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 A few areas of human activity are examined here, using a number of different 

types of mathematical and computational models. First, we examine networks of five 

languages of the world, with their connectivity derived from the sounds of the words 

in these languages. We explore the graph-theoretic properties of these networks, 

finding that these phonological language networks have common properties, and are in 

turn topologically distinct from other types of complex networks observed in the 

literature. In addition, we discuss what these common properties imply for how we 

process language and why natural language is structured the way it is. In addition, by 

examining the networks of English and Spanish, we explain a surprising difference in 

processing that was uncovered in some recent experiments, and discuss some more 

general implications of competition or facilitation between different modes of 

cognition. 

 We next explore a more macro-scale area of human activity: cities. Superlinear 

scaling in cities, which appears in sociological quantities such as economic 

productivity and creative output relative to urban population size, has been observed 

but not been given a satisfactory theoretical explanation. We provide a model for the 

superlinear relationship between population size and innovation found in cities, with a 

reasonable range for the exponent. 

 Next, we examine collaboration and innovation in the scientific world. We 



 

attempt to understand how variations in ‘scientific distance’ among collaborators 

affect the degree to which that collaboration is a productive one. Using both 

mathematical models and empirical data, we explore the relationship between the 

scientific or social distance of collaborators and the fruitfulness of their output. 

 Last, we examine Joe DiMaggio’s 56-game hitting streak and look at its 

probability, using a number of simple models. And it turns out that, contrary to many 

people’s expectations, an extreme streak, while unlikely, is not unlikely to have 

occurred about once within the history of baseball. Surprisingly, however, such a 

record should have occurred far earlier in baseball history: back in the late 1800’s or 

early 1900’s. But not in 1941, when it actually happened. 
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CHAPTER 1 

 

INTRODUCTION 

 

 While mathematics has been used for a long time to understand human 

behavior, only recently has there been the ability to examine large ensembles of 

interactions in a computational manner. Computational agent-based models, where 

agents interact with each other according to a set of rules, allow us to understand how 

micro-scale interactions create macro-level results. By allowing us to simulate 

emergent and nonlinear phenomena within the social sphere, we can gain insights that 

can guide our theoretical understanding. Within the past fifty years or so, scientists 

have begun to apply such computational approaches, often based on an understanding 

of complex systems, to many topics within the social sciences [38, 53, 55, 56, 69]. 

Here I attempt to provide some insight into a few areas of human activity, using a 

number of different types of models. 

 The first area I examine is how language is processed. While language is 

processed by individuals one at a time, it is more broadly a communal endeavor. 

Communication necessarily requires at least two people, and language evolution is a 

product of large-scale change within a society as a whole. In addition, language, while 

intriguing on its own, is as Steven Pinker notes in the subtitle of his recent book, ‘a 

window into human nature’ [52]. I explore language in Chapters 2 and 3. This work 

was carried out in collaboration with the cognitive scientist Michael Vitevitch and my 

adviser Steven Strogatz. 

 In Chapter 2, we examine networks of five languages of the world (English, 

Spanish, Mandarin, Basque, and Hawaiian), with their connectivity derived from the 

sounds of the words in these languages. We explore the graph-theoretic properties of 
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these networks, finding that these phonological language networks have common 

properties, and are in turn topologically distinct from other types of complex networks 

observed in the literature, such as biological and social networks. In addition, the 

common properties among the phonological networks have a number of implications 

for how we process language and why natural language is structured the way it is. 

 Chapter 3 focuses on two languages—English and Spanish—and examines 

some recent paradoxical discoveries about how they are processed. It turns out that 

language, like all cognitive function, often requires many different types of processing 

simultaneously. When these processing types overlap, function is facilitated; 

otherwise, functions compete and slow down processing. In the case of spoken 

English, words that sound alike often have radically different meaning. In other words, 

English has little correlation between words that are phonologically similar and words 

that are semantically similar. On the other hand, the phonological and semantic 

networks for Spanish show a high degree of overlap. By examining the networks of 

English and Spanish, we explain a surprising difference in processing that was 

uncovered in some recent experiments, and discuss some more general implications of 

competition or facilitation between cognitive modules. 

 Chapter 4 turns to a more macro-scale area of human activity: productivity and 

innovation within cities. Cities provide an environment—fueled by the high density of 

human interaction—for creativity and innovation. Essentially, it is cities that provide 

the world with its ideas. In addition, in 2008, we reached an urban milestone for the 

planet. For the first time, over half the world’s population is located within cities [49]. 

And a great deal of this growth is occurring within the developing world. Therefore, 

understanding the nature of human activity within cities is paramount. 

 There are many areas of research that can be examined within cities. Here we 

focus on the topic of innovation. Cities, in order to compete against one another, are 
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moving from manufacturing centers to incubators of ideas [25]. The evidence 

indicates that urban idea generation is not capricious. Cities have recently been 

demonstrated to obey certain quantitative laws and are not as chaotic and messy as one 

might assume [11]. Superlinear scaling in cities, which appears in sociological 

quantities such as economic productivity and creative output relative to urban 

population size, has in fact been observed but not been given a satisfactory theoretical 

explanation. In Chapter 4, based on work done with Jon Kleinberg and Steven 

Strogatz, we provide a model for the superlinear relationship between population size 

and innovation found in cities, with a reasonable range for the exponent. 

 Of course, innovation is not a simple mathematical process either. We next 

provide a more detailed look at the relationship between innovation and collaboration. 

In Chapter 5, with Jon Kleinberg, Steven Strogatz, and Scott Page, we examine 

collaboration and innovation in the scientific world, using articles and patents as a 

guide. 

 While previous work has been done in the area of coauthorship, we attempt to 

understand how variations in ‘scientific distance’ among collaborators affect the 

degree to which that collaboration is a productive one [48]. One may assume that 

scientists who are farther apart in terms of their areas might have more to offer each 

other and be more productive. On the other hand, communication with colleagues in 

different disciplines can be far more difficult, because of differences in training, 

language, and scientific culture. Thus, obtaining a clearer notion of the empirical 

relationship is important. 

 We create a mathematical model of how innovation among collaborators might 

occur. Using this, as well as our empirical data, we explore the relationship between 

the scientific or social distance of collaborators and the fruitfulness of their output. 
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 Chapter 6 expands on our opinion editorial in the New York Times, which 

dealt with a Monte Carlo study of Joe DiMaggio’s 56-game hitting streak [8]. This 

investigation is intended as a case study of areas of human endeavor where streaks are 

important—such as performance in financial markets—and where skill and luck 

combine to influence performance. We examine Joe DiMaggio’s streak—a record that 

has been said should never have happened—and look at its probability, using a 

number of simple models. 

 And it turns out that, contrary to many people’s expectations, an extreme 

streak, while unlikely, is not unlikely to have occurred about once within the history of 

baseball. Surprisingly, however, such a record should have occurred far earlier in 

baseball history: back in the late 1800’s or early 1900’s. But not in 1941, when it 

actually happened. 

 Make no mistake: there is no comprehensive unified theory of humanity in all 

this. I have only examined a few areas of human activity—language, cities, 

collaboration, and baseball—using computational methods found within complex 

systems, mainly informed by network-based approaches. However, these small bits of 

insight will hopefully contribute to the steady chipping away at the unknown within 

the social sciences.  
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CHAPTER 2 

 

THE STRUCTURE OF PHONOLOGICAL NETWORKS 

ACROSS MULTIPLE LANGUAGES
1
 

  

Introduction 

 

 The results of numerous graph-theoretic analyses suggest that a number of 

principles may influence the emergent structures found in a wide variety of complex 

systems, including information, social, technological, and biological networks [4, 47, 

63]. These unifying characteristics include small-world properties, distinct community 

structure, and scale-free distributions of the network connectivity. 

 Many aspects of language can be examined from a network perspective as 

well. Numerous studies have been conducted on semantic networks, where 

relationships in meaning have been made between words. These are often based on 

thesauri, word-associations in corpori or from academic databases [20, 44]. In 

addition, linguistic networks have been made from orthographic similarities of words 

(how words are spelled) [32]. Lastly, language can be viewed from the sounds of 

words (their phonological structure), where words that sound similar are neighbors. 

Whereas there is older work on small portions of phonological networks (nearest 

neighbors of words) [40], the first study of an entire language network only appeared 

this year, in 2008 [64]. 

 In these phonological networks, words in a language are represented as 

vertices or nodes, and an edge is placed between them if the words sound similar to 

                                                
1 This work was completed in conjunction with Michael Vitevitch (University of 

Kansas) and Steven Strogatz (Cornell University). 
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each other (differing only by a single phoneme, or sound segment). For example, 

vertices representing the words hand, send, sad, and, and stand would all have edges 

connecting them to the vertex for the word sand; the meaning of the words is not used 

to place edges among vertices, such as in semantic networks [62]. Psycholinguistic 

studies suggest that several characteristics of the network influence cognitive 

processing, making this an especially intriguing network to examine [62, 64].   

 In examining English, Vitevitch found that its phonological network had a 

small giant component (the largest connected portion of the graph), with many other 

smaller components. This property is distinct from other complex networks observed 

in the literature. In addition, the degree distribution (the distribution of the number of 

edges per node) was not well modeled by a scale-free distribution, or a power law. 

 Here, we wanted to explore the generality of these results, by doing the first 

comparative study of multiple languages, using phonological networks. We examined 

some of the properties looked at by Vitevitch in English, as well as a number of 

others, and found that phonological networks all have certain properties distinct from 

other types of complex networks (such as biological and social networks). 

 

Methods 

 

 The network structure of selected languages was examined to determine the 

generality of the network characteristics previously observed in English [64]. In 

addition to English, the following languages were examined: Spanish, Mandarin, 

Hawaiian, and Basque (see Table 2.1). Similar network characteristics across a variety 

of languages might hint toward principles that are common to all languages, whereas 

differences in network measures might provide a quantitative way to describe and 

categorize the languages of the world. 
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 English is an Indo-European language from the Germanic branch, whereas 

Spanish comes from the Romance branch of the Indo-European family of languages. 

Mandarin, a Sino-Tibetan language, differs from English, Spanish, Hawaiian and 

Basque in that it also uses tones to convey word meanings (e.g., “fan” with a high 

level tone means sail, with a rising tone means trouble, with a dipping tone means 

turn, and with a falling tone means rice). Tone was not included in the phonological 

transcriptions, however. Hawaiian is an Austronesian language with a phoneme 

inventory (the number of consonants and vowels in the language) that is smaller than 

those found in English, Spanish, Mandarin, and Basque. Finally, Basque (or Euskara) 

is a linguistic isolate, meaning that it is not (or has not yet been identified as) a 

member of a given language family. Additional differences, such as those in 

morphology, exist among the languages that were selected for the present network 

analyses. 

