
GETTING THE MOST OUT OF YOUR DATA:

MULTITASK BAYESIAN NETWORK STRUCTURE

LEARNING, PREDICTING GOOD PROBABILITIES

AND ENSEMBLE SELECTION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Alexandru Niculescu-Mizil

August 2008

c© 2008 Alexandru Niculescu-Mizil

ALL RIGHTS RESERVED

GETTING THE MOST OUT OF YOUR DATA: MULTITASK BAYESIAN

NETWORK STRUCTURE LEARNING, PREDICTING GOOD

PROBABILITIES AND ENSEMBLE SELECTION

Alexandru Niculescu-Mizil, Ph.D.

Cornell University 2008

First, I consider the problem of simultaneously learning the structures of mul-

tiple Bayesian networks from multiple related datasets. I present a multitask

Bayes net structure learning algorithm that is able to learn more accurate network

structures by transferring useful information between the datasets. The algorithm

extends the score and search techniques used in traditional structure learning to

the multitask case by defining a scoring function for sets of structures (one struc-

ture for each task) and an efficient procedure for searching for a high scoring set

of structures. I also address the task selection problem in the context of multitask

Bayes net structure learning. Unlike in other multitask learning scenarios, in the

Bayes net structure learning setting there is a clear definition of task relatedness:

two tasks are related if they have similar structures. This allows one to automati-

cally select a set of related tasks to be used by multitask structure learning.

Second, I examine the relationship between the predictions made by differ-

ent supervised learning algorithms and true posterior probabilities. I show that

quasi-maximum margin methods such as boosted decision trees and SVMs push

probability mass away from 0 and 1 yielding a characteristic sigmoid shaped distor-

tion in the predicted probabilities. Naive Bayes pushes probabilities toward 0 and

1. Other models such as neural nets, logistic regression and bagged trees usually

do not have these biases and predict well calibrated probabilities. I experiment

with two ways of correcting the biased probabilities predicted by some learning

methods: Platt Scaling and Isotonic Regression. I qualitatively examine what dis-

tortions these calibration methods are suitable for and quantitatively examine how

much data they need to be effective.

Third, I present a method for constructing ensembles from libraries of thou-

sands of models. Model libraries are generated using different learning algorithms

and parameter settings. Forward stepwise selection is used to add to the ensem-

ble the models that maximize its performance. The main drawback of ensemble

selection is that it builds models that are very large and slow at test time. This

drawback, however, can be overcome with little or no loss in performance by using

model compression.

BIOGRAPHICAL SKETCH

Alexandru Niculescu-Mizil is a Ph.D. candidate in the Computer Science depart-

ment at Cornell University. He received a Masters of Science degree in Computer

Science from Cornell University and a Magna Cum Laude Bachelors degree in

Mathematics and Computer Science from University of Bucharest. His research

interests are in machine learning and data mining. He conducted research in induc-

tive transfer, graphical model structure learning, probability estimation, empirical

evaluations, ensemble methods, and on-line learning. He was awarded a Distin-

guished Student Paper Award at the twenty second International Conference on

Machine learning for the paper “Predicting Good Probabilities with Supervised

Learning”, and a Best Student Paper Award at the Conference on Learning The-

ory for the paper “Regret Bounds for Sleeping Experts and Bandits”.

iii

To Ema,

iv

ACKNOWLEDGMENTS

I am grateful to have had Rich Caruana as my advisor. He taught me all I

know about research. I thank him for the countless hours he spent side by side

with me showing me how to run experiments, how to interpret results, how to write

a paper, and so on. I thank him for all the guidance and advice he gave me over

the years, and for teaching me not only how to do good research, but also how to

be a good researcher. Many thanks also go to the rest of my committee, especially

to Thorsten Joachims. I thank Lillian Lee for her advice and support, and Robert

Kleinberg for encouraging me to engage in theoretical machine learning research.

I thank my office mates –Andre Allavena, Eric Breck, Steve Chong, Jeff Hart-

line, Filip Radlinski, and Matthew Schultz–, and the “guys next door” –Tom

Finley, Art Munson, Daria Sorokina, and Benyah Shaparenko– for the countless

academic and non-academic discussions, for putting up with me, and, above all,

for being true friends. I thank Cindy Robinson for the fun chats we had over the

years. Going to her office always brightened my day.

A great deal of gratitude goes to my family and friends in Romania. I thank my

parents for the education they gave me over the years and for guiding me toward

an academic career. I thank my best friend, Andrei Vlagali, who helped me keep

my sanity on several occasions. My love goes to Alina, who came to live with me

in Ithaca, even though this meant leaving behind her family and friends. Without

her love and care I would have never made it. Last, but most important, I thank

Ema, for the joy and excitement she brought to my life.

v

TABLE OF CONTENTS

Bibliographical Sketch . iii

Acknowledgments . v

List of Tables . viii

List of Figures . x

1 Overview 1

2 Inductive Transfer for Bayesian Network Structure Learning 5

2.1 Introduction . 5

2.2 Learning Bayes Nets from Data . 7

2.3 Learning from Multiple Related Tasks 9

2.3.1 The Prior . 10

2.3.2 Greedy Structure Learning 13

2.3.3 Searching for the Best Configuration 14

2.3.4 Empirical Evaluation . 17

2.4 Task Selection for Multitask Structure Learning 29

2.4.1 A Direct Measure of Task Relatedness 31

2.4.2 An Indirect Measure of Task Relatedness 32

2.4.3 Empirical Evaluation . 33

2.5 Discussion and Related Work . 42

2.6 Conclusions . 44

3 Predicting Good Probabilities with Supervised Learning 49

3.1 Introduction . 49

3.2 Calibration Methods . 50

3.2.1 Platt Calibration . 50

3.2.2 Isotonic Regression . 52

vi

3.3 Qualitative Analysis of Predictions 53

3.3.1 Boosting . 55

3.3.2 Support Vector Machines . 64

3.3.3 Artificial Neural Networks and Logistic Regression 66

3.3.4 Decision Trees . 68

3.3.5 Bagged Decision Trees and Random Forests 71

3.3.6 Memory Based Learning . 73

3.3.7 Naive Bayes . 75

3.4 Quantitative Analysis of Performance 77

3.5 Learning Curve Analysis . 80

3.6 Conclusions . 83

3.A Histograms of Predicted Values and Reliability Diagrams 86

4 Ensemble Selection 98

4.1 Introduction . 98

4.2 Improving Ensemble Selection . 100

4.2.1 Selection with Replacement 100

4.2.2 Sorted Ensemble Initialization 101

4.2.3 Bagged Ensemble Selection 102

4.3 Experimental Evaluation . 102

4.3.1 Methodology . 102

4.3.2 Empirical Results . 105

4.3.3 Analysis of Training Size . 106

4.3.4 Cross-Validated Ensemble Selection 109

4.3.5 Direct Metric Optimization 113

4.3.6 Model Library Pruning . 115

4.4 Model Compression . 119

vii

4.5 Conclusions . 123

4.A Data Sets . 129

4.B Learning Algorithms . 129

4.C Performance Metrics Used . 131

4.D Performance Scales . 134

viii

LIST OF TABLES

3.1 PAV Algorithm . 53

4.1 Performance with and without model calibration. The best score
in each column is bolded. 105

4.2 Performance with and without cross-validation for ensemble selec-
tion and model selection. 110

4.3 Percent loss reduction by dataset. 110
4.4 Breakdown of improvement from cross-validation. 112
4.5 Performance of ensemble selection when forced to optimize to one

set metric. 115
4.6 Time in seconds to classify 10k cases. 120
4.7 Size of the models in MB. 121
4.8 RMSE results. 121
4.9 Description of problems . 130
4.10 Scales used to compute normalized scores. Each entry shows bot-

tom / top for the scale. 135

ix

LIST OF FIGURES

2.1 North American Bird Conservation Regions. 19
2.2 Reduction in edit distance (left) and KL-Divergence (right) for

ALARM . 22
2.3 Reduction in edit distance (left) and KL-Divergence (right) for

INSURANCE-IND . 23
2.4 Edit distance (left) and KL-Div (right) for different multitask priors 24
2.5 Edit distance (left) and KL-Div (right) for STL, learning identical

structures and MTL . 24
2.6 The true structures (left), structures learned by MTL (middle) and

STL (right) for ALARM-COMP 26
2.7 Edit distance (left) and KL-Divergence (right) vs. train set size for

ALARM-COMP. 27
2.8 Average mean log likelihood vs. the penalty parameter for multi-

task structure learning on the BIRD problem. 28
2.9 Average mean log likelihood vs. training set size for the BIRD

problem. 29
2.10 KL-Divergence of the principal task vs. the number of selected

tasks for the ALARM-COMP problem. 34
2.11 Improvement in Edit Distance over single task learning vs. training

set size for the ALARM-COMP problem. 36
2.12 Distance between the principal task and the rest of the tasks for

one trial of the ALARM-COMP problem. Distance is computed
using the direct measure. 37

2.13 Mean log likelihood vs. the number of selected tasks for BCR28 on
the BIRD problem. 38

2.14 Average improvement in mean log likelihood over single task learn-
ing vs. training set size for task selection on the BIRD problem
(average over 11 BCRs). 39

2.15 Average improvement in mean log likelihood over single task learn-
ing vs. training set size for task clustering on the BIRD problem
(average over 11 BCRs). 40

2.16 Cluster hierarchy for the BIRD problem. 41

3.1 Effect of boosting on the predicted values. Histograms of the pre-
dicted values (top) and reliability diagrams (bottom) on the test set
for boosted trees at different steps of boosting on the COV TYPE
problem. 56

3.2 Histograms of predicted values and reliability diagrams for boosted
decision trees before and after calibration. 57

3.3 Histograms of predicted values and reliability diagrams for boosted
decision stumps before and after calibration. 60

x

3.4 Histograms of predicted values and reliability diagrams for (a)boosted
trees and (b)boosted stumps calibrated with Logistic Correction. . 61

3.5 Histograms of predicted values and reliability diagrams for (a)boosted
trees and (b)boosted stumps trained to directly optimize log-loss. . 61

3.6 Histograms of predicted values and reliability diagrams for SVMs
before and after calibration. 64

3.7 Histograms of predicted values and reliability diagrams for neural
networks before and after calibration. 66

3.8 Histograms of predicted values and reliability diagrams for (a)Decision
Trees, (b)Bagged Decision Trees and (c)Random Forests 69

3.9 Histograms of predicted values and reliability diagrams after cali-
bration with Platt Scaling for (a)Bagged Decision Trees and (b)Random
Forests. 73

3.10 Histograms of predicted values and reliability diagrams for memory
based learning before and after calibration. 74

3.11 Histograms of predicted values and reliability diagrams for Naive
Bayes before and after calibration. 76

3.12 Performance of learning algorithms 78
3.13 Learning Curves for Platt Scaling and Isotonic Regression (averages

across 10 problems). 81
3.14 Histograms of predicted values and reliability diagrams for boosted

decision stumps before and after calibration. 87
3.15 Histograms of predicted values and reliability diagrams for boosted

decision stumps calibrated with Logistic Regression and for boosted
decision stumps trained to optimize log-loss. 88

3.16 Histograms of predicted values and reliability diagrams for boosted
decision trees calibrated with Logistic Regression and for boosted
decision trees trained to optimize log-loss. 89

3.17 Histograms of predicted values and reliability diagrams for SVMs
before and after calibration. 90

3.18 Histograms of predicted values and reliability diagrams for artificial
neural networks before and after calibration. 91

3.19 Histograms of predicted values and reliability diagrams for logistic
regression before and after calibration. 92

3.20 Histograms of predicted values and reliability diagrams for decision
trees before and after calibration. 93

3.21 Histograms of predicted values and reliability diagrams for bagged
decision trees before and after calibration. 94

3.22 Histograms of predicted values and reliability diagrams for random
forests before and after calibration. 95

3.23 Histograms of predicted values and reliability diagrams for memory
based learning before and after calibration. 96

3.24 Histograms of predicted values and reliability diagrams for naive
Bayes before and after calibration. 97

xi

4.1 Selection With and Without Replacement. 101
4.2 Learning curves for ensemble selection with and without bagging,

and for picking the best single model (modsel). 108
4.3 Scatter plots of ensemble selection performance when RMS is op-

timized (x-axis) vs when the target metric is optimized (y-axis).
Points above the line indicate better performance by optimizing to
the target metric (e.g. accuracy) then when optimizing RMS. Each
point represents a different data set; circles are averages for a prob-
lem over 5 folds, and X’s are performances using cross-validation.
Each metric (and the mean across metrics) is plotted separately. . 114

4.4 Pruned ensemble selection performance. 117
4.5 RMS performance for pruned ensemble selection. 118

xii

CHAPTER 1

OVERVIEW

The first part of this dissertation is concerned with Bayesian network structure

learning. Bayesian networks are a standard tool for reasoning with uncertainty

that encode compactly the probabilistic relationships between variables of inter-

est. Bayes nets are specified by a directed acyclic graph (DAG), called the Bayes

net structure, that encodes the statistical dependence and independence relation-

ships between the variables, and a set of parametrized conditional probability

functions. Learning the dependency structure from data provides invaluable infor-

mation about the domain, making Bayesian networks a very powerful data analysis

tool. For instance, learning a Bayes net from bird sighting data can help ecologists

and ornithologists understand how environmental and human factors influence the

abundance of different bird species. Or, learning a Bayes net from gene expression

data can give microbiologists insights into the gene regulatory system.

My work is motivated by the observation that in many situations data is avail-

able for multiple related problems. Bird sighting data is available for different,

ecologically distinct, regions in North America; gene expression data is available

for multiple species. If the dependency structures of the related problems are

similar, then useful information can be transfered among problems. Specifically,

finding a direct statistical dependency (or lack thereof) between two variables in

one problem provides additional evidence for the same relationship in the other

problems. Chapter 2 presents a Bayesian network structure learning technique

that is able to leverage this additional evidence in a principled manner. When

compared to the traditional approach of learning the structures for each domain in

isolation, without inter-problem transfer, my technique recovers significantly more

accurate dependency structures, especially in situations where the data is scarce.

1

Part of this work has been presented in (Niculescu-Mizil & Caruana, 2007).

Another problem I address in this dissertation is that of predicting accurate

class membership probabilities with supervised classification methods. The over-

whelming majority of the work in supervised classification has focused on predict-

ing the “correct” class for a given instance. In many cases, however, there is no

“correct” class, but rather the instance has a certain probability of membership

in each of the classes. Being able to accurately estimate these membership prob-

abilities is required by many applications. This ability is key, for instance, when

the predictions are used in a decision making process, when classifiers are used as

parts of larger systems, or when dealing with varying misclassification costs.

In Chapter 3 I analyze the ability of predicting accurate class membership

probabilities of several widely used supervised learning algorithms. The analy-

sis shows that a number of learning algorithms, including boosted decision trees,

support vector machines, and Naive Bayes, predict inaccurate class membership

probabilities. This makes them unusable in applications where probability esti-

mation is critical. To address this problem, I investigate techniques that “fix”

the predictions of these learning algorithms transforming them into accurate class

membership probability estimates. Parts of this chapter have been presented in

(Niculescu-Mizil & Caruana, 2005b), and (Niculescu-Mizil & Caruana, 2005a).

The last chapter tackles the issue of obtaining high performing classifiers. Even

small improvements in the performance of a classifier can lead to large gains if the

classifier is widely used. Consider, for instance, credit card fraud detection, where a

classifier would be used to distinguish fraudulent transactions from authentic ones.

Since credit card companies process billions of transactions every year, even small

improvements in the performance of the used classifier result in large gains from

preventing fraudulent transactions and avoiding frustrating honest customers.

2

Ensembles of classifiers, meta-classifiers that combine the predictions of a set

of base classifiers in order to obtain higher performance, have proved to be very

effective at obtaining high performing classifiers. In Chapter 4 I present Ensemble

Selection, an ensemble learning technique that yields some of the most powerful,

high performing, general purpose classifiers to date. The work in this chapter has

been presented in (Caruana et al., 2004), (Caruana et al., 2006) and (Bucila et al.,

2006).

3

BIBLIOGRAPHY

Caruana, R., Munson, A., & Niculescu-Mizil, A. (2006). Getting the most out of

ensemble selection (Technical Report 2006-2045). Cornell University. Full version

of paper published at ICDM 2006.

Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selec-

tion from libraries of models. Proc. 21st International Conference on Machine

Learning (ICML’04).

Fawcett, T., & Niculescu-Mizil, A. (2007). PAV and the ROC convex hull. Machine

Learning, 68, 97–106.

Niculescu-Mizil, A., & Caruana, R. (2005a). Obtaining calibrated probabilities

from boosting. Proc. 21st Conference on Uncertainty in Artificial Intelligence

(UAI ’05). AUAI Press.

Niculescu-Mizil, A., & Caruana, R. (2005b). Predicting good probabilities with

supervised learning. Proc. 22nd International Conference on Machine Learning

(ICML’05) (pp. 625–632).

Niculescu-Mizil, A., & Caruana, R. (2007). Inductive transfer for bayesian network

structure learning. Proc. 11th International Conf. on AI and Statistics.

4

CHAPTER 2

INDUCTIVE TRANSFER FOR BAYESIAN NETWORK

STRUCTURE LEARNING

2.1 Introduction

Bayes Nets (Pearl, 1988) provide a compact, intuitive description of the depen-

dency structure of a domain by using a directed acyclic graph to encode proba-

bilistic dependencies between variables. This intuitive encoding of the dependency

structure makes Bayes Nets appealing in expert systems where expert knowledge

can be encoded through hand-built dependency graphs. Acquiring expertise from

humans, however, is difficult and expensive, so significant research has focused on

learning Bayes Nets from data. The learned dependency graph also provides useful

information about a problem and is often used as a data analysis tool. For exam-

ple Friedman et al. (2000) used Bayes Nets learned from gene expression data to

discover regulatory interactions between genes for a species of yeast.

Until now, Bayes Net structure learning research has focused on learning the

dependency graph for one problem in isolation. In many situations, however, data

is available for multiple related problems. In these cases, inductive transfer (Caru-

ana, 1997; Baxter, 1997; Thrun, 1996) suggests that it may be possible to learn

more accurate dependency graphs by transferring information between problems.

For example, suppose that we want to learn the gene regulatory structure for a

number of yeast species. Since the regulatory structures are very similar, learn-

ing that there is an interaction between two genes in one species of yeast should

provide evidence for the existence of the same interaction in the other species.

In this chapter, we present an algorithm for learning the Bayes Net structures

for multiple related tasks simultaneously. The method assumes that the true struc-

5

tures of the related tasks are similar. When this assumption is true, the presence

or absence of arcs in some of the structures provides evidence for the presence or

absence of those same arcs in the other structures. By taking into account such ev-

idence the multitask structure learning algorithm we propose is able to learn more

accurate network structures than its single-task structure learning counterpart.

We also tackle the task selection problem for multitask structure learning. Task

selection is an important, but hard, problem in inductive transfer: given a set of

tasks, select a subset to use as related tasks in a multitask learner. The main rea-

son why automatic task selection is difficult in a general multitask learning setting

is that there is no clear definition of task relatedness. Even if there exists an intu-

itive notion of task relatedness, it might be difficult to quantify. Furthermore the

intuitive notion of relatedness might not correspond to a type of relatedness that

the multitask learning algorithm is able to take advantage of. For example, playing

tennis and running are, intuitively, related tasks, but if the particular multitask

learning algorithm used can only transfer information about arm movements then

multitask learning might not provide a benefit.

Unlike in the general case, in the multitask structure learning setting there

exists a clear, quantifiable notion of task relatedness: two tasks are related if their

structures are similar. Moreover, this is exactly the type of relatedness the mul-

titask structure learning algorithm we study in this chapter takes advantage of.

While computing task relatedness this way is not feasible since the true struc-

tures are unknown, it is possible to compute a good approximation using only

the available data. We propose two such measures of task relatedness and a task

selection algorithm for multitask structure learning. We show that, by selecting

an appropriate set of tasks to use as related tasks, task selection further improves

the performance of multitask structure learning.

6

The chapter starts with an overview of Bayes Net structure learning for a

single problem, then describes the new multitask structure learning algorithm in

Section 2.3. Section 2.3.4 provides an empirical evaluation of the new algorithm.

Section 2.4 presents two task relatedness measures and the task selection algo-

rithm. Empirical results supporting our task selection method are presented in

Section 2.4.3. The chapter ends with an overview of related work in Section 2.5

and final conclusions in Section 2.6.

2.2 Learning Bayes Nets from Data

A Bayesian Network B = {G, θ} that encodes the joint probability distribution of

a set of n random variables X = {X1, X2, ..., Xn} is specified by a directed acyclic

graph (DAG) G and a set of conditional probability functions parametrized by θ

(Pearl, 1988). The Bayes Net structure, G, encodes the probabilistic dependencies

in the data: the presence of an edge between two variables means that there exists

a direct dependency between them. An appealing feature of Bayes Nets is that the

dependency graph G is easy to interpret and can be used to aid understanding the

problem domain.

Given a dataset D = {x1, ..., xm} where each xi is a complete assignment of

variables X1, ..., Xn, it is possible to learn both the structure G and the parameters

θ (Cooper & Hersovits, 1992; Heckerman, 1999). Following the Bayesian paradigm,

the posterior probability of the structure given the data is estimated via Bayes rule:

P (G|D) ∝ P (G)P (D|G) (2.1)

The prior P (G) indicates the belief before seeing any data that the structure

G is correct. If there is no reason to prefer one structure over another, one should

assign the same probability to all structures. This uninformative (uniform) prior is

7

rarely accurate, but often is used for convenience. If there exists a known ordering

on the nodes in G such that all the parents of a node precede it in the ordering,

a prior can be assessed by specifying the probability that each of the n(n − 1)/2

possible arcs is present in the correct structure (Buntine, 1991). Alternately, when

there is access to a structure believed to be close to the correct one (e.g. from an

expert), P (G) can be specified by penalizing each difference between G and the

given structure by a constant factor (Heckerman et al., 1995).

The marginal likelihood, P (D|G), is computed by integrating over all possible

parameter values:

P (D|G) =
∫

P (D|G, θ)P (θ|G)dθ (2.2)

When the local conditional probability distributions are from the exponential

family, the parameters θi are mutually independent, we have conjugate priors for

these parameters, and the data is complete, P (D|G) can be computed in closed

form (Heckerman, 1999).

Treating P (G|D) as a score, one can search for a high scoring network using

heuristic search (Heckerman, 1999). Greedy search, for example, starts from an

initial structure, evaluates the score of all the neighbors of that structure and moves

to the neighbor with the highest score. The search terminates when the current

structure is better than all it’s neighbors. Because it is possible to get stuck in a

local minima, this procedure usually is repeated a number of times starting from

different initial structures. A common definition of the neighbors of a structure

G is the set of all the DAGs that can be obtained by removing or reversing an

existing arc in G, or by adding an arc that is not present in G.

8

2.3 Learning from Multiple Related Tasks

In the previous section we reviewed how to learn a Bayes Net for a single task.

What if instead of a single task we have a number of related tasks (e.g., gene

expression data for a number of related species) and we want to learn a Bayes Net

structure for each of them?

