N2)2 was studied as 

the free 5-hexenyl radical is known to cyclize at a rate of approximately 105 sec-1.33 

This probe has been used previously by Schwartz to assay radical chain involvement 

in the addition of R-X to [(η5-C5H5)2Zr].34 Treatment of a benzene-d6 solution of 1-

(N2)2 with 0.5 equivalents of 6-bromo-1-hexene yielded 1-Br along with the 

bis(imino)pyridine iron methylcyclopentyl complex, 1-CH2
cPent, as the sole iron 

alkyl product (Figure 2.4). Analysis of the volatile components immediately following 

addition yielded 27 % of organic byproducts (86 % methylene cyclopentane, 14 % 

methyl cyclopentane) that likely arise from inefficient capture of the alkyl radical. It is 

also possible that 1-CH2
cPent arises from alkylation of the metal followed by olefin 

insertion. 

Figure 2.4. Evidence for radical cyclization by formation of 1-CH2
cPent. 
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The oxidative addition of secondary and tertiary alkyl bromides to 1-(N2)2 was 

also explored. Addition of one equivalent of 2-bromobutane to a benzene-d6 solution 

of two equivalents of 1-(N2)2 furnished 1-Br along with small quantities (~ 5 %) of the 

bis(imino)pyridine iron n-butyl complex, 1-nBu. Analysis of the volatile products of 

the reaction mixture by 1H NMR spectroscopy established formation of cis- (4 %) and 

trans-2-butene (12 %) as the sole alkene products along with butane (84 %). The 

results implicate fast and irreversible β-hydrogen elimination from secondary iron 

alkyls along with radical formation (vide infra). In an analogous experiment, addition 

of tert-butyl bromide to a benzene-d6 solution of 1-(N2)2 yielded 1-Br along with 1-
iBu. Collection and examination of the volatiles from this reaction (before significant 

decomposition of the iron alkyl, vide infra) by 1H NMR spectroscopy revealed that a 

near equimolar ratio of isobutene and isobutane accompanies oxidative addition, 

consistent with involvement of tert-butyl radical. 

Each of the bis(imino)pyridine iron alkyl complexes bearing β-hydrogens was 

kinetically unstable and handled carefully - and sometimes quickly - in solution under 

an inert atmosphere. As a result, characterization of these compounds has relied 

primarily on 1H and 2H NMR spectroscopy augmented by degradation studies. The 

complete assignment of the 1H NMR spectrum of 1-Br, and the other alkyl complexes 

described in Chapter 1, have proven valuable for the spectroscopic characterization of 

the bis(imino)pyridine iron alkyl complexes bearing β-hydrogens. Selected 

assignments for each iron alkyl complex presented in this Chapter are given in Table 

3.1. A representative benzene-d6 1H NMR spectrum of 1-Et recorded at 23 ºC is 

presented in Figure 2.5. As the spectroscopic properties of each alkyl compound are 

similar, only 1-Et will be discussed in detail. For 1-Et, the imine methyl group 

appears the most upfield at –172.74 ppm while the p-pyridine hydrogen is the most 

downfield at 263.35 ppm. Other diagnostic resonances with large isotropic shifts are 
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the m-pyridine hydrogens located at 63.75 ppm and the isopropyl methine centered at 

–89.75 ppm. Unfortunately, the hydrogens on the carbon attached directly to the iron 

have not been located by 1H NMR spectroscopy for any iron alkyl compound prepared 

in this dissertation. 

 
Table 2.1.  Selected 1H NMR resonances for bis(imino)pyridine iron alkyl complexes 

bearing β-hydrogen atoms. All values reported in ppm in benzene-d6 at 23 ºC. 
 

 
 

Figure 2.5. 1H NMR spectrum of 1-Et (labeled resonances) along with 1-Br 
(unlabeled) in benzene-d6 at 23 ºC. 
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2.4 Stability and Decomposition Products 

 With a family of neutral bis(imino)pyridine iron alkyls with β-hydrogens in 

hand, the relative stability of each compound was assayed in benzene-d6 solution at 23 

ºC. After 18 hours, 1-Et undergoes exclusive loss of ethane and formation of two new 

iron products (Figure 2.6). One of the iron products was identified as the diamagnetic 

bis(imino)pyridine dinitrogen complex, 1-(N2) (or 1-(N2)2, depending on the amount 

of N2 present).30 The second iron compound, 1-DH, was detected after hydrolysis of 

the organometallic products and analysis of the free chelate by 1H NMR spectroscopy 

as well as by D2 addition experiments. This molecule was previously observed and 

characterized following the decomposition of a bis(imino)pyridine iron diazoalkane 

complex.35 Thus, the decomposition of 1-Et can be viewed as a transfer 

dehydrogenation from the ligand to the iron alkyl, liberating ethane and forming an 

equimolar mixture of 1-N2 and 1-DH. In the case of 1-Et, the liberated ethane was 

quantified with a Toepler pump and 92 % of the expected gas was obtained. 

 

Figure 2.6. Decomposition of 1-Et by way of transfer hydrogenation. 
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 The thermal stability and half-lives of the bis(imino)pyridine iron alkyls with 

β-hydrogens prepared in this study were also assayed at 23 ºC in benzene-d6. The 

organic products released following disappearance of the iron alkyl were identified by 
1H NMR spectroscopy and are reported in Figure 2.7. In addition, the half-life for each 

reaction is also reported in Figure 2.7. In each case, a mixture of iron products, 1-(N2)n 

and 1-DH, was observed and is denoted as “[Fe]” for simplicity. The iron n-butyl 

compound, 1-nBu, exhibited a significantly longer half-life than 1-Et but produced 

predominantly butane with small amounts of 2-butene. No 1-butene was detected by 
1H NMR spectroscopy from these experiments. 

 

 

Figure 2.7. Thermal stability of bis(imino)pyridine iron alkyl complexes. 
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 Bis(imino)pyridine iron alkyls bearing only one β-hydrogen, 1-iBu and 1-

CH2
cPent, were longer lived than either 1-Et or 1-nBu and produced significantly 

higher fractions of olefins upon disappearance of the iron alkyl, demonstrating a 

reduced propensity for transfer hydrogenation with more sterically demanding alkyls. 

The relatively long lifetime of 1-iBu versus 1-nBu and 1-Et, established that stability 

of the iron alkyls decreased as the number of β-hydrogens increase. 

 The loss of alkane from the compounds presented in Figure 2.7 prompted 

reinvestigation of the thermal stability of 1-Me, 1-Ns and 1-Np. It is possible that 

iron-carbon bond homolysis,36 not β-hydrogen elimination, is responsible for the 

kinetic instability of the iron-alkyls prepared in this work. Allowing benzene-d6 

solutions of 1-Me, 1-Ns or 1-Np to stand at 23 ºC produced no detectable change by 
1H NMR spectroscopy. Because the iron-carbon bond strengths for 1-Et, 1-nBu, 1-iBu 

and 1-Np are expected to be similar,37 the relative stability of the compounds is 

believed to be a result of the presence or absence of β-hydrogens. In fact, if iron bond 

homolysis were indeed operative, the more hindered 1-Np may be expected to be the 

least, not most, kinetically persistent. 

 

2.5  Deuterium Labeling Studies 

 The loss of alkane and formation of 1-DH from the bis(imino)pyridine iron 

alkyl complexes prompted more detailed studies into the mechanism of thermal 

decomposition for these compounds. Understanding these pathways may provide 

insight into chain transfer processes related to bis(imino)pyridine iron-catalyzed olefin 

oligomerizations and polymerizations. Previous studies with MAO-activated metal 

dihalides indicate that chain transfer by β-hydrogen elimination is more prominent for 

cobalt than for iron catalysts,38 although in single component iron cases, β-hydrogen 

elimination was indeed observed. 
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A series of deuterium labeling experiments were conducted to verify the origin 

of the hydrogen atoms in the alkane products. Treatment of a benzene solution of 1-

(N2)2 with 0.5 equivalents of CD3CD2Br yielded a mixture of 1*-Et-dn and 1*-Br as 

judged by 2H NMR spectroscopy (Figure 2.8). The “*” designates deuterium 

incorporation into an isopropyl methyl group. Analysis of the mixture by 2H NMR 

spectroscopy within 15 minutes of alkyl halide addition revealed the presence of peaks 

centered at 36.4 and 149.7 ppm, corresponding to the Fe-CD2CD3 and Fe-CD2CD3 

deuterons, respectively. The resonance for the methylene positions was only observed 

by 2H NMR spectroscopy; no corresponding peak has been located in the 1H NMR 

spectrum of natural abundance 1-Et. Observation of 2H but not 1H NMR peaks is due 

to better resolution of deuterium spectra for paramagnetic compounds; a phenomenon 

that is a result of the difference in magnetogyric ratios of the two nuclei.39 

Interestingly, the 2H NMR spectrum of the product mixture also contained four 

additional peaks corresponding to deuterium labeling of the isopropyl methyl groups 

of both 1-Br and 1-Et.  

Figure 2.8. Bis(imino)pyridine deuterium incorporation from bromoethane-d5. 

 

 Monitoring the stability of 1*-Et-dn by 2H NMR spectroscopy at 23 ºC in 

benzene-d6 revealed smooth disappearance of the resonances for the ethyl chain over 

the course of 3.5 hours. Throughout this experiment, the peaks for the isopropyl 

methyl positions of 1*-Et-dn remain, demonstrating deuterium depletion from the 
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ethyl chain before alkane loss (Figure 2.9). After 18 hours at 23 ºC, no 2H NMR 

signals assigned to 1*-Et remained, consistent with the lifetime measured previously 

for natural abundance 1-Et determined by 1H NMR spectroscopy. Because of the 

complexities associated with isotopic scrambling into the ligand, kinetic isotope 

effects for the loss of ethane from isotopologues of 1-Et were not determined (Figure 

2.9). 

Figure 2.9. Isotopic exchange observed for 1-Et-d5. 

 Evidence for isotopic exchange within the ethyl chain prior to ethane loss was 

also obtained from 1H NMR spectroscopy. A 1H NMR resonance was observed at 

149.7 ppm approximately 20 minutes following addition of CD3CD2Br to 1-(N2)2. It is 

likely that hydrogen was also incorporated into the iron methylene position, however, 

the inability to observe a signal for this position by 1H NMR spectroscopy prohibits 

obtaining definitive experimental evidence. These experiments definitively establish 

“chain walking” – reversible β-hydrogen elimination followed by olefin rotation (or 

loss) and reinsertion – prior to cyclometalation and reductive elimination of ethane. 

A benzene solution of 1-(N2)2 was also treated with 0.5 equivalents of 

CH3CD2Br. After 30 minutes at 23 ºC, the 2H NMR spectrum of the product mixture 

established formation of 1*-Br along with 1*-Et-dn. At this time interval, the alkyl 

region of the 2H NMR spectrum contained a prominent peak at 38 ppm for the Fe-

CD2CH3 position and a very small peak, barely above the detection limit of the 
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experiment (≤5 %), at 145 ppm, suggesting that only a minimal amount of deuterium 

was present in the β-methyl group and that the two positions are not rapidly 

exchanging. Continued monitoring of the compound by 2H NMR spectroscopy over 

the course of 18 hours revealed disappearance of the ethyl complex with continued 

observation of the peaks for 1*-Br.  

 The incorporation of deuterium into the isopropyl methyl groups of both the 

iron alkyl and the iron bromide compounds clearly establishes chemical participation 

of the bis(imino)pyridine chelate. Additional experiments were carried out to 

determine the origin of the deuterium in 1*-Br. Because it is known that the isopropyl 

methyl groups of 1-(N2)2 are rapidly deuterated upon exposure to four atmospheres of 

D2 gas, an analogous experiment was conducted with isolated 1-Br. No deuterium 

incorporation was observed over the course of 24 hours at 23 ºC, demonstrating that 

isopropyl methyl group cyclometalation is not operative in this compound.  

One possibility for the formation of 1*-Br involves ligand exchange from 1*-

R. Because 1*-Br was observed immediately following addition of bromoethane-d5 to 

1-(N2)2, the product iron alkyl must undergo rapid β-hydrogen (deuterium) elimination 

and cyclometalation to form 1*-(N2), which then would participate in ligand exchange. 

Crossover experiments were conducted to evaluate this possibility (Figure 2.10). The 

imine methyl groups of the bis(imino)pyridine ligand were deuterium-labeled to track 

the chelate compounds by 1H and 2H NMR spectroscopy. The compounds with 

deuterium-labeled imine methyl groups are designated by “**”. Thus, 1**-Br was 

prepared in a straightforward manner from NaBEt3H reduction of 1**-Br2.21 

Preparation of a benzene solution containing an equimolar mixture of 1**-Br 

and 1-(N2)2 at 23 ºC resulted in immediate formation of 1**-(N2)2 as judged by 2H 

NMR spectroscopy (Figure 2.10). Performing a similar experiment with 1**-Br and 1-

Np produced no evidence for formation of 1**-Np, suggesting that ligand exchange 
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does not occur between iron halide and iron alkyl complexes. Thus, observation of 1*-

Br from addition of either CD3CD2Br or CH3CD2Br to 1-(N2)2 is likely due to rapid 

cyclometalation and isotopic exchange from the iron alkyl followed by ligand 

exchange to form 1*-Br. The ligand undergoing exchange could either be the bromide 

or the bis(imino)pyridine chelate. Although our experiments do not distinguish these 

two possibilities (or a combination of the two), the bromide exchange process is 

tentatively favored. Recall that 1-(N2)n (n = 1, 2) is formed from the thermal 

decomposition of 1-Et and thus ligand exchange can occur throughout the process of 

ethylene dissociation and ethane formation. 

Figure 2.10. Facile ligand exchange between 1**-Br and 1-(N2)2. 

 

 Deuterium labeling experiments were also carried out with 1-nBu to assay the 

possibility of alkyl chain running and confirm bis(imino)pyridine participation. The 

deuterium labeled iron dinitrogen complex, 1*-(N2)2, was prepared by addition of 

excess D2 gas to 1-(N2)2.30 Addition of 0.5 equivalents of CH3CH2CH2CH2Br to a 

benzene solution of 1*-(N2)2 resulted in rapid formation of 1*-Br along with 1*-nBu. 
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Monitoring the disappearance of 1*-nBu by 2H NMR spectroscopy established 

deuterium incorporation into all positions of the butane and 2-butenes (Figure 2.11). 

Thus, alkyl isomerization (chain walking) is operative concomitant with alkane and 

alkene loss and chelate cyclometalation.  

 

Figure 2.11. Observation of deuterated butane and butenes from 1*-nBu degradation. 

 

 The oxidative addition of CD3OTf to 1-(N2)2 was also studied as a control 

experiment to verify that the β-carbon position was the source of deuterium during 

competing cyclometalation. Treatment of 1-(N2)2 with 0.5 equivalents of CD3OTf 

cleanly furnished the deuterated isotopologue of the previously reported iron methyl 

complex, 1-CD3,21 along with the bis(imino)pyridine iron triflate, 1-OTf. The latter 

complex was independently prepared by addition of Me3SiOTf to 1-(N2)2 and has been 

fully characterized and displays diagnostic 1H NMR shifts, similar to the iron acetate 

complexes described in chapter 1. Importantly, analysis of the product mixture by 2H 

NMR spectroscopy provided no evidence for deuterium incorporation into the 

isopropyl methyl groups of either 1-CD3 or 1-OTf, confirming the β-position of the 

alkyl as the source of isotopic exchange. 

Additionally, olefins were added to 1-(N2)2 to further assay cyclometalation 

and the transfer hydrogenation step. Addition of one equivalent of 1-hexene to a 
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benzene-d6 solution of 1-(N2)2 at 23 ºC resulted in clean and quantitative formation of 

1-DH and hexane over the course of five days (Figure 2.12). The iron-olefin 

compound, 1-DH, and ethane were also obtained following treatment of 1-(N2)2 with 

excess ethylene. In this case, an unidentified insoluble red precipitate was formed, that 

upon degradation yielded ethane. Despite this complication, these experiments clearly 

establish the role of the chelate isopropyl methyl groups in transfer hydrogenation of 

the iron alkyl. 

Figure 2.12. Transfer hydrogenation of 1-hexene. 

 

 To further substantiate the claim of facile β-hydrogen elimination and olefin 

dissociation prior to alkane formation, olefin for iron alkyl exchange studies were also 

conducted. Addition of one equivalent of isobutene to a benzene-d6 solution of 1-

CH2
cPent resulted in a near equimolar mixture of 1-iBu and 1-CH2

cPent along with 

the corresponding free olefins (Figure 2.13). Similar exchange reactions were 

observed in related bis(imino)pyridine cobalt complexes where treatment of (PDI)CoR 

(R = nPr, nBu) with ethylene yielded the corresponding cobalt ethyl and free olefins.40 

Figure 2.13. Alkyl group exchange through fast β-hydrogen elimination. 
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2.6 Discussion 

 The electronic structure of 1-Br, in combination with the magnetic and 

structural data for the isolated iron alkyls 1-Me and 1-Ns (presented in Chapter 1), 

provides additional insight on the oxidative addition of alkyl bromides to 1-(N2)2. The 

sp3 hybridized bis(imino)pyridine iron alkyls have an identical electronic structure to 

1-Br; overall S = 3/2 ground states arising from high spin (SFe = 2) ferrous centers 

antiferromagnetically coupled to bis(imino)pyridine radical anions (SPDI = 1/2). Thus, 

oxidative addition of alkyl bromides to 1-(N2)2 is formally ligand, rather than metal, 

based. The two electron reduced bis(imino)pyridine chelate in 1-(N2)2 is oxidized by 

one electron to produce two new iron products where the iron(II) oxidation state is 

preserved (Figure 2.14).41 Notably, a spin change from intermediate to high spin 

occurs at the iron center upon chelate oxidation.  

Figure 2.14. Ligand based oxidative addition of alkyl bromides to 1-(N2)2. 

 

Based on all of the experimental data, a mechanism for alkane loss from 

bis(imino)pyridine iron alkyl complexes is presented in Figure 2.15, using 1-Et as a 

representative example. β-hydrogen elimination from the iron alkyl forms the 

bis(imino)pyridine iron olefin hydride compound. Olefin dissociation and reinsertion 

(or olefin rotation) is fast relative to subsequent steps, as isotopic exchange between 

the β-CH3 and α-CH2 positions is faster than liberation of alkane. If ethylene loss 

occurs, a putative bis(imino)pyridine iron hydride is formed, which is known to 
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undergo rapid loss of H2 to form either the iron dihydrogen or N2 complex, depending 

on the relative concentration of the respective gases.30 Formal oxidative addition of an 

isopropyl methyl C-H bond affords the bis(imino)pyridine cyclometalated hydride. A 

similar species has been implicated in H/D exchange in the preparation of 1*-(N2)2 

from D2 gas.30 Insertion of ethylene into the iron hydride bond yields the 

cyclometalated ethyl compound, which can undergo reversible or productive β-

hydrogen elimination to furnish ethane and 1-DH. 

 

Figure 2.15. Mechanism of 1-Et degradation and transfer hydrogenation. 

 

 It is interesting to compare the relative stability of the bis(imino)pyridine iron 

alkyl compounds studied in this work to the three coordinate β-diketiminate (BDI) 
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iron alkyls reported by Holland and coworkers.37 Because the 1-R series of 

compounds are best described as containing high spin ferrous ions 

antiferromagnetically coupled to bis(imino)pyridine chelate radical anions, both 

classes of molecules contain a high spin (SFe = 2) iron coordinated to a mononanionic 

ligand. Furthermore, both ligand environments possess orthogonal 2,6-diisopropyl aryl 

substituents and to a first approximation (ignoring differences in chelate bite angles), 

have similar steric environments. 

 In a comprehensive study of iron(II) alkyl stability, Holland and co-workers 

prepared a broad spectrum of (BDI)Fe-R compounds bearing β-hydrogens, including 

secondary and tertiary iron alkyls.37 Isomerization of the iron alkyl and olefin for alkyl 

exchange reactions were observed, demonstrating that reversible β-hydrogen 

elimination is operative. Irreversible formation or decomposition of these compounds 

by alkane loss was not reported. This difference in reactivity may be traced to the 

competing cyclometalation in the bis(imino)pyridine compounds. The instability of 

the putative product of β-hydrogen elimination, 1-H, is due to H2 loss and formation 

of formally low-valent [(iPrPDI)Fe] compounds. This enables ligand C-H activation 

and provides a pathway to irreversible alkane formation and hence decomposition of 

the iron alkyl. No analogous compound or pathway has been reported in the β-

diketiminate chemistry and hence kinetically persistent iron alkyls result. It should be 

noted that in the bis(imino)pyridine examples, chain walking via β-hydrogen 

elimination, olefin dissociation (or rotation) followed by reinsertion is operative 

followed by a slower cyclometalation-insertion sequence. 
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2.7 Conclusion 

 Neutral bis(imino)pyridine iron alkyl complexes bearing β-hydrogen atoms 

have been synthesized either by salt metathesis reactions or by oxidative addition of an 

appropriate alkyl bromide to 1-(N2)2. Studies into the electronic structures of both 1-R 

and 1-Br establish that formal electron loss occurs from the bis(imino)pyridine ligand, 

not the metal. Evaluation of the kinetic stability of the iron alkyl species revealed 

decomposition by transfer hydrogenation of an isopropyl methyl substituent on the 

chelate aryl rings. The ability to access reduced iron compounds, stabilized by a redox 

active bis(imino)pyridine chelate, promotes C-H bond oxidative addition leading to 

cyclometalation and irreversible formation of alkane. These studies demonstrate the 

viability of this process as a chain termination pathway in bis(imino)pyridine iron 

catalyzed olefin polymerization reactions. 

 

2.8 Experimental Procedures 

General Considerations. All air- and moisture-sensitive manipulations were carried 

out using standard vacuum line, Schlenk, and cannula techniques or in an MBraun 

inert atmosphere dry box containing an atmosphere of purified nitrogen. Solvents for 

air- and moisture-sensitive manipulations were initially dried and deoxygenated using 

literature procedures.42 Hydrogen and deuterium gas were passed through a column 

containing manganese oxide supported on vermiculite and 4 Å molecular sieves before 

admission to the high vacuum line. Benzene-d6 and toluene-d8 were purchased from 

Cambridge Isotope Laboratories and dried over 4 Å molecular sieves or titanocene, 

respectively. 1-(N2)2 and 1-Br were prepared according to literature procedures.30,21 

Isobutyllithium and isobutylmagnesium chloride were purchased from Aldrich and 

used as received. Methyl trifluoromethanesulfonate, methyl 

trifluoromethanesulfonate-d3, and trimethylsilyl trifluoromethanesulfonate were 
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purchased from Aldrich and vacuum transferred from 4 Å molecular sieves. 

Bromoethane and bromoethane-d5 were purchased from Aldrich and dried over 

calcium hydride before use. 1-Bromo-2-methylpropane was purchased from Acros and 

dried in a similar fashion. 6-Bromo-1-hexene was obtained from Alfa Aesar and dried 

over calcium hydride. 2-Bromobutane was purchased from Eastman and dried over 

calcium hydride before use. 2-Bromo-2-methylpropane and 1-bromobutane were dried 

over calcium hydride after being received from Fisher Scientific. 1-Hexene and 2-

methylpropene were purchased from Aldrich and dried over lithium aluminum 

hydride. Bromoethane-1,1-d2 was purchased from CDN Isotopes and dried over 

calcium hydride before use. 
1H NMR spectra were recorded on Varian Mercury 300, Inova 400, 500, and 

600 spectrometers operating at 299.76, 399.78, 500.62, and 599.78 MHz, respectively. 
2H NMR spectra were recorded at 20 ºC on the Inova 400, 500, and 600 MHz 

spectrometers operating at 61.37, 76.85, and 92.07 MHz, respectively. All 1H 

chemical shifts are reported relative to SiMe4 using the 1H (residual) shift of the 

solvent as a secondary standard. Approximate half-lives for the iron alkyl complexes 

were determined by following the disappearance of the imine methyl and isopropyl 

methyl resonances of this complex over time. Relative integrations of the imine 

methyl and isopropyl methyl 1H NMR resonances of 1-Br were used as benchmarks 

for comparison. Solution magnetic moments were determined by Evans method43 

using a ferrocene standard and are the average value of at least two independent 

measurements. Peak width at half height is given for paramagnetically broadened 

resonances. Elemental analyses were performed at Robertson Microlit Laboratories, 

Inc., in Madison, NJ. 

Single crystals suitable for X-ray diffraction were coated with polyisobutylene 

oil in a drybox, transferred to a nylon loop, and quickly moved to the goniometer head 
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of a Bruker X8 APEX2 diffractometer equipped with a molybdenum X-ray tube (λ = 

0.71073 Å). Preliminary data revealed the crystal system. A hemisphere routine was 

used for data collection and determination of lattice constants. The space group was 

identified and the data were processed using the Bruker SAINT+ program and 

corrected for absorption using SADABS. The structures were solved using direct 

methods (SHELXS) completed by subsequent Fourier synthesis and refined by full-

matrix least-squares procedures. 

 

Characterization of (iPrPDI)Fe(CH2CH3) (1-Et). Using a calibrated gas bulb, 0.021 

mmol of either bromoethane or bromoethane-d5 was transferred to a J. Young Tube 

containing 0.025 mg (0.042 mmol) of 1-(N2)2 and approximately 0.7 mL of benzene-

d6. Upon sitting at room temperature for 20 min, the reaction mixture was found to 

contain 1-Br and 1-Et (or 1-Et-d5) by 1H NMR spectroscopy. 1H NMR (benzene-d6, 

293 K): δ = 263.35 (221 Hz, 1H, p-pyr), 149.69 (555 Hz, 3H, CH2CH3), 63.75 (103 

Hz, 2H, m-pyr), -4.50 (100 Hz, 4H, m-aryl), -15.14 (64 Hz, 12H, CH(CH3)2), -27.88 

(123 Hz, 12H, CH(CH3)2), -89.75 (308 Hz, 4H, CH(CH3)2), -172.74 (214 Hz, 6H, 

C(CH3)), Fe-CH2 and p-aryl resonance not located. Degradation of 1-Et was 

monitored over the course of 24 hours at ambient temperature. Transfer of the 

volatiles and analysis by 1H NMR spectroscopy confirmed a 15 % yield of solely 

ethane (based on bromoethane) as judged by integration against 1 μL of cyclohexane. 

A second degradation experiment yielded 92 % of the ethane expected by Toepler 

pump analysis. 

 

Characterization of (iPrPDI)Fe(CH2CH2CH2CH3) (1-nBu). This complex was 

prepared in a manner similar to 1-Et along with 1-Br from the gas bulb addition of 

0.017 mmol of 1-bromobutane to 0.020 g (0.034 mmol) of 1-(N2)2 in benzene-d6. 1H 
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NMR (benzene-d6, 293 K): δ = 284.47 (106 Hz, 1H, p-pyr), 142.49 (3149 Hz, 2H, 

FeCH2CH2CH2CH3), 64.78 (76 Hz, 2H, m-pyr), 60.05 (86 Hz, butyl), 36.92 (64 Hz, 

butyl), -5.59 (65 Hz, 4H, m-aryl), -6.41 (59 Hz, 2H, p-aryl), -16.40 (65 Hz, 12H, 

CH(CH3)2), -28.85 (112 Hz, 12H, CH(CH3)2), -99.21 (255 Hz, 4H, CH(CH3)2), -

175.37 (177 Hz, 6H, C(CH3)), Fe-CH2 resonance not located. Complete 

decomposition of 1-nBu occurred within 72 hours at ambient temperature. Transfer of 

the volatiles and analysis by 1H NMR spectroscopy confirmed a 41 % return of the 

alkyl derivative (93 % butane, 4 % trans-2-butene, and 3 % cis-2-butene) as judged by 
1H NMR integration against 1 μL of cyclohexane. 

 

Characterization of (iPrPDI)Fe(CH2CHMe2) (1-iBu). In a manner similar to 

bromoethane, gas bulb addition of 0.017 mmol of 1-bromo-2-methylpropane to 0.020 

g of 1-(N2)2 yielded a mixture of 1-Br and 1-iBu in benzene-d6, as judged by 1H NMR 

spectroscopy. This complex was additionally observed by 1H NMR spectroscopy, 

along with 1-Br, from the addition of 0.002 g (2 μL, 0.017 mmol) of 2-bromo-2-

methylpropane to 0.020 g (0.034 mmol) of 1-(N2)2 in benzene-d6. A third method of 

preparation was achieved through the addition of 0.008 g (32 μL of a 2.0 M solution in 

ether, 0.065 mmol) of isobutylmagnesium chloride to a J. Young tube containing 

0.025 g (0.044 mmol) of 1-Cl in benzene-d6. 1H NMR (benzene-d6, 293 K): δ = 350.03 

(583 Hz, 1H, p-pyr), 200.42 (7533 Hz, 1H, FeCH2CH(CH3)2), 73.34 (301 Hz, 6H, iBu 

CH3), 66.30 (85 Hz, 2H, m-pyr), -9.19 (42 Hz, 4H, m-aryl), -13.38 (38 Hz, 2H, p-

aryl), -19.74 (54 Hz, 12H, CH(CH3)2), -31.10 (118 Hz, 12H, CH(CH3)2), -123.36 (336 

Hz, 4H, CH(CH3)2), -185.63 (209 Hz, 6H, C(CH3)), two peaks not located. As judged 

by 1H NMR spectroscopy, a 55 % yield of the organic degradation products (52 % 2-

methylpropene, 48% 2-methylpropane) was achieved upon vacuum transfer of the 

volatiles after 1 week and integration against 1 μL of cyclohexane. 
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Characterization of (iPrPDI)Fe(CH2
cPent) (1-CH2

cPent). This complex was 

observed by 1H NMR spectroscopy upon addition of 0.003 g (2.25 μL, 0.017 mmol) of 

6-bromo-1-hexene to 0.020 g (0.034 mmol) of 1-(N2)2 in benzene-d6. 1H NMR 

(benzene-d6, 293 K): δ = 338.91 (175 Hz, 1H, p-pyr), 197.22 (662 Hz, 1H, 

FeCH2CHR2), 85.67 (543 Hz, cPentyl), 67.37 (77 Hz, 2H, m-pyr), 52.53 (180 Hz, 
cPentyl), 46.38 (57 Hz, cPentyl), 34.62 (44 Hz, cPentyl), -8.86 (27 Hz, 4H, m-aryl), -

12.80 (24 Hz, 2H, p-aryl), -19.17 (32 Hz, 12H, CH(CH3)2), -30.62 (89 Hz, 12H, 

CH(CH3)2), -120.43 (563 Hz, 4H, CH(CH3)2), -182.34 (145 Hz, 6H, C(CH3)), Fe-CH2 

not located. Decomposition of this mixture by hydrolysis and transfer of the volatiles 

resulted in the observation of both methylenecyclopentane and methylcyclopentane by 
1H NMR spectroscopy. Additionally, 1-CH2

cPent underwent complete degradation in 

benzene-d6 over the course of 72 hours at ambient temperature. Transfer of the 

volatiles and analysis by 1H NMR spectroscopy confirmed a 38 % return of the alkyl 

derivative (40 % methylenecyclopentane and 60 % methylcyclopentane) as judged by 
1H NMR integration against 1 μL of cyclohexane. 

 

Preparation of (iPrPDI)FeOTf (1-OTf). A 20 mL scintillation vial was charged with 

0.100 g (0.168 mmol) of 1-(N2)2 and approximately 10 mL of diethyl ether. A second 

solution of 0.041 g (34 μL, 0.185 mmol) of trimethylsilyl trifluoromethanesulfonate in 

approximately 5 mL of ether was added slowly dropwise and the resulting olive green 

solution was allowed to stir for 18 hours. The reaction mixture was filtered through 

Celite with ether and the solvent was removed in vacuo to yield a greenish-brown 

solid. Recrystallization from a concentrated ether solution layered with pentane at -35 

°C yielded 0.064 g (0.093 mmol, 55 %) of dark green crystals identified as 1-OTf. 

Analysis for C34H43F3FeN3O3S: Calcd C, 59.47; H, 6.31; N, 6.12.  Found: C, 62.33; H, 
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6.92; N, 6.05. Magnetic susceptibility (benzene-d6, 293 K): μeff = 4.3 μB. 1H NMR 

(benzene-d6, 293 K): δ = 392.79 (213 Hz, 1H, p-pyr), 94.92 (106 Hz, 2H, m-pyr), -6.19 

(39 Hz, 4H, m-aryl), -16.59 (32 Hz, 2H, p-aryl), -24.87 (55 Hz, 12H, CH(CH3)2), -

38.45 (135 Hz, 12H, CH(CH3)2), -143.50 (415 Hz, 4H, CH(CH3)2), -242.75 (163 Hz, 

6H, C(CH3)). 
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CHAPTER 3 

BIS(IMINO)PYRIDINE IRON CATALYZED OLEFIN HYDROGENATION: 

SUBSTRATE SCOPE, FUNCTIONAL GROUP TOLERANCE, AND 

IDENTIFICATION OF CATALYST RESTING STATES* 

 

3.1  Abstract 

 An investigation into the substrate scope of bis(imino)pyridine iron mediated 

alkene reduction revealed effective hydrogenation of olefinic substrates containing a 

wide array of functionality. Allylic or vinylic ethers, fluorinated aromatics, and amines 

were hydrogenated with turnover frequencies indistinguishable from analogous α-

olefins. The hydrogenation of amide, ester, and ketone containing substrates was 

achieved but was highly substrate dependent. For these substrates, reduction was 

observed at the alkene without detectable carbonyl reduction. Decomposition of the 

iron compound was observed in the presence of α,β-unsaturated ketones. 

Stoichiometric experiments were conducted for a variety of substrates to probe the 

metal-substrate interaction and the functional group tolerance of bis(imino)pyridine 

iron. In many cases, neutral ligand complexes were observed and their electronic 

structures investigated. Examination by NMR spectroscopy, Mössbauer spectroscopy, 

and X-ray diffraction revealed that the ground state electronic structure of these 

complexes can best be described as having a four coordinate, intermediate spin iron(II) 

center antiferromagnetically coupled to a doubly reduced bis(imino)pyridine chelate. 

In cases where the monodentate ligand is a sufficiently strong π-acid, evidence for a 

third ligand reduction (at the pendant ligand) and a ferric metal center was observed 

by 1H NMR spectroscopy and X-ray crystallography. 

                                                 
* Parts of this chapter have been reproduced with permission from Trovitch, R. J.; Lobkovsky, E.; Bill, 
E.; Chirik, P. J. Organometallics 2008, 27, 1470-1478. Copyright 2008 American Chemical Society.  
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3.2 Introduction 

 Ever since the advent of homogeneous olefin hydrogenation catalysts,1 and 

their application to asymmetric reductions,2 enantiopure hydrogenation catalysts have 

been used extensively in industry3 and in academia.4  The initial commercial 

application of this process, for which Knowles shared the Nobel Prize in chemistry 

with Noyori in 2001, was the production of enantiopure 3,4-dihydroxyphenylaniline 

(L-DOPA), a drug used for treatment of Parkinson’s disease.5 In the 1980s, Noyori 

greatly expanded upon this work, often employing [1,1’-binaphthalene]-

diylbis[diphenylphosphine] (BINAP) derived ligands, which are still widely used in 

the production of pharmaceutical targets.6 Today, asymmetric hydrogenation remains 

wildly popular in the pharmaceutical industry, as more than 1000 chiral ligand systems 

have been developed.7 The industrial syntheses of recently launched drugs such as 

Tipranavir8 and Rozerem9 also rely on asymmetric hydrogenation.  

 Even though impressive levels of activity and specificity have been achieved in 

the aforementioned systems, one remaining drawback is their use of precious metals. 

The cost of precious metals continues to skyrocket and stringent requirements have 

been placed on the allowance of these toxic metal impurities in pharmaceutical 

products.10 Research groups in academia and industry have focused on replacing these 

catalysts with first row transition metal surrogates in order to sidestep these 

inconveniences. Over the last few decades, the use of iron catalysts in oxidation and 

cross-coupling reactions has been studied thoroughly.10,11 

Significant advances have also been made in the development of iron based 

hydrogenation catalysis. In the 1960s, Butterfield and co-workers discovered that 

under 400 psi of dihydrogen and at 180 °C, Fe(CO)5 promoted the hydrogenation and 

isomerization of methyl linoleate12 and was later expanded to include arene 

hydrogenation under water-gas shift conditions.13 Using milder conditions, Wrighton 
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and co-workers reported a photocatalytic method for hydrogenating 1-hexene at 

ambient temperature under only 1 atmosphere of dihydrogen.14,15 Similar methodology 

resulted in the formation of (H2C=CH2)Fe(CO)4
16,17 and (H2C=CH2)2Fe(CO)3

18 which 

easily lose ethylene and generate the proposed catalytically active species, Fe(CO)3.14 

Theoretical work by Weitz in 2005 further implicated Fe(CO)3 as the catalytically 

active species.19 

 Two electron reduction of (iPrPDI)FeBr2 (iPrPDI = 2,6-(2,6-iPr2-

C6H3N=CMe)2-C5H3N, 1-Br2) under an atmosphere of nitrogen resulted in the 

formation of the corresponding bis(imino)pyridine iron bis(dinitrogen) complex, 

(iPrPDI)Fe(N2)2 (1-(N2)2), which was found to be an effective precursor for the 

catalytic hydrogenation and hydrosilylation of olefins and alkynes.20 Impressively, this 

complex catalyzes the hydrogenation of unactivated olefins in non-polar solvents at a 

rate comparable to commonly used precious metal catalysts.21 For this transformation, 

efficient turnover was observed under only 4 atmospheres of hydrogen and catalyst 

loadings as low as 0.04 mol%.21 The initial report of this catalyst focused primarily on 

the hydrogenation of simple, unfunctionalized olefins.20 

 When bound to bis(imino)pyridine iron, weak field σ-donating ligands produce 

intermediate spin iron(II) centers that antiferromagnetically couple to a doubly 

reduced chelate, [PDI]2-.22,23 These complexes, (iPrPDI)Fe-L (L = pyridine, 1-Py; 4-

(dimethylamino)pyridine, 1-DMAP; ammonia, 1-NH3; tert-butylamine, 1-NH2
tBu), 

exhibit temperature independent paramagnetism due to excited state mixing of a triplet 

state which lies close in energy to the singlet ground state, as supported by DFT 

calculations.22,23 Stronger field π-accepting ligands, such as carbon monoxide (1-

(CO)2) and tert-butylisocyanide (1-(tBuNC)2), stabilize the ground state singlet to 

form highly covalent, low-spin complexes (S = 0) that do not exhibit temperature 

independent paramagnetism. A similar observation has been made for the complex 
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(iPrPDI)Fe(DEPE) (1-DEPE), where the 1,2-bis(diethylphosphino)ethane ligand is 

bound through both phosphines.23   

 In the last few years, other examples of iron catalyzed hydrogenation reactions 

have been reported. Casey and Guan have very recently described an iron transfer 

hydrogenation catalyst that is effective for the reduction of ketones.24 Other groups 

have focused on employing phosphine ligands in catalytic iron systems. Bianchini and 

Oro were first to describe such a system, reporting the hydrogenation of alkynes to 

alkenes with the cationic complex [P(CH2CH2PPh2)3FeH(H2)][BPh4].25  This 

methodology was later expanded to include a zwitterionic tris(phosphino)borate 

iron(II) alkyl complex that was effective for the hydrogenation of unactivated 

olefins.26 Groundbreaking work on the development of asymmetric iron hydrogenation 

catalysts was achieved in early 2008 by the groups of Morris27 and Beller28 and 

remains a rapidly growing area of research.   

 To have the broadest application, iron catalysts would need to perform 

asymmetric, late stage transformations on complex pharmaceutical precursors. 

Achieving this objective would avert the necessity for toxic precious metal catalysts 

towards the end of syntheses and significantly lower purification costs. Even with all 

of these recent breakthroughs, replacement of precious metal catalysts with iron 

surrogates can only occur when metal-substrate interactions with these catalysts are 

fully understood. In this Chapter, an in depth look at the tolerance of 

bis(imino)pyridine iron towards a variety of functional groups is explored. 
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3.3  Scope of Hydrogenation 

 Oxygenated alkenes were the first class of substrate explored in catalytic 1-

(N2)2 promoted olefin hydrogenation. Each catalytic reaction was conducted under 4 

atmospheres of dihydrogen with 5 mol % 1-(N2)2 in benzene-d6 at 23 °C (Table 3.1). 

To avoid unwanted side reactions in the absence of H2 (discussed in greater detail in 

Chapter 4), the catalyst solutions were frozen at liquid nitrogen temperature and 

thawed following the addition of substrate and gas. Conversions were determined at 

the desired time by 1H NMR spectroscopy following quenching of the reaction by 

exposure to air or evacuation of hydrogen and vacuum transfer of the volatile reaction 

components. Ether functionality had little impact on the observed hydrogenation 

turnover frequencies (Table 3.1). Ethyl vinyl ether, allyl ethyl ether, and allyl ether 

were all hydrogenated at rates indistinguishable from the previously reported 

unactivated α-olefins.20  

 Substrates containing fluorinated aromatic substituents were also well tolerated 

by the iron catalyst. 4-Fluorostyrene and 2,3,4,5,6-pentafluorostyrene were 

hydrogenated at rates similar to those observed for styrene20 and trans-β-methyl 

styrene (Table 3.1). In contrast to the reactivity presented in Chapter 2, introduction of 

the halogen substituent did not result in competitive iron C-F bond activation. 

Monitoring an equimolar solution of 1-(N2)2 and fluorobenzene at ambient 

temperature over the course of 24 hours in the absence of dihydrogen provided no 

evidence for bond activation under these conditions. The ability of bis(imino)pyridine 

iron to cleave C-F bonds that are not sp2-hybridized has yet to be fully investigated.  
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Table 3.1. Catalytic hydrogenation of ether-substituted substrates, fluorinated 
styrenes, and trans-β-methylstyrene with 1-(N2)2. 

 

 In contrast to ether substitution, the introduction of carbonyl groups had a 

deleterious effect on catalytic turnover (Table 3.2). Hydrogenation of 5-hexen-2-one 

required heating to 65 °C for reasonable turnover while (+)-dihydrocarvone was not 

hydrogenated even upon heating for 15 hours at the same temperature. The inability to 

partially hydrogenate the latter substrate at higher temperature is likely due to a 

reduced coordination affinity for the gem-disubstituted olefin as compared to the 

ketone substituent. Attempts to extend this transformation to the α-enones shown in 

Figure 3.1 have been unsuccessful. Hydrogenation of the alkene in trans-chalcone, 
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trans-4-hexen-3-one, trans-4-phenyl-3-buten-2-one, 2-cyclohexen-1-one, or (–)-

carvone was unsuccessful with 10 mol % of 1-(N2)2 under 4 atmospheres of H2. For 

these substrates, the brownish-green color of the catalyst solution faded almost 

immediately upon thawing and the 1H NMR spectrum of the reaction mixture revealed 

free bis(imino)pyridine ligand.  
 

 
Figure 3.1. α,β-Unsaturated ketones that induce decomposition of 1-(N2)2 under 

catalytic hydrogenation conditions. 

 

 The ability of 1-(N2)2 to hydrogenate ester containing substrates appeared to be 

highly dependent on the position of this functional group relative to the olefin (Table 

3.2). For example, the rate of trans-methylcinnamate conversion was indistinguishable 

from that of trans-β-methylstyrene (Table 3.1), while no conversion was observed for 

allyl acetate or vinyl acetate. Previous work revealed that dimethyl itaconate was 

readily hydrogenated with 1-(N2)2 under similar conditions.20 In this study, internal 

and trisubstituted olefins were effectively hydrogenated when adjacent to an ethyl 

substituted ester. This result contrasts the inability of this catalyst to hydrogenate 

unactivated tri- or tetra-substituted olefins,21 and highlights the observed activity 

difference between activated and unactivated alkenes.  

 The final class of substrates to be examined for catalytic 1-(N2)2 mediated 

reduction was a series of allylamines. Interest in hydrogenating amino-olefins stems 

from the numerous pharmaceutical targets that contain this functionality.29 Similar 

conditions were employed; however, a 0.3 mol % catalyst loading was used for these 
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substrates to highlight the activity differences observed between different degrees of 

amine substitution (Table 3.3). Determining the conversion by 1H NMR spectroscopy 

following vacuum transfer of the volatiles revealed that turnover frequencies for allyl 

group hydrogenation increased with alkylation of the amine group. The unprotected 

amine, allylamine, was by far the slowest, reaching only 20 % conversion after 24 

hours. Highlighting the observed pattern, N,N-dimethylallylamine was hydrogenated 

at a rate indistinguishable from that of 4-methyl-1-pentene.  
 
 

Table 3.2. Hydrogenation of carbonyl containing substrates with 1-(N2)2. 
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Table 3.3. Catalytic hydrogenation of amino-substituted olefins and 4-methyl-1-
pentene with 1-(N2)2. 

 

 

  

 Catalytic deuteration experiments were conducted to determine whether chain-

walking processes were competitive with hydrogenation. Conducting the catalytic 

deuteration of allylamine under 4 atmospheres of D2 with 1.5 mol % 1-(N2)2 at 65 °C 

resulted in exclusive deuterium incorporation into the 2 and 3 positions of the alkyl 

chain (Figure 3.2). Additionally, no deuterium incorporation was observed at the N-H 

positions, suggesting that oxidative addition of the N-H bond followed by H/D 

exchange is not operative under these conditions. Similarly, performing the previously 

described hydrogenation of 5-hexen-2-one under D2 instead of H2 resulted in isotopic 

incorporation into only the 5 and 6 positions of the chain (Figure 3.2).     
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Figure 3.2. Catalytic deuteration of allylamine and 5-hexen-2-one with 1-(N2)2. 

 

3.4 Catalyst Resting States 

 To gain a deeper understanding of the interaction between the iron center and 

each type of functional group, stoichiometric reactions were conducted between 1-

(N2)2 and a series of representative substrates. Initial interest in amine containing 

substrates stemmed from the different hydrogenation activities observed among 

various allyl amines. Addition of 1 equivalent of allyl amine to 1-(N2)2 in benzene-d6 

solution resulted in dinitrogen loss and the formation of (iPrPDI)Fe(NH2CH2CH=CH2) 

(1-NH2CH2CH=CH2) (Figure 3.3). In the same fashion, 1-NH2CH2CH2CH3, 1-

NH2CH2C(Me)2CH=CH2, and 1-NH(Me)CH2CH=CH2 were prepared and 

characterized by multinuclear NMR spectroscopy and combustion analysis (Figure 

3.3). Importantly, addition of either N,N-dimethylallylamine or trans-β-methylstyrene 

produced no detectable change in the 1H NMR spectra of the iron compound. This 

lack of interaction between 1-(N2)2 and N,N-dimethylallylamine suggests that amine 

coordination to the metal center is responsible for the relatively low turnover 

frequencies observed for N-allylmethylamine and allylamine hydrogenation.  

 Characterization of these complexes by 1H NMR spectroscopy allowed 

estimation of relative amine binding affinity to 1-(N2)2. Adding an excess of equimolar 

allylamine and N-allylmethylamine solution to 1-(N2)2 yielded an 85:15 ratio of 1-
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NH2CH2CH=CH2 to 1-NH(Me)CH2CH=CH2. This ratio suggests that primary 

amine coordination is favored over secondary amine binding and is consistent with the 

turnover frequencies presented in Table 3.3. This experiment, coupled with the 

observation of free and bound amine exchange by EXSY NMR spectroscopy at 23 °C 

(200 ms mixing time), demonstrated that allylamine is a labile ligand even though it  

significantly hampers catalytic hydrogenation.  

Figure 3.3. Preparation of bis(imino)pyridine iron amine complexes.  

 

 Relative amine coordination affinities were also determined as a function of 

alkyl chain saturation to elucidate if the presence of an olefin assists in amine 

coordination. Addition of 1 equivalent of both propylamine and allylamine to 1-(N2)2 

resulted in a 2:1 ratio of 1-NH2CH2CH2CH3 to 1-NH2CH2CH=CH2 as judged by 1H 

NMR spectroscopy. This ratio was also obtained upon addition of 1 equivalent of 

propylamine to 1-NH2CH2CH=CH2 or 1 equivalent of allylamine to 1-

NH2CH2CH2CH3 (Figure 3.4). This series of experiments establish that binding of the 

saturated amine is only slightly favored (Keq = 2.0) and suggest that olefin 

coordination in 1-NH2CH2CH=CH2 is negligible. 
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 The 1H and 13C NMR spectroscopic features of these temperature independent 

paramagnetic (TIP) iron-amine complexes are similar to those observed for 1-

NH2
tBu.23 For example, 1-NH(Me)CH2CH=CH2 exhibits the number of resonances 

consistent with a molecule of C2v-symmetry, likely due to fast iron-nitrogen (and 

possibly N-C) bond rotation on the NMR timescale at 23 °C. The 1H NMR resonances 

are shifted from their diamagnetic reference values (free iPrPDI ligand) with the largest 

deviations observed for the imine methyl groups (-6.55 ppm) and m-pyridine 

resonance (12.62 ppm). Cooling a toluene-d8 solution of 1-NH(Me)CH2CH=CH2 

resulted in decoalesence of the imine methyl resonance at -25 °C, corresponding to a 

bond rotation barrier of 11.2 kcal/mol at this temperature. In the {1H}13C NMR 

spectra of these complexes, all resonances appear as sharp singlets except for the 

imine methyl resonance. This resonance typically appears around 40 ppm and is so 

broad that it can only be observed when line broadening functions are applied. 

Broadening of this resonance is likely due to electron delocalization through the π-

system of the bis(imino)pyridine ligand.22  

 

Figure 3.4. Amine exchange at bis(imino)pyridine iron. 

 

 To further investigate the slower hydrogenation activity observed for ketone-

substituted alkenes, a series of commercially available ketones were added to 1-(N2)2 

and their coordination affinity was studied. Addition of 1 equivalent of 5-hexen-2-one 

to 1-(N2)2 in pentane solution resulted in immediate loss of dinitrogen along with the 
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formation of (iPrPDI)Fe(OC(Me)(3-butenyl)) (1-OC(Me)(3-butenyl)) (Figure 3.5). 

Using a similar procedure, bis(imino)pyridine iron complexes of (+)-dihydrocarvone 

(as a mixture of isomers), 2-hexanone, acetophenone, benzylacetone, 2-adamantanone, 

cyclopropyl methyl ketone, and cyclobutyl methyl ketone were prepared (Figure 3.5). 

Like the amine compounds, these complexes exhibit 1H NMR spectroscopic features 

consistent with temperature independent paramagnetism. Diagnostic chemical shifts 

for these complexes are presented in Table 3.4. As observed for previously reported 

TIP complexes,26 the imine methyl resonances are shifted upfield of their diamagnetic 

reference values. Likewise, the m- and p-pyridine resonances are shifted downfield of 

the corresponding free ligand values. One investigated ketone, dicyclohexyl ketone, 

produced no change in the 1H NMR spectrum of 1-(N2)2, likely due to steric crowding.  

Figure 3.5. Preparation of bis(imino)pyridine iron ketone complexes. 
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 Most of the asymmetrically substituted ketones mentioned above exhibit the 

number of chelate resonances expected for a C2v-symmetric molecule by 1H NMR 

spectroscopy at 23 °C, suggesting rapid Fe-O bond rotation under these conditions. 

Cooling a toluene-d8 solution of 1-OC(Me)Ph to -70 °C slowed this Fe-O bond 

rotation and resulted in decoalescence of the isopropyl resonances. One of these 

complexes, 1-DHC, does not undergo fast bond rotation at ambient temperature and 

exhibits the number of resonances expected for a Cs-symmetric molecule. The tied 

back cyclic structure of (+)-dihydrocarvone likely hinders the ability of this substrate 

to rotate quickly within the pocket formed by the bis(imino)pyridine aryl rings.   

 
Table 3.4. Diagnostic benzene-d6 1H NMR shifts of newly prepared 

bis(imino)pyridine complexes that exhibit temperature independent paramagnetism. 
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 In an attempt to greater understand the iron-ketone interaction, exchange 

experiments were conducted to determine whether ketone coordination is labile and 

reversible. Addition of a stoichiometric amount of 2-hexanone-1,1,1,3,3-d5 to a 

benzene solution of either 1-OC(Me)(nBu) or 1-OC(Me)(3-butenyl) resulted in slow 

exchange over the course of 1 hour at 23 °C as judged by 2H NMR spectroscopy 

(Figure 3.6). Investigation of this process by EXSY NMR spectroscopy revealed no 

exchange between free and bound ketone at 23 °C with a mixing time of 500 ms. 

These studies establish that the relative coordination affinity of ketones to 1-(N2)2 is 

much greater than for amines, leading to dramatically decreased rates of 

hydrogenation in the former case. Evidence for olefin coordination was not observed 

for 1-OC(Me)(3-butenyl) in toluene-d8 solution by 1H NMR spectroscopy and no 

decrease in symmetry was observed upon cooling the solution to -80 °C. 

Figure 3.6. Ketone exchange at bis(imino)pyridine iron. 

 

 Stoichiometric treatment of 1-(N2)2 with the α,β-unsaturated ketones presented 

in Figure 3.1 was also investigated. Performing this reaction either in the absence or 

presence of 4 atmospheres of H2 resulted in immediate decomposition of the iron 

complex and isolation of free iPrPDI ligand. One notable exception was the addition of 

(R)-carvone to 1-(N2)2. In this case, a bis(imino)pyridine iron ketone complex, 1-Car, 

exhibiting resonances characteristic of TIP, was observed at early reaction times by 1H 

NMR spectroscopy. Over the course of 5 minutes at 23 °C, benzene-d6 solutions of 1-
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Car changed from green to dark brown in color, concurrent with the disappearance of 

TIP 1H NMR resonances and formation of a complex mixture of paramagnetic 

products. This substrate may form a more stable complex than the other α-enones 

because the olefin is trisubstituted, which may temporarily block C-H activation at the 

β-carbon. Radical chemistry is a more likely cause of these competing decomposition 

reactions due to the low reduction potential of α-enones relative to the corresponding 

saturated ketones. For example, the reduction potential of trans-4-phenyl-3-buten-2-

one in acetonitrile is -2.01 V relative to ferrocene/ferrocenium while that of the 

saturated molecule, methyl-3-phenylpropionate, does not occur before reduction of the 

solvent. On the other hand, α,β-unsaturated esters such as trans-methylcinnamate and 

dimethyl itaconate are tolerated by 1-(N2)2 during hydrogenation (Table 3.2). 

Figure 3.7. Ester and amide TIP complexes of bis(imino)pyridine iron. 
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 Extension of this methodology to the study of esters was met with limited 

success. Many of the esters that were assayed for olefin hydrogenation did not yield 

TIP complexes upon reaction with 1-(N2)2; however, competing processes were 

observed and will be discussed in detail in Chapter 4. Complexes exhibiting TIP were 

observed at early reaction times upon addition of methyl acetate, ethyl acetate, or 

isopropyl acetate to 1-(N2)2 (Figure 3.7) and their diagnostic, paramagnetically shifted 
1H NMR resonances are presented in Table 3.4. Similar reactivity was observed for δ-

valerolactone and dihydrocoumarin, resulting in the isolation of the complexes 1-

Valero and 1-DHCou, respectively. These TIP complexes proved to be more robust 

than the alkyl ester complexes, as they persisted for days at 23 °C in benzene-d6 

solution.   

 Amide addition to 1-(N2)2 also resulted in the isolation of complexes that 

exhibit temperature independent paramagnetism by 1H NMR spectroscopy. 

Bis(imino)pyridine complexes of N,N-dimethylacetamide (1-OC(Me)(NMe2)), N,N-

dimethylbenzamide (1-OC(Ph)(NMe2)), and N-methyl-2-piperidone (1-PIP) (Figure 

3.7) appeared infinitely stable in solution at ambient temperature, unlike the 

previously mentioned alkyl esters. The sole amide investigated for hydrogenation 

activity, N-methyl-N-vinylacetamide, resulted in the formation of two complexes 

when added in a stoichiometric amount to 1-(N2)2. Because this substrate exists as a 

mixture of amide rotamers, TIP complex formation (1-OC(Me)(N(Me)CH=CH2)) 

was observed along with a complex exhibiting paramagnetically broadened resonances 

shifted over a 35 ppm range. This complex is initially proposed to be 1-(к2-Amide), 

where the accessible vinyl substituent is bound to the metal center along with the 

amide carbonyl.   

 
 
 

103 



3.5 Electronic Structure of Neutral Ligand Complexes 

 The ground state electronic structure of a series of bis(imino)pyridine iron 

neutral ligand complexes has been described as having an intermediate spin iron(II) 

center antiferromagnetically coupled to a doubly reduced chelate.22,23 Due to mixing 

of a low lying S = 1 excited state (Figure 3.8) through spin-orbit coupling, these 

complexes exhibit temperature independent paramagnetism by 1H NMR spectroscopy. 

The 1H NMR data presented in Table 3.4, along with the variable temperature spectra 

taken for many of these complexes, suggests that the same electronic structure 

description can be applied to all of the aformentioned neutral ligand iron complexes.   

 

 
Figure 3.8. Ground and excited state electronic structure of bis(imino)pyridine iron 

neutral ligand complexes. 