 The phonological networks were constructed from a variety of sources. The 

English network contained the words from the Merriam-Webster Pocket Dictionary 

from 1964; this database has been used extensively in psycholinguistic studies [40]. 

The Hawaiian network was created in a similar manner using a Hawaiian Dictionary 

[31]. The words from the Spanish network consisted of the words in the LEXESP 

database [58], a large Spanish language corpus. The words in the Basque network 

were obtained in a manner similar to the words in the Spanish network [51]. The 

Mandarin network uses the words from Huang et al, 1997 [30].  
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Results 

Table 2.1. Summary information of phonological networks in several languages. GC 

stands for Giant Component. 

 English Spanish Mandarin Hawaiian Basque 

Network Size 

(number of words) 

19,323 122,066 30,086 2,578 99,321 

Giant Component 

Size 

(percentage) 

6,498 

(0.34) 

44,833 

(0.37) 

19,712 

(0.66) 

1,406 

(0.55) 

35,173  

(0.35) 

Assortative Mixing 

by Degree (r) 

0.657 0.762 0.654 0.556 0.719 

Average Shortest 

Path Length 

2.7 4.3 6.5 3.2 4.4 

Average Shortest 

Path Length  (GC) 

6.1 10.3 10.1 5.5 10.4 

Average Shortest 

Path Length of 

random network 

(based on GC) 

5.8 9.9 7.3 5.8 11.4 

Clustering 

Coefficient 

0.284 0.191 0.383 0.241 0.206 

Clustering 

Coefficient of 

random network 

8.35e-5 1.17e-5 8.55e-5 7.40e-4 1.21e-5 

Transitivity 0.313 0.25 0.404 0.260 0.232 

Ratio of Edges to 

Vertices 

1.61 1.43 2.57 1.91 1.21 

Ratio of Edges to 

Vertices (GC) 

4.55 2.95 3.88 3.44 2.50 

 

Size of the Giant Component and Network Robustness. The giant component sizes 

of the language networks were much smaller compared to other network structures 

discussed in the literature. Typically, the giant component contains approximately 80-

90% of the vertices [48]. However, in the present networks, the proportion of vertices 

in the giant component was much smaller, with some networks having less than 50% 

of the vertices in the giant component. The proportion of vertices in the giant 

components for comparably sized random networks, containing 70-80% of the 
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vertices, are also larger than the values for the language networks [12]. This difference 

in giant component size suggests that these phonological networks may be more 

robust to node removal due to more tightly connected components, and indicates the 

prevalence of smaller components in the networks.   

 To evaluate the robustness of the networks, vertices were removed in two 

ways: at random, and in decreasing order by degree (number of edges connected to a 

vertex). These results are shown in Figure 2.1. In scale-free networks, when vertices 

are randomly removed the mean shortest path length remains constant, whereas when 

vertices are removed in order of degree, the mean shortest path length increases 

dramatically [47]. In the language networks, however, both methods of node removal 

resulted in little to no change in the mean shortest path lengths. The shortest path 

lengths were calculated using a sampling technique where 1,000 nodes were chosen at 

random. Then, the distance to all other nodes (if part of the same component) were 

obtained and these paths lengths were then all averaged, to give an estimate of the 

shortest path length. This sped up the calculations considerably. 

 In addition, we examined the assortative mixing by degree of the language 

networks, which is a measure of the correlation of degree between neighboring nodes. 

As seen in Table 2.1, all of the language networks had large and positive correlations 

of the degrees of connected vertices, indicating that high degree vertices tended to be 

connected to each other. Newman [45] discussed how networks with assortative 

mixing by degree are more robust to vertex removal. In addition, the high assortative 

mixing is distinct from other types of networks: biological and technological networks 

often are disassortatively mixed, and social networks, which display assortative 

mixing, still have lower values of assortative mixing. Typical measures of assortativity 

for social networks are 0.1-0.3, and biological and technological networks are -0.1 to -

0.2 [45]. On the other hand, phonological networks can be higher than 0.7. 
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Figure 2.1. An example run of node removal in English, either random or in a targeted 

fashion (in order by degree). Up to 5% of the nodes were removed, and all languages 

showed similar patterns to the above results. In addition, when the simulations were 

done only for the giant component, a similar constant, though elevated, value of the 

average shortest path length was found. 

 

 Our findings suggest evidence of the robustness of the networks, and highlight 

the resilience of lexical processing in the face of injury to the language related areas of 

the brain (i.e., stroke). Specifically, there are neurological disorders such as various 

types of aphasia where the phonological network appears to be disrupted, so the 

general structure of language might then provide a certain minimization of these types 

of effects [43]. 

 Alternatively, these features could be byproducts of the word formation 

process within language and not be indicative of language robustness. One argument 

in favor of these properties being artifacts is that there was likely little evolutionary 

pressure for their development, due to the rarity of strokes and similar injuries. 
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Furthermore, the time period within which such features could have evolved is short, 

on evolutionary time scales. On the other hand, it is possible that the relative 

infrequency of such debilitating linguistic disorders is due to the evolution of the 

robustness observed; these disorders would be much more common had this 

robustness not developed. Regardless, the extraordinary amount of robustness 

observed based on these common methods of node removal does seem intriguing and 

merits further examination. 

 

Small-world properties. Although the languages differ in their history and linguistic 

characteristics, they all share a number of similarities in their network structure. An 

important commonality across the languages is that they all have the properties of a 

small-world network [69], that is, a high clustering coefficient and short vertex-to-

vertex distance. The clustering coefficient can be calculated for each node (the average 

value of which is reported above in Table 2.1), and is the fraction of neighbors of a 

given node that are neighbors with each other. It is also known as network density. 

The vertex-to-vertex distance, also known as the shortest path length, is the shortest 

number of hops in a network to go from one node to another. Since these networks 

have many components, the shortest path length from one node to another is only 

calculated for nodes that are in the same component [47]. In addition, the mean 

shortest path length was calculated just within the giant component of each language. 

 As seen in Table 2.1, the values for the clustering coefficient are many orders 

of magnitude larger than what would be expected from a comparably sized random 

network—a network with the same number of nodes and edges—which can be 

calculated analytically [69]. The values of the clustering coefficient are also 

comparable to a similar measure referred to as transitivity, which is a more global 

measure of clustering [47]. 
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 On the other hand, the mean shortest path length of the language network’s 

giant component, calculated using a random sample of 1,000 nodes, was similar to the 

mean shortest path length for comparably sized random networks, and significantly 

shorter than the overall number of nodes in the network, as seen in Table 2.1 [69]. The 

statistics of the giant component were used for comparable random networks, because 

the overall ratio of edges to nodes is far lower than within the giant component, due to 

the large number of islands in the networks. 

 It is thought that recognition and retrieval of words, while different, occur via a 

type of process known as spreading activation [14]. The idea is that as a word is being 

spoken or thought of, portions of one’s linguistic network are activated (based on how 

much of the word has been already heard, for example). The activation of the rest of 

the network then proceeds outwards to the neighbors of these initially activated words, 

then to the neighbors of the neighbors, and so on, until the activation of the network is 

complete. In networks with small-world structures these sorts of processes tend to 

occur rapidly and robustly, due to the short path length, relative to the number of the 

nodes in the entire network. Given the small-world characteristics of the language 

network, it is not surprising that language processes are also rapid and robust. 

 However, it must be noted that, unlike in social networks, where it is clear 

what a distance of three friends is, for example, it is not entirely clear what the 

qualitative difference is between a distance of 5 and 6 within phonological networks. 

This is important when looking at the average shortest path lengths of the giant 

components of the different language networks. For instance, is it relevant that this 

value for Mandarin (10.1) is twice that of Hawaiian (5.5)? While it is likely that this 

number is most relevant relative to the size of the entire network (they are all orders of 

magnitude smaller than the size of the lexica examined), these differences might hint 

at more significant distinctions between the languages examined. 
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 Furthermore, it might be that the small world property occurs fairly commonly 

in networks observed, and that it is less a relevant property of the language than 

simply an indicator that language is a fairly organic, unplanned construct. Therefore, 

we can actually attempt to determine if the path length within a network is an 

important property for language processing. A testable prediction is that words in the 

giant component will be processed at different speeds than those in the islands, due to 

the difference in how the spreading activation occurs. 

 

Degree Distribution. The degree distributions of scale-free networks obey a power 

law function, 

! 

P(z) ~ z
"# . In contrast to many observed networks, we find that the 

language networks deviate from this behavior. Instead, they are reasonably fit to 

truncated power laws, similar to scientific co-authorship networks [48], as seen in 

Table 2.2 and Figure 2.2. A truncated power law, or a power law with an exponential 

cutoff, is defined as follows: 

! 

P(z) ~ z
"#
e
"
z

zc  

 Table 2.2 consists of the results to fit a truncated power law, an exponential 

and a stretched exponential to the degree distribution of each language. The truncated 

power law performs best overall, as exemplified by the high coefficients of 

determination (R2). Figure 2.2 displays the degree distribution for each language, on a 

log-log scale, overlaid with the truncated power law best fit. 
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Table 2.2. Languages and coefficients of determination (R
2
), for various functions. 

Language Truncated Power Law Stretched Exponential Exponential 

English 0.998 0.962 0.624 

Spanish 0.997 0.995 0.960 

Mandarin 0.999 0.974 0.974 

Hawaiian 0.997 0.970 0.884 

Basque 0.999 0.999 0.963 

 

 Amaral et al. [6] found that if there is a constraint associated with the 

attachment of  a new vertex (i.e., the vertex may only be able to accommodate a fixed 

number of edges), then a power law degree distribution, like that in the scale-free 

model proposed by Barabási and Albert [10], is not likely to be observed. In the 

language networks, a variety of constraints on word formation are present, such as the 

number of phonemes in the inventory of the language, the sequential arrangement of 

phonemes in words, the length of words, and the extent to which the language relies 

on morphemes (the smallest meaningful unit). All of these constraints limit the 

number of words that might be phonologically similar. Therefore, a truncated power 

law or similar distributions that decay faster than a traditional power law are 

reasonable as fits for the degree distributions in phonological networks. 
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Figure 2.2. The degree distributions for all languages on log-log graphs. The black 

lines are the truncated power law best fits (since they overall performed the best). The 

final point for each distribution was not plotted, for legibility.
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Characteristics of the other components. Recall that a smaller proportion of vertices 

in the language network compared to other types of networks were contained in the 

largest component. The remaining vertices (not counting the giant component) formed 

components that varied widely in size, and in fact obeyed a power law, as shown in 

Figure 2.3. The exponents are shown below, in Table 2.3. 