Given k data-sets, D1, ..., Dk, defined on overlapping but not necessarily iden-

tical sets of variables, we want to learn the structures of the Bayes Nets B1 =

{G1, θ1}, ..., Bk = {Gk, θk}, one for each data-set. In what follows, we will use the

term configuration to refer to a set of structures (G1, ..., Gk).

From Bayes rule, the posterior probability of a configuration given the data is:

P (G1, ..., Gk|D1, ..., Dk) ∝ P (G1, ..., Gk)P (D1, ..., Dk|G1, ..., Gk) (2.3)

The marginal likelihood P (D1, ..., Dk|G1, ..., Gk) is computed by integrating

over all parameter values for all the k networks:

P (D1, ..., Dk|G1, ..., Gk) =

=
∫

P (D1, ..., Dk|G1, ..., Gk, θ1, ..., θk) × (2.4)

P (θ1, ..., θk|G1, ..., Gk)dθ1...dθk

=
∫

P (θ1, ..., θk|G1, ..., Gk)
k

∏

p=1

P (Dp|Gp, θp)dθ1...dθk

If we make the parameters of different networks independent a priori (i.e.

P (θ1, ..., θk|G1, ..., Gk) = P (θ1|G1)...P (θk|Gk)), the marginal likelihood becomes

just the product of the marginal likelihoods of each data set given its network

structure. In this case the posterior can be written as:

P (G1, .., Gk|D1, .., Dk) ∝ P (G1, .., Gk)
k

∏

p=1

P (Dp|Gp) (2.5)

9

Making the parameters independent a priori is unfortunate, and contradicts

the intuition that related tasks should have related parameters, but it is needed

in order to make structure learning efficient (see Section 2.3.3). It is important to

note that this is not a restriction on the model. Unlike the Naive Bayes model for

example, where the attribute independence assumption actually restricts the class

of models that can be learned, here the learned parameters will be correlated if such

correlation is present in the data. The only downside of making the parameters

independent a priori is that it prevents multitask structure learning from taking

advantage of the similarities between the parameters of different tasks during the

structure learning phase. After the structures have been learned, however, such

similarities could be leveraged to learn more accurate parameters. Finding ways

to allow for some a priori parameter dependence while still maintaining computa-

tional efficiency is an interesting direction for future work.

2.3.1 The Prior

The prior knowledge of how related the different tasks are and how similar their

structures should be is encoded in the prior P (G1, ..., Gk). If there is no reason to

believe that the structures for each task should be related, then G1, ..., Gk should

be made independent a priori (i.e. P (G1, ..., Gk) = P (G1) · ... · P (Gk)). In this

case the structure-learning can be done independently for each task using the

corresponding data set.

At the other extreme, if the structures for all the different tasks should be iden-

tical, the prior P (G1, ..., Gk) should put zero probability on any configuration that

contains nonidentical structures. In this case one can efficiently learn the same

structure for all tasks by creating a new data set with attributes X1, ..., Xn, TSK,

where TSK encodes the task the case is coming from.1 Then learn the structure

1This is different from pooling the data, which would mean that not only the structures, but

10

for this new data set under the restriction that TSK is always the parent of all the

other nodes. The common structure for all the tasks is exactly the learned struc-

ture, with the node TSK and all the arcs connected to it removed. This approach,

however, does not easily generalize to the case where tasks have only partial over-

lap in their attributes. The algorithm proposed below avoids this problem, while

computing the same solution when structures are forced to be identical.

Between these two extremes, the prior should encourage finding similar network

structures for the tasks. The prior can be seen as penalizing structures that deviate

from each other, so that deviation will occur only if it is supported by enough

evidence in the data.

One way to generate such a prior for two structures is to penalize each arc

(Xi, Xj) that is present in one structure but not in the other by a constant δ ∈ [0, 1]:

P (G1, G2) = Zδ · (P (G1)P (G2))
1

1+δ

∏

(Xi,Xj)∈

G1∆G2

(1 − δ) (2.6)

where Zδ is a normalization factor that is absorbed in the proportionality constant

of equation 2.5, and G1∆G2 represents the symmetric difference between the edge

sets of the two DAGs (arc reversals can be counted only once or twice).

If δ = 0 then P (G1, G2) = P (G1)P (G2), so the structures are learned indepen-

dently. If δ = 1 then P (G1, G2) =
√

P (G)P (G) = P (G) for G1 = G2 = G and

P (G1, G2) = 0 for G1 6= G2, leading to learning identical structures for all tasks.

For δ between 0 and 1, the higher the penalty, the higher the probability of more

similar structures. The advantage of this prior is that P (G1) and P (G2) can be

any structure priors that are appropriate for the task at hand. If a variable, Xi, is

present in one structure but not in the other, then any arc that has Xi as one of

its extremities should not incur any penalty.

also the parameters for all tasks will be identical.

11

One way to interpret the above prior is that it penalizes by δ each edit (i.e. arc

addition, arc removal or arc reversal) that is necessary to make the two structures

identical (arc reversals can count as one or two edits). This leads to a natural

extension to more than two tasks that penalizes each edit that is necessary to

obtain a set of identical structures:

P (G1, ..., Gk) = Zδ,k ·
∏

1≤s≤k

P (Gs)
1

1+(k−1)δ ×
∏

i,j

(1 − δ)editsi,j (2.7)

where editsi,j is the minimum number of edits necessary to make the edge between

Xi and Xj the same in all the structures. We will call this prior the Edit prior.

The exponent 1/(1 + (k − 1)δ) is used to transition smoothly between the case

where structures should be independent (i.e. P (G1, ..., Gk) = (P (G1)...P (Gk))
1

for δ = 0) and the case where structures should be identical (i.e. P (G, .., G) =

(P (G)...P (G))1/k for δ = 1). This prior can be easily generalized by using different

penalties for different edges (e.g. if certain edges should not chance between tasks

then the penalty on those edged should be 1), and/or different penalties for different

edit operations.

Another way to specify a prior for more than two tasks is to multiply the

penalties incurred between all pairs of structures:

P (G1, ..., Gk) = Zδ,k ·
∏

1≤s≤k

P (Gs)
1

1+(k−1)δ ×
∏

1≤s<t≤k

∏

(Xi,Xj)∈

Gs∆Gt

(1 − δ)

1
k−1

(2.8)

We will call this prior the Paired prior. The exponent 1/(k−1) is used because

each individual structure is involved in k − 1 terms (one for each other structure).

One advantage that the Paired prior has over the Edit prior is that it can be

generalized by specifying different penalties between different pairs of structures.

This can handle situations where there is reason to believe that Task1 is related to

12

Task2, and Task2 is related to Task3, but the relationship to between Task1 and

Task3 is weaker.

There are of course other priors that encourage finding similar networks for

each task in different ways. In particular, if the process that generated the related

tasks is know, it might be possible to design a suitable prior.

2.3.2 Greedy Structure Learning

Treating P (G1, ..., Gk|D1, ..., Dk) as a score, we can search for a high scoring con-

figuration using an heuristic search algorithm. If we choose to use greedy search for

example, we start from an initial configuration, compute the scores of the neigh-

boring configurations, then move to the configuration that has the highest score.

The search ends when no neighboring configuration has a higher score than the

current one.

One question remains: what do we mean by the neighborhood of a config-

uration? An intuitive definition of a neighbor is the configuration obtained by

modifying a single arc in a single DAG in the configuration, such that the re-

sulting graph is still a DAG. With this definition, the size of the neighborhood

of a configuration is O(k ∗ n2) for k tasks and n variables. Unfortunately, this

definition creates a lot of local minima in the search space. Consider for example

the case where there is a strong belief that the structures should be similar (i.e.

the penalty parameter of the prior, δ, is near one resulting in a prior probability

near zero when the structures in the configuration differ). In this case it would be

difficult to take any steps in the greedy search since modifying a single edge for a

single DAG would make it different from the other DAGs, resulting in a very low

posterior probability (score).

To correct this problem, we define the neighborhood of a configuration to be

13

the set of all configurations obtained by selecting two nodes, and for each structure

in the configuration, add, remove, reverse, or leave unchanged the arc between the

two selected nodes, under the restriction that the resulting structure remains a

DAG. It is easy to see that there is a path between any two configurations, so

the search space is connected. Given this definition, the size of a neighborhood

is O(n23k), which is exponential in the number of tasks, but only quadratic in

the number of nodes.2 In the case where all the learned structures are required

to be identical (infinite penalty for diverging structures) multitask learning, with

this definition of neighborhood, will find the same structures as the specialized

algorithm described in Section 2.3.1. We will use this definition for the rest of the

chapter.

2.3.3 Searching for the Best Configuration

At each iteration, the greedy procedure described in the previous section must

find the best scoring configuration from a set N of neighboring configurations.

In the naive approach the score of every configuration in N is computed and the

configuration with the highest score is selected. Since the size of N can get large for

large n or k, this naive approach can be very expensive. Much of this computation

however can be avoided by using better search techniques to find the best scoring

configuration.

Let a partial configuration of order l, Cl = (G1, .., Gl), be a configuration where

only the structures for the first l tasks are specified and the rest of k− l structures

are not specified. We say that a configuration C matches a partial configuration Cl

if the structures for the first l tasks in C are the same as the structures in Cl.

2The restriction that changes, if any, have to occur between the same nodes in all the structures
could be dropped, but this would lead to a neighborhood that is exponential in both n and
k. Considering the assumption that the structures should be similar, such a restriction is not
inappropriate.

14

A search strategy for finding the best scoring configuration in N can be repre-

sented via a search tree of depth k that satisfies the following properties: a) each

node at level l contains a different valid partial configuration of order l; b) all nodes

in the subtree rooted at node Cl contain only (partial) configurations of order at

least l + 1 that match Cl. (i.e. the first l structures are the same as in Cl.)

If, given a partial configuration, the score of any complete configuration that

matches it can be efficiently upper bounded, and the upper bound is lower than

the current best score, then the entire subtree rooted at the respective partial con-

figuration that can be pruned. This suggests using a branch and bound procedure

for finding the best scoring configuration in N , by using deep first search and

pruning the current subtree whenever possible. This branch and bound search sig-

nificantly reduces the number of partial configurations (and consequently complete

configurations) that need to be explored.

Let editsl,i,j be the minimum number of edits necessary to make the edge

between Xi and Xj the same in the first l structures, and let

Bestq = max{P (Gq)
1

1+(k−1)δ P (Dq|Gq)}.

If the marginal likelihood of a configuration factorizes in the product of the

marginal likelihoods of the individual structures, as in equation 2.5, then the score

of any configuration that matches the partial configuration Cl = (G1, ..., Gl) can

be upper bounded by:

UEdit
N (Cl) = Zδ,k ·

∏

i,j

(1 − δ)editsl,i,j

× (2.9)

×

∏

1≤p≤l

P (Gp)
1

1+(k−1)δ P (Dp|Gp)

 ·

∏

l+1≤p≤k

Bestq

if using the Edit prior (equation 2.7), and by

15

UPaired
N (Cl) = Zδ,k ·

∏

1≤s<t≤l

∏

(Xi,Xj)∈

Gs∆Gt

(1 − δ)

1
k−1

× (2.10)

×

∏

1≤p≤l

P (Gp)
1

1+(k−1)δ P (Dp|Gp)

 ·

∏

l+1≤p≤k

Bestq

if using the Paired prior (equation 2.8).3

Note that for both these upper bounds, the fact that the marginal likelihood

a configuration factorizes into the product of the marginal likelihoods of the in-

dividual structures plays a critical role. It allows us to both compute the exact

contribution made by the specified structures to the marginal likelihood and to

easily compute the maximum contribution the unspecified structures can make to

the marginal likelihood of a configuration.

Another source of computational savings is the precomputation of the individ-

ual marginal likelihoods. With the definition of a neighborhood we are using, a

neighboring configuration will have, in each of the k components, one of the 2n2

or fewer individual DAGs that differ by exactly one edge from the current DAG

in the respective component. Each of these 2n2 (or fewer) DAGs are present in

about 3k−1 neighboring configurations. Since a configuration score has the form

in equation 2.5, the marginal likelihoods for the individual DAGs, P (Di|Gi), can

be reused, thus reducing by a factor of about 3k−1 the expense of computing the

marginal likelihoods of the neighboring configurations. It is also worth mentioning

that both the prior and the likelihood are decomposable, so evaluating the score

of the neighboring configurations requires only local computations.

3For the Paired prior it is possible to get a tighter upper bound, but we will use this one for
simplicity.

16

2.3.4 Empirical Evaluation

We evaluate the performance of multitask structure learning using multitask prob-

lems generated by perturbing the ALARM (Beinlich et al., 1989) and INSURANCE

(Binder et al., 1997) networks. We also evaluate the multitask structure learning

algorithm on a real problem in bird ecology.

Data Sets

For the experiments with the ALARM and INSURANCE networks, we generate

multiple related tasks by perturbing the original structures. We use two quali-

tatively different methods for perturbing the networks: randomly deleting edges,

and changing entire subgraphs.

For the first method, for each problem, we create five related tasks by starting

with the original network and deleting arcs with probability Pdel. This way, the

structures of the five tasks can be made more or less similar by varying Pdel (For

Pdel = 0 all structures are identical).

Given the restriction we imposed in Section 2.3 that parameters for different

tasks should be independent a priori, we want to investigate the performance of

multitask structure learning in settings where the parameters are indeed inde-

pendent between tasks, as well as in settings where the parameters are actually

correlated between tasks. To this end, we create four multitask learning prob-

lems; two where the parameters are independent between tasks, and two where

parameters are correlated between tasks. For the two problems with correlated

parameters, denoted ALARM and INSURANCE, we start with the original struc-

tures and parameters, and perturb the structures as described above. When an

arc is deleted, the parameters of the network are recomputed by integrating over

the deleted parent, so that the dependency between the child and the remaining

17

parents is unchanged. This yields five related tasks with correlated parameters. To

generate the two problems with independent parameters between tasks, denoted

ALARM-IND and INSURANCE-IND, we also start with the original structures,

but for each task, we use random parameters instead of the original ones. Then,

we again perturb the structures and integrate over the deleted parent when an arc

is removed.

We also experiment with a qualitatively different way of generating related

tasks, ALARM-COMP. We split the ALARM network in 4 components: nodes

1-7 in the first component, nodes 9-14, 21 and 34 in the second, nodes 8,27-31,

36 and 37 in the third and the rest in the fourth component. For each of the five

tasks, we randomly change the structure and parameters of zero, one or two of

the components, while keeping the rest of the Bayes net (including parameters)

unchanged. The first tasks consists of the original ALARM network, the second

task has the first component changed, the third task has the second component

changed, the fourth task has the third component changed and the fifth task

has both the first and the third components changed. This way parts of the

structures are shared between tasks while other parts are completely unrelated (see

Figure 2.6). This method of creating related tasks tries to simulate the situation

where whole pieces of the gene regulatory structures differ from one organism to

another.

We also evaluate the performance of multitask structure learning on a real bird

ecology problem. The data for this problem comes from Project FeederWatch

(PFW, http://birds.cornell.edu/pfw), a winter-long survey of North Ameri-

can birds observed at bird feeders. Each PFW location and submission is described

by multiple attributes. These attributes can be roughly grouped into features re-

lated to observer effort, weather during the observation period, and attractiveness

18

Figure 2.1: North American Bird Conservation Regions.

of the location and neighborhood area for birds. In this chapter we only examine

the case where the data is fully observed, so we preprocess the PFW data by elimi-

nating attributes that contain a large number of missing values, and by eliminating

instances that still contain missing values in the remaining attributes.

Ecologists have divided North America into a number of ecologically distinct

Bird Conservation Regions (BCRs; see Figure 2.1). This division naturally splits

19

the data into multiple tasks, one task per BCR. Because each bird species lives in

some BCRs but not in others, and because there is a variable for each bird species

in a BCR, this is an instance of a problem where the different tasks are not defined

over identical sets of variables.

Although multitask structure learning is most beneficial for BCRs that have

only a small amount of data, small amounts of data make evaluation difficult. In

order to have multiple trials that are not too similar, and to have large enough test

sets to ensure accurate estimates of generalization performance, in this chapter we

focus on the BCRs with larger amounts of data. In this section we will use six

BCRs as related tasks: 30, 29, 28, 22, 13 and 23. We justify the choice of these

particular BCRs in Section 2.4.3.

Methodology

We compare multitask structure learning to single-task structure learning, and

learning identical structures for all tasks. Single-task structure learning uses greedy

hill-climbing with 100 restarts and tabu lists to learn the structure of each task

independently of the others. The learning of identical structures is performed via

the algorithm presented in Section 2.3.1 and it also uses greedy hillclimbing with

100 restarts and tabu lists.4

multitask structure learning uses the greedy algorithm from in Section 2.3.2

with the solution found by single-task learning as the starting point.5 When

needed, the penalty parameter of the multitask prior, δ, is selected using the

following simple wrapper method:

4Learning identical structures and single-task structure learning can be viewed as learning an
augmented naive Bayesian network and a Bayesian multi-net (Friedman et al., 1997) respectively,
where the “class” of each example is the task it belongs to . Unlike in the usual setting, however,
here we are not interested in predicting to which task an example belongs to. We are only
interested in recovering accurate network structures for each task.

5Initializing MTL search with the STL solution does not provide an advantage to MTL, but
makes the search more efficient.

20

1. Split the available training data into a training set and a small validation

set.

2. Run the multitask structure learning algorithm on the training set with dif-

ferent values for the penalty parameter.

3. Select the value of the penalty parameter that yields the highest mean log

likelihood on the small validation set.

4. Once a penalty parameter is selected and the structures have been learned,

use both the training and validation sets to learn the Bayes Net parameters.

Note that for single task learning and learning identical tasks, where there

are no free parameters, all available training data, including the data multitask

learning uses as a validation set, is used to learn both structures and parameters

in order to keep the comparison fair. For all methods, the Bayes net parameters

are learned using Bayesian updating (see e.g. (Cooper & Hersovits, 1992)).

The goal is to recover as closely as possible the true Bayes Net structures

for all the related tasks. The main measure of performance we use is average edit

distance6 between the true structures and learned structures. Edit distance directly

measures the quality of the learned structures, independently of the parameters of

the Bayes Net. We also measure the average empirical KL-divergence (computed

on a large test set) between the distributions encoded by the true networks and

the learned ones. Since KL-Divergence is also sensitive to the parameters of the

Bayes Net it does not measure directly the quality of the learned structures, but,

in general, more accurate structures lead to models with lower KL-Divergence.

For the bird ecology problem, where the true networks are unknown, we measure

performance in terms of mean log likelihood on a large independent test set.

6Edit distance measures how many edits (arc additions, deletions or reversals) are needed to
get from one structure to the other.

21

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

E
di

t D
is

ta
nc

e

 1 - penalty

Pdel = 0
Pdel = 0.05

Pdel = 0.1
Pdel = 0.2

-5

 0

 5

 10

 15

 20

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

K
L-

D
iv

er
ge

nc
e

 1 - penalty

Pdel = 0
Pdel = 0.05
Pdel = 0.1
Pdel = 0.2

Figure 2.2: Reduction in edit distance (left) and KL-Divergence (right) for ALARM

The ALARM and INSURANCE problems

Figures 2.2 and 2.3 show the average percent reduction in loss, in terms of edit dis-

tance and KL-divergence, achieved by multitask learning over single-task learning

for a training set of 1000 points on the ALARM and INSURANCE-IND problems.

The figures for the ALARM-IND and INSURANCE problems are similar and are

not included. On the x-axis we vary the penalty parameter of the multitask prior

on a log-scale.7 Note that the x-axis plots 1 − penalty. The higher the penalty

(the lower 1 − penalty), the more similar the learned structures will be, with all

the structures being identical for a penalty of one (1 − penalty = 0, left end of

graphs). Each line in the figure corresponds to a particular value of Pdel. Error

bars are omitted to maintain the figure readable.

The trends in the graphs are exactly as expected. For all values of Pdel, as the

penalty increases, the performance increases because the learning algorithm takes

into account information from the other tasks when deciding whether to add a

new arc or not. If the penalty is too high, however, the algorithm loses the ability

to find true differences between tasks and the performance drops. As the tasks

become more similar (lower values of Pdel), the best performance is obtained at

7The log-scale is needed because we are working in the probability space so 1 − δ needs to
change by orders of magnitude for the effects to be noticeable.

22

-10

-5

 0

 5

 10

 15

 20

 25

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

E
di

t D
is

ta
nc

e

 1 - penalty

Pdel = 0
Pdel = 0.05

Pdel = 0.1
Pdel = 0.2

-10

-5

 0

 5

 10

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

K
L-

D
iv

er
ge

nc
e

 1 - penalty

Pdel = 0
Pdel = 0.05
Pdel = 0.1
Pdel = 0.2

Figure 2.3: Reduction in edit distance (left) and KL-Divergence (right) for
INSURANCE-IND

higher penalties. Also as the tasks become more similar, more information can

be extracted from the related tasks, so usually multitask learning provides more

benefit. As expected, multitask structure learning provides a larger improvement

in edit distance than in KL-divergence. This happens because multitask structure

learning helps to correctly identify the arcs that encode weaker dependencies (or in-

dependences) which have a smaller effect on KL-divergence. The arcs that encode

strong dependencies, and have the biggest effect on KL-divergence, can be easily

learned without help from the other tasks. multitask learning provides similar ben-

efits whether the tasks have highly correlated parameters (ALARM and INSUR-

ANCE problems) or independent parameters (ALARM-IND and INSURANCE-

IND problems). This shows that making the parameters independent a priori (see

Section 2.3) does not hurt the performance of multitask learning. However, if

we were able to take advantage of the similarity between the parameters of the

different tasks, we could presumably improve performance even further.

Figure 2.4 shows the edit distance (left) and KL-divergence (right) performance

of multitask structure learning when using the different multitask priors proposed

in Section 2.3.1: the Paired prior from equation 2.8 with the reversed edges penal-

ized twice (Paired/Double) or only once (Paired/Single) and the Edit prior from

23

 0

 5

 10

 15

 20

 25

ALARM-IND ALARM INSURANCE-IND INSURANCE ALARM-COMP

E
di

t D
is

ta
nc

e

Paired/Double
Paired/Single

Edit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ALARM-IND ALARM INSURANCE-IND INSURANCE ALARM-COMP

K
L-

D
iv

er
ge

nc
e

Paired/Double
Paired/Single

Edit

Figure 2.4: Edit distance (left) and KL-Div (right) for different multitask priors

 0

 5

 10

 15

 20

 25

ALARM-IND ALARM INSURANCE-IND INSURANCE ALARM-COMP

E
di

t D
is

ta
nc

e

MTL
STL

IDENTICAL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ALARM-COMPINSURANCEINSURANCE-INDALARMALARM-IND

K
L-

D
iv

er
ge

nc
e

MTL
STL

IDENTICAL

Figure 2.5: Edit distance (left) and KL-Div (right) for STL, learning identical
structures and MTL

equation 2.7. Each group of bars corresponds to one problem. For ALARM-IND,

ALARM, INSURANCE-IND and INSURANCE Pdel is set to 0.05. The training

set has 1000 cases, with a validation set of 50 cases for selecting the penalty pa-

rameter for the multitask prior as described in the beginning of this section. While

there is some variability between the performance of the different priors, it is quite

small, and never statistically significant. This suggests that multitask learning is

relatively robust to the specific type of multitask prior, as long as it appropriately

encourages sharing between the tasks. So one can safely use either type of prior

without having to worry about selecting the best prior for the problem. Unless

otherwise specified, in his chapter we use the Paired prior with double penalty on

reversed edges.