 

 However, these spectral features were not observed in all cases. Addition of 1 

equivalent of benzophenone to 1-(N2)2 in benzene-d6 yielded the complex 1-OC(Ph)2, 

which exhibits 1H NMR resonances that suggest a different electronic structure than 

observed for other bis(imino)pyridine ketone complexes (Figure 3.9). In this case, 

paramagnetically broadened resonances were observed over a moderately wide (60 
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ppm) chemical shift range. Again, the in-plane chelate hydrogens were the most 

shifted from their corresponding free ligand values. The imine methyl group peak was 

observed upfield at -18.05 ppm while the p-pyridine appeared downfield at 36.94 ppm. 

Cooling a toluene-d8 solution of 1-OC(Ph)2 revealed that the chemical shifts of these 

resonances were temperature dependent and that they converged upon the diamagnetic 

region at lower temperatures (-80 °C). This observation, in conjunction with the lack 

of observable 3JHH coupling constants, pointed towards a change in electronic structure 

for 1-OC(Ph)2.   

 Figure 3.9. 1H NMR spectrum of 1-OC(Ph)2 in benzene-d6 at 293 K. 

 

 Determination of the solid state structure of 1-OC(Ph)2 (Figure 3.10) was 

accomplished by single crystal X-ray diffraction and selected bond distances and 

angles are presented in Table 3.5. The geometry about the metal center can best be 
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described as idealized square planar, with the sum of angles about iron totaling 360 ° 

and an N(2)-Fe(1)-O(1) bond angle of 179.24(10)°. The phenyl rings are canted with 

respect to each other and adopt an orthogonal conformation with respect to the 

bis(imino)pyridine chelate plane. This arrangement is likely due to unfavorable steric 

interactions with the PDI aryl groups. 
 

 
 

Figure 3.10. Solid state structure of 1-OC(Ph)2 at 30 % probability ellipsoids. 
Hydrogen atoms omitted for clarity. 

 

 Further investigating the metrical parameters of 1-OC(Ph)2 suggests that the 

bis(imino)pyridine chelate in this complex is doubly reduced.30 Elongation of the 

imine N=C bond lengths to 1.342(2), along with the contraction of the C(2)-C(3) and 

C(7)-C(8) bonds to 1.414(3) Å and 1.411(3) Å, respectively, is indicative of 2 electron 

bis(imino)pyridine chelate reduction. Interestingly, the O(1)-C(34) bond distance of 
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1.262(2) Å is elongated compared to the same distance determined for free 

benzophenone (1.23(1) Å).31 Another notable feature is the short Fe-O bond length of 

1.7924(3) Å. This value is contracted in relation to typical iron alkoxide C-O bonds 

(~1.85 Å) and strongly suggests that the benzophenone ligand is monoreduced. For 

instance, Holland reported an Fe-O bond distance of 1.8076(16) Å in the iron(II) β-

diiminate alkoxide complex LMeFeOCHPh2.32 As expected, the C-O and Fe-O bond 

distances for an unreduced benzophenone-iron(II) interaction are significantly 

different than those observed in 1-OC(Ph)2 and have been reported to be 1.256(5) Å 

and 1.982(3) Å, respectively.33 Additionally, the Fe(1)-O(1)-C(34) bond angle of 

179.15(6) ° for 1-OC(Ph)2 is suggestive of Fe-O double bond character. 

 

Table 3.5. Selected bond distances (Å) and angles (°) for 1-OC(Ph)2. 
 

Fe(1)-N(1) 1.9113(14) C(2)-C(3) 1.414(3) 

Fe(1)-N(2) 1.8226(15) C(7)-C(8) 1.411(3) 

Fe(1)-N(3) 1.9225(14) O(1)-C(34) 1.262(2) 

Fe(1)-O(1) 1.7924(3) Fe(1)-O(1)-C(34) 167.05(11) 

N(1)-C(2) 1.342(2) N(1)-Fe(1)-N(2) 80.72(6) 

N(3)-C(8) 1.342(2) N(2)-Fe(1)-O(1) 179.15(6) 

 

 Mössbauer spectroscopic investigation of both 1-OC(Me)Ph and 1-OC(Ph)2 

was also conducted to probe for additional evidence of an electronic structure 

difference between the two complexes. The zero-field spectra of both complexes were 

recorded at 80 K and are displayed in Figure 3.11. The experimentally determined 

isomer shifts of 0.313 mm/s and 0.283 mm/s for 1-OC(Me)Ph and 1-OC(Ph)2, 
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respectively, are consistent with values observed for other intermediate spin iron(II) 

centers.22,23 The quadrupole splitting observed for these complexes is 0.997 mm/s and 

0.531 mm/s respectively. The quadrupole splitting value observed for 1-OC(Ph)2 

(0.531 mm/s) is considerably smaller than the value obtained for 1-OC(Me)(Ph), and 

other diamagnetic complexes with doubly reduced PDI ligands (1.42 mm/s on 

average).23 This is consistent with removal of electron density along the z-axis, based 

on the relative orbital energies calculated for 1-(CO)2, and a ferric metal center.22 

Variable temperature Mössbauer spectroscopy has been used to identify temperature 

dependent spin states of an iron center,34 and applying this methodology to 1-

OC(Ph)2, could shed light on the ambient temperature ground state electronic 

structure of this complex.   

 

Figure 3.11. 57Fe Mössbauer spectra of 1-OC(Me)Ph and 1-OC(Ph)2. 
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 Typically, bis(imino)pyridine iron neutral ligand complexes that exhibit 

temperature independent magnetism have negligible magnetic moments when freshly 

prepared. However, the magnetic moment of aged samples of 1-DMAP has been 

found to increase as a function of time by SQUID magnetometry.21 Analysis of these 

samples by Mössbauer spectroscopy produced no evidence for a second iron species 

and monitoring samples of 1-DMAP by 1H NMR specrocsopy in benzene-d6 solution 

revealed slow conversion to an NMR silent product. Similarily, the magnetic 

properties of 1-OC(Ph)2 are not straightforward. The ambient temperature magnetic 

moment of this complex was measured on freshly prepared samples of 1-OC(Ph)2 and 

was found to be 1.2(2) μB (benzene-d6). In contrast, measuring the solid state magnetic 

susceptibility of the same material on a Gouy balance yielded a diamagnetic reading.  

If the ground state of 1-OC(Ph)2 contained a ferric metal center, as the 1H NMR and 

Mössbauer spectroscopic properties of this complex suggest, a magnetic susceptibility 

of at least 1.8 μB would be expected.  

 Similar 1H NMR spectral properties were observed for the complex 

(iPrPDI)Fe(pyrazine) (1-Pz); prepared from straightforward pyrazine addition to 1-

(N2)2. Addition of substoichiometric quantities of pyrazine to 1-(N2)2 resulted in the 

observation of remaining 1-(N2)2 by 1H NMR spectroscopy, confirming that bimetallic 

pyrazine binding does not occur due to the steric demands imparted by the PDI aryl 

substituents. At 293 K, this complex exhibits paramagnetically broadened resonances 

shifted over a 120 ppm chemical shift range. The imine methyl resonance was 

observed upfield at -29.59 ppm while the m-pyridine resonance was shifted the 

farthest from its diamagnetic reference value and observed at 78.11 ppm. Although 1-

Pz has not been characterized by Mössbauer spectroscopy, X-ray crystallography, or 

magnetic studies, preliminary 1H NMR investigation of this complex is suggestive of a 

similar electronic structure to that of 1-OC(Ph)2.    
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3.6 Discussion 

 Taking all spectral data into account, significant contribution from a ferric 

oxidation state arising from reduction of the pendant ligand, must be considered when 

describing the electronic structure of 1-OC(Ph)2 or 1-Pz. It is likely that the reduction 

potential of the added substrate is the key factor in determining whether the ferrous 

oxidation state is accessible. In acetonitrile, the first reduction potential of 

benzophenone was found to be -2.24 V while that for acetophenone was shifted to -

2.46 V (versus Cp2Fe/Cp2Fe+). An even more favorable reduction was observed in the 

case of pyrazine (-2.19 V),35 suggesting that a larger ground state contribution from 

the iron(III) resonance form may give rise to the wider range of 1H NMR resonances 

observed for 1-Pz as compared to 1-OC(Ph)2. The observation of temperature 

independent paramagnetism for 1-Py21 by 1H NMR spectroscopy also supports this 

hypothesis, as it has a one electron reduction potential of -2.57 V.35 This metric can be 

an extremely powerful tool for electronic structure investigation when a second redox 

active ligand is added to bis(imino)pyridine iron. Interestingly, the α-enones presented 

in Figure 3.1 have one-electron redox potentials that are easily accessible, likely 

accounting for the decomposition reactions these substrates induce.  

 

3.6 Conclusion 

 Bis(imino)pyridine iron has been found to hydrogenate substrates containing 

amine, ether, ketone, ester, and amide functionalities but was sensitive to their position 

relative to the olefin. Detailed investigation of the iron-functional group interaction for 

a wide range of substrates revealed, in most cases, formation of complexes that exhibit 

temperature independent paramagnetism. For amines and carbonyl containing 

substrates, the coordination affinity of the functional group was found to be inversely 

proportional to the observed rate of olefin hydrogenation. In two cases, 1-OC(Ph)2 
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and 1-Pz, evidence for reduction of the substrate and formation of an iron(III) center 

was observed. Oxidation to the ferrous state is proposed to be a function of the one 

electron reduction potential of the substrate.  

 

3.8 Experimental Procedures 

General Considerations. All air- and moisture-sensitive manipulations were carried 

out using standard vacuum line, Schlenk and cannula techniques or in an MBraun inert 

atmosphere dry box containing an atmosphere of purified nitrogen. Solvents for air- 

and moisture-sensitive manipulations were initially dried and deoxygenated using 

literature procedures.36 Hydrogen and deuterium gas were passed through a column 

containing manganese oxide supported on vermiculite and 4 Å molecular sieves before 

admission to the high vacuum line. Benzene-d6 and toluene-d8 were purchased from 

Cambridge Isotope Laboratories and dried over 4 Å molecular sieves or titanocene, 

respectively. 1-(N2)2 was prepared according to literature procedures.20 N-

allylmethylamine, N,N-dimethylallylamine, propylamine, 2-hexanone, 5-hexen-2-one, 

4-hexen-3-one, acetophenone, ethyl acetate, vinyl acetate, allyl acetate, ethyl 

crotonate, isopropyl acetate, ethyl-3,3-dimethylacrylate, N-vinyl-N-methyl-acetamide, 

cyclopropyl methyl ketone, cyclobutyl methyl ketone, N,N-dimethylacetamide, 

dicyclohexyl ketone, and (+)-dihydrocarvone as a mixture of isomers were all 

purchased from Aldrich and dried over calcium hydride for at least 24 hours before 

being vacuum transferred to a flask containing 4 Å molecular sieves. Allylamine, (-)-

carvone, methyl acetate, and δ-valerolactone were purchased from Acros and purified 

in a similar manner. 2-Cyclohexen-1-one was purchased from Fisher Scientific and 

dried as described above. 

Ethyl vinyl ether, and allyl ether were purchased from Aldrich and dried over 

calcium hydride for 24 hours. Allyl ethyl ether was purchased from Acros and dried 
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over calcium hydride for 24 hours before use. 4-methyl-1-pentene was vacuum 

transferred from lithium aluminum hydride after drying overnight. 4-Fluorostyrene, 

2,3,4,5,6-pentafluorostyrene, dihydrocoumarin, N,N-dimethylbenzamide, and pyrazine 

were purchased from Aldrich and pumped on for approximately 15 minutes on the 

high vacuum line before use. 1-Methyl-2-piperidone was purchased from Fluka and 

quickly dried on the high vacuum line. 2-Adamantanone was purchased from Alfa 

Aesar and dried overnight on the same line before use. Benzylacetone and trans-β-

methylstyrene were purchased from Aldrich and dried over molecular sieves before 

use. trans-Methyl-cinnamate was purchased from Aldrich, recrystallized from dry 

pentane at –35 °C, and dried under vacuum. trans-Chalcone was purchased from 

Aldrich and dried under vacuum for 16 hours. After drying, this substrate was 

recrystallized from a concentrated ethereal solution at -35 °C. Benzophenone was 

purchased from Fisher Scientific and dried under vacuum for 24 hours. trans-4-

Phenyl-3-buten-2-one was purchased from Acros and dried in vacuo for 

approximately 1 hour before use. 2-Hexanone-1,1,1,3,3-d5 was prepared by stirring 2-

hexanone in D2O in the presence of D2SO4 and dried with MgSO4 following ether 

extraction. 1-Amino-2,2-dimethyl-3-butene was prepared arccording to literature 

procedures.37 
1H NMR spectra were recorded on Varian Mercury 300, Inova 400 and 500 

spectrometers operating at 299.76, 399.78 and 500.62 MHz, respectively. 2H NMR 

spectra were recorded at 20 °C on Inova 500 and 600 spectrometers operating at 76.85  

and 92.07 MHz, respectively. 13C NMR spectra were recorded on the Inova 400 and 

500 spectrometers operating at 101.535 or 125.893 MHz, respectively. All 1H and 13C 

NMR chemical shifts are reported relative to SiMe4 using 1H (residual) and 13C 

chemical shifts of the solvent as a secondary standard. For complexes exhibiting 

temperature independent magnetism, many assignments were made based on COSY, 
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HSQC, and HMBC NMR experiments. Solution magnetic moments were determined 

by Evans method38 using a ferrocene standard and are the average value of at least two 

independent measurements. 1H NMR multiplicity and coupling constants are given 

where applicable. Peak width at half height is given for paramagnetically broadened 

resonances. Elemental analyses were performed at Robertson Microlit Laboratories, 

Inc., in Madison, NJ. Electrochemical measurements were made under a dinitrogen 

purge with a 3 mm glassy carbon working electrode, Pt wire as a counter electrode, 

and Ag wire as a reference. Cyclic voltammograms were collected in acetonitrile 

solution and the reported reduction potentials are referenced relative to 

ferrocene/ferrocenium.  

Single crystals suitable for X-ray diffraction were coated with polyisobutylene 

oil in a drybox, transferred to a nylon loop and then quickly transferred to the 

goniometer head of a Bruker X8 APEX2 diffractometer equipped with a molybdenum 

X-ray tube (λ = 0.71073 Å). Preliminary data revealed the crystal system. A 

hemisphere routine was used for data collection and determination of lattice constants. 

The space group was identified and the data were processed using the Bruker SAINT+ 

program and corrected for absorption using SADABS. The structures were solved 

using direct methods (SHELXS) completed by subsequent Fourier synthesis and 

refined by full-matrix least-squares procedures. 

Mössbauer data were collected on an alternating constant-acceleration 

spectrometer. The minimum experimental line width was 0.24 mm s-1 (full width at 

half height). A constant sample temperature was maintained with an Oxford 

Instruments Variox or an Oxford Instruments Mössbauer-Spectromag 2000 cyrostat. 

Reported isomer shifts (δ) are referenced to iron metal at 293 K. 
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General Procedure for the Catalytic Hydrogenation of Amino-Substituted 

Olefins. A stock solution containing 0.026 g (0.044 mmol) of 1-(N2)2 and 15.00 g 

(178.3 mmol) of benzene-d6 was prepared and stored at -35 °C. Upon thawing to 

ambient temperature, 0.65 g of the resulting solution was charged into a thick-walled 

glass vessel. Using a microsyringe, 0.633 mmol of the desired substrate was added and 

the vessels were quickly sealed. After being submerged in liquid nitrogen, the frozen 

solutions were treated with 4 atm of dihydrogen. The timer was started when the 

solutions began to stir upon thawing. The catalytic reactions were quenched by 

submerging the bomb in liquid nitrogen, evacuating the remaining dihydrogen, and 

transferring the volatile components of the resulting solution to a J. Young tube for 

analysis by 1H NMR spectroscopy. Conversions were measured by integrating the 

residual olefin resonances against their saturated counterparts. 

 

Catalytic deuteration of allylamine. A J. Young tube was charged with 0.012 g 

(0.020 mmol) of 1-(N2)2 and approximately 0.65 g of benzene. With a microsyringe, 

0.076 g (100 μL, 1.33 mmol) of allylamine was added to the tube. This solution was 

then submerged in liquid nitrogen, the tube was evacuated, and 4 atm of deuterium 

was added.  The tube was placed in a 65 °C bath for approximately 1 week before the 

solution was analyzed by 2H NMR spectroscopy. 

 

Catalytic hydrogenation of oxygenated olefins. For each independent trial, a thick-

walled glass vessel was charged with a solution containing 0.019 g (0.032 mmol) of 1-

(N2)2 in 0.65 g (7.72 mmol) of benzene-d6. After standing in a liquid nitrogen chilled 

cold well for approximately 20 minutes, 0.633 mmol of the desired substrate was 

added to the vessel. Immediately after addition, the vessel was submerged in liquid 

nitrogen to prevent reaction of the substrate and catalyst. On the high vacuum line, 4 
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atm of dihydrogen was added and the solution was warmed to ambient temperature or 

65 °C.  At the desired reaction time, the vessel was opened to air and the catalyst 

solution was filtered through a glass frit into an NMR tube. Conversions were 

determined by integrating the remaining 1H NMR olefin resonances against their 

saturated analogues. 

 

Catalytic deuteration of 5-hexen-2-one. This reaction was conducted in a similar 

manner to that of the oxygenated olefins with an identical catalyst loading in benzene 

solution with 4 atm of deuterium gas. The reaction was opened to air after 90 minutes 

at 65 °C and the solution was filtered through a glass frit into an NMR tube. 

Deuterium incorporation was determined by 2H NMR spectroscopy. 

 

Preparation of (iPrPDI)Fe(NH2CH2CH=CH2) (1-NH2CH2CH=CH2). A 20 mL 

scintillation vial was charged with 0.100 g (0.168 mmol) of 1-(N2)2 and approximately 

10 mL of pentane. With a microsyringe, 0.010 g (13 μL, 0.168 mmol) of allylamine 

was added to the stirring solution. Upon addition of the amine, dinitrogen evolution 

was observed and a reddish-brown solution formed. After 20 minutes, the solution was 

filtered though a frit and the solvent was removed in vacuo to yield 0.077 g (77%) of a 

dark brown solid identified as 1-NH2CH2CH=CH2. Analysis for C36H50FeN4: Calcd 

C, 72.71; H, 8.48; N, 9.42.  Found: C, 72.63; H, 8.77; N, 8.99. 1H NMR (benzene-d6): 

δ = 12.05 (d, 7.5 Hz, 2H, m-pyr), 8.77 (t, 7.5 Hz, 1H, p-pyr), 7.63 (t, 8.0 Hz, 2H, p-

aryl), 7.24 (d, 8.0 Hz, 4H, m-aryl), 5.35 (m, 1H, CH2CH=CH2), 4.90 (t, 7.5 Hz, 2H, 

NH2CH2), 4.76 (d, 10.5 Hz, 1H, CH2CH=CH2), 4.70 (d, 17.0 Hz, 1H, CH2CH=CH2), 

2.78 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.63 (m, 2H, NH2CH2), 1.24 (d, 7.0 Hz, 12H, 

CH(CH3)2), -0.34 (d, 7.0 Hz, 12H, CH(CH3)2), -6.09 (s, 6H, C(CH3)). 13C{1H} NMR 

(benzene-d6): δ =  189.45, 165.16, 164.61 (quaternary carbons), 140.00 (p-pyr), 
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137.26 (CH2CH=CH2), 136.57, 125.25 (p-aryl), 124.43 (m-aryl), 116.86 

(CH2CH=CH2), 103.09 (m-pyr), 44.81 (NH2CH2), 39.17 (C(CH3)), 28.53 (CH(CH3)2), 

24.23 (CH(CH3)2), 23.15 (CH(CH3)2). 

 

Preparation of (iPrPDI)Fe(NH2CH2CH2CH3) (1-NH2CH2CH2CH3). This compound 

was prepared in a manner similar to 1-NH2CH2CH=CH2 with 0.100 g (0.168 mmol) 

of 1-(N2)2 and 0.010 g (14 μL, 0.168 mmol) of propylamine to yield 0.075 g (75%) of 

a dark orange solid identified as 1-NH2CH2CH2CH3. Analysis for C36H52N4Fe: Calcd 

C, 72.47; H, 8.78; N, 9.39. Found: C, 72.25; H, 8.35; N, 9.00. 1H NMR (benzene-d6): 

δ = 12.12 (d, 7.5 Hz, 2H, m-pyr), 8.75 (t, 7.5 Hz, 1H, p-pyr), 7.63 (t, 8.0 Hz, 2H, p-

aryl), 7.24 (d, 8.0 Hz, 4H, m-aryl), 4.83 (t, 7.5 Hz, 2H, NH2CH2), 2.72 (sept., 7.0 Hz, 

4H, CH(CH3)2), 1.25 (d, 7.0 Hz, 12H, CH(CH3)2), 0.91 (m, 2H, NH2CH2), 0.83 (m, 

2H, CH2CH3), 0.41 (t, 7.0 Hz, 3H, CH2CH3), -0.26 (d, 7.0 Hz, 12H, CH(CH3)2), -6.09 

(s, 6H, C(CH3)). 13C{1H} NMR (benzene-d6): δ = 189.77, 165.29, 164.41, 140.20, 

136.38 (p-pyr), 125.15 (p-aryl), 124.31 (m-aryl), 102.95 (m-pyr), 43.68 (NH2CH2), 

38.82 (C(CH3)), 28.48 (CH(CH3)2), 26.53 (CH2CH3), 24.30 (CH(CH3)2), 23.14 

(CH(CH3)2), 10.80 (CH2CH3).  

 

Synthesis of (iPrPDI)Fe(NH2CH2C(Me)2CH=CH2) (1-NH2CH2C(Me)2CH=CH2). 

This compound was prepared in a manner similar to 1-NH2CH2CH=CH2 with 0.020 g 

(0.034 mmol) of 1-(N2)2 and 0.003 g (4.5 μL, 0.034 mmol) of 1-amino-2,2-dimethyl-

3-butene in benzene-d6 solution. 1H NMR (benzene-d6): δ = 12.14 (d, 7.5 Hz, 2H, m-

pyr), 8.77 (t, 7.5 Hz, 1H, p-pyr), 7.62 (t, 8.0 Hz, 2H, p-aryl), 7.23 (d, 8.0 Hz, 4H, m-

aryl), 5.40 (m, 1H, CH=CH2), 5.06 (m, 1H, CH=CH2), 4.88 (m, 1H, CH=CH2), 2.75 

(sept., 7.0 Hz, 4H, CH(CH3)2), 1.24 (d, 7.0 Hz, 12H, CH(CH3)2), 0.44 (s, 6H, 
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C(CH3)2), -0.20 (d, 7.0 Hz, 12H, CH(CH3)2), -6.23 (s, 6H, C(CH3)), one resonance not 

located.  

 

Preparation of (iPrPDI)Fe(NH(Me)CH2CH=CH2) (1-NH(Me)CH2CH=CH2). This 

compound was prepared in a manner similar to 1-NH2CH2CH=CH2 with 0.042 g 

(0.071 mmol) of 1-(N2)2 and 0.005 g (7 μL, 0.071 mmol) of N-allylmethylamine to 

yield 0.023 g (53 %) of a dark brown solid identified as 1-NH(Me)CH2CH=CH2. 

Analysis for C37H52N4Fe: Calcd C, 73.01; H, 8.61; N, 9.20.  Found: C, 72.79; H, 8.25; 

N, 8.96. 1H NMR (benzene-d6): δ = 12.62 (d, 8.0 Hz, 2H, m-pyr), 8.82 (t, 8.0 Hz, 1H, 

p-pyr), 8.28 (m, 1H, NH(CH3)), 7.68 (t, 8.0 Hz, 2H, p-aryl), 7.24 (d, 8.0 Hz, 4H, m-

aryl), 4.99 (m, 1H, CH2CH=CH2), 4.92 (d, 10.5 Hz, 1H, CH2CH=CH2), 4.75 (d, 17.0 

Hz, 1H, CH2CH=CH2), 2.16 (m, 2H, NH(CH2)), 1.22 (d, 7.0 Hz, 12H, CH(CH3)2), 

1.02 (d, 7.0 Hz, 3H, NH(CH3)), 0.25 (d, 7.0 Hz, 12H, CH(CH3)2), -6.55 (s, 6H, 

C(CH3)), one peak not located. 13C{1H} NMR (benzene-d6): δ = 192.79, 165.77, 

142.46, 137.04, 134.06, 125.50 (p-aryl), 124.54 (m-aryl), 123.91, 121.22, 103.07 (m-

pyr), 52.36 (NHCH2), 40.93 (C(CH3)), 34.31 (NHCH3), 28.55 (CH(CH3)2), 24.76 

(CH(CH3)2), 23.22 (CH(CH3)2). 

 

Preparation of (iPrPDI)FeOC(Me)(3-butenyl)) (1-OC(Me)(3-butenyl)). With a 

microsyringe, 0.016 g (20 μL, 0.168 mmol) of 5-hexen-2-one was added to 0.100 g 

(0.168 mmol) of 1-(N2)2 in approximately 10 mL of pentane. After stirring for 30 

minutes, the solution was filtered through Celite and the solvent was evacuated. 

Recrystallization of the resulting solid from a concentrated pentane solution at -35 °C 

yielded 0.041 g (38%) of dark brown crystals identified as 1-OC(Me)(3-butenyl). 

Analysis for C39H53FeN3O: Calcd C, 73.69; H, 8.40; N, 6.61. Found: C, 73.43; H, 

8.43; N, 6.41. 1H NMR (toluene-d8, 20 °C): δ =10.49 (bs, 7.5 Hz, 2H, m-pyr), 8.44 
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(bs, 1H, p-pyr), 7.42 (t, 8.0 Hz, 2H, p-aryl), 7.14 (d, 8.0 Hz, 4H, m-aryl), 5.29 (bs, 1H, 

CH2CH=CH2), 4.83 (bs, 2H, CH2CH=CH2), 2.78 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.44 

(bs, 2H, CH2), 1.20 (d, 7.0 Hz, 12H, CH(CH3)2), 0.98 (bs, 2H, CH2), 0.20 (d, 7.0 Hz, 

12H, CH(CH3)2), -2.87 (bs, 6H, C(CH3)). 1H NMR (toluene-d8, -60 °C): δ =10.45 (d, 

7.5 Hz, 2H, m-pyr), 8.55 (t, 7.5 Hz, 1H, p-pyr), 7.44 (t, 8.0 Hz, 2H, p-aryl), 7.12 (d, 

8.0 Hz, 4H, m-aryl), 5.30 (m, 1H, CH2CH=CH2), 4.89 (d, 11.0 Hz, 1H, CH2CH=CH2), 

4.85 (d, 17.5 Hz, 1H, CH2CH=CH2), 2.74 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.32 (m, 2H, 

CH2), 1.22 (d, 7.0 Hz, 12H, CH(CH3)2), 0.97 (m, 2H, CH2), 0.22 (d, 7.0 Hz, 12H, 

CH(CH3)2), 0.18 (s, 3H, CO(CH3)), -2.78 (s, 6H, C(CH3)). 13C{1H} NMR (toluene-d8, 

-60 °C): δ = 205.11 (C=O), 171.01, 160.02, 155.51, 139.06, 137.62 (CH2CH=CH2), 

137.12, 131.25 (p-pyr), 124.90 (p-aryl), 123.53 (m-aryl), 115.97 (CH2CH=CH2), 

105.09 (m-pyr), 46.96 (CH2CH=CH2), 31.62 (COCH3), 30.78 (C(CH3)), 28.36 

(CH(CH3)2), 27.51 (COCH2), 24.24 (CH(CH3)2), 23.30 (CH(CH3)2). 

 

Preparation of (iPrPDI)Fe(DHC) (1-DHC). This compound was prepared in a 

manner similar to 1-OC(Me)(3-butenyl) with 0.100 g (0.168 mmol) of 1-(N2)2 and 

0.025 g (28 μL, 0.168 mmol) of (+)-dihydrocarvone as a mixture of isomers. After 

filtration, the solvent was removed in vacuo and recrystallized from pentane to yield 

0.087 g (75%) of a dark purple solid identified as 1-DHC as a mixture of two 

diastereomers. Analysis for C43H59FeN3O: Calcd C, 74.87; H, 8.62; N, 6.09. Found: C, 

74.80; H, 8.58; N, 5.83. 1H NMR (major diastereomer, benzene-d6): δ =10.47 (d, 7.5 

Hz, 2H, m-pyr), 8.46 (t, 7.5 Hz, 1H, p-pyr), 7.42 (t, 8.0 Hz, 2H, p-aryl), 7.19 (d, 8.0 

Hz, 4H, m-aryl), 4.63 (s, 1H, C=CH2), 3.18 (sept., 7.0 Hz, 2H, CH(CH3)2), 4.52 (s, 

1H, C=CH2), 2.59 (sept., 7.0 Hz, 2H, CH(CH3)2), 1.83 (m, 2H, DHC), 1.50 (s, 3H, 

DHC CCH3), 1.21 (d, 7.0 Hz, 6H, CH(CH3)2), 1.15 (d, 7.0 Hz, 6H, CH(CH3)2), 0.90-

1.07 (m, 6H, DHC), 0.56 (d, 7.0 Hz, 6H, CH(CH3)2), 0.40 (d, 7.0 Hz, DHC CHCH3), 
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0.13 (d, 7.0 Hz, 6H, CH(CH3)2), -2.89 (s, 6H, C(CH3)). 1H NMR (minor diastereomer, 

benzene-d6): δ = 10.84 (d, 7.5 Hz, 2H, m-pyr), 8.56 (t, 7.5 Hz, 1H, p-pyr), 7.50 (t, 8.0 

Hz, 2H, p-aryl), 7.20 (d, 8.0 Hz, 4H, m-aryl), 4.56 (s, 1H, C=CH2), 4.45 (s, 1H, 

C=CH2), 2.82 (sept., 7.0 Hz, 2H, CH(CH3)2), 2.50 (m, 2H, DHC), 1.43 (s, 3H, DHC 

CCH3), 1.22 (d, 7.0 Hz, 6H, CH(CH3)2), 1.19 (d, 7.0 Hz, 6H, CH(CH3)2), 0.90-1.07 

(m, 6H, DHC), 0.36 (d, 7.0 Hz, 6H, CH(CH3)2), 0.29 (d, 7.0 Hz, DHC CHCH3), 0.18 

(d, 7.0 Hz, 6H, CH(CH3)2), -3.39 (s, 6H, C(CH3)), one peak not located. 13C{1H} 

NMR (major diastereomer, benzene-d6): δ = 210.52 (C=O), 171.21, 161.20, 155.18, 

147.94, 139.70, 139.10, 130.96 (p-pyr), 124.54 (p-aryl), 123.74 (m-aryl), 123.47 (m-

aryl), 110.38 (C=CH2), 104.31 (m-pyr), 46.96 (DHC), 46.16 (DHC), 43.66 (DHC), 

30.39 (C(CH3)), 28.38 (CH(CH3)2), 27.99 (CH(CH3)2), 24.29 (CH(CH3)2), 23.69 

(CH(CH3)2), 23.39 (CH(CH3)2), 22.48 (CH(CH3)2), 20.08 (DHC CCH3), 13.53 (DHC 

CHCH3), one peak not located. 

 

Preparation of iPrPDIFe(OC(Me)(nBu)) (1-OC(Me)(nBu)). A 20 mL scintillation 

vial was charged with 0.100 g (0.168 mmol) of 1-(N2)2 and approximately 10 mL of 

pentane. While stirring, 0.017 g (21 μL, 0.168 mmol) of 2-hexanone was added by 

microsyringe and the solution immediately began to evolve N2 and turn brown. After 

20 minutes, the solution was filtered though a frit and the solvent was removed in 

vacuo to yield 0.085 g (79%) of a dark brown solid identified as 1-OC(Me)(nBu). 

Analysis for C39H55FeN3O: Calcd C, 73.45; H, 8.69; N, 6.59. Found: C, 73.25; H, 

8.30; N, 6.46. 1H NMR (benzene-d6): δ = 10.59 (d, 7.5 Hz, 2H, m-pyr), 8.51 (t, 7.5 Hz, 

1H, p-pyr), 7.46 (t, 8.0 Hz, 2H, p-aryl), 7.16 (d, 8.0 Hz, 4H, m-aryl), 2.82 (sept., 7.0 

Hz, 4H, CH(CH3)2), 1.21 (d, 7.0 Hz, 12H, CH(CH3)2), 1.14 (m, 2H, butyl), 0.93 (m, 

2H, butyl), 0.85 (m, 2H, butyl), 0.71 (m, 3H, CH2CH3), 0.29 (s, 3H, CO(CH3)), 0.22 

(d, 7.0 Hz, 12H, CH(CH3)2), -3.07 (s, 6H, C(CH3)). 13C{1H} NMR (benzene-d6): δ = 
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172.82, 160.82, 155.87, 139.11, 132.07 (p-pyr), 124.83 (p-aryl), 123.51 (m-aryl), 

104.68 (m-pyr), 47.98, 31.84 (COCH3), 31.41 (bs, C(CH3)), 28.43 (CH(CH3)2), 25.87 

(butyl), 24.32 (CH(CH3)2), 23.37 (CH(CH3)2), 23.35 (butyl), 14.16 (CH2CH3), one 

peak not located. 

 

Preparation of (iPrPDI)Fe(OC(Me)Ph) (1-OC(Me)Ph). This compound was 

prepared in a similar manner to 1-OC(Me)(3-butenyl) with 0.100 g (0.168 mmol) of 

1-(N2)2 and 0.020 g (20 μL, 0.168 mmol) of acetophenone to yield 0.092 g (83%) of a 

dark green solid identified as 1-OC(Ph)Me. Analysis for C41H51FeN3O: Calcd C, 

74.87; H, 7.82; N, 6.39.  Found: C, 75.02; H, 7.41; N, 6.46. 1H NMR (benzene-d6): δ = 

10.05 (d, 7.5 Hz, 2H, m-pyr), 8.80 (t, 7.5 Hz, 1H, p-pyr), 7.44 (broad s, 1H, p-phenyl), 

7.42 (t, 8.0 Hz, 2H, p-aryl), 7.15 (d, 8.0 Hz, 4H, m-aryl), 7.13 (broad s, 2H, o-phenyl), 

6.69 (broad s, 2H, m-phenyl), 2.70 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.19 (d, 7.0 Hz, 

12H, CH(CH3)2), 0.15 (d, 7.0 Hz, 12H, CH(CH3)2), -0.52 (broad s, 3H, COCH3), -2.33 

(s, 6H, C(CH3)). 1H NMR (toluene-d8, -80 °C): δ = 9.96 (d, 7.5 Hz, 2H, m-pyr), 8.68 

(t, 7.5 Hz, 1H, p-pyr), 7.43 (t, 7.5 Hz, 2H, p-aryl), 7.26 (t, 7.5 Hz, 1H, p-phenyl), 6.83 

(d, 7.0 Hz, 2H, o-phenyl), 6.69 (m, 2H, m-phenyl), 3.09 (broad s, 2H, CH(CH3)2), 2.27 

(broad s, 2H, CH(CH3)2), 1.28 (broad m, 6H, CH(CH3)2), 1.18 (broad m, 6H, 

CH(CH3)2), 0.33 (broad s, 6H, CH(CH3)2), -0.04 (broad s, 6H, CH(CH3)2), -0.11 (s, 

3H, COCH3), -2.01 (s, 6H, C(CH3)), m-aryl peak not located. 13C{1H} NMR 

(benzene-d6): δ = 166.42, 159.33, 154.74, 139.82, 125.56 (p-aryl), 124.01 (m-aryl), 

107.43 (m-pyr), 30.37 (C(CH3)), 28.25 (CH(CH3)2), 24.47 (CH(CH3)2), 23.14 

(CH(CH3)2), p-pyr and acetophenone peaks not located.  

 

Preparation of (iPrPDI)Fe(OC(Me)(PhEt)) (1-OC(Me)(PhEt)). This compound was 

prepared in a manner similar to 1-OC(Me)(3-butenyl) with 0.100 g (0.168 mmol) of 
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1-(N2)2 and 0.025 g (26 μL, 0.168 mmol) of 4-phenyl-2-butanone. The resulting 

residual solid was recrystallized from pentane at -35 °C to yield 0.030 g (26%) of a 

dark brown solid identified as 1-OC(Me)(PhEt). Analysis for C43H55FeN3O: Calcd C, 

75.31; H, 8.08; N, 6.13. Found: C, 74.99; H, 7.86; N, 5.81. 1H NMR (benzene-d6): δ = 

10.53 (d, 7.5 Hz, 2H, m-pyr). 8.52 (t, 7.5 Hz, 1H, p-pyr), 7.46 (t, 8.0 Hz, 2H, p-aryl), 

7.17 (d, 8.0 Hz, 4H, m-aryl), 7.11 (d, 7.5 Hz, 2H, phenyl), 7.02 (t, 7.5 Hz, 1H, phenyl), 

6.90 (d, 7.5 Hz, 2H, phenyl), 2.82 (sept., 7.0 Hz, 4H, CH(CH3)2), 2.07 (m, 2H, CH2), 

1.33 (m, 2H, CH2), 1.20 (d, 7.0 Hz, 12H, CH(CH3)2), 0.21 (d, 7.0 Hz, 12H, 

CH(CH3)2), 0.17 (s, 3H, CO(CH3)), -3.04 (s, 6H, C(CH3)). 13C{1H} NMR (benzene-

d6): δ = 204.77 (C=O), 172.32, 160.75, 155.98, 139.29, 131.94, 129.14, 129.03, 

127.01,  126.63, 124.98 (p-aryl), 123.64 (m-aryl), 104.87 (m-pyr), 49.32 (CH2), 32.58 

(COCH3), 31.31 (C(CH3)), 29.17 (CH2), 28.44 (CH(CH3)2), 24.30 (CH(CH3)2), 23.39 

(CH(CH3)2). 

 

Preparation of (iPrPDI)Fe(O=Ad) (1-O=Ad). This compound was prepared in a 

similar fashion to 1-OC(Me)(3-butenyl) with 0.100 g (0.168 mmol) of 1-(N2)2
 and 

0.025 g (0.168 mmol) of 2-adamantanone to yield 0.093 g (80%) of a dark purple solid 

identified as 1-O=Ad. Analysis for C43H57FeN3O: Calcd C, 75.09; H, 8.35; N, 6.11. 

Found: C, 75.01; H, 8.62; N, 5.82. 1H NMR (benzene-d6): δ = 10.62 (d, 7.5 Hz, 2H, m-

pyr). 8.45 (t, 7.5 Hz, 1H, p-pyr), 7.40 (t, 7.5 Hz, 2H, p-aryl), 7.19 (d, 7.5 Hz, 4H, m-

aryl), 2.99 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.63 (broad s, 2H, OC(CH)2), 1.36 (broad s, 

12H, adamantyl), 1.20 (d, 7.0 Hz, 12H, CH(CH3)2), 0.31 (d, 7.0 Hz, 12H, CH(CH3)2), 

-3.05 (s, 6H, C(CH3)). 13C NMR (benzene-d6): δ = 172.58, 161.58, 155.25, 139.19, 

131.77 (p-pyr), 124.68 (p-aryl), 123.72 (m-aryl), 104.40 (m-pyr), 50.30 (OC(CH)2), 

37.70 (adamantyl), 36.31 (adamantyl), 31.64 (broad s, C(CH3)), 28.61 (CH(CH3)2), 

27.71 (adamantyl), 24.40 (CH(CH3)2), 23.02 (CH(CH3)2), one peak not located. 
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Observation of (iPrPDI)Fe(OC(Me)(cPr)) (1-OC(Me)(cPr)). This complex was 

prepared in a manner similar to 1-OC(Me)(3-butenyl) with 0.015 g (0.025 mmol) of 

1-(N2)2 and 0.002 g (2.5 μL, 0.025 mmol) of cyclopropyl methyl ketone in benzene-d6 

solution. 1H NMR (benzene-d6): δ = 10.78 (d, 7.5 Hz, 2H, m-pyr), 8.53 (t, 7.5 Hz, 1H, 

p-pyr), 7.46 (t, 8.0 Hz, 2H, p-aryl), 7.16 (m, 4H, m-aryl), 2.79 (sept., 7.0 Hz, 2H, 

CH(CH3)2), 1.23 (d, 7.0 Hz, 12H, CH(CH3)2), 0.18 (d, 7.0 Hz, 12H, CH(CH3)2), 0.01 

(s, 3H, CO(CH3)), -3.28 (s, 6H, C(CH3)), cyclopropyl resonances not located.  

 

Observation of (iPrPDI)Fe(OC(Me)(cBu)) (1-OC(Me)(cBu)). This complex was 

prepared in a manner similar to 1-OC(Me)(3-butenyl) with 0.015 g (0.025 mmol) of 

1-(N2)2 and 0.002 g (2.75 μL, 0.025 mmol) of cyclobutyl methyl ketone in benzene-d6 

solution. 1H NMR (benzene-d6): δ = 10.67 (d, 7.5 Hz, 2H, m-pyr), 8.55 (t, 7.5 Hz, 1H, 

p-pyr), 7.44 (t, 8.0 Hz, 2H, p-aryl), 7.16 (m, 4H, m-aryl), 2.76 (sept., 7.0 Hz, 2H, 

CH(CH3)2), 1.93 (m, 1H, cBu), 1.60-1.32 (m, 6H, cBu), 1.22 (d, 7.0 Hz, 12H, 

CH(CH3)2), 0.22 (d, 7.0 Hz, 12H, CH(CH3)2), 0.10 (s, 3H, CO(CH3)), -3.22 (s, 6H, 

C(CH3)). 

 

Observation of (iPrPDI)Fe(Car) (1-Car). Using a microsyringe, 0.005 g (5.25 μL, 

0.034 mmol) of (-)-carvone was added to a solution of 1-(N2)2 in approximately 0.70 g 

of benzene-d6. The resulting bright green solution was quickly filtered through Celite 

into a J. Young tube and submerged in liquid nitrogen to prevent decomposition. The 
1H NMR spectrum of this complex was recorded immediately after thawing. The 

solution turned dark brown in color during the course of spectral acquisition. 1H NMR 

(benzene-d6): δ = 10.37 (d, 7.5 Hz, 2H, m-pyr), 8.62 (t, 7.5 Hz, 1H, p-pyr), 7.47 (t, 8.0 

Hz, 2H, p-aryl), 7.26 (d, 8.0 Hz, 4H, m-aryl), 6.41 (s, 1H, C=CHCH2), 4.64 (s, 1H, 
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C=CH2), 4.56 (s, 1H, C=CH2), 2.93 (sept., 7.0 Hz, 2H, CH(CH3)2), 2.61 (m, 2H, 

CH(CH3)2 or carvone CH2), 2.22 (m, 1H, carvone), 1.41 (s, 3H, carvone CH3), 1.30 (s, 

3H, carvone CH3), 1.25-1.16 (m, 12H, CH(CH3)2), 0.48 (d, 7.0 Hz, 6H, CH(CH3)2), 

0.09 (d, 7.0 Hz, 6H, CH(CH3)2), -0.78 (dd, 16 Hz, 1H, COCH2), -2.59 (s, 6H, 

C(CH3)), two peaks not located. 

 

Observation of (iPrPDI)Fe(CH3O2CCH3) (1-MeOAc). To a solution of 0.020 g 

(0.025 mmol) of 1-(N2)2 in approximately 0.7 mL of benzene-d6, 2.7 μL (0.025 mmol) 

of methyl acetate was added by microsyringe. The resulting reddish-brown solution 

was transferred to a J. Young tube and quickly analyzed by 1H NMR spectroscopy. 1H 

NMR (benzene-d6): δ = 11.67 (br s, 2H, m-pyr), 8.63 (br s, 1H, p-pyr), 7.54 (t, 8.0 Hz, 

2H, p-aryl), 2.57-2.62 (m, 7H, CH(CH3)2 and OCH3), 1.21 (d, 7.0 Hz, 12H, 

CH(CH3)2), 0.59 (s, 3H, COCH3), -0.13 (d, 7.0 Hz, 12H, CH(CH3)2), -4.88 (s, 6H, 

C(CH3)), m-aryl resonance not located. 

 

Preparation of (iPrPDI)Fe(CH3O2CCH2CH3) (1-EtOAc). A 20 mL scintillation vial 

was charged with 0.080 g (0.135 mmol) of 1-(N2)2 and approximately 10 mL of 

diethyl ether. With stirring, 0.012 g (13 μL, 0.135 mmol) of ethyl acetate was added 

via microsyringe resulting in immediate evolution of N2 along with a change in color 

to reddish-brown. After 30 minutes, the solution was filtered though a Celite fitted frit 

and the solvent was removed in vacuo to yield 0.070 g (83%) of a dark brown solid 

identified as 1-EtOAc. Analysis for C37H51FeN3O2: Calcd C, 71.03; H, 8.22; N, 6.72. 

Found: C, 70.74; H, 7.86; N, 6.97. 1H NMR (toluene-d8, -60 °C): δ = 11.61 (d, 7.5 Hz, 

2H, m-pyr), 8.66 (t, 7.0 Hz, 1H, p-pyr), 7.50 (t, 8.0 Hz, 2H, p-aryl), 7.09 (d, 7.0 Hz, 

4H, m-aryl), 2.92 (q, 6.0 Hz, 2H, CH2CH3), 2.52 (sept., 5.5 Hz, 4H, CH(CH3)2), 1.24 

(d, 5.5 Hz, 12H, CH(CH3)2), 0.81 (t, 6.0 Hz, 3H, CH2CH3), 0.58 (s, 3H, COCH3), -
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0.12 (d, 5.5 Hz, 12H, CH(CH3)2), -4.67 (s, 6H, C(CH3)). 13C{1H} NMR (toluene-d8, -

60 °C): δ = 183.41, 181.65, 163.30, 160.00, 137.62, 136.80 (p-pyr), 124.53 (p-aryl), 

123.69 (m-aryl), 103.83 (m-pyr), 64.22 (CH2CH3), 35.39 (C(CH3)), 28.29 (CH(CH3)2), 

23.73 (CH(CH3)2), 22.86 (CH(CH3)2), 22.33 (COCH3), 13.79 (CH2CH3). 

 

Preparation of (iPrPDI)Fe(CH3O2CCH(CH3)2) (1-iPrOAc). This complex was 

prepared in a manner similar to 1-MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 

0.002 g (2.5 μL, 0.025 mmol) of cyclopropyl methyl ketone in benzene-d6 solution. 

Free 1-(N2)2 was also observed by 1H NMR spectroscopy suggesting that acetate 

exchange causes broadening of the resonances. 1H NMR (benzene-d6): δ = 11.94 (br s, 

2H, m-pyr), 8.69 (br s, 1H, p-pyr), 7.58 (br s, 2H, p-aryl), 2.58 (br s, 4H, CH(CH3)2), 

0.99 (br s, 12H, CH(CH3)2), 0.45 (br s), -0.01 (br s, 12H, CH(CH3)2), -5.32 (br s, 6H, 

C(CH3)), several peaks not located.  

 

Preparation of (iPrPDI)Fe(Valerolactone) (1-Valero). This complex was prepared in 

a manner similar to 1-MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 0.003 g (2.5 

μL, 0.025 mmol) of δ-valerolactone in benzene-d6 solution. 1H NMR (benzene-d6): δ = 

11.38 (d, 7.5 Hz, 2H, m-pyr), 8.60 (t, 7.0 Hz, 1H, p-pyr), 7.49 (t, 7.5 Hz, 2H, p-aryl), 

7.16 (m, 4H, m-aryl), 2.89 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.36 (m, 2H, valerolactone), 

1.29 (d, 7.0 Hz, 12H, CH(CH3)2), 0.77 (m, 2H, valerolactone), 0.63 (m, 2H, 

valerolactone), 0.06 (d, 7.0 Hz, 12H, CH(CH3)2), -4.28 (s, 6H, C(CH3)), one 

valerolactone resonance not located.  

 

Preparation of (iPrPDI)Fe(Dihydrocoumarin) (1-DHCou). This complex was 

prepared in a manner similar to 1-MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 

0.004 g (3.25 μL, 0.025 mmol) of δ-valerolactone in benzene-d6 solution. 1H NMR 
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(benzene-d6): δ = 10.95 (d, 7.5 Hz, 2H, m-pyr), 8.63 (t, 7.0 Hz, 1H, p-pyr), 7.33 (t, 8.0 

Hz, 2H, p-aryl), 7.10 (d, 7.0 Hz, 4H, m-aryl), 6.81 (m, 1H, phenyl),  6.68 (m, 1H, 

phenyl),  6.52 (m, 1H, phenyl),  6.44 (m, 1H, phenyl),  2.99 (sept., 7.0 Hz, 4H, 

CH(CH3)2), 1.96 (br t, dihydrocoumarin CH2), 1.34 (br t, dihydrocoumarin CH2), 1.27 

(d, 7.0 Hz, 12H, CH(CH3)2), 0.13 (d, 7.0 Hz, 12H, CH(CH3)2), -3.75 (s, 6H, C(CH3)). 

 

Observation of (iPrPDI)Fe(OC(Me)(NMe2)) (1-OC(Me)(NMe2)). This complex was 

prepared in a manner similar to 1-MeOAc with 0.010 g (0.017 mmol) of 1-(N2)2 and 

0.001 g (2 μL, 0.017 mmol) of N,N-dimethylacetamide in benzene-d6 solution. 1H 

NMR (benzene-d6): δ = 12.33 (d, 7.5 Hz, 2H, m-pyr), 8.55 (t, 7.0 Hz, 1H, p-pyr), 7.56 

(t, 7.5 Hz, 2H, p-aryl), 7.14 (m, 4H, m-aryl), 2.46 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.96 

(s, 6H, N(CH3)2), 1.22 (d, 7.0 Hz, 12H, CH(CH3)2), 0.46 (s, 3H, CO(CH3)), -0.01 (d, 

7.0 Hz, 12H, CH(CH3)2), -5.25 (s, 6H, C(CH3)). 

 

Observation of (iPrPDI)Fe(OC(Ph)(NMe2)) (1-OC(Ph)(NMe2)). This complex was 

prepared in a manner similar to 1-MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 

0.004 g (0.025 mmol) of N,N-dimethylbenzamide in benzene-d6 solution. 1H NMR 

(benzene-d6): δ = 12.07 (d, 7.5 Hz, 2H, m-pyr), 8.47 (t, 7.0 Hz, 1H, p-pyr), 7.57 (t, 8.0 

Hz, 2H, p-aryl), 7.18 (d, 8.0 Hz, 4H, m-aryl), 6.90 (m, 2H, phenyl), 6.40 (m, 2H, 

phenyl), 2.27 (s, 6H, N(CH3)2), 1.18 (br s, 12H, CH(CH3)2), 0.09 (br s, 12H, 

CH(CH3)2), -4.58 (s, 6H, C(CH3)), two resonances not located. 

 

Observation of (iPrPDI)Fe(O=C6H7N) (1-PIP). This complex was prepared in a 

manner similar to 1-MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 0.003 g (2.75 

μL, 0.025 mmol) of 1-methyl-2-piperidone in benzene-d6 solution. 1H NMR (benzene-

d6): δ = 12.45 (d, 7.5 Hz, 2H, m-pyr), 8.54 (t, 7.0 Hz, 1H, p-pyr), 7.55 (t, 8.0 Hz, 2H, 
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p-aryl), 7.14 (m, 4H, m-aryl), 2.45 (sept., 7.0 Hz, 4H, CH(CH3)2), 2.37 (m, 2H, CH2), 

1.98 (s, 3H, N(CH3)), 1.21 (d, 7.0 Hz, 12H, CH(CH3)2), 1.09 (m, 2H, CH2), 0.97 (m, 

2H, CH2), 0.60 (m, 2H, CH2), -0.01 (d, 7.0 Hz, 12H, CH(CH3)2), -5.30 (s, 6H, 

C(CH3)). 

 

Observation of (iPrPDI)Fe(OC(Me)(N(Me)CH=CH2)) (1-

OC(Me)(N(Me)CH=CH2)). This complex was prepared in a manner similar to 1-

MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 0.002 g (2.5 μL, 0.025 mmol) of N-

vinyl-N-methylacetamide in benzene-d6 solution. 1H NMR (benzene-d6): δ = 11.89 (d, 

7.5 Hz, 2H, m-pyr), 8.58 (t, 7.0 Hz, 1H, p-pyr), 7.53 (t, 7.5 Hz, 2H, p-aryl), 7.13 (m, 

4H, m-aryl), 6.29 (m, 1H, vinyl), 5.97 (m, 2H, vinyl), 2.49 (sept., 7.0 Hz, 4H, 

CH(CH3)2), 2.14 (s, 3H, N(CH3)), 1.22 (d, 7.0 Hz, 12H, CH(CH3)2), 0.48 (s, 3H, 

CO(CH3)), -0.03 (d, 7.0 Hz, 12H, CH(CH3)2), -4.86 (s, 6H, C(CH3)). A second 

product was observed by 1H NMR spectroscopy and has been tentatively assigned as 

1- к2-Amide. 1H NMR (benzene-d6): δ = 17.08 (332 Hz), 13.77 (56 Hz), 11.73 (176 

Hz), 11.00 (400 Hz), 8.78 (68 Hz), 6.99 (63 Hz), 6.71 (208 Hz), 0.98 (85 Hz, 

CH(CH3)2), 0.91 (88 Hz, CH(CH3)2), -4.33 (500 Hz, C(CH3)), -5.16 (503 Hz, 

C(CH3)). 

 

Preparation of (iPrPDI)Fe(OCPh2) (1-OCPh2). This compound was prepared in a 

manner similar to 1-OC(Me)(3-butenyl) with 0.100 g (0.168 mmol) of 1-(N2)2 and 

0.031 g (0.168 mmol) of benzophenone to yield 0.082 g (68%) of a dark green solid 

identified as 1-OCPh2. Analysis for C41H51FeN3O: Calcd C, 76.76; H, 7.42; N, 5.84. 

Found: C, 76.52; H, 7.69; N, 5.62. Magnetic susceptibility: μeff = 1.2 μB (benzene-d6). 

Magnetic susceptibility: μeff = 0.0 μB (Gouy Balance). 1H NMR (benzene-d6): δ = 

36.94 (37 Hz, 1H, p-pyr), 29.23 (239 Hz, 1H, phenyl), 26.66 (290 Hz, 2H, phenyl), 
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13.83 (14 Hz, 2H, m-pyr), 5.95 (d, 7.5 Hz, 4H, m-aryl), 5.52 (t, 7.5 Hz, 2H, p-aryl), -

0.65 (7 Hz, 12H, CH(CH3)2), -1.95 (11 Hz, 12H, CH(CH3)2), -5.22 (49 Hz, 4H, 

CH(CH3)2), -18.05 (25 Hz, 6H, C(CH3)), one phenyl peak not located. 

 

Observation of (iPrPDI)Fe(Pz) (1-Pz). This complex was prepared in a manner 

similar to 1-MeOAc with 0.015 g (0.025 mmol) of 1-(N2)2 and 0.002 g (2.5 μL, 0.025 

mmol) of pyrazine in benzene-d6 solution. 1H NMR (benzene-d6): δ = 78.11 (162 Hz, 

2H, m-pyr), 51.15 (127 Hz, 1H, p-pyr), 19.88 (29 Hz), 6.08 (20 Hz), 4.31 (24 Hz), -

0.91 (19 Hz, 12H, CH(CH3)2), -3.76 (26 Hz, 12H, CH(CH3)2), -10.28 (49 Hz, 4H, 

CH(CH3)2), -29.60 (150 Hz, 6H, C(CH3)), one resonance not located.  
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CHAPTER 4 

ETHER AND ESTER CARBON-OXYGEN BOND CLEAVAGE WITH 

BIS(IMINO)PYRIDINE IRON* 

 

4.1 Abstract 

 Investigations into the substrate scope of bis(imino)pyridine iron-catalyzed 

olefin hydrogenation and [2π + 2π] diene cyclization reactions identified C-O bond 

cleavage as a principal deactivation pathway. Addition of diallyl or allyl ethyl ether to 

the bis(imino)pyridine iron dinitrogen complex, (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-(2,6-iPr2-

C6H3N=CMe)2C5H3N, 1-(N2)2), under a dinitrogen atmosphere resulted in facile 

cleavage of the C-O bond and yielded a mixture of the corresponding paramagnetic 

iron allyl and alkoxide complexes. Monitoring the catalytic hydrogenation of trans-

methyl cinnamate in situ established ester C-O bond cleavage. Stoichiometric 

reactions between 1-(N2)2 and allyl or vinyl acetate, respectively, also resulted in facile 

C-O oxidative addition. For the latter substrate, a six coordinate diamagnetic 

bis(imino)pyridine iron vinyl acetate compound was obtained and characterized by X-

ray diffraction. Alkyl-substituted esters such as ethyl, pentyl, isopropyl, cyclohexyl, 

and tert-butyl acetate undergo competing ester and acyl C-O bond cleavage 

accompanied by iron-promoted decarbonylation. Deuterium labeling studies 

established that reversible C-H activation and chelate cyclometalation occur prior to, 

but are not a pre-requisite for, C-O bond oxidative addition of ethyl acetate. The 

molecular and electronic structures of the ether and ester C-O bond cleavage products 

have been established and demonstrate that ligand, rather than metal, based oxidation 

accompanies substrate activation. 