 

Table 2.3. Exponents for powe -law fits of the distribution of the sizes of the islands 

for each language. The coefficients of determination (R
2
) were all in excess of 0.999. 

 English Spanish Mandarin Hawaiian Basque 

exponent 3.75 2.21 4.94 4.17 2.48 

 

 Although a number of mechanisms might lead to a power law distribution [46], 

the power law distribution observed in the size of the components suggests models 

where a power law distribution is indicative of a phase transition. For example, within 

lattice percolation models, at the phase transition, ‘chunks’ of connected nodes within 

the system have a power law in their size distribution [59]. 

 Kello and Beltz [32] argue that language is in a critical state, balanced between 

low memory effort and low disambiguation effort. Low memory effort is the extreme 

of a language having a single word encapsulating all meaning, while low 

disambiguation effort implies a language with separate words for every single concept. 

Natural language provides a balance, where there are many words in a lexicon, but 

where many words mean many different things. The power law distribution observed 

here of the sizes of connected portions within language, similar to what is seen in 

many physics-based models, might hint at such self-organizing criticality within 

language. Of course, such criticality is only one of many ways that a power law can 

occur [46], so further study is in order. 
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Figure 2.3. Size distribution of the smaller components (all components but the giant 

component). 
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Conclusion 

 

 The phonological networks of a variety of languages show a unique structure 

not found in other complex networks described in the literature. Despite coming from 

a diverse range of language families the networks all exhibited a common set of 

properties. Notably, the degree distribution is found to lie somewhere between a 

power law and an exponential distribution. The differences in degree distribution 

might provide a quantitative way to distinguish language families.  

 Furthermore, a small-world structure was observed, in conjunction with a 

number of other distinguishing characteristics. The giant components were far smaller 

than typically observed. The remaining vertices were distributed along a power law 

distribution of differently sized smaller components, or islands. The small sizes of the 

giant component together with the strong assortative mixing by degree and the 

robustness of the network to the removal of vertices is suggestive into the resilience of 

language processing in the brain, although further study is necessary. 

 Similarly, the power law distribution observed in the smaller component sizes 

suggests that language may be in a critical state akin to a system undergoing a phase 

transition. Researchers have posited that all natural languages must carefully balance 

opposing constraints, such as low memory effort and low disambiguation effort [32]. 

Observing a self-similar distribution in the size of the smaller component sizes is 

suggestive given the expectation of a critical state. 

 All of these observed characteristics hint at some deeper organization within 

language. Despite surface differences among languages, there are important 

commonalities that have implications for the processing of language in humans. The 

intriguing characteristics of these networks merit further investigation from network 

scientists as well as psycholinguistic researchers. 
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CHAPTER 3 

 

WORD RECOGNITION AND THE STRUCTURE OF LANGUAGE NETWORKS
2
 

 

Introduction 

 

 Information processing theories have advanced our understanding of the 

human mind, especially of the processes associated with language production and 

comprehension. In the processing of linguistic information, it has been generally 

assumed that a single model of language perception or production can account for 

processing in all languages. This fundamental assumption, however, has been 

challenged by several recent findings [16, 42].  

 Given a phonological network, using the same method of construction as in 

Chapter 2, we can look at the processing speed for word recognition relative to the 

degree, or number of neighbors, of a word. In English, it is well-known that a word 

with few similar sounding words, or neighbors, like pig (fig, wig, big, pin, pitch), is 

recognized more quickly and accurately than a word with many similar sounding 

neighbors, like cat (hat, fat, rat, mat, sat, cut, kit, cot, can, cap, calf; [40]). A word with 

low degree is considered to have a sparse neighborhood, while a word with a high 

degree is considered to have a dense neighborhood. Results from a study by Vitevitch 

et al. [66] found that words with a sparse neighborhood were responded to about 13 

milliseconds more quickly than words with a dense neighborhood, on average (p-value 

< 0.05). In this study, multiple individuals were given multiple words to recognize 

(they had to identify a word as real or gibberish as quickly as possible). The statistical 

                                                
2 This work was completed in conjunction with Michael Vitevitch (University of 

Kansas) and Steven Strogatz (Cornell University). 



20 

test quantified the difference in processing speed for the two categories of words for 

each individual. 

 On the other hand, the opposite is true for Spanish: a word with a dense 

neighborhood is recognized more quickly and accurately than a word with a sparse 

neighborhood [65], with a difference in response time of about 21 milliseconds (p-

value < 0.01). 

 What this means is that the processes involved in the recognition of words in 

English and Spanish operate in very different ways: in English, words with dense 

neighborhoods are processed more slowly, while in Spanish, words with dense 

neighborhoods are processed more quickly. 

 And viewed in terms of a network, words, or vertices, are processed differently 

depending on their degree. Due to this, it is natural to employ network analyses to gain 

further insight into the mechanism that underlies the processing difference observed in 

psycholinguistic studies of English and Spanish. 

 Although there are many similarities among the languages of the world (see 

the previous chapter), there are subtle differences that could account for the difference 

in processing. We constructed word networks based on phonological similarities of the 

lexicon, as mentioned above, and attempted to understand the reason behind the 

difference in processing.  

 

Methods 

 

 The networks were characterized by smaller giant components than those 

typically observed in the literature. In fact, the giant components were small enough 

that a randomly chosen word was likely not to be found within the giant component. 

Given the prevalence of smaller components, or islands, examination of the 
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constituents of the smaller components, in addition to the giant components, proved to 

be a constructive technique to expose subtle differences between the languages. We 

examined the giant components, as well as constituents of the 100 largest islands in 

the English and Spanish networks for insight into how subtle differences might 

explain the dramatic differences in processing. 

 Specifically, we looked at two properties of a word and its neighbors, to see if 

there was correspondence between word pairs (these properties are described below). 

Since one of the properties needed to be examined manually, we opted to use a 

sampling technique. We chose 100 words randomly from the giant component of each 

language, and then examined all of their neighbors, and then chose one word randomly 

from each of the 100 largest islands, and looked at each of their neighbors. By 

examining the similarity or difference in properties between a word and its neighbor, 

we hoped to better understand the reason for the difference in processing between 

English and Spanish. 

 

Results 

 

Position of Neighbor Overlap. The first property we examined was the position of 

neighbor overlap. Just as words that are connected by an edge differ by a single sound, 

the reverse can be examined: where are the connected words similar? Each word’s 

phonological segments were divided into roughly three parts, and the similarity 

between a word and its neighbor was examined. In this way, each pair of connected 

words were categorized into one of three groups: beginning, end, and beginning and 

end (difference in the middle position) overlap. The table below gives examples of the 

three types of overlap: 
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Table 3.1. Overlap types, with the overlap shown in bold. 

beginning sap & sat 

end gave & save 

beginning and end tip & tap 

 

 For English and Spanish, the overlap within the giant components were 

roughly similar, with no clear overlap category winning out, as shown in the top row 

of Figure 3.1. 

 

 

Figure 3.1. Distribution of overlaps in the neighbor word pairs examined. 

 

 However, when the overlap within the islands is examined, a difference 

becomes clear. The bottom row of Figure 3.1 reveals that over 90% of the overlap 



23 

within Spanish is a beginning overlap, while in English, the islands there is still a 

reasonable portion of end and beginning and overlap. 

 What does this mean? Having islands comprised of elements with predictable 

phonological overlap could facilitate the retrieval of similar words. Therefore, the 

structure of Spanish might allow for more rapid retrieval of word forms that follow 

this predictable pattern as compared to English. 

 

Semantic relationships affect processing. Next, we looked at the neighbor word 

pairs in both languages to see if a word and its neighbor are semantically related (this 

was the part that required manual examination). The results are below. 

 

 

Figure 3.2. Semantic relationships between neighbor word pairs. 

 

 As can be seen, in both the islands and giant component, Spanish has a great 

deal more semantic similarity between neighbors than that found in English. Why 
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might this be? Linguists generally categorize languages into one of two types, in terms 

of how the meanings of words are modified. Derivational morphology changes the 

meanings of words by adding a morpheme (or unit of meaning), such as changing the 

adjective good to the noun goodness. In contrast, in inflectional morphology a 

morpheme is added to tag the word with additional meaning, such as person, number 

or tense. For example, going from dog (singular) to dogs (plural) is an inflectional 

change. 

 Having word pairs that are not only similar in phonology, but also similar in 

meaning (i.e., more inflectional) might facilitate the retrieval of the correct word form. 

This is what is found in Spanish, a language that is highly inflectional. It is so 

inflectional, that all of the islands in Spanish contained inflectional forms of one or 

two verbs. For example, the largest Spanish island, containing 111 words, is 

comprised entirely of conjugations of preguntar (to ask) and presentar (to present; e.g., 

presentar, presenta, presente, presenten). 

 On the other hand, if a word is surrounded by words that are phonologically 

similar but unrelated in meaning (such as what is found in more often in English), 

recognition of the spoken word might have to overcome the competition among its 

phonological neighbors. Figure 3.3 illustrates this difference between typical islands in 

English and Spanish. 
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 (a) 

 
 

 

 

(b) 

 
 

Figure 3.3. (a) A small island from English. Only the words ‘intention’ and 

‘intentional’ are related semantically (and, in fact, are related derivationally). 

(b) An island from Spanish (with the root meanings below each word). While there are 

nine words, it can be seen that there are only three root meanings. 
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Discussion 

 

 In this way, we can explain the difference in processing between the 

languages. Languages similar to Spanish, due to their confluence of phonological and 

semantic networks, can be expected to facilitate recognition of words with dense 

neighborhoods. On the other hand, languages which are uncorrelated in these 

cognitive networks should be expected to perform similarly to English and have 

slowed processing of words with dense neighborhoods. This is a prediction that can be 

readily tested for other languages. 

 However, it must be noted that there is an important limitation within the 

present study. The English dataset, while a classic one, suffers from a fairly important 

shortcoming that is particularly relevant here: it lacks nearly all inflections. Due to 

this, the difference between Spanish and English related to the semantic similarity of 

neighbors is artificially increased. 

 Luckily, there is a dataset for English, known as CELEX, which does include 

the inflected forms of words [9]. It is quite likely that the results found here will be 

qualitatively similar if redone with this different dataset (due to the highly inflectional 

nature of Spanish, in comparison to English). Nonetheless, a careful repetition of the 

analysis with the CELEX data is in order, and will be completed prior to submission 

of this chapter for publication. Furthermore, the distinction in the psycholinguistic 

experiments between words with dense and sparse neighborhoods can be reexamined 

using a different dataset as a check to be certain the results are not changed greatly 

using different lexica. 