24

Figure 2.5 shows the edit distance and KL-Divergence performance for single

task learning (STL), learning identical networks via the algorithm presented in

Section 2.3.1 (IDENTICAL), and multitask learning (MTL) for the five problems.

The training set has 1000 instances with 50 instances used to select the penalty

parameter for the multitask prior. Single-task learning and identical structure

learning use both the training and the validation data to learn both the structure

and the parameters of the Bayes Nets. The figure shows that multitask learn-

ing yields a 10%-54% reduction in edit distance and a 2% - 13% reduction in

KL-divergence when compared to single task structure learning. All differences

except for KL-divergence on ALARM-IND and INSURANCE-IND problems are

.95 significant according to paired T-tests. When compared to learning identical

structures, multitask learning reduces the KL-divergence 7% - 32% and the num-

ber of incorrect arcs in the learned structures by 4% - 60%. All differences are .95

significant, except for edit distance on the ALARM-IND problem. Since the five

tasks for the ALARM, INSURANCE, and ALARM-COMP problems share a large

number of their parameters, simply pooling the data might work well. However,

this is not the case. Except for the ALARM problem, where it achieves about

the same edit distance as learning identical structures, pooling the data has much

worse performance both in terms of edit distance and in terms of KL-divergence.

For a qualitative perspective, Figure 2.6 shows the true structures and the

structures learned by multitask learning and single-task learning for the five tasks

(one per row) on one trial of the ALARM-COMP problem. The figure clearly

shows that multitask learning finds more accurate structures by taking advantage

of the similarity between the five tasks, while still preserving some of the true

differences between them.

Figure 2.7 shows the performance of single and multitask learning as the train

25

1

2

4

7

3

5

6

36

8

28

9

15

16

22

33

35

10

11

14
12

13

32

17

20

26

18

19

23

21 34

24

25

37

27

30

31

29

1

2

4

7

3

5

6

36

8

28

9

15
22

33

35

10

11

14
12

13

16

32

17

20

26

18

19

23

21 34

24

25

37

27

30

31

29

1

2 7

19

29

3

4

6

5

36

8

28

9

22

33

35

10

11

14
12

13

16

15

32

17

20

26

18

23

21 34

24

25

37

27

30

31

1

45

2

3

6

7

36

8

28

9

15

16

22

33

35

10

11

14
12

13

32

17

20

26

18

19

23

21 34

24

25

37

27

30

31

29

1

2

5

3

4

6

7

36

8

28

9

15

16

22

33

35

10

11

12

13
14

32

17

20

26

18

19

23

21 34

24

25

37

27

30

31

29

1

5

2

3

4

6

7

36

8

11

28

9

22

34

35

10

19

13

12
14

16

15

32

17

20

33

26

18

23

21

24

25

37

27

30

31

29

1

2

4

7

3

5

6

36

8

28

9

15

16

22

33

35

10

13

11

12
14

21 34

32

17

20

26

18

19

23

24

25

37

27

30

31

29

1

2

4

3

5

6

7

36

8

28

9

15
22

35

10

13

16

33

11

12
14

34

32

17

20

26

18

19

23

21

24

25

37

27

30

31

29

1

45

72

3

6

36

8

28

9

15
22

35

10

13

16

33

11

12
14

34

32

17

20

26

18

19

27

23

21

24

25

37

30

31

29

1

2

4

7

3

5

6

36

8

30

9

15

16

22

33

35

10

11

14
12

13

32

17

20

26

18

19

23

21 34

24

25

37

27

28

31

29

1

2

4

3

5

6

7 8

9

15
22

33

35

10

11

12

13
14

32

16

17

20

26

18

19

23

21 34

24

25

37

27

29

28

30

31

36

1

2

4

7

3

24

5

6

8

9

15
22

35

10

11

13

21

12
14

32

16

17

20

26

18

19

23

34

25

37

27

28

29

30

31

33

36

1

45

2

3

6

7

36

8

30

9

15

16

22

33

35

10

11

14
12

13

32

17

20

26

18

19

23

21 34

24

25

37

27

28

31

29

1

2

45

3

6

7 8

9

15
22

33

35

10

11

12

13
14

32

16

17

20

26

18

19

23

21 34

24

25

37

27

29

28

31

30

36

1

4

2

3

5

6

7 8

9

22

35

10

11

18

12

13
14

15

32

33

1620

17

26

21

19

23

24

25

37

27

28

31

29

30

34

36

Figure 2.6: The true structures (left), structures learned by MTL (middle) and
STL (right) for ALARM-COMP

TRUE STRUCTURE MTL STL

T
A

S
K

1
T
A

S
K

2
T
A

S
K

3
T
A

S
K

4
T
A

S
K

5

26

 0

 5

 10

 15

 20

 25

 30

 250 500 1000 2000 4000 8000 16000

 E
di

t D
is

ta
nc

e

 Training Set Size

STL
MTL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 250 500 1000 2000 4000 8000 16000

 K
L-

D
iv

er
ge

nc
e

 Training Set Size

STL
MTL

Figure 2.7: Edit distance (left) and KL-Divergence (right) vs. train set size for
ALARM-COMP.

set size varies from 250 to 16000 cases (MTL uses 5% of the training points as

a validation set to select the penalty parameter). As expected, the benefit from

multitask learning is larger when the data is scarce and it diminishes as more

training data is available. This is consistent with the behavior of multitask learning

in other learning setting (see e.g. (Caruana, 1997)). For smaller training set

sizes multitask learning needs about half as much data as single-task learning to

achieve the same edit distance. In terms of KL-divergence, multitask learning

provides smaller savings in sample size. One reason for this is that, as discussed

before, multitask learning yields lower improvements in KL-divergence than in edit

distance. For the most part however, the smaller savings in sample size are due

to the fact that more training data leads not only to more accurate structures,

but also to more accurate parameters. Since multitask structure learning only

improves the structure and not the parameters, it is not able to make up for the

loss of large amounts of training data.

The BIRD problem

The results on the BIRD problem mimic the ones in the previous section. Fig-

ure 2.8 shows the average (across the 6 BCRs/tasks) mean log likelihood on a large

independent test set for multitask structure learning as a function of the penalty

27

-40.42

-40.4

-40.38

-40.36

-40.34

-40.32

-40.3

-40.28

-40.26

-40.24

-40.22

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1
 M

ea
n

Lo
g

Li
ke

lih
oo

d
 1 - penalty

Paried/Double
Edit

Figure 2.8: Average mean log likelihood vs. the penalty parameter for multitask
structure learning on the BIRD problem.

parameter of the multitask prior. Each line corresponds to a different type of mul-

titask prior. The x-axis plots 1 − penalty, so the right most point corresponds to

no penalty (single task learning) and the leftmost point corresponds to a penalty

of one (learning identical structures). Higher mean log likelihood represents bet-

ter performance. As with the five problems in the previous section, the type of

multitask prior does not have a significant impact on the performance of multitask

learning. As the penalty parameter increases (1− penalty decreases), information

starts to be transfered between the different tasks and the performance quickly

increases. After reaching a peak, the performance starts to decrease slowly as the

penalty increases further.

Note that, because the tasks are not all defined on the same set of variables

(see Section 2.3.4), the algorithm for learning identical structures for all tasks

from Section 2.3.1 can not be directly applied. Our algorithm on the other hand

can handle this situation and learns a set of identical structures for all tasks that

performs reasonably well (left end of Figure 2.8).

Figure 2.9 shows the average mean log likelihood performance of multitask

structure learning and single task structure learning as a function of the training

set size. multitask learning uses 5% of the training data to select the penalty pa-

28

-41.8

-41.6

-41.4

-41.2

-41

-40.8

-40.6

-40.4

-40.2

-40

-39.8

-39.6

 250 500 750 1000
 M

ea
n

Lo
g

Li
ke

lih
oo

d
 Training Set Size

STL
MTL

Figure 2.9: Average mean log likelihood vs. training set size for the BIRD problem.

rameter for the multitask prior. As with the other problems, the benefit from mul-

titask learning is larger for smaller training set sizes. As the training size increases

single-task learning catches up and eventually outperforms multitask learning. Un-

fortunately, since we do not know the real network structures for this problem, we

can not directly asses the quality of the learned structures. The results in the

previous sections, however, suggest that if one would be able to measure the edit

distance between the true and the learned structures, the improvement provided

by multitask learning in terms of edit distance probably would be even larger than

the improvement provided in terms of average mean log likelihood.

2.4 Task Selection for Multitask Structure Learning

In any multitask learning setting there is a trade-off between correct transfer of

features that are truly common between tasks, and incorrect transfer of features

that in reality are distinct. More correct transfer translates into more benefit

from multitask learning while incorrect transfer diminishes or even eliminates this

benefit.

In multitask structure learning this trade-off is controlled via the multitask

prior. If the tasks are closely related (i.e. their true structures are very similar)

29

then there is less opportunity for incorrect transfer and the multitask prior can

safely encourage more sharing between tasks leading to higher benefits. Conversely,

if the tasks are more dissimilar then incorrect transfer becomes more of a concern

and the sharing between tasks needs to be toned down. The problem arises when

some of the tasks are closely related, but others are quite dissimilar. In this case,

multitask structures learning is either forced to lower the sharing between tasks

and miss some opportunities for correct transfer from the closely related tasks,

or to suffer from incorrect transfer from the dissimilar tasks. In both cases, the

performance of multitask structure learning will be lower than if it were to only

use the closely related tasks.

In what follows, we slightly change the problem setup, and assume that there is

a single principal task that we are interested in learning a good network structure

for. If more than one task is important, then the procedure can be repeated with

each important task as the principal task. We also assume that there exists a

pool of potentially related extra tasks, but we are not interested in their network

structures. Under these assumptions, the goal of task selection is to find a set of

tasks that, when used as extra tasks in multitask structure learning, maximize the

performance of the principal task.

As discussed above, the more related a task is to the principal task, the higher

the benefit it provides. This justifies the following task selection procedure: first

order all the extra tasks by a measure of their relatedness to a principal task, then

select the first (most related) N tasks to use as related tasks. N , the number

of tasks to be selected, can either be specified by the user, or selected using an

independent validation set.

This task selection procedure relies on having a measure of task relatedness.

In the rest of the section we propose two such task relatedness measures.

30

2.4.1 A Direct Measure of Task Relatedness

Unlike most multitask learning settings, where the notion of task relatedness is not

well defined, in the multitask structure learning setting there is a clear definition of

relatedness: two tasks are related if they have similar structures. So any measure of

similarity/dissimilarity between the true Bayes Net structures of two tasks provides

a direct measure of the similarity/dissimilarity between the two tasks.

Since the true network structures are not available, we need to approximate the

similarity between two tasks without having access to the true structures them-

selves. A simple way to do this is to first learn the network structures for each

task from the training data (in a single-task manner), then use the learned net-

works to compute the similarity between the different tasks. One potential problem

with this approach is that the greedy search procedure used to learn the network

structures is a high variance procedure. This variance might make the learned

networks artificially dissimilar leading to a poor, high variance, approximation of

the similarity between different tasks.

This problem can be alleviated by encouraging the greedy search procedure to

follow similar search paths for all task. Luckily, multitask structure learning does

just that: it gives greedy search an incentive to make similar decisions for every

task, making the search paths for all tasks similar. This incentive, quantified by the

penalty parameter of the multitask prior, should be large enough to cut down the

variance, but small enough not to make the learned structures artificially similar.

In our experiments using a penalty parameter of 0.9 worked well.

To put it all together, the procedure we propose for measuring task relatedness

consists of the following two steps:

1. Learn the structures for all the tasks using multitask structure learning with

a small penalty parameter.

31

2. For each pair of tasks, use the similarity between their learned structures as

a measure of similarity between the two tasks.

Note that the multitask structure learning at step 1 is only used as a pre-

processing step. The structures learned are used only to compute the similarity

between the tasks.

The measure of structure similarity/dissimilarity that is used to evaluate the

task relatedness should reflect, if possible, the same prior beliefs about how the

structures should be shared that are encoded in the multitask structure learning

prior. For example if the prior belief is that part of the network structure should

not be shared (e.g. the prior in Section 2.3 have a penalty of 0 for some of the

arcs) then the similarity/dissimilarity measure should also ignore the respective

part of the structure. In our experiments, we used the edit distance between two

structures as a measure of dissimilarity between structures.

An added bonus of this method of assessing task relatedness is that it generates

a proper distance metric between tasks. This is a desired property, especially if

one wants to cluster the tasks rather than just order them.

2.4.2 An Indirect Measure of Task Relatedness

Another measure of task relatedness can be obtained using the following procedure:

1. Learn the structure of the first task using only data from the first task.

2. Keeping the structure fixed, learn the parameters using only data from the

second task.

3. Compute the mean log likelihood of an independent validation set from the

second task.

32

Steps 2 and 3 can of course be replaced with a cross-validation procedure in

order to obtain a more accurate estimate of the mean log likelihood performance.

In our experiments we use ten-fold cross validation, and use the average mean log

likelihood over the ten folds as a measure of task relatedness.

This task relatedness measure is based on the intuition that the more related

the tasks are, the more the network structure of one task should be compatible with

the other task leading to a better mean log likelihood. Measuring task relatedness

this way however, has a number of disadvantages when compared to the direct

measure proposed in the previous section: it does not measure quite the right

thing, it is not a metric (it is not even symmetric) and it can not be adapted to

reflect different prior beliefs about how the structures should be shared.

2.4.3 Empirical Evaluation

We test the task selection method using a variation of the ALARM-COMP prob-

lem, and the bird ecology data.

Given the number of tasks to be selected, N , we evaluate the performance of

multitask structure learning with task selection using the following procedure:

1. Compute the similarity between each extra task and the principal task.

2. Select the most similar N tasks to use as related tasks.

3. Learn the network structure of the principal task and the N selected tasks

using multitask structure learning.

4. Report the Edit Distance and KL-Divergence between the learned network

and the true network for the principal task.

33

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 K

L-
D

iv
er

ge
nc

e
 Number of Selected Tasks

DIRECT
INDIRECT

TRUE
DIRECT, Optimal Penalty

INDIRECT, Optimal Penalty
TRUE, Optimal Penalty

Figure 2.10: KL-Divergence of the principal task vs. the number of selected tasks
for the ALARM-COMP problem.

The ALARM-COMP problem

As a first test, we attempt to recover the structure of the original ALARM network.

The pool of extra tasks consist of all fifteen tasks that can be generated using the

ALARM-COMP method described in Section 2.3.4: four tasks where only one of

the four components is changed, six tasks where two components are changed, four

tasks where three components are changed, and one task where every component

is changed. Note that the arcs between components are never changed (they are

the same as in the original ALARM network), so all the extra tasks have some

degree of similarity to the principal task. All results in this section are averages

across fifty random trials.

Figure 2.10 shows the KL-Divergence between the true and the learned net-

works for the principal task (the original ALARM network) as N , the number

of tasks to be selected by the task selection procedure, varies from 0 (single task

learning) to 15 (no task selection) for a training set of 1000 points. The two groups

of lines in the graph show the performance when the penalty parameter for the

multitask prior is selected using a small validation set of 50 points (the upper

group), and when the penalty parameter is selected optimally (the lower group).

Each group has three lines corresponding to three different measure of task re-

34

latedness: the direct measure from Section 2.4.1(DIRECT), the indirect measure

from Section 2.4.2(INDIRECT), and the true task relatedness computed using the

true network structures (TRUE).

The shape of all the lines is exactly as expected. At first, the performance

of multitask learning increases as the most similar tasks are added to the set of

related tasks. Then, when the tasks added to the set of related tasks become too

dissimilar, incorrect transfer starts to be an issue and the performance decreases.

This demonstrates that task selection is successful at improving the performance

of multitask structure learning. Comparing the lines for the different task related-

ness measures, we see that performance for both the direct and indirect measures is

very similar to the performance obtained using the true task relatedness, indicating

that both measures do a good job at ordering the tasks, and that, for this problem,

there is nothing to gain by having a more accurate measure of task relatedness.

Except for the lower variance and better performance of the results using optimal

penalty selection, the two groups of lines have similar behavior suggesting that

the above observations will hold regardless of how the prior parameter is selected.

The gap between the two groups show that there is room to improve the multi-

task structure learning performance by having a better procedure for selecting the

penalty parameter for the multitask prior.

Figure 2.11 shows the improvement in Edit Distance provided by multitask

learning over single-task learning as a function of the size of the training set. Since

single-task learning has no parameters that need to be set, it uses all the available

data for training. The different lines in the graph correspond to different ways to

select how many tasks should be included in the set of related tasks. As a general

trend, the improvement provided by multitask learning over single-task learning

diminishes as the training set becomes larger.

35

-5

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000
 Im

pr
ov

em
en

t i
n

E
di

t D
is

ta
nc

e
ov

er
 S

in
gl

e-
T

as
k

Le
ar

ni
ng

 Traning Set Size

Task Selection
Optimal Number of Tasks

All Tasks
Two Tasks

Figure 2.11: Improvement in Edit Distance over single task learning vs. training
set size for the ALARM-COMP problem.

A simple method for selecting when to stop adding tasks to the related tasks set

is to use a small validation set. This validation set should be different from the one

used to select the multitask prior penalty parameter. The “Task Selection” line

in Figure 2.11 shows the improvement in performance over single task learning for

when 5% of the training data is used to select the number of tasks, and a separate

5% is used to select the penalty parameter. Compared to the “All Tasks” line

that represents the performance of multitask structure learning when all tasks are

used as related tasks (i.e. no task selection is done), task selection always yields

an additional increase in performance, except for training set sizes of 2000 points

when the performance is similar. To keep the comparison fair, multitask structure

learning with no task selection uses 10% of the training data to select the penalty

parameter for the multitask prior.

The “Optimal Number of Tasks” line depicts the performance of task selection

when the size of the related tasks set is selected optimally. (The penalty parameter

is still selected using 5% of the training data.) Being able to correctly decide when

to stop adding tasks to the set of related tasks more than doubles the benefit of

task selection (over multitask learning without task selection). Note that here we

are using one of the simplest possible procedures for selecting the number of tasks.

36

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D

is
ta

nc
e

fr
om

 P
rin

ci
pa

l T
as

k
Extra Task

Figure 2.12: Distance between the principal task and the rest of the tasks for
one trial of the ALARM-COMP problem. Distance is computed using the direct
measure.

Improving the selection procedure is very likely to close the gap between the “Task

Selection” line and the “Optimal Number of Tasks” line. We are currently running

experiments using ten fold cross-validation to both select the penalty parameter

for the multitask prior (which will move all the lines in Figure 2.11 up, widening

the gap between them and single-task learning) and select the number of tasks

(which will move only the “Task Selection” line up, widening the gap between it

and the “All Tasks” line).

The task selection procedure used until now is entirely automatic, with no user

input whatsoever. It is not unreasonable, however, to assume that the user is

able to assist the task selection procedure. For example, Figure 2.12 shows the

distance between each extra task and the principal task as computed using the

direct method in Section 2.4.1 (tasks are sorted by the computed distance). A

user could note that there is a gap between the distance of the second task and

the distance of the third task and decide to only use the first two tasks as related

tasks for multitask structure learning. Such “gap hunting” is commonly done in

practice in areas such as unsupervised learning. The line labeled “Two Tasks”

in Figure 2.11 shows the performance of multitask structure learning if the user

decides to use only the closest two tasks as related tasks.

37

-40.8

-40.75

-40.7

-40.65

-40.6

-40.55

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 M

ea
n

Lo
g

Li
ke

lih
oo

d
 Number of Selected Tasks

DIRECT
INDIRECT

DIRECT, Optimal Penalty
INDIRECT, Optimal Penalty

Figure 2.13: Mean log likelihood vs. the number of selected tasks for BCR28 on
the BIRD problem.

The BIRD problem

In this section we use as the set of available tasks the eighteen BCRs that have

more than 2500 instances after eliminating missing values: 30, 29, 28, 22, 13, 23,

5, 14, 24, 27, 32, 9, 10, 12, 16, 18, 21 and 31. To ensure accurate estimates of

generalization performance, we only use as principal tasks (and therefore report

results on) the first eleven of these BCRs, that have more than 8000 points. All

results in this section are averages across twenty trials.

Figure 2.13 shows the mean log likelihood on a large independent test set when

BCR 28 is used as the principal task. On the x-axis the number of related tasks

selected by the task selection procedure varies from 0 (single-task learning) to 17

(no task selection). Higher mean log likelihood represents better performance.

These results are obtained for a training set of 500 points. A validation set of

25 points is used to select the penalty parameter of the multitask prior for the

lines labeled “DIRECT” and “INDIRECT”. The other lines in the graph show the

performance for the optimal penalty parameter for the direct and the indirect task

relatedness measures. The graph depicts a similar story as for the ALARM-COMP

problem; in the beginning the performance increases as the more similar tasks are

added to the related tasks set, then the performance deteriorates as more dissimilar

38

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 200 300 400 500 600 700 800 900 1000
 Im

pr
ov

em
en

t i
n

M
ea

n
Lo

g
Li

ke
lih

oo
d

ov
er

 S
in

gl
e-

T
as

k
Le

ar
ni

ng

 Training Set Size

Task Selection
Optimal Number of Tasks

All Tasks

Figure 2.14: Average improvement in mean log likelihood over single task learning
vs. training set size for task selection on the BIRD problem (average over 11
BCRs).

tasks are selected. Again, the performance for both task relatedness measures is

similar.

Figure 2.14 shows the improvement in mean log likelihood of multitask struc-

ture learning over single-task structure learning as a function of training set size.

The thee lines in the graph correspond to task selection with optimal number of

tasks, task selection with the number of tasks selected using 5% of the training

data, and no task selection. To select the penalty parameter for the prior, the two

task selection methods use 5% of the training data and multitask learning without

task selection uses 10% of the data. Single-task learning uses all available data for

training. The task selection procedure is repeated using each of the eleven BCRs

with most data as the principal task and the rest of the seventeen BCRs as extra

tasks. The figure shows average improvement in mean log likelihood across the

eleven BCRs.

For small training set sizes, multitask learning with task selection performs

the same as multitask learning without task selection. When the training set gets

larger, however, task selection improves the performance of multitask learning. As

in the case of the ALARM-COMP problem, improving the procedure for deciding

when to stop adding tasks to the set of related tasks would yield further improve-

39

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 200 300 400 500 600 700 800 900 1000
 Im

pr
ov

em
en

t i
n

M
ea

n
Lo

g
Li

ke
lih

oo
d

ov
er

 S
in

gl
e-

T
as

k
Le

ar
ni

ng

 Training Set Size

Task Clustering
Optimal Number of Clusters

All Tasks

Figure 2.15: Average improvement in mean log likelihood over single task learning
vs. training set size for task clustering on the BIRD problem (average over 11
BCRs).

ment. Improving the procedure for selecting a good value for the penalty parameter

of the multitask prior also can lead to a significant increase in performance (see

Figure 2.13).