                                                 
* Parts of this chapter have been accepted for publication in Organometallics.  Copyright 2008 
American Chemical Society.  
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4.2  Introduction 

Oxidative addition is a fundamental transformation in organometallic 

chemistry and often constitutes a key bond activation step in many stoichiometric 

reactions and catalytic processes.1 This two electron redox event typically requires 

accessible Mn and Mn+2 oxidation states and is most common with electron rich (e.g. 

d6 and d8), late transition metal complexes. For first row ions, oxidative addition of 

alkyl halides is known to involve radical processes2 and can result in a two electron 

oxidation at a single metal center3 or occur as two one electron oxidations involving 

two metals.4,5 

As interest grows in replacing toxic and expensive precious metal catalysts 

with more cost-effective and benign iron compounds,6,7 so grows the need to 

understand the elementary steps, such as oxidative addition, that comprise catalytic 

turnover and irreversible deactivation pathways.8 Introduction of redox-active ligands, 

those that can actively participate in reversible electron transfer chemistry with the 

metal,9,10 render oxidative transformations more intriguing as formal electron loss may 

be either metal or ligand based. Rationally designing compounds that undergo well-

understood electron transfer events coupled to oxidative addition may ultimately prove 

valuable for discovering base metal catalysts that mimic or surpass the reactivity and 

selectivity often achieved with their second and third row congeners. 

As discussed in Chapter 3, our laboratory has reported the synthesis of aryl-

substituted bis(imino)pyridine iron dinitrogen compounds, (iPrPDI)Fe(N2)2 (iPrPDI = 

2,6-(2,6-iPr2-C6H3N=CR)2C5H3N, R = Me, 1-(N2)2;11 R = Ph, 2-(N2)2),12 that function 

as efficient catalysts for the hydrogenation and hydrosilylation of olefins and alkynes 

at low metal loadings. Subsequently, 1-(N2)2 was also found to promote the catalytic 

[2π + 2π] cycloisomerization of α,ω-dienes to yield substituted cyclobutanes.13 

Spectroscopic and computational studies on 1-(N2)2
14 and on related neutral ligand 
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derivatives,15 such as those described in Chapter 3, have unequivocally established the 

redox-activity of the bis(imino)pyridine chelate.16 Thus, 1-(N2)2 is best described as an 

intermediate spin, d6 ferrous center antiferromagnetically coupled to a 

bis(imino)pyridine diradical dianion.14 

During the course of our investigations into the substrate scope of catalytic 

olefin hydrogenation with 1-(N2)2 (Chapter 3), dramatic substituent effects were 

observed (Figure 4.1). Diallyl ether was readily hydrogenated to dipropyl ether in the 

presence of 1-(N2)2 and 4 atmospheres of dihydrogen. Performing the reaction under a 

dinitrogen atmosphere, in an attempt to induce [2π + 2π] cycloaddition, produced no 

turnover. Likewise, trans-methyl cinnamate and dimethyl itaconate were both readily 

hydrogenated to the corresponding acetoxy-substituted alkane with 1-(N2)2 and 4 

atmospheres of H2, while allyl and vinyl acetate exhibited no turnover under the same 

conditions (Figure 4.1). 

Figure 4.1. Substrate dependent catalytic activity of 1-(N2)2. 

 

Here we describe a systematic investigation into the interaction of various 

ethers, esters, and carboxylated alkenes with 1-(N2)2. In addition to identifying 

important deactivation pathways in catalytic olefin hydrogenation and [2π + 2π] 
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cycloisomerization processes, these studies provide fundamental insight into oxidative 

addition chemistry at a reducing iron center bearing a redox active ligand.17 The 

complexes presented in Chapter 1, the observation of two one electron 

bis(imino)pyridine chelate oxidations upon alkyl halide addition to 1-(N2)2 (Chapter 

2), and the previously reported electronic structure determination of related 

complexes14 all provide a solid foundation in which to study C-O bond oxidative 

addition to 1-(N2)2.  

 

4.3 Ether Bond Cleavage 

 The divergent reactivity of diallyl ether observed for catalytic hydrogenation 

(facile turnover) and [2π+ 2π] cycloisomerization (no turnover) with 1-(N2)2 prompted 

further investigation into the substrate-iron interaction. Treatment of a pentane 

solution of 1-(N2)2 with 0.5 equivalents of diallyl ether at 23 ºC furnished two iron 

products, the bis(imino)pyridine iron allyloxide and the iron allyl, 1-OCH2CH=CH2 

and 1-Allyl, respectively (Figure 4.2). As mentioned in Chapter 1, 1-Allyl was 

independently synthesized by allylation of 1-Br with one equivalent of 

allylmagnesium bromide. 

 The observation of facile diallyl ether C-O bond cleavage by 1-(N2)2 under 

mild conditions prompted additional studies into the scope of the transformation. 

Addition of 0.5 equivalents of allyl ethyl ether to a pentane solution of 1-(N2)2 at 23 ºC 

yielded 1-Allyl and the bis(imino)pyridine iron ethoxide compound, 1-OEt (Figure 

4.2). These two products were formed exclusively, demonstrating selective and 

quantitative cleavage of the allylic C-O bond. Independent preparation of the iron 

allyloxide (Chapter 1) and ethoxide complexes, 1-OAllyl and 1-OEt, was 

accomplished by addition of one equivalent of anhydrous allyl alcohol or ethanol to 1-

(N2)2, respectively. Based on the data presented in Chapter 1, the electronic structure 
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of these bis(imino)pyridine iron alkoxide complexes is best described as a high spin 

ferrous center, antiferromagnetically coupled to a monoreduced chelate. Because 

alcohol addition to 1-(N2)2 often resulted in liberation of the bis(imino)pyridine ligand 

along with the formation of unidentified paramagnetic products (detected by 2H NMR 

spectroscopy from ethanol-d addition), a more reliable route to these complexes was 

desired, vide infra.  

Figure 4.2. Scope of ether C-O bond cleavage with 1-(N2)2. 

 

 Selective C-O bond cleavage was also observed with ethyl vinyl ether. Stirring 

a pentane solution of 1-(N2)2 with one equivalent of ethyl vinyl ether for 24 hours 

yielded 1-OEt as the sole, 1H NMR observable iron product (Figure 4.2). To explore 

whether the putative bis(imino)pyridine iron vinyl complex, 1-Vinyl, is sufficiently 

stable to observe by 1H NMR spectroscopy, an independent synthesis was pursued. 

Because oxidative addition of alkyl bromides to 1-(N2)2 proved to be a convenient 

route to four-coordinate bis(imino)pyridine iron alkyls (Chapter 2), this approach was 

extended to vinyl bromide in an attempt to form the vinyl complex. Addition of 0.5 
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equivalents of vinyl bromide to 1-(N2)2 yielded a mixture of the bis(imino)pyridine 

iron monobromide, 1-Br, and the desired iron vinyl complex, 1-Vinyl (Figure 4.3). 

Unfortunately, 1-Vinyl was formed in low (~30 %) yield as determined by 1H NMR 

spectroscopy and attempts to synthesize the compound by salt metathesis of 1-Br with 

vinylmagnesium bromide were unsuccessful. Under an inert atmosphere in benzene-d6 

at 23 ºC, 1-Vinyl persists for over 48 hours after which time ethane, 1-(N2)n (n = 1,2), 

and 1-DH had formed (Chapter 2). The 1H NMR resonances and half-life established 

from the independent synthesis of 1-Vinyl clearly demonstrate that the iron vinyl 

complex is not a product of ethyl vinyl ether cleavage. Additionally, 1-Isobutenyl was 

prepared from the addition of 0.5 equivalents of 1-bromo-2-methylpropene to 1-(N2)2 

and decomposition over the course of 2 days yielded the coupled product diisocrotyl. 

Figure 4.3. Vinyl bromide addition to 1-(N2)2. 

 

To probe whether a 1H NMR-silent iron compound accompanied formation of 

1-OEt and accounted for the missing vinyl fragment, 1-(N2)2 was treated with 0.5 

equivalents of ethyl vinyl ether. Monitoring this experiment by 1H NMR spectroscopy 

established approximately 50% conversion to 1-OEt with the balance of the iron 

remaining as 1-(N2)2. While accurate quantitation of the relative amounts of 

paramagnetic versus diamagnetic iron compounds is complicated by the different 

hydrogen atom relaxation rates, this experiment demonstrated that no other iron 

compounds accompany 1-OEt formation from ethyl vinyl ether cleavage. Because no 
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other organic products (ethane, acetylene, etc.) were observed, the fate of the vinyl 

fragment remains unknown.  

Given the facility with which unsaturated ethers undergo C-O bond cleavage 

with 1-(N2)2, similar chemistry was explored with saturated compounds. No evidence 

for C-O bond cleavage was obtained upon heating 1-(N2)2 in the presence of a large 

excess of diethyl ether or tetrahydrofuran. For the THF experiments, the diamagnetic 

coordination complex, 1-(THF)n (n = 1, 2) was observed by 1H NMR spectroscopy in 

analogy to the previously reported compound with the phenylated backbone.12 

 Addition of excess anisole to a benzene-d6 solution of 1-(N2)2 produced no 

change at 23 ºC. Heating this solution in a sealed tube to 110 ºC for three hours 

resulted in clean conversion to a new diamagnetic, Cs symmetric iron compound with 

upfield shifted arene resonances centered at 4.14 (para) and 5.46 (meta) ppm. These 

peaks are diagnostic for an η6-coordinated aryl group (Figure 4.4).12 The product has 

therefore been assigned as 1-Aryl, similar to the structurally characterized compound 

reported for the bis(imino)pyridine iron complex with a phenyl-substituted 

backbone.12 In a control experiment, a benzene-d6 solution of 1-(N2)2 was heated to 

110 ºC and yielded 1-Aryl, demonstrating that the anisole plays little, if any, role in 

arene coordination. 

Figure 4.4. Theromolytic preparation of 1-Aryl from 1-(N2)2.   
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4.4 Cleavage of Ester C-O Bonds 

 While exploring the scope of ester hydrogenation, certain peculiarities were 

observed. Substrates such as trans-methyl cinnamate and dimethylitaconate were 

readily hydrogenated under 4 atmospheres of H2 in the presence of 1-(N2)2 while other 

compounds such as vinyl and allyl acetate produced no turnover under the same 

conditions. For the successful catalytic hydrogenations, relatively high catalyst 

loadings of 5 mol % were required. In contrast, pure hydrocarbon substrates such as 

cyclohexene or 1-hexene have been reduced with superior turnover frequencies using 

only 0.3 mol % of 1-(N2)2,11 suggesting a potential catalyst deactivation pathway with 

the functionalized substrates. 

 The possibility of 1-(N2)2 deactivation by C-O bond cleavage prompted a 

series of additional experiments whereby the fate of the iron compound was directly 

studied by 1H NMR spectroscopy. Performing the hydrogenation of trans-methyl 

cinnamate with 10 mol % of 1-(N2)2 under 4 atmospheres of H2 in benzene-d6 

established formation of two new paramagnetic iron compounds during the course of 

catalytic turnover. Both compounds gradually accumulated over time and were the 

exclusive iron products after hours of hydrogenation. These compounds were 

identified as the bis(imino)pyridine iron cinnamate and hydrocinnamate compounds, 

1-CIN and 1-H2CIN, respectively, arising from ester C-O bond cleavage (Figure 4.5). 

The hydrogenated carboxylate, 1-H2CIN, had been previously prepared from addition 

of hydrocinnamic acid to 1-(N2)2 for the electronic structure investigation of 

bis(imino)pyridine iron acetate complexes (Chapter 1). The formation of 1-CIN was 

additionally confirmed by 1H NMR spectroscopy upon stoichiometric addition of 

trans-cinnamic acid to 1-(N2)2. Isolating each compound and subjecting it to catalytic 

hydrogenation conditions produced no turnover, demonstrating that C-O bond 

cleavage is a competing catalyst deactivation pathway. The hydrogenated compound, 
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1-H2CIN derives from C-O bond scission of the reduced product formed during 

catalytic turnover, as attempts to hydrogenate 1-CIN to 1-H2CIN in the presence of 1-

(N2)2 produced no conversion. 

 Observation of ester C-O bond cleavage under catalytic hydrogenation 

conditions prompted an additional series of stoichiometric experiments. Addition of 

0.5 equivalents of trans-methyl cinnamate to a benzene-d6 solution of 1-(N2)2 at 23 ºC 

under a dinitrogen atmosphere resulted in immediate cleavage of the ester C-O bond to 

yield an equimolar mixture of the bis(imino)pyridine iron cinnamate complex, 1-CIN, 

and the iron methyl compound, 1-Me (Figure 4.5). Exposure of this mixture of 

products and excess trans-methyl cinnamate to 4 atmospheres of H2 resulted in 

complete consumption of 1-Me, forming methane, 1-CIN, and 1-H2CIN and accounts 

for the observations made during catalytic turnover. 

Figure 4.5. C-O bond cleavage of trans-methyl cinnamate with 1-(N2)2. 
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The observation of H2 pressure dependent C-O bond cleavage with trans-

methyl cinnamate prompted a more detailed investigation into the reaction chemistry 

of vinyl and allyl acetate with 1-(N2)2. Recall from Chapter 3 that these substrates 

were not hydrogenated using 5 – 10 mol % of 1-(N2)2 and 4 atmospheres of 

dihydrogen, suggesting rapid C-O bond cleavage (Figure 4.1). Addition of one 

equivalent of vinyl acetate or benzoate to a pentane solution of 1-(N2)2 furnished a 

bright purple solution of 1-(OAc)(Vinyl) or 1-(OBz)(Vinyl), respectively (Figure 4.6).  

Figure 4.6. Synthesis of 1-(OAc)(Vinyl) and 1-(OBz)(Vinyl). 

 

1-(OAc)(Vinyl) is diamagnetic and was readily characterized by multinuclear 

(1H and 13C) and two-dimensional NMR spectroscopy. The benzene-d6 1H NMR 

spectrum recorded at 23 ºC exhibits the number of peaks consistent with overall Cs 

molecular symmetry with a mirror plane equivalencing both sides of the 

bis(imino)pyridine chelate plane. The β-hydrogens on the vinyl ligand appear as two 

doublets centered at 4.66 and 1.87 ppm for the cis and trans (with respect to the iron) 

hydrogens on the terminal carbon, respectively. The methine hydrogen on the carbon 

directly attached to the metal appears downfield at 10.07 ppm with a {1H}13C NMR 

resonance for this position observed at 189.91 ppm. These assignments have been 

confirmed by COSY, HSQC, and HMBC NMR spectroscopy. 
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The solid state structure of 1-(OAc)(Vinyl) was also determined by X-ray 

diffraction (Figure 4.7) and represents a rare example of a neutral six coordinate 

bis(imino)pyridine iron compound.17a The N(1)-C(2) and N(3)-C(8) bond lengths 

(Table 4.1) of 1.3127(14) and 1.3103(15) Å are comparable to those observed for 

compounds with single electron reduction of the bis(imino)pyridine chelate.16 

Similarly, the C(2)-C(3) and C(7)-C(8) distances of 1.4402(16) and 1.4444(15) Å, 

respectively, are contracted compared to the values of 1.487(3) Å in free iPrPDI and 

also support one electron reduction of the bis(imino)pyridine chelate.16 Two 

descriptions of the electronic structure accommodate the observed diamagnetic ground 

state. One possibility is a low spin, d6 ferrous complex with a neutral 

bis(imino)pyridine chelate while the other is a low spin, d5 ferric compound 

antiferromagnetically coupled to a iPrPDI radical anion. In the former case, the two 

electron oxidation occurs at the bis(imino)pyridine ligand, which is oxidized from 

[PDI]2- to neutral PDI. While the metrical data seems to favor the latter description, 

care must be taken in over interpreting crystallographic data as ligand field strength 

and other factors may also influence the bond lengths of the coordinated iPrPDI. A 

more definitive electronic structure description of this complex can be deduced from a 

Mössbauer spectroscopic investigation augmented with open-shell DFT calculations.  

Addition of allyl acetate to 1-(N2)2 at 23 ºC also resulted in rapid cleavage of 

the ester C-O bond; but in this case, two products, 1-OAc and 1-Allyl, were observed 

(Figure 4.8, top). Free propene (5–10 %) was also observed when the reaction was 

conducted in a sealed NMR tube. The alkene likely arises from decomposition of 1-

Allyl, as more propene accumulated over the course of one week at 23 ºC.  
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Figure 4.7. Solid-state structure of 1-(OAc)(Vinyl). Hydrogen atoms omitted for 

clarity. 
 

Table 4.1. Selected bond distances (Å) and angles (°) for 1-(OAc)(Vinyl). 

Fe(1)-N(1) 1.9540(9) N(3)-C(8) 1.3013(15) 

Fe(1)-N(2) 1.7976(9) C(2)-C(3) 1.4402(16) 

Fe(1)-N(3) 1.9504(9) C(7)-C(8) 1.4444(15) 

Fe(1)-O(1) 2.0771(9) C(34)-C(35) 1.3231(19) 

Fe(1)-O(2) 2.0135(8) N(2)-Fe(1)-O(1) 119.28(4) 

Fe(1)-C(34) 1.9942(14) N(2)-Fe(1)-O(2) 176.81(5) 

N(1)-C(2) 1.3127(14) N(2)-Fe(1)-C(34) 87.31(5) 
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Figure 4.8. Formation of 1-OAc by ester C-O bond cleavage. 

 

In addition to the unsaturated esters, the possibility of C-O bond cleavage in 

saturated esters was fully explored. Expanding the scope of methyl ester C-O bond 

cleavage, addition of methyl acetate to 1-(N2)2 at 23 ºC resulted in formation of an 

equimolar ratio of 1-OAc and 1-Me over the course of 1 hour (Figure 4.8). As 

discussed in Chapter 3, careful monitoring of the reaction mixture by 1H NMR 

spectroscopy revealed that the bis(imino)pyridine iron ester complex, 1-MeOAc, was 

formed immediately after mixing. A similar methyl ester cleavage reaction was 

observed following addition of methyl benzoate to 1-(N2)2, resulting in an equimolar 

mixture of 1-OBz and 1-Me (Figure 4.8). In this case, the putative iPrPDI iron methyl 

benzoate complex, 1-MeOBz, was not observed by NMR spectroscopy. 

 In Chapter 1, the molecular structures of both 1-H2CIN and 1-OBz were 

presented and examination of the bis(imino)pyridine bond distances suggested a one 

electron chelate reduction. One important inconsistency was discovered between the 

two crystal structures; the distances observed for 1-H2CIN appeared suggestive of 

localized chelate reduction (at one imine) while those for 1-OBz did not. Because the 
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data set obtained for 1-H2CIN was of low quality due to co-crystallization with 

methyl-3-phenylpropionate, a third crystallographically characterized iPrPDI iron 

carboxylate complex was desired to reinforce the electronic structure description of 

these complexes. To address this concern, single crystals of 1-OAc were obtained by 

recrystallization at -35 °C and the molecular structure was determined (Figure 4.9).  

For 1-OAc, the iron is five coordinate with a κ2-carboxylate, where the O(1)-

C(34)-O(2) and iron chelate planes are essentially orthogonal. The central carboxylate 

carbon, C(34), is nearly symmetrically disposed about the metal. The metrical 

parameters of the chelate (Table 4.2) confirm that the one electron bis(imino)pyridine 

reduction observed for these complexes is not localized. The Fe(1)-O(1) bond lengths 

of 2.0837(16) and 2.116(13) Å for 1-OAc and 1-OBz are significantly elongated from 

typical iron-alkoxide complexes (1.85 Å) and suggest a weaker ligand field imparted 

by the κ2-carboxylate, consistent with the data presented in Chapter 1. Similar Fe(1)-

O(2) distances of 2.1271(14) and 2.1003(13) Å were observed for 1-OAc and 1-OBz, 

respectively.  
 

 
Figure 4.9. Solid-state structure of 1-(OAc). Hydrogen atoms omitted for clarity. 
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Table 4.2. Selected bond distances (Å) and angles (°) for 1-(OAc). 

Fe(1)-N(1) 2.1085(15) N(1)-C(2) 1.316(2) 

Fe(1)-N(2) 1.9949(17) N(3)-C(8) 1.302(3) 

Fe(1)-N(3) 2.1615(15) C(2)-C(3) 1.444(3) 

Fe(1)-O(1) 2.0837(16) C(7)-C(8) 1.461(3) 

Fe(1)-O(2) 2.1271(14) N(2)-Fe(1)-O(1) 143.80(6) 

Fe(1)-C(34) 2.430(2) N(2)-Fe(1)-O(2) 152.68(6) 

 

 Oxidative addition reactions to reduced iron complexes bearing electronically 

“non-innocent” bis(imino)pyridine chelates raises the possibility of having ligand 

rather than metal-based redox events. Related ligand-based oxidative chemistry has 

been reported by Heyduk and co-workers with group 4 transition metals.18 In Chapter 

2, the oxidative addition of alkyl bromides to 1-(N2)2 yielded two iron products (1-Br 

and 1-R) where formal electron loss occurs at the bis(imino)pyridine chelate, 

maintaining the ferrous oxidation state. Several examples of C-O bond cleavage 

reported in this chapter follow this general reaction paradigm – oxidative addition to 

yield two iron complexes with formal oxidation of the ligand, not the metal (Figure 

4.10).  
 

 
Figure 4.10. Oxidation of the bis(imino)pyridine chelate accompanying ester 

cleavage. 

144 



 Although the electronic structure of 1-Allyl has yet to be fully examined by 

Mössbauer spectroscopy and DFT calculations, it was concluded in Chapter 1 that the 

bis(imino)pyridine chelate of this complex is doubly reduced and 

antiferromagnetically coupled to a ferric metal center. This determination is of special 

interest when considering the oxidative addition of allyl acetate across two 

bis(imino)pyridine iron fragments. This substrate remains an interesting exception to 

the other one electron oxidation reactions because the oxidation of 1-(N2)2 to 1-OAc 

occurs at the ligand, while the oxidation of the same complex to 1-Allyl, occurs at the 

metal center (Figure 4.11).    
 

 
Figure 4.11. Oxidation of one ligand and one metal center upon allyl acetate cleavage 

with 1-(N2)2. 

 

 The oxidative addition of vinyl acetate to 1-(N2)2 provides additional insight 

into the nature of the bond cleavage event at the reducing iron center. Observation of 

the six-coordinate 1-(OAc)(Vinyl) compound demonstrates that oxidative addition can 

occur at a single iron center and is followed by Fe-C bond homolysis and radical 

capture to yield the observed products. Several observations support this assertion. 

Attempts to prepare five-coordinate bis(imino)pyridine iron bis(neopentyl) or 

neopentyl chloride complexes by ligand substitution reactions resulted in isolation of 

four-coordinate (iPrPDI)Fe-X compounds, resulting from Fe-C bond homolysis.19 

Likewise, oxidative addition of 5-hexenyl-1-bromide to 1-(N2)2 yielded 1-Br along 

with cyclized iron alkyl products (Chapter 2), consistent with ejection of the 5-hexyl 
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radical which is known to undergo rapid cyclization.20,21 In addition, hydrogenation of 

the vinyl ligand of 1-(OAc)(Vinyl) in the presence of palladium on carbon or excess 

1-(N2)2 resulted in conversion to 1-OAc, supporting radical ejection upon conversion 

to the saturated iron-ethyl intermediate. 

 Addition of phenyl acetate to 1-(N2)2 reversed the selectivity of the C-O bond 

cleavage reaction. Adding one equivalent to a benzene-d6 solution of 1-(N2)2 

exclusively yielded the products of acyl C-O bond cleavage; the iron phenoxide 

complex, 1-OPh, and 1-Me (Figure 4.12). Careful inspection of the diamagnetic 

region of the 1H NMR spectrum also revealed formation of small quantities 1-(CO)2 

accounting for the fate of the carbonyl group.22 Because acyl bond cleavage is 

relatively rare,22 the scope and selectivity of bis(imino)pyridine iron C-O bond 

cleavage was examined in more detail. Gently heating benzene-d6 solutions of 1-

EtOAc (Chapter 3) to 65 ºC for 18 hours yielded an equimolar mixture of 1-OAc and 

1-OEt (Figure 4.13).  

Figure 4.12. Acyl C-O bond cleavage of phenyl acetate at 1-(N2)2. 

 

 The formation of the iron acetate and ethoxide compounds signals two 

competing C-O bond cleavage reactions. 1-OAc is the product of ester C-O bond 

cleavage while 1-OEt is the persistent product derived from acyl C-O bond cleavage. 

Ester C-O bond cleavage would, in principle, also form the bis(imino)pyridine iron 

ethyl complex, 1-Et. However, under the more forcing conditions required for ethyl 

acetate cleavage (18 hours at 65 ºC), 1-Et would not survive (Chapter 2). For acyl C-O 
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bond cleavage, the bis(imino)pyridine iron methyl complex, 1-Me, is the other 

expected product. This compound was also not observed, and is also too unstable to 

persist under the conditions required for ethyl acetate cleavage. Control experiments 

on isolated samples of pure 1-Me revealed decomposition to an unidentified mixture 

of products upon heating to 65 ºC. Thus, 1-OAc and 1-OEt were the only products 

thermally robust enough remain after ethyl acetate cleavage.  

 

Figure 4.13. Cleavage of ethyl acetate at 65 °C. 

 

In an attempt to observe the putative bis(imino)pyridine iron alkyl products 

from ethyl acetate cleavage, the reaction was repeated at 23 ºC. The expected 

products, 1-OAc and 1-OEt, were observed over the course of one week. No evidence 

for the formation of either 1-Me or 1-Et was obtained by 1H NMR spectroscopy. The 

inability to observe 1-Et is a result of the relative fast rate (t1/2 ~ 3 hours) of 

decomposition of the iron alkyl compared to the slower rate (t1/2 ~ 3 days) of the C-O 

bond cleavage reaction. Because the bis(imino)pyridine iron acyl complex, 1-

C(O)Me, is a likely product following the oxidative addition of the acyl C-O bond of 

ethyl acetate, attempts were made to evaluate the kinetic stability of such an 

intermediate.  Addition of one atmosphere of carbon monoxide to a benzene-d6  

solution of 1-Me resulted in immediate formation of 1-(CO)2 along with acetone and 

methane (~ 5% yield of each). In a related experiment, addition of 0.5 equivalents of 
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acetyl chloride to a benzene-d6 solution of 1-(N2)2 resulted in the formation of 1-Cl 

and 1-Me, consistent with decarbonylation from the putative PDI iron acyl complex. 

As part of our studies into substrate scope and selectivity of C-O bond 

cleavage, the chemistry of ethyl benzoate was explored. Addition of one equivalent of 

this ester to 1-(N2)2 at 23 ºC resulted in rapid exclusive cleavage of the ester C-O bond 

over the course of two hours to furnish 1-Et and 1-OBz (Figure 4.14). No products 

derived from acyl C-O bond cleavage were detected by 1H NMR spectroscopy. This 

result demonstrates that when ester C-O bond cleavage is sufficiently facile, the alkyl 

products can be observed by 1H NMR spectroscopy. Thus, it is likely that 1-Et is 

formed from ester C-O bond oxidative addition of ethyl acetate but has a rate of 

decomposition that is faster than the rate of substrate activation.  

Figure 4.14. Cleavage of ethyl benzoate with 1-(N2)2 and observation of 1-Et. 

 

 Having demonstrated rare examples of acyl C-O bond cleavage with phenyl 

and ethyl acetate at ambient temperature, 1-(N2)2 was treated with other alkyl acetates 

to assay selectivity. The results of these studies are summarized in Figure 4.15. 

Because the reactions were conducted at 65 ºC, the corresponding iPrPDI iron alkyl 

complexes were not observed. Thus, only the kinetically persistent iron acetate and 

iron alkoxide compounds were detected by 1H NMR spectroscopy. The product ratios 

are approximate because they were determined from the integration of 

paramagnetically broadened and shifted isopropyl methyl resonances.  
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Observation of acyl C-O bond cleavage in esters suggested that similar 

chemistry may be possible with formates. Treatment of 1-(N2)2 with one equivalent of 

either ethyl or phenyl formate cleanly afforded the desired bis(imino)pyridine iron 

alkoxide compounds, 1-OEt and 1-OPh, respectively (Figure 4.16). As with acyl bond 

cleavage in esters, examination of the diamagnetic region of the 1H NMR spectrum 

revealed formation of small quantities of 1-(CO)2, consistent with decarbonylation. 

This method represents a clean route to independently synthesize bis(imino)pyridine 

iron alkoxide complexes. 
 

 
 

Figure 4.15. Scope of ester and acyl C-O bond cleavage with 1-(N2)2. 
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Figure 4.16. Utilization of formates for the preparation of iPrPDI iron alkoxide 

complexes. 

 

4.5  Deuterium Labeling Experiments 

 A series of deuterium labeling experiments were conducted to probe whether 

C-H(D) activation was competitive with iron-promoted C-O bond cleavage in ester 

substrates. Addition of methyl acetate-d6 to a benzene or benzene-d6 solution of 1-

(N2)2 at 23 ºC resulted in observation of 1-MeOAc-d6, as judged by 1H and 2H NMR 

spectroscopy, in analogy to 1-MeOAc. Over time, 1-MeOAc-d6 cleanly converted to 

an approximately equimolar mixture of 1-OAc-d3 and 1-CD3 (Figure 4.17). Because 

the methyl group of 1-CD3 (or isotopologues) has not been detected by NMR 

spectroscopy, chemical degradation experiments were used to determine the isotopic 

composition of the iron methyl group. Hydrolysis of the product mixture and 

subsequent analysis of the bis(imino)pyridine ligand by 2H NMR spectroscopy 

established no deuterium incorporation into the isopropyl methyl substituents. 

Collection of the liberated methane from protonolysis of the iron methyl complex and 

analysis by 1H NMR spectroscopy clearly demonstrated that CD3H was the sole 

isotopologue of methane formed. A converse experiment was also conducted where 

natural abundance methyl acetate was added to the deuterium labeled 

bis(imino)pyridine iron dinitrogen complex, 1*-(N2)2, (* denotes deuterium labeling of 

the isopropyl methyl substituents).11 In this case, 1*-OAc and 1*-CH3 were identified 

as the sole products. Again, the isotopic composition of the iron methyl group was 
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assayed by hydrolysis and CH4 was the only methane isotopologue observed by 1H 

NMR spectroscopy.  

Figure 4.17. Formation of 1-OAc-d3 and 1-CD3 from cleavage of methyl acetate-d6. 

 

Analogous experiments were conducted with isotopologues of ethyl acetate; 

in 

er. 

topic 

 

 

 

preparation of 1,2-ethyl acetate-d2 was accomplished by D2 addition to vinyl acetate 

the presence of a catalytic amount of palladium on carbon. Addition of the isotopically 

labeled ester to 1-(N2)2 immediately furnished the diamagnetic bis(imino)pyridine iron 

ethyl acetate complex, 1-EtOAc-d2. As anticipated, the benzene solution 2H NMR 

spectrum exhibited two peaks centered at 0.74 and 3.02 ppm for the coordinated est

Allowing the solution to stand at 23 ºC for 20 minutes revealed isotopic exchange 

between the isopropyl methyl group of the bis(imino)pyridine chelate and the 

methylene position of the ester (Figure 4.18). No evidence was obtained for iso

exchange involving the methyl group of the ester. Warming the solution to 70 ºC for 

14 hours yielded the bis(imino)pyridine iron acetate and ethoxide compounds (Figure

4.18). Analysis of the product mixture by 2H NMR spectroscopy revealed deuterium 

incorporation in the isopropyl methyl groups of the bis(imino)pyridine ligands in both

1*-OEt and 1*-OAc and in the methyl group of the iron ethoxide. 
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Figure 4.18. Deuterium exchange at the methylene position of ethyl acetate. 

 

The converse experiment was conducted, whereby the deuterium labeled iron 

2 2

Figure 4.19. Deuterium labeling of ethyl acetate. 

 

dinitrogen compound, 1*-(N ) , was treated with a slight excess of natural abundance 

ethyl acetate (Figure 4.19, top). Over the course of four hours at 23 ºC, deuterium 

exchange was observed with the methylene position of both the free and coordinated 

ester. No evidence was obtained for isotopic exchange into the terminal methyl group. 

Warming the solution to 65 ºC resulted in C-O bond cleavage and yielded the 

expected iron acetate and ethoxide compounds, as observed by 2H NMR spectroscopy. 

To establish the isotopic composition of the acetate and ethoxide ligands, each 

bis(imino)pyridine iron compound was treated with water and the organic products: 

bis(imino)pyridine, ethanol, and acetic acid were analyzed by 2H NMR spectroscopy. 

While no deuterium was detected in the acetic acid, the free ethanol exhibited a peak 

consistent with isotopic incorporation exclusively in the methylene position. 
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In a related experiment, a benzene-d6 solution of 1-EtOAc was exposed to four 

atmospheres of D2 gas at 23 ºC. Over the course of four hours, isotopic exchange was 

observed in the isopropyl methyl group of the bis(imino)pyridine chelate of 1-EtOAc, 

as well as in the methylene position of the ester (Figure 4.19). When the reaction is 

carried out with excess ethyl acetate, the deuteration of the methylene is catalytic, 

demonstrating rapid C-H activation and ligand exchange prior to C-O bond cleavage. 

The observation of reversible ester coordination is similar to the behavior observed 

with 1-(N2)2 with amines and ketones (Chapter 3).  

 

4.6 

lic 

d 

um,29 iridium,30 ruthenium,31 

irconium,32 molybdenum33 and tantalum.34,35 For first row metal ions, C-O oxidative 
,37 and esters38,39 to Ni(0) has been well-studied and known for 

some ti

ribed by 

the 

Discussion  

Carbon-oxygen bond oxidative addition reactions are of interest due to their 

potential application in hydrodeoxygenation (HDO) reactions23 as well as various 

cross coupling methodologies used in organic synthesis.24 Oxidative addition of ally

ethers, carboxylates, carbonates, and halides has enjoyed special utility in the 

synthesis of metal allyl complexes which can undergo subsequent nucleophilic 

attack25,26 or cross-coupling.27 C-O bond cleavage is well known for second and thir

row transition metals including palladium,22,28 rhodi

z

addition of both ethers36

me. Examples with nickel(II) precursors have been reported more recently.40 

Examples of C-O bond cleavage with well-defined iron compounds are more 

limited. In a seminal example, Ganem and Small reported the application of ferric 

chloride to the cleavage of ethereal C-O bonds.41 A more recent example, desc

Plietker and coworkers, applies nitrosylated variants of Collman’s reagent42 for 

transesterification of vinyl acetates, phenyl carboxylates and electron poor esters with 

various alcohols.43 Iron acyl complexes that do not undergo decarbonylation are 
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proposed as key intermediates in the catalytic cycle. Direct oxidative addition of 

carbon-oxygen bonds to electron rich iron(0) compounds has also been reported by 

Ittel and coworkers. Addition of anisole or methyl benzoate to a transient 

bis(dip

. 

f 

te 

is 

p renders 

 

-O bond 

ere, 

 

 for this class of 

es 

hosphine)iron(0) yielded the products of C-O cleavage.44,45 For methyl 

benzoate addition, exclusive scission of the ester, not acyl C-O bond, was observed

 Upon examination of the relative rates of 1-(N2)2 promoted C-O bond cleavage 

within classes of ethers and esters, several salient trends emerge. Within the family o

ester substrates, benzoate esters generally undergo swifter cleavage than the 

corresponding acetates. Specifically, ethyl benzoate (exclusive ester cleavage) 

converted to cleavage products over the course of hours at 23 ºC while ethyl aceta

(both acyl and ester cleavage) required nearly a week under the same conditions. Th

effect is likely electronic in origin as the electron withdrawing phenyl grou

the substrate more electrophilic and prone to oxidative cleavage.  

 Comparison of various substituted acetates also established several important

trends. The unsaturated esters, vinyl and allyl acetate, undergo extremely rapid C-O 

bond cleavage; the reaction was so fast that catalytic hydrogenation was not observed 

in the presence of 1-(N2)2 and four atmospheres of dihydrogen. In contrast, C

cleavage in trans-methyl cinnamate, while relatively facile under an N2 atmosph

was sufficiently slow such that catalytic olefin hydrogenation could be achieved with

5 mol % of 1-(N2)2 and four atmospheres of dihydrogen (Chapter 3). Eventually, all of 

the iron converted to catalytically inactive iron carboxylate compounds, establishing 

C-O bond activation as the principal catalyst deactivation pathway

substrates. 

 Carbon-oxygen bond cleavage in various allylated substrates also demonstrat

the importance of leaving group effects. For diallyl and allyl ethyl ether, the rate of C-

O bond cleavage is sufficiently slow such that iron-catalyzed olefin hydrogenation is 
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observed. As mentioned previously, allyl acetate has not been hydrogenated using ou

experimental conditions due to the extremely fast rate of C-O bond oxidative addition.

This trend is similar to those observed in nickel(0) and palladium(0) chemistry, where 

allyl acetates undergo more facile oxidative addition than the corresponding allylated 

ethers.29,38,39  

It is 

r 

 

noteworthy that 1-(N2)2 promotes acyl C-O bond cleavage in alkyl esters. 

ded to alkyl-substituted substrates.52 

(II) 

e. For the alkyl acetates 

er 

age, 

l chain 

convers

, for 

Electron rich Ni(0) compounds38 promote selective acyl C-O bond cleavage in phenyl 

acetate but are unreactive toward alkyl-substituted esters. Aryl acetate cleavage 

reactions are also known with (dppe)2Mo(N2)2 (dppe = 1,2-

diphenylphosphinoethane),46 (Ph3P)3RhH,47 (η5-C5Me5)RhCl(mdmpp-κP, -κO),48 

(Ph3P)3Ru(CO)2,49 and Ru3(CO)12.50 In one case, an acyl rhodium complex was 

isolated following C-O oxidative addition.51 Using pyridine directing groups, a 

Ru3(CO)12-catalyzed reductive decarbonylation method has also been developed and 

has been exten

Acyl C-O bond cleavage in alkyl esters lacking a directing group, to our 

knowledge, has not been reported. Thus, the facile C-O bond cleavage of alkyl 

acetates with 1-(N2)2 at 65 ºC highlights the reducing potential of a formally iron

center with electrons stored in the bis(imino)pyridine chelat

presented in Figure 4.15, a modest trend in selectivity emerges. The smallest memb

in the series, methyl acetate, undergoes rapid and selective ester C-O bond cleav

likely due to the steric accessibility of the ester C-O bond. Lengthening the alky

resulted in slower rates as ethyl, pentyl, isopropyl, cyclohexyl, and tert-butyl acetate 

all require heating to 65 ºC or extended reaction times at 23 ºC to reach full 

ion. With the exception of tert-butyl acetate, the selectivity of acyl bond 

cleavage increases as the steric protection of the ester C-O bond increases. Thus

alkyl-substituted acetates, it appears that in the absence of overriding steric effects, 
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ester C-O bond cleavage is preferred over acyl. The reason for the reversal of kinetic

selectivity in the C-O bond cleavage of tert-butyl acetate is not known. 

 Proposed mechanisms for ether, ester, and acyl C-O bond cleavage are 

presented in Figures 4.20 (ethers) and 4.21 (ester, acyl) and are inspired by those 

previously reported by Yamamoto for electron rich Ni(0) compounds.22,36,38,39 Because

ether cleavage was only observed with allyl and vinyl-substituted ethers, init

coordination of the alkene of the substrate is proposed.39 For diallyl and allyl ethy

ethers, SN2’-type substitution is also plausible and may be preferred. Oxidative 

addition of the C-O bond yields a five-coordinate iron allyl alkoxide intermediate, in

analogy to the structurally characterized, six-coordinate iron vinyl acetate complex, 1-

(OAc)(Vinyl). Ejection of allyl radical and capture by a reduced iron sp

 

 

ial 

l 

 

ecies, either 1-

2)2 o ced 

rate-

l and 

ts 

he 

(N r the iron olefin compound, yields the observed products. To have a redu

iron compound available for allyl radical capture, C-O bond cleavage must be the 

determining step. Circumstantial experimental data support this assertion. Addition of 

one equivalent of diallyl ether to 1-(N2)2 yielded an equimolar mixture of 1-Ally

1-OCH2CH=CH2 with unreacted substrate remaining. This suggests that the produc

do not participate in radical capture. For the case of ethyl vinyl ether cleavage, t

olefin compound was observed by 1H NMR spectroscopy immediately after mixing 

the reagents; C-O bond cleavage occurred over the course of 24 hours at 23 ºC. In 

general, when the C-O bond cleavage reactions are fast, all of the products of radical 

capture are observed. When these reactions are slow, as in the case of ethyl vinyl 

ether, the fate of the ejected organic radical is unknown. 
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Figure 4.20. Mechanism of ether cleavage with 1-(N2)2. 

have demonstr ron dialkyls 

 undergo Fe-C homolysis (Chapter 1).19 For acyl C-O bond cleavage, oxidative 

 

 Similar pathways are proposed in Figure 4.21 for ester and acyl C-O bond 

cleavage. Ethyl acetate is presented as a representative substrate because both ester 

and acyl scissions were observed. For ester C-O bond cleavage, oxidative addition to 

yield the six-coordinate iron ethyl acetate complex followed by iron-carbon bond 

homolysis yields the observed 1-OAc product. The six-coordinate iron intermediate is 

proposed based on analogy to isolated 1-(OAc)(Vinyl). Ejection of ethyl radical from 

this compound seems plausible given the previous studies from our laboratory that 

ated the propensity of five-coordinate bis(imino)pyridine i

to

addition of the C-O bond forms a five-coordinate intermediate in analogy to 1-

(OAc)(Vinyl). Decarbonylation followed by Fe-CH3 homolysis yields the observed 

product. Observation of 1-Me and 1-Cl following treatment of 1-(N2)2 with 

CH3C(O)Cl provides precedent of decarbonylation for bis(imino)pyrdine iron 

compounds. 
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Figure 4.21. Proposed mechanism of ester C-O bond cleavage mediated by 1-(N2)2. 

 

Deuterium labeling studies with ethyl acetate also established a competing C-H 

activation pathway. A proposed mechanism for this transformation, not required for C-

O bond cleavage, is presented in Figure 4.22. Recall this reaction is selective - isotopic 

exchange occurs only between the aryl isopropyl methyl groups on the 

bis(imino)pyridine chelate and the methylene position of the substrate. The process 

begins with reversible dissociation-coordination of ethyl acetate to facilitate C-H 

activation of either the methylene position of the ester or cyclometalation of an 

is

alkyl deuteride, isotopic exchange can occur through cyclometalation, likely by σ-

bond m

hway involves 

te, 

opropyl methyl group of the bis(imino)pyridine chelate. Following formation of the 

etathesis, with either the iron-hydride (deuteride) or alkyl. If the reaction 

occurs with the iron hydride (deuteride), loss of H-D occurs. Subsequent productive 

recapture places deuterium in the isopropyl group and hydrogen in the ester 

completing the isotopic exchange. An alternative σ-bond metathesis pat

reaction of the isopropyl methyl group with the iron alkyl, liberating free ethyl aceta
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which following reductive elimination of the iron cyclometalated deuteride and 

recapture, completes the isotopic exchange. Pathways involving formal oxidativ

addition and formation of iron(IV) intermediates are also possible but have been 

deemed less plausible. 

e 

ex

competitive with C-O cleavage, but is by no means a prerequisite. 

Figure 4.22. Proposed mechanism of deuterium exchange observed for 1-EtOAc. 

 

The selective isotopic exchange between the methylene position of the ester 

and the isopropyl methyl groups of the bis(imino)pyridine chelate raises the question 

as to why this process was not observed with the corresponding iron methyl acetate 

complex? The lack of a competing C-H activation process for the methyl acetate 

derivative is accommodated by the relative rates of C-O bond cleavage for the two 

substrates. Whereas C-O bond cleavage in ethyl acetate occurs over one hour at 65 ºC, 

methyl acetate cleavage occurs within minutes at 23 ºC. The lack of deuterium 

change with methyl acetate clearly demonstrates that C-H activation can be 
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Conclusion 

 Investigation into the substrate scope of catalytic olefin hydrogenation 

reactions promoted by the bis(imino)pyridine iron complex, 1-(N2)2, established that

oxidative addition of carbon-oxygen bonds of ethers and esters is a principal catal

deactivation pathway. For substrates such as diallyl ether, vinyl ethyl ether, and tran

methyl cinnamate, catalytic hydrogenation is competitive with C-O cleavage and 

conversion to alkane was observed (Chapter 3). For molecules such as allyl and

acetate, C-O cleavage is more rapid than hydrogenation (up to 4 atm of H2) and

turnover was observed. Exploration of the scope of ester C-O bond

established competing e

e  substrate. Methyl acetate and trans-methyl cinnamate underwent exclu

ester C-O bond cleavage while phenyl acetate yielded products from selective acyl C-

O bond scission. In alkyl-substituted esters such as ethyl, pentyl, isopropyl, benzyl, 

cyclohexyl, and tert-butyl acetate, competing ester and acyl C-O bond cleavage 

occurred. In both ethers and esters, oxidative addition of the C-O bond to the redu

bis(imino)pyridine iron complex has been proposed. In all but one case, vinyl acetate, 

homolysis of the iron-carbon bond from the product of oxidative addition yields the

observed products. Further investigation of the electronic structure of several 

representative products establishes that formal electron loss is generally chelate rather

than metal based. In one case, allyl acetate, a one electron chelate oxidation (1-OAc) 

occurs along with oxidation to Fe(III) at a second bis(imino)pyridine iron fragment (1-

Allyl). Deuterium labeling studies with isotopologues of the iron dinitrogen complex

and ethyl acetate establish competing cyclometalation from the 2,6-diisopropyl a

substituents. Taken together, these studies once again highlight both the chemical and 

redox-activity of bis(imino)pyridine ligands in reduced iron chemistry. 
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4.8  Experimental Procedures 

General Considerations. All air- and moisture-sensitive manipulations were carried 

out using standard vacuum line, Schlenk and cannula techniques or in an MBraun iner

atmosphere dry box containing an atmosphere of purified nitrogen. Solvents for air- 

and moisture-sensitive manipulations were initially dried and deoxygenated using 

literature procedures.53 Hydrogen and deuterium gas were passed through a column 

containing manganese oxide supported on vermiculite and 4 Å molecular sieves before

admission to the high vacuum line. Benzene-d6 and toluene-d8 were purc

t 

 

hased from 

ambridge Isotope Laboratories and dried over 4 Å molecular sieves or titanocene, 

ct etate, allyl acetate, amyl acetate, isopropyl acetate, 

 

 

d, 

 

 

 

as 

C

respe ively. Ethyl acetate, vinyl ac

cyclohexyl acetate, tert-butyl acetate, phenyl acetate, methyl benzoate, ethyl formate, 

isopropyl formate, vinyl bromide, ethyl vinyl ether, allyl ether, and anisole were all 

purchased from Aldrich and dried over calcium hydride for at least 24 hours before 

being vacuum transferred onto 4 Å molecular sieves. Methyl acetate and allyl ethyl

ether were purchased from Acros and purified in a similar manner. Phenyl formate 

was purchased from Lancaster and dried over calcium hydride before use. 

trans-Methyl-cinnamate was purchased from Aldrich, recrystallized from dry

pentane at –35 °C, and dried under vacuum. Hydrocinnamic acid, trans-cinnamic aci

and benzoic acid were purchased from Aldrich and dried under vacuum for 16 hours. 

Allyl alcohol, absolute ethyl alcohol, isopropanol, cyclohexanol, and tert-butyl alcohol

were purchased from Aldrich and vacuum transferred from sodium before use. 

Allylmagnesium bromide as a 1.0 M solution in diethyl ether and 10 % palladium on

activated carbon were purchased from Aldrich and used as received. Vinylmagnesium

bromide as a 0.7 M solution in tetrahydrofuran was purchased from Acros and used 

received. 
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Ethyl acetate-1,2-d2 was prepared by deuteration of neat vinyl acetate with 10 

% palladium on activated carbon under 4 atmospheres of D2 and vacuum transferred 

before use. Methyl 3-phenylpropionate was prepared in a similar fashion from trans-

methyl-cinnamate under 4 atmospheres of H2. Methyl acetate-d6 was prepared from 

D2SO4 catalyzed condensation of acetic acid-d4 and methanol-d4. The reaction m

was extracted with m-xylene and the methyl acetate-d6 was collected by short path 

distillation. Ethyl benzoate was prepared from acid catalyzed condensation of benzoic 

acid and ethyl alcohol.  
1H

ixture 

 NMR spectra were recorded on Varian Mercury 300, Inova 400 and 500 

spectro

 

ns method54 using a ferrocene standard and are the average 

value o

ene 

um 

s. 

meters operating at 299.76, 399.78 and 500.62 MHz, respectively. 2H NMR 

spectra were recorded at 20 ºC on Inova 500 and 600 spectrometers operating at 76.85

and 92.07 MHz, respectively. 13C NMR spectra were recorded on the Inova 500 

spectrometer operating at 125.893 MHz. All 1H and 13C NMR chemical shifts are 

reported relative to SiMe4 using 1H (residual) and 13C chemical shifts of the solvent as 

a secondary standard. For diamagnetic complexes, many assignments were made 

based on COSY, HSQC, and HMBC NMR experiments. Solution magnetic moments 

were determined by Eva

f at least two independent measurements. 1H NMR multiplicity and coupling 

constants are reported where applicable. Peak width at half height is given for 

paramagnetically broadened resonances. Elemental analyses were performed at 

Robertson Microlit Laboratories, Inc., in Madison, NJ. 

Single crystals suitable for X-ray diffraction were coated with polyisobutyl

oil in a drybox, transferred to a nylon loop and then quickly transferred to the 

goniometer head of a Bruker X8 APEX2 diffractometer equipped with a molybden

X-ray tube (λ = 0.71073 Å). Preliminary data revealed the crystal system. A 

hemisphere routine was used for data collection and determination of lattice constant
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The space group was identified and the data were processed using the Bruker SAINT

program and corrected for absorption using SADABS. The structures were solv

using direct methods (SHELXS) completed by subsequent Fourier synthesis and

refined by full-matrix least-squares procedures. 

+ 

ed 

 

 

s 

n foam 

ite, 

f the resulting brown solid from 

entane yielded 1-OEt. Analysis for C35H48FeN3O: Calcd C, 72.15; H, 8.30; N, 7.21. 

z, 

1 

1 

t 

Preparation of (iPrPDI)Fe(OCH2CH3) (1-OEt). Method A. This complex wa

prepared in a manner similar to 1-OCH2CH=CH2 with 0.050 g (0.084 mmol) of 1-

(N2)2 and 5 μL, (0.084 mmol) of ethanol to yield 0.028 g (57%) of a dark brow

identified as 1-OEt. Method B. A 20 mL scintillation vial was charged with 0.100 g 

(0.168 mmol) of 1-(N2)2 and approximately 15 mL of pentane. Using a microsyringe, 

0.012 g (14 μL, 0.168 mmol) of ethyl formate was added and the resulting brown 

solution was allowed to stir for 30 minutes. The solution was filtered through Cel

the solvent was evacuated, and recrystallization o

p

Found: C, 71.94; H, 8.30; N, 6.99. 1H NMR (benzene-d6, 20 °C): δ = 84.47 (157 H

2H), 71.68 (67 Hz, 3H), -8.49 (28 Hz, 2H, m-aryl), -14.43 (19 Hz, 1H, p-aryl), -23.4

(23 Hz, 12H, CH(CH3)2), -36.31 (137 Hz, 12H, CH(CH3)2), -114.51 (222 Hz, 4H, 

CH(CH3)2), -214.04 (130 Hz, 6H, C(CH3)), two peaks not located. 

 

Preparation of (iPrPDI)Fe(CH=CH2) (1-Vinyl). Using a calibrated gas bulb, 0.02

mmol of vinyl bromide was transferred to a J. Young NMR tube containing 0.025 g 

(0.042 mmol) of 1-(N2)2 and approximately 0.7 mL of benzene-d6. Upon standing a

ambient temperature for 20 min, analysis of the reaction mixture by 1H NMR 

spectroscopy revealed formation of a mixture of 1-Br and 1-Vinyl. 1H NMR 

(benzene-d6, 20 °C): δ = 127.07 (221 Hz, 1H, p-pyr), 52.84 (45 Hz, 2H, m-pyr), -7.37 
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(32 Hz, 12H, CH(CH3)2), -12.74 (136 Hz, 12H, CH(CH3)2), -55.29 (271 Hz, 4H, 

CH(CH3)2), -141.77 (506 Hz, 6H, C(CH3)), aryl and vinyl resonances not located. 

e 

 -8.92 

Hz, 

e-d6 

n a 

 

 

s 

alysis for C33H43N3Fe: Calcd: C, 

3.73; H, 8.06; N, 7.82. Found: C, 73.69; H, 7.81; N, 7.95. 1H NMR (benzene-d6):  δ = 

 

), 

6 (d, 

 

Observation of (iPrPDI)Fe(CH2CH(CH3)2) (1-Isobutenyl). This complex was 

observed upon addition of 0.002 g (1.8 μL, 0.017 mmol) of 1-bromo-2-methylpropen

to 0.020 g (0.034 mmol) 1-(N2)2 in approximately 0.7 mL of benzene-d6. 1H NMR 

(benzene-d6, 20 °C): δ = 327.64 (227 Hz, 1H, p-pyr), 298.20 (508 Hz, 3H, 

CH=C(CH3)2), 236.98 (884 Hz, 3H, CH=C(CH3)2), 68.38 (99 Hz, 2H, m-pyr),

(38 Hz, 4H, m-aryl), -15.46 (34 Hz, 2H, p-aryl), -18.19 (44 Hz, 12H, CH(CH3)2), -

24.48 (113 Hz, 12H, CH(CH3)2), -105.76 (598 Hz, 4H, CH(CH3)2), -181.43 (169 

6H, C(CH3)), CH=C(CH3)2 resonance not located.  

 

Preparation of 1-Aryl. To a solution of 1-(N2)2 (0.033 g, 0.056 mmol) in benzen

(0.7 mL) was added 12 μL (0.057 mmol) of hexamethyldisiloxane. The dark green 

solution was transferred to an NMR tube fitted with a J. Young adapter and placed i

95 °C oil bath for 16 h. The resulting burgundy solution was cooled to room

temperature, filtered, and solvent and other volatiles were removed in vacuo, yielding

a pink solid identified as 1-Aryl (0.023 g, 0.044 mmol, 78%). Similaily, 1-Aryl wa

effectively prepared in the presence of a stoichiometric amount of anisole, instead of 

hexamethyldisiloxane, or in the absence of ether. An

7

7.37-7.16 (m, 3H, pyr), 6.61 (d, 3JHH = 8.0 Hz, 2H, m-aryl), 6.56 (t, 3JHH = 8.0 Hz, 1H,

p-aryl), 5.46 (d, 3JHH = 5.6 Hz, 2H, η6-m-aryl), 4.12 (t, 3JHH = 5.6 Hz, 1H, η6-p-aryl

3.36-3.22 (m, 4H, CH(CH3)2), 2.83 (s, 3H, C(CH3)), 1.46 (d, 3JHH = 6.8 Hz, 6H, 

CH(CH3)2), 1.39 (s, 3H, C(CH3)), 1.26 (d, 3JHH = 6.8 Hz, 6H, CH(CH3)2), 1.0
3JHH = 6.8 Hz, 6H, CH(CH3)2), 0.97 (d, 3JHH = 6.8 Hz, 6H, CH(CH3)2). 13C{1H} 
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(benzene-d6): δ = 170.3, 155.6, 147.0, 146.7, 144.2, 143.3, 141.5, 129.1 (m-aryl), 

125.9, 124.2, 122.4, 116.7 (p-aryl), 79.3 (η6-m-aryl), 78.4 (η6-p-aryl), 28.2 

(CH(CH3)2), 27.6 (CH(CH3)2), 27.0 (C(CH3)), 24.9 (CH(CH3)2), 24.7 (CH(CH3)2), 

23.4 (CH(CH3)2), 22.4 (CH(CH3)2), 16.3 (C(CH3)). 

 

Preparation of (iPrPDI)Fe(O2CCH=CH(Ph)) (1-CIN). A 20 mL vial was charged 

with 0.050 g (0.084 mmol) of 1-(N2)2 and approximately 10 mL of pentane. To th

solution, 0.013 g (0.084 mmol) of trans-cinnamic acid was added and dinitrogen 

evolution was observed along with a color change from green to brown.  The solu

was allowed to stir for 2 hours and then filtered through Celite. The solvent was 

removed in vacuo and the residue was recrystallized from pentane at -35 °C 

0.036 g (62 %) of a brown solid identified as 1-CIN. Analysis for C42H50FeN3O: 

Calcd C, 75.03; H, 7.50; N, 6.25.  Found: C, 75.24; H

e 

tion 

to afford 

, 7.90; N, 6.32. 1H NMR 

enzene-d6, 20 °C): δ = 372.72 (219 Hz, 1H, p-pyr), 159.36 (275 Hz, 1H, COCH), 

, 

Hz, 

e. A 

of 

Recrystallization from pentane yielded 0.131 g (62 %) of a bright purple solid 

(b

119.25 (294 Hz, 2H, m-pyr), 58.80 (191 Hz, 1H, CH(C6H5)), 27.99 (45 Hz, 2H, o-

phenyl), 19.01 (16 Hz, 2H, m-phenyl), 11.82 (30 Hz, 1H, p-phenyl), -3.14 (47 Hz, 2H

m-aryl), -16.66 (42 Hz, 1H, p-aryl), -19.56 (50 Hz, 12H, CH(CH3)2), -30.12 (135 

12H, CH(CH3)2), -113.05 (524 Hz, 4H, CH(CH3)2), -283.51 (336 Hz, 6H, C(CH3)). 