 Assuming that the results obtained here are valid, this concept of overlap and 

facilitation among distinct modes of cognitive processing has larger implications. If 
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the environmental input can be processed multiple ways, depending on the similarity 

in cognitive modules, processing can be facilitated or impeded. 

 For example, there is the well-known Stroop task. In this task, a number of 

color words are presented to the subject, with the letters of each word colored (see 

Figure 3.4). The goal of the task is to say as quickly as possible, what color the letters 

are in each word. 

 

grey black wwwhhhiiittteee 

gggrrreeeyyy black white 

 

Figure 3.4. The Stroop task for greyscale readers. The top line facilitates the recitation 

of the text colors, while the bottom line hinders recitation of the text colors. 

 

 For example, when the word ‘black’ is written in black letters, it’s easy to say 

‘black’ quickly. But when it’s written with grey letters, the conflict slows down your 

mental processing and it takes a bit longer to say ‘grey’.  

 Similarly, the orthography of languages can be examined. Orthography of 

languages, or the way the language is written, can fall somewhere on the spectrum 

between deep and shallow. For example, Italian has a shallow orthography since the 

way you write a word is invariably the way you pronounce it. On the other hand, 

English has a remarkably deep orthography. This is illustrated by the joke brainteaser 

‘GHOTI’ [57]. How do you pronounce this word? Why ‘fish’, of course! The ‘gh’ 

from ‘enough’, the ‘o’ from ‘women’ and the ‘ti’ from ‘nation’ together yield the 

piscine pronunciation. Clearly this is a silly example. But it turns out that languages 

with shallow orthographies can be read more quickly [61], providing an additional 

example of how overlap of distinct modes of cognition can facilitate processing. 
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 The present analyses highlight the advantage of looking at the constituents of 

each language network and of how difference in overlaps between network structures 

may lead to observable differences in language processing. While only English and 

Spanish were considered here, an examination of the phonological and semantic 

networks other languages of the world, and their similarity or dissimilarity, can help us 

better understand how facilitation and competition functions in word recognition. This 

hints more generally at how much processing variation might exist among the 

languages of the world, due to differences in processing modules.  
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CHAPTER 4 

 

AN EXPLANATION OF SUPERLINEAR SCALING FOR 

INNOVATION IN CITIES
3
 

 

Introduction 

 

 It has been known for nearly a hundred years that living things obey scaling 

relationships. Max Kleiber first recognized that the metabolism of different organisms 

scale according to their masses, raised to a three-quarters power [33]. More recently, 

Geoffrey West and his colleagues have provided a theoretical explanation for this 

scaling law, and for many other allometric laws found in biology [70, 71]. Their 

theory is based upon the fractal-shaped branching structures within all organisms 

(such as circulatory systems) that provide energy to every part of organisms. They 

argue that the larger the organism, the more efficient the system that can be 

constructed to provide energy, thereby yielding this sublinear exponent. 

 More recently, West and his team examined a variety of properties of cities. 

They found that cities, which have long been compared to living things, obey scaling 

relationships as well [11]. Similar to living things, cities have economics of scale, 

yielding sublinear scaling for such quantities as the number of gas stations within a 

city as a function of its population. In other words, you need fewer gas stations per 

person, in a bigger city. Examples of such scaling laws are shown in the upper portion 

of Table 4.1.  

                                                
3 This work was completed in conjunction with Jon Kleinberg (Cornell University) 

and Steven Strogatz (Cornell University). 
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 On the other hand, cities also exhibit superlinear scaling, which appears in 

relation to sociological quantities. As shown in the lower part of Table 4.1, properties 

of cities related to economic productivity and creative output have exponents that are 

all found to cluster between 1 and 1.5, with the mean around 1.2. Thus, the 

productivity per person increases as a city gets larger. However, this superlinear 

scaling has not been given a satisfactory mathematical explanation. 

 

Table 4.1. A variety of urban quantities and their exponents. For instance, if y denotes 

the number of gas stations in a city of population N, the data in [11] show 

! 

y = cN
" , 

with ! ! 0.77. Taken from Bettencourt et al [11]. 

Urban Indicators (y) Exponent (!) 

Gasoline stations 0.77 

Gasoline sales 0.79 

Length of electrical cables 0.87 

Road surface 0.83 

New patents 1.27 

Inventors 1.25 

Private R&D employment 1.34 

‘Supercreative’ employment 1.15 

R&D establishments 1.19 

R&D employment 1.26 

Total wages 1.12 

Total bank deposits 1.08 

GDP 1.15 

 

 Here we suggest a theoretical explanation for the superlinear relationship 

between population size and innovation found in cities, with a reasonable range for the 

exponent. Due to the sociological nature of the variables being measured, it is natural 

to use a network model of a city, since it is reasonable to assume that network effects 

must underlie the superlinear effect. 
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Model and Results 

 

 We first assume that all social interactions and relationships are arranged in a 

hierarchical tree structure [37, 68]. Picture a binary tree, or in general, a tree where 

each branch splits into b new branches. For example, in a city, each person is in a 

household, and there are many households on a block, and many blocks in a 

neighborhood, and so forth. Or the grouping could be based on your family tree, or 

corporations, or many other ways to group individuals. While in reality each 

individual belongs to many independent hierarchies, here we simplify it as a single 

hierarchy, with branching number b (greater than or equal to 2).  We view the total 

system as a city, meaning that a city of population N represents a single tree that 

contains N leaves. On top of the tree structure, which serves to determine the social 

distance among nodes, a graph is placed showing who actually knows who. Thus, 

social connections are created, with each individual having the same number of 

outgoing connections. These connections form the basis for a city’s productivity. 

Figure 4.1. Network representation of the social structure of a city’s inhabitants. 
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 The total creative productivity of the city can then be determined by 

calculating the total productivity of a single person. To do this, we simply multiply the 

productivity of a single person by the number of individuals in the entire city to yield 

the productivity of the city. To calculate the total productivity of a single person, three 

separate effects must be considered: (1) the probability of connecting to someone at 

distance d; (2) the number of available people at distance d; (3) the creative output that 

is obtained by linking to a single person at distance d. Multiplying these together gives 

the productivity due to one person linking to all of his collaborators at distance d, as 

seen below: 

 

! 

#contacts at distance d

#  of people at distance d

" 

# 
$ 

% 

& 
' ( #  of people at distance d[ ] (

output at distance d

contact at distance d

" 

# $ 
% 

& ' 
 

 

By summing this term over all distances, the total creative contribution of a single 

individual is obtained. The functional form of each term in the above recipe for 

calculating the productivity of a single individual is discussed below. 

 Taking the first term, the social connections between collaborators are 

constructed such that the likelihood of forming a connection at a certain social 

distance drops off exponentially fast with distance. That is, the probability of a 

connection being made between nodes of a social distance d (where d is the height of 

the first common internal node) is assumed proportional to 

! 

b
"#d , where ! is a tunable 

parameter greater than or equal to zero.  

 It’s clear that the connection probability should decay with social distance, but 

why exponentially?  We have assumed that the social network tree is self-similar at all 

levels (values of d). Since the tree is self-similar, it makes sense to have the function 

also be self-similar (scale-free) with respect to the value of d, and doing this yields an 

exponential function (this assumption is relaxed in the next section). 
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 Since at each increase in d there are exponentially more potential contacts to 

interact with, we multiply the above function by a second term, 

! 

b
d , which means that 

as we increase d, while the likelihood of making a connection decays, there are 

exponentially more contacts to make. To keep things simple, we suppose connections 

are only made between residents of the city (connections outside a city are viewed as 

far less fruitful for productivity, and are ignored). 

 Lastly, the usefulness of a social connection within a city is assumed to vary 

with its social distance. For example, let’s assume that there is a benefit as social 

distance increases. This can be explained as being due to the fact that individuals that 

are socially distant are exposed to different ideas and experiences, and that 

collaboration between two more socially distant individuals is more productive than 

interaction between ones that are closer. However, the value of a social connection is 

left open, and simply assumed to be proportional to 

! 

b
"d , where ! is a tunable 

parameter that can hold any value (even negative values, allowing the value of a 

connection to decrease with distance). An exponential function is reasonable here as 

well, if we assume that a connection’s innovation potential is proportional to the 

number of individuals that lie between you and the individual on the other end of the 

connection in social space. This is explained as being due to the potential for all of 

these in-between individuals to provide fodder for innovation (such as by interacting 

with you in some manner). This assumption is also relaxed in the next section. 

 Therefore, as the social distance between two individuals increases, the 

number of individuals in between you and your contact grows exponentially, implying 

that the productivity of that connection will also grow exponentially. Note that if ! is 

zero, then all connections are equally beneficial. 

 As the number of connections becomes large, the value of the total 

productivity P(N )  of the social connections within a city is given by  
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P(N ) = N b
!"d
b
d
b
#d

d=1

logb N

$  

 

In summary, the first term, 

! 

b
"#d , is the probability of connecting at distance d. The 

second term, 

! 

b
d , is the number of nodes at distance d. And the final term, 

! 

b
"d , is 

productivity per connection. So, when these are multiplied together and then summed 

for each distance, they yield the average productivity per node for the entire network. 

When multiplied by N we get the productivity for the entire network. 

 This can be summed exactly since it’s just a finite geometric series, and we get 

the following solution: 

! 

p(N) = N
b
" +1

b
" +1 # b$

N
" #$+1 #1

% 

& 
' 

( 

) 
* . 

 For large values of N, we findP(N )  is proportional to 

! 

N
" #$+2 , if " < 1+ ". 

Whereas, if " > 1+ ", the function P(N )  becomes linear, because the geometric series 

converges to a constant as N becomes large: 

! 

N b
" #$+1( )

d

N>>1
% & % % 

d=1

logb N

' N (
b
" #$+1

1# b" #$+1
 

This is found to be in good agreement with numerical evaluation of the above 

summation, as can be seen in Figure 4.2. 

 The growth of the productivity function with distance is not essential. The key 

is, rather, that as a city increases in size, it is more likely to contain socially distant 

contacts. Thus, even if ! is slightly negative (meaning that more distant connections 

are less productive), as long as 

! 

" #$ +1 is greater than zero, the densification of the 

social network due to the increasing size of the city means that the productivity will 

grow superlinearly. For the special case when ! is zero (all connections are equally 

beneficial), the exponent 

! 