An alternative to the task selection method we used until now, is to partition

the tasks using a clustering algorithm and run the multitask structure learning

algorithm on each partition. Here we clustered the tasks using hierarchical ag-

glomerative clustering with average link8. Distance is measured using the direct

task relatedness measure. To decide on the number of clusters we used a small

validation set (the same validation set used by task selection to decide how many

tasks to add to the set of related tasks).

Figure 2.15 shows the improvement in average (over the eleven BCRs) mean

log likelihood provided by multitask structure learning with task clustering over

single task learning as a function of training set size. The three lines in the figure

correspond to task clustering where the number of clusters is selected using 5%

of the training data as a validation set (Task Clustering), when the number of

clusters is chosen optimally (Optimal Number of Clusters), and when using all

8At each step the clusters that have the smallest average distance between their members are
joined

40

BCR30
3 points
0.7 MID

0.74

BCR29

5 points
0.8 MID0.83

BCR28
2 points
0.7 MID

0.70

BCR22

4 points
0.8 MID0.80

BCR13
0.70

BCR23

6 points
0.8 MID0.90

BCR5

7 points
0.9 MID1.05

BCR32

10 points
1.1 MID1.29

BCR14

11 points
1.1 MID1.57

BCR27

9 points
1.0 MID1.16

BCR24

8 points
0.9 MID1.10

BCR16

12 points
1.3 MID1.91

BCR9

14 points
1.5 MID2.07

BCR21

13 points
1.4 MID1.97

BCR12

15 points
1.6 MID2.20

BCR18

16 points
1.7 MID2.70

BCR10

17 points
1.9 MID

3.01

BCR31

18 points
2.0 MID

3.07

0.74 0.80

0.83

0.90

1.05

1.10

1.16

1.29

1.57

1.91

1.97

2.07

2.20

2.70

3.01

3.07

Figure 2.16: Cluster hierarchy for the BIRD problem.

tasks (i.e. having a single cluster) (All Tasks). To generate the Task Clustering

and Optimal Number of Clusters lines, we use 5% of the training data to select the

penalty parameter of the multitask prior (different from the 5% used to select the

number of clusters). All Tasks uses 10% of the training data to select the penalty

parameter.

Comparing the Task Clustering and the All Tasks lines, we see that performing

task clustering yields worse performance than using all tasks for small training

set sizes9, but it does better for higher training set sizes. Comparing the Task

Clusterings and the Optimal Number of Clusters lines we note that, in the case

of task clustering, the difference in performance between selecting the number of

clusters optimally, and selecting it using a validation set is smaller than in the case

of task selection. Overall, however, the performance of task clustering is lower

than the performance of task selection for this problem (see Figure 2.14). This

is true both when selecting the number of tasks/number of clusters using a small

validation set, and especially when selecting it optimally.

The reason why task clustering has lower performance is that, for this prob-

lem, the tasks do not form a well defined cluster structure. Figure 2.16 shows

the clustering hierarchy (dendrogram) for one trial of the BIRD problem when a

training set of 500 points was used to compute the distances between tasks. The

dendrogram is laid on it’s side, with the root on the right and the leafs toward

9The performance for All Tasks can be higher than the performance for Optimal Number of
Clusters because All Tasks uses more data to select the penalty parameter.

41

the left. The cluster hierarchy is linear indicating that the tasks do not cluster

together, but rather there is a single cluster and tasks keep getting added to it.

Because task selection is more flexible than task clustering, it is able to handle this

situation better and obtain higher performance.

Examining the dendrogram more closely, we see that the first six BCRs (i.e.

30, 29, 28, 22, 13, 23) form a somewhat tighter group, with the rest of the task

being increasingly further away (both from the group of six and from each other).

This prompted us to use the first six BCRs as related tasks when evaluating the

performance of multitask structure learning in Section 2.3.4.

2.5 Discussion and Related Work

multitask learning has been applied to a wide variety of learning methods. The

work most closely related to ours is Baxter’s (Baxter, 1997) which provides a

Bayesian interpretation of multitask learning. multitask learning has also been

used in the context of neural networks (e.g. (Caruana, 1997)), kernel learning

(e.g. (Jebara, 2004)), Gaussian processes (e.g. (Lawrence & Platt, 2004; Yu et al.,

2005)), and Dirichlet processes (e.g. (Teh et al., 2006)) to name a few.

Learning the structure of Bayes Nets from data has also received a lot of at-

tention in he past years. For an overview of traditional learning methods see

(Cooper & Hersovits, 1992; Heckerman, 1999; Buntine, 1996; Spirtes et al., 2000).

In this chapter, we use heuristic search in the space of network structures. Some

straightforward extensions are greedy search in the space of equivalence classes

(Chickering, 1996), obtaining confidence measures on the structural features of

the configurations via bootstrap analysis (Friedman et al., 1999), and structure

learning from incomplete datasets via the structural EM algorithm (Friedman,

1998). Other extensions such as obtaining a sample from the posterior distribu-

42

tion via MCMC methods might be more problematic. Because of the larger search

space, MCMC methods might not converge in reasonable time. Evaluating dif-

ferent MCMC schemes is a direction for future work. Another open question is

whether we can relax the requirement that the parameters of the Bayes Nets for

the different related tasks are independent a priori. Relaxing this requirement

might further improve the performance of multitask learning since the task would

be able to share not only the structures but also the parameters, thus having more

opportunities for inductive transfer.

One interesting domain where multitask structure learning might prove useful

is learning Bayesian multi-nets (Friedman et al., 1997). In Bayesian multi-nets a

special attribute is selected (usually the class attribute), and a separate network

is learned for each value of that attribute. To the best of our knowledge, all work

in learning Bayesian multi-nets treats each separate network as an independent

learning problem, in a single-task manner. Since it is reasonable to assume that the

networks for the different values of the class attribute should be similar, learning

all the networks simultaneously using multitask structure learning might yield

improved performance.

There are relatively few papers that tackle the task selection/task weighting

problem. Thrun and O’Sullivan (1996) proposed the task clustering (TC) algo-

rithm in the context of multitask Nearest Neighbor algorithm. The task similarity

function they used to perform the clustering is similar in spirit to the indirect

measure of task relatedness in Section 2.4.2. Bakker and Heskes (2003) also devel-

oped a task clustering method for multitask Bayesian neural networks. Neither of

these papers consider the problem of selecting the number of clusters. They both

assume that the number of clusters is specified by the user. Silver and Mercer

(1998) propose a method for dynamically adjusting the weights of the extra tasks

43

as the training of a multitask neural network progresses. Their method also has

one free parameter that must be specified by the user.

A few authors provided a theoretical treatment for different task relatedness

measures in restricted cases. Ben-David and Schuller (2003) provide a formal

framework for task relatedness in a restricted setting where the data for all tasks

is generated from the same underlying distribution but it is transformed using a

different, unknown, function for each task. Juba (2006) presents a characterization

task relatedness in terms of Kolmogorov complexity.

2.6 Conclusions

We present a method for learning the Bayes Net structures of related tasks. The

approach assumes that the structures of related tasks are similar: the presence

or absence of arcs in some of the structures provides evidence for the presence or

absence of those same arcs in the other structures. When this assumption is true,

learning the structures together yields an advantage over learning the structure for

each task individually. Experiments with perturbed ALARM and INSURANCE

networks and a real bird ecology problem show that learning related structures

simultaneously via multitask structure learning yields significantly better perfor-

mance when compared to learning the structures independently, especially when

training data is scarce.

We also present a solution to the task selection problem for multitask structure

learning. Our solution takes advantage of the fact that, unlike in most other mul-

titask learning settings, in multitask structure learning there is a clear definition of

task relatedness: two tasks are related if they have similar structures. We propose

two methods for measuring task relatedness from data and use them as the basis

of an effective task selection procedure. When dealing with tasks with different de-

44

grees of relatedness our task selection procedure further improves performance by

selecting an appropriate set of tasks to be used by the multitask structure learning

algorithm.

Acknowledgments

This is joint work with Rich Caruana. Thanks to Art Munson and the collaborators

at Cornell Lab of Ornithology for the help with the bird ecology data. Thanks to

Joe Halpern and John Platt for helpful comments. This work was supported by

NSF Awards 0412930, 0347318 0427914, and 0612031.

45

BIBLIOGRAPHY

Bakker, B., & Heskes, T. (2003). Task clustering and gating for bayesian multitask

learning. The Journal of Machine Learning Research, 4, 83–99.

Baxter, J. (1997). A bayesian/information theoretic model of learning to learn via

multiple task sampling. Mach. Learn., 28, 7–39.

Beinlich, I., Suermondt, H., Chavez, R., & Cooper, G. (1989). The ALARM

monitoring system: A case study with two probabilistic inference techniques for

belief networks. Proceedings of the Second European Conference on Artificial

Intelligence in Medicine.

Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness for multiple task

learning. Proc. of the 16th Annual Conference on Learning Theory.

Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic

networks with hidden variables. Machine Learning, 29.

Buntine, W. (1991). Theory refinement on bayesian networks. In Proc. 7th con-

ference on uncertainty in artificial intelligence (uai ’91).

Buntine, W. (1996). A guide to the literature on learning probabilistic networks

from data. IEEE Trans. On Knowledge and data Engineering, 8, 195–210.

Caruana, R. (1997). Multitask learning. Machine Learning, 28, 41–75.

Chickering, D. (1996). Learning equivalence classes of Bayesian network structures.

Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI’96).

Cooper, G., & Hersovits, E. (1992). A bayesian method for the induction of

probabilistic networks from data. Maching Learning, 9, 309–347.

Friedman, N. (1998). The Bayesian structural EM algorithm. Proc. 14th Confer-

ence on Uncertainty in Artificial Intelligence (UAI ’98).

46

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers.

Machine Learning, 29, 131–163.

Friedman, N., Goldszmidt, M., & Wyner, A. J. (1999). Data analysis with bayesian

networks: A bootstrap approach. Proc. 15th Conference on Uncertainty in Ar-

tificial Intelligence.

Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using bayesian networks

to analyze expression data. J. Comput. Biol., 7, 601–620.

Heckerman, D. (1999). A tutorial on learning with bayesian networks. Learning

in graphical models, 301–354.

Heckerman, D., Mamdani, A., & Wellman, M. (1995). Real-world applications of

Bayesian networks. Communications of the ACM, 38, 24–30.

Jebara, T. (2004). Multi-task feature and kernel selection for svms. ICML ’04:

Twenty-first international conference on Machine learning.

Juba, B. (2006). Estimating relatedness via data compression. Proc. of the 23rd

International Conference on Machine learning (pp. 441–448). ACM Press New

York, NY, USA.

Lawrence, N. D., & Platt, J. C. (2004). Learning to learn with the informative

vector machine. ICML ’04: Twenty-first international conference on Machine

learning.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plau-

sible inference. San Mateo, CA: Morgan Kaufmann.

Silver, D., & Mercer, R. (1998). The parallel transfer of task knowledge using

dynamic learning rates based on a measure of relatedness. Learning to learn,

213–233.

47

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search.

Cambridge, MA: The MIT Press. Second edition.

Teh, Y., Jordan, M., Beal, M., & Blei, D. (2006). Hierarchical Dirichlet processes.

Journal of the American Statistical Association.

Thrun, S. (1996). Is learning the n-th thing any easier than learning the first?

Advances in Neural Information Processing Systems.

Thrun, S., & O’Sullivan, J. (1996). Discovering structure in multiple learning

tasks: The TC algorithm. In Proceedings of the 13th International Conference

on Machine Learning. Morgen Kaufmann.

Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning Gaussian Processes from

Multiple Tasks. .

48

CHAPTER 3

PREDICTING GOOD PROBABILITIES WITH SUPERVISED

LEARNING

3.1 Introduction

In many applications it is important to predict well calibrated probabilities; good

accuracy or area under the ROC curve are not sufficient. This chapter examines

the probabilities predicted by ten supervised learning algorithms: SVMs, neu-

ral nets, decision trees, memory-based learning, bagged decision trees, random

forests, boosted decision trees, boosted decision stumps, Naive Bayes and logis-

tic regression. We show how maximum margin methods such as SVMs, boosted

trees, and boosted stumps tend to push predicted probabilities away from 0 and 1.

This hurts the quality of the probabilities they predict and yields a characteristic

sigmoid-shaped distortion in the predicted probabilities. Other methods such as

Naive Bayes have the opposite bias and tend to push predictions closer to 0 and

1. And yet other learning methods such as bagged trees, logistic regression and

neural nets have little or no bias and predict well-calibrated probabilities on most

problems.

After examining the distortion (or lack thereof) characteristic to each learning

method, we experiment with two calibration methods for correcting these distor-

tions.

Platt Scaling: a method for transforming the predictions of learning methods

to posterior probabilities by passing them through a logistic function. This method

has been developed by Platt (1999) to calibrate SVM outputs.

Isotonic Regression: the method used by Zadrozny and Elkan (2002; 2001)

to calibrate predictions from boosted Naive Bayes, SVM, and decision tree models.

49

Platt Scaling is most effective when the distortion in the predicted probabilities

is sigmoid-shaped. Isotonic Regression is a more powerful calibration method that

can correct any monotonic distortion. Unfortunately, this extra power comes at a

price. A learning curve analysis shows that Isotonic Regression is more prone to

overfitting, and thus performs worse than Platt Scaling, when data is scarce. For

boosted trees we also examine Logistic Correction, a calibration method suggested

by boosting theory, and boosting to log-loss instead of exponential loss.

Finally, we examine how good are the probabilities predicted by each learning

method after each method’s predictions have been calibrated. Experiments with

eleven classification problems suggest that bagged decision trees, random forests

and neural nets trees predict the best probabilities prior to calibration, but after

calibration the best methods are boosted trees, random forests and SVMs.

3.2 Calibration Methods

In this section we describe two methods for mapping model predictions to posterior

probabilities: Platt Calibration and Isotonic Regression. Both of these methods

are designed for binary classification. See Zadrozny and Elkan (2002) for one way

to deal with multiclass problems. In this chapter we consider only the binary case.

3.2.1 Platt Calibration

Platt (1999) proposed transforming SVM predictions to posterior probabilities

by passing them through a sigmoid. We will see in Section 3.3 that a sigmoid

transformation is also justified for boosted trees and boosted stumps.

Let the output of a learning method be f(x). To get calibrated probabilities,

pass the output through a sigmoid:

50

P (y = 1|f) =
1

1 + exp(Af + B)
(3.1)

where the parameters A and B are fitted using maximum likelihood estimation

from a fitting training set (fi, yi). Gradient descent is used to find A and B such

that they are the solution to:

argmin
A,B

{−
∑

i

yilog(pi) + (1 − yi)log(1 − pi)}, (3.2)

where

pi =
1

1 + exp(Afi + B)
(3.3)

Two questions arise: where does the sigmoid train set come from? and how to

avoid overfitting to this training set?

If we use the same data set that was used to train the model we want to

calibrate, we introduce unwanted bias. For example, if the model learns to dis-

criminate the train set perfectly and orders all the negative examples before the

positive examples, then the sigmoid transformation will output just a 0,1 function.

So we need to use an independent calibration set in order to get good posterior

probabilities. This, however, is not a draw back, since the same set can be used

for model and parameter selection.

To avoid overfitting to the sigmoid train set, an out-of-sample model is used.

If there are N+ positive examples and N− negative examples in the train set, for

each training example Platt Calibration uses target values y+ and y− (instead of

1 and 0, respectively), where

y+ =
N+ + 1

N+ + 2
; y− =

1

N− + 2
(3.4)

51

For a more detailed treatment, and a justification of these particular target

values see (Platt, 1999).

3.2.2 Isotonic Regression

The sigmoid transformation works well for some learning methods, but it is not

appropriate for others. Zadrozny and Elkan (2002; 2001) successfully used a more

general method based on Isotonic Regression (Robertson et al., 1988) to calibrate

predictions from SVMs, Naive Bayes, boosted Naive Bayes, and decision trees.

This method is more general in that the only restriction is that the mapping

function be isotonic (monotonically increasing). That is, given the predictions fi

from a model and the true targets yi, the basic assumption in Isotonic Regression

is that:

yi = m(fi) + ǫi (3.5)

where m is an isotonic (monotonically increasing) function. Then, given a train

set (fi, yi), the Isotonic Regression problem is finding the isotonic function m̂ such

that

m̂ = argminz

∑

(yi − z(fi))
2 (3.6)

One algorithm that finds a stepwise constant solution for the Isotonic Regres-

sion problem is pool-adjacent violators (PAV) algorithm (Ayer et al., 1955) pre-

sented in Table 3.1.

As in the case of Platt calibration, if we use the model training set (xi, yi) to

get the training set (f(xi), yi) for Isotonic Regression, we introduce unwanted bias.

So we use an independent validation set to train the isotonic function.

52

Table 3.1: PAV Algorithm

Algorithm 1. PAV algorithm for estimating poste-
rior probabilities from uncalibrated model predictions.
1 Input: training set (fi, yi) sorted according to fi

2 Initialize m̂i,i = yi, wi,i = 1
3 While ∃ i s.t. m̂k,i−1 ≥ m̂i,l

Set wk,l = wk,i−1 + wi,l

Set m̂k,l = (wk,i−1m̂k,i−1 + wi,lm̂i,l)/wk,l

Replace m̂k,i−1 and m̂i,l with m̂k,l

4 Output the piecewise constant function:
m̂(f) = m̂i,j, for fi < f ≤ fj

3.3 Qualitative Analysis of Predictions

In this section we empirically examine the relationship between the predictions of

ten different classes of learning algorithms and the class posterior probabilities.

Instead of quantitatively measuring the calibration of the learning methods, in

this section we will qualitatively analyze the predictions and identify consistent

patterns in the relationship between the predicted values and the true conditional

probabilities for different learning algorithms.

Ideally one would asses the calibration of a model by comparing it’s predicted

values to the true class conditional probabilities. Unfortunately, on real problems,

only the class label is known, not the true conditional probability of that class given

the input. In this situation model calibration can be visualized using reliability

diagrams (DeGroot & Fienberg, 1982). First, the prediction space is discretized

into bins. We will use ten bins here. Cases with predicted value between 0 and 0.1

fall in the first bin, between 0.1 and 0.2 in the second bin, etc. For each bin, the

mean predicted value is plotted against the true fraction of positive cases. If the

model is well calibrated the points will fall near the diagonal line. For examples

of reliability diagrams see the bottom row of Figure 3.1.

53

Besides reliability diagrams, we also show histograms of the values predicted

by models trained with different learning algorithms, both before and after post

training calibration. The histogram plots give insight into the behavior of the

algorithms and help explain specific distortions we see in the reliability diagrams.

For examples of prediction histogram plots see the top row in Figure 3.1.

To generate the figures in this section, for each class of algorithm we trained a

large number of classifiers using different variations of the algorithm and parameter

settings. For example, we train models using ten decision tree styles, neural nets

of many sizes, SVMs with many kernels, etc. All the variations and the parameter

settings we used for the different learning methods are described in Appendix 4.B.

After training, we apply Platt Scaling and Isotonic Regression to calibrate all

models. Each model is trained on the same random sample of 4000 cases and

calibrated on independent samples of 1000 cases. The histograms of predicted

values and the reliability diagrams are generated using a large independent test set

that was not used for training or calibration. For the analysis we use eleven binary

prediction problems with varying characteristics. A description of the problems

can be found in Appendix 4.A.

Unless otherwise specified, the figures will show, for each learning algorithm, the

histograms of predicted values and the reliability diagrams for the model trained

with the respective algorithm that has the best squared error after post training

calibration. So for each model class all graphs corresponding to the same problem

are generated using the same model. For example, in Figures 3.2(a), 3.2(b), 3.2(c),

3.4(a), and 3.5(a) the graphs are generated using boosted MML trees after 1024

steps of boosting for the COV TYPE problem, boosted SMML trees after 2048

steps for the LETTER.P1 problem and so on.

54

3.3.1 Boosting

In a recent evaluation of learning algorithms (Caruana & Niculescu-Mizil, 2006),

boosted decision trees had excellent performance on metrics such as accuracy, lift,

area under the ROC curve, average precision, and precision/recall break even point.

However, boosted decision trees had poor squared error and cross-entropy because

AdaBoost produces distorted probability estimates.

Friedman et al. (2000) provide an explanation for why boosting makes poorly

calibrated predictions. They show that boosting can be viewed as an additive

logistic regression model. A consequence of this is that the predictions made by

boosting are trying to fit a logit of the true probabilities, as opposed to the true

probabilities themselves. To get back the probabilities, the logit transformation

must be inverted.

In their treatment of boosting as a large margin classifier, Schapire et al. (1998)

observed that in order to obtain large margin on cases close to the decision surface,

AdaBoost will sacrifice the margin of the easier cases. This results in a shifting

of the predicted values away from 0 and 1, hurting calibration. This shifting

is also consistent with Breiman’s interpretation of boosting as an equalizer (see

Breiman’s discussion in (Friedman et al., 2000)). In what follows we demonstrate

this probability shifting on real data.

Boosted Decision Trees

The particular boosting algorithm we evaluate in this chapter is AdaBoost.M1

(Schapire, 2001) with resampling. We boost both full decision trees and stumps

as base level models. We believe the general results and observations in this chap-

ter remain true when using other boosting algorithms and other base level mod-

els. To prevent the results from depending on one specific tree style, we boost

55

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1 STEP

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

4 STEPS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

8 STEPS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

32 STEPS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

128 STEPS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1024 STEPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.1: Effect of boosting on the predicted values. Histograms of the predicted
values (top) and reliability diagrams (bottom) on the test set for boosted trees at
different steps of boosting on the COV TYPE problem.

ten different styles of trees. We use all the tree types in Buntine’s IND package

(1991) (ID3, CART, CART0, C4.5, MML, SMML, BAYES) as well as three new

tree types that should predict better probabilities: unpruned C4.5 with Laplacian

smoothing (Provost & Domingos, 2003); unpruned C4.5 with Bayesian smoothing;

and MML trees with Laplacian smoothing. Because boosting can overfit (Rosset

et al., 2004; Friedman et al., 2000), and because many iterations of boosting can

make calibration worse (see Figure 3.1), we consider boosted tree models after

2,4,8,16,32,64,128,256,512,1024 and 2048 steps of boosting and select whichever

iteration yields the best squared error.

The top row of Figure 3.1 shows histograms of the predicted values on a large

test set after 1,4,8,32,128, and 1024 stages of boosting Bayesian smoothed decision

trees (Buntine, 1992). The bottom row of the figure shows reliability diagrams for

the same models. The histograms show that as the number of steps of boosting

increases, the predicted values are pushed away from 0 and 1 and tend to collect on

either side of the decision surface. This shift away from 0 and 1 hurts calibration

and yields sigmoid-shaped reliability plots.

Figure 3.2(a) shows histograms of the predicted values (left column) and reli-

ability diagrams (middle and right columns) for boosted trees on the eleven test

56

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.2: Histograms of predicted values and reliability diagrams for boosted
decision trees before and after calibration.