 

Preparation of (iPrPDI)Fe(CH=CH2)(O2CMe) (1-(OAc)(Vinyl)). A 20 mL vial was 

charged with 0.200 g (0.337 mmol) of 1-(N2)2 and approximately 10 mL of pentan

separate solution of 0.029 g (32 μL, 0.337 mmol) of vinyl acetate in ~ 5 mL of 

pentane was added slowly dropwise while stirring, resulting in immediate evolution 

N2 along with a change in color to bright purple. After 2 hours, the solution was 

filtered through Celite and the solvent was removed in vacuo to yield a purple residue. 
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identified as 1-(OAc)(Vinyl). Analysis for C37H49FeN3O2: Calcd C, 71.26; H, 7.92; N,

6.74. Found: C, 71.11; H, 7.74; N, 6.61. 1H NMR (benzene-d6): δ = 10.07 (dd, 16.0 

 

z, 7.5 Hz, 1H, CH=CH2), 7.43 (d, 7.5 Hz, 2H, m-pyr), 7.25 (t, 7.5 Hz, 1H, p-pyr), 

 7.0 

89.91 

lex 

 

3)2), 

, 

.0 Hz, 6H, CH(CH3)2), two resonances not located.  13C{1H} NMR (benzene-d6): δ = 

, 

 

H

6.96 (d, 6.0 Hz, 1H, m-aryl), 6.95 (d, 6.0 Hz, 1H, m-aryl), 4.66 (d, 7.5 Hz, 1H, 

CH=CH2), 3.12 (sept., 7.0 Hz, 2H, CH(CH3)2), 1.94 (sept., 7.0 Hz, 2H, CH(CH3)2), 

1.87 (d, 16.0 Hz, 1H, CH=CH2), 1.78 (m, 12H, CH(CH3)2 and C(CH3)), 1.23 (d,

Hz, 6H, CH(CH3)2), 1.18 (s, 3H, CO2CH3), 1.07 (d, 7.0 Hz, 6H, CH(CH3)2), 0.80 (d, 

7.0 Hz, 6H, CH(CH3)2), one peak not located. 13C{1H} NMR (benzene-d6): δ = 1

(CH=CH2), 181.48 (CO2Me), 163.67 (N=C), 144.44 (aryl), 143.20, 142.26, 126.89 (p-

aryl), 124.28 (m-aryl), 123.99 (m-aryl), 120.79 (m-py), 118.39 (p-py), 117.14 

(CH=CH2), 28.54 (CH(CH3)2), 28.25 (CH(CH3)2), 25.59 (CH(CH3)2), 25.07 

(CH(CH3)2), 24.81 (CH(CH3)2), 24.51 (CH(CH3)2), 22.42 (CO2CH3), 19.20 (C(CH3)). 

 

Observation of (iPrPDI)Fe(O2CC6H5)(CH=CH2) (1-(OBz)(Vinyl)). This comp

was prepared from the addition of 0.005 g (4.6 μL, 0.034 mmol) of vinyl benzoate to

0.020 g of 1-(N2)2 in approximately 0.7 mL of benzene-d6. 1H NMR (benzene-d6): δ = 

10.16 (dd, 16.0 Hz, 7.5 Hz, 1H, CH=CH2), 7.79 (d, 8.0 Hz, 2H, aryl/phenyl), 7.46 (d, 

8.0 Hz, 2H, m-pyr), 7.28 (t, 8.0 Hz, 1H, p-pyr), 7.00 (dd, 8.0 Hz, 1.0 Hz, 2H, 

aryl/phenyl), 6.76 (dd, 8.0 Hz, 1.0 Hz, 2H, aryl/phenyl), 4.62 (d, 7.5 Hz, 1H, 

CH=CH2), 3.24 (sept., 7.0 Hz, 2H, CH(CH3)2), 2.02 (sept., 7.0 Hz, 2H, CH(CH

1.90 (d, 7.0 Hz, 6H, CH(CH3)2), 1.86 (d, 16.0 Hz, 1H, CH=CH2), 1.78 (s, 6H

C(CH3)), 1.30 (d, 7.0 Hz, 6H, CH(CH3)2), 1.06 (d, 7.0 Hz, 6H, CH(CH3)2), 0.82 (d, 

7

188.19 (CH=CH2), 176.41 (CO2Me), 165.94, 163.15, 144.18, 142.72, 141.74, 133.97

130.83, 130.83, 128.85, 127.62, 126.87, 124.04, 123.95, 120.98, 118.76, 117.56, 28.56
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(CH(CH3)2), 28.35 (CH(CH3)2), 25.61 (CH(CH3)2), 25.23 (CH(CH3)2), 24.65 

(CH(CH3)2), 24.47 (CH(CH3)2), 19.27 (C(CH3)).  

 

Preparation of (iPrPDI)Fe(O2CMe) (1-OAc): Method A. A solution of 1-EtOAc 

was prepared in a thick-walled glass vessel by adding 21 μL (0.202 mmol) of e

acetate to 10 mL of a pentane solution containing 0.120 g (0.202 mmol) of 1-(N2)2.  

The vessel was sealed and heated to 65 °C in an oil bath for 16 hours. The resulting 

brown solution was filtered though Celite and the solvent removed in vacuo to yield a 

brown solid. Recrystallization from pentane yielded 0.044 g (36%) of 1-OAc. Method 

B: A thick-walled glass vessel was charged with 0.100 g (0.170 mmol) of 1-(N

approximately 10 mL of pentane. Upon addition of

thyl 

2)2 and 

 0.015 g (16 μL, 0.189 mmol) of 

ethyl acetate, the vessel was sealed, submerged in liquid nitrogen, and evacuated on 

g 

 

 

g 

m

a high vacuum line. After adding 1 atm of dihydrogen, the solution was thawed and 

stirred for 4 hrs at ambient temperature. The volatiles were removed and the resultin

reddish-brown residue was washed through a Celite fitted frit with diethyl ether. The

solvent was removed in vacuo and recrystallization from pentane at -35 °C afforded 

spectroscopically pure 1-OAc. Analysis for C35H46FeN3O2: Calcd C, 70.46; H, 7.77; 

N, 7.04. Found: C, 70.25; H, 8.04; N, 6.79. Magnetic susceptibility (benzene-d6, 20 

°C) μeff = 3.9(2) μB. 1H NMR (benzene-d6, 20 °C): δ = 372.47 (18 Hz, 1H, p-pyr), 

187.25 (370 Hz, 3H, CO2CH3), 119.59 (163 Hz, 2H, m-pyr), -3.20 (73 Hz, 2H, m-

aryl), -16.50 (66 Hz, 1H, p-aryl), -19.78 (75 Hz, 12H, CH(CH3)2), -30.37 (170 Hz, 

12H, CH(CH3)2), -114.95 (525 Hz, 4H, CH(CH3)2), -284.76 (280 Hz, 6H, C(CH3)).  

 

Preparation of (iPrPDI)Fe(OC6H5) (1-OPh). Method A. A 20 vial was charged with

0.050 g (0.084 mmol) of 1-(N2)2 and 10 mL of pentane. Using a microsyringe, 0.010 

(9 μL, 0.084 mmol) of phenyl formate was added. After 30 minutes the greenish-
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brown solution was filtered through Celite and the solcent was evacuated in vacuo to

yield 0.021 g (40%) of a brown solid identified as 1-OPh. Method B. In a 20 mL 

scintillation vial, a solution consisting of 0.010 g (0.017 mmol) of 1-(N2)2 and 

approximately 0.7 mL of benzene-d6 was prepared. Upon addition of 0.002 g (0.017

mmol) of phenol, the solution became brown in color within seconds. The solution 

 

 

as filtered through Celite in to a J. Young tube and the formation of 1-OPh was 

the 

e-

-

ation of (iPrPDI)Fe(OCHMe2) (1-OiPr). This complex was 

bserved along with the formation of 1-OAc upon cleavage of isopropyl acetate with 

w

confirmed by 1H NMR spectroscopy. Analysis for C39H48FeN3O: Calcd C, 74.27; H, 

7.67; N, 6.66. Found: C, 74.27; H, 7.68; N, 6.76. 1H NMR (benzene-d6, 20 °C): δ = 

71.02 (224 Hz, 2H, m-pyr), 48.99 (535 Hz, phenyl), -7.14 (163 Hz, 4H, m-aryl), -

14.42 (128 Hz, 2H, p-aryl), -23.21 (190 Hz, 12H, CH(CH3)2), -36.72 (290 Hz, 12H, 

CH(CH3)2), -113.54 (549 Hz, 4H, CH(CH3)2), -219.17 (293 Hz, 6H, C(CH3)), 3 

resonances not located. 

 

Spectroscopic Identification of 1-OnPent. This complex was observed along with 

formation of 1-OAc upon cleavage of amyl acetate with 1-(N2)2. 1H NMR (benzen

d6, 20 °C): δ = 87.73 (88 Hz, pentyl), 72.76 (79 Hz, 2H, m-pyr), 63.36 (pentyl), 31.43 

(pentyl), -8.88 (42 Hz, 4H, m-aryl), -14.40 (31Hz, 2H, p-aryl), -23.96 (54 Hz, 12H, 

CH(CH3)2), -38.92 (269 Hz, 12H, CH(CH3)2), -117.62 (1004 Hz, 4H, CH(CH3)2), 

216.48 (245 Hz, 6H, C(CH3)), 3 resonances not located. 

 

Spectroscopic Identific

o

1-(N2)2. The observation of 1-OiPr was independently confirmed through addition of 

either isopropanol or isopropyl formate to 1-(N2)2. 1H NMR (benzene-d6, 20 °C): δ = 

86.25 (232 Hz, 6H, OCH(CH3)2), 68.38 (72 Hz, 2H, m-pyr), -8.74 (26 Hz, 4H, m-

aryl), -14.42 (22 Hz, 2H, p-aryl), -22.88 (26 Hz, 12H, CH(CH3)2), -36.90 (152 Hz, 
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12H, CH(CH3)2), -113.00 (373 Hz, 4H, CH(CH3)2), -214.30 (150 Hz, 6H, C(CH3)), 

resonances not located. 

2 

 

4 

 

.32 (166 Hz, 6H, C(CH3)), p-pyr resonance not located. 

 

bservation of (iPrPDI)Fe(OCH2Ph) (1-OBenzyl). This complex was observed with 

 

 

Spectroscopic Identification of (iPrPDI)Fe(OC6H11) (1-OCy). This complex was 

observed along with the formation of 1-OAc upon cleavage of cyclohexyl acetate with

1-(N2)2. The observation of 1-OCy was independently confirmed through addition of 

cyclohexanol to 1-(N2)2. 1H NMR (benzene-d6, 20 °C): δ = 82.88 (251 Hz, cyclohexyl), 

68.94 (82 Hz, 2H, m-pyr), 62.03 (cyclohexyl), 47.79 (128 Hz, cyclohexyl), 39.26 (8

Hz, cyclohexyl), 28.04 (cyclohexyl), -9.00 (26 Hz, 4H, m-aryl), -14.46 (20 Hz, 2H, p-

aryl), -23.14 (29 Hz, 12H, CH(CH3)2), -36.81 (164 Hz, 12H, CH(CH3)2), -117.09 (391

Hz, 4H, CH(CH3)2), -214

 

Spectroscopic Identification of (iPrPDI)Fe(OCMe3) (1-OtBu). This complex was 

observed along with the formation of 1-OAc upon cleavage of tert-butyl acetate with 

1-(N2)2. The observation of 1-OtBu was independently confirmed through addition of 

tert-butyl alcohol to 1-(N2)2. 1H NMR (benzene-d6, 20 °C): δ = 84.76 (279 Hz, 9H, 

C(CH3)3), 63.98 (72 Hz, 2H, m-pyr), -9.24 (23 Hz, 4H, m-aryl), -14.63 (27 Hz, 2H, p-

aryl), -22.34 (27 Hz, 12H, CH(CH3)2), -36.95 (134 Hz, 12H, CH(CH3)2), -112.79 (407

Hz, 4H, CH(CH3)2), -213.58 (155 Hz, 6H, C(CH3)), p-pyr resonance not located. 

 

O

1-OAc from 1-(N2)2 mediated cleavage of benzyl acetate. 1H NMR (benzene-d6, 20 

°C): δ =  83.79 (648 Hz, 2H, phenyl), 75.20 (314 Hz, 2H, m-pyr), 29.58 (154 Hz, 2H, 

phenyl), 24.24 (580 Hz, 1H, phenyl), -8.54 (193 Hz, 4H, m-aryl), -14.44 (203 Hz, 2H, 

p-aryl), -24.40 (207 Hz, 12H, CH(CH3)2), -39.64 (338 Hz, 12H, CH(CH3)2), -120.01

(484 Hz, 4H, CH(CH3)2), -221.31 (375 Hz, 6H, C(CH3)), 2 peaks not located. 
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CHAPTER 5 

BIS(DIISOPROPYLPHOSPHINOMETHYL)PYRIDINE IRON COMPLEXES: 

PREPARATION, REACTIVITY, AND ASSESSMENT OF CATALYTIC 

HYDROGENATION ACTIVITY* 

 

5.1 Abstract 

 Preparation of bis(diisopropylphosphinomethyl)pyridine iron dihalide 

complexes (iPrPNP)FeX2 (X = Cl, Br; iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)) was 

accomplished through the metallation of iPrPNP with the desired iron dihalide 

precursor. Addition of 2 equivalents of NaBEt3H under an atmosphere of dinitrogen 

resulted in salt elimination and the formation of the diamagnetic iron dihydride 

complex (iPrPDI)FeH2(N2), where a dinitrogen molecule occupies the sixth 

coordination site. Phenylsilane addition to (iPrPDI)FeH2(N2) resulted in substitution of 

one iron hydride, exclusively trans to the pyridine donor of iPrPNP, with concomitant 

liberation of 1 equivalent of H2. A series of ligand exchange experiments established 

facile loss of the weakly activated dinitrogen ligand for both complexes. Exposure of 

either (iPrPDI)FeH2(N2) or (iPrPDI)FeH(SiH2Ph)(N2) to 4 atmospheres of H2 resulted in 

reversible N2 displacement and formation of the corresponding η2-dihydrogen 

complexes. The 1H NMR spectra of both iron hydride dihydrogen complexes 

suggested rapid exchange between the hydride and η2-dihydrogen ligands at ambient 

temperature in benzene-d6, as further evidenced by deuterium exchange and EXSY 

NMR studies. Addition of 4 atmospheres of D2 to (iPrPDI)FeH(SiH2Ph)(N2) resulted in 

fast deuterium incorporation into the iron hydride position along with slower silyl 

hydrogen exchange. The relative rates of deuterium exchange imply that D2 

                                                 
* Parts of this chapter have been reproduced with permission from Trovitch, R. J.; Lobkovsky, E.; 
Chirik, P. J. Inorg. Chem. 2006, 45, 7252-7260. Copyright 2006 American Chemical Society. 
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association occurs trans to the silyl substituent as well as the intermediacy of an η2-

phenylsilane complex. Both (iPrPDI)FeH2(N2) and (iPrPDI)FeH(SiH2Ph)(N2) have been 

identified as active hydrogenation precatalysts; however, low turnover frequencies and 

facile chelate loss have been identified as major limitations to the catalytic utility of 

these complexes.  

 

5.2 Introduction 

 Although the first report of “pincer ligands” appeared in the 1970s,1 the 

application of meridonal coordinating ligands in late transition metal chemistry has 

only recently matured into a remarkably active area of research. Due to their high 

degree of modularity and ease of preparation,2 pincer ligands possessing a wide array 

structural motifs have been introduced.  Of particular interest are precious metal 

complexes containing either chemically innocent3 or active4 PNP ligands (shorthand 

designation for metal bound chelate substituents) that have been shown to mediate 

useful organic transformations. Most notably, complexes of this sort have been found 

to catalyze cross coupling reactions5 as well as amide formation through the 

dehydrogenative coupling of amines to aldehydes.6 Fewer complexes featuring PNP 

ligands are known for first row metals such as Fe, Co, and Ni.1,7  

 As discussed in Chapter 3, there has been an increased impetus among both 

academic and industrial laboratories to encourage the use of inexpensive and non-toxic 

first row metal complexes as surrogates for traditional precious metal catalysts. Our 

group has studied the effect that nitrogen-based, redox-active bis(imino)pyridine 

ligands have on the ability of reducing iron centers to perform catalytic 

hydrogenation,8 hydrosilylation,9 and [2π + 2π] electrocyclization reactions.10 

Investigation of the catalytically relevant complex (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-(2,6-
iPr2-C6H3N=CMe)2C5H3N) by Mössbauer spectroscopy, DFT calculations, X-ray 
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crystallography, and NMR and IR spectroscopies established that the ground state 

electronic structure of this complex is best described as having an intermediate-spin 

iron(II) metal center, antiferromagnetically coupled to a doubly reduced 

bis(imino)pyridine chelate.11  In the case of [2π + 2π]-cyclization, the shuttling of 

electrons to and from the ligand has been implicated as an essential feature that allows 

the metal center to remain in the ferrous oxidation state.10  

 In order to address the role that bis(imino)pyridine redox activity plays in these 

catalytic processes, the reactivity of a series of PNP iron complexes that lack a 

conjugated π-system was studied. Although this ligand scaffold relies on phosphine 

donation rather than imine coordination, raising the barrier to ligand reduction can 

offer a reasonable assessment of the necessity for π-acidic ligands in neutral iron 

catalyst development.12 In this chapter, the characterization of a series of 

bis(phosphino)pyridine iron complexes and their utility in the hydrogenation and 

hydrosilylation of unactivated alkenes is discussed.  

    

5.3 Preparation of PNP Iron Complexes 

 Following preparation of iPrPNP by literature methods,13 the corresponding 

iron dihalide complexes (iPrPNP)FeX2 (X = Cl, Br; 4-Cl2, 4-Br2) were synthesized by 

straightforward complexation of the ligand with either FeCl2 or FeBr2 in 

tetrahydrofuran solution (Figure 5.1).14 Both complexes display paramagnetic 1H 

NMR spectra with ligand resonances spread over a 120 ppm range (Figure 5.2).  

Consistent with the reported magnetic moment of 5.2(1) μB for 4-Cl2,14 a solution 

magnetic moment of 5.1(2) μB was measured in chloroform-d solution for 4-Br2. This 

value is consistent with four unpaired electrons, as would be expected for a high spin 

iron(II) complex. 
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 With these iron dihalide starting materials in hand, alkali metal reduction in the 

presence of a weakly coordinating ligand was explored with the goal of isolating a 

direct analog to 1-(N2)2. Unfortunately, attempts to trap such a catalyst precursor with 

N2, bis(trimethylsilyl)acetylene, or 1,3-butadiene during the reduction of 4-X2 with an 

excess of 0.5% sodium amalgam did not result in the isolation of a tractable 

organometallic product. Performing the same reduction of either 4-Cl2 or 4-Br2 under 

1 atmosphere of strongly binding CO; however, did result in the formation of the 

corresponding diamagnetic iron dicarbonyl complex (iPrPNP)Fe(CO)2 (4-(CO)2) 

(Figure 5.1) based on spectroscopic identification and single-crystal X-ray diffraction.  
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Figure 5.1. Preparation of iPrPNP iron dihalide starting materials and the reduction of 

4-Br2 under 1 atmosphere of CO. 
 

 Isolation of 4-(CO)2 allows a direct comparison of the electronic environments 

imparted by the PNP and PDI ligands. The solid-state (KBr) infrared spectrum of 4-

(CO)2 displays two intense carbonyl stretches centered at 1842 and 1794 cm-1. In 

comparison, the solid-state stretches for 1-(CO)2 are reported as 1950 and 1894 cm-1, 9 

red shifted from 4-(CO)2 by over 100 cm-1. The dramatically lower C-O stretches 

observed for 4-(CO)2 are consistent with a strongly reducing, formally iron(0), metal 

center. Although the metal center 1-(CO)2 is also formally zerovalent, 1-(CO)2 is best 

described as a low spin iron(II) complex with a doubly reduced PDI ligand, greatly 
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attenuating the reducing capability of the metal center.11 This difference, coupled with 

the fact that alkyl phosphines are better sigma donors that imines, explains the drastic 

difference in the electronic environment imparted at the iron center by the two ligands.  

 

 
Figure 5.2. 1H NMR spectra of 4-Cl2 and 4-Br2 at 293 K in chloroform-d. 

 

 Single crystals of 4-(CO)2 suitable for X-ray diffraction were obtained by 

cooling a concentrated toluene solution of the complex to -35 °C. The solid-state 

structure (Figure 5.3) and the metrical parameters (Table 5.1) clearly establish the 

geometry about iron as idealized trigonal pyramidal, possessing C2-symmetry (Figure 

5.3, bottom). The equatorial plane in 4-(CO)2 is defined by the pyridine nitrogen atom 

and the two carbonyl ligands, with bond angles of 119.91(7)° and 120.04(3)° for C(1)-

Fe(1)-C(1A) and C(1)-Fe(1)-N(1), respectively. The axial phosphine ligand arms, with 
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a crystallographically determined P(1)-Fe(1)-P(1A) angle of 165.990(12)°, are not 

separated fully by 180° because PNP ligands containing a one atom linker between the 

pyridine ring and the phosphine typically impart a constrained geometry about the 

metal center. In comparing the Fe-C bond lengths of both 1-(CO)2
11 (1.7809(19) Å, 

1.7823 (19)) and 4-(CO)2 (1.7325(9) Å), it is apparent that the phosphine substitution 

and lack of a π-acidic chelate leads to discernable Fe-C bond contraction in 4-(CO)2, 

consistent with an increase in metal-carbonyl backbonding.  

 
Figure 5.3. Molecular structure of 4-(CO)2 at 30 % probability ellipsoids (top). View 

of 4-(CO)2 looking down Fe(1)-N(1) bond (bottom). Hydrogen atoms omitted for 
clarity. 
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Table 5.1. Selected bond distances (Å) and angles (°) for 4-(CO)2. 

  Distance (Å)   Angle (°) 

Fe(1)-C(1) 1.7325(9) P(1)-Fe(1)-P(1A) 165.990(12) 

Fe(1)-P(1) 2.1941(2) C(1)-Fe(1)-C(1A) 119.91(7) 

Fe(1)-N(1) 2.0684(8) N(1)-Fe(1)-P(1) 82.995(6) 

C(1)-O(1) 1.1734(11) C(1)-Fe(1)-N(1) 120.04(3) 

 

 The position of the carbonyl ligands relative to the chelate plane is also in stark 

contrast to the square pyramidal geometry about iron observed in the solid state 

structure of 1-(CO)2.11 This difference in geometry could be due to a lower tendency 

to backbond to the iron(II) center in 1-(CO)2 as compared to the iron(0) center in 4-

(CO)2. This argument is further supported by the metrical parameters reported for the 

related, structurally characterized PNP iron dihalide complex, (tBuPNP)FeCl2,14 

containing tert-butyl rather than isopropyl phosphine substituents. The molecular 

geometry in this complex is best described as distorted square planar with a Cl-Fe-Cl 

angle of 105.1(1). Additionally, the iron atom is lifted out of the chelate plane by 

0.552 Å and the Fe-N bond distance is elongated to 2.303(2) Å, compared to 

2.0684(8) Å in 4-(CO)2 (Table 5.1). However, recent elucidation of the molecular 

structure of (tBuPNP)Fe(CO)2
15 has revealed the overall geometry of this complex to be 

square pyramidal which is likely due to a steric interaction between the tert-butyl 

ligand substituents and carbonyl ligands. 

 In a second attempt to prepare an iron precatalyst, the possibility of replacing 

the iron halides with alkyl groups through salt metathesis. Attempts to prepare iron 

dialkyl complexes that may be active for hydrogenation or hydrosilylation reactions16 

commenced with the addition of alkyllithium reagents to either 4-Cl2 or 4-Br2. 
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Although no tractable organometallic product was observed following neosilyllithium 

addition, the formation of a new paramagnetic product was observed from the addition 

of either 1 or 2 equivalents of methyllithium to 4-Cl2 (Figure 5.4). This red product 

has been assigned as the iron methyl chloride (iPrPNP)FeCl(Me) (4-Cl(Me)) due to the 

Cs-symmetry of the complex, as observed by 1H NMR spectroscopy (Figure 5.5). The 

addition of either 1 or 2 equivalents of phenyllithium to 4-Br2 also yielded 

paramagnetic reaction mixtures that appeared to have low symmetry by 1H NMR 

spectroscopy.  

 Applying a method initially reported by Cámpora17 and since expanded upon 

by our group,18 pincer iron dialkyl complexes could be prepared potentially by 

straightforward addition of (py)2Fe(CH2SiMe3)2 to the desired chelate. While this 

possibility has not yet been investigated for iPrPNP, encouraging results were observed 

upon addition of the nitrogen analog of this ligand (2,6-(iPr2NCH2)2(C5H3N)) with 

(py)2Fe(CH2SiMe3)2.19  
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Figure 5.4. Preparation of 4-Cl(Me) by salt metathesis. 

 

 During the preparation of 1-(N2)2, it was observed that low yields of this 

complex could be obtained by adding 2 equivalents of NaBEt3H to 1-Br2.9 In this 

process, the putative iron dihydride complex loses H2 and the formally reduced 

bis(imino)pyridine fragment goes on to coordinate 2 equivalents of dinitrogen. 
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Applying a similar method to PNP iron chemistry, treatment of an ethereal slurry of 

either 4-Cl2 or 4-Br2 with 2 equivalents of NaBEt3H under an atmosphere of N2 

yielded a diamagnetic reddish-orange solid identified as (iPrPNP)FeH2(N2) (4-H2(N2)) 

(Figure 5.6). When left in benzene-d6 solution at ambient temperature for more than a 

few minutes, chelate liberation and deposition of iron metal began to occur. Loss of 

the PNP chelate from this complex is likely preceded by loss of either H2 or N2; both 

instances would inherently destabilize the complex. 

 

Figure 5.5. 1H NMR spectra of 4-Cl(Me) at 293 K in benzene-d6. 

 

 Filtration followed by immediate analysis by multinuclear NMR spectroscopy 

allowed characterization of 4-H2(N2). The benzene-d6 1H NMR spectrum of this 

complex at 20 °C displayed two triplets of doublets centered at -17.65 and -12.54 

ppm, consistent with the presence of two inequivalent iron hydrides. Similarly, the 
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proton coupled 31P NMR spectrum exhibited an overlapping doublet of doublets 

centered at 108.28 ppm, confirming that the phosphine environments were equivalent. 

Dinitrogen coordination was confirmed by solid-state infrared spectroscopy with the 

observation of a strong N≡N stretch at 2016 cm-1. The appearance of two inequivalent 

iron hydrides (lack of C2v-symmetry) ruled out the highly disfavored isomer where the 

hydrides are in a trans configuration. This confirmation is unlikely due to the strong 

trans influence imparted by hydride ligands.20  
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Figure 5.6. Synthetic routes to 4-H2(N2) and 4-H(SiH2Ph)N2. 

 

 To further assign 4-H2(N2) as an iron(II) dihydride rather than an iron(0) 

dihydrogen complex, proton relaxation measurements were conducted at -25 °C in 

toluene-d8. A T1(min) value of 314 ms was measured at 500 MHz, fitting the iron 

dihydride description.21 Additionally, the observation of large JPH values of 52.0 and 

60.5 Hz confirm that this complex can best be described as a dihydride; η2-dihydrogen 

ligands often display little if any coupling to 31P resonances.21 Even though the iron-

hydride resonances appear as a sharp triplet of doublets in the 1H NMR spectrum of 4-

H2(N2), EXSY NMR experiments (mixing time of 500 ms) revealed rapid exchange 

between the two positions. This process can either occur through reversible reductive 

182 



coupling of the hydrides, followed by fast η2-dihydrogen σ-bond rotation,22 or by 

dinitrogen dissociation and recapture concurrent with the formation of a five-

coordinate iron(II) dihydride (Figure 5.7).  These experiments highlight that the metal 

center in these PNP ligated iron complexes remains in the ferrous oxidation state, as 

stabilized by the highly electron donating properties of the chelate.  
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Figure 5.7. Routes of hydride exchange for 4-H2(N2). 

 

 Addition of 1 equivalent of phenylsilane to 4-H2(N2) resulted in the 

replacement of one hydride ligand with a silyl substituent, yielding a bright orange 

complex identified as (iPrPNP)FeH(SiH2Ph)N2 (4-H(SiH2Ph)N2) (Figure 5.6). 

Conveniently, treatment of 4-Cl2 with 2 equivalents of NaBEt3H in the presence of 

phenylsilane generated 4-H(SiH2Ph)N2 in good yield. Silyl substitution occured trans 

to the chelate pyridine, as expected from the strong trans-influence of both the hydride 

and the silyl substituents.23 Unlike 4-H2(N2), this complex was indefinitely stable at 

ambient temperature in benzene-d6. Attempts to perform this substitution with more 

substituted silanes led to complicated reaction mixtures of undetermined composition.   
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 Examination of 4-H(SiH2Ph)N2 by 1H NMR spectroscopy in benzene-d6 

revealed a triplet at -13.12 ppm with a JPH value of 58 Hz, due to coupling with two 

equivalent phosphine environments. The proton decoupled 31P NMR spectrum 

exhibited a single resonance at 96.85 ppm, further establishing equivalence 

phosphines. As observed for 4-H2(N2), chelate isopropyl and backbone methylene 

resonances consistent with a Cs-symmetric molecule were located by 1H and {1H}13C 

NMR spectroscopy. In the 1H NMR spectrum, resonances for magnetically 

inequivalent silane hydrogen atoms were observed as partially overlapping triplets 

centered at 4.94 ppm.  

 Similar to 4-H2(N2), the relaxation rate of the iron hydride was determined in 

order to exclude the possibility that this complex can be described as an iron(0) η2-

silane complex. At -50 °C, a T1(min) value of 368 ms was observed, again consistent 

with an iron hydride. EXSY NMR spectroscopy, using a 500 ms mixing time, 

demonstrated that the iron hydride and silyl hydrogens do not exchange on this 

timescale at ambient temperature. These observations taken together suggest that 

reversible reductive formation of an iron-silane σ-complex that undergoes fast σ-bond 

exchange has a higher barrier than the hydride exchange observed for 4-H2(N2). 

Formulation of 4-H(SiH2Ph)N2 as an iron(II) complex further supports the electron 

donating ability of the PNP chelate to favor oxidative addition.  

 Confirmation of an octahedral complex with dinitrogen occupying the sixth 

coordination site was again obtained by infrared spectroscopy. A strong N≡N stretch 

centered at 2032 cm-1(KBr) was identified, 16 cm-1 higher in frequency than that 

observed for 4-H2(N2). This suggests a more electropositive iron center in 4-

H(SiH2Ph)N2 than 4-H2(N2), rationalizing the observed difference in stability between 

the two complexes. The dinitrogen stretches of these compounds allow for a fairer 

approximation of the different electronic environments imparted by the PDI and PNP 
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ligands, by comparing the two iron(II) complexes. In the solid state, 1-(N2)2 has 

dinitrogen stretching frequencies of 2124 and 2053 cm-1, demonstrating that the π-

acidic PDI ligand in 1-(N2)2 clearly fosters two electrons.    

 The stability of 4-H(SiH2Ph)N2 in solution at 23 °C allowed for crystal growth 

and the determination of the solid-state structure by X-ray diffraction (Figure 5.8). 

Dinitrogen coordination and the trans arrangement of the silyl and pyridine 

substituents were confirmed and all of the hydrogen atoms, including the iron hydride, 

were located and refined. The metrical parameters (Table 5.2) reveal a distorted 

octahedral geometry for this complex, with a P(1)-Fe(1)-P(2) angle of 161.12(2) Å.  

 
Figure 5.8. Molecular structure of 4-H(SiH2Ph)N2 with 30% probability ellipsoids. 

Hydrogen atoms, expect for the iron-hydride and silicon hydrogens, omitted 
for clarity. 

 

 The iron-hydride is canted towards the silyl ligand with an H(1M)-Fe(1)-Si(1) 

angle of 76.6(7)°, suggesting a weak silicon-hydrogen interaction. However, the 

distance between these atoms is 2.420(17) Å, which is significantly outside the sum of 

the covalent radii of the atoms (~1.45 Å). As expected, the N(2)-N(3) bond distance of 
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1.120(2) Å is consistent with a weakly activated dinitrogen ligand. The 

crystallographically determined Fe(1)-H(1M) bond distance of 1.512(19) Å is in the 

range typically observed for iron-hydrides.24-26 Importantly, no evidence for pyridine 

reduction or dearomatization4,6 is observed in the chelate bond distances, supporting 

the assertion that PNP acts purely as a σ-donating chelate.  

 

Table 1.2. Metrical parameters for 4-H(SiH2Ph)N2.  

  Distance (Å)   Angle (°) 

Fe(1)-H(1M) 1.512(19) P(1)-Fe(1)-P(2) 161.12(2) 

Fe(1)-P(1) 2.1823(5) N(1)-Fe(1)-Si(1) 165.90(4) 

Fe(1)-P(2) 2.1817(5) H(1M)-Fe(1)-N(2) 173.3(7) 

Fe(1)-N(1) 2.0370(15) N(1)-Fe(1)-N(2) 96.82(6) 

Fe(1)-Si(1) 2.2718(6) Si(1)-Fe(1)-N(2) 97.04(5) 

Fe(1)-N(2) 1.8002(17) H(1M)-Fe(1)-P(1) 80.6(7) 

N(2)-N(3) 1.120(2) H(1M)-Fe(1)-P(2) 86.6(7) 

Si(1)-H(1M) 2.420(17) H(1M)-Fe(1)-Si(1) 76.6(7) 

 

 A series of ligand substitution reactions were conducted for both 4-H2(N2) and 

4-H(SiH2Ph)N2. Addition of 4 atmospheres of carbon monoxide to 4-H2(N2) resulted 

in immediate formation of 4-(CO)2 along with liberation of H2 and N2 (Figure 5.9). 

On the other hand, monitoring the same addition to 4-H(SiH2Ph)N2 resulted in the 

formation of a new diamagnetic complex identified as 4-H(SiH2Ph)(CO) (Figure 5.9). 

Slow conversion of 4-H(SiH2Ph)(CO) to 4-(CO)2 under an atmosphere of CO in 

benzene-d6 was observed upon heating the reaction mixture to 95°C for weeks. This 
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difference in reactivity provides evidence that the barrier to reductively eliminate 

phenylsilane from 4-H(SiH2Ph)(CO) is much higher than the elimination of 

dihydrogen from 4-H2(N2), correlating to the respective stability of each complex. 
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Figure 5.9. Reactivity of 4-H2(N2) and 4-H(SiH2Ph)N2 towards carbon monoxide. 

 

 Evidence for ligand exchange was obtained by infrared spectroscopy, where a 

strong carbonyl stretch centered at 1879 cm-1 was observed. This red shift compared to 

the stretches observed for 4-(CO)2 correlates with the different metal oxidation state 

between the two complexes. Similar 1H and 31P NMR features to 4-H(SiH2Ph)N2 

were observed for 4-H(SiH2Ph)(CO); a triplet (JPH = 55 Hz) centered at -6.41 ppm 

was observed by 1H NMR spectroscopy along with a proton decoupled singlet at 

103.86 ppm in the 31P spectrum.  

 Additionally, 4-H(SiH2Ph)(CO) was characterized by single-crystal X-ray 

diffraction. The molecular structure, with refined iron hydride and silyl hydrogen 

atoms, is presented in Figure 5.10 and selected metrical parameters are reported in 

Table 5.3. The distorted octahedral geometry around iron is strikingly similar to that 

observed in 4-H(SiH2Ph)N2 (Figure 5.8), with a P(1)-Fe(1)-P(2) angle of 

160.761(19)°. Again, a weak interaction between the iron hydride and silyl substituent 

was observed, with a Si(1)-Fe(1)-H(1) angle of 75.9(9)° and Si(1)-H(1) distance of 

2.41(2) Å. The C(26)-O(1) bond distance of 1.1635(19) Å is slightly contracted 
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compared to the carbonyl distances observed for 4-(CO)2 (1.1734(11) Å), as expected 

for the less reducing iron (II) metal center.  

 
Figure 5.10. Molecular structure of 4-H(SiH2Ph)(CO) with 30% probability 

ellipsoids. Hydrogen atoms, expect for the iron-hydride and silicon hydrogens, omitted 
for clarity. 

 

 Treatment of 4-H(SiH2Ph)N2 with a stoichiometric amount of 

trimethylphosphine also resulted in the liberation of dinitrogen and the formation of 

(iPrPNP)FeH(SiH2Ph)(PMe3) (4-H(SiH2Ph)(PMe3)) as determined by multinuclear 

NMR spectroscopy and combustion analysis (Figure 5.11). Two-dimensional NOESY 

NMR spectroscopy was used to determine the overall geometry of this complex. 

Cross-peaks observed between the iron-hydride and both the silicon and ortho-phenyl 

hydrogens of the silyl ligand, established the same cis configuration as observed in the 

other complexes discussed previously. Accordingly, cross-peaks between the iron-

hydride and PMe3 ligand were not observed. In the 1H NMR spectrum of this complex 
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in benzene-d6, the iron-hydride resonance centered at -9.97 ppm is expectedly split 

into a triplet of doublets. However, upon closer examination, the hydride coupling to 

the cis chelate phosphines is 67.0 Hz while coupling to the trans PMe3 ligand is only 

21.0 Hz. This abnormality (trans JPH values are typically larger for octahedral 

complexes) is likely a result of the distortion from idealized octahedral geometry 

observed for this class of compounds. To this end, any deviance of the H-Fe-PMe3 

bond angle from linearity would greatly attenuate the iron-phosphorous coupling 

constant. 

 

Table 5.3. Selected metrical parameters for 4-H(SiH2Ph)(CO). 

  Distance (Å)   Angle (°) 

Fe(1)-H(1M) 1.522(15)  P(1)-Fe(1)-P(2) 160.761(19) 

Fe(1)-P(1) 2.1780(5) N(1)-Fe(1)-Si(1) 167.02(4) 

Fe(1)-P(2) 2.1827(4) H(1M)-Fe(1)-C(26) 166.2(9) 

Fe(1)-N(1) 2.0605(13) N(1)-Fe(1)-C(26) 102.36(6) 

Fe(1)-Si(1) 2.2689(5) Si(1)-Fe(1)-C(26) 90.46(5) 

Fe(1)-C(26) 1.7541(16) H(1M)-Fe(1)-P(1) 81.8(9) 

C(26)-O(1) 1.1635(19) H(1M)-Fe(1)-P(2) 85.6(9) 

Si(1)-H(1M) 2.41(2) H(1M)-Fe(1)-Si(1) 75.9(9) 
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Figure 5.11. Ligand substitution to prepare 4-H(SiH2Ph)(PMe3). 

 

 The observation of these unusual coupling constants sparked our interest in 

further examination of the coupling constants of the crystallographically characterized 

molecules 4-H(SiH2Ph)N2 and 4-H(SiH2Ph)(CO), in an attempt to further 

substantiate this proposal. The 13C labeled isotopologue of 4-H(SiH2Ph)(CO), 4-

H(SiH2Ph)(13CO), was prepared from straightforward addition of 13CO to 4-

H(SiH2Ph)N2. This complex allowed determination of the trans H-Fe-13C coupling 

constant of 10.5 Hz. This value is smaller than the cis P-Fe-13C coupling constant of 

14.0 Hz in the same complex, however, work by Whitesides and Maglio has 

demonstrated that H-M-13C coupling constants do not necessarily translate to the 

stereochemistry of the complex.27 The cis H-Fe-Si coupling constants of 4-

H(SiH2Ph)N2, 4-H(SiH2Ph)(CO), and 4-H(SiH2Ph)(PMe3) were determined from 

the 1H NMR spectra of these complexes and found to be 28.0, 25.0, and 12.5 Hz, 

respectively.  The smaller JSiH value observed for 4-H(SiH2Ph)(PMe3) may be related 

to electronic effects imparted by the ligand that occupies the sixth coordination site.  

 

5.4 Evaluation of Catalytic Activity 

 After studying various ligand substitution reactions and establishing that 

dinitrogen loss is facile and reductive coupling of X-type ligands occurs for both 4-

H2(N2) and of 4-H(SiH2Ph)N2 at ambient temperature, the catalytic activity of both 
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complexes was assayed. The hydrogenation and hydrosilylation of unactivated olefins 

such as 1-hexene and cyclohexene were chosen as initial targets to enable comparison 

of these PNP species with bis(imino)pyridine iron.9 Complete hydrogenation (as 

judged by GC) of 1-hexene using a 0.3 mol % catalyst loading of 4-H2(N2) was 

accomplished upon stirring for 3 hours at 23 °C. Hydrogenation of 1-hexene with this 

complex is much slower than for 1-(N2)2, where turnover frequencies of greater than 

1800 hr-1 were observed. Attempts to hydrogenate cyclohexene proved to be even 

more disappointing. Using the same conditions, only minimal conversion of 

cyclohexene to cyclohexane (~10 %) after either 6 or 24 hours was observed. Similar 

conversion at longer reaction times suggests that the rate of catalyst decomposition (as 

discussed in section 5.3) is competitive with the rate of hydrogenation under these 

reaction conditions. The hydrosilylation of olefins or alkynes was not accomplished 

using 4-H(SiH2Ph)N2 as a catalyst precursor.  

 To better understand the observed lack of catalytic competency, the addition of 

dihydrogen to 4-H2(N2) was studied. Upon adding 4 atmospheres of H2, gradual 

disappearance of 4-H2(N2) was noted along with the formation of a new iron-hydride 

containing complex as evidenced by 1H NMR spectroscopy. The iron-hydride 

resonance for this newly formed product was observed as a broad singlet (Δν1/2= 12 

Hz) at -11.17 ppm, indicative of an iron dihydride dihydrogen complex with rapidly 

equilibrating hydrogen ligands (Figure 5.12).26 Cooling this complex, tentatively 

assigned as 4-H2(H2), to 193 K in toluene-d8 solution resulted in gradual broadening 

of the peak (Δν1/2= 46 Hz) but not resolution of the hydrides. Definitive 

characterization of this complex was not achieved by NMR spectroscopy, elemental 

analysis, or X-ray crystallography due to facile PNP chelate loss in solution. Figure 

5.12 depicts the η2-dihydrogen ligand of 4-H2(H2) trans to a hydride rather than the 

chelate pyridine because of the strong trans influence of hydride ligands; however, a 
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structure with trans hydrides may be accessed during the course of hydride exchange. 

Addition of D2 to 4-H2(N2) resulted in fast isotopic exchange into the iron hydride 

positions of this complex, suggesting that dinitrogen loss and recapture concurrent 

with displacement of H2 or its isotopologues is operative. Exposing either 4-H2(H2) or 

4-D2(D2) to 1 atmosphere of N2 resulted in immediate formation of either 4-H2(N2) or 

4-D2(N2); further demonstrating the preference for π-accepting ligands at the electron 

rich metal center.  
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Figure 5.12. Formation of 4-H2(H2) along with iron-hydride equilibration. 

 

 In order to circumvent the poor solution stability of 4-H2(N2), dihydrogen 

addition to the more robust 4-H(SiH2Ph)N2 was explored. Under 4 atmospheres of H2, 

the 1H NMR resonances for 4-H(SiH2Ph)N2 slowly decreased in intensity over the 

course of 20 hours as a new set of resonances for 4-H(SiH2Ph)(H2), including a broad 

iron hydride resonance at -9.37 ppm corresponding to 3 protons, grew in. Observation 

of both 4-H(SiH2Ph)N2 and 4-H(SiH2Ph)(H2) simultaneously (Figure 5.13) is 

attributed to slow dissociation of N2 in this substitution reaction.  

 As with 1-H2(H2), the observation of a broad iron-hydride resonance by 1H 

NMR spectroscopy demonstrates rapid exchange between the iron-hydride and η2-

dihydrogen ligand. The benzene-d6 EXSY NMR spectrum of this complex conducted 

with a 500 ms mixing time, established no exchange between the hydride, dihydrogen, 

or silyl substituents on this timescale. Based on these observations, the isomer where 
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the hydride and η2-dihydrogen ligands are trans to one another was ruled out as the 

ground state structure; however, this must be accessible during hydrogen equilibration 

(Figure 5.13).  

 

Figure 5.13. Conversion of 4-H(SiH2Ph)N2 to 4-H(SiH2Ph)(H2) under 4 atmospheres 
of H2 in benzene-d6. 
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 In order to probe the accessibility of a phenylsilane σ-complex, 4-

H(SiH2Ph)N2 was treated with 4 atmospheres of D2. As expected, the iron-hydride 

resonance in 4-H(SiH2Ph)N2 disappeared rapidly and free H-D gas was observed by 
1H NMR spectroscopy. At longer reaction times, the silicon hydrogen resonances for 

this complex also disappeared, establishing isotopic exchange into this position and 

intermediacy of a silane σ-complex (Figure 5.14). Dissociation of H-D likely occurs 

from the coordination site trans to the silyl substituent following deuterium exchange 

into the iron hydride through an intermediate σ-complex, consistent with its 

observation at early reaction times.  

 To understand further the inability of 4-H(SiH2Ph)N2 to hydrosilylate olefins 

or alkynes, addition of large excesses of these substrates was investigated. Adding 

approximately 50 equivalents of 2-butyne to 4-H(SiH2Ph)N2 in benzene-d6 at ambient 

temperature resulted in immediate loss of the iPrPNP ligand, as determined by 1H and 
31P NMR spectroscopy. Evidence for alkyne insertion was obtained by mass 

spectroscopy and NMR spectroscopy due to the observation of 

PhSiH(C(CH3)=CH(CH3))2. Large quantities of hexamethylbenzene were also 
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observed, suggesting that iron catalyzed cyclotrimerization of 2-butyne also occurred 

throughout the course of the reaction under these conditions.  
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Figure 5.14. Proposed pathway for isotopic exchange in 4-H(SiH2Ph)N2 upon 

treatment with D2 gas. 

 

 Adding a large excess of either 1-hexene or cyclohexene to 4-H(SiH2Ph)N2 

produced no change in the 1H NMR spectrum of this complex over the course of 

several days at 23 °C. Addition of excess ethylene caused the precipitation of an 

insoluble organometallic product of unknown composition along with the formation of 

diethylphenylsilane. This organometallic precipitate, which liberated iPrPNP upon 

degradation with water, was unreactive towards olefins or silanes; offering insight into 

the inability of 4-H(SiH2Ph)N2 to catalyze olefin hydrosilylation. 

 

5.5 Discussion 

 Although 4-H2(N2) is an inferior catalyst precursor for the hydrogenation of 

olefins, there have only been a few phosphine ligated iron complexes reported that 

mediate this transformation.28-31 In order to prepare cheap and environmentally benign 
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alternatives to industrially viable precious metal catalysts; one main objective of this 

field has been the development of enantioselective iron catalysts, a goal that has only 

recently been accomplished.30,31 This work has helped lay the foundation of 

phosphine-ligated iron hydrogenation catalysis; an area of research truly in its infancy.  

 The mechanistic investigations conducted in this work shed additional light on 

what is known about iron-hydride dihydrogen complexes. Most known examples 

containing this structural motif are cationic bis(diphosphine) compounds in which the 

hydride and η2-dihydrogen ligands are in a trans configuration.32-35 Other cationic 

examples where these ligands are in a cis confirmation have been reported and these 

complexes generally contain tetradentate phosphine ligands.36-39 One neutral example, 

most similar to the complexes in this work, is (Ph2EtP)3FeH2(H2).40 Variable 

temperature NMR and neutron diffraction studies established this complex as an 

iron(II) dihydride dihydrogen complex that exhibits rapid iron hydride exchange on 

the NMR timescale.26 A cis-effect, or electrostatic interaction between the ligands, has 

been implicated as the origin of this exchange, rather than a formal oxidation to 

Fe(IV).26 It is likely that a similar phenomenon is operative in our system for both 4-

H2(H2) and 4-H(SiH2Ph)(H2). Although this cis-effect concept has not been applied to 

explain facile exchange between a hydride and silyl substituent, we believe this 

process occurs and is slightly less favored than the same effect between hydride and 

η2-dihydrogen ligands. Also, it is likely that 4-H2(H2) hydrogenates 1-hexene by an 

iron(0)-iron(II) couple rather than relying on a redox-active ligand to keep the metal 

oxidation state constant. 

 

5.6  Conclusions  

 A series of catalytically active bis(diisopropylphosphinomethyl)pyridine iron 

complexes have been prepared and their reactivity has been studied. Infrared 
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spectroscopy and X-ray crystallographic studies of these complexes, along with ligand 

substitution reactions, established the highly electron donating properties of the iPrPNP 

ligand. Both the iron dihydride and silyl hydride complexes cordinate π-accepting 

ligands such as dinitrogen or carbon monoxide in the sixth available coordination site, 

leading to the isolation of the corresponding distorted octahedral Fe (II) complexes. 

Although poor catalytic activity was observed for these complexes because of 

competing chelate loss, NMR spectroscopic studies along with deuterium labeling 

experiments established facile iron hydride exchange with either dihydrogen or 

phenylsilane. This work ultimately suggests that in the design of new catalytic iron 

systems, the electronic properties of the ligand are of utmost importance.   

 

5.7 Experimental Procedures 

General Considerations. All air- and moisture-sensitive manipulations were carried 

out using standard vacuum line, Schlenk, and cannula techniques or in an MBraun 

drybox containing an atmosphere of purified nitrogen. The MBraun drybox was 

equipped with a cold well designed for freezing samples in liquid nitrogen. Solvents 

for all air- and moisture-sensitive manipulations were initially dried and deoxygenated 

using literature procedures.41 Argon and hydrogen gas were purchased from Airgas 

Incorporated and passed through a column containing manganese oxide supported on 

vermiculite and 4 Å molecular sieves before admission to the high vacuum line. 

Benzene-d6 was purchased from Cambridge Isotope Laboratories and distilled from 4 

Å molecular sieves under an atmosphere of argon and stored over 4 Å molecular 

sieves and sodium metal. Carbon monoxide was purchased from Aldrich and passed 

through a liquid-nitrogen cooled trap before use. Ethylene was purchased from 

Aldrich, passed through a liquid-nitrogen cooled trap, and stored over a slurry of 

activated MAO in toluene before use. Sodium triethylborohydride was obtained from 
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Aldrich in a 1.0 M solution in toluene and used as received. Phenylsilane, 1-hexene, 

cyclohexene, trimethylphosphine, and 2-butyne were purchased from Acros or Aldrich 

and dried over activated molecular sieves before use. The method used to prepare 1-

Cl2 and 1-Br2 was initially published by Milstein and co-workers.14 

 1H, 13C, and 31P NMR spectra were recorded at 399.780 or 500.62, 101.535 or 

125.893, and 161.833 or 202.648 MHz, respectively, using Inova 400 and 500 

spectrometers. 1H and {1H}13C NMR chemical shifts are reported in ppm from 

tetramethylsilane using the chemical shifts of the solvent as a secondary standard. 

{1H}31P NMR and 31P chemical shifts are reported relative to H3PO4 and referenced to 

an external 85% H3PO4 solution. Single crystals suitable from X-ray diffraction were 

coated with polyisobutylene oil in a drybox and were quickly transferred to the 

goniometer head of a Bruker X8 APEX2 system equipped with a molybdenum X-ray 

tube (λ =0.71073 Å). Preliminary data revealed the crystal system. A hemisphere 

routine was used for data collection and determination of lattice constants. The space 

group was identified and the data were processed using the Bruker SAINT program 

and corrected for absorption using SADABS. The structures were solved using direct 

methods (SHELXS), completed by subsequent Fourier synthesis, and refined by full-

matrix least-squares procedures. Elemental analyses were performed at Robertson 

Microlit Laboratories, Inc. in Madison, NJ.  

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]FeCl2 (4-Cl2). A 500 mL round-bottomed 

flask was charged with 4.64 g (13.67 mmol) of (2,6-iPr2PCH2)2C5H3N and 

approximately 150 mL of tetrahydrofuran. While stirring, 1.73g (13.67 mmol) of 

FeCl2 was added and the yellow mixture turned orange and a precipitate formed within 

minutes. After stirring for 24 hours, the mixture was washed through a frit with 

chloroform and the solvent was evacuated. The resulting yellow solid was washed 
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three times with 20 mL of pentane and dried to yield 6.25 g (98%) 4-Cl2. Analysis for 

C19H35 Cl2FeNP2: Calc. C, 48.95; H, 7.57; N 3.00.  Found: C, 48.48; H, 7.50; N, 2.89. 

Magnetic Susceptibility (chloroform-d, 293 K): μeff = 5.5 μB. 1H NMR (chloroform-d, 

293 K): δ = 95.79 (269, 4H, PCH2), 45.15 (65, 2H, m-pyr), 32.86 (325 Hz, 4H, 

CH(CH3)2), 11.23 (112 Hz, 12H, CH(CH3)2)), 6.81 (146 Hz, 12H, CH(CH3)2)), -7.94 

(40 Hz, 1H, p-pyr).  

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]FeBr2 (4-Br2). This molecule was prepared 

in a similar manner to 4-Cl2 with 2.00 g (5.89 mmol) of (2,6-iPr2PCH2)2C5H3N and 

1.27 g (5.89 mmol) of FeBr2 to yield 3.07 g (94%) of a yellow solid identified as 4-

Br2.  Analysis for C19H35Br2FeNP2: Calc. C, 41.11; H, 6.36; N 2.52. Found: C, 41.22; 

H, 6.61; N, 2.46. Magnetic Susceptibility (chloroform-d, 293 K): μeff = 5.1 μB. 1H 

NMR (chloroform-d, 293 K): δ = 97.52 (194 Hz, 4H, PCH2), 48.37 (34 Hz, 2H, m-

pyr), 37.39 (190 Hz, 4H, CH(CH3)2), 12.18 (79 Hz, 12H, CH(CH3)2)), 7.58 (91 Hz, 

12H, CH(CH3)2)), -8.36 (20 Hz, 1H, p-pyr). 

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]Fe(CO)2 (4-(CO)2). A dried thick walled 

reaction vessel was charged with 0.500 g (0.901 mmol) of 4-Br2 and approximately 50 

mL of pentane. An amalgam prepared from 0.104 g (4.51 mmol) of sodium metal and 

21.7 g (901 mmol) of mercury was added to the bomb, which was quickly submerged 

in liquid nitrogen to prevent reaction. An excess of carbon monoxide was admitted to 

the reaction vessel and the solution warmed to ambient temperature. Within minutes of 

stirring, the colorless solution turned royal blue in color and the reaction was allowed 

to stir for 48 hours to ensure complete conversion. The solution was then filtered 

through Celite with tetrahydrofuran and the solvent was evacuated to yield 0.394 g 

(97%) of a red solid identified as 4-(CO)2. Analysis for C21H35FeNO2P2: Calc. C, 
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55.89; H, 7.82; N 3.10. Found: C, 55.36; H, 7.65; N, 2.77. 1H NMR (benzene-d6): δ = 

6.55 (t, JHH = 7.0 Hz, 1H, p-pyr), 6.34 (d, JHH = 7.0 Hz, 2H, m-pyr), 2.79 (m, 4H, 

PCH2), 2.16 (m, 4H, CH(CH3)2), 1.23 (pseudo q, JHH = 6.5 Hz, 12H, CH(CH3)2), 1.17 

(pseudo q, JHH = 6.5 Hz, 12H, CH(CH3)2). 13C NMR (tetrahydrofuran-d8): δ = 162.49 

(t, JPC = 6.0 Hz, o-pyr), 131.15 (s, p-pyr), 119.28 (t, JPC = 5.0 Hz, m-pyr), 41.15 (t, JPC 

= 8.5 Hz, PCH2), 28.80 (t, JPC = 10.5 Hz, CH(CH3)2), 18.74 (s, CH(CH3)2), 18.72 (s, 

CH(CH3)2). {1H}31P NMR (tetrohydrofuran-d8): δ = 109.59 (s). IR (KBr): νCO = 1794, 

1842 cm-1.  

 

Characterization of [(2,6-iPr2PCH2)2C5H3N]FeCl(Me) (4-Cl(Me)).  A 25 mL 

round-bottomed flask was charged with 0.100 g (0.216 mmol) of 4-Cl2 and 

approximately 10 mL of pentane. A second solution of 0.432 mmol of methyllithium 

in 5 mL of pentane was added slowly dropwise. After about 1 hour, the red solution 

was filtered through Celite and the solvent was evacuated. 1H NMR spectroscopy 

revealed peaks consistent with 4-Cl(Me). 1H NMR (benzene-d6, 293 K): δ = 26.33 (17 

Hz, 2H, m-pyr), -14.33 (35 Hz, 6H, CH(CH3)3), -19.72 (29 Hz, 6H, CH(CH3)3), -21.74 

(24 Hz, 6H, CH(CH3)3), -24.47 (21 Hz, 6H, CH(CH3)3), -40.54 (44 Hz, 4H, PCH2), -

60.89 (45 Hz, 2H, CH(CH3)3), -64.05 (42 Hz, 2H, CH(CH3)3), -169.16 (116 Hz, 1H, 

p-pyr).  