" #$ + 2 must lie strictly between 1 and 2, which is where 

all the measured exponents for urban innovation lie. This is because we are assuming 

that 0 < " < 1+ " to get superlinear behavior, which means that " is between 0 and 1. 
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Figure 4.2. Simulation and fit for P(N). The points show the value of P(N), calculated 

for  " = 0.3 and ! = 1.1. The least-squares approximation of the exponent is 1.205, 

and the expected value is " – ! + 2 = 1.2, for large values of N. 

 

 Of course, other parameter relationships are also capable of yielding the 

expected range of superlinear exponents and it is likely that ! is greater than zero. If ! 

is greater than zero, while there is an exponentially decreasing probability of 

connecting to someone at a “social distance” d away from you, if you do connect with 

such a person, you get a creative benefit that is exponentially increasing in d. In 

general, this model is a reasonable explanation for the values observed within cities 

related to productivity and innovation, and can be fit properly to explain the 

superlinear exponents observed within cities. 

 

Expansion of the Analysis 

 

 The assumptions of exponentials for the three functions that make up the sum 

discussed above are stringent ones. What happens if we relax these assumptions? 
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 Using a numerical simulation, each of the components of the sum can be 

modified, and we can graph the resulting scaling relationship and see if it remains 

superlinear. And in fact, the model is robust under a variety of situations. For example, 

instead of using an exponential for the number of nodes at distance d, if we use a 

‘linearithmic’ function (

! 

d " log(d)), the resulting function asymptotically approaches a 

superlinear function, as seen in Figure 4.3. By doing this, we are implicitly changing 

the structure of the social distance tree, such that the number of nodes no longer grows 

exponentially with distance. A similar superlinear result can be obtained by replacing 

the creative benefit function with a linearithmic function and leaving the other two 

functions exponential. 

 

 
Figure 4.3. A ‘linearithmic’ function. Using the function 

! 

b
"#d $ (d $ log(d)) $ b%d  as the 

term within the sum for P(N) (where ! = 0.5 and " = 0.9), the resulting function 

mimics a power law, with an exponent of 1.48. 

 



 

37 

 In fact, even if all three functions are linear, the sum still grows superlinearly 

with N, as seen in Figure 4.4. Since, if the function is proportional to d
 3
, using the 

Euler-MacLaurin summation, we find that 

! 

P(N) " N # (log
b
N)4 , which grows a bit 

faster than linearly. 

 
Figure 4.4. Linear Functions. Using the function 

! 

(50 "#d) $ (1+ %d) $ (2d) as the term 

within the sum for P(N) (where ! = 0.4 and " = 0.1), the resulting function still 

mimics a power law, with an exponent of 1.13. 

 However, if the average productivity per node grows with N but only at the 

rate log(N), then the rate of growth is only slightly superlinear, mimicking a power 

law exponent of 1.05, as seen in Figure 4.5. Slightly faster than logarithmic growth for 

the summation appears to be required for superlinear growth of P(N). 
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Figure 4.5. The function 

! 

P(N) = N " log
b
N  mimics a power law, with an exponent of 

1.05. 

 

 What can be seen is that using fairly loose assumptions, superlinear growth can 

be obtained. Notably, these functions need not be power laws. They can simply be 

superlinear functions (such as a

! 

P(N) " N # (log
b
N)x ), that mimic power laws. 

Therefore, this could also be true of the city productivity data observed: the 

productivity functions observed are superlinear, but are not necessarily power laws, 

which further measurement might help resolve. 

 

Discussion 

 

 Ultimately, what are most important are the distant ties present in large cities. 

These long-distance ties (due to "), which are prevalent in a higher proportion when 

there is a larger population, provide the potential for productive social interactions. 
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 Granovetter’s classic paper “The Strength of Weak Ties” examines this 

explicitly [27]. As part of his study, Granovetter examines the structure of Boston’s 

West End and its inability to organize against a neighborhood urban renewal project, 

which included the large-scale destruction of buildings to make room for new 

residential high-rises [15]. While the West End contained many strong ties between 

individuals due to most individuals being lifelong residents, these strong ties often 

resulted in cliques, where everyone was connected within a single group. Crucially, 

however, Granovetter argues that there were few, if any, ties between these strong-knit 

communal cliques. Since personal ties are necessary for information spread and 

organizational ability (‘people rarely act on mass-media information unless it is also 

transmitted through personal ties’ [27], p. 1374), the inhabitants of the West End 

would have had a great deal of difficulty in organizing their opposition to the 

municipal project. In contrast, if there had been interaction throughout the social 

hierarchy, such as between communities within the neighborhood, they might have 

been able to organize successfully. 

 Along these lines, Charlestown, a similar Boston neighborhood, was able to 

successfully organize against urban renewal. Granovetter argues that there was a rich 

interconnection between different communities, allowing for wider coordination 

within the community. Similarly, productivity in general is governed by the presence 

of these longer ties, only available in large cities, or any community that allows for 

large-scale interaction. 

 Of course, any good model must be testable in order for it to rise above the 

level of a pleasant story. That is why in Chapter 5, we indirectly attempted to 

determine what the value of " is (it seems to be around zero). In addition, given a 

network of social interaction for a city, its hierarchical social structure can be 

determined [13], to see if it conforms to the type of growth with distance that is 
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discussed above. This has not yet been done, but it should not be difficult, given the 

relevant dataset. 

 In addition though, there are other possible explanations for this superlinear 

scaling in cities. For example, it could be that larger cities have a larger proportion of 

more highly educated individuals, which is enough to yield increased productivity per 

capita. Or it could be that larger cities simply have a greater transient population, 

which provides more fodder for different ways of thinking about the world, yielding a 

higher rate of productivity per individual. By distinguishing between our model based 

on social interaction and other competing models, we can get a better sense of how 

good our model is. But how can this be done? 

 While cities do exhibit superlinear scaling for a variety of quantities, many 

cities do not lie exactly on the predicted curve for a given property, based on a curve 

of best fit. For example, some cities will produce more patents than expected, while 

others will produce far fewer than expected, given their population. By looking at the 

pattern of social interaction in the underperforming cities as compared to the 

overperforming cities, we can determine how reasonable our model is. And by 

examining how well other models can predict this type of variation, as opposed to 

ours, we can determine what is the likeliest explanation for superlinear scaling within 

cities. 

 Nonetheless, as argued above, the presence of socially distant ties within a 

single city can be a powerful force. By using simple assumptions about social 

interactions, we gain a useful tool in understanding the mathematical behavior of 

innovation and productivity in cities. 
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CHAPTER 5 

 

A SIMPLE MODEL OF COLLABORATION AND INNOVATION
4
 

 

Introduction 

 

 According to conventional wisdom, intellectual and cognitive diversity is 

good. Bringing together people with different backgrounds and different ways of 

thinking about the world helps find problems and provide solutions [50]. The claim 

that cognitive diversity promotes increased productivity and problem solution has 

been documented in a variety of areas: corporate management, organizational 

structures, business idea generation and so forth [29, 36, 72]. Of course, it must be 

understood that increased diversity need not always lead to higher productivity. What 

appears to be at work here is that collaboration at a higher distance yields a higher 

variance; diverse people are just as likely to create something wonderful as they are to 

reach impasses due to their differences, accomplishing nothing [50]. But on the whole, 

diversity appears to be beneficial for solving problems. 

 When it comes to understanding research within academia, not as much is 

known. We recognize that collaborative academic research is beneficial in general: 

larger groups produce research that is more highly cited [73]. This is true even when 

accounting for self-citation. So, groups can do science well. But while we know that 

increased intellectual diversity helps in business, is this true within science? The 

answer should be obvious: of course it does! Why else would be interdisciplinarity be 

hyped so much? 

                                                
4 This work was completed in conjunction with Scott E. Page (University of 

Michigan), Jon Kleinberg (Cornell University), and Steven Strogatz (Cornell 

University). 
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 Interdisciplinarity has become a very trendy word, and areas of research that 

bridge departmental gaps are increasingly important [3, 19]. The National Science 

Foundation even has grants specifically designed for interdisciplinarity [18]. Clearly 

there is the sense that interdisciplinary research is important and beneficial. And as I 

am a byproduct of interdisciplinary research, I too recognize the truth to this, and its 

value. 

 However, attempting to demonstrate that increased scientific distance between 

collaborators increases the scientific impact of the collaboration is difficult. One may 

assume that scientists who are farther apart in terms of their areas might have more to 

offer each other and be more productive. However, this is not necessarily the case, and 

a clearer notion of the empirical relationship is important. 

 To understand these issues, we examined two datasets—a coauthorship graph 

with the number of citations for scientific publications, and a similar dataset for 

United States patents—and attempted to tease out the relationship between distance 

and scientific impact. Next, we examined a series of computational models of 

collaboration and innovation, in order to better understand under what sorts of 

circumstances any meaningful relationship can actually be unearthed from the data. 

 We find that it is very difficult to measure the beneficial effects (if any) of 

interdisciplinarity, at least in these data sets and models. This is due to a number of 

factors, based on how research is often conducted. 
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Methods 

 

 Two datasets were used in this analysis: arXiv data from Paul Ginsparg [24], 

and United States patent data from the National Bureau of Economic Research [28]. 

The arXiv data consisted of preprints in various branches of the physical sciences, and 

the patterns of authorship and citations among them. Preprints from the following 

areas were used: astrophysics; general relativity and quantum cosmology; high energy 

physics—experiment; high energy physics—lattice; high energy physics—

phenomenology; high energy physics—theory; nuclear experiment; nuclear theory. 

The papers were derived from the early 1990’s to late 2000’s, with the specific years 

varying from area to area (we also used a subset of the data from 1995-2000, and 

found similar results). The patent data came from the years 1975 to 1985, in order to 

control for changes in citation styles (later patents cite more often). 

 The following procedure was carried out for both datasets (with suitable 

cleaning). Papers and patents were handled separately, but are referred to as items 

more generally. The names of authors of all the items were extracted and a 

coauthorship graph was constructed, where nodes are authors and the edges connect 

individuals who have coauthored an item. Coauthors have at most a single edge 

connecting each other, even if they have worked on many papers together. 

 Names were more easily derived from the patent data (it was more structured), 

so the coauthorship network is necessarily noisy. This problem is exacerbated by the 

fact that multiple individuals often have the same name. Newman encountered a 

similar problem, but found that multiple mechanisms for network construction based 

on names do not have a marked effect on the network properties [48]. We were unable 

to remove self-citation from the arXiv data due to the form in which we received it, so 

no attempt was made to remove self-citation from the patent data, for consistency. 
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 For a given item, the two relevant quantities being measured are scientific 

distance and the impact of each item. The impact of an item was determined through 

the number of citations of an item from within the dataset. The distance between 

coauthors was calculated using the coauthorship network as follows: the edge between 

two coauthors is removed, and then the length of the shortest path between them is 

determined, as seen in the figure below. This distance is referred to as the gap distance 

(Watts discussed a similar metric, calling it the ‘range’ of the edge that was removed 

[67]). 