57

problems on large test sets not used for training or calibration. The figure shows

the same shift in predicted values away from 0 and 1 that generates the sigmoidal

shaped reliability diagrams for ten out of the eleven problems. Because boosting

overbite’s on the ADULT problem, the best performance is achieved after only

four iterations of boosting. If boosting is allowed to continue for more iterations,

it will display the same sigmoidal shape on ADULT as in the other figures. The

histograms of predicted values (top row in Figure 3.2(a)), show that almost all the

values predicted by boosted trees lie in the central region with few predictions ap-

proaching 0 or 1. The one exception is LETTER.P1, a highly skewed data set that

has only 3% positive class. On this problem some predicted values do approach

0, though careful examination of the histogram shows that even on this problem

there is a sharp drop in the number of cases predicted to have probability near

0. This shift of predicted values away from 0 ad 1 is always accompanied by a

sigmoid-shaped reliability diagram. It is this distinctive shape of the plots that

motivates the use of a sigmoid to transform predictions into calibrated probabili-

ties. The reliability plots in the middle row of the figure show sigmoids fitted using

Platt’s method. The reliability plots in the bottom of the figure show the function

fitted with Isotonic Regression. Both calibration methods are able to closely fit the

reliability diagrams indicating that after calibration with either method boosted

decision trees will yield much better quality probabilistic predictions.

To show how calibration transforms predictions, we plot histograms and reli-

ability diagrams for the eleven problems for boosted trees after Platt Calibration

(Figure 3.2(b)) and Isotonic Regression (Figure 3.2(c)). The figures show that

calibration undoes the shift in probability mass caused by boosting: after calibra-

tion many more cases have predicted probabilities near 0 and 1. The reliability

diagrams are closer to diagonal, and the S-shape characteristic of boosted tree

58

predictions is now gone. On each problem, transforming predictions using Platt

Scaling or Isotonic Regression yields a significant improvement in the predicted

probabilities, leading to much lower squared error and log-loss. One difference

between Isotonic Regression and Platt Scaling is apparent in the histograms: be-

cause Isotonic Regression generates a piecewise constant function, the histograms

are coarse, while the histograms generated by Platt Scaling are smoother.

Boosted Decision Stumps

To asses the impact of the complexity of the base level model on calibration we

also boost 1-level decision stumps. We boost five different types of stumps by

using all of the splitting criteria in Buntine’s IND package. Since boosting might

converge slower when using weaker base-level models, we also consider boosted

stumps models after 4096 and 8192 steps in addition to all the number of steps we

consider for boosted decision trees.

The same observations hold when considering boosting weaker decision stumps

instead of boosting full decision trees. Figure 3.3 shows the histograms of pre-

dicted values and the reliability diagrams for boosted decision stumps before cali-

bration (3.3(a)), after Platt Scaling (3.3(b)) and after Isotonic Regression (3.3(c))

on three problems. Graphs for all eleven problems are included in Figure 3.14 in

Appendix 3.A. Except for the BACT problem, uncalibrated boosted stumps mod-

els display an even more extreme shift in the predicted values toward the center of

the plot than boosted decision trees. Interestingly, for the COV TYPE problem

the models used to generate the graphs (i.e. the models with the lowest squared

error after calibration) were both obtained after 1024 steps of boosting for both

boosted trees and boosted stumps. And for the MEDIS, SLAC, MG2, COD, and

BACT problems the boosted stumps models used to generate the graphs were

boosted for fewer steps than the corresponding boosted trees models (between 128

59

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Uncalibrated

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Platt Scaling

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(c) Isotonic Regression

Figure 3.3: Histograms of predicted values and reliability diagrams for boosted
decision stumps before and after calibration.

and 1024 steps for boosted stumps versus 2048 steps for boosted trees). This im-

plies that the more extreme shift in the predicted values toward the center of the

plot is mainly due to the lower expressive power of the decision stumps.

Logistic Correction

As mentioned before, in the process of optimizing the exponential loss function Ad-

aBoost is attempting to fit the logit of the class conditional probabilities instead of

the true probabilities themselves. This suggests that the true probabilities might

be recovered by inverting the logit function fitted by AdaBoost. In this chapter we

will refer to this alternative method for calibrating boosting’s predictions as Logis-

tic Correction. Like Platt Scaling, Logistic Correction transforms the predictions

by passing them through a sigmoid, but the sigmoid parameters are analytically

derived from Friedman et al’s analysis of boosting as an additive logistic regres-

60

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Boosted Trees

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Boosted Stumps

Figure 3.4: Histograms of predicted
values and reliability diagrams for
(a)boosted trees and (b)boosted
stumps calibrated with Logistic
Correction.

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Boosted Trees

COV_TYPE HS BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Boosted Stumps

Figure 3.5: Histograms of predicted
values and reliability diagrams for
(a)boosted trees and (b)boosted
stumps trained to directly optimize
log-loss.

sion model (Friedman et al., 2000) rather than being fitted using an additional

calibration set.

Figure 3.4(a) shows prediction histograms and reliability diagrams for boosted

decision trees after applying Logistic Correction for the COV TYPE, HS and

BACT problems. The prediction histograms show that for the COV TYPE and

HS data sets, AdaBoost with Logistic Correction predicts only zero or one, and

thus has very poor calibration. For these data sets full decision trees are expressive

enough to enable AdaBoost to perfectly separate the training set. After separating

the training set, AdaBoost will keep pushing the predictions toward the tails of

the sigmoid used by Logistic Correction generating the extreme predictions (Rosset

et al., 2004). In our experiments this is a common result when applying Logistic

61

Correction to boosted decision trees, with ten out of the eleven data sets displaying

this same behavior (see Figure 3.16(a) in Appendix 3.A).1 The only exception is

the BACT problem where the histogram shows a spread of predicted values, and

the reliability diagram is close to the diagonal line indicating good calibration. It

seems that on this problem even full decision trees are not powerful enough to

allow AdaBoost to perfectly separate the training set.

When using weaker decision stumps as base level models, AdaBoost is no longer

able to perfectly separate these training set, and the histograms show a wider range

of predicted values than in the case of boosted full decision trees (see Figure 3.4(b)

and Figure 3.15(a) in Appendix 3.A). With boosted stumps Logistic Correction

yields well calibrated models that have reliability plots close to the diagonal.

Logistic Correction has the advantage that it does not require an extra inde-

pendent calibration set to fit the calibration models as is required for Platt Scaling

and Isotonic Regression. The down side, however, is that Logistic Correction only

seems to work reliably when boosting weaker models such as boosted decision

stumps, models that have limited expressive power and are unable to capture the

complexities of many real datasets. (See Section 3.4.) Experiments with boosting

somewhat more complex two-level stumps indicate that on many data sets Logistic

Correction already begins to overfit. There does not appear to be a decision tree

model of intermediate complexity that, when boosted, works well with Logistic

Correction for these problems.

1The histogram for the ADULT problem does not show these extreme zero-one predictions
only because, as mentioned above, boosted trees overfit on this data set and the best model (which
is plotted in the figure) is obtained after only four steps of boosting. If allowed to continue for
more iterations the plots for ADULT are similar to the plots for the other nine problems.

62

Directly Optimizing Log-Loss

Another alternative to obtain well calibrated predictions from boosting is to use

a variant of boosting that directly optimizes cross-entropy (log-loss) instead of

the usual exponential loss. Collins et al. (2002) show that a boosting algorithm

that optimizes log-loss can be obtained by simple modification to the AdaBoost

algorithm. Collins et al. briefly evaluate this new algorithm on a synthetic data

set, but acknowledge that a more thorough evaluation on real data sets is necessary.

Lebanon and Lafferty (2001) shows that Logistic Correction applied to boosting

with exponential loss should behave similarly to boosting with log-loss, and then

demonstrate this by examining the performance of boosted stumps on a variety of

data sets.

Our results confirm their findings for boosted stumps, and more importantly,

also show the same effect for boosted trees. When optimizing log-loss, boosting de-

cision trees generates models that make zero-one predictions on all problems except

for BACT, while boosting decision stumps generates better calibrated models with

a wide spread of predicted values (see Figure 3.5 and Figures 3.16(b) and 3.15(b)

in Appendix 3.A). Compared to boosting with Logistic Correction, the reliability

diagrams for boosting with log-loss are slightly further from the diagonal on the

BACT problem for boosted trees and on all problems but HS for boosted stumps.

This indicates that, when it works, optimizing to log-loss produces models that are

slightly less well calibrated than models generated by applying Logistic Correction

to boosting with exponential loss. Interestingly, for most problems, the reliability

diagrams for boosting with log-loss still have a sigmoidal shaped, although it is

not nearly as accentuated as in the case of uncalibrated boosted trees or stumps.

Also, comparing the prediction histograms for Logistic Correction and optimizing

to log-loss one can notice a small shift of predicted values away from zero and one.

63

COV_TYPE COD BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Uncalibrated

COV_TYPE COD BACT

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Platt Scaling

Figure 3.6: Histograms of predicted values and reliability diagrams for SVMs before
and after calibration.

Like Logistic Correction, optimizing to log-loss has the advantage that no extra

data is required for calibration at the expense of requiring less expressive models

in order to work reliably.

3.3.2 Support Vector Machines

Another widely used maximum margin learning method is the Support Vector

Machine (SVM) (Vapnik, 1998). Designed mainly for classification tasks, SVMs

attempt to find a decision surface such that not only are the training examples

classified correctly, but also there is a large separation (margin) between the pre-

dictions for examples in different classes. By explicitly trading off training accu-

racy for margin size, SVMs generate a regularized solution that provides protection

against overfitting and ensures good generalization performance. In the process,

however, the predictions generated by SVMs loose any probabilistic interpretation.

Since we are interested in assessing the calibration of the best SVM models

we use a variety of kernel and parameter settings to find what works best for each

problem. We train the models using SVMLight (Joachims, 1999) with the following

64

kernels: linear, polynomial of degree 2 and 3, radial with width 0.001, 0.005, 0.01,

0.05, 0.1, 0.5, 1 and 2. For each kernel, we vary the regularization parameter by

factors of ten from 10−7 to 103. To generate the histograms of predicted values and

the reliability diagrams in this section we use, for each problem, the SVM model

with the lowest squared error either before or after calibration. For consistency

with the other learning methods SVM’s predictions are linearly scaled to [0,1] by

(x − min)/(max − min). This scaling does not affect any of the results in this

section.

Fortunately, there is a connection between the predictions of an SVM and the

posterior class probabilities. Platt (1999) observed that for a number of real prob-

lems the reliability plots for SVM models have a sigmoidal shape. Figure 3.6(a) pro-

vides additional evidence that this behavior is common in real data sets. The figure

shows histograms of predicted values and reliability diagrams for the COV TYPE,

COD and BACT problems. Graphs for all eleven problems are included in Fig-

ure 3.17(a) in Appendix 3.A. With two exceptions, BACT and MG, a sigmoid

provides a good fit for the reliability diagrams of the best SVM models. Also, as in

the case of boosted decision trees and boosted decision stumps, the sigmoidal shape

of the reliability plots co-occurs with the concentration of mass in the center of

the histograms of predicted values. Calibrating the SVM models with either Platt

Scaling or Isotonic Regression removes the shift in predicted values and generates

well calibrated models with the reliability diagram close to the diagonal line. (See

Figure 3.6(b).)

It is interesting to note that both SVMs and AdaBoost are max-margin or quasi-

max-margin methods, and that for both methods the predictions for an example is

proportional to the distance between the example and the decision surface in some

induced feature space (both are linear classifiers in that space). An interesting open

65

COV_TYPE LETTER.P2 CALHOUS

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Uncalibrated

COV_TYPE LETTER.P2 CALHOUS

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Platt Scaling

Figure 3.7: Histograms of predicted values and reliability diagrams for neural
networks before and after calibration.

question is whether the the sigmoidal reliability plots and the shift in predicted

values are characteristic of all max-margin linear (in some feature space) classifiers,

and if there is a theoretical justification for this behavior.

3.3.3 Artificial Neural Networks and Logistic Regression

Logistic Regression and Artificial Neural Nets (ANNs) have been widely used to

make probabilistic predictions. We train neural nets with 1, 2, 4, 8, 16, 32 and 128

hidden units using gradient descent backprop with momentums of 0, 0.2, 0.5 and

0.9. For Logistic Regression we train both unregularized and regularized models

varying the ridge (regularization) parameter by factors of 10 from 10−8 to 104.

Figure 3.7(a) shows histograms of predicted values and reliability plots for

neural nets for COV TYPE, LETTER.P2 and CALHOUS. Figures for the all

problems are included in Figure 3.18(a) in Appendix 3.A. The reliability plots

closely follow the diagonal line indicating that neural nets are well calibrated to

begin with and do not need post-training calibration. (We are using early stopping

to select the number of passes of backpropagation that yield the best squared

66

error on the calibration sets. If the neural nets are trained far past these stopping

points sigmoidal shaped reliability diagrams emerge for some problems. Only the

COV TYPE problem appears to benefit a little from post-training calibration. On

the other problems both calibration methods appear to be striving to approximate

the diagonal line, a task that isn’t natural to either of them. Because of this, scaling

might hurt neural net calibration a little. The sigmoids trained with Platt’s method

have trouble fitting the tails properly, effectively pushing predictions away from 0

and 1 as can be seen in the histograms in Figure 3.7(b). This shift of predicted

values away from 0 and 1, however, is qualitatively different form the shift in

predictions displayed by uncalibrated boosted trees and stumps and uncalibrated

SVMs. Logistic Regression behaves similarly to neural nets: it also is very well

calibrated to start with and post-training calibration seems to hurt because both

methods have a difficult time fitting the diagonal line (see Figure 3.19).

The histograms for uncalibrated neural nets in Figure 3.18(a) look similar to

the histograms for boosted trees after Platt Scaling in Figure 3.2(b), giving us con-

fidence that the histograms reflect the underlying structure of the problems. For

example, we could conclude that the CALHOUS, COV TYPE, LETTER.P1, LET-

TER.P2 and HS problems, given the available features, have well defined classes

with a small number of cases in the “gray” region, while in the SLAC and COD

problems the two cases have high overlap with significant uncertainty for most

cases. For the MEDIS problem it seems that there are many cases that are neg-

ative with high probability, but for cases labeled positive there is never a high

probability that a case is positive. For the BACT problem on the other hand,

it seems that there is more confidence about the positive cases than the negative

ones.

It is interesting to note that neural networks with a single sigmoid output

67

unit can be viewed as a linear classifier (in the span of it’s hidden units) with a

sigmoid at the output that calibrates the predictions. In this respect neural nets

are similar to SVMs and boosted trees after they have been calibrated using Platt’s

method. Another important observation is that while neural nets do not need the

extra calibration set for post training calibration, they need it for early stopping,

which is critical for good calibration. In an extreme case, if no early stopping were

to be performed (the nets are trained to completion), and if the hidden layer is

large enough, the neural net models could fit the training data perfectly and only

predict zero or one and consequently have bad calibration. Similarly to boosted

decision stumps calibrated with Logistic Correction (or trained to optimize log-

loss), Logistic Regression does not need extra independent data for early stopping,

but it is not expressive enough to capture the complexities of many real data sets.

3.3.4 Decision Trees

A decision tree partitions the instance space into axes-parallel hyper-rectangular

regions corresponding to the leafs of the tree. In the binary classification case, for

all the cases falling into one of these regions, the tree makes a prediction equal

to the positive class frequency in the training set at the respective leaf. So the

predictions made by a decision tree can be seen as an estimate of the average

conditional class probability of all the cases in one such hyper-rectangle. Pruning

is usually used to make sure each leaf has enough training cases to make this

estimate reliable. The downside however, is that a pruned tree will have a small

number of leafs (each corresponding to larger hyper-rectangles) especially if the

training set is small, and will only be able to make coarse predictions, hurting

their calibration. In the extreme case, when the tree has only one leaf, it will

predict for any example the fraction of positive cases in the training set. While

68

ADULT MG COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Decision Trees

ADULT MG COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Bagged Decision Trees

ADULT MG COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(c) Random Forests

Figure 3.8: Histograms of predicted values and reliability diagrams for (a)Decision
Trees, (b)Bagged Decision Trees and (c)Random Forests

this is a very reliable estimate of the average conditional class probabilities of the

data set, it is not very useful.

Reducing or even eliminating pruning will generate trees with a larger number

of leafs, consequently allowing the tree to make predictions that are more fine-

grained. Reducing pruning however, increases the variance of the decision trees,

hurting the calibration of their predictions. When the decision tree has a large

number of leafs, only a few training cases end up in each one, making the prob-

abilistic estimates unreliable. Also a large tree is likely to overfit the training

69

data, generating overly optimistic predictions (i.e. the tree will overestimate, or

underestimate, the class conditional probabilities). To alleviate this problem, the

predictions at each leaf are corrected using a smoothing method such as Laplacian

or Bayesian smoothing (Buntine, 1992).

We train decision trees using varying splitting criteria, pruning options and

smoothing methods. We use all of the tree types in Buntine’s IND package (Bun-

tine & Caruana, 1991): BAYES, ID3, CART, CART0, C4, MML, and SMML.

We also generate trees of type C44LS (C4 with no pruning and Laplacian smooth-

ing), C44BS (C44 with Bayesian smoothing), and MMLLS (MML with Laplacian

smoothing). See (Provost & Domingos, 2003) for a description of C44LS.

The prediction histograms and reliability diagrams for the decision tree models

with the best squared error (either before or after calibration, whichever has better

squared error) are shown in Figure 3.8(a) for the ADULT, MG and COD problems

and in Figure 3.20(a) in Appendix 3.A for all eleven problems. The graphs show

both issues discussed above. On some problems such as ADULT, MG and SLAC

the histograms show that the trees make coarse predictions and a large number

of cases receive the same predicted values. The reliability diagrams in such cases

are relatively close to the diagonal indicating the predictions are reliable. For

other problems such as COD, HS, and COV TYPE, the decision trees are able to

predict a lot of different values, but the predictions suffer from high variance and

overfitting. The overfitting is evident in the COD and HS problems, where the

trees are overly confident about their predictions, and the reliability diagrams are

far under and over the diagonal line when approaching one and zero respectively.

Neither calibration method is able to help with the coarseness problem, and

Platt Scaling might actually hurt because a sigmoid is not the right function to use

in these cases. With the overfitting problem, both calibration methods might help,

70

because they are able to adjust the predictions at each leaf using independent data

that was not used to train the tree. Here, too, Isotonic Regression has an advantage

since the overconfident predictions generate an inverted sigmoidal shaped reliability

digram, a shape that is totally wrong for Platt Scaling, but that Isotonic Regression

is able to fit.

3.3.5 Bagged Decision Trees and Random Forests

Bagged Decision Trees (Breiman, 1996) and Random Forests (Breiman, 2001) ad-

dress the two shortcomings of decision trees described in the previous section.

Both learning algorithms were designed to reduce the variance of the decision trees

models thus addressing overfitting. Also, both methods average the predictions of

multiple different decision trees, so they can make more fine grained predictions

even if the constituent trees have few leafs.

For each tree type listed above, we create a bagged trees model of 100 trees.

To train Random Forests models we used the Breiman-Cutler FORTRAN imple-

mentation. Since the trees in a random forest have more variance than the ones in

a bagged ensemble, we create random forests of 1024 trees. The size of the feature

set considered at each split is 1, 2, 4, 6, 8, 12, 16 or 20, a wider range than Breiman

and Cutler suggest is needed.

Examining the histograms and reliability diagrams for bagged trees and ran-

dom forests in Figures 3.8(b) and 3.8(c) (and in Figures 3.21(a) and 3.22(a) in

Appendix 3.A) two distinct behaviors can be identified. On some problems such

as ADULT, MG, SLAC, and CALHOUS, both bagged trees and random forest

make fine grained, well calibrated predictions. Given that bagged trees and ran-

dom forests are well calibrated on these problems, we can deduce that regular

decision trees also are well calibrated on average, in the sense that if the decision

71

trees are trained on different samples of the data and their predictions averaged,

the average will be well calibrated. If instead of decision trees, the base level mod-

els for bagging would have been poorly calibrated models such as SVMs or boosted

trees that present a systematic distortion of the probabilities, the bagged models

would have also been poorly calibrated. There is nothing bagging can do to fix

systematic distortions, it only takes care of distortions generated by variance.

Interestingly, on other problems, such as COD, LETTER.P2, and HS, bagged

trees and random forests seem to exhibit, although to a lesser extent, the same

behavior as the max-margin methods: predicted values are slightly pushed toward

the middle of the histogram and the reliability plots show a sigmoidal shape. While

further investigations are needed to identify the reason(s) for this behavior, there

is one phenomenon that might provide at least a partial explanation. Methods

such as bagging and random forests that average predictions from a base set of

models can have difficulty making predictions near 0 and 1 because variance in

the underlying base models will bias predictions that should be very near zero or

very near one away from these values. Because predictions are restricted to the

interval [0,1], errors caused by variance tend to be one-sided near zero and one.

For example, if a model should predict p = 0 for a case, the only way bagging

can achieve this is if all bagged trees predict zero. If we add variance to the trees

that bagging is averaging over, this will cause some trees to predict values larger

than 0 for this case, thus moving the average prediction of the bagged ensemble

away from 0. We observe this effect more strongly with random forests because the

base-level trees trained with random forests have relatively high variance because

of feature subsetting.

As in the case of neural nets and logistic regression, post-training calibration of

bagged trees and random forests models might actually hurt on the problems where

72

ADULT MG COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Bagged Decision Trees

ADULT MG COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Random Forests

Figure 3.9: Histograms of predicted values and reliability diagrams after calibration
with Platt Scaling for (a)Bagged Decision Trees and (b)Random Forests.

the models are already well calibrated. The prediction histograms in Figure 3.9

show that, on these problems, Platt Scaling pushes the predicted values away

from zero and one because of its inability of fit well near zero and one. On the

other hand, on the problems where bagged trees and random forests are not well

calibrated, post-training calibration improves the quality of the predictions, with

Platt Scaling being an excellent fit given the sigmoidal shape of the reliability

diagrams.

3.3.6 Memory Based Learning

Memory based learning algorithms come in many different flavors that differ in

how distances are computed and how each nearest neighbor’s vote is weighted. We

experiment with Euclidean distance with all attributes scaled to zero mean and

standard deviation one, and with Euclidean distance with attributes weighted by

their gain ratio. We train vanilla K-nearest neighbor models where each neighbor

receives equal weight, distance weighted KNN where each neighbor is weighted

inversely proportional to it’s distance, and locally weighted averaging where the

weight falls of exponentially with the distance. We use 26 values of K ranging

from K = 1 to K = |trainset| with smaller values more densely sampled, and with

73

COV_TYPE CALHOUS COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Uncalibrated

COV_TYPE CALHOUS COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Platt Scaling

COV_TYPE CALHOUS COD

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(c) Isotonic Regression

Figure 3.10: Histograms of predicted values and reliability diagrams for memory
based learning before and after calibration.

kernel widths varying from 20 to 210 times the minimum distance between any two

points in the train set for locally weighted averaging.

The predictions made by memory based leaning algorithms can be interpreted

as estimates of the conditional class probability. The estimate is generated by

allowing each training case in the neighborhood to cast a (possibly weighted) vote

for it’s class. If the size of the neighborhood is too small (e.g. small K), then the

estimates will not be very reliable, and depending on the particular variant used

the predictions might be very coarse. An example of this situation is depicted

in Figure 3.10(a) for the COV TYPE problem, where the best memory based

learning method is a vanilla KNN with K = 3 and attributes are weighted by

gain ratio. The reliability diagram shows that the predictions are overconfident,

especially in the two tails, indicating overfitting. As in the case of decision trees,

calibration can not help with the coarseness, but it might help with overfitting.