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]FeH2(N2) (4-H2(N2)). A 100 mL round-

bottomed flask was charged with 1.00 g (2.16 mmol) of 4-Cl2 and approximately 50 

mL of diethyl ether. This mixture was chilled in a liquid nitrogen cooled cold well for 

15 minutes and then thawed. While stirring, 0.542 g (4.32 mmol) of sodium 

triethylborohydride (from 1.0 M solution in toluene) was added slowly dropwise and 

the reaction mixture immediately turned dark purple in color. After stirring for 1 hour, 
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the solution was filtered through Celite and the solvent was evacuated. The resulting 

residue was washed three times with diethyl ether to yield 0.333 g (36%) of a reddish-

orange solid identified as 4-H2(N2). Analysis for C19H37FeN3P2: Calc. C, 53.66; H, 

8.77; N 9.88. Found: C, 53.95; H, 8.46; N, 10.18. 1H NMR (benzene-d6): δ = 6.63 (t, 

JHH =  7.0 Hz, 1H, p-pyr), 6.48 (d, JHH = 7.0 Hz, 2H, m-pyr), 3.05 (m,1H, PCH2), 3.08 

(m,1H, PCH2), 2.91 (m,1H, PCH2), 2.88 (m,1H, PCH2), 2.29 (m, 2H, CH(CH3)2), 1.94 

(m, 2H, CH(CH3)2), 1.31 (m, 12H, CH(CH3)2), 1.21 (pseudo q, JHH = 7.0 Hz, 6H, 

CH(CH3)2), 0.91 (pseudo q, JHH = 7.0 Hz, 6H, CH(CH3)2), -12.54 (td, JHH = 21.5 Hz, 

JPH = 60.5 Hz, 1H, Fe-H), -17.65 (td, JHH = 21.5 Hz, JPH = 52.0 Hz, 1H, Fe-H). 13C 

NMR (benzene-d6): δ = 164.47 (t, JPC = 6.0 Hz, o-pyr), 130.57 (s, p-pyr), 118.07 (t, 

JPC = 4.5 Hz, m-pyr), 41.70 (t, JPC = 5.5 Hz, PCH2), 27.77 (t, JPC = 6.5 Hz, CH(CH3)2), 

26.74 (t, JPC = 14.0 Hz, CH(CH3)2), 20.15 (s, CH(CH3)2), 20.04 (s, CH(CH3)2), 19.22 

(s, CH(CH3)2), 19.06 (s, CH(CH3)2). {1H}31P NMR (benzene-d6): δ = 108.28 (s). 31P 

NMR (benzene-d6): δ = 108.28 (t, JPH = 52.0 Hz). IR (KBr): νNN = 2016 cm-1. 

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]FeH(SiH2Ph)(N2) (4-H(SiH2Ph)(N2)). A 

100 mL round-bottomed flask was charged with 0.635 g (1.36 mmol) of 4-Cl2, 0.147 g 

(1.36 mmol) of phenylsilane, and approximately 60 mL of diethyl ether. After chilling 

the solution in a cold well for 15 minutes, 0.332 g (2.73 mmol) of sodium 

triethylborohydride (from 1.0 M solution in toluene) was added slowly dropwise while 

stirring. After 3 hours, the orange reaction mixture was filtered through Celite and the 

solvent was evacuated. Recrystallization of the resulting residue from pentane at -35 

°C yielded 0.588 g (81 %) of an orange solid identified as 4-H(SiH2Ph)(N2). Analysis 

for C25H43FeN3P2Si: Calc. C, 56.49; H, 8.15; N 7.91. Found: C, 56.53; H, 8.37; N, 

7.64. 1H NMR (benzene-d6): δ = 8.15 (m, 2H, o-phenyl), 7.35 (m, 2H, m-phenyl), 7.23 

(m, 1H, p-phenyl), 6.68 (t, JHH =  7.5 Hz, 1H, p-pyr), 6.48 (d, JHH = 7.5 Hz, 2H, m-
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pyr), 4.94 (td, JHH = 1.0 Hz, JPH = 5.5 Hz, 2H, SiH2), 2.99 (m, 1H, PCH2), 2.95 (m, 

1H, PCH2), 2.73 (m, 1H, PCH2), 2.69 (m, 1H, PCH2), 2.39 (m, 2H, CH(CH3)2), 2.16 

(m, 2H, CH(CH3)2), 1.26 (m, 12H, CH(CH3)2), 0.94 (pseudo q, JHH = 7.0 Hz, 6H, 

CH(CH3)2), 0.64 (pseudo q, JHH = 7.0 Hz, 6H, CH(CH3)2), -13.12 (t, JPH = 57.5 Hz, 

1H, Fe-H). 13C NMR (benzene-d6): δ =163.33 (t, JPC = 5.5 Hz, o-pyr), 149.48 (s, ipso-

phenyl), 136.29 (s, o-phenyl), 132.78 (s, p-pyr), 127.57 (s, m-phenyl), 126.79 (s, p-

phenyl), 118.84 (t, JPC = 4.0 Hz, m-pyr), 38.47 (t, JPC = 5.0 Hz, PCH2), 27.48 (t, JPC = 

7.5 Hz, CH(CH3)2), 25.47 (t, JPC = 14.0 Hz, CH(CH3)2), 19.20 (s, CH(CH3)2), 18.92 (s, 

CH(CH3)2), 18.32 (s, CH(CH3)2), 17.87 (s, CH(CH3)2). {1H}31P NMR (benzene-d6): δ 

= 96.85 (s). IR (KBr): νNN = 2032 cm-1.   

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]FeH(SiH2Ph)(CO) (4-H(SiH2Ph)(CO)).  To 

a thick-walled reaction vessel, 0.200 g of 4-H(SiH2Ph)(N2) and approximately 50 mL 

of pentane was added. The bomb was submerged in liquid nitrogen, evacuated, and an 

excess of carbon monoxide was added. After 3 hours of stirring at room temperature, 

the reaction mixture was green in color. The bomb was evacuated after 48 hours of 

stirring and the residue was washed twice with 20 mL of pentane. Recrystallization 

from diethyl ether at -35 °C yielded 0.117 g (56%) of an olive green solid identified as 

4-H(SiH2Ph)(CO). Analysis for C26H43FeNOP2Si: Calc. C, 58.75; H, 8.15; N, 2.64. 

Found: C, 58.50; H, 8.03; N, 2.76. 1H NMR (benzene-d6): δ = 8.21 (d, JHH = 7.5Hz, 

2H, o-phenyl), 7.33 (t, JHH = 7.5 Hz, 2H, m-phenyl), 7.22 (t, JHH = 7.5Hz, 1H, p-

phenyl), 6.66 (t, JHH = 7.5 Hz, 1H, p-pyr), 6.40 (d, JHH =  7.5 Hz, 2H, m-pyr), 4.94 (td, 

JHH = 2.0 Hz, JPH = 5.0 Hz, 2H, SiH2), 2.90 (m, 1H, PCH2), 2.86 (m, 1H, PCH2), 2.76 

(m, 1H, PCH2), 2.72 (m, 1H, PCH2), 2.24 (m, 2H, CH(CH3)2), 2.14 (m, 2H, 

CH(CH3)2), 1.35 (pseudo q, JHH = 7.0 Hz, 6H, CH(CH3)2), 1.26 (pseudo q, JHH = 7.0 

Hz, 6H, CH(CH3)2), 0.96 (pseudo q, JHH = 7.0 Hz, 6H, CH(CH3)2), 0.67 (pseudo q, 
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JHH = 7.0 Hz, 6H, CH(CH3)2), -6.41 (t, JPH = 55.2 Hz, 1H, Fe-H). 13C NMR (benzene-

d6): δ = 162.86 (t, JPC = 5.5 Hz, o-pyr), 149.37 (s, ipso-phenyl), 136.38 (s, o-phenyl), 

133.17 (s, 4-pyr), 127.52 (s, m-pyr), 126.13 (s, p-phenyl), 118.69 (t, JPC = 4.5 Hz, m-

pyr), 39.50 (t, JPC = 6.5 Hz, PCH2), 27.00 (t, JPC = 10.0 Hz, CH(CH3)2), 25.39 (t, JPC = 

13.0 Hz, CH(CH3)2), 19.18 (s, CH(CH3)2), 18.61 (s, CH(CH3)2), 18.03 (s, CH(CH3)2), 

17.63 (s, CH(CH3)2). {1H}31P NMR (benzene-d6): δ = 103.86 (s). IR (KBr): νCO = 

1879 cm-1.   

 

Preparation of [(2,6-iPr2PCH2)2C5H3N]FeH(SiH2Ph)(P(CH3)3) (4-

H(SiH2Ph)(P(CH3)3)). To a thick-walled reaction vessel, 0.040 g of 4-H(SiH2Ph)(N2) 

and approximately 50 mL of diethyl ether was added. The bomb was submerged in 

liquid nitrogen, evacuated on a high vacuum line, and 1 equivalent of P(CH3)3 was 

added using a calibrated gas bulb. The mixture was warmed to ambient temperature 

and allowed to stir for 72 hours. The resulting purple solution was washed through a 

frit fitted with Celite and the volatiles were removed in vacuo to yield 0.035 g (80%) 

of a dark purple solid identified as 4-H(SiH2Ph)(P(CH3)3). Analysis for 

C28H52FeNOP3Si: Calc. C, 58.03; H, 9.04; N, 2.42. Found: C, 57.87; H, 9.29; N, 2.31. 
1H NMR (benzene-d6): δ = 8.32 (d, JHH = 7.5Hz, 2H, o-phenyl), 7.53 (t, JHH = 7.5 Hz, 

2H, m- phenyl), 7.21 (t, JHH = 7.5Hz, 1H, p-phenyl), 6.53 (t, JHH = 7.5 Hz, 1H, p-pyr), 

6.41 (d, JHH =  7.5 Hz, 2H, m-pyr), 4.94 (q, JPH = 7.0 Hz, 2H, SiH2), 3.05 (m, 1H, 

PCH2), 3.01 (m, 1H, PCH2), 2.62 (m, 1H, PCH2), 2.58 (m, 1H, PCH2), 2.43 (m, 2H, 

CH(CH3)2), 2.16 (m, 2H, CH(CH3)2), 1.39 (pseudo q, JHH = 6.5 Hz, 6H, CH(CH3)2), 

1.29 (pseudo q, JHH = 6.5 Hz, 6H, CH(CH3)2), 1.10 (d, JPH = 5.5 Hz, 9H, P(CH3)3), 

1.07 (pseudo q, JHH = 6.5 Hz, 6H, CH(CH3)2), 0.97 (pseudo q, JHH = 6.5 Hz, 6H, 

CH(CH3)2), -9.97 (td, JPH (PMe3) = 21.0 Hz, JPH (PiPr2) = 67.0 Hz, 1H, Fe-H). 13C 

NMR (benzene-d6): δ = 164.13 (t, JPC = 5.5 Hz, o-pyr), 150.78 (m, ipso-phenyl), 
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137.66 (s, o-phenyl), 128.68 (s, p-pyr), 127.06 (s, m-phenyl), 126.48 (s, p-phenyl), 

117.45 (t, JPC = 5.0 Hz, m-pyr), 44.26 (t, JPC = 3.0 Hz, PCH2), 32.17 (m, CH(CH3)2), 

28.94 (m, CH(CH3)2), 22.15 (d, JPC = 17.0 Hz, P(CH3)3), 20.90 (s, CH(CH3)2), 20.63 

(s, CH(CH3)2), 20.11 (s, CH(CH3)2), 19.89 (s, CH(CH3)2). {1H}31P NMR (benzene-

d6): δ = 86.49 (d, JPP = 18.0 Hz , PiPr2), 9.83 (t, JPP = 18.0 Hz, PMe3). {CH}31P NMR 

(benzene-d6): δ = 86.49 (dd, JPP = 18.0 Hz, JPH = 67.0 Hz, PiPr2), 9.83 (pseudo q, JPP = 

18.0 Hz, JPH = 21.0 Hz, PMe3). 

 

Observation of [(2,6-iPr2PCH2)2C5H3N]FeH(SiH2Ph)(H2) (4-H(SiH2Ph)(H2)). A J. 

Young tube was charged with 0.010 g (0.02 mmol) of 4-H(SiH2Ph)(N2) and 

approximately 0.5 mL of benzene-d6. The tube was submerged in liquid nitrogen and 

evacuated on a high-vacuum line. At this temperature, 1 atmosphere of H2 was 

admitted and the tube was sealed, thawed, and shaken. Monitoring the reaction by 

multinuclear NMR spectroscopy established growth of 4-H(SiH2Ph)(H2) over the 

course of hours at 23 °C. 1H NMR (benzene-d6): δ = 8.23 (d, JHH = 7.5 Hz, 2H, o-

phenyl), 7.33 (t, JHH = 7.5 Hz, 2H, m-phenyl), 7.21 (t, JHH = 7.5 Hz, 1H, p-phenyl), 

6.68 (t, JHH = 8.0 Hz, 1H, p-pyr), 6.45 (d, JHH = 8.0 Hz, 2H, m-pyr), 5.54 (m, 2H, 

SiH2), 2.84 (m, 4H, PCH2), 2.04 (m, 4H, CH(CH3)2), 1.14 (pseudo q, JHH = 7.0 Hz, 

12H, CH(CH3)2), 0.94 (pseudo q, JHH = 7.0 Hz, 12H, CH(CH3)2), -9.37 (br s, 3H, Fe-

H). {1H}31P NMR (benzene-d6): δ = 108.36 (s). 
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APPENDIX A 

PRELIMINARY INVESTIGATIONS 

 

A.1 Electronic Structure Determination of (EtPDI)2Fe 

 Over the last decade, major strides have been made towards accurately 

describing the electronic structure of complexes that bear redox-active ligands. Bond 

distances determined by X-ray crystallography are diagnostic for determining 

electronic structure; however, many other forms of spectroscopy (EPR, 

electrochemistry, etc.) can be utilized along with magnetochemistry and DFT 

calculations to augment these determinations. Mössbauer spectroscopy provides a 

unique advantage to determining the electronic structure of iron complexes; 57Fe is by 

far the most studied nuclei using this technique.1 This extremely powerful 

spectroscopic method offers insight into the covalency and spin-state of 

organometallic iron complexes, and comparing a series of complexes bearing the same 

ligand framework can offer information about the oxidation state of iron for each 

complex.2  

 In 2000, Wieghardt and co-workers described the molecular and electronic 

structure of a series of bis(pyridine-2,6-diimine) complexes, [(OMePDI)2M][PF6]n 

(OMePDI = 2,6-((4-OMe-C6H4)N=CMe)2C6H3N; n = 0,1,2,3; M = Mn, Fe, Co, Ni, Cu, 

Zn).3 In this report, the cationic complexes for each metal were prepared and the 

reduced forms of these complexes were generated electrochemically and characterized 

in situ. For iron, the diamagnetic bis(ligand) complex [(OMePDI)2Fe][PF6]2 was 

crystallographically characterized and was described as having a ferrous metal center 

with two neutral bis(imino)pyridine ligands through investigation of the chelate bond 

distances (Figure A.1).4 Also, the average Fe-Npy and Fe-Nimine bond distances of 
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1.868(1) Å and 1.987(1) Å, respectively, were consistent with the distances observed 

for the diamagnetic, low spin complex, [(terpy)2Fe][ClO4]2.5 

 Additionally, [(OMePDI)2Fe][PF6]2 was investigated by Mössbauer 

spectroscopy. At 80 K, this complex displayed a symmetrical quadrupole doublet with 

an isomer shift (δ) of 0.235 mm·s-1 and a quadrupole splitting (ΔEQ) of 1.081 mm·s-1.3 

This isomer shift is consistent with values observed for other dicationic, low spin, and 

octahedral iron complexes bearing N-donor ligands.6,7 Taken together 

[(OMePDI)2Fe][PF6]2 and [(terpy)2Fe][ClO4]2 suggest that low spin octahedral ferrous 

centers bearing two C2v–symmetric ligand environments should have an isomer shift 

between 0.2 and 0.3 mm·s-1 and a ΔEQ value of approximately 1.1 mm·s-1.6 
 

 
Figure A.1. Previously reported electronic structure of [(OMePDI)2Fe][PF6]2 and 

electrochemically related complexes. Potentials are given verses Fc/Fc+ in acetonitrile. 
 

 In the same report, [(OMePDI)2Fe][PF6] was electrochemically prepared in 

acetonitrile solution at -20 °C and investigated by X-band EPR spectroscopy. The 

evidence of a “slightly rhombic, almost isotropic” signal with small g-value deviations 

led the authors to conclude that this complex consisted of a low spin ferrous metal 

center that was antiferromagnetically coupled to one anionic bis(imino)pyridine ligand 

(S = 1/2) (Figure A.1).3 The neutral complex, (OMePDI)2Fe, was accessed at a potential 
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of -1.66 V (vs. Fc+/Fc) in acetonitrile solution and the electronic spectrum was 

recorded. With no further experimental data (the compounds were not isolated), the 

authors concluded that this complex likely contained a low spin ferrous ion and two 

singly reduced bis(imino)pyridine ligands (Figure A.1).3 Because neither 

[(OMePDI)2Fe][PF6] or (OMePDI)2Fe were isolated, these complexes were not 

investigated by Mössbauer spectroscopy or magnetometry.  

 Recent attempts to expand the reduction chemistry of (iPrPDI)FeBr2 (iPrPDI = 

2,6-((2,6-iPr2-C6H3)N=CMe)2C6H3N, 1-Br2) to less sterically demanding dihalide 

precursors, as a way to prepare more accessible iron centers for catalysis, have 

resulted in formation of bis(ligand) complexes instead of dinitrogen complexes. One 

ligand set that was investigated contained isopropyl groups (iPrAPDI) in place of the 

bulky 2,6-diisopropylaryl substituents. Reduction of (iPrAPDI)FeBr2 with excess 0.5 % 

sodium amalgam in pentane solution resulted in the formation of (iPrAPDI)2Fe rather 

than the desired bis(dinitrogen) complex. This reduction product was characterized by 

X-ray crystallography and the solid-state structure is presented in Figure A.2.  

 
Figure A.2. Solid-state structure of (iPrAPDI)2Fe at 30 % probability ellipsoids. 

Hydrogen atoms and four isopropyl methyl groups omitted for clarity. 
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 The metrical parameters (Table A.1) for this complex are consistent with a 

partially localized, one electron reduction of each bis(imino)pyridine ligand.4 The 

average Nimine-Cimine and Cimine-Cispo distances were found to be 1.308 Å and 1.441 Å, 

respectively. Although this crystal structure confirms that there is a single electron 

reduction at each ligand, as originally proposed,3 closer inspection of the average Fe-

Npy and Fe-Nimine distances of 2.021 Å and 2.237 Å, respectively, offered the first clue 

that this complex high, rather than low-spin.  

 
Table A.1. Selected bond distances (Å) and angles (°) for (iPrAPDI)2Fe. Values in 

brackets obtained from open-shell DFT calculations.  

Fe(1)-N(1) 2.252(2), [2.232] N(4)-C(23) 1.312(3), [1.325] 

Fe(1)-N(2) 2.0180(17), [2.041] N(6)-C(29) 1.304(3), [1.325] 

Fe(1)-N(3) 2.2506(19), [2.275] C(2)-C(3) 1.431(3), [1.462] 

Fe(1)-N(4) 2.259(2), [2.266] C(7)-C(8) 1.457(4), [1.464] 

Fe(1)-N(5) 2.0236(18), [2.042] C(23)-C(24) 1.426(3), [1.463] 

Fe(1)-N(6) 2.1846(18), [2.234] C(28)-C(29) 1.450(4), [1.463] 

N(1)-C(2) 1.316(3), [1.326] N(1)-Fe(1)-N(4) 94.99(7), [93.39] 

N(3)-C(8) 1.299(3), [1.299] N(2)-Fe(1)-N(5) 176.90(8), [177.42] 

 

 The solid-state magnetic moment of (iPrAPDI)2Fe was found to be 2.4(1) μB 

(Guoy Balance) and the average of six Evans method determinations was 2.9(6) μB 

(benzene-d6, 293 K), both consistent with an S = 1 complex. The 1H NMR of 

(iPrAPDI)2Fe displayed resonances over a 380 ppm range that were much broader and 

less informative than the peaks typically observed for paramagnetic bis(imino)pyridine 

iron complexes (Chapter 1). Electrochemical and UV-visible data were also collected 
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for this complex, confirming that neutral bis(ligand) compound was spectroscopically 

identical to the complex that was generated in situ by Wieghardt and co-workers.3   

 The metrical parameters of (iPrAPDI)2Fe were effectively reproduced with a 

broken symmetry geometry optimization where each bis(imino)pyridine ligand was 

assumed to be monoreduced (Table A.1).8 A classic d-orbital splitting diagram was  

determined with a (4,2) broken symmetry calculation where one unpaired electron was 

placed on each ligand and four on the metal center. The spin-density for each orbital is 

presented in Figure A.3. The overlap integral (S) between each ligand-based orbital 

with the metal center was determined to be approximately 0.4 (Figure A.3). The 

percentage of each orbital that is metal-based is presented in brackets.  

Figure A.3. Ligand- and metal-based orbitals computed for (iPrAPDI)2Fe. 
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 The ligand-based orbitals presented in Figure A.3 clearly show antibonding 

character along the imine bond and bonding character between the imine and ipso 

carbons, a feature highlighted in the molecular structures of bis(imino)pyridine 

complexes.4 The overall unpaired spin density for (iPrAPDI)2Fe was additionally 

computed and is presented in Figure A.4. As expected for a high spin d6 metal center, 

the unpaired spin density on iron was found to be approximately four electrons while 

the ligand-based electron density, of the opposite sign, sums to approximately two 

electrons – one on each ligand.  

Figure A.4. Computationally determined unpaired spin density plot for (iPrAPDI)2Fe. 

 

 This complex was also investigated by zero-field Mössbauer spectroscopy and 

the resulting spectrum is displayed in Figure A.5. At 80 K, the isomer shift of this 

complex was found to be 0.93 mm·s-1, confirming the presence of a high spin ferrous 

center.1 The quadrupole splitting for this complex was barely discernable at 0.24 

mm·s-1 and is more narrow than the values observed for the low spin ferrous examples 

discussed previously.5,6 Density functional theory reasonably predicted the Mössbauer 
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parameters of this complex at δ = 0.82 mm·s-1 and ΔEQ = 1.22 mm·s-1.9 Generally, 

quadrupole splitting values are poorly replicated computationally, while the isomer 

shifts can be predicted to within 0.2 mm·s-1.10 

 

Figure A.5. Zero-field Mössbauer spectrum of (iPrAPDI)2Fe at 80 K. 

 

 In analogy to (iPrAPDI)FeBr2, reduction of (EtPDI)FeBr2 (EtPDI = 2,6-((2,6-Et2-

C6H3)N=CMe)2C6H3N, 2-Br2) with excess 0.5 % sodium amalgam also yielded an 

undesired bis(ligand) product, 2-(EtPDI) (Figure A.6). Suprisingly, reducing the steric 

pressure of the PDI 2,6-aryl substituents by replacing the isopropyl groups with ethyl 

groups resulted in a complete change in reactivity, preventing the formation of a 

bis(dinitrogen) complex and favoring bis(ligand) formation. Higher yields of this 

complex were obtained by performing the reduction of the dibromide in the presence 

of an extra equivalent of EtPDI (Figure A.6). Like (iPrAPDI)2Fe, this complex also 
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displays extremely broad and paramagnetically shifted 1H NMR resonances. Crystals 

of 2-(EtPDI) suitable for X-ray diffraction were obtained upon cooling a concentrated 

pentane solution to -35 °C. The solid-state structure of this bis(ligand) complex 

(Figure A.7) can best be described as tetrahedral with two weakly coordinated imine 

arms. The metrical parameters of 2-(EtPDI) are consistent with two highly localized, 

singly reduced bis(imino)pyridine ligands (Table A.2).4  

Figure A.6. Preparation of 2-(EtPDI) from sodium amalgam reduction of 2-Br2. 
 

 
Figure A.7. Solid-state structure of 2-(EtPDI) at 30 % probability ellipsoids. 

Hydrogen atoms and two diethylaryl groups omitted for clarity. 
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Table A.2. Selected bond distances (Å) and angles (°) for 2-(EtPDI). Values in 
brackets obtained from open-shell DFT calculations.  

Fe(1)-N(1) 2.1246(16), [2.157] N(6)-C(37) 1.291(2), [1.314] 

Fe(1)-N(2) 1.9853(15), [1.984] C(2)-C(3) 1.435(3), [1.453] 

Fe(1)-N(3) 2.5579(16), [2.517] C(7)-C(8) 1.478(3), [1.467] 

Fe(1)-N(4) 2.1098(16), [2.124] C(31)-C(32) 1.435(3), [1.453] 

Fe(1)-N(5) 1.9864(15), [1.991] C(36)-C(37) 1.481(3), [1.469] 

Fe(1)-N(6) 2.6096(16), [2.589] N(1)-Fe(1)-N(2) 78.99(6), [78.9] 

N(1)-C(2) 1.332(2), [1.340] N(4)-Fe(1)-N(5) 79.44(6), [79.8] 

N(3)-C(8) 1.291(2), [1.317] N(1)-Fe(1)-N(4) 101.15(6), [97.5] 

N(4)-C(31) 1.334(3), [1.341] N(2)-Fe(1)-N(5) 138.95(6), [145.6] 

 

 Although the 1H NMR spectrum of this compound suggested that it had the 

same electronic structure as (iPrAPDI)2Fe, magnetic data was also collected for 2-

(EtPDI) to provide further support for this assumption. Due to the ease of synthesis 

and outstanding crystallinity of this complex, SQUID magnetic data was collected for 

three independently prepared samples of 2-(EtPDI). The magnetic susceptibility of this 

complex was reproducible and ranged from 1.8 μB to 3.2 μB between 5 and 300 K 

(Figure A.8), consistent with a high spin ferrous complex antiferromagnetically 

coupled to two singly reduced chelates (S = 1). Fitting the magnetic data yielded the 

following spin Hamiltonian parameters: g = 2.084, ‌│D│ = 9.3 ‌ cm-1, and E/D = 0.008, 

consistent with a high-spin ferrous ion in a tetrahedral ligand field. 

 This electronic structure claim was again augmented with open-shell DFT 

calculations. To a rough approximation, the metrical parameters of 2-(EtPDI) were 
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effectively reproduced by a (4,2) broken symmetry geometry optimization where each 

bis(imino)pyridine ligand was assumed to be monoreduced.7 The relative orbital 

energies along with their spin-densities are presented in Figure A.9. The overlap 

integral (S) between each ligand-based orbital with the metal center was determined to 

be approximately 0.4, similar to (iPrAPDI)2Fe (Figure A.9). The metal-based 

percentage of each orbital is presented in brackets. The overall unpaired spin density 

for 2-(EtPDI) was additionally computed and is presented in Figure A.10. As observed 

in the crystal structure, the spin density plot reveals localized reduction at both 

bis(imino)pyridine ligands and two relatively unreduced imine arms.    

Figure A.8. Variable temperature solid-state magnetic data for 2-(EtPDI). 

 

 The Mössbauer spectrum of 2-(EtPDI) is considerably different than the one 

obtained for (iPrAPDI)2Fe. It is composed of two different isomers that display similar 

isomer shifts and slightly different quadrupole splittings (Figure A.11). The κ2-

configuration of each chelate creates the possibility of having 2 isomers; however, this 

phenomenon could either stem from the crystallization of  two distinct aryl group 
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rotamers or cis verses trans orientation of the weakly coordinated imines across th

dimer. At this point, the first explanation is favored but this hypothesis can only be 

validated by obtaining the solid-state structure of the second isomer. At 80 K, the 

isomer shifts observed for 2-(EtPDI) were 0.91 mm·s-1 (58 %) and 0.92 mm·s-1 (42%

with ΔEQ values of 1.53 mm·s-1 and 1.95 mm·s-1, respectively. The experimental 

isomer shift values confirm the presence of a high spin ferrous center in this comp

A Mössbauer spectrum was collected on a second batch of 2-(EtPDI) to ensure that 

one of the two signals was not due to an impurity. As expected, the same signals we

observed in exactly the same ratio.  

Figure A.9. Ligand- and me

e 

) 
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tal-based orbitals computed for 2-(EtPDI). 
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Figure A.10. Computationally determined unpaired spin density plot for 2-(EtPDI). 

Figure A.11. Zero-field Mössbauer spectrum of 2-(EtPDI) at 80 K. 
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 Taking both the experimental and computational data into account, 

(iPrAPDI)2Fe and (EtPDI)2Fe are described as having high spin iron(II) centers that are 

antiferromagnetically coupled to two monoreduced bis(imino)pyridine ligands. In 

preparing these complexes from their cationic counterparts, reduction occurs at the 

ligand rather than the metal center, allowing retention of the ferrous oxidation state. 

This chelate reduction also causes a spin change at the metal center from low to high 

spin, providing a classic example of how reduction of a redox-active ligand can 

greatly influence its inherent field strength.  

 

A.2 Addition of Bidentate and Terdentate Ligands to (iPrPDI)Fe(N2)2   

 The electronic structure determination of iron complexes was extended to 

include cases where ligand reduction could occur either at the bis(imino)pyridine 

chelate or a second redox-active ligand. As described in Chapter 1, the reducing iron 

omple 2)2) can 

 

he 

’’-terpyridine, to bis(imino)pyridine iron 

ere explored.  

N2)2 at 

mbien

-

Bpy, in high yield (94 %). This complex was fully characterized by 1H and 13C NMR 

c x (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-((2,6-iPr2-C6H3)N=CMe)2C6H3N, 1-(N

best be though of as having an iron(II) center that is antiferromagnetically coupled to a

bis(imino)pyridine diradical.8 While this was partially explored in Chapter 3 with t

addition of benzophenone or pyrazine to 1-(N2)2, these ligands simply allowed 

contributions from an iron(III) metal center rather than oxidation of the 

bis(imino)pyridine ligand. Because ligands with electronic characteristics similar to 

the bis(imino)pyridines were desired, the coordination of N-donor redox-active 

ligands, such as 2,2’-bipyridine and 2,2’:6’,2

w

 Stoichiometric addition of 2,2’-bipyridine to a toluene solution of 1-(

a t temperature resulted in the immediate formation of a deep blue solution. 

Removal of the solvent afforded the bis(imino)pyridine iron bipyridine complex, 1
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spectroscopy and exhibited resonances between 0.7 and 8.8 ppm, the range expected 

for a diamagnetic, low-spin bis(imino)pyridine iron complex.8,11 Additional evidence 

for this electronic structure description was obtained by X-ray diffraction. The solid-

state structure of 1-Bpy (Figure A.11) reveals a nearly idealized square planar 

geometry about iron and is consistent with two electron reduction of the chelate

Nimine-Cimine and Cimine-Cipso bond distances of 1.360(4)/1.351(4) Å and 

1.408(5)/1.410(5) Å, respectively (Table A.3).4,11 Inspection of the iron-nitrogen bon

distances to both ligands (Table A.3) reveals that these distances are similar to th

previously described for low-spin iron(II) dicationic complexes.3,5 Even though this 

bond length com

, with 

d 

ose 

ino)pyridine ligand reduction into 

pin 

r 

parison does not take bis(im

account, it is important to note that the Fe(1)-N(4) and Fe(1)-N(5) distances are 

relatively short at 1.923(3) Å and 1.954(3) Å, respectively (Table A.3). For high-s

iron bipyridine complexes, the Fe-N bond lengths are typically 0.16 to 0.22 Å longe

than their low-spin counterparts.12  

 
Figure A.11. Molecular structure of 1-Bpy at 30 % probability ellipsoids. Hydrogen 

atoms omitted for clarity. 
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Table A.3. Selected bond distances (Å) and angles (°) for 1-Bpy. 

 

Fe(1)-N(1) 1.938(3) N(5)-C(19) 1.354(4) 

Fe(1)-N(2) 1.840(3) C(10)-C(11) 1.370(5) 

Fe(1)-N(3) 1.938(3) C(11)-C(12) 1.406(5) 

Fe(1)-N(4) 1.932(3) C(12)-C(13) 1.361(5) 

Fe(1)-N(5) 1.954(3) C(13)-C(14) 1.392(5) 

N(1)-C(2) 1.360(4) C(14)-C(15) 1.431(5) 

N(3)-C(8) 1.351(4) C(15)-C(16) 1.402(5) 

C(2)-C(3) 1.408(5) C(16)-C(17) 1.365(5) 

C(7)-C(8) 1.401(5) C(17)-C(18) 1.375(5) 

N(4)-C(10) 1.347(4) C(18)-C(19) 1.389(5) 

N(4)-C(14) 1.387(4) N(2)-Fe(1)-N(4) 173.39(12) 

N(5)-C(15) 1.355(4) N(2)-Fe(1)-N(5) 105.38(12) 

 

bipyridine ligand when compared to the distances in [Fe(bpy) ](PF ) and 

[Fe(bpy)3][Fe(CN)5NO], where little reduction is expected.  The bipyridine C(14)-

C(15) distance of 1.431(5) in 1-Bpy is significantly contracted compared to the same 

distance in either cationic complex (1.474 Å for average of six bond lengths). 14 

Additionally, the bipyridine N-C and C-C ring distances are an average of 1.361 Å and 

1.383 Å for 1-Bpy, both elongated from the average values of 1.346 Å and 1.372 Å 

observed for [Fe(bpy) ](PF ) .  The observed bipyridine reduction could be due to a 

Importantly, there is also cyrstallographic evidence for reduction of the 

3 6 2 

12-14

12-

3 6 2
12,13
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contribution from a resonance form of 1-Bpy where the bipyridine (α-diimine) ligand 

is doubly reduced.15 This observation could also result from an Fe(IV) resonance for

contribution where both chelates are doubly reduced. A third electronic structure 

description where the bipyridine ligand is singly reduced and antiferromagnetically 

coupled to a low-spin ferrous center is also possible and cannot be ruled out. 

 Crystallographic evidence for reduction of the 2,2’-bipyridine ligand in 1-B

prompted the addition of 2,2’:6’,2’’-terpyridine to 1-(N2)2., as it has one electron 

reduction potential (-1.51 V verses Fc/Fc+) that is more easily accessible than 

m 

py 

uent 

. 

ctronic 

 a 

ouy 

 

s a second possibility), crystals of 1-Tpy suitable for X-ray diffraction 

were grown from a concentrated pentane solution at -35 °C. The molecular structure 

bipyridine (-1.60 V verses Fc/Fc+).15 In the absence of ligand reduction, terpyridine 

addition to 1-(N2)2 could result in a formal 20 electron, 6-coordinate complex. 

Stoichiometric addition of terpyridine to 1-(N2)2 in toluene solution and subseq

workup resulted in isolation of the desired complex, 1-Tpy, as a reddish-purple solid

Investigation by 1H NMR spectroscopy suggested that 1-Tpy has a different ele

structure than 1-Bpy, as paramagnetically broadened resonances were observed over

370 ppm range. This spectrum was readily assigned; the imine methyl resonance was 

observed at -147.63 ppm and the 2,6-disubstituted p-pyridine resonances of both 

ligands were located at 219.11 and 196.38 ppm. The solution magnetic susceptibility 

of this complex was determined to be 2.7(2) μB in benzene-d6 at ambient temperature. 

Additionally, the solid state moment of this complex was found to be 2.4(1) μB (G

balance). Both determinations are strikingly similar to the values observed for the 

bis(ligand) complexes discussed in Section A.1 and are consistent with an S = 1 

complex.  

 To determine whether or not this was indeed a 6-coordinate complex (a 5-

coordinate, high-spin (tpy)Fe(κ2-PDI) complex where the κ2-PDI ligand is doubly

reduced wa
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o y was found to have a 6-coordinate, nearly idealized octahedral geometry 

about iron (Figure A.12).  Selected metrical parameters for this complex are presen

in Table A.4 along with a side view of the terpyridine ligand in Figure A.13. 
 

f 1-Tp

ted 

 

 

imine imine imine ipso

1

etween the metal center and both chelates are observed for 1-Tpy (Table A.4) than 

r 1-B

n 

 are 

e 

 
Figure A.12. Molecular structure of 1-Tpy at 30 % probability ellipsoids. Hydrogen 

atoms omitted for clarity. 

The metrical parameters of the bis(imino)pyridine ligand are consistent with 

single electron reduction with N -C  and C -C  distances of 1.297(3)/ 

.307(3) Å and 1.452(3)/ 1.451(3) Å, respectively.4 Considerably longer bonds 

b

fo py (Table A.3), highlighting the spin state difference between the two 

complexes. Investigation of the terpyridine ligand distances suggests a one electro

reduction at this chelate also. The ring-linking C-C bonds in 1-Tpy at 1.443(4) Å

contracted from the free ligand average value of 1.49 Å,16 as well as the average valu
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reported for [Fe(terpy)2]2+ (1.466 Å).17 Additionally, the average aromatic N-C

C bond distances for 1-Tpy of 1.362 Å and 1.382 Å are elongated from the average 

[Fe(terpy)2]2+ values of 1.346 Å and 1.373 Å, respectively. 17 

 

Table A.4. Selected bond distances (Å) and angles (°) for 1-Tpy. 

Fe(1)-N(1) 2.3174(19) C(34)-C(35) 

 and C-

1.371(4) 

Fe(1)-N(2) 1.994(2) C(35)-C(36) 1.387(5) 

Fe(1)-N(3) 2.3007(18) C(36)-C(37) 1.346(5) 

Fe(1)-N(4) 2.144(2) C(37)-C(38) 1.411(4) 

Fe(1)-N(5) 2.024(2) C(38)-C(39) 1.443(4) 

Fe(1)-N(6) 2.094(2) C(39)-C(40) 1.381(4) 

N(1)-C(2) 1.297(3) C(40)-C(41) 1.391(5) 

N(3)-C(8) 1.307(3) C(41)-C(42) 1.383(4) 

C(2)-C(3) 1.452(3) C(42)-C(43) 1.385(4) 

C(7)-C(8) 1.451(3) C(43)-C(44) 1.443(4) 

N(4)-C(34) 1.352(4) C(44)-C(45) 1.406(4) 

N(4)-C(38) 1.361(3) C(45)-C(46) 1.368(4) 

N(5)-C(39) 1.372(3) C(46)-C(47) 1.382(5) 

N(5)-C(43) 1.367(3) C(47)-C(48) 1.374(4) 

N(6)-C(44) 1.362(3) N(2)-Fe-N(5) 175.99(8) 

N(6)-C(48) 1.356(3) N(4)-Fe-N(6) 151.01(9) 
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Figure A.13. Side view of the solid-state structure of 1-Tpy at 30 % probability 

ydrogen d 2,6-diiso ups removed for clarity. 

 

 The electronic absorption spectra of 1-Bpy and 1-Tpy were also investigated 

due to the intense color of these complexes. As expected, these compounds exhibited 

spe ted by ch fer bands  For these s, at 

least three charge transfer bands were observed and each compound appears to have 

an additional high energy band at approximately 350 nm. Dicationic iron complexes 

bearing bipyridine and terpyridine ligands have been investigated for utility in 

ph ater sp tions; how

life  complications from readily accessible d-d transitions have been 

ide jor obst 20 though di s of 1-Bp rpy 

may be promising for this application, the moisture sensitivity of the neutral 

ellipsoids. H  atoms an propylaryl gro

ctra domina arge trans (Figure A.14).  complexe

otochemical w litting reac ever, extremely short excited state 

times18,19 and

ntified as ma acles.  Al cationic version y and 1-Te
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complexes renders them inadequate even though they display a wide range of charge 

transfer bands.20    

1-Bpy 

ntate 

.1, 

e 

c 

complex.  

Figure A.14. Metal to ligand charge transfer bands in the absorption spectra of 
and 1-Tpy. 

 
 

 In summary, the electronic structures of 1-Bpy and 1-Tpy have been 

investigated and a striking anomaly has been identified. In changing the chelating 

ligand from 2,2’-bipyridine to 2,2’:6’,2’’-terpyridine, the coordination number was 

increased and the ligand field strengthened. However, the iron(II) center 

counterintuitively went from low-spin to high-spin upon introduction of the terde

ligand. This comparison, coupled with the bis(ligand) cases presented in Section A

truly highlights how ligand reduction can drastically influence the field strength of th

ligand itself and alter the overall electronic configuration of an organometalli
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A.3 Identification of Catalyst Deactivation Pathways for α-Diimine Iron 
Catalyzed Olefin Hydrogenation 

 Upon discovering that (iPrDI)Fe(η2,η2-1,5-C8H12) (iPrDI = [(2,6-(CH(CH3)2)2-

C6H3)N=C(CH3)-(CH3)C=N(2,6-(CH(CH3)2)2-C6H3)) (5-COD) and (iPrDI)Fe(η2-

C8H14) (5-COE) (Figure A.15) were effective precatalysts for the hydrogenation of 1-

hexene,21 a comprehensive study of substrate scope was carried out. Employing 1.0 

mol % loadings of either 5-COD or 5-COE, the scope of unfunctionalized olefin 

hydrogenation (1.23 M solutions in pentane) was investigated at 23 °C under 4 

atmospheres of H2 (Table A.5). While 5-COD was investigated for each substrate 

shown in Table A.5. Results for 5-COE mediated hydrogenation are reported below 

those observed for 5-COD where applicable.  

Figure A.15. α-Diimine based iron hydrogenation precatalysts. 

 Notably, both catalysts readily hydrogenated terminal or cyclic olefins. In the 

served 

f 

ath, vide 

 
 

case of limonene, complete conversion of the gem-disubstituted olefin was ob

under the standard conditions with 5-COD after 1 day along with minor amounts o

trisubstituted olefin hydrogenation. Remarkably, these precatalysts were able to 

efficiently hydrogenate 2-methyl-2-butene (Table A.5). Due to catalyst de

infra, only minimal conversions were observed for the hydrogenation of a 

tetrasubstituted olefin, 2,3-dimethyl-2-butene, with both 5-COD and 5-COE. 
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Table A.5. Unfunctionalized olefin hydrogenation with 5-COD (top values) 
CO

and 5-
E (bottom values). 

21

hour of the reaction by gas chromatography. These observations taken together 

suggest that there is a relatively slow pre-activation period for the conversion of 5-

 

   

 For substrates where 5-COD and 5-COE were each employed, 5-COE was the 

slightly more active precatalyst. The observation that 5-COD converts to 5-COE 

under 1 atmosphere of hydrogen in cyclohexane-d12 solution,  offers insight into this 

phenomenon. Quenching 5-COD mediated hydrogenations of 1-hexene and 

cyclohexene at early reaction times revealed very low conversions during the first 
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COD

not active for the hydrosilylation of 1,5-cyclooctadiene, even at elevated temperatures.  

 The ability of 5-COD to hydrogenate a series of functionalized substrates was 

also investigated (Table A.6). Using a 10 mol % catalyst loading of 5-COD under 4 

atmospheres of H2 at ambient temperature, effective conversion of allylamine to 

propylamine was observed after 24 hours. Partial hydrogenation of 3-cyclohexene-1-

carboxylic acid methyl ester was also observed; however, no hydrogenation of 

dimethyl itaconate or carvone was observed after 24 hours under these reaction 

conditions. A more thorough investigation into the reaction chemistry of these 

substrates with 5-COD may shed light on the observed selectivity.  

 

Table A.6. Hydrogenation of functionalized olefins with 5-COD. 

cis-2-butene under 4 atmospheres of D2 with 5.0 mol % of 5-COD in benzene solution 

 to 5-COE and/or the active catalytic species. Additionally, 5-COD did not was 

  

 A series of labeling experiments was also conducted to provide further insight 

into the catalytic hydrogenation process. Performing the deuteration of 1-butene or 
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allowed the detection of chain-walking by 2H NMR spectroscopy (Figure A.16). For 

1-butene, a 2:3 ratio of terminal to internal deuterium incorporation was observed, 

consistent with a small amount of isomerization. Deuterium incorporation into the 

methyl groups of butane was also observed from the reduction of cis-2-butene. 

Deuteration of 2,3-dimethyl-2-butene yielded only a small amount of deuterium 

incorporation into the methyl groups of 2,3-dimethylbutane, while most of the 

deuterium label was observed in the methine position (Figure A.16). In a simila

fashion to other hydrogenation catalysts, deuterium addition occurred with a syn

orientation across the exo face of norbornene.22  
 

r 

 

 
Figure A.16. Deuteration of butenes and norbornene with 5.0 mol % solutions of 5-

COD in benzene. 

 

 In an attempt to fully hydrogenate 2,3-dimethyl-2-butene, standard conditions 

using either 5-COE or 5-COD and the solutions were allowed to sit were employed 

for days. Unfortunately, increasing the reaction time did not result in higher 

conversions to 2,3-dimethylbutane, but rather, the formation of a new catalytically 

inactive organometallic along with cyclooctene and cyclooctane. This complex was 

230 



identified by X-ray crystallography as the dimer of (iPrDI)Fe (52), where the iron 

center is coordinated in an η6-fashion to the diisopropyl aryl group of a second 

(iPrDI)Fe fragment (Figure A.17). Additionally, exposing solutions of 5-COD or 5-

COE to 4 atmospheres of hydrogen in the absence of substrate allowed full 

characterization of this diamagnetic product.   

 

 
Figure A.17. Molecular structure of 52 at 30 % probability ellipsoids. Hydrogen atoms 

omitted for clarity. 

 

 The observation of this catalyst deactivation product was not entirely 

u  

enzene resulted in the formation of the corresponding η6-coordinated solvent 

omple

pears to 

nexpected. Previous attempts to reduce 5-Cl2 in aromatic solvents such as toluene or

b

c xes.21 Additionally, addition of aromatic substrates to α-diimine iron η2-

acetylene complexes resulted in the immediate displacement of the acetylene ligand 

with the substrate phenyl group. At first glance, this η6-arene coordination ap

be thermodynamically favored because it formally results in the formation of an 18 

electron, Fe(0) complex. Closer inspection of the metrical parameters of 52 (Table 
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A.7) reveal significant contributions from the ene-diamide resonance form of the 

diimine ligand.21 A cystallographically characterized zirconium complex with tw

doubly reduced α-diimine ligands has been reported with Nimine-Cimine and Cimine-Cim

bond distances of 1.405(3) Å and 1.359(4) Å, respectively.23 Computationall

determined values for α-diimine are as follows:

α-

o 

ine 

y 

 [DI]0: Nimine-Cimine = 1.29 Å, Cimine-

imine = 1.47 Å; [DI]-: Nimine-Cimine = 1.35 Å, Cimine-Cimine = 1.40 Å; [DI]2-: Nimine-Cimine 

= 1.40 Å, Cimine-Cimine = 1.36 Å.24 

 

Table A.7. Selected bond distances (Å) and angles (°) for 52. 

Fe(1)-N(1) 1.9022(9) N(2)-C(3) 1.3481(14) 

C

Fe(1)-N(2) 1.8934(9) C(2)-C(3) 1.3897(15) 

N(1)-C(2) 1.3549(16) N(1)-Fe(1)-N(2) 80.94(4) 

  

 Because α-diimine ligands can be easily modified at the ligand backbone or 

imine substituents, modifications of the iPrDI ligand framework were explored in an 

e ligand backbone to include an acenaphthyl moiety was investigated. In a similar 

tion of 

h 5-

attempt to produce more efficient iron hydrogenation catalysts. First, modification of 

th

fashion to 5-COD, iPrADIFe(η2,η2-1,5-C8H12) (6-COD) was prepared by reduc

6-Cl2 with excess 0.5 % Na/Hg amalgam in the presence of 10 equivalents of 1,5-

cyclooctadiene (Figure A.18, top). In analogy to the the reactivity observed wit

Cl2,21 isolation of an iPrADI iron η2-acetylide complex (6-(TMSCCTMS)) was 

accomplished when this reduction was conducted in the presence of 3 equivalents of 

bis(trimethylsilyl)acetylene (Figure A.18, bottom). 

 The catalytic competency of 6-COD was investigated by conducting the 

hydrogenation of 1-hexene under the same conditions that were used for 5-COD 
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mediated olefin hydrogenation. Unfortunately, poor conversion (7 % after 2 hours) o

1-hexene to hexane was observed when 6-COD was used as the catalyst precursor. 

This result was sufficiently discouraging to warrant further reactivity studies, although 

the low conversion at early reaction times could be an artifact of catalyst pre-

activation. Attempts to prepare 6-COE by reduction of 6-Cl2 in the presence of exc

(10 equivalents) of cyclooctene were unsuccessful.  

f 

ess 

2 (7-

2

imine imine imine- imine 

Figure A.18. Preparation of iPrADI iron complexes. 

 

 Modifications were also made at the imine substituent in the search for more 

active precatalysts. Upon replacing the diisopropyl aniline with mesityl aniline during 

ligand preparation, MesDI was complexed with iron dichloride in tetrahydrofuran 

solution according to literature procedures.25 The resulting dichloride, (MesDI)FeCl

Cl ), was crystallographically characterized (Figure A.19) and the metrical parameters 

are presented in Table A.8. Both the N -C  and C C bond lengths are 

consistent with the neutral, α-diimine form of the ligand with distances of 

1.2846(12)/1.2810(13) Å and 1.5085(14) Å, respectively.  
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Figure A.19. Solid-state structure of 7-Cl2 at 30% probability ellipsoids. Hydrogen 

atoms omitted for clarity. 

 

Table A.8. Selected bond distances (Å) and angles (°) for 7-Cl2. 

 of 

r the imine 

, is the most 

ifted from its diamagnetic reference value due to a Fermi contact interaction with 

e high spin metal center.  

Fe(1)-N(1) 2.1083(8) N(1)-C(2) 1.2846(12) 

Fe(1)-N(2) 2.1154(9) N(2)-C(3) 1.2810(13) 

Fe(1)-Cl(1) 2.2381(4) C(2)-C(3) 1.5085(14) 

Fe(1)-Cl(2) 2.2230(5) N(1)-Fe(1)-N(2) 76.02(3) 

  

 Reduction of either 7-Cl2 with excess 0.5 % sodium amalgam in pentane 

resulted in the formation of the bis α-diimine ligand complex 7-MesDI. Complexes

this type have been previously observed21,26 and have been described as having two 

singly reduced chelates that are antiferromagnetically coupled to a high spin ferrous 

ion.27 They exhibit diagnostic 1H NMR spectra with paramagnetically broadened 

resonances shifted over a 300 ppm range (Figure A.20).21 The resonance fo

methyl groups of these complexes, appearing at approximately –250 ppm

sh

th
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Figure A.20. H NMR spectrum of 7- DI in benzene-d6 at 20 °C. 

 

 n of 7- resence ts was a ed. 

pare 7-(TMSCCTMS) or 7-COD by reduction of 7-Cl2 in the 

were 
Mes . 

1 n 

Mes  

6

iPr

1 Mes

Reductio Cl2 in the p  of trapping reagen lso explor

Attempts to pre

presence of either 3 equivalents of bis(trimethylsilyl)acetylene or cyclooctadiene 

unsuccessful and instead resulted in the formation of the bis(ligand) complex, 7- DI

In fact, observation of 7-COD was only accomplished by H NMR spectroscopy upo

conducting the reduction of 7-Cl2 in neat 1,5-cyclooctadiene. Even when employing 

these conditions, this complex could not be isolated as 7- DI was identified as a

major side product (~50 %). Conducting the same reduction in neat benzene; however, 

allowed formation of the η -arene complex, 7-(C6H6) (Figure A.21), which has been 

previously described for in the DI system. 
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Figure A.21. Reduction of 7-Cl2 with excess 0.5 % sodium amalgam in benzene. 

 

 In an attempt to prepare an asymmetric olefin hydrogenation catalyst 

containing an α-diimine ligand framework, bulky chiral amines with substituted sec-

phenethyl moieties were incorporated into the ligand framework (Figure A.22).28 

Condensation of these amines with acenaphthenequinone has been previously 

accomplished,29 and the resulting chiral DI ligands have been utilized for nickel 

catalyzed, isospecific polymerization of trans-2-butene29 and copolymerization of α-

 This class of ligand provides a second benefit in the development of an α-

he entially 

ormation of a bis(ligand) complex. 

xes, 8-Br2 and 9-Br2 (Figure A.22), were 

adily prepared upon metallation of the ligand with FeBr2 in tetrahydrofuran. Because 

olefins.30,31

diimine i

isfavor catalyst degradation through f

ron catalyst; the steric bulk of the sec-p nethyl substituent could pot

d
 

 
Figure A.22. Chiral C2-symmetric α-diimine iron dibromide complexes. 

 

 The α-diimine iron dibromide comple

re
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it was found to be an effective trapping ligand in the reduction of 5-Cl2 and 6-Cl2, the 

reduction of each C2-symmetric complex was conducted in the presence of excess 1,5-

cyclooctadiene. Unfortunately, reduction of 8-Br2 in benzene solution with excess 0.5 

% sodium amalgam in the presence of 10 equivalents of 1,5-cyclooctadiene did not 

res

MR spectrum of the resulting material revealed the formation of 8-Aryl, where a 

.23). 

Figure A.23. Preparation of 8-Aryl from reduction of 8-Br2. 

 

 This product was additionally characterized by X-ray crystallography. The 

solid-state structure of 8-Aryl (Figure A.24) confirmed intramolecular η6-arene 

coordination and selected metrical parameters for this complex are presented in Table 

etrical parameters of the α-diimine ligand appear consistent with the ene-

diamid  of 

.3557(12)/1.3363(12) Å and 1.4100(13) Å, respectively. The N(1)-Fe(1)-N(2) bond 

ult in the formation of 8-COD. Inspection of the diamagnetic region of the 1H 

N

ligand mesityl group coordinates in an η6-fashion to the metal center (Figure A

The η6-arene hydrogen 1H NMR resonances (η6-m-mesityl) were located at 4.47 and 

5.16 ppm, as iron η6-arene hydrogens are typically shifted upfield.21  

 

A.8. The m

e resonance form of the ligand with Nimine-Cimine and Cimine-Cimine distances

1

angle of 83.44(3) ° was similar to the same angle of 80.94(4) ° observed for 52.  

 

237 



 
Figure A.24. Molecular structure of 8-Aryl at 30 % probablility ellipsoids. Hydrogen 

atoms omitted for clarity.  

 

Table A.7. Selected bond distances (Å) and angles (°) for 8-Aryl. 

 

 Similar reactivity was observed for the reduction of 9-Br  in the presence of 20 

equivalents of 1,5-cyclooctadiene with excess 0.5 % sodium amalgam. In this case, 

however, allowing the reduction to proceed for 24 hours resulted in the formation of 

2

Fe(1)-N(1) 1.9114(8) N(2)-C(2) 1.3363(12) 

Fe(1)-N(2) 1.8977(9) C(1)-C(2) 1.4100(13) 

N(1)-C(1) 1.3557(12) N(1)-Fe(1)-N(2) 83.44(3) 
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an equimolar mixture of 9-Aryl and 9-2,4,6DI, the undesired bis(ligand) complex. 

Allowing the same reduction to stir for 4 days resulted in the observation of only 9-
2,4,6DI. Although bis(ligand) formation was not observed upon reduction of 8-Br2, 

allowing the reduction stir for longer reaction times (more than 36 hours), may 

produce a similar outcome. Unfortunately, both η6-arene complexes, 8-Aryl and 9-

Aryl, were not active precatalysts for the hydrogenation or hydrosilylation of 1-

hexene. 

  In order to prepare an asymmetric α-diimine ligated iron hydrogenation 

catalyst, close attention must be paid to two important aspects of ligand design. The 

steric influence of the imine substituents must be substantially large in order to prevent 

the formation of catalytically inactive bis(ligand) iron complexes. Additionally, upon 

reduction of the iron dihalide precursors or generation of α-diimine iron(0) in situ, 

aromatic ligand substituents and aryl-containing substrates21 must be avoided.  

 

.4 Experimental Procedures 

luene (20 mL), and added to an amalgam of sodium metal (0.159 g, 6.92 mmol) in 

mercury ( id. After 

recrystallization from toluene and pentane, a dark green crystalline solid identified as 

(iPrAPDI)2Fe (0.276 g, 0.505 mmol, 73%, based on APDI) was obtained. Crystals 

sui ay diffra es were gro solution of e in 

tolu tane at . Calcd C, 65.92 N, 

5.38. Found: C, 57.26; H, 7.36; N, 11.89. 1H NMR (benzene-d6, 293 K): δ = 225.4 

A

Preparation of (iPrAPDI)2Fe ((iPrAPDI)2Fe). (0.636 g, 1.38 mmol) was suspended in 

to

31.80 g, 159 mmol) and toluene (100 mL), yielding a dark green sol

iPr

table for X-r ction studi wn from a  (iPrAPDI)2F

ene and pen  -35 °C. Anal  for C30H46N6Fe: ; H, 8.48; 

1

(1040 Hz), 87.57 (392 Hz), 81.25 (368 Hz), -18.17 (177 Hz), -158.4 (1394 Hz). 