 

Figure 5.1. The gap distance between nodes A and B is 4. This is calculated through 

the removal of the thick edge, and then calculating the shortest path between points A 

and B. 

 Only items with two coauthors were examined, for ease of analysis. For all of 

the items in each dataset, the gap distance of the coauthors was calculated, along with 

the number of citations. For each distance the mean, median and standard error of the 



 

45 

mean of the number of citations for all of the papers with that gap distance was 

calculated. 

 

Empirical Results 

 

The means, medians and standard errors of the means for both the arXiv and U.S. 

patents are visible in Figures 5.2 and 5.3. 

 

 

Figure 5.2. arXiv Data. The black curve is the median number of citations for each gap 

distance, while the points show the mean number of citations. The bars are the 

standard errors for each mean. The line of best fit for the data (straight line) has a 

slope of -1.866 and a p-value << 0.001. Similar results were obtained when only the 

years 1995-2000 are used. A fairly similar graph is also obtained when the y-axis is 

logarithmic. 
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Figure 5.3. Patent Data. The black curve is the median number of citations for each 

gap distance, while the points show the mean number of citations. The bars are the 

standard errors for each mean. The line of best fit for the data (straight line) has a 

slope of 0.0036 and a p-value of 0.0005. A fairly similar graph is obtained when the y-

axis is logarithmic. 

 

 As can be seen in Figure 5.3, the patent data contains no clear correlation 

between gap distance between collaborators and the impact of their patents. On the 

other hand, the arXiv data of Figure 5.2 has an unexpected pattern: a steady decrease 

in impact as distance increases, with the possibility of the impact beginning to increase 

again after some threshold is crossed in distance. Assuming these effects are real, how 

could they be explained? Well, one story that can be told is that when people are more 

similar, they can help each other more. But suddenly, at a certain scientific distance, 

interdisciplinarity kicks in and the impact of the product of the collaboration between 

two individuals far apart begins to increase. 
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 However, how can we know if these correlations and differences in behavior 

between the datasets are genuine, or simply spurious? To explore this, we created a 

series of simple models that represent the process of collaboration between scientists 

with different scientific distances. 

 

Models of Collaboration 

 

 A number of models were constructed with the same basic features (a flow 

chart depicting a rough overview of the process used in the model is shown in Figure 

5.4.). There are M individuals, who are problem solvers. The problem solvers are all 

embedded within a network structure, which specifies the scientific relationship and 

similarity between individuals. Each individual i has zi problems that require a 

collaborator in order to be solved. 

 At each timestep in the model, each individual i chooses a collaborator from 

among the other individuals, who has a probability c of being able to help solve the 

problem. There are two possible methods of choosing a collaborator: a collaborator is 

chosen at random from the M problem solvers (Random); or a collaborator is chosen 

via a network-based search algorithm (Network). This algorithm is essentially breadth-

first search, where individuals in the network are evaluated as possible collaborators in 

order of increasing distance, one individual at each timestep. Essentially, the 

individuals are ordered by distance from i, and are evaluated in order, one per 

timestep. Each problem has a given impact or value, if solved, which is assumed 

proportional to the number of citations the item later receives, after it’s published or 

patented. These values, vi , are assumed to be drawn at random from a probability 

distribution F. 
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Figure 5.4. A flow chart depicting what occurs at each timestep for each individual i, 

for each of their problems zi.until the process is terminated (via a tunable parameter for 

the maximum number of potential collaborators that can be reached). 
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 In addition, the probability c, relative to distance, of the newly formed team 

being able to solve the problem is modeled in one of three ways. Most simply, we 

could consider what happens if c is independent of the potential coauthor and is a 

constant value (Uniform). A second possibility would be that science favors 

specialization (Specialization). In this case, the probability that a collaborator can help 

solve the research problem decreases as the distance increases between the two 

potential coauthors. In that case, as a simple first approximation, the probability of 

finding a solution is taken to decrease linearly:  

! 

p(d) =
20 "#d

100
 

Distance d is measured as the length of the shortest path between the two problem 

solvers, and ! is a parameter that can be allowed to vary, to change the strength of the 

function. 

 The third possibility would be that science favors diversity (Diversity). In this 

case, the probability that a collaborator can help solve the research problem increases 

as the distance increases between the two potential coauthors. Now the probability of 

finding a solution is assumed to increase linearly with distance: 

! 

p(d) =
10 + "d

100
 

 There are then six possible models, where one of the two ‘collaborator choice’ 

methods is used, and one of the three ‘probability of success’ models is used. 

 The structure of the social network for potential collaborators used in this 

model can take a variety of shapes and types. We used a similar network structure to 

what was seen in Chapter 4, where individuals are arranged within a hierarchical tree 

structure. Distance is the height of the nearest common internal node. It was felt that 

this would be a reasonable model as it has been used in previous research [68], and 

sufficiently simple for modeling. 
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Figure 5.5. The social structure used within the coauthorship models. The distance is 

the distance to the nearest common internal node. For example, A and B are at a 

distance of 1, while A and E are at a distance of 3. 

 

 In order to determine what an appropriate distribution for the number of 

citations F is, we need to estimate its shape from the data. A number of functions were 

examined as possible fits, as shown in Table 5.1. Both datasets are well approximated 

by a log-normal distribution. In addition, both datasets have right tails approximated 

by power law distributions: the arXiv data follows a power law distribution with a 

slope of about -1.5, and the patent data follows a power law with a slope of about -4.3, 

as seen in Figures 5.6 and 5.7. 

 

Table 5.1. Coefficients of determination (R
2
) for a number of functions to the citation 

distribution data. 

 Power -Law Log-Normal Power Law 

for Tail (9 

citations and 

above) 

Log-

Normal for 

Tail (9 

citations 

and above) 

Log-

Normal for 

cumulative 

distribution 

arXiv Data 0.945 0.998 0.988 0.998 0.998 

Patent Data 0.656 0.985 0.975 0.976 0.996 
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Figure 5.6. The distribution of the number of citations for the patent data. The right 

tail follows a power law distribution with a slope of -4.31 and an R
2
 = 0.975. 

  

Figure 5.7. The distribution of the number of citations for the arXiv data. The right tail 

follows a power law distribution with a slope of -1.51 and an R
2
 = 0.988.  
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 The cumulative distribution of the number of citations has been found 

elsewhere to conform to a log-normal distribution, and for smaller datasets to appear 

similar to a power law distribution, so these results here are consistent [54]. Note that 

both distributions are heavy-tailed. For simplicity, a power law was used within the 

simulations. A power law for impact that was independent of distance between 

collaborators was used for the results below, but we also examined a function where 

the slope of the power law varies with distance between collaborators (the exponent of 

the curve becomes more shallow as distance increases). The implications of these 

different functions will be discussed. 

 

Model Results 

 

Table 5.2. Collaboration model results. One standard deviation above and below the 

mean of the slopes of the linear regressions for 1000 iterations of each of the six 

models. 

 Uniform Diversity Specialization 

Random (-266.5,274.5) (-240.8,243.2) (-37.6,38.6) 

Network (-307.1,317.5) (-263.2,266.0) (-48.6,49.4) 

  

 Since the impact of collaboration in the model can vary linearly with distance, 

as a very simple initial expectation we attempted to see if these linear functions were 

reflected in the data. To do this, we attempted to fit the results of each simulation—the 

collaboration distances versus impact—to a linear best fit. The results for simulations 

for each of the six models are above, in Table 5.2. As can be seen above, these are not 

linear functions, since the linear regressions are terrible (the R2 values are generally 

0.001 or smaller). 
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 For each model, 128 individuals are in each network, with 20 problems being 

solved by each individual. At each timestep then, all 2,560 problems are attempted to 

be solved through collaboration. If successful, the distance between the collaborators 

and the impact of the solution is recorded, as drawn from distribution F. Each 

simulation ran for 100 timesteps, with a problem solving cutoff of 100 attempts per 

problem. For each simulation, from 20,000 to more than 100,000 points (i.e., solved 

problems), depending on the model, were used for the linear regressions. The slope of 

the line of best fit for these points was recorded, and to get a handle on the range of 

the slope, each simulation was repeated 1,000 times. 

 An example run under the same conditions, with line of best fit, is shown in 

Figure 5.8. As is clear here as well, the results being generated are not linear. We 

discuss the reason for this shape in the next section. 

 
Figure 5.8. Sample run of the collaboration model, with the parameters given above. 

The points are the mean impact at each distance, and the line is a linear fit. The bars 

are the standard errors for each mean. The network search algorithm and a function 

that favors diversity were both used. In this run, the line of best has a positive slope, 

even though the mean value of citations is beginning to decrease with distance, after 

an initial increase. 
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Discussion and Mathematical Model 

 

 As can be seen in Table 5.2, there is no clear pattern to be discerned from the 

simulated results. The best fit lines can either be negative or positive, not giving a 

good sense of the relationship between distance and impact. This is qualitatively 

similar to the results derived from the empirical data. And in fact, sometimes it can 

even appear that the impact of collaboration decreases with distance even if that is not 

the case. 

 In this model we have assumed that impact is independent of distance, as 

specified by the function F. Therefore, it is not unexpected that there should be little 

correlation with distance. This is bolstered by the combination of two other factors: 

the heavy-tailed distribution of impact (corresponding to the number of eventual 

citations), and the likelihood of interacting with someone who is nearby for 

collaboration. Since the likelihood of interacting with someone farther away decreases 

with distance, individuals collaborate more frequently with closer individuals. 

Therefore, there are many more collaborations of short distance than those of long 

distance. 

 Since the impact distribution follows a distribution with heavy tails, the tail of 

the distribution (that is, the large values corresponding to the eventual number of 

citations) is only sampled when there is sufficient sampling from the distribution. 

Since there are more close collaborations, the mean number of citations at close 

distances will therefore be larger. 

 Since this model does not seem to yield much more interesting results than 

what was put into it, we modified the function F, which specifies the impact of the 

solved problems. As alluded to earlier in the chapter, we also tested a model where the 

slope of the power law became more shallow as the distance between collaborators of 
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solved problems increased. This means that the more diverse the team is, the more 

likely the impact is to be higher (the mean of the function increases, since the 

likelihood of sampling the tail increases). The hope was that there might be some 

conditions under which the impact function increases with distance, but combined 

with the decreased number of problems solved by teams that are socially distant, it 

would appear that the impact decreases with distance (or is uncorrelated), like what 

was seen in the data. 