74

(See Figures 3.10(b) and 3.10(c)). On the CALHOUS problem, where the optimal

K is 9, the reliability diagram is close to the diagonal line, but the predictions are

still too coarse (only ten distinct values). In both these cases Isotonic Regression

seems to work sightly better than Platt Scaling because a sigmoid is not the right

shape for calibrating these predictions.

When the neighborhood is large (e.g. the optimal K is large), as is the case

for the COD and SLAC problems, the predictions are shifted toward the middle

of the plot, and the reliability diagrams display a sigmoidal shape. This might

be also due to an edge effect; because the vote of each neighbor is either zero or

one, in order for the model to make a prediction of one, all the neighbors must be

positive cases, which is unlikely when K is large. Calibration is largely able to fix

this problem, and in particular Platt Scaling is well suited in this case.

3.3.7 Naive Bayes

Naive Bayes is well known to have a bias toward predicting extreme values close to

zero and one. This bias is due to the unrealistic assumption that the attributes are

independent given the class. This assumption causes Naive Bayes to over count

the evidence and make overconfident predictions.

This bias is demonstrated by the prediction histograms and reliability diagrams

for the ADULT and MEDIS problems in Figure 3.11(a), and it is also present to

a lesser extent in the LETTER.P2 problem. The reliability diagrams for ADULT

and MEDIS are far below the diagonal line when the predicted values approach

one (right side of the diagram), indicating that the Naive Bayes models predict

the positive class with too much confidence. The bias is especially noticeable when

comparing the histograms of predicted values for Naive Bayes with histograms of

predicted values for well calibrated models such as neural nets or boosted trees that

75

ADULT LETTER.P2 MEDIS

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(a) Uncalibrated

ADULT LETTER.P2 MEDIS

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(b) Platt Scaling

ADULT LETTER.P2 MEDIS

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value

 0 0.2 0.4 0.6 0.8 1

Mean Predicted Value
(c) Isotonic Regression

Figure 3.11: Histograms of predicted values and reliability diagrams for Naive
Bayes before and after calibration.

have been calibrated with Platt Scaling. The well calibrated models never predict a

value higher than 0.9 for the MEDIS problem, and make very few predictions close

to one for the ADULT problem. Naive Bayes, however, makes many predictions

close to one on both of these problems.

This push of predicted values toward zero and one generates reliability diagrams

that have a roughly inverted sigmoidal shape. While Platt Scaling is still helping

to improve calibration, it is clear that a sigmoid is not the right transformation to

calibrate Naive Bayes models. The histograms in figure 3.11(b) show that Platt

Scaling pushes the predicted values away from zero and one by essentially squashing

them. This squashing generates prediction histograms that are quite different from

the histograms for well calibrated models. For example, on ADULT and MEDIS,

histograms of predicted values for neural nets and boosted trees calibrated with

Platt Scaling show an almost monotonic decay as the predicted values approach

76

one, while the histograms in Figure 3.11(b) have a sudden increase at the left end.

Isotonic Regression is able to fit better the inverted sigmoidal shape of the

reliability diagrams, and for most problems the reliability diagrams for Naive Bayes

models calibrated with Isotonic regression are closer to the diagonal line than the

reliability diagrams for Naive Bayes calibrated with Platt Scaling (See Figure 3.11

and Figure 3.24). So Isotonic Regression seems to be a better choice for calibrating

Naive Bayes models.

3.4 Quantitative Analysis of Performance

Our goal in this section is to use squared error and cross-entropy performance as a

quantitative measure of the calibration of a model and conduct an empirical com-

parison across the learning algorithms and calibration methods discussed earlier in

the chapter. Rather than delving into details of performances on each individual

problem, we will maintain a more high-level view and only present and discuss

average performance across the eleven test problems.

For each learning algorithm, we use all the the parameter settings described in

the previous section to train classifiers, and calibrate each classifier with Isotonic

Regression and Platt Scaling. In the case of boosted trees and stumps we also cali-

brate the models using Logistic Correction and train models that directly optimize

log-loss. Models are trained on 4000 points and calibrated on 1000 independent

points (if needed). For each data set, learning algorithm, and calibration method,

we select the model with the best performance using the same 1000 points used

for calibration, and report it’s performance on the large final test set. We use five

fold cross-validation to obtain five trials.

Figure 3.12 shows the root mean squared error (left) and mean cross-entropy

(right) for each learning method before and after calibration. Each bar averages

77

 0.3

 0.32

 0.34

 0.36

 0.38

BST-DT RF SVM BAG-DT ANN KNN BST-STMP DT LOGREG NB

R
oo

t M
ea

n
S

qu
ar

ed
 E

rr
or

Uncalibrated
Isotonic Regression

Platt Scaling
Logistic Correction

LogLoss

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

NBLOGREGDTBST-STMPKNNANNBAG-DTSVMRFBST-DT

M
ea

n
C

ro
ss

-E
nt

ro
py

Uncalibrated
Isotonic Regression

Platt Scaling
Logistic Correction

LogLoss

Figure 3.12: Performance of learning algorithms

over five trials on each of the eleven problems. Error bars representing one standard

error are shown, but they are too small to be seen in some cases. The learning

algorithms are roughly ordered by their squared error performance, with the best

algorithm on the left. Boosted decision trees calibrated with Platt Scaling are

clearly the best method with significantly lower squared error and cross-entropy

when compared to the other learning algorithms. Boosted trees are followed by

calibrated random forests, calibrated SVMs, bagged decision trees and uncalibrated

neural nets. If we only look at the uncalibrated models however, bagged trees,

random forests and neural nets are the best models. At the other end of the

spectrum, boosted stumps, decision trees, logistic regression and Naive Bayes have

the worst performance.2 The main reason why boosted stumps, logistic regression

and Naive Bayes perform poorly regardless of the calibration method used is not

that these models could not be calibrated, but because the models learned using

these algorithms are too simple to capture the full complexity of most datasets.

Logistic regression and Naive Bayes learn linear models, while boosted stumps are

unable to represent any interactions between attributes (Friedman et al., 2000).

Similarly the performance of decision trees suffers because they have very high

2The mean cross-entropy for the uncalibrated Naive Bayes models is actually 1.06, but the
figure is cut at 0.7 to better show the interesting region.

78

variance or make coarse predictions, and there is little that calibration can do

to fix these problems. This ranking of learning algorithms by their performance

is fairly consistent whether we look at squared error or at cross-entropy. The

only difference is that bagged trees have slightly better cross-entropy than SVMs

calibrated with Platt’s method, while having slightly worse squared error.

As expected, the probabilities predicted by four learning methods — boosted

trees, SVMs, boosted stumps, and Naive Bayes — are dramatically improved by

calibration, while neural nets and logistic regression models are actually hurt a

little by post-training calibration. For random forests, bagged trees and memory

based learning we have seen in the previous section that Platt Scaling helps on

some problems that display sigmoidal reliability plots, but hurts on other problems

where the models already are well calibrated. For random forest and memory based

learning the benefit is greater than the loss, so on average the models calibrated

with Platt Scaling perform better. For bagged trees it’s a wash. Comparing the left

and the right graphs in Figure 3.12 it looks as if Isotonic Regression does perform

slightly worse than Platt Scaling for cross-entropy for all learning methods. When

looking at squared error, Isotonic Regression performs a little better than Platt

Scaling for decision trees and Naive Bayes.

We have seen in Sections 3.3.1 and 3.3.1 that boosted trees calibrated with

Logistic Correction and boosted trees trained to optimize log-loss only output zero

or one predictions for most problems, which explains their poor squared error

and cross-entropy performance. On the other hand, for boosted stumps, Logistic

Correction performs on par with Platt Scaling. This makes Logistic Correction

very appealing, especially since it does not require any extra time or data for

calibration. Directly optimizing log-loss with boosted stumps performs a few per-

cent worse than Logistic Correction, which is consistent with the results reported

79

by Lebanon and Lafferty (2001). Unfortunately, the main reason why Logistic

Correction works well with boosted stumps and not with boosted trees is that

boosted stumps have limited expressive power. Most datasets are too complex to

be learned well using boosted stumps. Boosted trees however, are able to learn

models for these complex datasets well, and when calibrated with Platt Scaling

produce excellent probabilistic predictions.3

3.5 Learning Curve Analysis

In this section we present a learning curve analysis of the two calibration methods,

Platt Scaling and Isotonic Regression. The goal is to determine how effective these

calibration methods are as the amount of data available for calibration varies. For

this analysis, for each problem, learning algorithm, and calibration method, we

select the model with the lowest squared-error among the models trained with

each learning algorithm. We vary the size of the calibration set from 32 cases to

8192 cases by factors of two.

The plots in Figure 3.13 show the average squared error over the ten test

problems (the HS problem is left out because there is not enough data available

for calibration set sizes bigger than 4092 points). For each problem, we perform

ten trials. Error bars representing one standard error are shown on the plots, but

are so narrow that they may be difficult to see.

The nearly horizontal lines in the graphs show the squared error prior to cali-

bration. These lines are not perfectly horizontal only because the test sets change

as more data is moved into the calibration sets. Each plot shows the squared er-

3We have also run experiments with boosting 2-level decision trees instead of the 1-level
stumps. Boosted 2-level trees did outperform boosted stumps, but did not perform as well as
boosting full trees. Moreover, 2-level trees are complex enough that Logistic Correction and
optimizing to log-loss are no longer as effective as Platt Scaling or Isotonic Regression.

80

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 BST-DT

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 BST-STMP

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 SVM

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 ANN

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 LOGREG

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 DT

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 BAG-DT

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 RF

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 KNN

Unscaled
Platt

Isotonic

 0.3
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 10 100 1000 10000

 Calibration Set Size

 NB

Unscaled
Platt

Isotonic

Figure 3.13: Learning Curves for Platt Scaling and Isotonic Regression (averages
across 10 problems).

81

ror after calibration with Platt’s method or Isotonic Regression as the size of the

calibration set varies from small to large. When the calibration set is small (less

than about 200-1000 cases), Platt Scaling outperforms Isotonic Regression with all

nine learning methods. This happens because Isotonic Regression is more power-

ful than Platt Scaling, so it is easier for it to overfit when the calibration set is

small. Platt’s method on the other hand, besides being more constrained, also has

some overfitting control built into it (see Section 3.2.1). Also, with smaller calibra-

tion sets, Isotonic Regression will make coarser predictions because the piecewise

constant function it fits will have larger plateaus.

As the size of the calibration set increases, the learning curves for Platt Scaling

and Isotonic Regression join, or even cross. When there are 1000 or more points

in the calibration set, Isotonic Regression always yields performance as good as,

or better than, Platt Scaling.

For learning methods that make well calibrated predictions such as neural nets,

bagged trees, and logistic regression, neither Platt Scaling nor Isotonic Regression

yields much improvement in performance even when the calibration set is very

large. With these methods calibration is not beneficial, and actually hurts perfor-

mance when the the calibration sets are small.

For the max-margin methods, boosted trees, boosted stumps and SVMs, cali-

bration provides an improvement even when the calibration set is small. In Sec-

tion 3.3 we saw that a sigmoid is a good match for boosted trees, boosted stumps,

and SVMs. As expected, for these methods Platt Scaling performs better than

Isotonic Regression for small to medium sized calibration (less than 1000 cases),

and is virtually indistinguishable for larger calibration sets.

As expected, calibration improves the performance of Naive Bayes models for

almost all calibration set sizes, with Isotonic Regression outperforming Platt Scal-

82

ing when there is more data. For the rest of the models: KNN, RF and DT

post-calibration helps once the calibration sets are large enough.

3.6 Conclusions

In this chapter we examined the probabilities predicted by ten different classes

of supervised learning algorithms. Maximum margin methods such as boosting

and SVMs yield characteristic distortions in their predictions that are sigmoidal

shaped. An empirical analysis indicates that although max-margin methods are ef-

fective at discriminating between cases with different likelihoods, their predictions

are distorted by their willingness to trade-off reduced margin for “easier” cases

that should have predicted values near zero or one, for increased margin for harder

cases near the decision surface. Naive Bayes makes predictions with the opposite

anti-sigmoid distortion. Methods such as neural nets and bagged trees predict

well-calibrated probabilities. We examined the effectiveness of Platt Scaling and

Isotonic Regression for calibrating the predictions made by different learning meth-

ods. Platt Scaling is most effective when the data is small, but Isotonic Regression

is more powerful when there is sufficient data to prevent overfitting. After cali-

bration, the models that predict the best probabilities are boosted trees, random

forests, SVMs, uncalibrated bagged trees and uncalibrated neural nets.

Acknowledgment

This is joint work with Rich Caruana. Thanks to Bianca Zadrozny and Charles

Elkan for the Isotonic Regression code, C. Young et al. at Stanford Linear Accel-

erator for the SLAC data, and Tony Gualtieri at Goddard Space Center for help

with the HS data. This work was supported by NSF Award 0412930.

83

BIBLIOGRAPHY

Ayer, M., Brunk, H., Ewing, G., Reid, W., & Silverman, E. (1955). An empir-

ical distribution function for sampling with incomplete information. Annals of

Mathematical Statistics, 5, 641–647.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2,

63–73.

Buntine, W., & Caruana, R. (1991). Introduction to IND and recursive partitioning

(Technical Report FIA-91-28). NASA Ames Research Center.

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised

learning algorithms. Proc. 23rd International Conference on Machine Learning

(ICML’06).

Collins, M., Schapire, R. E., & Singer, Y. (2002). Logistic regression, adaboost

and bregman distances. Machine Learning, 48.

DeGroot, M., & Fienberg, S. (1982). The comparison and evaluation of forecasters.

Statistician, 32, 12–22.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a

statistical view of boosting. The Annals of Statistics, 38.

Joachims, T. (1999). Making large-scale SVM learning practical. Advances in

Kernel Methods.

Lebanon, G., & Lafferty, J. (2001). Boosting and maximum likelihood for expo-

nential models. Advances in Neural Information Processing Systems.

84

Platt, J. (1999). Probabilistic outputs for support vector machines and comparison

to regularized likelihood methods. Adv. in Large Margin Classifiers.

Provost, F., & Domingos, P. (2003). Tree induction for probability-based rankings.

Machine Learning.

Robertson, T., Wright, F., & Dykstra, R. (1988). Order restricted statistical infer-

ence. New York: John Wiley and Sons.

Rosset, S., Zhu, J., & Hastie, T. (2004). Boosting as a regularized path to a

maximum margin classifier. J. Mach. Learn. Res., 5.

Schapire, R. (2001). The boosting approach to machine learning: An overview. In

MSRI Workshop on Nonlinear Estimation and Classification.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1998). Boosting the margin: A

new explanation for the effectiveness of voting methods. Annals of Statistics, 26,

1651–1686.

Vapnik, V. (1998). Statistical learning theory. New York: John Wiley and Sons.

Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from

decision trees and naive bayesian classifiers. ICML.

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate mul-

ticlass probability estimates. Knowledge Discovery and Data Mining (KDD’02).

85

APPENDIX

3.A Histograms of Predicted Values and Reliability Dia-

grams

This appendix shows the histograms of predicted values and the reliablility dia-

grams before and after calibration for all the learning methods on each problem.

86

BOOSTED DECISION STUMPS

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.14: Histograms of predicted values and reliability diagrams for boosted
decision stumps before and after calibration.

87

BOOSTED DECISION STUMPS

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Logistic Correction (b) Log-Loss

Figure 3.15: Histograms of predicted values and reliability diagrams for boosted de-
cision stumps calibrated with Logistic Regression and for boosted decision stumps
trained to optimize log-loss.

88

BOOSTED DECISION TREES

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Logistic Correction (b) Log-Loss

Figure 3.16: Histograms of predicted values and reliability diagrams for boosted
decision trees calibrated with Logistic Regression and for boosted decision trees
trained to optimize log-loss.

89

SUPPORT VECTOR MACHINES

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.17: Histograms of predicted values and reliability diagrams for SVMs
before and after calibration.

90

ARTIFICIAL NEURAL NETWORKS

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.18: Histograms of predicted values and reliability diagrams for artificial
neural networks before and after calibration.

91

LOGISTIC REGRESSION

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.19: Histograms of predicted values and reliability diagrams for logistic
regression before and after calibration.

92

DECISION TREES

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.20: Histograms of predicted values and reliability diagrams for decision
trees before and after calibration.

93

BAGGED DECISION TREES

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.21: Histograms of predicted values and reliability diagrams for bagged
decision trees before and after calibration.

94

RANDOM FORESTS

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.22: Histograms of predicted values and reliability diagrams for random
forests before and after calibration.

95

MEMORY BASED LEARNING

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.23: Histograms of predicted values and reliability diagrams for memory
based learning before and after calibration.

96

NAIVE BAYES

C
O

V
_
T

Y
P

E
A

D
U

L
T

L
E

T
T

E
R

.P
1

L
E

T
T

E
R

.P
2

M
E

D
IS

S
L
A

C
H

S
M

G
C

A
L
H

O
U

S
C

O
D

B
A

C
T

(a) Uncalibrated (b) Platt Scaling (c) Isotonic Regression

Figure 3.24: Histograms of predicted values and reliability diagrams for naive
Bayes before and after calibration.

97

CHAPTER 4

ENSEMBLE SELECTION

4.1 Introduction

An ensemble is a collection of models whose predictions are combined by weighted

averaging or voting. Dietterich (2000) states that “A necessary and sufficient con-

dition for an ensemble of classifiers to be more accurate than any of its individual

members is if the classifiers are accurate and diverse.”

Many methods have been proposed to generate accurate, yet diverse, sets of

models. Bagging (Breiman, 1996) trains models of one type (e.g., C4 decision

trees) on bootstrap samples of the training set. Opitz (1999) bags features instead

of training points. Boosting (Schapire, 2001) generates a potentially more diverse

set of models than bagging by weighting the training set to force new models

attend to those points that are difficult to classify correctly. Sullivan et al. (2000)

boost features instead of training points. Error-correcting-output-codes (ECOC)

(Dietterich & Bakiri, 1995) creates models with decorrelated errors by training

models for multi-class problems on different dichotomies. Munro and Parmanto

(1996) created diverse neural nets via competition among nodes.

Here we generate diverse sets of models by using many different algorithms. We

use Support Vector Machines (SVMs), artificial neural nets (ANNs), memory-based

learning (KNN), decision trees (DT), bagged decision trees (BAG-DT), boosted

decision trees (BST-DT), boosted decision stumps (BST-STMP), random forests

(RF), naive bayes (NB) and logistic regression (LOGREG). For each algorithm we

train models using many different parameter settings. For example, we train 121

SVMs by varying the margin parameter C, the kernel, and the kernel parameters

(e.g. varying gamma with RBF kernels.)

98

We train about 2000 models for each problem. Some models have excellent

performance, equal to or better than the best models reported in the literature.

Other models, however, have mediocre or even poor performance. Rather than

combine good and bad models in an ensemble, we use forward stepwise selection

from the library of models to find a subset of models that, when averaged together,

yield excellent performance. The basic ensemble selection procedure is very simple:

1. Start with the empty ensemble.

2. Add to the ensemble the model in the library that maximizes the ensemble’s

performance on the error metric on a hillclimb (validation) set.

3. Repeat Step 2 for a fixed number of iterations or until all the models have

been used.

4. Return the ensemble from the nested set of ensembles that has maximum

performance on the hillclimb (validation) set.

Models are added to an ensemble by averaging their predictions with the models

already in the ensemble. This makes adding a model to the ensemble very fast,

allowing ensembles with excellent performance to be found in minutes from libraries

with 2000 models. Moreover, the selection procedure allows us to optimize the

ensemble to any easily computed performance metric. We evaluate the performance

of ensemble selection on eight performance metrics. We believe this is the first time

a learning method has been evaluated across such a wide variety of performance

metrics.

On each performance metric we compare ensemble selection to the model in the

library that performs best on that metric. Because we generate so many different

models, libraries usually contain a few models with excellent performance on any

performance metric. Just selecting the best single model from a library yields

remarkably good performance. Ensemble selection, however, finds ensembles that

99

outperform the best single models. This suggests that using different learning

methods and parameter settings generates libraries containing a diverse set of

good-performing models.

4.2 Improving Ensemble Selection

The simple forward model selection procedure presented in the Introduction is fast

and effective, but sometimes overfits to the hillclimbing set, reducing ensemble

performance. We made three additions to this selection procedure to reduce over-

fitting. These are discussed in the next three sub-sections. These methods may be

useful in other applications where forward stepwise selection is prone to overfitting,

such as in feature selection (Kohavi & John, 1997).

4.2.1 Selection with Replacement

With model selection without replacement, performance improves as the best mod-

els are added to the ensemble, peaks, and then quickly declines. Performance drops

because the best models in the library have been used and selection must now add

models that hurt the ensemble. Figure 4.1 shows this behavior for root-mean-

squared-error. Unfortunately, most error metrics yield much bumpier graphs than

this when hillclimbing is done with small data sets, making it difficult to reliably

pick a good stopping point. The loss in performance can be significant if the peak

is missed.

Figure 4.1 also shows that selecting models with replacement greatly reduces

this problem. Selection with replacement allows models to be added to the ensem-

ble multiple times. Once peak performance is reached, if the unused models all

hurt ensemble performance, selection adds models that were added before rather

100

0.32

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

0 50 100 150 200

 R
M

S
 E

rr
o

r

 Number of Models in Ensemble

hillclimb: selection without replacement
hillclimb: selection with replacement
test: selection without replacement

test: selection with replacement

Figure 4.1: Selection With and Without Replacement.

than hurt performance. This flattens the performance curve past the peak, and

allows selection to fine tune ensembles by weighting models: models added to the

ensemble multiple times receive more weight.

Selection with replacement flattens the curve so much that a test set is not

needed to determine when to stop adding models to the ensemble. The hillclimbing

set can be used to stop hillclimbing. This means ensemble selection does not

need more test sets than the base-level models would have used to select model

parameters. Ensemble selection uses the validation set to do both parameter and

model selection.

4.2.2 Sorted Ensemble Initialization

Forward selection sometimes overfits early in selection when ensembles are small.

One way to prevent this is to initialize ensembles with more models. Instead of

101

starting with an empty ensemble, sort the models in the library by their perfor-

mance, and put the best N models in the ensemble. N is chosen by looking at

performance on the hillclimbing set. This typically adds 5-25 of the best models

to an ensemble before greedy stepwise selection begins. Since each of the N best

models performs well, they form a strong initial ensemble and it is more difficult

for greedy selection to find models that overfit when added to the ensemble.

4.2.3 Bagged Ensemble Selection

As the number of models in a library increases, the chances of finding combinations

of models that overfit the hillclimbing set increases. Bagging can minimize this

problem. We reduce the number of models selection can choose from by drawing

a random sample of models from the library and selecting from that sample. If

a particular combination of M models overfits, the probability of those M models

being in a random bag of models is less than (1− p)M for p the fraction of models

in the bag. We use p = 0.5, and bag ensemble selection 20 times to insure that the

best models will have many opportunities to be selected. The final ensemble is the

average of the 20 ensembles. Bags of ensembles seem complex, but each ensemble

is just a weighted average of models, so the average of a set of ensembles also is a

simple weighted average of the base-level models.