Magnetic susceptibility: μeff = 2.9(6) μB (benzene-d6, 293 K); μeff = 2.4(1) μB (Gouy 

Balance, 293 K). 
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Preparation of (EtPDI)2Fe (2-(EtPDI)). A 250 mL round bottomed flask was char

with mercury (25.0 g, 124.6 mmol) and approximately 100 mL of pentane. Sodium 

metal (0.125 g, 5.4 mmol) was added slowly, in small pieces, to the mercury with 

stirring, and the resulting amalgam was stirred for 20 min to ensure complete 

dissolution of the metal. A slurry of 2-Br2 (0.500 g, 0.78 mmol) in pentane (10 mL) 

was added along with EtPDI (0.331 g, 0.78 mmol), and the capped solution was s

for 24 h a

ged 

tirred 

t ambient temperature. The solution was filtered through Celite and pentane 

ls 

2-

, 9.27. 

ound: C, 76.49; H, 7.65; N, 8.73. Magnetic susceptibility: μeff = 2.7(2) μB (benzene-

K). 1H NMR (benzene-d6, 293 K): δ = 166.3 

y 

 

s 

.14; 

23 (d, 8.0 Hz, 2H, bpy), 6.95 (t, 7.5 Hz, 2H, p-aryl), 6.87 (d, 7.5 Hz, 

and other volatiles were removed in vacuo. The resulting brown solid was 

recrystallized twice from a concentrated pentane solution, yielding dark brown crysta

identified as 2-(EtPDI) (0.387 g, 0.427 mmol, 55% based on Fe). Lower yields of this 

complex were obtained when the reduction of 2-Br2 was carried out in the absence of 
EtPDI. Crystals suitable for X-ray diffraction studies were grown from a solution of 

(EtPDI) in pentane at -35 °C. Anal. Calcd. for C58H70N6Fe: C, 76.80; H, 7.78; N

F

d6, 293 K); μeff = 3.2 μB (SQUID, 300 

(7602 Hz), 58.7 (5291 Hz), 1.42 (359 Hz), -0.49 (186 Hz).  

 

Preparation of (iPrPDI)Fe(2,2’-bipyridine) (1-Bpy). A 20 mL scintillation vial was 

charged with 0.100 g (0.168 mmol) of 1-(N2)2 and approximately 10 mL of toluene.  

While stirring, a solution of 0.026 g (0.168 mmol) of 2,2’-bipyridine in approximatel

5 mL of toluene was added and evolution of N2 occurred along with a change in color

from green to blue. After 1 hour, the solution was filtered through Celite and the 

solvent was removed in vacuo to yield 0.110 g (94%) of a dark blue solid identified a

1-Bpy. Analysis for C43H51FeN5: Calc. C, 74.45; H, 7.41; N, 10.09. Found: C, 74

H, 7.76; N, 9.87. 1H NMR (benzene-d6): δ = 8.82 (d, 8.0 Hz, 1H, p-pyr), 7.78 (t, 8.0 

Hz, 2H, m-pyr), 7.
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4H, m-aryl), 6.80 (t, 7.5 Hz, 2H, bpy), 6.43 (d, 6.5 Hz, 2H, bpy), 6.01 (t, 6.5 Hz, 2H, 

bpy), 2.10 (sept., 7.0 Hz, 4H, CH(CH3)2), 1.50 (s, 6H, C(CH3)), 0.98 (d, 7.0 Hz, 12H

CH(CH3)2), 0.72 (d, 7.0 Hz, 12H, CH(CH3)2). 13C NMR (benzene-d6): δ =164.24, 

156.13, 153.71, 151.98, 147.56, 141.29, 126.10, 124.97, 123.77, 122.89, 121.8

120.32, 114.04, 28.23 (CH(CH3)2), 25.48 (CH(CH3)2), 25.18 (CH(CH3)2), 

21.67(C(CH3)). 

 

Preparation of (iPrPDI)Fe(2,2’:6’,2’’-terpyridine) (1-Tpy). This complex

prepared in a manner similar to 1-Bpy with 0.100 g (0.168 mmol) of 1-(N2)2 and 0.039 

g (0.167 mmol) of 2,2’:6’,2’’-terpyridine to yield 0.085 g (66%) of a dark reddish-

purple solid identified as 1-Tpy. Analysis for C48H54FeN6: Calcd C, 74.79; H, 7.06; N,

10.90. Found: C, 75.01; H, 7.25; N, 10.71. Magnetic susceptibility: μeff = 2.7(2) μB 

(benzene-d6, 293 K), μeff = 2.4(1) μB (Gouy balance). 1H NMR (benzene-d6, 293 K): δ 

= 219.11 (786 Hz, 1H, iPrPDI or Tpy p-pyr), 196.38 (915 Hz, 1H, iPrPDI or Tpy p-pyr), 

108.59 (2239 Hz, 2H, tpy), 94.36 (318 Hz, 2H, tpy), 83.61 (193 Hz, 2H, tpy), 65.50 

(250 Hz, 2H, iPrPDI or Tpy m-pyr), 64.31 (259 Hz, 2H, iPrPD

, 

9, 

 was 

 

I or Tpy m-pyr), 41.50 

27 Hz, 2H, tpy), 4.31 (39 Hz, 4H, CH(CH3)2), -1.51 (68 Hz, 12H, CH(CH3)2), -3.35 

as 

 

(1

(105 Hz, 12H, CH(CH3)2), -147.63 (834 Hz, 6H, C(CH3)). 

 

Preparation of [{(2,6-(CH(CH3)2)2-C6H3)N=C(CH3)-(CH3)C=N(μ-η6-2,6-

(CH(CH3)2)2-C6H3)}Fe]2 (52). A dried thick-walled reaction vessel was charged with 

1.00 g (0.18 mmol) of 5-COD and approximately 70 mL of pentane. The vessel w

placed on a high vacuum line where it was completely submerged in liquid nitrogen 

and evacuated. One atmosphere of hydrogen was added and the reaction mixture was 

warmed to ambient temperature and stirred for 48 hours. The volatiles were removed

in vacuo and 0.048 g (59%) of a reddish-brown solid identified as 52 was obtained by 
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recrystallization from pentane. Anal. Calcd. for C56H80Fe2N4: C, 73.03; H, 8.76; N, 

6.08. Found: C, 73.05; H, 8.94; N, 5.76. 1H NMR (benzene-d6): δ = 0.76 (s, 6H, 

N=C(CH3)), 0.85 (d, 6.8 Hz, 12H, CH(CH3)2), 0.91 (s, 6H, N=C(CH3)), 1.08 (d, 6.8

Hz, 12H, CH(CH3)2), 1.69 (d, 6.8 Hz, 12H, CH(CH3)2), 1.74 (d, 6.8 Hz, 12H, 

CH(CH3)2), 3.95 (sept, 6.8 Hz, 4H, CH(CH3)2), 4.04 (sept, 6.8 Hz, 4H, CH(CH

4.43 (t, 6.8 Hz, 2

 

3)2), 

H, p-(μ-η6-aryl)), 5.90 (d, 6.8 Hz, 4H, m-(μ-η6-aryl), 7.35 (d, 6.8 Hz, 

-aryl), 7.41 (t, 6.8 Hz, 2H, p-aryl). 13C NMR (benzene-d6): δ = 18.72 (CH(CH3)2), 

4 

yl), 

 

mixture was filtered 

rough Celite, the solvent was removed in vacuo, and the resulting brownish-green 

l. Calcd. 

 

m

21.63 (CH(CH3)2), 24.53 (CH(CH3)2), 24.82 (CH(CH3)2), 25.21 (CH(CH3)2), 25.4

(CH(CH3)2), 27.85 (N=C(CH3)), 28.08 (N=C(CH3)), 76.10 (μ-η6-aryl), 82.93 (μ-η6-

aryl), 97.48 (μ-η6-aryl), 117.08 (μ-η6-aryl), 123.43 (aryl), 123.49 (aryl), 125.74 (ar

141.86 (aryl), 143.83 (N=C(CH3)), 144.51 (N=C(CH3)).  

 

Preparation of [(2,6-(CH(CH3)2)2-C6H3)N=C(An)-(An)C=N(2,6-(CH(CH3)2)2-

C6H3)]Fe(η2-η2-1,5,-C8H12) (6-COD). While stirring, 0.500 g (0.795 mmol) of [(2,6-

(CH(CH3)2)2-C6H3)N=C(An)-(An)C=N(2,6-(CH(CH3)2)2-C6H3)]FeCl2 (6-Cl2) was 

added to a 250 mL round-bottomed flask containing 0.092 g (3.98 mmol) of Na, 18.4

g (91.7 mmol) of Hg, 0.859 g (7.95 mmol) of 1,5-cyclooctadiene, and approximately 

100 mL of pentane. After stirring for 72 hours, the reaction 

th

solid was recrystallized from pentane to afford 0.287 g (50%) of 6-COD. Ana

for C44H52FeN2: C, 79.50; H, 7.88; N, 4.21. Found: C, 79.68; H, 7.87; N, 4.12. 1H 

NMR (benzene-d6) δ = -185.9 (638 Hz), -62.7 (307 Hz), -7.1 (22 Hz), -4.2 (15 Hz), -

0.4 (56 Hz), 0.2 (27 Hz), 3.8 (18 Hz), 5.0 (6 Hz), 50.6 (52 Hz), 56.3 (36 Hz), 272.9 (2

Hz).   
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Preparation of [(2,6-(CH(CH3)2)2-C6H3)N=C(An)-(An)C=N(2,6-(CH(CH3)2)2-

C6H3)]Fe(η2-(CH3)3SiC≡CSi(CH3)3) (6-(TMSCCTMS)).  While stirring, 0.150

(0.239 mmol) of 6-Cl2 was added to a 25 mL round-bottomed flask containing 0.028

(1.195 mmol) of Na, 5.6 g (27.9 mmol) of Hg, 0.122 g (0.717 mmol) of 

(CH3)3SiC≡CSi(CH3)3, and approximately 20 mL of pentane. After stirring for 48 

hours, the reaction mixture was filtered through Celite, the solvent was removed in 

vacuo, and the resulting brownish-green solid was recrystallized from pentane to 

afford 0.072 g (41%) of 6-(TMSCCTMS). Anal. Calcd. for C44H58FeN2Si2: C, 72.70

H, 8.04; N, 3.85. Found: C, 72.42; H, 8.00; N, 3.72. 1H NMR (benzene-d6) δ = -42.6

(141 Hz), -38.2 (280 Hz), -23.2 (30 Hz), 1.0 (14 Hz), 6.2 (83 Hz), 71.5 (30 Hz), 78.8 

(127 Hz). 

 g 

 g 

; 

 

 g 

I). A 20 mL scintillation vial was charged with 0.052 g (2.24 mmol) of sodium 

etal, 10.4 g (51.8 mmol) of mercury, and approximately 12 mL of pentane.  While 

stirring, 0.200 g (0.488 mmol) of 7-Cl2 was added. After stirring for 1 hour, the 

 

Preparation of [(2,4,6-(CH3)3-C6H2)N=C(CH3)-(CH3)C=N(2,4,6-(CH3)3-

C6H2)]FeCl2 (7-Cl2). A dried 500 mL round-bottomed flask was charged with 5.00 g 

(15.5 mmol) of (2,4,6-(CH3)3-C6H2)N=C(CH3)-(CH3)C=N(2,4,6-(CH3)3-C6H2), 1.90

(15.5 mmol) of FeCl2, and approximately 200 mL of tetrahydrofuran. The solution 

immediately turned green in color and was stirred for 24 hours. The solvent was 

removed in vacuo and the remaining red residue was collected by filtration with 

pentane. After washing with an additional 20 mL of pentane, 5.84 g (84%) of a 

reddish-brown solid identified as 7-Cl2 was obtained. Anal. Calc. for C22H28Cl2FeN2: 

C, 59.08; H, 6.31; N, 6.26.  Found: C, 59.44; H, 6.27; N, 5.81.   

 

Preparation of [(2,4,6-(CH3)3-C6H2)N=C(CH3)-(CH3)C=N(2,4,6-(CH3)3-C6H2)]2Fe 

(7-MesD

m
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solution was filtered through Celite and the solvent was removed in vacuo to yield

0.104 g (67%) of a yellowish-brown solid identified as 7-MesDI.  Anal. Calc. for 

C44H56FeN4: C, 75.84; H, 8.10; N 8.04.  Found: C, 75.24; H, 8.70; N, 8.04. 1H NMR 

(benzene-d6): δ = -265.84 (97.24, 12H, N=C(CH3)), -13.l9 (19.23, 8H, ar

(58.71, 24H, o-CH3), 5.90 (16.92, 12H, p-CH3). 

 

Preparation of [(2,4,6-(CH3)3-C6H2)N=C(CH3)-(CH3)C=N(2,4,6-(CH3)3-

C6H2)]Fe(η6-C6H6) (7-C6H6). While stirring, 0.334 g (0.747 mmol) of 7-Cl2 was 

added to a 250 mL round-bottomed flask containing 0.086 g (3.74 mmol) of Na, 17.2 

g (85.8 mmol) of Hg, and approximately 100 mL of benzene. The olive green solution

became bri

 

yl), -6.71 

 

ght orange in color after stirring at ambient temperature for 48 hours. The 

action mixture was decanted and filtered though Celite and the filtrate collected. The 

tane 

), 

3), 

3.32 

H3N=C(An)-

n)C=NC6H3-2-CH(CH3)(2,4,6-(CH3)3-C6H2)-4-CH3]FeBr2 (8-Br2). A 250 mL 

 

re

solvent was removed in vacuo and the resulting solid recrystallized from pen

yielded 0.117 g (34%) of a deep red solid identified as 7-(C6H6). Anal. Calc. for 

C28H34FeN2: C, 74.01; H, 7.54; N, 6.16.  Found: C, 74.29; H, 7.25; N, 6.29. 1H NMR 

(benzene-d6): δ = 1.05 (s, 6H, N=C(CH3)), 2.27 (s, 12H, o-CH3), 2.35 (s, 6H, p-CH3

4.82 (s, 6H, C6H6), 7.00 (s, 4H, m-aryl). 13C NMR (benzene-d6): δ = 15.64 (p-CH

18.28 (o-CH3), 21.22 (N=C(CH3)), 81.47 (C6H6), 128.68 (aryl), 130.39 (aryl), 13

(aryl), 142.03 (aryl), 154.58 (N=C(CH3)). 

 

Preparation of rac-[2-CH(CH3)(2,4,6-(CH3)3-C6H2)-4-CH3-C6

(A

round-bottomed flask was charged with 0.562 g (0.862 mmol) of rac-[2-

CH(CH3)(2,4,6-(CH3)3-C6H2)-4-CH3-C6H3N=C(An)-(An)C=NC6H3-2-

CH(CH3)(2,4,6-(CH3)3-C6H2)-4-CH3], 0.186 g (0.862 mmol) of FeBr2, and 

approximately 150 mL of tetrahydrofuran. A green solution resulted within a few
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minutes of stirring and the reaction was allowed to proceed for 24 hours. The solutio

was filtered though a frit and the solvent was removed in vacuo to yield 0.517 g (

of a tan solid identified as 8-Br2. Anal. Calcd. for C48H58Br2FeN2: C, 66.38; H, 5.57; 

N, 3.23. Found: C, 65.86; H, 5.30; N, 2.89.  

 

n 

69%) 

reparation of [2-CH(CH3)(η6-2,4,6-(CH3)3-C6H2)-4-CH3-C6H3N=C(An)-

 mL 

nd: 

7.72 

, 

7.5 Hz, 1H, CHCH3), 4.47 (s, 1H, η6-aryl), 

.54 (s, 3H, methyl), 2.43 (s, 3H, methyl), 2.22 (s, 3H, methyl), 2.19 (s, 3H, methyl ), 

), 1.56 

P

(An)C=NC6H3-2-CH(CH3)(2,4,6-(CH3)3-C6H2)-4-CH3]Fe (8-Aryl). A 100

round-bottomed flask was charged with 0.190 g (0.219 mmol) of 8-Br2 and 

approximately 50 mL of benzene. While stirring, an amalgam prepared from 0.025 g 

of sodium (1.09 mmol) and 5 g of mercury was added to the flask. The solution slowly 

turned purple in color and was allowed to stir for 36 hours. At that time, the solution 

was filtered through Celite and the solvent was evacuated to yield a purple solid 

identified as 8-Aryl. Anal. Calcd. for C48H52FeN2: C, 81.34; H, 6.83; N, 3.95. Fou

C, 81.31; H, 6.96; N, 3.73. 1H NMR (benzene-d6): δ = 7.84 (d, 8.0 Hz, 1H, aryl), 

(s, 1H, aryl), 7.57 (d, 8.0 Hz, 1H, aryl), 7.54 (s, 1H, aryl), 7.42 (d, 8.0 Hz, 1H, aryl), 

7.25 (d, 8.0 Hz, 1H, aryl), 7.14 (s, 1H, aryl), 7.06 (d, 8.0 Hz, 1H, aryl), 6.99 (d, 8.0 

Hz, 1H, aryl), 6.95 (t, 8.0 Hz, 1H, aryl), 6.74 (d, 8.0 Hz, 1H, aryl), 6.48 (t, 8.0 Hz, 1H

aryl), 6.05 (s, 1H, aryl), 5.99 (d, 8.0 Hz, 1H, aryl), 5.72 (q, 7.5 Hz, 1H, CHCH3), 5.57 

(s, 1H, aryl), 5.16 (s, 1H, η6-aryl), 4.91 (q, 

2

1.85 (d, 7.5 Hz, 3H, CHCH3), 1.83 (s, 3H, methyl), 1.79 (d, 7.5 Hz, 3H, CHCH3

(s, 3H, methyl), a.45 (s, 3H, methyl), 1.18 (s, 3H, methyl).  
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APPENDIX B 

INVESTIGATION OF PDI IRON COMPLEXES BY EPR SPECTROSCOPY 
  

 

General Procedure: A 2 mM solution of each complex was prepared in a 60:40 

toluene:pentane solvent mixture. Each sample was cooled by quickly submerging a 

loaded EPR tube (~ 2 cm sample height) in liquid nitrogen for less than one second 

and quickly pulling it back out several times. When cold, the tube was left in liquid 

nitrogen for approximately one minute, at which time it was transferred to a liquid 

nitrogen cooled dewar located in the resonator of a Bruker EPR spectrometer. Data 

was recorded at 77 K with a modulation amplitude of 2 mT and an attenuation of 1 

mW. Additional data was collected at 5 K for the monohalide complexes when no 

signal was observed at 77 K. Simulations were conducted using the W95EPR software 

package. 
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Table B.1. Compilation of EPR data for compounds discussed in this manuscript. 

Compound Simulated g-values [line widths] 

1-CCtBu(py) 2.275[20], 2.050[11], 2.019[12] 
1-CCPh(py) 2.255[16], 2.063[8], 2.035[10] 
1-Ph(Et2O) 2.224[14], 2.1258[12], 2.0765[12] 
1-Np(py) 2.23[27], 2.024[21]  
1-Cl(py) 1.845[72], 3.04[85], 5.10[30] 
1-Br(py) 1.895[92], 3.25[113], 5.05[45] 

 
 
 

2800 2900 3000 3100 3200 3300 3400 3500

Field [G]

d χ
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B

Figure B.1. EPR spectrum of 1-CCPh(py) at 77 K.  
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Figure B.2. EPR spectrum of 1-Ph(Et2O) at 77 K. 
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Figure B.3. EPR spectrum of 1-Np(py) at 77 K. 
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Figure B.4. EPR spectrum of 1-Cl(py) at 5 K. 

 
Figure B.5. EPR spectrum of 1-Br(py) at 5 K. 
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Figure B.6. EPR spectrum of 1-Allyl at 77 K. 
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Figure B.7. EPR spectrum of 1-CCPh at 77 K. 
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Figure B.8. EPR spectrum of 1-CCtBu(py) at 77 K. 

 

500 1500 2500 3500 4500 5500

Field [G]

dχ
/d

B

 
Figure B.9. EPR spectrum of 1-CCtBu at 77 K. 

253 



3100 3200 3300 3400 3500 3600

Field [G]

dχ
/d

B

 
Figure B.10. EPR spectrum of 1-Me(py) at 77 K. 
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Figure B.11. EPR spectrum of 1-iBu(py) at 77 K. 
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Figure B.10. EPR spectrum of 1-Br at 5 K. 

 

 
Figure B.12. EPR spectrum of 1-Br(Et2O) at 5 K. 

255 



 
Figure B.13. EPR spectrum of 1-(FBF3)(Et2O) at 5 K. 
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APPENDIX C 

CRYSTAL STRUCTURE DATA 

 

Table C.1. Compilation of X-ray data for compounds discussed in this manuscript. 

Compound CU X-Ray ID Location 
   

2-Cl(Et2O) rt1 Chem. Commun. 2005, 3406. 
7-Cl2 rt2 Appendix C  

52 rt3 Appendix C  
8-Aryl rt4 Appendix C  

4-(CO)2 rt6 Inorg. Chem. 2006, 45, 7252. 
4-H(SiH2Ph)(N2) rt9 Inorg. Chem. 2006, 45, 7252. 
4-H(SiH2Ph)(CO) rt11 Inorg. Chem. 2006, 45, 7252. 
(iPrPDI)Ti(C4H6) rt13 Appendix C  

1-OCPh2 rt15 Organometallics 2008, 27, 1470. 
1-Bpy rt16a Appendix C  

1-H2CIN rt22 Appendix C  
2-Np rt24 Organometallics 2008, 27, 109. 

1-(FBF3)(Et2O) rt25 Appendix C  
1-(OAc)(Vinyl) rt28 Accepted Organometallics 

1-OBz rt30 Accepted Organometallics 
1-OAc rt32 Accepted Organometallics 
1-Allyl rt34 Accepted Organometallics 

1-Br(THF) rt35 JACS DOI: 10.1021/ja803296f 
1-CCtBu rt38 Appendix C  

1-Tpy rt40 Appendix C  
1-CCPh rt41 Appendix C  
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Table C.2. Crystal data and structure refinement for 7-Cl2. 

________________________________________________________________________________  

Identification code  rt2 
Empirical formula  C22 H28 Cl2 Fe N2 
Formula weight  447.21 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 12.5819(17) Å α= 90°. 
 b = 14.5340(19) Å β= 90.498(7)°. 
 c = 14.201(2) Å γ = 90°. 
Volume 2596.8(6) Å3 
Z 4 
Density (calculated) 1.144 Mg/m3 
Absorption coefficient 0.794 mm-1 
F(000) 936 
Crystal size 0.45 x 0.35 x 0.15 mm3 
Theta range for data collection 1.62 to 35.09°. 
Index ranges -20<=h<=20, -23<=k<=23, -22<=l<=22 
Reflections collected 49552 
Independent reflections 11231 [R(int) = 0.0266] 
Completeness to theta = 35.09° 97.5 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.8902 and 0.7164 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 11231 / 0 / 356 
Goodness-of-fit on F2 1.076 
Final R indices [I>2sigma(I)] R1 = 0.0374, wR2 = 0.1207 
R indices (all data) R1 = 0.0459, wR2 = 0.1249 
Largest diff. peak and hole 0.505 and -0.468 e.Å-3 

________________________________________________________________________________  
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Table C.3. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 7-Cl2. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 1145(1) 6396(1) 7222(1) 22(1) 
Cl(1) 1836(1) 5312(1) 8165(1) 39(1) 
Cl(2) 835(1) 6018(1) 5727(1) 41(1) 
N(1) -144(1) 7119(1) 7807(1) 22(1) 
N(2) 1748(1) 7738(1) 7440(1) 21(1) 
C(1) -723(1) 8552(1) 8568(1) 30(1) 
C(2) 51(1) 7940(1) 8095(1) 21(1) 
C(3) 1145(1) 8303(1) 7877(1) 22(1) 
C(4) 1416(1) 9272(1) 8128(1) 36(1) 
C(5) -1205(1) 6759(1) 7865(1) 22(1) 
C(6) -1498(1) 6245(1) 8657(1) 23(1) 
C(7) -2537(1) 5919(1) 8683(1) 28(1) 
C(8) -3255(1) 6080(1) 7956(1) 30(1) 
C(9) -2920(1) 6575(1) 7177(1) 31(1) 
C(10) -1895(1) 6927(1) 7119(1) 27(1) 
C(11) -725(1) 6064(1) 9441(1) 30(1) 
C(12) -4368(1) 5713(1) 7990(2) 45(1) 
C(13) -1559(1) 7489(1) 6283(1) 37(1) 
C(14) 2761(1) 8021(1) 7093(1) 21(1) 
C(15) 2802(1) 8373(1) 6180(1) 23(1) 
C(16) 3795(1) 8587(1) 5820(1) 27(1) 
C(17) 4721(1) 8447(1) 6338(1) 30(1) 
C(18) 4644(1) 8097(1) 7242(1) 30(1) 
C(19) 3670(1) 7882(1) 7638(1) 26(1) 
C(20) 1814(1) 8526(1) 5610(1) 32(1) 
C(21) 5781(1) 8691(1) 5930(1) 44(1) 
C(22) 3599(1) 7509(1) 8620(1) 38(1) 
________________________________________________________________________________  
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Table C.4. Bond lengths [Å] and angles [°] for 7-Cl2. 

Fe(1)-N(1)  2.1083(8)   C(3)-N(2)-C(14) 121.03(8) 
Fe(1)-N(2)  2.1154(9)  C(3)-N(2)-Fe(1) 116.65(7) 
Fe(1)-Cl(2)  2.2230(5)  C(14)-N(2)-Fe(1) 122.28(6) 
Fe(1)-Cl(1)  2.2381(4)  N(1)-C(2)-C(1) 125.25(9) 
N(1)-C(2)  1.2846(12)  N(1)-C(2)-C(3) 115.52(8) 
N(1)-C(5)  1.4374(12)  C(1)-C(2)-C(3) 119.14(9) 
N(2)-C(3)  1.2810(13)  N(2)-C(3)-C(4) 125.83(9) 
N(2)-C(14)  1.4311(12)  N(2)-C(3)-C(2) 114.88(8) 
C(1)-C(2)  1.4842(14)  C(4)-C(3)-C(2) 119.20(9) 
C(2)-C(3)  1.5085(14)  C(10)-C(5)-C(6) 122.68(9) 
C(3)-C(4)  1.4916(15)  C(10)-C(5)-N(1) 117.86(9) 
C(5)-C(10)  1.3859(15)  C(6)-C(5)-N(1) 119.45(9) 
C(5)-C(6)  1.4007(14)  C(7)-C(6)-C(5) 117.19(10) 
C(6)-C(7)  1.3914(15)  C(7)-C(6)-C(11) 121.65(10) 
C(6)-C(11)  1.4954(16)  C(5)-C(6)-C(11) 121.16(9) 
C(7)-C(8)  1.3856(17)  C(8)-C(7)-C(6) 121.96(10) 
C(8)-C(9)  1.3879(17)  C(7)-C(8)-C(9) 118.72(10) 
C(8)-C(12)  1.4987(17)  C(7)-C(8)-C(12) 121.30(12) 
C(9)-C(10)  1.3915(16)  C(9)-C(8)-C(12) 119.97(12) 
C(10)-C(13)  1.5047(16)  C(8)-C(9)-C(10) 121.73(11) 
C(14)-C(19)  1.3898(15)  C(5)-C(10)-C(9) 117.69(10) 
C(14)-C(15)  1.3960(14)  C(5)-C(10)-C(13) 121.41(10) 
C(15)-C(16)  1.3898(15)  C(9)-C(10)-C(13) 120.89(11) 
C(15)-C(20)  1.4933(16)  C(19)-C(14)-C(15) 122.30(9) 
C(16)-C(17)  1.3877(18)  C(19)-C(14)-N(2) 119.84(9) 
C(17)-C(18)  1.3852(18)  C(15)-C(14)-N(2) 117.70(9) 
C(17)-C(21)  1.5014(17)  C(16)-C(15)-C(14) 117.63(10) 
C(18)-C(19)  1.3888(15)  C(16)-C(15)-C(20) 120.96(10) 
C(19)-C(22)  1.4991(17)  C(14)-C(15)-C(20) 121.40(9) 
N(1)-Fe(1)-N(2) 76.02(3)  C(17)-C(16)-C(15) 121.75(10) 
N(1)-Fe(1)-Cl(2) 111.72(3)  C(18)-C(17)-C(16) 118.66(10) 
N(2)-Fe(1)-Cl(2) 115.30(3)  C(18)-C(17)-C(21) 120.98(13) 
N(1)-Fe(1)-Cl(1) 114.28(3)  C(16)-C(17)-C(21) 120.34(12) 
N(2)-Fe(1)-Cl(1) 115.11(3)  C(17)-C(18)-C(19) 121.85(10) 
Cl(2)-Fe(1)-Cl(1) 117.477(15)  C(18)-C(19)-C(14) 117.79(10) 
C(2)-N(1)-C(5) 119.63(8)  C(18)-C(19)-C(22) 121.16(10) 
C(2)-N(1)-Fe(1) 116.34(7)  C(14)-C(19)-C(22) 121.05(10) 
C(5)-N(1)-Fe(1) 123.99(6)       
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Table C.5. Crystal data and structure refinement for 52. 

________________________________________________________________________________  

Identification code  rt3 
Empirical formula  C28 H40 Fe N2 
Formula weight  460.47 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 10.1476(11) Å α= 72.739(5)°. 
 b = 10.7372(11) Å β= 85.026(5)°. 
 c = 12.3048(14) Å γ = 75.048(5)°. 
Volume 1236.9(2) Å3 
Z 2 
Density (calculated) 1.236 Mg/m3 
Absorption coefficient 0.627 mm-1 
F(000) 496 
Crystal size 0.30 x 0.20 x 0.05 mm3 
Theta range for data collection 1.73 to 31.40°. 
Index ranges -14<=h<=14, -15<=k<=15, -17<=l<=17 
Reflections collected 36876 
Independent reflections 8000 [R(int) = 0.0325] 
Completeness to theta = 31.40° 98.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9693 and 0.8343 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 8000 / 0 / 440 
Goodness-of-fit on F2 1.070 
Final R indices [I>2sigma(I)] R1 = 0.0309, wR2 = 0.0864 
R indices (all data) R1 = 0.0396, wR2 = 0.0899 
Largest diff. peak and hole 0.523 and -0.428 e.Å-3 

________________________________________________________________________________  
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Table C.6. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 52. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 1732(1) 8934(1) 839(1) 14(1) 
N(1) -77(1) 9172(1) 1441(1) 15(1) 
N(2) 2123(1) 7949(1) 2378(1) 17(1) 
C(1) -1510(1) 8611(1) 3231(1) 26(1) 
C(2) -198(1) 8571(1) 2569(1) 19(1) 
C(3) 1044(1) 7879(1) 3094(1) 19(1) 
C(4) 1129(1) 7137(1) 4334(1) 27(1) 
C(5) -1331(1) 9929(1) 867(1) 15(1) 
C(6) -1813(1) 11320(1) 811(1) 17(1) 
C(7) -3040(1) 12048(1) 229(1) 20(1) 
C(8) -3770(1) 11427(1) -270(1) 21(1) 
C(9) -3279(1) 10071(1) -226(1) 20(1) 
C(10) -2060(1) 9288(1) 347(1) 17(1) 
C(11) -1083(1) 12035(1) 1363(1) 22(1) 
C(12) -1351(2) 13542(1) 767(1) 31(1) 
C(13) -1475(2) 11853(2) 2619(1) 41(1) 
C(14) -1615(1) 7805(1) 429(1) 22(1) 
C(15) -2109(1) 7470(1) -562(1) 28(1) 
C(16) -2136(2) 6957(1) 1530(1) 37(1) 
C(17) 3442(1) 7304(1) 2862(1) 18(1) 
C(18) 4037(1) 5965(1) 2881(1) 21(1) 
C(19) 5290(1) 5339(1) 3416(1) 26(1) 
C(20) 5932(1) 6011(1) 3914(1) 28(1) 
C(21) 5352(1) 7339(1) 3860(1) 25(1) 
C(22) 4111(1) 8015(1) 3323(1) 20(1) 
C(23) 3364(1) 5207(1) 2331(1) 25(1) 
C(24) 4365(2) 4483(2) 1586(1) 35(1) 
C(25) 2700(2) 4205(2) 3200(1) 40(1) 
C(26) 3524(1) 9486(1) 3255(1) 25(1) 
C(27) 2897(2) 9678(2) 4381(2) 47(1) 
C(28) 4588(2) 10311(1) 2864(1) 32(1) 

________________________________________________________________________________ 
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Table C.7. Bond lengths [Å] for 52. 
 

Fe(1)-N(2)  1.8934(9)   C(12)-H(12A)  0.996(19) 
Fe(1)-N(1)  1.9022(9)  C(13)-H(13C)  0.95(2) 
Fe(1)-C(9)#1  2.0872(11)  C(13)-H(13B)  0.89(2) 
Fe(1)-C(7)#1  2.0980(11)  C(13)-H(13A)  1.03(2) 
Fe(1)-C(8)#1  2.1007(11)  C(14)-C(15)  1.5264(17) 
Fe(1)-C(5)#1  2.1053(10)  C(14)-C(16)  1.5286(18) 
Fe(1)-C(10)#1  2.1156(11)  C(14)-H(14)  0.961(14) 
Fe(1)-C(6)#1  2.1198(10)  C(15)-H(15C)  0.968(16) 
N(1)-C(2)  1.3549(14)  C(15)-H(15B)  0.940(18) 
N(1)-C(5)  1.4358(12)  C(15)-H(15A)  0.922(17) 
N(2)-C(3)  1.3481(14)  C(16)-H(16C)  1.01(2) 
N(2)-C(17)  1.4297(13)  C(16)-H(16B)  0.94(2) 
C(1)-C(2)  1.4974(16)  C(16)-H(16A)  0.892(18) 
C(1)-H(1C)  0.965(16)  C(17)-C(22)  1.3993(16) 
C(1)-H(1B)  0.973(17)  C(17)-C(18)  1.4018(15) 
C(1)-H(1A)  0.963(17)  C(18)-C(19)  1.3942(15) 
C(2)-C(3)  1.3897(15)  C(18)-C(23)  1.5107(17) 
C(3)-C(4)  1.4951(16)  C(19)-C(20)  1.3755(19) 
C(4)-H(4C)  0.92(2)  C(19)-H(19)  0.946(16) 
C(4)-H(4B)  0.95(2)  C(20)-C(21)  1.3798(19) 
C(4)-H(4A)  0.968(19)  C(20)-H(20)  0.959(15) 
C(5)-C(10)  1.4273(15)  C(21)-C(22)  1.3917(15) 
C(5)-C(6)  1.4296(14)  C(21)-H(21)  0.914(16) 
C(5)-Fe(1)#1  2.1053(10)  C(22)-C(26)  1.5168(16) 
C(6)-C(7)  1.4125(14)  C(23)-C(25)  1.524(2) 
C(6)-C(11)  1.5127(15)  C(23)-C(24)  1.5260(19) 
C(6)-Fe(1)#1  2.1197(10)  C(23)-H(23)  0.984(14) 
C(7)-C(8)  1.3953(17)  C(24)-H(24C)  0.987(17) 
C(7)-Fe(1)#1  2.0981(11)  C(24)-H(24B)  0.92(2) 
C(7)-H(7)  0.940(14)  C(24)-H(24A)  0.96(2) 
C(8)-C(9)  1.3981(16)  C(25)-H(25C)  0.968(18) 
C(8)-Fe(1)#1  2.1007(11)  C(25)-H(25B)  0.970(19) 
C(8)-H(8)  0.930(16)  C(25)-H(25A)  1.01(2) 
C(9)-C(10)  1.4134(14)  C(26)-C(27)  1.522(2) 
C(9)-Fe(1)#1  2.0871(11)  C(26)-C(28)  1.5275(19) 
C(9)-H(9)  0.919(15)  C(26)-H(26)  0.919(15) 
C(10)-C(14)  1.5126(15)  C(27)-H(27C)  0.87(2) 
C(10)-Fe(1)#1  2.1156(11)  C(27)-H(27B)  1.04(2) 
C(11)-C(12)  1.5275(17)  C(27)-H(27A)  0.94(2) 
C(11)-C(13)  1.5300(19)  C(28)-H(28C)  0.991(18) 
C(11)-H(11)  0.954(14)  C(28)-H(28B)  0.919(19) 
C(12)-H(12C)  0.926(19)  C(28)-H(28A)  0.945(18) 
C(12)-H(12B)  0.963(16)       
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Table C.8. Angles [°] for 52. 
 

N(2)-Fe(1)-N(1) 80.94(4)   C(2)-C(3)-C(4) 121.81(10) 
N(2)-Fe(1)-C(9)#1 107.49(4)  C(3)-C(4)-H(4C) 114.0(12) 
N(1)-Fe(1)-C(9)#1 143.03(4)  C(3)-C(4)-H(4B) 110.6(11) 
N(2)-Fe(1)-C(7)#1 109.49(4)  H(4C)-C(4)-H(4B) 111.3(16) 
N(1)-Fe(1)-C(7)#1 141.66(4)  C(3)-C(4)-H(4A) 112.3(11) 
C(9)#1-Fe(1)-C(7)#1 70.78(5)  H(4C)-C(4)-H(4A) 107.0(16) 
N(2)-Fe(1)-C(8)#1 95.53(4)  H(4B)-C(4)-H(4A) 100.8(16) 
N(1)-Fe(1)-C(8)#1 176.35(4)  C(10)-C(5)-C(6) 121.30(9) 
C(9)#1-Fe(1)-C(8)#1 39.00(5)  C(10)-C(5)-N(1) 119.56(9) 
C(7)#1-Fe(1)-C(8)#1 38.82(5)  C(6)-C(5)-N(1) 119.13(9) 
N(2)-Fe(1)-C(5)#1 178.27(4)  C(10)-C(5)-Fe(1)#1 70.63(6) 
N(1)-Fe(1)-C(5)#1 99.82(4)  C(6)-C(5)-Fe(1)#1 70.77(6) 
C(9)#1-Fe(1)-C(5)#1 70.97(4)  N(1)-C(5)-Fe(1)#1 131.50(7) 
C(7)#1-Fe(1)-C(5)#1 70.88(4)  C(7)-C(6)-C(5) 118.09(10) 
C(8)#1-Fe(1)-C(5)#1 83.73(4)  C(7)-C(6)-C(11) 118.87(9) 
N(2)-Fe(1)-C(10)#1 138.75(4)  C(5)-C(6)-C(11) 123.03(9) 
N(1)-Fe(1)-C(10)#1 112.25(4)  C(7)-C(6)-Fe(1)#1 69.61(6) 
C(9)#1-Fe(1)-C(10)#1 39.30(4)  C(5)-C(6)-Fe(1)#1 69.68(6) 
C(7)#1-Fe(1)-C(10)#1 84.62(4)  C(11)-C(6)-Fe(1)#1 133.50(8) 
C(8)#1-Fe(1)-C(10)#1 71.04(4)  C(8)-C(7)-C(6) 121.09(10) 
C(5)#1-Fe(1)-C(10)#1 39.53(4)  C(8)-C(7)-Fe(1)#1 70.69(6) 
N(2)-Fe(1)-C(6)#1 141.59(4)  C(6)-C(7)-Fe(1)#1 71.26(6) 
N(1)-Fe(1)-C(6)#1 111.44(4)  C(8)-C(7)-H(7) 120.8(8) 
C(9)#1-Fe(1)-C(6)#1 84.61(4)  C(6)-C(7)-H(7) 118.0(9) 
C(7)#1-Fe(1)-C(6)#1 39.13(4)  Fe(1)#1-C(7)-H(7) 129.1(9) 
C(8)#1-Fe(1)-C(6)#1 70.80(4)  C(7)-C(8)-C(9) 120.37(10) 
C(5)#1-Fe(1)-C(6)#1 39.55(4)  C(7)-C(8)-Fe(1)#1 70.49(6) 
C(10)#1-Fe(1)-C(6)#1 72.02(4)  C(9)-C(8)-Fe(1)#1 69.97(6) 
C(2)-N(1)-C(5) 115.54(8)  C(7)-C(8)-H(8) 120.3(10) 
C(2)-N(1)-Fe(1) 115.76(7)  C(9)-C(8)-H(8) 118.9(10) 
C(5)-N(1)-Fe(1) 128.68(7)  Fe(1)#1-C(8)-H(8) 126.3(10) 
C(3)-N(2)-C(17) 116.74(9)  C(8)-C(9)-C(10) 121.22(10) 
C(3)-N(2)-Fe(1) 116.48(7)  C(8)-C(9)-Fe(1)#1 71.02(6) 
C(17)-N(2)-Fe(1) 126.76(7)  C(10)-C(9)-Fe(1)#1 71.44(6) 
C(2)-C(1)-H(1C) 110.8(10)  C(8)-C(9)-H(9) 120.1(9) 
C(2)-C(1)-H(1B) 111.7(10)  C(10)-C(9)-H(9) 118.7(9) 
H(1C)-C(1)-H(1B) 111.0(14)  Fe(1)#1-C(9)-H(9) 129.5(9) 
C(2)-C(1)-H(1A) 112.3(10)  C(9)-C(10)-C(5) 117.91(10) 
H(1C)-C(1)-H(1A) 106.4(13)  C(9)-C(10)-C(14) 119.20(10) 
H(1B)-C(1)-H(1A) 104.3(14)  C(5)-C(10)-C(14) 122.83(9) 
N(1)-C(2)-C(3) 113.51(9)  C(9)-C(10)-Fe(1)#1 69.27(6) 
N(1)-C(2)-C(1) 125.57(10)  C(5)-C(10)-Fe(1)#1 69.85(6) 
C(3)-C(2)-C(1) 120.92(10)  C(14)-C(10)-Fe(1)#1 134.88(8) 
N(2)-C(3)-C(2) 113.30(9)  C(6)-C(11)-C(12) 112.77(10) 
N(2)-C(3)-C(4) 124.89(10)  C(6)-C(11)-C(13) 112.25(11) 
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Table C.8. (continued) 

 
C(12)-C(11)-C(13) 107.93(11)  C(19)-C(20)-H(20) 117.8(9) 
C(6)-C(11)-H(11) 104.3(8)  C(21)-C(20)-H(20) 122.4(9) 
C(12)-C(11)-H(11) 110.7(9)  C(20)-C(21)-C(22) 121.16(12) 
C(13)-C(11)-H(11) 108.8(9)  C(20)-C(21)-H(21) 122.5(10) 
C(11)-C(12)-H(12C) 109.0(12)  C(22)-C(21)-H(21) 116.3(10) 
C(11)-C(12)-H(12B) 114.5(9)  C(21)-C(22)-C(17) 118.32(11) 
H(12C)-C(12)-H(12B) 107.8(14)  C(21)-C(22)-C(26) 119.63(10) 
C(11)-C(12)-H(12A) 108.7(10)  C(17)-C(22)-C(26) 122.05(10) 
H(12C)-C(12)-H(12A) 108.2(15)  C(18)-C(23)-C(25) 112.40(11) 
H(12B)-C(12)-H(12A) 108.4(14)  C(18)-C(23)-C(24) 111.79(11) 
C(11)-C(13)-H(13C) 109.6(13)  C(25)-C(23)-C(24) 109.66(12) 
C(11)-C(13)-H(13B) 109.2(12)  C(18)-C(23)-H(23) 108.0(8) 
H(13C)-C(13)-H(13B) 112.1(18)  C(25)-C(23)-H(23) 107.2(8) 
C(11)-C(13)-H(13A) 106.5(13)  C(24)-C(23)-H(23) 107.6(8) 
H(13C)-C(13)-H(13A) 109.1(18)  C(23)-C(24)-H(24C) 111.3(10) 
H(13B)-C(13)-H(13A) 110.2(17)  C(23)-C(24)-H(24B) 107.9(13) 
C(10)-C(14)-C(15) 112.95(10)  H(24C)-C(24)-H(24B) 107.7(16) 
C(10)-C(14)-C(16) 111.31(10)  C(23)-C(24)-H(24A) 108.7(12) 
C(15)-C(14)-C(16) 107.74(11)  H(24C)-C(24)-H(24A) 109.0(15) 
C(10)-C(14)-H(14) 104.6(8)  H(24B)-C(24)-H(24A) 112.3(17) 
C(15)-C(14)-H(14) 110.8(8)  C(23)-C(25)-H(25C) 109.1(11) 
C(16)-C(14)-H(14) 109.4(8)  C(23)-C(25)-H(25B) 111.3(11) 
C(14)-C(15)-H(15C) 114.4(9)  H(25C)-C(25)-H(25B) 106.4(15) 
C(14)-C(15)-H(15B) 107.3(11)  C(23)-C(25)-H(25A) 109.9(11) 
H(15C)-C(15)-H(15B) 106.7(14)  H(25C)-C(25)-H(25A) 110.5(16) 
C(14)-C(15)-H(15A) 110.9(10)  H(25B)-C(25)-H(25A) 109.6(15) 
H(15C)-C(15)-H(15A) 106.4(13)  C(22)-C(26)-C(27) 112.22(12) 
H(15B)-C(15)-H(15A) 111.1(14)  C(22)-C(26)-C(28) 112.04(10) 
C(14)-C(16)-H(16C) 107.5(12)  C(27)-C(26)-C(28) 109.29(12) 
C(14)-C(16)-H(16B) 110.2(13)  C(22)-C(26)-H(26) 104.7(9) 
H(16C)-C(16)-H(16B) 114.3(17)  C(27)-C(26)-H(26) 107.6(9) 
C(14)-C(16)-H(16A) 109.2(11)  C(28)-C(26)-H(26) 110.8(9) 
H(16C)-C(16)-H(16A) 111.4(16)  C(26)-C(27)-H(27C) 108.4(13) 
H(16B)-C(16)-H(16A) 104.1(16)  C(26)-C(27)-H(27B) 106.3(13) 
C(22)-C(17)-C(18) 121.15(10)  H(27C)-C(27)-H(27B) 115.4(18) 
C(22)-C(17)-N(2) 119.31(10)  C(26)-C(27)-H(27A) 109.2(12) 
C(18)-C(17)-N(2) 119.54(10)  H(27C)-C(27)-H(27A) 108.4(17) 
C(19)-C(18)-C(17) 118.19(11)  H(27B)-C(27)-H(27A) 109.0(17) 
C(19)-C(18)-C(23) 120.01(10)  C(26)-C(28)-H(28C) 111.5(10) 
C(17)-C(18)-C(23) 121.79(10)  C(26)-C(28)-H(28B) 112.4(11) 
C(20)-C(19)-C(18) 121.22(11)  H(28C)-C(28)-H(28B) 107.9(14) 
C(20)-C(19)-H(19) 120.8(10)  C(26)-C(28)-H(28A) 110.1(11) 
C(18)-C(19)-H(19) 118.0(10)  H(28C)-C(28)-H(28A) 106.1(14) 
C(19)-C(20)-C(21) 119.87(11)   H(28B)-C(28)-H(28A) 108.6(15) 
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Table C.9. Crystal data and structure refinement for 8-Aryl. 
________________________________________________________________________________ 
Identification code  rt4 
Empirical formula  C52 H58 Fe N2 O 
Formula weight  782.85 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P1 
Unit cell dimensions a = 11.8418(8) Å         α= 108.154(3)°. 
 b = 13.1152(9) Å         β= 104.645(4)°. 
 c = 15.1165(10) Å       γ = 103.542(4)°. 
Volume 2029.5(2) Å3 
Z 2 
Density (calculated) 1.281 Mg/m3 
Absorption coefficient 0.413 mm-1 
F(000) 836 
Crystal size 0.45 x 0.35 x 0.30 mm3 
Theta range for data collection 1.51 to 32.81°. 
Index ranges -17<=h<=17, -19<=k<=19, -22<=l<=22 
Reflections collected 67696 
Independent reflections 14810 [R(int) = 0.0292] 
Completeness to theta = 32.81° 98.3 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.8860 and 0.8358 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 14810 / 0 / 605 
Goodness-of-fit on F2 1.054 
Final R indices [I>2sigma(I)] R1 = 0.0364, wR2 = 0.1011 
R indices (all data) R1 = 0.0454, wR2 = 0.1066 
Largest diff. peak and hole 0.630 and -0.342 e.Å-3 

________________________________________________________________________________ 
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Table C.10. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 8-Aryl. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 7146(1) 8612(1) 3968(1) 17(1) 
N(1) 7344(1) 7347(1) 4283(1) 17(1) 
N(2) 8311(1) 8362(1) 3338(1) 18(1) 
C(1) 8138(1) 6908(1) 3919(1) 18(1) 
C(2) 8684(1) 7497(1) 3412(1) 18(1) 
C(3) 9504(1) 6951(1) 3032(1) 19(1) 
C(4) 10273(1) 7137(1) 2511(1) 23(1) 
C(5) 10892(1) 6349(1) 2241(1) 27(1) 
C(6) 10742(1) 5404(1) 2471(1) 27(1) 
C(7) 9945(1) 5186(1) 3006(1) 23(1) 
C(8) 9648(1) 4229(1) 3258(1) 30(1) 
C(9) 8825(1) 4123(1) 3746(1) 31(1) 
C(10) 8248(1) 4947(1) 4026(1) 26(1) 
C(11) 8526(1) 5900(1) 3808(1) 19(1) 
C(12) 9368(1) 5985(1) 3285(1) 19(1) 
C(13) 6856(1) 6957(1) 4930(1) 18(1) 
C(14) 5675(1) 6953(1) 4968(1) 19(1) 
C(15) 5282(1) 6577(1) 5644(1) 23(1) 
C(16) 6004(1) 6231(1) 6293(1) 24(1) 
C(17) 7176(1) 6275(1) 6265(1) 24(1) 
C(18) 7595(1) 6637(1) 5600(1) 21(1) 
C(19) 5535(1) 5841(1) 7011(1) 31(1) 
C(20) 4835(1) 7332(1) 4289(1) 21(1) 
C(21) 5521(1) 8425(1) 4224(1) 20(1) 
C(22) 5330(1) 8473(1) 3264(1) 23(1) 
C(23) 6148(1) 9392(1) 3187(1) 26(1) 
C(24) 7141(1) 10254(1) 4012(1) 26(1) 
C(25) 7274(1) 10218(1) 4954(1) 24(1) 
C(26) 6447(1) 9356(1) 5080(1) 21(1) 
C(27) 3663(1) 7413(1) 4517(1) 31(1) 
C(28) 4264(1) 7628(1) 2338(1) 32(1) 
C(29) 8008(1) 11216(1) 3918(1) 36(1) 
C(30) 6606(1) 9481(1) 6131(1) 26(1) 
C(31) 8783(1) 8981(1) 2805(1) 18(1) 
C(32) 8126(1) 8710(1) 1799(1) 18(1) 
C(33) 8554(1) 9470(1) 1386(1) 23(1) 
C(34) 9634(1) 10419(1) 1905(1) 25(1) 
C(35) 10309(1) 10611(1) 2871(1) 26(1) 
C(36) 9877(1) 9909(1) 3322(1) 23(1) 
C(37) 10053(1) 11214(1) 1425(1) 37(1) 
C(38) 6978(1) 7642(1) 1207(1) 20(1) 
C(39) 7276(1) 6539(1) 864(1) 19(1) 
C(40) 6742(1) 5645(1) 1123(1) 21(1) 
C(41) 7075(1) 4670(1) 900(1) 25(1) 
C(42) 7866(1) 4506(1) 377(1) 26(1) 
C(43) 8308(1) 5347(1) 58(1) 27(1) 
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Table C.10. (continued) 
 
C(44) 8039(1) 6358(1) 293(1) 24(1) 
C(45) 6035(1) 7732(1) 355(1) 30(1) 
C(46) 5781(1) 5677(1) 1610(1) 28(1) 
C(47) 8231(1) 3456(1) 174(1) 36(1) 
C(48) 8623(1) 7207(1) -85(1) 34(1) 
O(1S) 5406(1) 9357(1) -1327(1) 52(1) 
C(1S) 3401(2) 8643(2) -1298(2) 61(1) 
C(2S) 4344(2) 8362(2) -1721(1) 49(1) 
C(3S) 6406(2) 9166(2) -1622(1) 53(1) 
C(4S) 7418(2) 10271(2) -1269(1) 55(1) 
________________________________________________________________________________  
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Table C.11. Bond lengths [Å] for 52. 
 

Fe(1)-N(2)  1.8977(9)   C(20)-C(21)  1.5187(14) 
Fe(1)-N(1)  1.9114(8)  C(20)-C(27)  1.5304(15) 
Fe(1)-C(21)  2.0315(10)  C(21)-C(26)  1.4285(14) 
Fe(1)-C(22)  2.0800(11)  C(21)-C(22)  1.4341(14) 
Fe(1)-C(23)  2.1097(10)  C(22)-C(23)  1.4153(16) 
Fe(1)-C(25)  2.1119(10)  C(22)-C(28)  1.5055(16) 
Fe(1)-C(26)  2.1263(10)  C(23)-C(24)  1.4045(18) 
Fe(1)-C(24)  2.1354(10)  C(24)-C(25)  1.4101(16) 
N(1)-C(1)  1.3557(12)  C(24)-C(29)  1.4984(16) 
N(1)-C(13)  1.4181(12)  C(25)-C(26)  1.4085(15) 
N(2)-C(2)  1.3363(12)  C(26)-C(30)  1.5034(14) 
N(2)-C(31)  1.4287(12)  C(31)-C(36)  1.3883(14) 
C(1)-C(2)  1.4100(13)  C(31)-C(32)  1.4073(13) 
C(1)-C(11)  1.4735(13)  C(32)-C(33)  1.3961(13) 
C(2)-C(3)  1.4616(13)  C(32)-C(38)  1.5243(13) 
C(3)-C(4)  1.3737(14)  C(33)-C(34)  1.3926(15) 
C(3)-C(12)  1.4190(14)  C(34)-C(35)  1.3863(17) 
C(4)-C(5)  1.4189(15)  C(34)-C(37)  1.5062(15) 
C(5)-C(6)  1.3726(17)  C(35)-C(36)  1.3859(15) 
C(6)-C(7)  1.4238(16)  C(38)-C(39)  1.5323(15) 
C(7)-C(12)  1.3957(14)  C(38)-C(45)  1.5332(15) 
C(7)-C(8)  1.4156(16)  C(39)-C(44)  1.4082(14) 
C(8)-C(9)  1.3711(18)  C(39)-C(40)  1.4115(13) 
C(9)-C(10)  1.4210(16)  C(40)-C(41)  1.3923(15) 
C(10)-C(11)  1.3771(14)  C(40)-C(46)  1.5046(15) 
C(11)-C(12)  1.4264(14)  C(41)-C(42)  1.3827(17) 
C(13)-C(18)  1.3987(14)  C(42)-C(43)  1.3839(16) 
C(13)-C(14)  1.4134(14)  C(42)-C(47)  1.5036(17) 
C(14)-C(15)  1.3981(14)  C(43)-C(44)  1.3961(16) 
C(14)-C(20)  1.5235(14)  C(44)-C(48)  1.5102(15) 
C(15)-C(16)  1.3892(16)  O(1S)-C(3S)  1.415(2) 
C(16)-C(17)  1.3879(16)  O(1S)-C(2S)  1.416(2) 
C(16)-C(19)  1.5048(15)  C(1S)-C(2S)  1.483(3) 
C(17)-C(18)  1.3855(14)  C(3S)-C(4S)  1.485(3) 
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Table C.12. Angles [°] for 52. 
 