 However, after attempting some simulations with this modified model, we 

received results where the correlation between distance and impact was always 

positive, regardless of the six models used. Once again, we received little more than 

what we inputted into the model. At this stage, the results are therefore very 

exploratory and tentative, with additional work needed to provide a model that is less 

circular and more satisfying in its results. 

 Nonetheless, it turns out that the model with our first impact function (where 

the impact function is independent of distance) can in fact be solved, and that the 

mean number of citations will decrease with distance, in the limit of large samples. 

Let’s begin with the following definition of terms: 

 

! 

n
d
= number of individuals at distance d 

 

! 

pd= probability of a team whose members are of distance d solve a problem 

! 

qd  = probability of a problem being solved at distance d 

ad = probability of arriving at distance d 

 

We want to find a formula for 

! 

qd , and for a network-based approach we have the 

following equations, with explanations: 

! 

qd | ad = 

! 

1" 1" pd( )
nd  
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 The probability of a problem being solved at distance d, conditioned on getting 

to that distance, is 1 minus the probability of no individual at distance d solving it.  

ad = [1– (

! 

qd"1|ad-1)] · ad-1 

 The probability of arriving at distance d is the probability you arrived at 

distance d–1 multiplied by the probability that the problem wasn’t solved at distance 

d–1. 

! 

qd  = ad · (

! 

qd | ad ) 

The probability of solving a problem at distance d is equal to the probability that you 

solve a problem given that you get to that distance, multiplied by the probability you 

arrive at distance d. 

 Putting all of this together, we get the following recursion: 

 

! 

qd = 1" pd( )
nd( ) # 1" 1" pd"1( )

nd"1( ) # ad"1 and 

! 

a
1

=1 

 This simplifies to the following equation:  

! 

qd = 1" 1" pd( )
nd( ) # 1" pi( )

ni

i=1

d"1

$  

 

 The idea is that 

! 

qd  is proportional to the number of solved problems at distance 

d. In addition, the larger the sample size being drawn from a heavy-tailed power law 

distribution, the larger the mean, if the mean is infinite. Even if the mean is finite 

(such as for many heavy-tailed distributions), as long as the variance is large, the 

sample mean takes a long time to converge to the mean. Therefore, the values of 

! 

qd  

should give us a sense of how citation impact varies with the social distance between 

collaborators. 

 This function can be plotted, and the shape of 

! 

pd  can be modified to be either 

increasing, decreasing, or constant. It turns out that for all of these (at least linear 

changes), given the hierarchical social structure of the network, we get the following 

general shape (the black line is a linear fit), as seen in Figure 5.9: 
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Figure 5.9. 

! 

qd  versus distance (grey curve). Here the underlying probability 

! 

pd  of a 

collaborator at distance d solving a problem, is assumed to increase with distance, 

consistent with a function that favors diversity. Even so, the general trend of the 

calculated function 

! 

qd is downward. The line of best fit to 

! 

qd  shown in black, confirms 

this. 

 For comparison, Figure 5.10, plots data from a run of the model (suitably 

scaled) of the numbers of solved problems at each distance d, for when there is no 

scholarly benefit to distance. The fit is quite good: 

Figure 5.10. 

! 

qd  versus distance. Here 

! 

pd  is assumed constant with distance. Grey 

curve, model prediction for 

! 

qd ;  black curve, simulation results; black line, best linear 

fit. 
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 These results confirm what we suspected. More problems are solved earlier in 

the search (at smaller d). In terms of proving that 

! 

qd  eventually decreases with d, we 

want to show that, for large values of d, qd < qd-1, which, when simplified, is 

equivalent to showing that  

! 

1" 1" pd( )
nd( ) # 1" pd"1( )

nd"1 < 1" 1" pd"1( )
nd"1( ) . 

If d becomes large, and we are using our branching tree structure, then nd becomes 

large. Let 

! 

sd = (1" pd )
nd . Then the desired inequality reduces to  

! 

(1" s
d
) # s

d"1 <1" s
d"1

. 

But since sd ! 0 as d and nd ! !, this inequality holds for d sufficiently large. 

 

Conclusions 

 

 What do our results suggest for understanding collaboration and innovation? 

As discussed already, our model is quite preliminary and requires a great deal of 

additional work. It is very difficult to determine what the relationship between 

distance and impact is from our model, but this is primarily due to the impact function 

being independent of distance. And thus far we have been unable to create a model 

that yields a consistently declining or uncorrelated relationship between impact and 

distance, even if the function F has an increasing relationship between impact and 

distance. Further work on our model is required to explain the patterns found in our 

datasets. 

 In addition, these models, whatever form they will eventually take, are not the 

final words on interdisciplinarity. Interdisciplinary work often provides insights that 

are valuable to more than one area, and could not have been reached by working 

within a single discipline (as we have been looking at with the arXiv data, for 

example). Furthermore, whole new areas of science would not exist without the 



 

59 

presence of people working between disciplines (such as computational biology). 

Simply counting the number of citations is only an approximation of understanding 

impact, and more complex models are necessary. Interdisciplinarity appears to be very 

important within science, but the results here imply that it might be much harder to 

quantify that we had thought previously.
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CHAPTER 6 

 

A MONTE CARLO APPROACH TO JOE DIMAGGIO AND 

STREAKS IN BASEBALL
5
 

 

 The incredible record of Joe DiMaggio in the summer of 1941 is unparalleled. 

No one has come close—before or since—to equaling his streak of hitting safely in 56 

games in a row. People have gone even further and stated that it is the only record in 

baseball (or perhaps even in all of sports) that never should have happened, 

statistically speaking: while other records can be explained by expected outliers over 

the long and varied history of professional baseball (nearly 150 years), DiMaggio’s 

record stands alone [26]. 

 In addition, streaks are of more general interest than the parochial domain of 

baseball. For example, Bill Miller’s Legg Mason Value Trust mutual fund succeeded 

in beating the S&P 500 for fifteen years in a row [35]. Streaks clearly have a certain 

correspondence in relation to skill, and teasing out the difference between luck and 

skill is important. Therefore, a better understanding of streaks is a useful exercise. 

 We wondered whether Joe DiMaggio’s record was more likely than people 

might think. To study this, we constructed a series of simple Monte Carlo simulations, 

using a comprehensive baseball statistics database from 1871 to 2004 [34]. The first 

and simplest model is as follows: 

 Each player, for each season that he played, was characterized by a few 

numbers: the number of games played, number of plate appearances, and number of 

hits in the season. Number of plate appearances is the sum of at-bats, times walked, 

                                                
5 This work was completed in conjunction with Steven Strogatz (Cornell University), 

some of which has already appeared in the New York Times [8]. 
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being hit by a pitch, sacrifice hits, and any other way in which a player appears at the 

plate and either has a chance for a hit, or is denied that chance (such as being walked 

or being hit by a pitch). Our data contained nearly all of the categories for plate 

appearances, so the values used are as similar as possible to the actual number of plate 

appearances in an entire season. Then, we calculated each player’s probability of 

getting at least one hit in any game in which he played for that year as follows: 

 

M = number of games 

n = number of plate appearances per game = number of plate appearances/M 

p = number of hits/number of plate appearances 

 

The probability of not getting a hit for a single plate appearance is 1-p. Assuming that 

successive plate appearances within a single game are independent, the probability of 

not getting a hit for an entire game is then 

! 

(1" p)
n. So, the probability of getting at 

least one hit in a single game is 

! 

1" (1" p)
n

= g. Similar calculations were done in a 

paper by Michael Freiman [22]. 

 Given g for all players and for all seasons (this was only calculated for players 

who had at least 300 or 450 plate appearances in the season, as seen below), we can 

simulate a player’s streaks for a season. We randomly generate G games, and count 

how many successful games in a row there were. This is done for all players and for 

all seasons, effectively simulating an entire baseball history. We tabulate the long 

streaks in each history, including the longest streak, when it occurred, and who had it. 

Of course, the actual probabilities for streaks of various lengths can be calculated 

exactly for this simple model, but we later modify the model in various ways, so a 

computational approach is most reasonable [39]. To gain reliable statistics, we 

performed these simulations 10,000 times. 
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 For this model, a streak of 56 games or longer occurs about 49% of the time. 

Figure 6.1 shows the histogram of the longest streaks, in each of the 10,000 simulated 

histories of baseball. In this and all other instances in the chapter, we take an 

occurrence of more than 5% in our simulations—the conventional number in 

hypothesis testing—to be indicative that this could happen by chance reasonably 

often. 

Figure 6.1. Distribution of the longest streaks in 10,000 simulated runs of baseball 

history. The curve is roughly bell-shaped with a longer tail to the right, favoring 

longer streaks. The most frequent outcome was a record streak of 60 games, but this is 

due to a short, high impact season of Ross Barnes in 1873. Adding up all the heights 

of the columns for streaks 56 games or longer yields about 49% of all the data, 

meaning that streaks as long as DiMaggio's are expected about 49% of the time. 

 

 The most frequent outcome was a record streak of 60 games. This is due to a 

single player in a single season: Ross Barnes in 1873. Ross Barnes, who had an 

incredibly high probability of getting at least one hit in any game (0.946) only played 

60 games that season. These two facts combined to yield a large number of simulated 

histories where Barnes hit in every game in the entire season, giving us the spike at 60. 
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 The above model, which I shall term Model A (one with constant 

probabilities), overestimates certain long streaks, as exemplified by Ross Barnes 

acting as an outlier. So, Model A was then modified to improve its robustness and its 

similarity to actual baseball history. We added game-to-game variation to g, due to 

variation in number of plate appearances in games and opposing pitching ability. The 

true amount of variation due to pitching ability or variable number of plate 

appearances is more complicated to estimate, especially due to a lack of more detailed 

game-by-game data for the entire dataset, as discussed later. So, for a rough approach, 

we ran the simulations with a 10% and 20% uniform variation in g for each game. The 

10% variation model is Model B, and the 20% variation model is Model C. 

 

Table 6.1. Model names and descriptions. 

Model Description 

Model A Constant g and a minimum of 300 plate 

appearances in a season for inclusion 

Model B g varied by up to 10% and a minimum of 

300 plate appearances in a season for 

inclusion 

Model C g varied by up to 20% and a minimum of 

300 plate appearances in a season for 

inclusion 

Model B (450 PA cutoff) g varied by up to 10% and a minimum of 

450 plate appearances in a season for 

inclusion 

Model B (post-1905) g varied by up to 10% and a minimum of 

300 plate appearances in a season for 

inclusion, and only data from 1905 

onwards was used 
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 To test the validity of all of these models, we compared their predictions 

against the observed number of shorter streaks in baseball history. The distribution of 

streaks of length 30 or greater follows what is approximately an exponential 

distribution [1], as shown in Figures 6.2 and 6.3. 