4.3 Experimental Evaluation

4.3.1 Methodology

Models trained by different learning algorithms do not necessarily “speak the same

language”. A prediction of 0.14 from a neural net does not necessarily mean the

102

same thing as a prediction of 0.14 from a boosted tree or SVM. Predictions from

neural nets often are well-calibrated posterior probabilities, but predictions from

SVMs are just normalized distances to the decision surface. Averaging predictions

from models that are not on commensurate scales may hurt ensemble performance.

Because of this, we also calibrate the classifiers in the model library via the Platt

Scaling method described in Section 3.2.1. Unless otherwise specified, we the

model libraries include two versions of each classifier: one where the classifier has

been calibrated, and one where the classifier is not calibrated. Here the ensemble

selection hillclimb set is used for calibration as well.

Note that we do not determine what parameters yield best performance when

training models. All models are added to a library no matter how good or bad

they are. Model predictions on the train and hillclimbing sets are cached. This

simplifies working with the library and makes model selection faster because the

models do not have to be executed during selection.

The learning methods and parameter values we use to generate the model

libraries are described in Appendix 4.B. The eleven data sets that we use for the

evaluation are described in Appendix 4.A.

Performance Metrics

The eight performance metrics we use can be divided into three groups: threshold

metrics, ordering/rank metrics and probability metrics.

The threshold metrics are accuracy (ACC), F-score (FSC) and lift (LFT). For

thresholded metrics, it is not important how close a prediction is to a threshold,

only if it is above or below threshold. See Giudici (Giudici, 2003) for a description

of Lift Curves. Usually ACC and FSC have a fixed threshold (we use 0.5). For lift,

often a fixed percent, p, of cases are predicted as positive and the rest as negative

(we use p = 25%).

103

The ordering/rank metrics depend only on the ordering of the cases, not the

actual predicted values. As long as ordering is preserved, it makes no difference

if predicted values fall between 0 and 1 or 0.89 and 0.90. These metrics measure

how well the positive cases are ordered before negative cases and can be viewed

as a summary of model performance across all possible thresholds. The rank

metrics we use are area under the ROC curve (ROC), average precision (APR),

and precision/recall break even point (BEP). See Provost and Fawcett (Provost &

Fawcett, 1997) for a discussion of ROC from a machine learning perspective.

The probability metrics are minimized (in expectation) when the predicted

value for each case coincides with the true conditional probability of that case

being positive class. The probability metrics are squared error (RMS) and cross-

entropy (MXE).

A description of all the performance metrics is available in Appendix 4.C

Comparing Across Performance Metrics

To permit averaging across metrics and problems, performances must be placed

on comparable scales. We scale performance for each problem and metric from 0

to 1, where 0 is baseline performance and 1 is the best performance achieved by

any model or ensemble. We use the following baseline model: predict p for every

case, where p is the percent of positives in the data.

One disadvantage of normalized scores is that recovering a raw performance

requires knowing what performances define the top and bottom of the scale, and

as new best models are found the top of the scale may change. The numbers

defining the normalized scales can be found in Appendix 4.D.

104

Table 4.1: Performance with and without model calibration. The best score in
each column is bolded.

acc fsc lft roc apr bep rms mxe mean
es-both .920 .888 .967 .982 .972 .964 .932 .944 .946

es-nocal .919 .897 .967 .982 .970 .965 .912 .925 .942
es-cal .912 .847 .969 .981 .969 .966 .935 .940 .940
bayesavg-both .893 .814 .964 .978 .963 .956 .918 .934 .928
bayesavg-cal .889 .820 .962 .977 .960 .955 .912 .925 .925
modsel-both .871 .861 .939 .973 .948 .938 .901 .916 .918
modsel-cal .870 .819 .943 .973 .948 .940 .892 .910 .912
modsel-nocal .871 .858 .939 .973 .948 .938 .861 .871 .907
bayesavg-nocal .875 .784 .955 .968 .953 .941 .874 .892 .905

4.3.2 Empirical Results

In this section we evaluate the performance of ensemble selection and we compare

it with the performance obtained by selecting the best model from the library. We

also compare against the performance of Bayesian model averaging (Domingos,

2000), a widely used ensemble learning method.

Table 4.1 shows the performance of ensemble selection (ES), model selection

(MODSEL),1 and Bayesian model averaging (BAYESAVG), with and without cal-

ibrated models. Results are shown for three different model libraries: 1) only

uncalibrated models (NOCAL), 2) only calibrated models (CAL), and 3) both cal-

ibrated and uncalibrated models (BOTH). Each entry is the average of five folds

on each of the eleven problems. The last column shows the mean performance over

all eight metrics. Rows are sorted by mean performance. For the results in this

subsection we used a hillclimb set of 1000 points.

Comparing results for ensemble selection with and without calibration (ES-

CAL and ES-NOCAL), we see that calibrating models improves RMS and MXE

(significant at .05) but hurts FSC. There is little difference for LFT, ROC, APR

and BEP. For model selection we see the same trends: calibrated models yield

1Model selection chooses the best single model using the hillclimb set.

105

better RMS and MXE and worse FSC. The magnitudes of the differences suggest

that most if not all of the improvement in RMS and MXE for ensemble selection

with calibrated models is due to having better models in the library rather than

from ensemble selection taking advantage of the common scale of the calibrated

models. We are not sure why calibration makes FSC performance worse for both

MODSEL and ES, but again suspect that the differences between ES-CAL and

ES-NOCAL are due to differences in the performance of the base-level models.

Having both calibrated and uncalibrated models in the library (ES-BOTH and

MODSEL-BOTH) gives the best of both worlds: it alleviates the problem with

FSC while retaining the RMS and MXE improvements.

Unlike with ensemble selection, using calibrated models for Bayesian model av-

eraging improves performance on all metrics, not just RMS and MXE (significant

at .05). With calibrated models, Bayesian averaging outperforms model selec-

tion but is still not as good as ensemble selection. Having both calibrated and

uncalibrated models (BAYESAVG-BOTH) also provides a small improvement for

Bayesian model averaging.

For the rest of the chapter, we will use libraries that contain both calibrated

and uncalibrated models, since they give the best performance for both ensemble

selection and model selection.

4.3.3 Analysis of Training Size

Since the data used for hillclimbing is data taken away from training the individ-

ual models, keeping the hillclimb set small is important. Smaller hillclimb sets,

however, are easier to overfit to, particularly when there are many models from

which to select.

To explore ensemble selection’s sensitivity to the size of the hillclimb set, we

106

ran ensemble selection with hillclimb sets containing 100, 250, 500, 1000, 2500,

5000, and 10000 data points. In each run we randomly selected the points for

the hillclimb set and used the remainder for the test set. The hyperspectral and

medis data sets contained too few points to leave sufficient test sets when using

a 10K hillclimbing set and were omitted. Due to time constraints and the cost of

generating the learning curves, we only used one random sample at each size and

did not repeat the experiment.

Figure 4.2 shows learning curves for our eight performance measures and their

mean. Each graph is an average over 9 problems. The x-axis uses a logscale to

better show what happens with small hillclimbing sets. Normalized performance

scores are plotted on the y-axis. For comparison, the graphs include the perfor-

mance achieved by picking the single best model (MODSEL).

Unsurprisingly, the performance achieved with both ensemble selection and

model selection using only 100 points for hillclimbing is quite bad. As data in-

creases, both methods do better as they overfit less. Interestingly, ensemble selec-

tion is hurt less by a small hillclimbing set than model selection, suggesting that

it is less prone to overfitting than model selection. Because of this, the benefit

of ensemble selection over the best models appears to be strongest when training

data is scarce. As the size of the hillclimbing sets goes from 1k to 10k, ensemble

selection maintains its edge over model selection.

With small hillclimb sets, using bagging with ensemble selection is crucial to

getting good performance; without it, mean performance using a 100 point hill-

climb set drops from 0.888 to 0.817. In contrast, bagging provides very little if any

benefit when a very large hillclimb set is used (more than 5000 points with our

data sets).

107

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 ACC

bagging
no bagging

modsel
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 FSC

bagging
no bagging

modsel

 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 LFT

bagging
no bagging

modsel
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 ROC

bagging
no bagging

modsel

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 APR

bagging
no bagging

modsel
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 BEP

bagging
no bagging

modsel

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 RMS

bagging
no bagging

modsel
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 MXE

bagging
no bagging

modsel

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 1000 10000

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 hillclimb data size

 MEAN

bagging
no bagging

modsel

Figure 4.2: Learning curves for ensemble selection with and without bagging, and
for picking the best single model (modsel).

108

4.3.4 Cross-Validated Ensemble Selection

It is clear from the results in Section 4.3.3 that the larger the hillclimb set, the

better ensemble selection’s performance will be. To maximize the amount of avail-

able data, we apply cross-validation to ensemble selection. Simply wrapping cross-

validation around ensemble selection, however, will not help because the algorithm

will still have just a fraction of the training data available for hillclimbing. Instead,

we embed cross-validation within ensemble selection so that all of the training data

can be used for the critical ensemble hillclimbing step. Conceptually, the proce-

dure makes cross-validated models, then runs ensemble selection the usual way on

a library of cross-validated base-level models.

A cross-validated model is created by training a model for each fold with the

same model parameters. If there are 5 folds, there will be 5 individual models (each

trained on 4000 points) that are ‘siblings’; these siblings should only differ based

on variance due to their different training samples. To make a prediction for a

test point, a cross-validated model simply averages the predictions made by each

of the sibling models. The prediction for a training point (that subsequently will

be used for ensemble hillclimbing), however, only comes from the individual model

that did not see the point during training. In essence, the cross-validated model

delegates the prediction responsibility for a point that will be used for hillclimbing

to the one sibling model that is not biased for that point.

Selecting a cross-validated model, whether during model selection or ensem-

ble selection, means choosing all of the sibling models as a unit. If 5-fold cross-

validation is used, selection chooses groups containing 5 sibling models at a time.

In this case, when selection adds a cross-validated model to a growing ensemble,

it really adds 5 different models of the same model type to the ensemble, each of

which receives the same weight in the ensemble average.

109

Table 4.2: Performance with and without cross-validation for ensemble selection
and model selection.

acc fsc lft roc apr bep rms mxe mean

es-cv .935 .926 .982 .996 .992 .977 .984 .989 .973

modsel-cv .907 .923 .971 .985 .968 .963 .945 .961 .953
es .920 .888 .967 .982 .972 .964 .932 .944 .946
modsel .871 .861 .939 .973 .948 .938 .901 .916 .918

Table 4.3: Percent loss reduction by dataset.

acc fsc lft roc apr bep rms mxe mean
adult 2.77 5.89 8.72 7.45 6.70 7.58 2.26 4.08 5.68
bact 2.08 3.83 16.42 4.13 5.49 1.76 1.42 4.15 4.91
calhous 7.95 9.49 48.00 8.69 8.81 6.15 7.17 12.74 13.63
cod 5.73 7.46 14.33 9.14 10.52 7.11 2.39 3.79 7.56
covtype 6.68 7.26 12.35 11.34 14.99 7.64 7.80 12.92 10.12
hs 13.66 16.36 12.32 37.53 37.78 16.77 12.65 27.43 21.81
letter.p1 21.55 25.66 0.29 69.10 45.29 19.25 19.59 34.58 29.41
letter.p2 15.21 14.50 100 32.84 33.05 15.85 17.13 29.47 32.26
medis 2.77 -0.05 2.08 6.33 7.28 4.62 1.40 2.70 3.39
mg 4.45 1.98 4.25 11.84 12.65 6.04 2.57 6.10 6.23
slac 2.49 3.27 13.65 6.92 9.62 2.73 1.66 3.33 5.46
mean 7.76 8.70 21.13 18.67 17.47 8.68 6.91 12.84 12.77

meancv 2.89 3.07 10.82 9.97 9.37 2.84 2.54 4.22 5.71

We ran ensemble selection with 5-fold cross-validation; this is analogous to

normal ensemble selection with a 5000 point hillclimb set. Table 4.2 shows the

results averaged over all the problems. Not only does cross-validation greatly

improve ensemble selection performance, it also provides the same benefit to model

selection. Five-fold cross-validated model selection actually outperforms non-cross-

validated ensemble selection by a small but noticeable amount. However, ensemble

selection with embedded cross-validation continues to outperform model selection.

Table 4.3 provides a different way to look at the results. The numbers in the

table (except for the last row) are the percent reduction in loss of cross-validated

ensemble selection, relative to non-cross-validated model selection. For example, if

model selection achieves a raw accuracy score of 90%, and cross-validated ensemble

110

selection achieves 95% accuracy, then the percent reduction in loss is 50% —the

loss has been reduced by half. The MEAN row is the average improvement for

each metric, across datasets.

Embedding cross-validation within ensemble selection doubles its benefit over

simple model selection (from 6.90% to 12.77%). This is somewhat of an unfair

comparison; if a cross-validated model library is available, it is just as easy to

do cross-validated model selection as it is to do cross-validated ensemble selec-

tion. The last row in Table 4.3 shows the percent loss reduction of cross-validated

ensemble selection compared to cross-validated model selection.

While training five times as many models is computationally expensive, it may

be useful for domains where the best possible performance is needed. Potentially

more interesting, in domains where labeled data is scarce, cross-validated ensemble

selection is attractive because a) it does not require sacrificing part of the train-

ing data for hillclimbing, b) it maximizes the size of the hillclimbing set (which

Figure 4.2 shows is critical when hillclimb data is small), and c) training the cross-

validated models is much more feasible with smaller training data.

Embedding cross-validation within ensemble selection significantly increases the

performance of ensemble selection. There are two factors that could explain this

increase in performance. First, the bigger hillclimbing set could make selecting

models to add to the ensemble more reliable and thus make overfitting harder.

Second, averaging the predictions of the sibling models could provide a bagging-

like effect that improves the performance of the base-level models. To tease apart

the benefit due to each of these factors we perform two additional experiments.

In one experiment, we use the same hillclimbing set as cross-validated ensemble

selection, but instead of averaging the predictions of the sibling models, we use

only the predictions of one of the siblings. Using this procedure we construct

111

Table 4.4: Breakdown of improvement from cross-validation.

acc fsc lft roc apr bep rms mxe mean

es-hill 32.9 37.2 48.0 38.8 40.8 19.4 55.1 56.7 41.1
es-avg 80.5 13.6 54.0 59.0 55.7 77.4 46.8 51.8 54.9

sum 113.4 50.8 102.0 97.8 96.5 96.8 101.9 108.5 96.0

five ensemble models, one for each fold, and report their mean performance. This

provides a measure of the benefit due to the increase in the size of the hillclimb

set (from cross-validation) while eliminating the bagging-like effect due to sibling

model averaging.

In the other experiment, we use the smaller hillclimb sets used by un-cross-

validated ensemble selection, but we do average the predictions of the sibling mod-

els. We again construct five ensemble models, one for each fold, and report their

mean performance. This allows us to identify the performance increase due to the

bagging-like effect of averaging the predictions of the sibling models.

Table 4.4 shows the results of these experiments. Entries in the table show the

improvement provided by using a larger hillclimb set (ES-HILL) and by averaging

the sibling models (ES-AVG) as a percentage of the total benefit of cross-validated

ensemble selection. For example, looking at the ACC column, increasing the size

of the hillclimb set from 1k to 5k yields a benefit equal to 32.9% of the total benefit

provided by cross-validated ensemble selection, and averaging the sibling models

yields a benefit equal to 80.5%.

The third row in the table is the sum of the first two rows. If the sum is

lower than 100% the effects from ES-HILL and ES-AVG are super-additive, i.e.

combining the two effects provides more benefit than the sum of the individual

improvements. If the sum is higher than 100% then the two effects are sub-additive.

For ACC, the sum is 113.4%, indicating that the effects of these two factors are

sub-additive: the total performance is slightly less than would be expected if the

112

factors were independent. Except for the high variance metrics, FSC and ACC,

the sums are close to 100%, indicating that the two effects are nearly independent.

The learning curves in Figure 4.2 suggest that increasing the size of the hillclimb

set from 1k to 5k would explain almost all of the benefit of cross-validation. These

results, however, show that on average across the eight metrics the benefit from ES-

HILL and ES-AVG are roughly equal. About half of the benefit from embedding

cross-validation within ensemble selection appears to result from the increase in

the size of the hillclimb set, and the other half appears to result from averaging

the sibling models. Increasing the size of the hillclimb set via cross-validation

(as opposed to having more data available for hillclimbing) provides less benefit

in practice because there is a mismatch between the base-level models used to

make predictions on the hillclimbing set and the sibling-averaged models that will

be used in the ensemble. In other words ensemble selection is hillclimbing using

slightly different models than the ones it actually adds to the ensemble.

4.3.5 Direct Metric Optimization

One interesting feature of ensemble selection is its ability to build an ensemble

optimized to an arbitrary metric. To test how much benefit this capability actually

provides, we compare ensemble selection that optimizes the target metric with

ensemble selection that optimizes a predetermined metric regardless of the target

metric. For each of the eight metrics, we train an ensemble that optimizes it and

evaluate the performance on all metrics. Optimizing RMS or MXE yields the best

results.

Table 4.5 lists the performance of ensemble selection for a) always optimizing

to RMS, b) always optimizing to MXE, and c) optimizing the true target metric

(OPTMETRIC). When cross-validation is not used, there is modest benefit to

113

 1

 1 0.57

ACC

 1

 1 0.24

FSC

 1

 1 0.89

LFT

 1

 1 0.92

ROC

 1

 1 0.86

APR

 1

 1 0.89

BEP

 1

 1 0.82

RMS

 1

 1 0.84

MXE

 1

 1 0.75

MEAN

Figure 4.3: Scatter plots of ensemble selection performance when RMS is optimized
(x-axis) vs when the target metric is optimized (y-axis). Points above the line
indicate better performance by optimizing to the target metric (e.g. accuracy)
then when optimizing RMS. Each point represents a different data set; circles are
averages for a problem over 5 folds, and X’s are performances using cross-validation.
Each metric (and the mean across metrics) is plotted separately.

114

Table 4.5: Performance of ensemble selection when forced to optimize to one set
metric.

rms mxe optmetric
es-both-cv 0.969 0.968 0.973
es-both 0.935 0.936 0.946

optimizing to the target metric. With cross-validation, however, the benefit from

optimizing to the target metric is significantly smaller.

The scatter plots in Figure 4.3 plot the performance of optimizing to RMS

against the performance of optimizing to the target metric, with one graph per

target metric. Again, we can see that ensemble selection performs somewhat better

when optimizing the target metric. Always optimizing RMS, however, is frequently

very competitive, especially when performance gets close to a normalized score of 1.

This is why the benefit of direct metric optimization is so small for cross-validated

ensemble selection. These results suggest that optimizing RMS (or MXE) may be

a good alternative if the target metric is too expensive to use for hillclimbing.

4.3.6 Model Library Pruning2

Including a large number of base level models, with a wide variety of parameter

settings, in the model library helps ensure that at least some of the models will

have good performance regardless of the metric optimized. At the same time,

increasing the number of available models also increases the risk of overfitting the

hillclimb set. Moreover, some of the models have such poor performance that they

are unlikely to be useful for any metric one would want to optimize. Eliminating

these models should not hurt performance, and might help.

In this section we investigate ensemble selection’s performance when employing

2This section presents work done by Art Munson

115

varying levels of library pruning. The pruning works as follows: the models are

sorted by their performance on the target metric (with respect to the hillclimb set),

and only the top X% of the models are used for ensemble selection. Note that this

pruning is different from work on ensemble pruning (Margineantu & Dietterich,

1997; Street & Kim, 2001; Tsoumakas et al., 2005; Zhang et al., 2006; Mart́ınez-

Munoz & Suárez, 2006). This is a pre-processing method, while ensemble pruning

post-processes an existing ensemble.

Figure 4.4 shows the effect of pruning for each performance metric, averaged

across the 11 data sets and 5 folds using non-cross-validated ensemble selection

with and without bagging. For comparison, flat lines illustrate the performance

achieved by model selection (modsel) and non-pruned ensemble selection (es-both).

The legend is shown in the ACC graph.

The figure clearly shows that pruning usually does not hurt ensemble selection

performance, and often improves it. For ACC, LFT, and BEP pruned ensemble

selection (the line with boxes) seems to yield the same performance as non-pruned

ensemble selection. For the other metrics, pruning yields superior performance.

Indeed, when using more than 50% of the models performance decreases. Interest-

ingly, library pruning reduces the need for bagging, presumably by reducing the

potential for overfitting. 3

The graphs in Figure 4.4 show the average behavior across our 11 data sets.

Ensemble selection’s behavior under pruning may in fact vary when each data set

is considered individually. Averaging across problems could hide different peak

points. Figure 4.5 shows RMS performance for each of the problems.

Although performance starts to decline at different pruning levels for the differ-

3The bagging line at 100% does not always match the es-both line, even though these should
be equivalent configurations. This is particularly evident for FSC, the highest variance metric.
The sorting performed before pruning alters ensemble selection’s model sampling, resulting in
additional variance.

116

 0.87
 0.875
 0.88

 0.885
 0.89

 0.895
 0.9

 0.905
 0.91

 0.915
 0.92

 0.925

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

ACC

bagging
no bagging

es-both
modsel-both

 0.86
 0.865
 0.87

 0.875
 0.88

 0.885
 0.89

 0.895
 0.9

 0.905

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

FSC

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

LFT

 0.972
 0.974
 0.976
 0.978
 0.98

 0.982
 0.984
 0.986
 0.988
 0.99

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

ROC

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

APR

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

BEP

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

RMS

 0.915
 0.92

 0.925
 0.93

 0.935
 0.94

 0.945
 0.95

 0.955
 0.96

 0.965

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

MXE

 0.915
 0.92

 0.925
 0.93

 0.935
 0.94

 0.945
 0.95

 0.955

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

MEAN

Figure 4.4: Pruned ensemble selection performance.

117

 0.94
 0.945
 0.95

 0.955
 0.96

 0.965
 0.97

 0.975
 0.98

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

ADULT: RMS

 0.87
 0.88
 0.89
 0.9

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97

 0 20 40 60 80 100
no

rm
al

iz
ed

 p
er

fo
rm

an
ce

% models

BACT: RMS

 0.93
 0.935
 0.94

 0.945
 0.95

 0.955
 0.96

 0.965
 0.97

 0.975
 0.98

 0.985

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

CALHOUS: RMS

bagging
no bagging

es-both
modsel-both

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

COD: RMS

 0.905
 0.91

 0.915
 0.92

 0.925
 0.93

 0.935
 0.94

 0.945

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

COVTYPE: RMS

 0.88
 0.89
 0.9

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

HS: RMS

 0.88
 0.89
 0.9

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

LETTER.p1: RMS

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

LETTER.p2: RMS

 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

MEDIS: RMS

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

MG: RMS

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0 20 40 60 80 100

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

% models

SLAC: RMS

Figure 4.5: RMS performance for pruned ensemble selection.

118

ent problems, it is clear that larger model libraries increase the risk of overfitting

the hillclimb set. Using 100% of the models is never worthwhile. At best, using

the full library can match the performance of using only a small subset. In the

worst case, ensemble selection overfits. This is particularly evident for the COD

data set where model selection outperforms ensemble selection unless pruning is

employed.