N(2)-Fe(1)-N(1) 83.44(3)  C(5)-C(6)-C(7) 120.10(10) 
N(2)-Fe(1)-C(21) 160.90(4)  C(12)-C(7)-C(8) 116.61(10) 
N(1)-Fe(1)-C(21) 92.20(4)  C(12)-C(7)-C(6) 116.45(10) 
N(2)-Fe(1)-C(22) 125.78(4)  C(8)-C(7)-C(6) 126.91(10) 
N(1)-Fe(1)-C(22) 115.85(4)  C(9)-C(8)-C(7) 119.81(10) 
C(21)-Fe(1)-C(22) 40.81(4)  C(8)-C(9)-C(10) 122.75(11) 
N(2)-Fe(1)-C(23) 103.73(4)  C(11)-C(10)-C(9) 119.29(10) 
N(1)-Fe(1)-C(23) 153.27(4)  C(10)-C(11)-C(12) 117.12(9) 
C(21)-Fe(1)-C(23) 72.53(4)  C(10)-C(11)-C(1) 137.53(10) 
C(22)-Fe(1)-C(23) 39.48(4)  C(12)-C(11)-C(1) 105.25(8) 
N(2)-Fe(1)-C(25) 124.60(4)  C(7)-C(12)-C(3) 123.51(9) 
N(1)-Fe(1)-C(25) 127.48(4)  C(7)-C(12)-C(11) 124.39(9) 
C(21)-Fe(1)-C(25) 72.44(4)  C(3)-C(12)-C(11) 112.02(9) 
C(22)-Fe(1)-C(25) 84.73(4)  C(18)-C(13)-C(14) 118.62(9) 
C(23)-Fe(1)-C(25) 69.62(4)  C(18)-C(13)-N(1) 119.22(9) 
N(2)-Fe(1)-C(26) 158.98(4)  C(14)-C(13)-N(1) 122.03(8) 
N(1)-Fe(1)-C(26) 99.41(4)  C(15)-C(14)-C(13) 117.99(9) 
C(21)-Fe(1)-C(26) 40.11(4)  C(15)-C(14)-C(20) 120.25(9) 
C(22)-Fe(1)-C(26) 71.84(4)  C(13)-C(14)-C(20) 121.75(9) 
C(23)-Fe(1)-C(26) 83.12(4)  C(16)-C(15)-C(14) 123.35(10) 
C(25)-Fe(1)-C(26) 38.82(4)  C(17)-C(16)-C(15) 117.69(9) 
N(2)-Fe(1)-C(24) 102.14(4)  C(17)-C(16)-C(19) 121.30(10) 
N(1)-Fe(1)-C(24) 165.60(4)  C(15)-C(16)-C(19) 120.99(11) 
C(21)-Fe(1)-C(24) 86.60(4)  C(18)-C(17)-C(16) 120.65(10) 
C(22)-Fe(1)-C(24) 71.82(5)  C(17)-C(18)-C(13) 121.64(10) 
C(23)-Fe(1)-C(24) 38.63(5)  C(21)-C(20)-C(14) 113.02(8) 
C(25)-Fe(1)-C(24) 38.78(4)  C(21)-C(20)-C(27) 110.66(9) 
C(26)-Fe(1)-C(24) 70.65(4)  C(14)-C(20)-C(27) 114.65(9) 
C(1)-N(1)-C(13) 120.58(8)  C(26)-C(21)-C(22) 119.13(9) 
C(1)-N(1)-Fe(1) 113.46(6)  C(26)-C(21)-C(20) 121.50(9) 
C(13)-N(1)-Fe(1) 125.53(6)  C(22)-C(21)-C(20) 119.02(9) 
C(2)-N(2)-C(31) 119.41(8)  C(26)-C(21)-Fe(1) 73.52(6) 
C(2)-N(2)-Fe(1) 113.68(6)  C(22)-C(21)-Fe(1) 71.42(6) 
C(31)-N(2)-Fe(1) 126.91(6)  C(20)-C(21)-Fe(1) 120.56(7) 
N(1)-C(1)-C(2) 113.75(8)  C(23)-C(22)-C(21) 118.62(10) 
N(1)-C(1)-C(11) 138.02(9)  C(23)-C(22)-C(28) 117.90(10) 
C(2)-C(1)-C(11) 107.90(8)  C(21)-C(22)-C(28) 123.41(10) 
N(2)-C(2)-C(1) 115.64(8)  C(23)-C(22)-Fe(1) 71.39(6) 
N(2)-C(2)-C(3) 134.51(9)  C(21)-C(22)-Fe(1) 67.78(6) 
C(1)-C(2)-C(3) 109.75(8)  C(28)-C(22)-Fe(1) 135.87(8) 
C(4)-C(3)-C(12) 118.76(9)  C(24)-C(23)-C(22) 122.55(10) 
C(4)-C(3)-C(2) 136.31(9)  C(24)-C(23)-Fe(1) 71.67(6) 
C(12)-C(3)-C(2) 104.91(8)  C(22)-C(23)-Fe(1) 69.13(6) 
C(3)-C(4)-C(5) 118.55(10)  C(23)-C(24)-C(25) 117.80(10) 
C(6)-C(5)-C(4) 122.59(10)  C(23)-C(24)-C(29) 122.03(11) 
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Table C.12. (continued) 
 

C(25)-C(24)-C(29) 120.13(11)  C(36)-C(35)-C(34) 120.49(10) 
C(23)-C(24)-Fe(1) 69.69(6)  C(35)-C(36)-C(31) 120.68(10) 
C(25)-C(24)-Fe(1) 69.71(6)  C(32)-C(38)-C(39) 113.70(8) 
C(29)-C(24)-Fe(1) 134.33(8)  C(32)-C(38)-C(45) 114.03(8) 
C(26)-C(25)-C(24) 121.93(10)  C(39)-C(38)-C(45) 111.92(8) 
C(26)-C(25)-Fe(1) 71.15(6)  C(44)-C(39)-C(40) 117.95(9) 
C(24)-C(25)-Fe(1) 71.52(6)  C(44)-C(39)-C(38) 123.87(9) 
C(25)-C(26)-C(21) 119.38(9)  C(40)-C(39)-C(38) 118.18(9) 
C(25)-C(26)-C(30) 116.81(9)  C(41)-C(40)-C(39) 119.81(10) 
C(21)-C(26)-C(30) 123.81(9)  C(41)-C(40)-C(46) 117.51(9) 
C(25)-C(26)-Fe(1) 70.04(6)  C(39)-C(40)-C(46) 122.65(10) 
C(21)-C(26)-Fe(1) 66.37(5)  C(42)-C(41)-C(40) 122.45(10) 
C(30)-C(26)-Fe(1) 137.22(7)  C(41)-C(42)-C(43) 117.30(10) 
C(36)-C(31)-C(32) 120.24(9)  C(41)-C(42)-C(47) 120.95(11) 
C(36)-C(31)-N(2) 118.25(9)  C(43)-C(42)-C(47) 121.74(11) 
C(32)-C(31)-N(2) 121.39(8)  C(42)-C(43)-C(44) 122.37(11) 
C(33)-C(32)-C(31) 117.26(9)  C(43)-C(44)-C(39) 119.80(10) 
C(33)-C(32)-C(38) 122.31(9)  C(43)-C(44)-C(48) 115.97(10) 
C(31)-C(32)-C(38) 120.41(8)  C(39)-C(44)-C(48) 124.23(10) 
C(34)-C(33)-C(32) 122.81(10)  C(3S)-O(1S)-C(2S) 113.55(13) 
C(35)-C(34)-C(33) 118.21(9)  O(1S)-C(2S)-C(1S) 108.73(15) 
C(35)-C(34)-C(37) 121.10(10)  O(1S)-C(3S)-C(4S) 109.61(14) 
C(33)-C(34)-C(37) 120.69(11)    
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Table C.13. Crystal data and structure refinement for (iPrPDI)Ti(C4H6). 
________________________________________________________________________________ 
Identification code  rt13 
Empirical formula  C74 H98 N6 Ti2 
Formula weight  1167.38 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 15.3274(9) Å α= 90°. 
 b = 20.7076(11) Å β= 101.401(2)°. 
 c = 21.0803(11) Å γ = 90°. 
Volume 6558.7(6) Å3 
Z 4 
Density (calculated) 1.182 Mg/m3 
Absorption coefficient 0.290 mm-1 
F(000) 2512 
Crystal size 0.50 x 0.35 x 0.15 mm3 
Theta range for data collection 1.36 to 24.48°. 
Index ranges -17<=h<=17, -24<=k<=24, -24<=l<=23 
Reflections collected 58116 
Independent reflections 10850 [R(int) = 0.0537] 
Completeness to theta = 24.48° 99.6 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9578 and 0.8687 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 10850 / 0 / 968 
Goodness-of-fit on F2 1.052 
Final R indices [I>2sigma(I)] R1 = 0.0401, wR2 = 0.1012 
R indices (all data) R1 = 0.0654, wR2 = 0.1121 
Largest diff. peak and hole 0.290 and -0.362 e.Å-3 
________________________________________________________________________________ 
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Table C.14. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for (iPrPDI)Ti(C4H6). U(eq) is defined as one third of  the trace 

of the orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Ti(1) 6431(1) 357(1) 3648(1) 25(1) 
Ti(2) 1540(1) 662(1) 1401(1) 25(1) 
N(1) 6070(1) -437(1) 2906(1) 26(1) 
N(2) 6486(1) 734(1) 2781(1) 22(1) 
N(3) 6690(1) 1327(1) 3820(1) 27(1) 
N(4) 2491(1) 682(1) 767(1) 26(1) 
N(5) 2700(1) 929(1) 1950(1) 22(1) 
N(6) 1293(1) 786(1) 2366(1) 25(1) 
C(1) 5911(2) -741(1) 1748(1) 40(1) 
C(2) 6105(1) -286(1) 2309(1) 27(1) 
C(3) 6338(1) 374(1) 2217(1) 24(1) 
C(4) 6381(2) 635(1) 1628(1) 28(1) 
C(5) 6572(2) 1297(1) 1575(1) 30(1) 
C(6) 6690(1) 1665(1) 2116(1) 27(1) 
C(7) 6647(1) 1401(1) 2723(1) 23(1) 
C(8) 6754(2) 1723(1) 3297(1) 27(1) 
C(9) 6909(3) 2437(1) 3349(2) 44(1) 
C(10) 5789(2) -1079(1) 3044(1) 28(1) 
C(11) 4889(2) -1176(1) 3052(1) 30(1) 
C(12) 4628(2) -1789(1) 3208(1) 36(1) 
C(13) 5231(2) -2286(1) 3344(1) 41(1) 
C(14) 6099(2) -2186(1) 3326(1) 40(1) 
C(15) 6414(2) -1585(1) 3177(1) 35(1) 
C(16) 4196(2) -648(1) 2881(1) 34(1) 
C(17) 3722(2) -697(1) 2170(1) 52(1) 
C(18) 3504(2) -650(1) 3312(2) 51(1) 
C(19) 7381(2) -1514(1) 3133(2) 49(1) 
C(20) 8019(2) -1778(2) 3727(2) 65(1) 
C(21) 7568(2) -1852(2) 2527(2) 81(1) 
C(22) 6913(2) 1633(1) 4447(1) 27(1) 
C(23) 7812(2) 1698(1) 4746(1) 31(1) 
C(24) 8012(2) 1977(1) 5353(1) 36(1) 
C(25) 7359(2) 2197(1) 5658(1) 38(1) 
C(26) 6480(2) 2146(1) 5356(1) 35(1) 
C(27) 6238(2) 1866(1) 4748(1) 29(1) 
C(28) 8559(2) 1495(1) 4413(1) 45(1) 
C(29) 9099(2) 2073(2) 4277(2) 88(1) 
C(30) 9186(2) 1001(2) 4790(2) 73(1) 
C(31) 5263(2) 1838(1) 4424(1) 36(1) 
C(32) 4949(2) 2483(1) 4111(1) 57(1) 
C(33) 4654(2) 1627(1) 4879(1) 50(1) 
C(34) 7352(3) -273(2) 4265(1) 52(1) 
C(35) 7034(2) 123(1) 4717(1) 49(1) 
C(36) 6140(2) 263(1) 4680(1) 45(1) 
C(37) 5444(2) 37(2) 4193(1) 47(1) 
C(38) 4063(2) 902(2) 660(1) 42(1) 
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Table C.14. (continued) 
 
C(39) 3329(1) 846(1) 1030(1) 26(1) 
C(40) 3473(1) 981(1) 1695(1) 23(1) 
C(41) 4279(2) 1143(1) 2081(1) 27(1) 
C(42) 4345(2) 1275(1) 2731(1) 30(1) 
C(43) 3594(2) 1225(1) 2993(1) 30(1) 
C(44) 2783(1) 1053(1) 2612(1) 24(1) 
C(45) 1989(2) 970(1) 2831(1) 27(1) 
C(46) 1937(2) 1076(2) 3527(1) 44(1) 
C(47) 2287(1) 553(1) 81(1) 28(1) 
C(48) 2326(2) -83(1) -138(1) 34(1) 
C(49) 2086(2) -188(2) -801(1) 48(1) 
C(50) 1838(2) 313(2) -1230(1) 57(1) 
C(51) 1812(2) 926(2) -1008(1) 48(1) 
C(52) 2033(2) 1066(1) -351(1) 36(1) 
C(53) 2639(2) -639(1) 311(1) 40(1) 
C(54) 2083(2) -1251(1) 146(2) 64(1) 
C(55) 3613(2) -799(2) 327(1) 57(1) 
C(56) 2014(2) 1761(1) -129(1) 44(1) 
C(57) 2770(2) 2154(2) -311(2) 85(1) 
C(58) 1144(2) 2099(2) -404(2) 68(1) 
C(59) 456(1) 681(1) 2557(1) 27(1) 
C(60) -165(2) 1189(1) 2499(1) 31(1) 
C(61) -970(2) 1068(2) 2682(1) 43(1) 
C(62) -1167(2) 481(2) 2917(1) 46(1) 
C(63) -556(2) -6(2) 2972(1) 42(1) 
C(64) 264(2) 80(1) 2794(1) 33(1) 
C(65) 41(2) 1854(1) 2272(1) 39(1) 
C(66) -737(2) 2162(1) 1808(1) 63(1) 
C(67) 349(2) 2305(1) 2843(1) 54(1) 
C(68) 922(2) -471(1) 2880(1) 47(1) 
C(69) 1271(2) -599(2) 3605(2) 82(1) 
C(70) 523(3) -1086(1) 2554(2) 83(1) 
C(71) 319(6) 1108(6) 948(4) 40(2) 
C(72) 412(3) 652(4) 485(3) 43(2) 
C(73) 633(5) 21(4) 631(4) 42(2) 
C(74) 814(8) -232(6) 1255(5) 46(3) 
C(71') 527(5) 1157(5) 705(4) 39(2) 
C(72') 21(3) 717(4) 1021(2) 35(2) 
C(73') 224(4) 84(3) 1152(2) 37(2) 
C(74') 975(8) -235(5) 995(5) 44(3) 
________________________________________________________________________________ 
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Table C.15. Bond lengths [Å] for (iPrPDI)Ti(C4H6). 

 Ti(1)-N(2)  2.0054(17)  C(15)-C(19)  1.511(4) 
Ti(1)-N(3)   2.0674(18)  C(16)-C(18)  1.526(3) 
Ti(1)-C(34)   2.158(3)  C(16)-C(17)  1.535(4) 
Ti(1)-C(37)   2.175(3)  C(19)-C(20)  1.528(4) 
Ti(1)-N(1)   2.2615(18)  C(19)-C(21)  1.533(4) 
Ti(1)-C(35)  

 
2.311(3)  C(22)-C(27)  1.402(3) 

Ti(1)-C(36)  
 

2.314(3)  C(22)-C(23)  1.403(3) 
Ti(2)-N(5)  

 
1.9986(17)  C(23)-C(24)  1.383(3) 

Ti(2)-C(74')  
 

2.152(10)  C(23)-C(28)  1.516(3) 
Ti(2)-C(71)  

 
2.135(9)  C(24)-C(25)  1.370(4) 

Ti(2)-C(71')  
 

2.172(8)  C(25)-C(26)  1.375(4) 
Ti(2)-N(6)  

 
2.1582(17)  C(26)-C(27)  1.388(3) 

Ti(2)-N(4)  
 
 2.1628(18)  C(27)-C(31)  1.516(3) 

Ti(2)-C(74)   2.149(12)  C(28)-C(30)  1.515(4) 
Ti(2)-C(72')   2.311(5)  C(28)-C(29)  1.515(4) 
Ti(2)-C(73')   2.314(5)  C(31)-C(32)  1.525(4) 
Ti(2)-C(72)   2.322(5)  C(31)-C(33)  1.527(3) 
Ti(2)-C(73)   2.330(6)  C(34)-C(35)  1.413(4) 
N(1)-C(2)   1.307(3)  C(35)-C(36)  1.388(4) 
N(1)-C(10)   1.444(3)  C(36)-C(37)  1.407(4) 
N(2)-C(3)   1.384(3)  C(38)-C(39)  1.495(3) 
N(2)-C(7)  

 
1.413(3)  C(39)-C(40)  1.403(3) 

N(3)-C(8)  
 

1.392(3)  C(40)-C(41)  1.380(3) 
N(3)-C(22)  

 
1.444(3)  C(41)-C(42)  1.381(3) 

N(4)-C(39)  
 

1.339(3)  C(42)-C(43)  1.376(3) 
N(4)-C(47)  

 
1.443(3)  C(43)-C(44)  1.387(3) 

N(5)-C(40)  
 

1.399(3)  C(44)-C(45)  1.395(3) 
N(5)-C(44)  

 
1.400(3)  C(45)-C(46)  1.500(3) 

N(6)-C(45)  
 
 1.353(3)  C(47)-C(48)  1.401(3) 

N(6)-C(59)   1.435(3)  C(47)-C(52)  1.403(3) 
C(1)-C(2)   1.495(3)  C(48)-C(49)  1.389(3) 
C(2)-C(3)   1.436(3)  C(48)-C(53)  1.507(4) 
C(3)-C(4)   1.366(3)  C(49)-C(50)  1.379(4) 
C(4)-C(5)   1.412(3)  C(50)-C(51)  1.357(4) 
C(5)-C(6)   1.353(3)  C(51)-C(52)  1.389(3) 
C(6)-C(7)   1.406(3)  C(52)-C(56)  1.517(4) 
C(7)-C(8)   1.363(3)  C(53)-C(55)  1.523(4) 
C(8)-C(9)  

 
1.497(3)  C(53)-C(54)  1.529(4) 

C(10)-C(11)  
 

1.398(3)  C(56)-C(58)  1.517(4) 
C(10)-C(15)  

 
1.410(3)  C(56)-C(57)  1.526(4) 

C(11)-C(12)  
 

1.390(3)  C(59)-C(64)  1.394(3) 
C(11)-C(16)  

 
1.519(3)  C(59)-C(60)  1.407(3) 

C(12)-C(13)  
 

1.374(4)  C(60)-C(61)  1.387(3) 
C(13)-C(14)  

 
1.355(4)  C(60)-C(65)  1.510(3)  

 C(14)-C(15)  1.391(3)  C(61)-C(62)  1.369(4) 
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Table C.15. (continued)   

 C(62)-C(63)  1.364(4)  C(71)-C(72)  1.385(13) 
C(63)-C(64)  1.392(3)  C(72)-C(73)  1.368(12) 
C(64)-C(68)  1.510(3)  C(73)-C(74)  1.393(16) 
C(65)-C(67)  1.523(4)  C(71')-C(72')  1.443(10) 
C(65)-C(66)  1.525(4)  C(72')-C(73')  1.363(10) 
C(68)-C(70)  1.517(4)  C(73')-C(74')  1.422(13) 
C(68)-C(69)  1.537(4)    
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Table C.16. Angles [°] for (iPrPDI)Ti(C4H6). 
 

N(2)-Ti(1)-N(3) 74.92(7)  C(71')-Ti(2)-C(72') 37.4(3) 
N(2)-Ti(1)-C(34) 130.12(11)  N(6)-Ti(2)-C(72') 88.16(14) 
N(3)-Ti(1)-C(34) 113.63(11)  N(4)-Ti(2)-C(72') 122.76(14) 
N(2)-Ti(1)-C(37) 139.38(10)  C(74)-Ti(2)-C(72') 62.3(4) 
N(3)-Ti(1)-C(37) 109.46(10)  N(5)-Ti(2)-C(73') 155.52(15) 
C(34)-Ti(1)-C(37) 86.45(14)  C(74')-Ti(2)-C(73') 36.9(3) 
N(2)-Ti(1)-N(1) 72.58(7)  C(71)-Ti(2)-C(73') 58.3(4) 
N(3)-Ti(1)-N(1) 147.18(7)  C(71')-Ti(2)-C(73') 67.4(3) 
C(34)-Ti(1)-N(1) 91.13(10)  N(6)-Ti(2)-C(73') 88.17(13) 
C(37)-Ti(1)-N(1) 92.53(9)  N(4)-Ti(2)-C(73') 122.25(13) 
N(2)-Ti(1)-C(35) 152.81(10)  C(74)-Ti(2)-C(73') 28.3(4) 
N(3)-Ti(1)-C(35) 90.37(9)  C(72')-Ti(2)-C(73') 34.3(3) 
C(34)-Ti(1)-C(35) 36.66(11)  N(5)-Ti(2)-C(72) 156.16(17) 
C(37)-Ti(1)-C(35) 66.88(12)  C(74')-Ti(2)-C(72) 59.2(4) 
N(1)-Ti(1)-C(35) 121.22(8)  C(71)-Ti(2)-C(72) 35.9(3) 
N(2)-Ti(1)-C(36) 160.15(9)  C(71')-Ti(2)-C(72) 29.2(3) 
N(3)-Ti(1)-C(36) 88.99(8)  N(6)-Ti(2)-C(72) 122.96(14) 
C(34)-Ti(1)-C(36) 66.88(12)  N(4)-Ti(2)-C(72) 88.22(14) 
C(37)-Ti(1)-C(36) 36.36(10)  C(74)-Ti(2)-C(72) 66.1(4) 
N(1)-Ti(1)-C(36) 121.60(8)  C(72')-Ti(2)-C(72) 34.82(18) 
C(35)-Ti(1)-C(36) 34.93(10)  C(73')-Ti(2)-C(72) 48.3(2) 
N(5)-Ti(2)-C(74') 135.3(4)  N(5)-Ti(2)-C(73) 154.3(2) 
N(5)-Ti(2)-C(71) 137.7(3)  C(74')-Ti(2)-C(73) 25.2(3) 
C(74')-Ti(2)-C(71) 87.0(5)  C(71)-Ti(2)-C(73) 65.5(4) 
N(5)-Ti(2)-C(71') 134.1(3)  C(71')-Ti(2)-C(73) 63.3(4) 
C(74')-Ti(2)-C(71') 87.8(4)  N(6)-Ti(2)-C(73) 122.23(17) 
C(71)-Ti(2)-C(71') 17.68(19)  N(4)-Ti(2)-C(73) 87.88(17) 
N(5)-Ti(2)-N(6) 73.85(7)  C(74)-Ti(2)-C(73) 35.9(4) 
C(74')-Ti(2)-N(6) 110.2(2)  C(72')-Ti(2)-C(73) 50.6(2) 
C(71)-Ti(2)-N(6) 93.9(2)  C(73')-Ti(2)-C(73) 34.43(19) 
C(71')-Ti(2)-N(6) 110.2(2)  C(72)-Ti(2)-C(73) 34.2(3) 
N(5)-Ti(2)-N(4) 73.86(7)  C(2)-N(1)-C(10) 118.99(18) 
C(74')-Ti(2)-N(4) 92.2(2)  C(2)-N(1)-Ti(1) 116.18(14) 
C(71)-Ti(2)-N(4) 110.7(2)  C(10)-N(1)-Ti(1) 124.82(13) 
C(71')-Ti(2)-N(4) 93.02(19)  C(3)-N(2)-C(7) 117.01(17) 
N(6)-Ti(2)-N(4) 147.69(7)  C(3)-N(2)-Ti(1) 123.02(14) 
N(5)-Ti(2)-C(74) 134.2(4)  C(7)-N(2)-Ti(1) 119.92(13) 
C(74')-Ti(2)-C(74) 17.2(2)  C(8)-N(3)-C(22) 115.18(17) 
C(71)-Ti(2)-C(74) 85.7(5)  C(8)-N(3)-Ti(1) 118.33(14) 
C(71')-Ti(2)-C(74) 91.7(5)  C(22)-N(3)-Ti(1) 126.12(13) 
N(6)-Ti(2)-C(74) 93.2(2)  C(39)-N(4)-C(47) 117.51(18) 
N(4)-Ti(2)-C(74) 108.8(2)  C(39)-N(4)-Ti(2) 117.24(14) 
N(5)-Ti(2)-C(72') 155.07(16)  C(47)-N(4)-Ti(2) 125.22(13) 
C(74')-Ti(2)-C(72') 66.9(4)  C(40)-N(5)-C(44) 116.87(17) 
C(71)-Ti(2)-C(72') 24.5(3)  C(40)-N(5)-Ti(2) 121.50(13) 
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Table C.16. (continued) 
 

C(44)-N(5)-Ti(2) 121.59(14)  C(25)-C(26)-C(27) 121.2(2) 
C(45)-N(6)-C(59) 117.39(18)  C(26)-C(27)-C(22) 118.4(2) 
C(45)-N(6)-Ti(2) 117.21(14)  C(26)-C(27)-C(31) 119.4(2) 
C(59)-N(6)-Ti(2) 125.39(13)  C(22)-C(27)-C(31) 122.2(2) 
N(1)-C(2)-C(3) 114.64(19)  C(30)-C(28)-C(29) 108.6(3) 
N(1)-C(2)-C(1) 124.8(2)  C(30)-C(28)-C(23) 113.8(2) 
C(3)-C(2)-C(1) 120.5(2)  C(29)-C(28)-C(23) 111.0(2) 
C(4)-C(3)-N(2) 122.6(2)  C(27)-C(31)-C(32) 111.1(2) 
C(4)-C(3)-C(2) 123.9(2)  C(27)-C(31)-C(33) 113.5(2) 
N(2)-C(3)-C(2) 113.49(18)  C(32)-C(31)-C(33) 110.0(2) 
C(3)-C(4)-C(5) 120.2(2)  C(35)-C(34)-Ti(1) 77.57(17) 
C(6)-C(5)-C(4) 118.4(2)  C(36)-C(35)-C(34) 123.5(3) 
C(5)-C(6)-C(7) 121.7(2)  C(36)-C(35)-Ti(1) 72.63(16) 
C(8)-C(7)-C(6) 126.8(2)  C(34)-C(35)-Ti(1) 65.77(15) 
C(8)-C(7)-N(2) 113.25(18)  C(35)-C(36)-C(37) 124.6(3) 
C(6)-C(7)-N(2) 119.94(19)  C(35)-C(36)-Ti(1) 72.44(15) 
C(7)-C(8)-N(3) 113.56(19)  C(37)-C(36)-Ti(1) 66.45(15) 
C(7)-C(8)-C(9) 122.5(2)  C(36)-C(37)-Ti(1) 77.19(16) 
N(3)-C(8)-C(9) 123.9(2)  N(4)-C(39)-C(40) 114.38(19) 
C(11)-C(10)-C(15) 121.5(2)  N(4)-C(39)-C(38) 124.2(2) 
C(11)-C(10)-N(1) 118.01(19)  C(40)-C(39)-C(38) 121.4(2) 
C(15)-C(10)-N(1) 120.4(2)  C(41)-C(40)-N(5) 121.32(19) 
C(12)-C(11)-C(10) 117.7(2)  C(41)-C(40)-C(39) 125.7(2) 
C(12)-C(11)-C(16) 119.6(2)  N(5)-C(40)-C(39) 113.00(18) 
C(10)-C(11)-C(16) 122.6(2)  C(40)-C(41)-C(42) 121.0(2) 
C(13)-C(12)-C(11) 121.3(3)  C(43)-C(42)-C(41) 118.7(2) 
C(14)-C(13)-C(12) 120.2(2)  C(42)-C(43)-C(44) 120.9(2) 
C(13)-C(14)-C(15) 122.0(2)  C(43)-C(44)-C(45) 125.5(2) 
C(14)-C(15)-C(10) 117.2(2)  C(43)-C(44)-N(5) 121.2(2) 
C(14)-C(15)-C(19) 119.3(2)  C(45)-C(44)-N(5) 113.23(18) 
C(10)-C(15)-C(19) 123.4(2)  N(6)-C(45)-C(44) 114.12(19) 
C(11)-C(16)-C(18) 113.1(2)  N(6)-C(45)-C(46) 124.3(2) 
C(11)-C(16)-C(17) 110.9(2)  C(44)-C(45)-C(46) 121.6(2) 
C(18)-C(16)-C(17) 109.3(2)  C(48)-C(47)-C(52) 121.4(2) 
C(15)-C(19)-C(20) 113.1(2)  C(48)-C(47)-N(4) 119.4(2) 
C(15)-C(19)-C(21) 110.8(3)  C(52)-C(47)-N(4) 119.2(2) 
C(20)-C(19)-C(21) 109.0(2)  C(49)-C(48)-C(47) 117.3(2) 
C(27)-C(22)-C(23) 120.73(19)  C(49)-C(48)-C(53) 120.0(2) 
C(27)-C(22)-N(3) 120.21(19)  C(47)-C(48)-C(53) 122.7(2) 
C(23)-C(22)-N(3) 119.1(2)  C(50)-C(49)-C(48) 121.7(3) 
C(24)-C(23)-C(22) 118.3(2)  C(51)-C(50)-C(49) 120.1(3) 
C(24)-C(23)-C(28) 119.6(2)  C(50)-C(51)-C(52) 121.3(3) 
C(22)-C(23)-C(28) 122.1(2)  C(51)-C(52)-C(47) 118.2(2) 
C(25)-C(24)-C(23) 121.6(2)  C(51)-C(52)-C(56) 119.3(2) 
C(24)-C(25)-C(26) 119.8(2)  C(47)-C(52)-C(56) 122.6(2) 
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Table C.16. (continued) 
 

C(48)-C(53)-C(55) 111.6(2)  C(67)-C(65)-C(66) 109.3(2) 
C(48)-C(53)-C(54) 113.4(2)  C(64)-C(68)-C(70) 112.3(2) 
C(55)-C(53)-C(54) 109.0(2)  C(64)-C(68)-C(69) 110.0(2) 
C(52)-C(56)-C(58) 112.9(2)  C(70)-C(68)-C(69) 109.6(3) 
C(52)-C(56)-C(57) 111.5(2)  C(72)-C(71)-Ti(2) 79.4(5) 
C(58)-C(56)-C(57) 108.1(2)  C(73)-C(72)-C(71) 123.3(6) 
C(64)-C(59)-C(60) 120.8(2)  C(73)-C(72)-Ti(2) 73.2(3) 
C(64)-C(59)-N(6) 119.9(2)  C(71)-C(72)-Ti(2) 64.7(4) 
C(60)-C(59)-N(6) 119.2(2)  C(72)-C(73)-C(74) 124.4(7) 
C(61)-C(60)-C(59) 117.6(2)  C(72)-C(73)-Ti(2) 72.6(3) 
C(61)-C(60)-C(65) 120.4(2)  C(74)-C(73)-Ti(2) 64.9(5) 
C(59)-C(60)-C(65) 121.9(2)  C(73)-C(74)-Ti(2) 79.1(6) 
C(62)-C(61)-C(60) 122.2(3)  C(72')-C(71')-Ti(2) 76.5(4) 
C(63)-C(62)-C(61) 119.3(3)  C(71')-C(72')-C(73') 125.3(6) 
C(62)-C(63)-C(64) 121.6(3)  C(71')-C(72')-Ti(2) 66.1(4) 
C(63)-C(64)-C(59) 118.4(2)  C(73')-C(72')-Ti(2) 73.0(3) 
C(63)-C(64)-C(68) 119.2(2)  C(74')-C(73')-C(72') 124.3(6) 
C(59)-C(64)-C(68) 122.4(2)  C(74')-C(73')-Ti(2) 65.3(4) 
C(60)-C(65)-C(67) 111.1(2)  C(72')-C(73')-Ti(2) 72.7(3) 
C(60)-C(65)-C(66) 113.5(2)  C(73')-C(74')-Ti(2) 77.7(5) 
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Table C.17. Crystal data and structure refinement for 1-Bpy. 
________________________________________________________________________________ 
Identification code  rt16a 
Empirical formula  C43 H51 Fe N5 
Formula weight  693.74 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  C2/c 
Unit cell dimensions a = 22.503(3) Å α= 90°. 
 b = 18.2414(19) Å β= 99.393(3)°. 
 c = 22.395(3) Å γ = 90°. 
Volume 9069.5(18) Å3 
Z 8 
Density (calculated) 1.016 Mg/m3 
Absorption coefficient 0.363 mm-1 
F(000) 2960 
Crystal size 0.50 x 0.30 x 0.02 mm3 
Theta range for data collection 1.44 to 23.28°. 
Index ranges -24<=h<=24, -20<=k<=17, -24<=l<=24 
Reflections collected 31188 
Independent reflections 6510 [R(int) = 0.1193] 
Completeness to theta = 23.28° 99.9 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9928 and 0.8394 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6510 / 0 / 442 
Goodness-of-fit on F2 0.776 
Final R indices [I>2sigma(I)] R1 = 0.0466, wR2 = 0.0906 
R indices (all data) R1 = 0.1102, wR2 = 0.1005 
Largest diff. peak and hole 0.245 and -0.248 e.Å-3 
________________________________________________________________________________ 
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Table C.18. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 1-Bpy. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 2109(1) 2852(1) 2434(1) 24(1) 
N(1) 2158(1) 2628(1) 3286(1) 24(1) 
N(2) 2831(1) 2359(1) 2569(2) 23(1) 
N(3) 2196(1) 2599(1) 1612(1) 24(1) 
N(4) 1312(1) 3270(2) 2242(1) 25(1) 
N(5) 2320(1) 3892(2) 2471(1) 23(1) 
C(1) 2856(2) 2209(2) 4231(2) 35(1) 
C(2) 2700(2) 2373(2) 3568(2) 25(1) 
C(3) 3098(2) 2210(2) 3161(2) 29(1) 
C(4) 3675(2) 1913(2) 3275(2) 38(1) 
C(5) 3977(2) 1765(2) 2793(2) 41(1) 
C(6) 3696(2) 1892(2) 2196(2) 37(1) 
C(7) 3119(2) 2183(2) 2092(2) 27(1) 
C(8) 2738(2) 2329(2) 1539(2) 28(1) 
C(9) 2929(2) 2147(2) 942(2) 40(1) 
C(10) 795(2) 2894(2) 2080(2) 33(1) 
C(11) 254(2) 3221(3) 1866(2) 42(1) 
C(12) 224(2) 3989(3) 1823(2) 50(1) 
C(13) 738(2) 4382(2) 1995(2) 40(1) 
C(14) 1280(2) 4028(2) 2202(2) 27(1) 
C(15) 1857(2) 4373(2) 2353(2) 25(1) 
C(16) 1969(2) 5129(2) 2374(2) 40(1) 
C(17) 2544(2) 5390(2) 2503(2) 43(1) 
C(18) 3010(2) 4896(2) 2618(2) 41(1) 
C(19) 2891(2) 4148(2) 2602(2) 31(1) 
C(20) 1692(2) 2708(2) 3652(2) 25(1) 
C(21) 1626(2) 3362(2) 3969(2) 26(1) 
C(22) 1188(2) 3387(2) 4338(2) 32(1) 
C(23) 820(2) 2795(2) 4405(2) 34(1) 
C(24) 882(2) 2163(2) 4080(2) 33(1) 
C(25) 1312(2) 2115(2) 3705(2) 26(1) 
C(26) 2027(2) 4024(2) 3942(2) 30(1) 
C(27) 1654(2) 4730(2) 3800(2) 44(1) 
C(28) 2468(2) 4119(2) 4530(2) 44(1) 
C(29) 1369(2) 1394(2) 3363(2) 28(1) 
C(30) 1677(2) 808(2) 3799(2) 51(1) 
C(31) 756(2) 1108(2) 3056(2) 43(1) 
C(32) 1746(2) 2687(2) 1078(2) 26(1) 
C(33) 1342(2) 2114(2) 909(2) 24(1) 
C(34) 919(2) 2186(2) 388(2) 35(1) 
C(35) 887(2) 2814(2) 38(2) 39(1) 
C(36) 1279(2) 3387(2) 223(2) 33(1) 
C(37) 1708(2) 3335(2) 733(2) 32(1) 
C(38) 1367(2) 1396(2) 1259(2) 29(1) 
C(39) 740(2) 1092(2) 1303(2) 40(1) 
C(40) 1736(2) 826(2) 959(2) 42(1) 
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Table C.18. (continued) 
 
C(41) 2140(2) 3982(2) 894(2) 36(1) 
C(42) 2611(2) 4013(2) 475(2) 46(1) 
C(43) 1794(2) 4712(2) 861(2) 46(1) 

________________________________________________________________________________ 
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Table C.19. Bond lengths [Å] for 1-Bpy. 
 
 Fe(1)-N(2)  1.840(3)  C(15)-C(16)  1.402(5) 

Fe(1)-N(4)  1.932(3)  C(16)-C(17)  1.365(5) 
Fe(1)-N(1)  1.938(3)  C(17)-C(18)  1.375(5) 
Fe(1)-N(3)  1.938(3)  C(18)-C(19)  1.389(5) 
Fe(1)-N(5)  1.954(3)  C(20)-C(25)  1.395(4) 
N(1)-C(2)  1.360(4)  C(20)-C(21)  1.410(4) 
N(1)-C(20)  1.440(4)  C(21)-C(22)  1.387(4) 
N(2)-C(7)  1.376(4)  C(21)-C(26)  1.514(4) 
N(2)-C(3)  1.389(4)  C(22)-C(23)  1.384(4) 
N(3)-C(8)  1.351(4)  C(23)-C(24)  1.383(5) 
N(3)-C(32)  1.444(4)  C(24)-C(25)  1.384(4) 
N(4)-C(10)  1.347(4)  C(25)-C(29)  1.538(4) 
N(4)-C(14)  1.387(4)  C(26)-C(28)  1.525(4) 
N(5)-C(19)  1.354(4)  C(26)-C(27)  1.541(4) 
N(5)-C(15)  1.355(4)  C(29)-C(31)  1.530(4) 
C(1)-C(2)  1.500(4)  C(29)-C(30)  1.534(4) 
C(2)-C(3)  1.408(5)  C(32)-C(33)  1.397(4) 
C(3)-C(4)  1.392(5)  C(32)-C(37)  1.407(5) 
C(4)-C(5)  1.392(5)  C(33)-C(34)  1.387(4) 
C(5)-C(6)  1.400(5)  C(33)-C(38)  1.522(4) 
C(6)-C(7)  1.387(5)  C(34)-C(35)  1.383(5) 
C(7)-C(8)  1.410(5)  C(35)-C(36)  1.388(5) 
C(8)-C(9)  1.507(5)  C(36)-C(37)  1.374(5) 
C(10)-C(11)  1.370(5)  C(37)-C(41)  1.532(5) 
C(11)-C(12)  1.406(5)  C(38)-C(39)  1.532(4) 
C(12)-C(13)  1.361(5)  C(38)-C(40)  1.552(4) 
C(13)-C(14)  1.392(5)  C(41)-C(42)  1.528(5) 
C(14)-C(15)  1.431(5)  C(41)-C(43)  1.538(5) 
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Table C.20. Angles [°] for 1-Bpy. 
 

N(2)-Fe(1)-N(4) 173.39(12)  N(4)-C(14)-C(15) 112.8(3) 
N(2)-Fe(1)-N(1) 80.05(13)  C(13)-C(14)-C(15) 125.9(4) 
N(4)-Fe(1)-N(1) 101.81(12)  N(5)-C(15)-C(16) 120.1(3) 
N(2)-Fe(1)-N(3) 79.46(13)  N(5)-C(15)-C(14) 113.6(3) 
N(4)-Fe(1)-N(3) 96.68(12)  C(16)-C(15)-C(14) 126.3(4) 
N(1)-Fe(1)-N(3) 152.51(11)  C(17)-C(16)-C(15) 120.6(4) 
N(2)-Fe(1)-N(5) 105.38(12)  C(16)-C(17)-C(18) 118.6(4) 
N(4)-Fe(1)-N(5) 80.60(13)  C(17)-C(18)-C(19) 120.1(4) 
N(1)-Fe(1)-N(5) 100.84(11)  N(5)-C(19)-C(18) 121.1(4) 
N(3)-Fe(1)-N(5) 102.12(11)  C(25)-C(20)-C(21) 119.8(3) 
C(2)-N(1)-C(20) 116.9(3)  C(25)-C(20)-N(1) 118.9(3) 
C(2)-N(1)-Fe(1) 115.6(2)  C(21)-C(20)-N(1) 121.2(3) 
C(20)-N(1)-Fe(1) 127.5(2)  C(22)-C(21)-C(20) 118.2(3) 
C(7)-N(2)-C(3) 120.8(3)  C(22)-C(21)-C(26) 118.9(3) 
C(7)-N(2)-Fe(1) 120.1(3)  C(20)-C(21)-C(26) 122.9(3) 
C(3)-N(2)-Fe(1) 119.0(3)  C(23)-C(22)-C(21) 122.3(3) 
C(8)-N(3)-C(32) 117.8(3)  C(24)-C(23)-C(22) 118.7(3) 
C(8)-N(3)-Fe(1) 115.7(2)  C(23)-C(24)-C(25) 120.9(4) 
C(32)-N(3)-Fe(1) 126.4(2)  C(24)-C(25)-C(20) 120.1(3) 
C(10)-N(4)-C(14) 117.2(3)  C(24)-C(25)-C(29) 118.7(3) 
C(10)-N(4)-Fe(1) 126.1(3)  C(20)-C(25)-C(29) 121.2(3) 
C(14)-N(4)-Fe(1) 116.3(2)  C(21)-C(26)-C(28) 111.4(3) 
C(19)-N(5)-C(15) 119.5(3)  C(21)-C(26)-C(27) 111.6(3) 
C(19)-N(5)-Fe(1) 124.0(3)  C(28)-C(26)-C(27) 109.8(3) 
C(15)-N(5)-Fe(1) 116.5(2)  C(31)-C(29)-C(30) 109.2(3) 
N(1)-C(2)-C(3) 112.9(3)  C(31)-C(29)-C(25) 111.9(3) 
N(1)-C(2)-C(1) 125.0(3)  C(30)-C(29)-C(25) 110.1(3) 
C(3)-C(2)-C(1) 121.8(3)  C(33)-C(32)-C(37) 120.2(3) 
N(2)-C(3)-C(4) 119.6(3)  C(33)-C(32)-N(3) 118.6(3) 
N(2)-C(3)-C(2) 110.8(3)  C(37)-C(32)-N(3) 121.2(3) 
C(4)-C(3)-C(2) 129.5(4)  C(34)-C(33)-C(32) 119.0(3) 
C(3)-C(4)-C(5) 119.5(4)  C(34)-C(33)-C(38) 118.5(3) 
C(4)-C(5)-C(6) 120.4(4)  C(32)-C(33)-C(38) 122.5(3) 
C(7)-C(6)-C(5) 119.3(4)  C(35)-C(34)-C(33) 121.3(4) 
N(2)-C(7)-C(6) 120.2(3)  C(34)-C(35)-C(36) 118.9(4) 
N(2)-C(7)-C(8) 110.0(3)  C(37)-C(36)-C(35) 121.5(4) 
C(6)-C(7)-C(8) 129.7(4)  C(36)-C(37)-C(32) 119.0(4) 
N(3)-C(8)-C(7) 113.3(3)  C(36)-C(37)-C(41) 118.3(3) 
N(3)-C(8)-C(9) 125.5(3)  C(32)-C(37)-C(41) 122.6(3) 
C(7)-C(8)-C(9) 121.1(3)  C(33)-C(38)-C(39) 112.8(3) 
N(4)-C(10)-C(11) 123.5(4)  C(33)-C(38)-C(40) 109.3(3) 
C(10)-C(11)-C(12) 119.1(4)  C(39)-C(38)-C(40) 110.4(3) 
C(13)-C(12)-C(11) 118.5(4)  C(42)-C(41)-C(37) 111.2(3) 
C(12)-C(13)-C(14) 120.5(4)  C(42)-C(41)-C(43) 109.6(3) 
N(4)-C(14)-C(13) 121.1(3)  C(37)-C(41)-C(43) 111.1(3) 

 

284 



Table C.21. Crystal data and structure refinement for 1-H2CIN. 
________________________________________________________________________________ 

Identification code  rt22 
Empirical formula  C42 H52 Fe N3 O2 
Formula weight  686.72 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Orthorhombic 
Space group  P2(1)2(1)2(1) 
Unit cell dimensions a = 14.809(10) Å α= 90°. 
 b = 20.418(17) Å β= 90°. 
 c = 29.82(2) Å γ = 90°. 
Volume 9018(12) Å3 
Z 8 
Density (calculated) 1.012 Mg/m3 
Absorption coefficient 0.366 mm-1 
F(000) 2936 
Crystal size 0.30 x 0.20 x 0.10 mm3 
Theta range for data collection 1.21 to 22.21°. 
Index ranges -15<=h<=13, -18<=k<=21, -31<=l<=31 
Reflections collected 33765 
Independent reflections 11224 [R(int) = 0.1716] 
Completeness to theta = 22.21° 99.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9643 and 0.8980 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 11224 / 855 / 845 
Goodness-of-fit on F2 0.727 
Final R indices [I>2sigma(I)] R1 = 0.0627, wR2 = 0.1061 
R indices (all data) R1 = 0.1709, wR2 = 0.1240 
Absolute structure parameter 0.02(2) 
Largest diff. peak and hole 0.422 and -0.312 e.Å-3 

________________________________________________________________________________ 
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Table C.22. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 1-H2CIN. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) -7904(1) 1364(1) 9288(1) 34(1) 
O(1) -8564(2) 2122(1) 8924(1) 45(1) 
O(2) -9053(2) 1102(1) 8915(1) 41(1) 
N(1) -8489(2) 1517(2) 9937(1) 28(1) 
N(2) -7020(2) 974(1) 9721(1) 20(1) 
N(3) -6776(2) 1124(2) 8888(1) 32(1) 
C(1) -8367(2) 1314(2) 10740(1) 45(1) 
C(2) -8068(2) 1291(2) 10271(1) 22(1) 
C(3) -7185(2) 971(2) 10168(1) 21(1) 
C(4) -6599(2) 705(2) 10466(1) 28(1) 
C(5) -5794(2) 406(2) 10308(1) 27(1) 
C(6) -5623(2) 450(2) 9853(1) 28(1) 
C(7) -6233(2) 727(2) 9566(1) 20(1) 
C(8) -6119(2) 810(2) 9101(1) 25(1) 
C(9) -5257(2) 574(2) 8860(1) 39(2) 
C(10) -9365(2) 1837(2) 9974(1) 32(1) 
C(11) -9394(2) 2512(2) 9961(1) 33(1) 
C(12) -10235(2) 2813(2) 10001(1) 43(2) 
C(13) -11006(3) 2452(2) 10011(2) 44(2) 
C(14) -10964(2) 1811(2) 10027(1) 41(1) 
C(15) -10156(2) 1452(2) 10004(1) 28(1) 
C(16) -8551(2) 2939(2) 9950(1) 36(1) 
C(17) -8581(2) 3465(2) 9598(1) 52(2) 
C(18) -8398(2) 3230(2) 10414(1) 59(2) 
C(19) -10161(2) 723(2) 9987(1) 42(1) 
C(20) -10652(3) 453(2) 9588(1) 63(2) 
C(21) -10541(3) 426(2) 10407(1) 62(2) 
C(22) -6719(2) 1267(2) 8424(1) 22(1) 
C(23) -6498(2) 1939(2) 8313(1) 45(1) 
C(24) -6504(2) 2081(2) 7873(1) 57(2) 
C(25) -6712(3) 1629(3) 7550(1) 69(2) 
C(26) -6937(3) 1001(2) 7663(1) 62(2) 
C(27) -6942(3) 801(2) 8111(1) 49(1) 
C(28) -6256(3) 2425(2) 8663(2) 52(2) 
C(29) -5217(3) 2545(3) 8675(2) 120(3) 
C(30) -6701(3) 3074(2) 8594(2) 73(2) 
C(31) -7145(3) 96(2) 8228(1) 52(2) 
C(32) -6597(3) -433(2) 7989(2) 94(2) 
C(33) -8180(3) -28(2) 8153(1) 72(2) 
C(34) -9104(3) 1710(2) 8810(1) 38(1) 
C(35) -9928(3) 1899(2) 8527(1) 53(2) 
C(36) -10246(3) 2569(2) 8611(2) 64(2) 
C(37) -11136(3) 2718(3) 8346(1) 61(2) 
C(38) -11033(3) 3009(2) 7935(2) 64(2) 
C(39) -11791(3) 3171(2) 7674(2) 77(2) 
C(40) -12626(3) 3015(2) 7854(1) 75(2) 
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Table C.22. (continued) 

C(41) -12706(3) 2740(3) 8254(2) 99(2) 
C(42) -11937(3) 2582(3) 8495(2) 81(2) 
Fe(2) -5459(1) -1294(1) 10574(1) 33(1) 
O(3) -5985(2) -2069(1) 10957(1) 47(1) 
O(4) -6685(2) -1127(1) 10912(1) 47(1) 
N(4) -4432(2) -888(2) 10975(1) 26(1) 
N(5) -4580(2) -923(1) 10134(1) 15(1) 
N(6) -5971(2) -1569(2) 9935(1) 27(1) 
C(43) -2994(2) -258(2) 11001(1) 44(2) 
C(44) -3786(2) -596(2) 10766(1) 24(1) 
C(45) -3847(2) -603(2) 10291(1) 21(1) 
C(46) -3219(2) -341(2) 10001(1) 31(1) 
C(47) -3327(2) -432(2) 9541(1) 29(1) 
C(48) -4082(2) -783(2) 9387(1) 31(1) 
C(49) -4692(2) -1018(2) 9688(1) 23(1) 
C(50) -5522(2) -1370(2) 9585(1) 23(1) 
C(51) -5804(2) -1463(2) 9105(1) 39(2) 
C(52) -4406(2) -950(2) 11450(1) 31(1) 
C(53) -4979(3) -560(2) 11711(1) 42(1) 
C(54) -4948(3) -649(2) 12174(1) 54(2) 
C(55) -4421(3) -1118(2) 12358(1) 55(2) 
C(56) -3906(3) -1530(2) 12099(1) 47(2) 
C(57) -3868(2) -1453(2) 11627(1) 34(1) 
C(58) -5544(3) -34(2) 11506(1) 47(2) 
C(59) -5003(3) 621(2) 11463(1) 60(2) 
C(60) -6439(3) 93(2) 11744(1) 68(2) 
C(61) -3327(3) -1928(2) 11357(1) 52(2) 
C(62) -3752(3) -2608(2) 11356(1) 68(2) 
C(63) -2315(3) -1964(2) 11524(1) 74(2) 
C(64) -6811(2) -1912(2) 9895(1) 28(1) 
C(65) -7627(2) -1561(2) 9846(1) 26(1) 
C(66) -8415(3) -1944(2) 9825(1) 30(1) 
C(67) -8446(3) -2599(2) 9846(1) 47(2) 
C(68) -7608(2) -2927(2) 9900(1) 37(1) 
C(69) -6802(2) -2585(2) 9922(1) 27(1) 
C(70) -7701(3) -827(2) 9826(1) 40(1) 
C(71) -8019(2) -614(2) 9367(1) 59(2) 
C(72) -8277(2) -551(2) 10204(1) 56(2) 
C(73) -5922(2) -2990(2) 9969(1) 36(1) 
C(74) -5693(3) -3285(2) 9515(1) 72(2) 
C(75) -5975(3) -3482(2) 10336(1) 49(2) 
C(76) -6613(3) -1720(2) 11053(1) 45(1) 
C(77) -7404(3) -1943(2) 11350(1) 74(2) 
C(78) -7905(3) -2497(3) 11160(1) 82(2) 
C(79) -8618(3) -2747(3) 11483(2) 65(2) 
C(80) -9393(3) -2391(3) 11565(2) 64(2) 
C(81) -10042(3) -2607(3) 11867(2) 79(2) 
C(82) -9886(3) -3182(3) 12074(1) 66(2) 
C(83) -9128(3) -3575(3) 12005(2) 89(2) 
C(84) -8485(3) -3322(2) 11699(1) 68(2) 
________________________________________________________________________________ 
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Table C.23. Bond lengths [Å] for 1-H2CIN. 

 Fe(1)-N(2)  2.005(3)  C(31)-C(33)  1.570(5) 
Fe(1)-O(2)  2.102(3)  C(34)-C(35)  1.534(5) 
Fe(1)-N(3)  2.109(3)  C(35)-C(36)  1.468(6) 
Fe(1)-O(1)  2.127(3)  C(36)-C(37)  1.567(6) 
Fe(1)-N(1)  2.143(3)  C(37)-C(42)  1.297(6) 
Fe(1)-C(34)  2.383(4)  C(37)-C(38)  1.370(6) 
O(1)-C(34)  1.209(5)  C(38)-C(39)  1.405(6) 
O(2)-C(34)  1.281(5)  C(39)-C(40)  1.385(6) 
N(1)-C(2)  1.264(4)  C(40)-C(41)  1.324(6) 
N(1)-C(10)  1.457(4)  C(41)-C(42)  1.386(6) 
N(2)-C(7)  1.351(4)  Fe(2)-N(5)  1.998(3) 
N(2)-C(3)  1.356(4)  Fe(2)-O(3)  2.101(3) 
N(3)-C(8)  1.327(4)  Fe(2)-O(4)  2.104(3) 
N(3)-C(22)  1.419(4)  Fe(2)-N(4)  2.104(3) 
C(1)-C(2)  1.466(4)  Fe(2)-N(6)  2.127(3) 
C(2)-C(3)  1.494(5)  Fe(2)-C(76)  2.391(4) 
C(3)-C(4)  1.356(5)  O(3)-C(76)  1.205(5) 
C(4)-C(5)  1.421(5)  O(4)-C(76)  1.286(5) 
C(5)-C(6)  1.383(5)  N(4)-C(44)  1.287(4) 
C(6)-C(7)  1.366(5)  N(4)-C(52)  1.422(5) 
C(7)-C(8)  1.408(5)  N(5)-C(45)  1.350(4) 
C(8)-C(9)  1.542(5)  N(5)-C(49)  1.356(4) 
C(10)-C(11)  1.379(5)  N(6)-C(50)  1.304(4) 
C(10)-C(15)  1.412(5)  N(6)-C(64)  1.433(4) 
C(11)-C(12)  1.395(5)  C(43)-C(44)  1.530(5) 
C(11)-C(16)  1.525(5)  C(44)-C(45)  1.422(5) 
C(12)-C(13)  1.359(5)  C(45)-C(46)  1.377(5) 
C(13)-C(14)  1.311(5)  C(46)-C(47)  1.393(5) 
C(14)-C(15)  1.406(5)  C(47)-C(48)  1.405(5) 
C(15)-C(19)  1.490(6)  C(48)-C(49)  1.360(5) 
C(16)-C(17)  1.503(5)  C(49)-C(50)  1.456(5) 
C(16)-C(18)  1.523(5)  C(50)-C(51)  1.501(5) 
C(19)-C(20)  1.499(5)  C(52)-C(57)  1.403(5) 
C(19)-C(21)  1.502(5)  C(52)-C(53)  1.401(5) 
C(22)-C(27)  1.373(5)  C(53)-C(54)  1.391(5) 
C(22)-C(23)  1.448(6)  C(53)-C(58)  1.492(6) 
C(23)-C(24)  1.344(5)  C(54)-C(55)  1.352(6) 
C(23)-C(28)  1.484(6)  C(55)-C(56)  1.374(6) 
C(24)-C(25)  1.369(6)  C(56)-C(57)  1.419(5) 
C(25)-C(26)  1.368(7)  C(57)-C(61)  1.493(6) 
C(26)-C(27)  1.398(6)  C(58)-C(60)  1.527(5) 
C(27)-C(31)  1.511(6)  C(58)-C(59)  1.564(6) 
C(28)-C(30)  1.495(6)  C(61)-C(62)  1.525(6) 
C(28)-C(29)  1.559(6)  C(61)-C(63)  1.580(5) 
C(31)-C(32)  1.527(6)  C(64)-C(69)  1.376(5) 
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Table C.23. (continued) 

 C(64)-C(65)  1.412(5)  C(73)-C(74)  1.521(5) 
C(65)-C(66)  1.407(5)  C(76)-C(77)  1.538(5) 
C(65)-C(70)  1.504(5)  C(77)-C(78)  1.466(6) 
C(66)-C(67)  1.339(5)  C(78)-C(79)  1.519(6) 
C(67)-C(68)  1.419(5)  C(79)-C(84)  1.354(7) 
C(68)-C(69)  1.385(5)  C(79)-C(80)  1.379(6) 
C(69)-C(73)  1.550(5)  C(80)-C(81)  1.391(6) 
C(70)-C(71)  1.511(5)  C(81)-C(82)  1.346(7) 
C(70)-C(72)  1.521(5)  C(82)-C(83)  1.395(6) 
C(73)-C(75)  1.489(5)  C(83)-C(84)  1.417(6) 
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Table C.24. Angles [°] for 1-H2CIN. 
 