 

 

Figure 6.2. The distribution of streaks (aside from DiMaggio’s) for all of baseball to 

the present [1]. The following models are included: Model B, using all available data 

and a minimum number of 300 plate appearances in a season; Model B, using all 

available data and a minimum number of 450 plate appearances in a season; and 

Model C, using all available data and a minimum number of 300 plate appearances in 

a season. Models A, B, and C all yield extremely similar results and overlap quite a bit 

in the figure. 
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Figure 6.3. The distribution of streaks (aside from DiMaggio’s) from 1905 to the 

present [1]. Model B, using data only from 1905 until 2005, is included for 

comparison. 

 

 It is found that the simulated histories also have exponential distributions for 

the length of the streaks. The slope varies as variation is added, the minimum number 

of plate appearances to be included in the simulation is increased, or the number of 

years being examined is limited. However, it can be seen that the results are similar to 

what is found in ‘real’ baseball, and that the functional form is preserved by these 

simple models. 

 Specifically, all the Models are within a single standard deviation for the 

number of actual streaks of lengths 40-44 and 45-49. For the shorter streaks, the 

models overestimate, by about 50%, yielding same order-of-magnitude results. These 

might be improved by refining the model, as discussed later. 
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 Furthermore, adding variation turns out to change very little of the results, and 

actually increases the correspondence between the streak length data and the 

simulations, without changing the probability of outlier streaks, such as DiMaggio’s, 

appreciably. 

 The true amount of variation due to pitching ability or variable number of plate 

appearances is not known, however it could be estimated. One method to examine 

both of these is to use box score data, which is available in an electronic format for the 

past fifty years or so [2]. By examining the variation in at-bats, we could get a better 

estimate of plate appearance variation. In addition, by examining the variation in 

hitting ability against different pitchers, we could estimate the range for hitting ability 

for an average player. In this case though, the simulations were run with a 10% and 

20% uniform variation in g for each game, as an approximation. As seen in Table 6.2, 

the probability of a DiMaggio streak was still non-trivial. 

 In addition, since, as can be seen from Figure 6.1 and 6.4, there are certain 

spikes due to outliers in the early days of the game, a simulation using data only for 

1905 and later was conducted. This is considered to be the more modern era of 

baseball. Using this more limited data sample, the spike of 60 game streaks due to 

Ross Barnes in the early 1870’s is eliminated and the curve becomes smoother (Figure 

6.5). Streaks become less likely, but DiMaggio-like streaks (56 games or longer) still 

occur nearly 20% of the time. Please see Table 6.2 and Figures 6.4-6.7 for all results. 

 

Table 6.2. Probabilities of DiMaggio-like Streaks in a variety of models. All 

demonstrate a non-trivial likelihood of such an extreme streak. 

 Model A Model B Model B 

(post-1905) 

Model C Model B (450 

PA min.) 

Probability of 

DiMaggio-

Like Streak 

 

0.49 

 

0.49 

 

0.18 

 

0.39 

 

0.38 
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Figure 6.4. Streak length histogram for Model B. 

 

Figure 6.5. Streak length histogram for Model B (1905 or later). 
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Figure 6.6. Streak length histogram for Model C. 

 

Figure 6.7. Streak length histogram for Model B (450 plate appearance minimum). 
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Figure 6.8. Timeline for streak likelihood (Model A). This graph shows when the 

longest streaks occurred in our simulations. The record was likeliest to have been set 

in 1894, when Hugh Duffy batted .440 and had a 91 percent chance of hitting 

successfully in each game. Other likely periods for the record to be set were in the 

early teens (Ty Cobb's era) and throughout the 20's and 30's. Joe DiMaggio's miracle 

year of 1941 was a relative dry spell, making his achievement all the more stunning. 

The other models have relatively similar yearly histograms. 

 

Figure 6.9. Timeline for streak likelihood (Model B, post-1905). 

 

 The surprising thing found in the simulation is when DiMaggio’s streak 

occurred, as seen in Figures 6.8 and 6.9. It should have occurred far earlier in the 

history of baseball, back in the late 1800’s or early 1900’s. But not in 1941, or similar 
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years. Years with a similar probability of 1941 or worse of holding the record account 

for only about 5% of the records (Model A). 

 

Table 6.3. The ten players who are likeliest to hold the record for longest streak, for 

each model. The fraction of the simulations they each hold the streak is included, as 

P(Streak). 

Model A 

Player P(Streak) 

Ross Barnes 0.1035 

Willie Keeler 0.0646 

Hugh Duffy 0.048 

Jesse Burkett 0.0465 

Sam Thompson 0.0368 

Ed Delahanty 0.0335 

Nap Lajoie 0.0333 

George Sisler 0.0291 

Ty Cobb 0.0286 

George Wright 0.0284 

 

Model B 

Player P(Streak) 

Ross Barnes 0.0905 

Willie Keeler 0.0651 

Hugh Duffy 0.0488 

Jesse Burkett 0.0448 

Sam Thompson 0.0411 

Ed Delahanty 0.0363 

George Sisler 0.0311 

Nap Lajoie 0.0305 

Ty Cobb 0.0295 

George Wright 0.0288 

 

Model C 

Player P(Streak) 

Willie Keeler 0.0512 

Ross Barnes 0.0458 

Jesse Burkett 0.0431 

Sam Thompson 0.037 

Hugh Duffy 0.0343 

George Sisler 0.0339 

Ed Delahanty 0.0338 

Nap Lajoie 0.0308 

Ty Cobb 0.0296 

Al Simmons 0.0207 

 

Model B (post-1905) 

Player P(Streak) 

George Sisler 0.0723 

Ty Cobb 0.0685 

Rogers Hornsby 0.0395 

Al Simmons 0.0386 

Bill Terry 0.0288 

Paul Waner 0.0217 

Ichiro Suzuki 0.0217 

Chuck Klein 0.0217 

Joe Jackson 0.021 

Harry Heilmann 0.0197 

 

Model B (450 PA Cutoff) 

Player P(Streak) 

Willie Keeler 0.0806 

Jesse Burkett 0.0567 

Hugh Duffy 0.0566 

Ed Delahanty 0.0494 

Nap Lajoie 0.0389 

Tip O'Neill 0.0388 

George Sisler 0.0382 

Ty Cobb 0.0357 

Sam Thompson 0.0338 

Al Simmons 0.0219 
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 On the other hand, while DiMaggio is not the likeliest person to hold the 

record (he is over forty-seventh most likely in Model A), there is not a single likely 

player. As seen in Table 6.3, the top three players—Ross Barnes, Willie Keeler, and 

Hugh Duffy—only account for about 21.6% of the record-holding streaks in our 

simulations, even in Model A, which overestimates the likelihood (especially for Ross 

Barnes). And players of DiMaggio’s caliber or less account for nearly 25% of the 

streaks. 

 So, while no single player is especially likely to hold the record, it is likely that 

an extreme streak would have occurred. This subtle probabilistic concept has been 

discussed by Diaconis and Mosteller within the context of calculating the probability 

of a double-lottery winner [17]. While the probability of a certain individual winning 

the lottery twice is extremely small, the fact that someone somewhere will do this 

(since there are many people who buy lottery tickets on a regular basis) is virtually 

assured. Diaconis and Mosteller like to think about this in terms of their law of truly 

large numbers: “With a large enough sample, any outrageous thing is likely to 

happen.” 

 Richard Feynman once made a similar point. He walked into a lecture hall and 

noted that he just saw the most amazing thing: a car with the license plate ANZ 912; 

what are the odds of that? [21]. In our model, while there are some players more likely 

to hold the streak record, there is a 25% chance that the ‘unlikely’ players 

(DiMaggio’s likelihood or below) are the ones with the record. 

 Lastly, we checked the distribution of the difference in length between the 

longest streak in a simulation, and the second-longest streak. Stephen Jay Gould, in his 

article, ‘The Streak of Streaks’, notes that ‘DiMaggio's fifty-six–game hitting streak is 

ridiculously and almost unreachably far from all challengers (Wee Willie Keeler and 

Peter Rose, both with forty-four, come second)’ [26]. Is it true that DiMaggio’s streak 
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is much farther away from the other streaks than we might expect, or is this a red 

herring? 

 Using Models A and B (post-1905) as representative of the models, we 

checked to see if Gould’s thinking was correct. And it turns out that in Model A, 

nearly 20% of the simulations had a difference between the longest and second-

longest streak of 12 games or more. A histogram of the differences is shown in Figure 

6.10. For Model B (post-1905), the number was 13% of the simulations for a 

difference of 12 games or more. So, DiMaggio as an apparent outlier is not actually 

true, and this model is able to replicate the observed large differences in streak length. 

 
Figure 6.10. Histogram in difference in length between the longest streak and the 

second-longest streak for Model A. The y-axis is logarithmic to make it clear that the 

difference in length appears to follow an exponential distribution (hence a linear decay 

on a log-linear graph). The mean difference in length is 6.16. 



 

73 

 

 While an effective model and one that provides surprising results, this is of 

course still an extremely crude model for baseball. Adding the factor of opposing team 

abilities would presumably change the results, though it is unclear how. There is a 

model that has recently been developed which looks at streaks of wins between 

opposing teams in baseball, and this would be a reasonable model to adapt for pairs of 

pitchers and batters [60]. 

 Furthermore, examination of the psychological effects of a streak has to be 

taken into account. For example, Roger Maris’s hair fell out in large chunks while 

chasing Babe Ruth’s home run record [7]. Stress can certainly affect you.  

 This is related to the issue of the independence assumption, that is, whether or 

not a hit in a game is independent of the games before it. Trent McCotter has 

attempted to examine this, by taking the time series of games and asking whether or 

not there was a hit in the game [41]. This yields a series of successes and failures. To 

test the independence assumption, he shuffled the order of the successes to see if the 

randomized streaks are longer or shorter than expected. He found that the randomized 

streaks are somewhat shorter than expected, arguing against independence in the real 

data and hinting at a psychological component or some other factor. Intriguingly, this 

is different than what has been found in relation to the Hot Hand phenomenon in 

basketball [23], or even an analysis of successful at-bats [5], which in both cases 

yielded streaks indistinguishable from random chance. 

 However, if this model is a moderately realistic one, and it seems to be, then it 

provides a statistically informed check to our collective baseball intuition. Joltin’ Joe’s 

record, while certainly incredible, is in fact not that unlikely within the long history of 

baseball. But that he did it is certainly still achievement indeed. 
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