While further work is needed to develop good heuristics for automatically choos-

ing an appropriate pruning level for a data set, simply using the top 10–20%

models seems to be a good rule of thumb. An open problem is finding a better

pruning method. For example, taking into account model diversity (see for exam-

ple (Kuncheva & Whitaker, 2003; Peterson & Martinez, 2005)) might find better

pruned sets.

4.4 Model Compression

While very accurate, the ensembles build by ensemble selection have one drawback:

the space required to store all the base-level classifiers, and the time required to

execute them at run-time, prohibits their use in applications where test sets are

large (e.g. Google), where storage space is at a premium (e.g. PDAs), and where

computational power is limited (e.g. hearing aids). In such situations, we propose

using model compression (Bucila et al., 2006) to obtain fast and compact that

perform almost as well as the ensembles build by ensemble selection.

The main idea behind model compression is to train a fast and compact model

to approximate the function learned by a slow, large, but high performing model.

Unlike the true function that is unknown, the function learned by the high per-

forming model is available and can be used to label large amounts of synthetic

pseudo data. A fast, compact and expressive model trained on enough synthetic

119

Table 4.6: Time in seconds to classify 10k cases.

mimic ensemble ann single

adult 7.88 8560.61 3.94 48.31
covtype 4.46 3440.99 1.05 37.31
hs 12.09 1817.17 3.85 3.85
letter.p1 2.59 1630.21 0.25 0.25
letter.p2 2.59 2651.95 0.74 526.34
medis 4.78 190.18 2.85 2.85
mg 6.98 1220.04 1.80 53.58
slac 3.60 23659.03 2.85 74.48
average 5.62 5396.27 2.17 93.37

data will not overfit and will closely approximate the function learned by the orig-

inal model. This allows a slow, complex model such as a massive ensemble to be

compressed into a fast, compact model with little loss in performance. For all the

following results, the ensembles are compressed using neural networks with 256

hidden units trained on 400K pseudo data for each problem. The ensembles are

trained to optimize RMS performance. Results are shown for only eight of the

eleven datasets.

Table 4.6 shows the time in seconds required to classify 10,000 test cases for

the mimic neural nets with 256 hidden units, the target ensemble models trained

by ensemble selection, the best neural nets trained on the original 4k train set and

the single best model in the ensemble library. There is significant variability in

the speed of the best single model because different kinds of models are best for

different problems and some of the models (e.g. boosted trees) are much more

expensive than others (e.g. logistic regression). As expected, the ensemble is

extremely expensive. On average, the ensemble takes about 0.5 seconds to classify

a single training case (on a single workstation) and, on the SLAC problem, it takes

2.4 seconds per test case! The mimic neural nets, however, are very fast and take

on average only about 0.5 milliseconds per test case.4

4The speed of different models depends significantly on how they are implemented. The times
reported here are for typical implementations. For example, we use the SNNS neural net package

120

Table 4.7: Size of the models in MB.

mimic ensemble ann single
adult 0.45 1234.72 0.22 3.95
covtype 0.23 1108.16 0.03 3.41
hs 0.79 74.37 0.12 0.12
letter.p1 0.08 1.23 0.01 0.01
letter.p2 0.08 325.80 0.04 0.07
medis 0.27 5.24 0.14 0.14
mg 0.50 25.75 0.03 3.25
slac 0.25 1627.08 0.13 0.30
average 0.33 550.29 0.09 1.41

Table 4.8: RMSE results.

mimic ensemble ann single ratio
adult 0.325 0.317 0.328 0.319 0.29
covtype 0.340 0.334 0.378 0.349 0.84
hs 0.204 0.213 0.231 0.231 1.47
letter.p1 0.075 0.075 0.092 0.092 1.01
letter.p2 0.179 0.178 0.228 0.203 0.98
medis 0.277 0.278 0.279 0.279 2.29
mg 0.288 0.287 0.295 0.290 0.88
slac 0.422 0.424 0.428 0.427 1.69

average 0.264 0.263 0.282 0.274 0.97

Table 4.7 shows the size in megabytes for the different models in Table 4.8. A

similar picture emerges as with execution times: on average ensembles are about

500 megabytes, about 500 times larger than the best single models, and the largest

ensembles are more than a gigabyte. The mimic neural nets, however, are four

times smaller than the best single models, and more than 1000 times smaller than

the ensembles.

Table 4.8 shows, for eight of the problems, the raw RMS performance (not

normalized scores) of the mimic neural nets, the target ensemble selection model,

the best neural net trained on the original 4000 points training sets, and the best

single model from the ensemble library. The performance of the mimic neural

(Zell et al., 1992), the IND decision tree package (Buntine & Caruana, 1991), the SVMlight SVM
package (Joachims, 1999), etc. With care, some of these numbers probably could be improved
by a factor of 10 or more, though we suspect the overall picture would not change substantially.

121

nets is as good as or better than the performance of the ensemble models they

are trained to mimic on six of the eight problems, and always better than the

performance of neural nets trained on the original 4k data.

The values in the last column of the table indicate how effective compression is

at retaining the performance of the target ensemble selection models. These values

are the ratio between the improvement in performance the mimic nets provide

over the best neural nets and the improvement in performance the target ensemble

selection models provide over the best neural nets. For example, if the mimic neural

net has performance half way between the original neural net and the ensemble,

the ratio is 0.5. If the mimic neural net has performance equal to the target

ensemble, the ratio is 1.0. The only problem on which the ratio is less than 0.8

is ADULT. (The results on this problem are discussed in the next paragraph.)

For a few problems the ratio is better than 1.0, indicating that the mimic neural

net outperforms the ensemble. Note, however, that in two of the cases where the

ratio is much larger than 1 (SLAC at 1.69 and MEDIS at 2.29), the range in

performance is very small so this large ratio does not actually indicate a very large

increase in performance. The ratio in the bottom row is the ratio calculated for

the average RMSE performances in the table (not the average of the ratios, which

would be inflated by the two problems with artificially high ratios). On average,

model compression is able to achieve 97% of the performance increase that could

at best be expected.

The only problem for which compression is ineffective is ADULT. On this prob-

lem the mimic net performs only a little better than a neural net trained on the

original 4k data, and the mimic net does not perform as well as the best single

model in the ensemble selection library. Interestingly, ADULT is the only data set

that has high-arity nominal attributes. The three attributes with the highest arity

122

have 14, 16, 41 unique values. To train a neural net on ADULT, these attributes

must first be converted to 14, 16, and 41 distinct binary attributes. The ADULT

problem has only 14 attributes to begin with, yet these three attributes alone ex-

pand to 71 sparsely coded binary inputs. It is possible that neural nets are not

well suited to this kind of problem, and this may prevent the mimic neural net

from learning the ensemble target function. An alternate possibility is that the

MUNGE procedure (Bucila et al., 2006) we used to generate pseudo data is not

effective for this kind of problem.

For a more detailed treatment of model compression, additional results, and

more discussion we direct the reader to (Bucila et al., 2006).

4.5 Conclusions

We presented ensemble selection, an ensemble learning method that uses forward

stepwise selection from libraries of thousands of models to build ensembles that are

optimized to the given performance metric. Using a variety of learning algorithms

and parameter settings appears to be effective for generating libraries of diverse,

high quality models. Experiments with eleven test problems and eight performance

metrics show that ensemble selection consistently finds ensembles that outperform

all other models, including models trained with bagging, boosting, and Bayesian

model averaging.

Embedding cross-validation inside ensemble selection greatly increases its per-

formance. Half of this benefit is due to having more data for hillclimbing; the

other half is due to a bagging effect that results from the way cross-validation

is embedded within ensemble selection. Unsurprisingly, reducing the amount of

hillclimbing data hurts performance because ensemble selection can overfit this

data more easily. In comparison to model selection, however, ensemble selection

123

seems much more resistant to overfitting when data is scarce. Further experiments

varying the amount of training data provided to the base-level models are needed

to see if ensemble selection is truly able to outperform model selection by such a

significant amount on small data sets.

Counter to our and others’ intuition (Duin, 2002), calibrating models to put all

predictions on the same scale before averaging them did not improve ensemble se-

lection’s effectiveness. Most of calibration’s improvement comes from the superior

base-level models.

Our experiments show that directly optimizing to a target metric is better than

always optimizing to some predetermined metric. That said, always optimizing to

RMS or MXE was surprisingly competitive. These metrics may be good optimiza-

tion proxies if the target metric is too expensive to compute repeatedly during

hillclimbing.

Pruning the number of available models reduces the risk of overfitting dur-

ing hillclimbing while also yielding faster ensemble building. In our experiments

pruning rarely hurt performance and frequently improved it.

Finally, we showed that the main drawback of ensemble selection — that it

builds ensembles that are very large and slow at test time — can be overcome

with little to no loss by using model compression. Training small and fast neural

net models to mimic the function learned by ensemble selection was able to retain

more than 90% of the improvement provided by ensemble selection (over model

selection), while being more than 1000 times smaller and 1000 times faster.

Acknowledgments

This is joint work with Rich Caruana. We thank Geoff Crew, Alex Ksikes, Charles

Chiu and Kohsuke Kawaguchi for their help with the initial design of ensemble

124

selection, Art Munson for the help with the experimental evaluation, and Cristi

Bucila for the help with model compression. We thank Tony Gualtieri for help

with the HS data, C. Young et al. at Stanford Linear Accelerator for help with

the SLAC data, and Foster Provost and Claudia Perlich for help with the BACT,

COD and CALHOUS data. This work was supported by NSF Award 0412930.

125

BIBLIOGRAPHY

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

Bucila, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression: Making

big, slow models practical. Proc. of the 12th International Conf. on Knowledge

Discovery and Data Mining (KDD’06).

Buntine, W., & Caruana, R. (1991). Introduction to IND and recursive partitioning

(Technical Report FIA-91-28). NASA Ames Research Center.

Dietterich, T. G. (2000). Ensemble methods in machine learning. First Interna-

tional Workshop on Multiple Classifier Systems, 1–15.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via

error-correcting output codes. Journal of Artificial Intelligence Research, 2.

Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem.

ICML (pp. 223–230). Morgan Kaufmann, San Francisco, CA.

Duin, R. P. W. (2002). The combining classifier: To train or not to train? ICPR

(2) (pp. 765–770).

Giudici, P. (2003). Applied data mining. New York: John Wiley and Sons.

Gualtieri, A., Chettri, S. R., Cromp, R., & Johnson, L. (1999). Support vector ma-

chine classifiers as applied to aviris data. Proc. Eighth JPL Airborne Geoscience

Workshop.

Joachims, T. (1999). Making large-scale SVM learning practical. Advances in

Kernel Methods.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial

Intelligence, 97.

126

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine Learning,

51, 181–207.

Margineantu, D. D., & Dietterich, T. G. (1997). Pruning adaptive boosting. ICML

(pp. 211–218). Morgan Kaufmann.

Mart́ınez-Munoz, G., & Suárez, A. (2006). Pruning in ordered bagging ensembles.

ICML (pp. 609–616). New York, NY, USA: ACM Press.

Munro, P., & Parmanto, B. (1996). Competition among networks improves com-

mittee performance. Advances in Neural Information Processing Systems.

Opitz, D. (1999). Feature selection for ensembles. AAAI/IAAI (pp. 379–384).

Perlich, C., Provost, F., & Simonoff, J. S. (2003). Tree induction vs. logistic

regression: A learning-curve analysis. J. Mach. Learn. Res., 4, 211–255.

Peterson, A. H., & Martinez, T. R. (2005). Estimating the potential for combining

learning models. Proc. of the ICML Workshop on Meta-Learning (pp. 68–75).

Provost, F., & Domingos, P. (2003). Tree induction for probability-based rankings.

Machine Learning.

Provost, F. J., & Fawcett, T. (1997). Analysis and visualization of classifier per-

formance: Comparison under imprecise class and cost distributions. Knowledge

Discovery and Data Mining (pp. 43–48).

Schapire, R. (2001). The boosting approach to machine learning: An overview. In

MSRI Workshop on Nonlinear Estimation and Classification.

Street, W. N., & Kim, Y.-H. (2001). A streaming ensemble algorithm (SEA) for

large-scale classification. KDD (pp. 377–382).

127

Sullivan, J., Langford, J., Caruana, R., & Blum, A. (2000). Featureboost: A

meta-learning algorithm that improves model robustness. Proceedings of the

Seventeenth International Conference on Machine Learning.

Tsoumakas, G., Angelis, L., & Vlahavas, I. (2005). Selective fusion of heteroge-

neous classifiers. Intelligent Data Analysis, 9, 511–525.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools

and techniques. San Francisco: Morgan Kaufmann. Second edition.

Zell, A., Mache, N., Huebner, R., Schmalzl, M., Sommer, T., & Korb, T. (1992).

SNNS: Stuttgart neural network simulator (Technical Report). University of

Stuttgart, Stuttgart.

Zhang, Y., Burer, S., & Street, W. N. (2006). Ensemble pruning via semi-definite

programming. Journal of Machine Learning Research, 7, 1315–1338.

128

APPENDIX

4.A Data Sets

We use eleven binary classification data sets for our empirical evaluations. ADULT,

COV TYPE and LETTER are from the UCI Repository (Blake & Merz, 1998).

COV TYPE has been converted to a binary problem by treating the largest class

as the positive and the rest as negative. We converted the 26-class LETTER data

to boolean classification in two ways. LETTER.p1 treats ”O” as positive and the

remaining 25 letters as negative, yielding a very unbalanced problem. LETTER.p2

uses letters A-M as positives and the rest as negatives, yielding a well balanced,

but more challenging, learning problem. HS is the IndianPine92 data set (Gualtieri

et al., 1999) where the difficult class Soybean-mintill is the positive class. SLAC

is a particle physics problem from the Stanford Linear Accelerator. MEDIS and

MG are medical data sets. COD, BACT, and CALHOUS are three of the datasets

used in (Perlich et al., 2003).

Three of these datasets, ADULT, COD, and BACT, contain nominal attributes.

For ANNs, SVMs, KNNs, and LOGREG we transform the nominal attributes to

boolean (one boolean per value). Each DT, BAG-DT, BST-DT, BST-STMP, RF,

and NB model is trained twice, once with transformed attributes and once with

the original ones. See Table 4.9 for characteristics of these problems.

4.B Learning Algorithms

We attempt to explore the space of parameters and common variations for each

learning algorithm as thoroughly as is computationally feasible. This section sum-

marizes the parameters used for each learning algorithm, and may safely be skipped

by readers who are easily bored.

129

Table 4.9: Description of problems

problem #attributes train size test size %pozitives
adult 14/104 5000 35222 25%
bact 11/170 5000 34262 69%
cod 15/60 5000 14000 50%
calhous 9 5000 14640 52%
cov type 54 5000 25000 36%
hs 200 5000 4366 24%
letter.p1 16 5000 14000 3%
letter.p2 16 5000 14000 53%
medis 63 5000 8199 11%
mg 124 5000 12807 17%
slac 59 5000 25000 50%

SVMs: we use the following kernels in SVMLight (Joachims, 1999): linear, poly-

nomial degree 2 & 3, radial with width {0.001,0.005,0.01,0.05,0.1,0.5,1,2}. We also

vary the regularization parameter by factors of ten from 10−7 to 103 with each

kernel.

ANN we train neural nets with gradient descent backprop and vary the number of

hidden units {1,2,4,8,32,128} and the momentum {0,0.2,0.5,0.9}. We halt training

the nets at many different epochs and use validation sets to select the best nets.

Logistic Regression (LOGREG): we train both unregularized and regularized

models, varying the ridge (regularization) parameter by factors of 10 from 10−8 to

104.

Naive Bayes (NB): we use Weka (Witten & Frank, 2005) and try all three of the

Weka options for handling continuous attributes: modeling them as a single nor-

mal, modeling them with kernel estimation, or discretizing them using supervised

discretization.

KNN: we use 26 values of K ranging from K = 1 to K = |trainset|. We use KNN

with Euclidean distance and Euclidean distance weighted by gain ratio. We also

use distance weighted KNN, and locally weighted averaging. The kernel widths

for locally weighted averaging vary from 20 to 210 times the minimum distance

130

between any two points in the train set.

Random Forests (RF): we tried both the Breiman-Cutler and Weka imple-

mentations; Breiman-Cutler yielded better results so we report those here. The

forests have 1024 trees. The size of the feature set considered at each split is

1,2,4,6,8,12,16 or 20.

Decision trees (DT): we use different splitting criteria, pruning options, and

smoothing (Laplacian or Bayesian smoothing). We use all of the tree models in

Buntine’s IND package (Buntine & Caruana, 1991): BAYES, ID3, CART, CART0,

C4, MML, and SMML. We also generate trees of type C44LS (C4 with no pruning

and Laplacian smoothing), C44BS (C44 with Bayesian smoothing), and MMLLS

(MML with Laplacian smoothing). See (Provost & Domingos, 2003) for a descrip-

tion of C44LS.

Bagged trees (BAG-DT): we bag 100 trees of each type described above.

With boosted trees (BST-DT) we boost each tree type as well. Boosting

can overfit, so we consider boosted trees after 2,4,8,16,32,64,128,256,512,1024 and

2048 steps of boosting. With boosted stumps (BST-STMP) we boost single

level decision trees generated with 5 different splitting criteria, each boosted for

2,4,8,16,32,64,128,256,512,1024,2048,4096,8192 steps.

With LOGREG, ANN, SVM and KNN we scale attributes to 0 mean 1 std.

With DT, RF, NB, BAG-DT, BST-DT and BST-STMP we don’t scale the data.

In total, we train about 2000 different models in each trial on each problem.

4.C Performance Metrics Used

accuracy (ACC): probably the most widely used performance metric in Machine

Learning. It is defined as the proportion of correct predictions the classifier

makes relative to the size of the dataset. If a classifier has continuous outputs

131

(e.g. neural nets), a threshold is set and everything above this threshold is

predicted to be a positive.

root-mean-squared-error (RMSE): widely used in regression, it measures

how much predictions deviate from the true targets. 5RMSE is defined as:

RMSE =

√

1

N

∑

(Pred(C) − True(C))2 (4.1)

mean cross entropy (MXE): is used in the probabilistic setting when interested

in predicting the probability that an example is positive (1). It can be

proven that in this setting minimizing the cross entropy gives the maximum

likelihood hypothesis. mean cross entropy is defined as:

MXE = − 1

N

∑

(True(C) ∗ ln(Pred(C)) +

(1 − True(C)) ∗ ln(1 − Pred(C))) (4.2)

(The assumptions are that Pred(C) ∈ [0, 1] and True(C) ∈ {0, 1})

receiver operating characteristic (ROC): has it’s roots in WWII in the early

days of radar where it was difficult to distinguish between true positives and

false positives. ROC is a plot of sensitivity vs. (1-specificity) for all possible

thresholds. Sensitivity is the defined as P (Pred = positive|True = positive)

and is approximated by the fraction of true positives that are predicted as

positive (this is the same as recall). Specificity is P (Pred = negative|True =

negative). It is approximated by the fraction of true negatives predicted as

negatives. AUC, the area under the ROC curve, is used as a summary

statistic. ROC has a number of nice properties that make it more principled

than similar measures such as average precision. AUC is widely used in fields

such as medicine, and recently has become more popular in the Machine

Learning community.

5Root-mean-squared error is applicable to binary classification settings where the classifier
outputs predictions on [0, 1] that are compared with the true target labels on {0, 1}.

132

lift (LFT): often used in marketing analysis, Lift measures how much better a

classifier is at predicting positives than a baseline classifier that randomly

predicts positives (at the same rate observed for positives in the data). The

definition is:

LIFT =
%of true positives above the threshold

%of dataset above the threshold
(4.3)

Usually the threshold is set so that a fixed percentage of the dataset is clas-

sified as positive. For example, suppose a marketing agent wants to send

advertising to potential clients, but can only afford to send ads to 10% of the

population. A classifier is trained to predict how likely a client is to respond

to the advertisement, and the ads are sent to the 10% of the population pre-

dicted most likely to respond. A classifier with optimal lift will get as many

clients as possible that will respond to the advertisement in this set.

precision and recall: These measures are widely used in Information Retrieval.

Precision is the fraction of examples predicted as positive that are actually

positive. Recall is the fraction of the true positives that are predicted as posi-

tives. These measures are trivially maximized by not predicting anything, or

predicting everything, respectively, as positive. Because of this these mea-

sures often are used together. There are different ways to combine these

measures as described by the next three metrics.

precision-recall F-score (FSC): for a given threshold, the F-score is the har-

monic mean of the precision and recall at that threshold.

precision-recall break-even point (BEP): is defined as the precision at the

point (threshold value) where precision and recall are equal.

average precision (APR): usually is computed as the average of the precisions

at eleven evenly spaced recall levels.

133

4.D Performance Scales

Table 4.10 lists the performance numbers that determine the normalized scores.

Each entry contains the baseline performance (bottom of the scale) and the best

performance achieved by any model or ensemble (top of the scale).

134

Table 4.10: Scales used to compute normalized scores. Each entry shows bottom / top for the scale.
ACC FSC LFT ROC APR BEP RMS MXE

ADULT 0.752 / 0.859 0.398 / 0.705 1.000 / 2.842 0.500 / 0.915 0.248 / 0.808 0.248 / 0.708 0.432 / 0.312 0.808 / 0.442
BACT 0.692 / 0.780 0.818 / 0.855 1.000 / 1.345 0.500 / 0.794 0.692 / 0.891 0.692 / 0.824 0.462 / 0.398 0.891 / 0.697
CALHOUS 0.517 / 0.889 0.681 / 0.893 1.000 / 1.941 0.500 / 0.959 0.517 / 0.964 0.517 / 0.895 0.500 / 0.283 0.999 / 0.380
COD 0.501 / 0.784 0.666 / 0.796 1.000 / 1.808 0.500 / 0.866 0.499 / 0.864 0.499 / 0.782 0.500 / 0.387 1.000 / 0.663
COVTYPE 0.639 / 0.859 0.531 / 0.804 1.000 / 2.487 0.500 / 0.926 0.362 / 0.879 0.361 / 0.805 0.480 / 0.320 0.944 / 0.478
HS 0.759 / 0.949 0.389 / 0.894 1.000 / 3.656 0.500 / 0.985 0.243 / 0.962 0.241 / 0.898 0.428 / 0.198 0.797 / 0.195
LETTER.p1 0.965 / 0.994 0.067 / 0.917 1.000 / 4.001 0.500 / 0.999 0.036 / 0.975 0.035 / 0.917 0.184 / 0.067 0.219 / 0.025
LETTER.p2 0.533 / 0.968 0.696 / 0.970 1.000 / 1.887 0.500 / 0.996 0.534 / 0.997 0.533 / 0.970 0.499 / 0.157 0.997 / 0.125
MEDIS 0.893 / 0.905 0.193 / 0.447 1.000 / 2.917 0.500 / 0.853 0.108 / 0.462 0.107 / 0.469 0.309 / 0.272 0.491 / 0.365
MG 0.831 / 0.900 0.290 / 0.663 1.000 / 3.210 0.500 / 0.911 0.170 / 0.740 0.169 / 0.686 0.375 / 0.278 0.656 / 0.373
SLAC 0.501 / 0.726 0.667 / 0.751 1.000 / 1.727 0.500 / 0.813 0.501 / 0.816 0.501 / 0.727 0.500 / 0.420 1.000 / 0.755

135