N(2)-Fe(1)-O(2) 140.23(12)  C(12)-C(11)-C(16) 118.7(4) 
N(2)-Fe(1)-N(3) 75.75(12)  C(10)-C(11)-C(16) 123.2(3) 
O(2)-Fe(1)-N(3) 106.40(11)  C(13)-C(12)-C(11) 120.8(4) 
N(2)-Fe(1)-O(1) 156.61(12)  C(14)-C(13)-C(12) 120.2(4) 
O(2)-Fe(1)-O(1) 62.83(11)  C(13)-C(14)-C(15) 124.0(4) 
N(3)-Fe(1)-O(1) 104.18(12)  C(14)-C(15)-C(10) 114.7(4) 
N(2)-Fe(1)-N(1) 74.96(12)  C(14)-C(15)-C(19) 121.2(3) 
O(2)-Fe(1)-N(1) 100.86(11)  C(10)-C(15)-C(19) 123.9(3) 
N(3)-Fe(1)-N(1) 149.75(11)  C(17)-C(16)-C(18) 111.1(3) 
O(1)-Fe(1)-N(1) 99.72(11)  C(17)-C(16)-C(11) 113.6(3) 
N(2)-Fe(1)-C(34) 171.70(14)  C(18)-C(16)-C(11) 109.0(3) 
O(2)-Fe(1)-C(34) 32.42(13)  C(15)-C(19)-C(20) 113.5(3) 
N(3)-Fe(1)-C(34) 108.75(13)  C(15)-C(19)-C(21) 112.1(3) 
O(1)-Fe(1)-C(34) 30.43(13)  C(20)-C(19)-C(21) 109.4(3) 
N(1)-Fe(1)-C(34) 101.26(13)  C(27)-C(22)-N(3) 120.4(4) 
C(34)-O(1)-Fe(1) 86.6(3)  C(27)-C(22)-C(23) 123.9(4) 
C(34)-O(2)-Fe(1) 86.0(2)  N(3)-C(22)-C(23) 115.5(3) 
C(2)-N(1)-C(10) 122.9(3)  C(24)-C(23)-C(22) 115.1(4) 
C(2)-N(1)-Fe(1) 117.4(2)  C(24)-C(23)-C(28) 123.0(4) 
C(10)-N(1)-Fe(1) 119.6(2)  C(22)-C(23)-C(28) 121.9(4) 
C(7)-N(2)-C(3) 119.3(3)  C(23)-C(24)-C(25) 123.0(5) 
C(7)-N(2)-Fe(1) 119.5(2)  C(26)-C(25)-C(24) 120.9(4) 
C(3)-N(2)-Fe(1) 121.2(2)  C(25)-C(26)-C(27) 120.6(4) 
C(8)-N(3)-C(22) 121.4(3)  C(22)-C(27)-C(26) 116.5(4) 
C(8)-N(3)-Fe(1) 115.1(2)  C(22)-C(27)-C(31) 123.5(4) 
C(22)-N(3)-Fe(1) 123.5(2)  C(26)-C(27)-C(31) 119.9(4) 
N(1)-C(2)-C(1) 126.2(3)  C(23)-C(28)-C(30) 112.9(4) 
N(1)-C(2)-C(3) 115.4(3)  C(23)-C(28)-C(29) 111.1(4) 
C(1)-C(2)-C(3) 118.4(3)  C(30)-C(28)-C(29) 107.4(4) 
C(4)-C(3)-N(2) 122.1(3)  C(27)-C(31)-C(32) 117.5(4) 
C(4)-C(3)-C(2) 126.8(3)  C(27)-C(31)-C(33) 108.3(3) 
N(2)-C(3)-C(2) 111.0(3)  C(32)-C(31)-C(33) 109.8(3) 
C(3)-C(4)-C(5) 119.4(3)  O(1)-C(34)-O(2) 124.5(4) 
C(6)-C(5)-C(4) 116.8(3)  O(1)-C(34)-C(35) 120.3(4) 
C(7)-C(6)-C(5) 121.4(3)  O(2)-C(34)-C(35) 115.1(4) 
N(2)-C(7)-C(6) 120.7(3)  O(1)-C(34)-Fe(1) 63.0(2) 
N(2)-C(7)-C(8) 113.3(3)  O(2)-C(34)-Fe(1) 61.60(19) 
C(6)-C(7)-C(8) 126.0(3)  C(35)-C(34)-Fe(1) 175.3(3) 
N(3)-C(8)-C(7) 116.1(3)  C(36)-C(35)-C(34) 113.4(4) 
N(3)-C(8)-C(9) 122.4(3)  C(35)-C(36)-C(37) 111.5(4) 
C(7)-C(8)-C(9) 121.4(3)  C(42)-C(37)-C(38) 120.1(4) 
C(11)-C(10)-C(15) 122.1(3)  C(42)-C(37)-C(36) 123.6(4) 
C(11)-C(10)-N(1) 118.3(3)  C(38)-C(37)-C(36) 116.3(4) 
C(15)-C(10)-N(1) 119.6(3)  C(37)-C(38)-C(39) 120.6(4) 
C(12)-C(11)-C(10) 117.8(4)  C(40)-C(39)-C(38) 116.4(4) 
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Table C.24. (continued) 
 

C(41)-C(40)-C(39) 121.8(4)  C(57)-C(52)-N(4) 117.0(3) 
C(40)-C(41)-C(42) 119.5(5)  C(53)-C(52)-N(4) 119.2(3) 
C(37)-C(42)-C(41) 121.6(5)  C(54)-C(53)-C(52) 117.2(4) 
N(5)-Fe(2)-O(3) 152.19(11)  C(54)-C(53)-C(58) 121.2(4) 
N(5)-Fe(2)-O(4) 144.60(12)  C(52)-C(53)-C(58) 121.3(4) 
O(3)-Fe(2)-O(4) 62.71(11)  C(55)-C(54)-C(53) 121.0(4) 
N(5)-Fe(2)-N(4) 75.70(12)  C(54)-C(55)-C(56) 121.7(4) 
O(3)-Fe(2)-N(4) 104.82(12)  C(55)-C(56)-C(57) 120.8(4) 
O(4)-Fe(2)-N(4) 106.78(12)  C(52)-C(57)-C(56) 115.6(4) 
N(5)-Fe(2)-N(6) 75.15(12)  C(52)-C(57)-C(61) 125.3(3) 
O(3)-Fe(2)-N(6) 98.97(12)  C(56)-C(57)-C(61) 119.0(4) 
O(4)-Fe(2)-N(6) 99.38(11)  C(53)-C(58)-C(60) 114.7(3) 
N(4)-Fe(2)-N(6) 150.55(11)  C(53)-C(58)-C(59) 111.2(4) 
N(5)-Fe(2)-C(76) 174.91(13)  C(60)-C(58)-C(59) 109.8(3) 
O(3)-Fe(2)-C(76) 30.25(13)  C(57)-C(61)-C(62) 111.7(4) 
O(4)-Fe(2)-C(76) 32.47(13)  C(57)-C(61)-C(63) 111.7(3) 
N(4)-Fe(2)-C(76) 108.73(14)  C(62)-C(61)-C(63) 110.4(4) 
N(6)-Fe(2)-C(76) 100.58(14)  C(69)-C(64)-C(65) 121.4(3) 
C(76)-O(3)-Fe(2) 88.3(3)  C(69)-C(64)-N(6) 118.3(3) 
C(76)-O(4)-Fe(2) 86.1(2)  C(65)-C(64)-N(6) 120.2(4) 
C(44)-N(4)-C(52) 120.2(3)  C(66)-C(65)-C(64) 115.6(4) 
C(44)-N(4)-Fe(2) 116.4(2)  C(66)-C(65)-C(70) 119.4(3) 
C(52)-N(4)-Fe(2) 123.4(2)  C(64)-C(65)-C(70) 124.9(3) 
C(45)-N(5)-C(49) 120.5(3)  C(67)-C(66)-C(65) 125.5(4) 
C(45)-N(5)-Fe(2) 118.7(2)  C(66)-C(67)-C(68) 116.6(4) 
C(49)-N(5)-Fe(2) 120.7(2)  C(69)-C(68)-C(67) 121.4(4) 
C(50)-N(6)-C(64) 121.9(3)  C(64)-C(69)-C(68) 119.5(4) 
C(50)-N(6)-Fe(2) 117.0(2)  C(64)-C(69)-C(73) 123.2(3) 
C(64)-N(6)-Fe(2) 120.9(2)  C(68)-C(69)-C(73) 117.3(4) 
N(4)-C(44)-C(45) 115.6(3)  C(71)-C(70)-C(72) 113.0(3) 
N(4)-C(44)-C(43) 123.9(3)  C(71)-C(70)-C(65) 110.2(3) 
C(45)-C(44)-C(43) 120.5(3)  C(72)-C(70)-C(65) 112.4(3) 
N(5)-C(45)-C(46) 121.0(3)  C(75)-C(73)-C(74) 113.6(4) 
N(5)-C(45)-C(44) 113.6(3)  C(75)-C(73)-C(69) 112.5(3) 
C(46)-C(45)-C(44) 125.4(4)  C(74)-C(73)-C(69) 108.6(3) 
C(45)-C(46)-C(47) 119.1(3)  O(3)-C(76)-O(4) 122.9(4) 
C(46)-C(47)-C(48) 118.8(3)  O(3)-C(76)-C(77) 123.3(4) 
C(49)-C(48)-C(47) 119.6(4)  O(4)-C(76)-C(77) 113.8(4) 
C(48)-C(49)-N(5) 121.0(3)  O(3)-C(76)-Fe(2) 61.5(2) 
C(48)-C(49)-C(50) 126.5(3)  O(4)-C(76)-Fe(2) 61.4(2) 
N(5)-C(49)-C(50) 112.5(3)  C(77)-C(76)-Fe(2) 175.1(3) 
N(6)-C(50)-C(49) 114.5(3)  C(78)-C(77)-C(76) 113.1(4) 
N(6)-C(50)-C(51) 125.6(3)  C(77)-C(78)-C(79) 111.4(4) 
C(49)-C(50)-C(51) 119.9(3)  C(84)-C(79)-C(80) 119.7(4) 
C(57)-C(52)-C(53) 123.4(4)  C(84)-C(79)-C(78) 119.4(4) 
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Table C.24. (continued) 
 

C(80)-C(79)-C(78) 120.9(5)  C(81)-C(82)-C(83) 124.9(5) 
C(79)-C(80)-C(81) 121.5(5)  C(82)-C(83)-C(84) 115.3(5) 
C(82)-C(81)-C(80) 117.1(5)  C(79)-C(84)-C(83) 121.6(5) 
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Table C.25. Crystal data and structure refinement for 1-(FBF3)(Et2O). 

________________________________________________________________________________ 

Identification code  rt25 
Empirical formula  C37 H53 B F4 Fe N3 O 
Formula weight  698.48 
Temperature  143(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 10.846(3) Å α= 82.929(9)°. 
 b = 11.882(4) Å β= 79.064(9)°. 
 c = 19.482(6) Å γ = 62.895(9)°. 
Volume 2192.5(11) Å3 
Z 2 
Density (calculated) 1.058 Mg/m3 
Absorption coefficient 0.388 mm-1 
F(000) 742 
Crystal size 0.40 x 0.20 x 0.05 mm3 
Theta range for data collection 1.93 to 23.35°. 
Index ranges -12<=h<=12, -13<=k<=13, -21<=l<=21 
Reflections collected 30510 
Independent reflections 6145 [R(int) = 0.0782] 
Completeness to theta = 23.35° 96.5 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9809 and 0.8603 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6145 / 0 / 428 
Goodness-of-fit on F2 0.987 
Final R indices [I>2sigma(I)] R1 = 0.0589, wR2 = 0.1467 
R indices (all data) R1 = 0.0884, wR2 = 0.1575 
Extinction coefficient 0.0073(7) 
Largest diff. peak and hole 0.700 and -0.408 e.Å-3 

________________________________________________________________________________ 
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Table C.26. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 1-(FBF3)(Et2O). U(eq) is defined as one third of  the trace 

of the orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 7801(1) 887(1) 2171(1) 27(1) 
F(1) 9638(1) 981(1) 2266(1) 35(1) 
F(2) 11292(2) 1236(2) 1435(1) 50(1) 
F(4) 11918(2) 120(2) 2439(1) 63(1) 
F(3) 11331(2) -693(2) 1635(1) 51(1) 
O(1) 6808(2) 1988(2) 3057(1) 34(1) 
N(1) 6982(2) 2249(2) 1321(1) 25(1) 
N(2) 8284(2) -149(2) 1353(1) 26(1) 
N(3) 8328(2) -1005(2) 2629(1) 30(1) 
B(1) 11121(3) 366(4) 1925(2) 40(1) 
C(1) 7095(3) 2528(3) 30(2) 41(1) 
C(2) 7376(2) 1775(2) 698(1) 27(1) 
C(3) 8116(2) 401(2) 699(1) 27(1) 
C(4) 8538(2) -313(2) 117(1) 32(1) 
C(5) 9155(3) -1624(3) 203(2) 38(1) 
C(6) 9299(2) -2187(2) 864(1) 34(1) 
C(7) 8860(2) -1452(2) 1440(1) 30(1) 
C(8) 8826(2) -1893(2) 2160(1) 30(1) 
C(9) 9244(3) -3261(2) 2350(2) 47(1) 
C(10) 6109(2) 3596(2) 1366(1) 28(1) 
C(11) 6697(2) 4388(2) 1440(1) 30(1) 
C(12) 5799(3) 5681(2) 1546(1) 38(1) 
C(13) 4372(3) 6162(3) 1579(2) 43(1) 
C(14) 3828(3) 5343(3) 1482(2) 45(1) 
C(15) 4641(2) 4073(2) 1374(1) 33(1) 
C(16) 8261(2) 3910(2) 1417(2) 35(1) 
C(17) 8611(3) 3978(3) 2131(2) 41(1) 
C(18) 8859(3) 4608(3) 853(2) 45(1) 
C(19) 3986(3) 3257(3) 1247(2) 45(1) 
C(20) 2978(3) 3118(3) 1884(2) 64(1) 
C(21) 3198(3) 3766(3) 612(2) 60(1) 
C(22) 8081(2) -1363(2) 3362(1) 30(1) 
C(23) 9058(3) -1583(3) 3802(2) 35(1) 
C(24) 8730(3) -1864(3) 4509(2) 44(1) 
C(25) 7464(3) -1870(3) 4777(2) 50(1) 
C(26) 6510(3) -1639(3) 4340(2) 51(1) 
C(27) 6796(3) -1395(3) 3619(2) 40(1) 
C(28) 10446(3) -1558(3) 3523(2) 40(1) 
C(29) 11591(3) -2854(3) 3297(2) 72(1) 
C(30) 10960(3) -1059(3) 4036(2) 57(1) 
C(31) 5745(3) -1194(3) 3153(2) 48(1) 
C(32) 5316(3) -2272(4) 3219(2) 83(1) 
C(33) 4478(4) 39(4) 3283(2) 93(1) 
C(34) 7535(3) 1809(3) 3652(1) 41(1) 
C(35) 6803(3) 1537(3) 4336(2) 57(1) 
C(36) 5369(3) 2950(3) 3138(2) 54(1) 
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Table C.26. (continued) 
 
C(37) 5188(4) 4206(3) 3281(2) 79(2) 
________________________________________________________________________________  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

295 



Table C.27. Bond lengths [Å] for 1-(FBF3)(Et2O). 

 Fe(1)-N(2)  1.977(2)  C(10)-C(15)  1.423(3) 
Fe(1)-F(1)  2.0890(16)  C(11)-C(12)  1.411(3) 
Fe(1)-O(1)  2.1027(18)  C(11)-C(16)  1.517(3) 
Fe(1)-N(3)  2.169(2)  C(12)-C(13)  1.376(4) 
Fe(1)-N(1)  2.177(2)  C(13)-C(14)  1.393(5) 
F(1)-B(1)  1.484(3)  C(14)-C(15)  1.376(4) 
F(2)-B(1)  1.371(4)  C(15)-C(19)  1.503(5) 
F(4)-B(1)  1.364(4)  C(16)-C(18)  1.520(4) 
F(3)-B(1)  1.350(4)  C(16)-C(17)  1.529(4) 
O(1)-C(36)  1.446(3)  C(19)-C(20)  1.537(4) 
O(1)-C(34)  1.465(3)  C(19)-C(21)  1.540(4) 
N(1)-C(2)  1.312(3)  C(22)-C(23)  1.402(4) 
N(1)-C(10)  1.445(3)  C(22)-C(27)  1.404(4) 
N(2)-C(3)  1.362(3)  C(23)-C(24)  1.394(4) 
N(2)-C(7)  1.383(3)  C(23)-C(28)  1.513(4) 
N(3)-C(8)  1.330(3)  C(24)-C(25)  1.376(4) 
N(3)-C(22)  1.449(3)  C(25)-C(26)  1.374(4) 
C(1)-C(2)  1.484(4)  C(26)-C(27)  1.404(4) 
C(2)-C(3)  1.454(3)  C(27)-C(31)  1.507(4) 
C(3)-C(4)  1.378(4)  C(28)-C(30)  1.522(5) 
C(4)-C(5)  1.389(4)  C(28)-C(29)  1.525(4) 
C(5)-C(6)  1.378(4)  C(31)-C(33)  1.490(4) 
C(6)-C(7)  1.381(4)  C(31)-C(32)  1.534(5) 
C(7)-C(8)  1.437(4)  C(34)-C(35)  1.495(4) 
C(8)-C(9)  1.493(4)  C(36)-C(37)  1.470(5) 
C(10)-C(11)  1.389(4)    
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Table C.28. Angles [°] for 1-(FBF3)(Et2O). 
 

N(2)-Fe(1)-F(1) 105.62(7)  N(3)-C(8)-C(7) 115.9(2) 
N(2)-Fe(1)-O(1) 165.93(8)  N(3)-C(8)-C(9) 123.6(2) 
F(1)-Fe(1)-O(1) 88.43(7)  C(7)-C(8)-C(9) 120.4(2) 
N(2)-Fe(1)-N(3) 76.42(9)  C(11)-C(10)-C(15) 121.3(2) 
F(1)-Fe(1)-N(3) 98.13(7)  C(11)-C(10)-N(1) 119.8(2) 
O(1)-Fe(1)-N(3) 101.37(8)  C(15)-C(10)-N(1) 118.9(2) 
N(2)-Fe(1)-N(1) 75.13(8)  C(10)-C(11)-C(12) 118.5(2) 
F(1)-Fe(1)-N(1) 104.18(7)  C(10)-C(11)-C(16) 122.4(2) 
O(1)-Fe(1)-N(1) 102.43(7)  C(12)-C(11)-C(16) 119.1(3) 
N(3)-Fe(1)-N(1) 147.59(9)  C(13)-C(12)-C(11) 121.6(3) 
B(1)-F(1)-Fe(1) 135.18(18)  C(12)-C(13)-C(14) 118.1(3) 
C(36)-O(1)-C(34) 114.8(2)  C(15)-C(14)-C(13) 123.4(3) 
C(36)-O(1)-Fe(1) 123.60(17)  C(14)-C(15)-C(10) 117.1(3) 
C(34)-O(1)-Fe(1) 121.57(13)  C(14)-C(15)-C(19) 120.3(2) 
C(2)-N(1)-C(10) 117.6(2)  C(10)-C(15)-C(19) 122.5(2) 
C(2)-N(1)-Fe(1) 114.92(15)  C(11)-C(16)-C(18) 112.0(2) 
C(10)-N(1)-Fe(1) 127.46(16)  C(11)-C(16)-C(17) 111.4(2) 
C(3)-N(2)-C(7) 119.5(2)  C(18)-C(16)-C(17) 110.8(2) 
C(3)-N(2)-Fe(1) 120.89(17)  C(15)-C(19)-C(20) 113.1(3) 
C(7)-N(2)-Fe(1) 119.58(17)  C(15)-C(19)-C(21) 111.4(3) 
C(8)-N(3)-C(22) 118.5(2)  C(20)-C(19)-C(21) 108.9(2) 
C(8)-N(3)-Fe(1) 113.84(17)  C(23)-C(22)-C(27) 121.8(3) 
C(22)-N(3)-Fe(1) 127.40(16)  C(23)-C(22)-N(3) 120.5(2) 
F(3)-B(1)-F(4) 112.7(3)  C(27)-C(22)-N(3) 117.6(2) 
F(3)-B(1)-F(2) 112.3(3)  C(24)-C(23)-C(22) 117.8(3) 
F(4)-B(1)-F(2) 111.2(3)  C(24)-C(23)-C(28) 120.5(3) 
F(3)-B(1)-F(1) 107.9(3)  C(22)-C(23)-C(28) 121.6(2) 
F(4)-B(1)-F(1) 106.3(2)  C(25)-C(24)-C(23) 121.5(3) 
F(2)-B(1)-F(1) 106.0(2)  C(26)-C(25)-C(24) 120.0(3) 
N(1)-C(2)-C(3) 114.6(2)  C(25)-C(26)-C(27) 121.3(3) 
N(1)-C(2)-C(1) 125.0(2)  C(26)-C(27)-C(22) 117.5(3) 
C(3)-C(2)-C(1) 120.3(2)  C(26)-C(27)-C(31) 119.7(3) 
N(2)-C(3)-C(4) 121.6(2)  C(22)-C(27)-C(31) 122.8(3) 
N(2)-C(3)-C(2) 113.1(2)  C(23)-C(28)-C(30) 113.6(2) 
C(4)-C(3)-C(2) 125.2(2)  C(23)-C(28)-C(29) 112.1(3) 
C(3)-C(4)-C(5) 118.9(3)  C(30)-C(28)-C(29) 108.8(2) 
C(6)-C(5)-C(4) 119.9(3)  C(33)-C(31)-C(27) 111.0(3) 
C(5)-C(6)-C(7) 120.2(2)  C(33)-C(31)-C(32) 110.1(3) 
C(6)-C(7)-N(2) 119.9(2)  C(27)-C(31)-C(32) 113.5(3) 
C(6)-C(7)-C(8) 126.4(2)  O(1)-C(34)-C(35) 114.0(3) 
N(2)-C(7)-C(8) 113.4(2)  O(1)-C(36)-C(37) 114.3(3) 
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Table C.29. Crystal data and structure refinement for 1-CCtBu. 

________________________________________________________________________________ 

Identification code  rt38 
Empirical formula  C39 H52 Fe N3 
Formula weight  618.69 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/n 
Unit cell dimensions a = 13.5303(6) Å α= 90°. 
 b = 14.9138(6) Å β= 98.110(2)°. 
 c = 18.0729(9) Å γ = 90°. 
Volume 3610.4(3) Å3 
Z 4 
Density (calculated) 1.138 Mg/m3 
Absorption coefficient 0.446 mm-1 
F(000) 1332 
Crystal size 0.40 x 0.25 x 0.20 mm3 
Theta range for data collection 1.77 to 24.74°. 
Index ranges -15<=h<=15, -17<=k<=13, -21<=l<=21 
Reflections collected 24143 
Independent reflections 6150 [R(int) = 0.0473] 
Completeness to theta = 24.74° 99.5 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9160 and 0.8416 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6150 / 108 / 435 
Goodness-of-fit on F2 1.083 
Final R indices [I>2sigma(I)] R1 = 0.0673, wR2 = 0.1713 
R indices (all data) R1 = 0.0997, wR2 = 0.1925 
Largest diff. peak and hole 1.625 and -0.755 e.Å-3 

________________________________________________________________________________ 
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Table C.30. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 1-CCtBu. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 495(1) 890(1) 1913(1) 30(1) 
N(1) 1664(2) 1395(2) 1582(1) 32(1) 
N(2) 705(2) 70(2) 1179(1) 27(1) 
N(3) -591(2) 55(2) 1996(1) 32(1) 
C(1) 2959(3) 1262(3) 737(2) 45(1) 
C(2) 2052(2) 980(2) 1059(2) 31(1) 
C(3) 1510(2) 173(2) 803(2) 30(1) 
C(4) 1692(2) -450(2) 268(2) 35(1) 
C(5) 1057(3) -1166(2) 111(2) 34(1) 
C(6) 229(2) -1257(2) 493(2) 33(1) 
C(7) 72(2) -647(2) 1028(2) 29(1) 
C(8) -673(2) -627(2) 1522(2) 32(1) 
C(9) -1460(3) -1338(3) 1493(2) 48(1) 
C(10) 2081(2) 2253(2) 1860(2) 33(1) 
C(11) 2787(2) 2273(2) 2503(2) 35(1) 
C(12) 3106(3) 3105(2) 2790(2) 44(1) 
C(13) 2733(3) 3880(2) 2455(2) 42(1) 
C(14) 2030(3) 3853(2) 1834(2) 44(1) 
C(15) 1685(3) 3045(2) 1524(2) 41(1) 
C(16) 3200(3) 1418(3) 2898(2) 45(1) 
C(17) 4320(3) 1314(4) 2871(3) 79(2) 
C(18) 3004(4) 1409(3) 3709(2) 66(1) 
C(19) 872(3) 3046(3) 853(2) 58(1) 
C(20) -74(3) 3450(4) 1026(3) 92(2) 
C(21) 1213(5) 3478(3) 181(2) 85(2) 
C(22) -1250(2) 101(2) 2558(2) 38(1) 
C(23) -934(3) -286(3) 3255(2) 47(1) 
C(24) -1581(3) -248(3) 3787(2) 66(1) 
C(25) -2491(3) 182(4) 3638(3) 74(2) 
C(26) -2764(3) 606(4) 2961(2) 69(1) 
C(27) -2148(3) 581(3) 2401(2) 53(1) 
C(28) 71(3) -741(3) 3436(2) 49(1) 
C(29) 687(3) -333(4) 4117(3) 73(1) 
C(30) 0(4) -1741(3) 3505(3) 83(2) 
C(31) -2442(3) 1047(3) 1666(2) 59(1) 
C(32) -3464(4) 818(4) 1286(3) 85(2) 
C(33) -2359(4) 2063(4) 1776(3) 96(2) 
C(34) 314(3) 1703(2) 2693(2) 44(1) 
C(35) 226(3) 2237(3) 3184(2) 49(1) 
C(36) 114(7) 2824(6) 3772(6) 52(2) 
C(37) 496(11) 2434(8) 4532(6) 118(4) 
C(38) -1001(6) 3059(7) 3794(7) 101(3) 
C(39) 645(8) 3737(6) 3724(6) 86(3) 
C(36') 47(14) 2959(13) 3761(10) 92(4) 
C(38') -825(10) 2549(11) 4138(8) 116(4) 
C(37') 1041(11) 2897(12) 4336(8) 140(5) 
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Table C.30. (continued) 
 
C(39') -97(17) 3816(10) 3351(11) 157(6) 

________________________________________________________________________________ 
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Table C.31. Bond lengths [Å] for 1-CCtBu. 

 Fe(1)-N(2)  1.855(2)  C(16)-C(18)  1.526(6) 
Fe(1)-C(34)  1.902(4)  C(16)-C(17)  1.531(5) 
Fe(1)-N(1)  1.921(3)  C(19)-C(20)  1.487(7) 
Fe(1)-N(3)  1.948(3)  C(19)-C(21)  1.503(6) 
N(1)-C(2)  1.301(4)  C(22)-C(23)  1.396(5) 
N(1)-C(10)  1.459(4)  C(22)-C(27)  1.405(5) 
N(2)-C(3)  1.371(4)  C(23)-C(24)  1.390(5) 
N(2)-C(7)  1.374(4)  C(23)-C(28)  1.513(5) 
N(3)-C(8)  1.325(4)  C(24)-C(25)  1.380(6) 
N(3)-C(22)  1.445(4)  C(25)-C(26)  1.381(6) 
C(1)-C(2)  1.492(5)  C(26)-C(27)  1.400(6) 
C(2)-C(3)  1.451(4)  C(27)-C(31)  1.501(6) 
C(3)-C(4)  1.388(4)  C(28)-C(30)  1.500(6) 
C(4)-C(5)  1.374(5)  C(28)-C(29)  1.514(6) 
C(5)-C(6)  1.404(5)  C(31)-C(32)  1.495(6) 
C(6)-C(7)  1.366(4)  C(31)-C(33)  1.530(7) 
C(7)-C(8)  1.437(5)  C(34)-C(35)  1.211(5) 
C(8)-C(9)  1.499(5)  C(35)-C(36)  1.400(11) 
C(10)-C(11)  1.397(4)  C(35)-C(36')  1.541(16) 
C(10)-C(15)  1.399(5)  C(36)-C(37)  1.514(14) 
C(11)-C(12)  1.390(5)  C(36)-C(39)  1.549(13) 
C(11)-C(16)  1.528(5)  C(36)-C(38)  1.555(13) 
C(12)-C(13)  1.367(5)  C(36')-C(39')  1.48(3) 
C(13)-C(14)  1.366(5)  C(36')-C(38')  1.57(2) 
C(14)-C(15)  1.382(5)  C(36')-C(37')  1.58(2) 
C(15)-C(19)  1.519(5)    
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Table C.32. Angles [°] for 1-CCtBu. 
 

N(2)-Fe(1)-C(34) 177.77(14)  C(10)-C(15)-C(19) 122.5(3) 
N(2)-Fe(1)-N(1) 79.68(11)  C(18)-C(16)-C(11) 110.7(3) 
C(34)-Fe(1)-N(1) 100.26(13)  C(18)-C(16)-C(17) 109.7(3) 
N(2)-Fe(1)-N(3) 80.05(11)  C(11)-C(16)-C(17) 111.6(3) 
C(34)-Fe(1)-N(3) 99.92(13)  C(20)-C(19)-C(21) 111.5(4) 
N(1)-Fe(1)-N(3) 159.68(11)  C(20)-C(19)-C(15) 112.4(4) 
C(2)-N(1)-C(10) 119.5(3)  C(21)-C(19)-C(15) 112.1(4) 
C(2)-N(1)-Fe(1) 118.2(2)  C(23)-C(22)-C(27) 122.7(3) 
C(10)-N(1)-Fe(1) 122.2(2)  C(23)-C(22)-N(3) 118.2(3) 
C(3)-N(2)-C(7) 120.4(3)  C(27)-C(22)-N(3) 119.0(3) 
C(3)-N(2)-Fe(1) 119.5(2)  C(24)-C(23)-C(22) 117.6(4) 
C(7)-N(2)-Fe(1) 120.1(2)  C(24)-C(23)-C(28) 120.2(4) 
C(8)-N(3)-C(22) 119.2(3)  C(22)-C(23)-C(28) 122.2(3) 
C(8)-N(3)-Fe(1) 115.8(2)  C(25)-C(24)-C(23) 121.1(4) 
C(22)-N(3)-Fe(1) 124.8(2)  C(24)-C(25)-C(26) 120.4(4) 
N(1)-C(2)-C(3) 112.9(3)  C(25)-C(26)-C(27) 121.1(4) 
N(1)-C(2)-C(1) 126.0(3)  C(26)-C(27)-C(22) 117.0(4) 
C(3)-C(2)-C(1) 121.0(3)  C(26)-C(27)-C(31) 121.2(4) 
N(2)-C(3)-C(4) 120.1(3)  C(22)-C(27)-C(31) 121.9(3) 
N(2)-C(3)-C(2) 109.6(3)  C(30)-C(28)-C(23) 113.4(4) 
C(4)-C(3)-C(2) 130.3(3)  C(30)-C(28)-C(29) 111.4(4) 
C(5)-C(4)-C(3) 119.8(3)  C(23)-C(28)-C(29) 111.8(3) 
C(4)-C(5)-C(6) 119.5(3)  C(32)-C(31)-C(27) 114.4(4) 
C(7)-C(6)-C(5) 119.9(3)  C(32)-C(31)-C(33) 109.4(4) 
C(6)-C(7)-N(2) 120.2(3)  C(27)-C(31)-C(33) 109.7(4) 
C(6)-C(7)-C(8) 130.3(3)  C(35)-C(34)-Fe(1) 177.7(3) 
N(2)-C(7)-C(8) 109.4(3)  C(34)-C(35)-C(36) 177.4(6) 
N(3)-C(8)-C(7) 114.6(3)  C(34)-C(35)-C(36') 175.1(8) 
N(3)-C(8)-C(9) 124.1(3)  C(36)-C(35)-C(36') 6.6(10) 
C(7)-C(8)-C(9) 121.3(3)  C(35)-C(36)-C(37) 112.9(8) 
C(11)-C(10)-C(15) 121.2(3)  C(35)-C(36)-C(39) 114.0(8) 
C(11)-C(10)-N(1) 119.4(3)  C(37)-C(36)-C(39) 106.6(9) 
C(15)-C(10)-N(1) 119.0(3)  C(35)-C(36)-C(38) 111.8(7) 
C(12)-C(11)-C(10) 118.0(3)  C(37)-C(36)-C(38) 105.8(9) 
C(12)-C(11)-C(16) 119.8(3)  C(39)-C(36)-C(38) 105.2(8) 
C(10)-C(11)-C(16) 122.2(3)  C(39')-C(36')-C(35) 106.7(13) 
C(13)-C(12)-C(11) 120.8(3)  C(39')-C(36')-C(38') 120.1(16) 
C(14)-C(13)-C(12) 120.7(3)  C(35)-C(36')-C(38') 102.8(12) 
C(13)-C(14)-C(15) 120.9(3)  C(39')-C(36')-C(37') 114.8(17) 
C(14)-C(15)-C(10) 118.3(3)  C(35)-C(36')-C(37') 101.8(12) 
C(14)-C(15)-C(19) 119.1(3)  C(38')-C(36')-C(37') 108.3(14) 
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Table C.33. Crystal data and structure refinement for 1-Tpy. 

________________________________________________________________________________ 

Identification code  rt40 
Empirical formula  C48 H54 Fe N6 
Formula weight  770.82 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 12.1322(15) Å α= 90°. 
 b = 25.354(3) Å β= 122.078(6)°. 
 c = 16.1051(15) Å γ = 90°. 
Volume 4197.6(8) Å3 
Z 4 
Density (calculated) 1.220 Mg/m3 
Absorption coefficient 0.400 mm-1 
F(000) 1640 
Crystal size 0.40 x 0.25 x 0.15 mm3 
Theta range for data collection 1.91 to 25.35°. 
Index ranges -14<=h<=14, -30<=k<=30, -18<=l<=19 
Reflections collected 28643 
Independent reflections 7690 [R(int) = 0.0942] 
Completeness to theta = 25.35° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9425 and 0.8565 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 7690 / 0 / 602 
Goodness-of-fit on F2 1.007 
Final R indices [I>2sigma(I)] R1 = 0.0544, wR2 = 0.1019 
R indices (all data) R1 = 0.1126, wR2 = 0.1222 
Largest diff. peak and hole 0.545 and -0.395 e.Å-3 

________________________________________________________________________________ 
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Table C.34. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 1-Tpy. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 7281(1) 1377(1) 3508(1) 26(1) 
N(1) 6198(2) 884(1) 2079(1) 24(1) 
N(2) 8637(2) 1163(1) 3232(1) 24(1) 
N(3) 9212(2) 1673(1) 4832(1) 27(1) 
N(4) 6697(2) 2127(1) 2786(1) 30(1) 
N(5) 5864(2) 1632(1) 3715(1) 28(1) 
N(6) 7080(2) 763(1) 4288(1) 28(1) 
C(1) 6570(2) 372(1) 927(2) 38(1) 
C(2) 6974(2) 717(1) 1812(2) 26(1) 
C(3) 8329(2) 875(1) 2402(2) 24(1) 
C(4) 9244(2) 765(1) 2171(2) 31(1) 
C(5) 10517(2) 945(1) 2758(2) 35(1) 
C(6) 10828(2) 1229(1) 3587(2) 31(1) 
C(7) 9913(2) 1331(1) 3830(2) 25(1) 
C(8) 10185(2) 1607(1) 4709(2) 28(1) 
C(9) 11565(2) 1794(1) 5404(2) 41(1) 
C(10) 4823(2) 748(1) 1483(2) 28(1) 
C(11) 3967(2) 1112(1) 780(2) 34(1) 
C(12) 2657(3) 983(1) 224(2) 45(1) 
C(13) 2191(3) 515(1) 349(2) 52(1) 
C(14) 3036(3) 163(1) 1044(2) 42(1) 
C(15) 4372(2) 267(1) 1622(2) 33(1) 
C(16) 4435(2) 1626(1) 605(2) 38(1) 
C(17) 4701(3) 1586(1) -210(2) 55(1) 
C(18) 3501(3) 2085(1) 396(2) 45(1) 
C(19) 5241(3) -149(1) 2352(2) 39(1) 
C(20) 4804(3) -293(1) 3053(2) 53(1) 
C(21) 5274(3) -651(1) 1830(2) 48(1) 
C(22) 9512(2) 1928(1) 5732(2) 29(1) 
C(23) 9922(2) 1628(1) 6580(2) 32(1) 
C(24) 10315(3) 1893(1) 7451(2) 45(1) 
C(25) 10298(3) 2431(1) 7506(2) 43(1) 
C(26) 9825(3) 2719(1) 6663(2) 42(1) 
C(27) 9415(2) 2481(1) 5758(2) 33(1) 
C(28) 9950(3) 1028(1) 6590(2) 45(1) 
C(29) 11257(3) 808(1) 6860(3) 77(1) 
C(30) 9549(3) 789(1) 7246(2) 62(1) 
C(31) 8905(3) 2828(1) 4866(2) 40(1) 
C(32) 9985(3) 3130(1) 4861(2) 68(1) 
C(33) 7861(3) 3206(1) 4755(2) 58(1) 
C(34) 7240(3) 2371(1) 2342(2) 41(1) 
C(35) 6862(3) 2858(1) 1911(2) 54(1) 
C(36) 5884(3) 3116(1) 1952(2) 58(1) 
C(37) 5312(3) 2886(1) 2381(2) 48(1) 
C(38) 5723(2) 2381(1) 2806(2) 34(1) 
C(39) 5187(2) 2086(1) 3278(2) 35(1) 
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Table C.34. (continued) 
 
C(40) 4098(3) 2222(1) 3296(2) 49(1) 
C(41) 3696(3) 1900(1) 3785(3) 60(1) 
C(42) 4390(3) 1448(1) 4248(2) 49(1) 
C(43) 5465(2) 1320(1) 4199(2) 33(1) 
C(44) 6242(2) 849(1) 4594(2) 31(1) 
C(45) 6183(3) 494(1) 5240(2) 47(1) 
C(46) 6946(3) 51(1) 5540(2) 56(1) 
C(47) 7765(3) -44(1) 5205(2) 49(1) 
C(48) 7809(3) 317(1) 4586(2) 37(1) 
________________________________________________________________________________ 
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Table C.35. Bond lengths [Å] for 1-Tpy. 

 Fe(1)-N(2)  1.994(2)  C(14)-C(15)  1.401(3) 
Fe(1)-N(5)  2.024(2)  C(15)-C(19)  1.514(3) 
Fe(1)-N(6)  2.094(2)  C(16)-C(17)  1.512(4) 
Fe(1)-N(4)  2.144(2)  C(16)-C(18)  1.531(4) 
Fe(1)-N(3)  2.3007(18)  C(19)-C(20)  1.525(4) 
Fe(1)-N(1)  2.3174(19)  C(19)-C(21)  1.539(4) 
N(1)-C(2)  1.297(3)  C(22)-C(23)  1.403(4) 
N(1)-C(10)  1.457(3)  C(22)-C(27)  1.410(4) 
N(2)-C(3)  1.390(3)  C(23)-C(24)  1.392(4) 
N(2)-C(7)  1.386(3)  C(23)-C(28)  1.522(4) 
N(3)-C(8)  1.307(3)  C(24)-C(25)  1.368(4) 
N(3)-C(22)  1.445(3)  C(25)-C(26)  1.370(4) 
N(4)-C(34)  1.352(4)  C(26)-C(27)  1.401(4) 
N(4)-C(38)  1.361(3)  C(27)-C(31)  1.509(4) 
N(5)-C(43)  1.367(3)  C(28)-C(30)  1.506(5) 
N(5)-C(39)  1.372(3)  C(28)-C(29)  1.511(4) 
N(6)-C(48)  1.356(3)  C(31)-C(32)  1.523(4) 
N(6)-C(44)  1.362(3)  C(31)-C(33)  1.521(4) 
C(1)-C(2)  1.515(3)  C(34)-C(35)  1.371(4) 
C(2)-C(3)  1.452(3)  C(35)-C(36)  1.387(5) 
C(3)-C(4)  1.374(4)  C(36)-C(37)  1.346(5) 
C(4)-C(5)  1.392(3)  C(37)-C(38)  1.411(4) 
C(5)-C(6)  1.382(4)  C(38)-C(39)  1.443(4) 
C(6)-C(7)  1.383(4)  C(39)-C(40)  1.381(4) 
C(7)-C(8)  1.451(3)  C(40)-C(41)  1.391(5) 
C(8)-C(9)  1.514(3)  C(41)-C(42)  1.383(4) 
C(10)-C(11)  1.400(3)  C(42)-C(43)  1.385(4) 
C(10)-C(15)  1.403(4)  C(43)-C(44)  1.443(4) 
C(11)-C(12)  1.386(4)  C(44)-C(45)  1.406(4) 
C(11)-C(16)  1.508(4)  C(45)-C(46)  1.368(4) 
C(12)-C(13)  1.375(4)  C(46)-C(47)  1.382(5) 
C(13)-C(14)  1.371(4)  C(47)-C(48)  1.374(4) 
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Table C.36. Angles [°] for 1-Tpy. 
 

N(2)-Fe(1)-N(5) 175.99(8)  N(3)-C(8)-C(7) 117.0(2) 
N(2)-Fe(1)-N(6) 107.75(8)  N(3)-C(8)-C(9) 125.5(2) 
N(5)-Fe(1)-N(6) 76.09(8)  C(7)-C(8)-C(9) 117.4(2) 
N(2)-Fe(1)-N(4) 101.15(8)  C(11)-C(10)-C(15) 121.1(2) 
N(5)-Fe(1)-N(4) 74.97(9)  C(11)-C(10)-N(1) 118.4(2) 
N(6)-Fe(1)-N(4) 151.01(9)  C(15)-C(10)-N(1) 120.5(2) 
N(2)-Fe(1)-N(3) 74.95(8)  C(12)-C(11)-C(10) 118.1(3) 
N(5)-Fe(1)-N(3) 106.22(8)  C(12)-C(11)-C(16) 119.9(2) 
N(6)-Fe(1)-N(3) 94.18(7)  C(10)-C(11)-C(16) 121.9(2) 
N(4)-Fe(1)-N(3) 95.36(7)  C(13)-C(12)-C(11) 121.8(3) 
N(2)-Fe(1)-N(1) 74.45(7)  C(14)-C(13)-C(12) 119.7(3) 
N(5)-Fe(1)-N(1) 104.64(7)  C(13)-C(14)-C(15) 121.2(3) 
N(6)-Fe(1)-N(1) 90.57(7)  C(14)-C(15)-C(10) 118.1(2) 
N(4)-Fe(1)-N(1) 95.12(7)  C(14)-C(15)-C(19) 117.9(2) 
N(3)-Fe(1)-N(1) 149.02(7)  C(10)-C(15)-C(19) 124.0(2) 
C(2)-N(1)-C(10) 118.9(2)  C(11)-C(16)-C(17) 112.3(2) 
C(2)-N(1)-Fe(1) 112.16(14)  C(11)-C(16)-C(18) 112.9(2) 
C(10)-N(1)-Fe(1) 128.98(16)  C(17)-C(16)-C(18) 109.6(2) 
C(3)-N(2)-C(7) 117.4(2)  C(15)-C(19)-C(20) 111.7(3) 
C(3)-N(2)-Fe(1) 121.70(14)  C(15)-C(19)-C(21) 111.2(2) 
C(7)-N(2)-Fe(1) 120.78(17)  C(20)-C(19)-C(21) 109.0(2) 
C(8)-N(3)-C(22) 116.30(19)  C(23)-C(22)-C(27) 120.1(2) 
C(8)-N(3)-Fe(1) 111.99(15)  C(23)-C(22)-N(3) 120.3(2) 
C(22)-N(3)-Fe(1) 131.68(16)  C(27)-C(22)-N(3) 119.6(2) 
C(34)-N(4)-C(38) 117.9(2)  C(24)-C(23)-C(22) 118.2(2) 
C(34)-N(4)-Fe(1) 125.43(18)  C(24)-C(23)-C(28) 118.6(3) 
C(38)-N(4)-Fe(1) 116.59(18)  C(22)-C(23)-C(28) 123.1(2) 
C(43)-N(5)-C(39) 118.8(2)  C(25)-C(24)-C(23) 122.6(3) 
C(43)-N(5)-Fe(1) 119.84(17)  C(24)-C(25)-C(26) 118.6(3) 
C(39)-N(5)-Fe(1) 120.86(19)  C(25)-C(26)-C(27) 122.1(3) 
C(48)-N(6)-C(44) 118.5(2)  C(26)-C(27)-C(22) 118.1(2) 
C(48)-N(6)-Fe(1) 124.8(2)  C(26)-C(27)-C(31) 118.6(2) 
C(44)-N(6)-Fe(1) 116.37(16)  C(22)-C(27)-C(31) 123.3(2) 
N(1)-C(2)-C(3) 117.5(2)  C(30)-C(28)-C(29) 109.3(3) 
N(1)-C(2)-C(1) 124.9(2)  C(30)-C(28)-C(23) 113.3(3) 
C(3)-C(2)-C(1) 117.6(2)  C(29)-C(28)-C(23) 112.7(3) 
C(4)-C(3)-N(2) 121.7(2)  C(27)-C(31)-C(32) 112.3(2) 
C(4)-C(3)-C(2) 124.3(2)  C(27)-C(31)-C(33) 112.0(3) 
N(2)-C(3)-C(2) 114.0(2)  C(32)-C(31)-C(33) 110.3(2) 
C(3)-C(4)-C(5) 120.9(2)  N(4)-C(34)-C(35) 123.7(3) 
C(6)-C(5)-C(4) 117.6(3)  C(34)-C(35)-C(36) 117.8(3) 
C(5)-C(6)-C(7) 121.5(2)  C(37)-C(36)-C(35) 120.4(3) 
C(6)-C(7)-N(2) 121.0(2)  C(36)-C(37)-C(38) 119.8(3) 
C(6)-C(7)-C(8) 124.4(2)  N(4)-C(38)-C(37) 120.3(3) 
N(2)-C(7)-C(8) 114.6(2)  N(4)-C(38)-C(39) 114.0(2) 
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Table C.36. (continued) 
 

C(37)-C(38)-C(39) 125.6(3)  C(42)-C(43)-C(44) 125.6(3) 
N(5)-C(39)-C(40) 121.1(3)  N(6)-C(44)-C(45) 120.3(3) 
N(5)-C(39)-C(38) 113.0(2)  N(6)-C(44)-C(43) 114.3(2) 
C(40)-C(39)-C(38) 125.9(3)  C(45)-C(44)-C(43) 125.3(3) 
C(39)-C(40)-C(41) 119.5(3)  C(46)-C(45)-C(44) 119.8(3) 
C(40)-C(41)-C(42) 119.8(3)  C(45)-C(46)-C(47) 119.7(3) 
C(41)-C(42)-C(43) 119.0(3)  C(48)-C(47)-C(46) 118.7(3) 
N(5)-C(43)-C(42) 121.8(3)  N(6)-C(48)-C(47) 122.8(3) 
N(5)-C(43)-C(44) 112.6(2)    
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Table C.37. Crystal data and structure refinement for 1-CCPh. 

________________________________________________________________________________ 

Identification code  rt41 
Empirical formula  C41 H48 Fe N3 
Formula weight  638.67 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/n 
Unit cell dimensions a = 12.3966(6) Å α= 90°. 
 b = 17.6656(8) Å β= 96.720(2)°. 
 c = 16.4638(8) Å γ = 90°. 
Volume 3580.7(3) Å3 
Z 4 
Density (calculated) 1.185 Mg/m3 
Absorption coefficient 0.452 mm-1 
F(000) 1364 
Crystal size 0.60 x 0.40 x 0.04 mm3 
Theta range for data collection 1.95 to 25.35°. 
Index ranges -13<=h<=14, -21<=k<=17, -19<=l<=17 
Reflections collected 28797 
Independent reflections 6537 [R(int) = 0.0412] 
Completeness to theta = 25.35° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9821 and 0.7730 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6537 / 9 / 442 
Goodness-of-fit on F2 1.033 
Final R indices [I>2sigma(I)] R1 = 0.0444, wR2 = 0.0990 
R indices (all data) R1 = 0.0713, wR2 = 0.1095 
Largest diff. peak and hole 0.277 and -0.302 e.Å-3 

________________________________________________________________________________ 
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Table C.38. Atomic coordinates ( x 104) and equivalent  isotropic displacement 
parameters (Å2x 103) for 1-CCPh. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
________________________________________________________________________________  
 x y z U(eq) 
________________________________________________________________________________   
Fe(1) 9031(1) 3621(1) 1386(1) 38(1) 
N(1) 9689(1) 3020(1) 589(1) 41(1) 
N(2) 8778(1) 4252(1) 495(1) 37(1) 
N(3) 8271(1) 4433(1) 1865(1) 35(1) 
C(1) 10143(2) 2960(1) -848(1) 63(1) 
C(2) 9679(2) 3329(1) -145(1) 46(1) 
C(3) 9153(2) 4049(1) -225(1) 44(1) 
C(4) 8967(2) 4519(1) -901(1) 53(1) 
C(5) 8405(2) 5187(1) -843(1) 57(1) 
C(6) 8028(2) 5394(1) -113(1) 47(1) 
C(7) 8229(2) 4919(1) 561(1) 39(1) 
C(8) 7943(1) 5008(1) 1375(1) 36(1) 
C(9) 7345(2) 5681(1) 1636(1) 49(1) 
C(10) 10058(2) 2246(1) 717(1) 44(1) 
C(11) 11123(2) 2091(1) 1033(1) 54(1) 
C(12) 11419(2) 1338(1) 1149(2) 62(1) 
C(13) 10689(2) 761(1) 974(1) 65(1) 
C(14) 9642(2) 930(1) 685(1) 63(1) 
C(15) 9297(2) 1672(1) 551(1) 52(1) 
C(16) 11945(2) 2715(1) 1248(2) 69(1) 
C(17) 12363(2) 2710(2) 2155(2) 96(1) 
C(18) 12883(2) 2672(2) 731(2) 79(1) 
C(19) 8054(5) 1914(4) 287(4) 54(2) 
C(20) 7277(6) 1505(4) 783(4) 79(2) 
C(21) 7757(6) 1799(5) -621(4) 104(3) 
C(19') 8182(6) 1789(4) 239(4) 71(2) 
C(20') 7475(6) 1639(5) 917(5) 115(3) 
C(21') 7783(5) 1362(3) -536(3) 84(2) 
C(22) 8112(2) 4452(1) 2718(1) 37(1) 
C(23) 7178(2) 4133(1) 2971(1) 46(1) 
C(24) 7106(2) 4097(1) 3810(1) 55(1) 
C(25) 7921(2) 4359(1) 4363(1) 62(1) 
C(26) 8825(2) 4676(1) 4097(1) 67(1) 
C(27) 8948(2) 4735(1) 3272(1) 48(1) 
C(28) 6259(2) 3826(1) 2365(1) 65(1) 
C(29) 5155(2) 4150(2) 2500(2) 108(1) 
C(30) 6240(2) 2970(1) 2403(2) 92(1) 
C(31) 9952(2) 5084(2) 2988(1) 64(1) 
C(32) 10081(2) 5912(2) 3220(2) 80(1) 
C(33) 10967(2) 4652(2) 3301(2) 90(1) 
C(34) 9362(2) 2974(1) 2315(1) 45(1) 
C(35) 9634(2) 2557(1) 2892(1) 44(1) 
C(36) 10007(2) 2049(1) 3546(1) 46(1) 
C(37) 9951(2) 2240(2) 4354(1) 71(1) 
C(38) 10343(2) 1749(2) 4977(2) 92(1) 
C(39) 10766(2) 1069(2) 4802(2) 93(1) 
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Table C.38. (continued) 
 
C(40) 10835(2) 874(2) 4006(2) 89(1) 
C(41) 10460(2) 1357(1) 3382(2) 63(1) 
________________________________________________________________________________ 
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Table C.39. Bond lengths [Å] for 1-CCPh. 

 Fe(1)-N(2)  1.8401(14)  C(15)-C(19)  1.610(6) 
Fe(1)-C(34)  1.915(2)  C(16)-C(17)  1.522(4) 
Fe(1)-N(3)  1.9329(15)  C(16)-C(18)  1.522(3) 
Fe(1)-N(1)  1.9407(15)  C(19)-C(21)  1.512(8) 
N(1)-C(2)  1.325(2)  C(19)-C(20)  1.516(8) 
N(1)-C(10)  1.449(2)  C(19')-C(21')  1.515(7) 
N(2)-C(7)  1.370(2)  C(19')-C(20')  1.521(8) 
N(2)-C(3)  1.370(2)  C(22)-C(27)  1.391(3) 
N(3)-C(8)  1.330(2)  C(22)-C(23)  1.395(3) 
N(3)-C(22)  1.441(2)  C(23)-C(24)  1.395(3) 
C(1)-C(2)  1.499(3)  C(23)-C(28)  1.524(3) 
C(2)-C(3)  1.429(3)  C(24)-C(25)  1.360(3) 
C(3)-C(4)  1.385(3)  C(25)-C(26)  1.370(3) 
C(4)-C(5)  1.381(3)  C(26)-C(27)  1.388(3) 
C(5)-C(6)  1.389(3)  C(27)-C(31)  1.511(3) 
C(6)-C(7)  1.390(3)  C(28)-C(30)  1.514(3) 
C(7)-C(8)  1.436(3)  C(28)-C(29)  1.524(4) 
C(8)-C(9)  1.491(3)  C(31)-C(33)  1.510(3) 
C(10)-C(11)  1.388(3)  C(31)-C(32)  1.516(3) 
C(10)-C(15)  1.391(3)  C(34)-C(35)  1.218(3) 
C(11)-C(12)  1.387(3)  C(35)-C(36)  1.436(3) 
C(11)-C(16)  1.514(3)  C(36)-C(37)  1.381(3) 
C(12)-C(13)  1.371(3)  C(36)-C(41)  1.384(3) 
C(13)-C(14)  1.362(3)  C(37)-C(38)  1.387(3) 
C(14)-C(15)  1.388(3)  C(38)-C(39)  1.356(4) 
C(15)-C(19')  1.433(7)  C(39)-C(40)  1.366(4) 
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313 

Table C.40. Angles [°] for 1-CCPh. 
 

N(2)-Fe(1)-C(34) 177.43(8)  C(10)-C(15)-C(19') 124.6(3) 
N(2)-Fe(1)-N(3) 80.23(6)  C(14)-C(15)-C(19) 124.1(3) 
C(34)-Fe(1)-N(3) 100.76(7)  C(10)-C(15)-C(19) 117.7(3) 
N(2)-Fe(1)-N(1) 80.66(7)  C(19')-C(15)-C(19) 8.6(4) 
C(34)-Fe(1)-N(1) 98.36(7)  C(11)-C(16)-C(17) 111.6(2) 
N(3)-Fe(1)-N(1) 160.88(6)  C(11)-C(16)-C(18) 111.7(2) 
C(2)-N(1)-C(10) 119.30(16)  C(17)-C(16)-C(18) 110.7(2) 
C(2)-N(1)-Fe(1) 115.61(13)  C(21)-C(19)-C(20) 111.8(5) 
C(10)-N(1)-Fe(1) 124.67(12)  C(21)-C(19)-C(15) 110.2(5) 
C(7)-N(2)-C(3) 120.95(16)  C(20)-C(19)-C(15) 112.1(5) 
C(7)-N(2)-Fe(1) 119.81(12)  C(15)-C(19')-C(21') 115.8(5) 
C(3)-N(2)-Fe(1) 119.24(13)  C(15)-C(19')-C(20') 109.0(5) 
C(8)-N(3)-C(22) 120.37(15)  C(21')-C(19')-C(20') 111.8(5) 
C(8)-N(3)-Fe(1) 116.63(12)  C(27)-C(22)-C(23) 121.96(17) 
C(22)-N(3)-Fe(1) 122.90(11)  C(27)-C(22)-N(3) 118.15(17) 
N(1)-C(2)-C(3) 113.92(17)  C(23)-C(22)-N(3) 119.66(16) 
N(1)-C(2)-C(1) 124.16(19)  C(22)-C(23)-C(24) 117.79(18) 
C(3)-C(2)-C(1) 121.89(18)  C(22)-C(23)-C(28) 122.07(17) 
N(2)-C(3)-C(4) 119.83(19)  C(24)-C(23)-C(28) 120.13(19) 
N(2)-C(3)-C(2) 110.52(16)  C(25)-C(24)-C(23) 121.3(2) 
C(4)-C(3)-C(2) 129.63(18)  C(24)-C(25)-C(26) 119.7(2) 
C(5)-C(4)-C(3) 119.63(19)  C(25)-C(26)-C(27) 122.1(2) 
C(4)-C(5)-C(6) 120.53(19)  C(22)-C(27)-C(26) 117.2(2) 
C(5)-C(6)-C(7) 119.0(2)  C(22)-C(27)-C(31) 121.38(17) 
N(2)-C(7)-C(6) 120.03(17)  C(26)-C(27)-C(31) 121.46(19) 
N(2)-C(7)-C(8) 110.29(15)  C(30)-C(28)-C(23) 110.1(2) 
C(6)-C(7)-C(8) 129.67(18)  C(30)-C(28)-C(29) 110.6(2) 
N(3)-C(8)-C(7) 113.04(16)  C(23)-C(28)-C(29) 112.7(2) 
N(3)-C(8)-C(9) 124.20(16)  C(27)-C(31)-C(33) 111.9(2) 
C(7)-C(8)-C(9) 122.76(16)  C(27)-C(31)-C(32) 112.5(2) 
C(11)-C(10)-C(15) 121.51(19)  C(33)-C(31)-C(32) 109.99(19) 
C(11)-C(10)-N(1) 120.75(17)  C(35)-C(34)-Fe(1) 176.11(18) 
C(15)-C(10)-N(1) 117.67(18)  C(34)-C(35)-C(36) 176.5(2) 
C(12)-C(11)-C(10) 117.74(19)  C(37)-C(36)-C(41) 118.1(2) 
C(12)-C(11)-C(16) 120.4(2)  C(37)-C(36)-C(35) 121.4(2) 
C(10)-C(11)-C(16) 121.85(19)  C(41)-C(36)-C(35) 120.49(19) 
C(13)-C(12)-C(11) 121.8(2)  C(38)-C(37)-C(36) 120.5(2) 
C(14)-C(13)-C(12) 119.2(2)  C(39)-C(38)-C(37) 120.4(3) 
C(13)-C(14)-C(15) 121.7(2)  C(38)-C(39)-C(40) 119.8(3) 
C(14)-C(15)-C(10) 118.0(2)  C(39)-C(40)-C(41) 120.5(3) 
C(14)-C(15)-C(19') 117.4(3)  C(40)-C(41)-C(36) 120.7(2) 
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