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Whenever access to information is mediated by a computer, we can easily record

how users respond to the information with which they are presented. These

normal interactions between users and information systems are implicit feedback.

The key question we address is – how can we use implicit feedback to automati-

cally improve interactive information systems, such as desktop search and Web

search?

Contrasting with data collected from external experts, which is assumed as

input in most previous research on optimizing interactive information systems,

implicit feedback gives more accurate and up-to-date data about the needs of

actual users. While another alternative is to ask users for feedback directly,

implicit feedback collects data from all users, and does not require them to

change how they interact with information systems. What makes learning from

implicit feedback challenging, is that the behavior of people using interactive

information systems is strongly biased in several ways. These biases can obscure

the useful information present, and make standard machine learning approaches

less effective.

This thesis shows that implicit feedback provides a tremendous amount

of practical information for learning to rank, making four key contributions.

First, we demonstrate that query reformulations can be interpreted to provide

relevance information about documents that are presented to users. Second, we

describe an experiment design that provably avoids presentation bias, which



is otherwise present when recording implicit feedback. Third, we present a

Bayesian method for collecting more useful implicit feedback for learning to

rank, by actively selecting rankings to show in anticipation of user responses.

Fourth, we show how to learn rankings that resolve query ambiguity using

multi-armed bandits. Taken together, these contributions reinforce the value of

implicit feedback, and present new ways it can be exploited.
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CHAPTER 1

INTRODUCTION

1.1 Overview

A tremendous number of interactive information ranking systems are available

on the Internet, and on desktop computers everywhere. Web search engines

rank Web documents in response to user queries, shopping sites rank products a

user may wish to purchase, movie rental sites suggest movies, email clients rank

email messages, desktop search applications assist in finding files, and many

community websites rank everything from restaurants to photos to romantic

matches. In general, the goal of interactive information ranking is to present a

ranked list of results ordered such that the highest ranked results are those most

related to a query or user profile provided.

The simplest approach of manually constructing a function that produces this

ranking is difficult and time consuming, with diminishing returns in terms of

improvement with increased effort. One of the main reasons for this is the sheer

number of possible functions that could be used to rank results. Selecting the

best parameterization, and then picking the best parameter settings, is simply too

large a task to solve optimally by hand. This problem is exacerbated when we

would like to use the same ranking system to serve many different people with

different goals. For instance, the perfect function for ranking Web documents for

academic users at Cornell University is not necessarily the same as the perfect

one for teenagers in Japan. On a more fine grained level, it may well be the case

that the best function for ranking Web documents for one Cornell researcher

1



is not best for another. In response, the machine learning community started

addressing the question of how to optimize ranking functions automatically

using machine learning techniques. For example, Cohen et al. (1999), Freund

et al. (2003) and Burges et al. (2005), among many others, have addressed this

question using a variety of approaches that will be discussed later in this thesis.

All techniques for learning to rank require two essential pieces of information:

training data, which provides examples for the learning algorithm as to what dis-

tinguishes good results from poor results, and an error metric that the algorithm

optimizes relative to this training data. Most previous research in learning to rank

has assumed a supervised learning setting where training data is provided by

some offline mechanism. Such data is often obtained by paying expert relevance

judges to provide it, for instance presenting them with a sequence of recorded

search queries and Web documents. The role of the judge is to guess the users’

intentions based on the query issued, and provide an appropriate graded rele-

vance score such as very relevant or somewhat relevant for each document assessed.

However, judgments collected from users would be preferable, as they would

reflect the users’ true needs, and be much cheaper and faster to collect. With

respect to error metrics, most algorithms optimize metrics that aggregate over

the judgments made for (query, result) pairs, assessing how well the rankings

produced by the learned ranking function agree with the judgments provided by

the experts. Again, it would be preferable for error metrics to instead reflect the

experiences of interactive information ranking system users.

This thesis extends research in learning to rank with four primary contribu-

tions. First, we demonstrate that query reformulation in Web search provides

extremely informative relevance information that reflects users’ needs. This

2



builds upon a technique proposed by Cohen et al. (1999) and Joachims (2002),

but collects substantially more relevance judgments. Moreover, these judgments

are often also more useful for learning algorithms. Second, we show that the way

in which users interact with Web search systems means that standard learning

algorithms trained with data collected from user interactions, using previous

approaches, will never converge to a fixed ranking. We present a technique

for modifying the rankings shown to users in a controlled manner, and show

that it provably corrects for this problem. Third, most previous work in learn-

ing to rank has not considered that there is a natural tradeoff when learning

from user interactions. While in the short run presenting the best known results

provides users with the best rankings, in the long run exploration of unknown

results may improve average performance. We will demonstrate that by us-

ing directed exploration, the rankings learned can improve much more rapidly.

Fourth, most previous algorithms for learning to rank optimize error metrics that

measure performance with respect to relevance judgments provided by experts.

We describe two principled algorithms that instead optimize abandonment, a

performance metric that directly reflects desirable user behavior, and present

formal performance guarantees.

It is important to note, that although we use ranking for Web search as the

canonical interactive information ranking task in the remainder of this thesis,

ranking is also a fundamental goal of many other real world applications. Some

of these were enumerated in the first paragraph of the introduction. Other appli-

cations studied in the research literature range from predicting consumer food

preferences (Luaces et al., 2004) to assisting astronomers in devising schedules

that optimally use limited telescope time (Branting & Broos, 1997). The machine

learning community has also addressed ranking questions as diverse as ranking
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people or teams based on the outcome of two-player (Herbrich & Graepel, 2006)

or two-team games (Huang et al., 2004), ranking universities by various criteria

(Dittrich et al., 1998) and ranking patients by their risk of developing pneumonia

(Caruana et al., 1995). In all these settings, user interactions with ranking systems

can implicitly provide training data and evaluation opportunities for improving

the rankings produced.

Similarly, interpreting user behavior as implicit feedback is not limited to

information retrieval settings. Any computer system or mobile computing plat-

form can collect implicit feedback from users, be there a small or large number

of them. While not addressed in this thesis, implicit feedback could be used in

settings as varied as designing better software interfaces or measuring social

phenomena.

1.2 Obtaining Relevance Information

The first step for any machine learning task is to obtain training data, to which

we can then apply a particular algorithm. We will now consider how such data

is usually obtained when we want to learn to rank Web documents.

In an academic setting, the largest public data collection suitable for learning

to rank is derived from an annual evaluation run as part of the Text REtrieval

Conference (TREC). The purpose of the evaluation is to compare the performance

of competing search systems, given particular information needs. An example of

the information needs provided in TREC evaluations is shown in Figure 1.1.
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Topic Number 503
Title Vikings in Scotland?

Description What hard evidence proves that the Vikings visited or
lived in Scotland?

Narrative A document that merely states that the Vikings visited
or lived in Scotland is not relevant. A relevant docu-
ment must mention the source of the information, such
as relics, sagas, runes or other records from those times.

Figure 1.1: Example of a TREC information need.

For each information need, each competing system must automatically trans-

form the request into a query, and return documents from a fixed document

collection. The top n results returned by any retrieval system taking part in the

evaluation are then manually judged for relevance. Human judges rate each

selected document as not relevant, relevant or highly relevant (Voorhees, 2004).

All documents not ranked in the top n by any competing system are assumed

not relevant. The dataset consisting of the information needs, documents and

document judgments is then made publicly available.

However, TREC data is not representative of the data necessary for learning

to rank in many interactive information ranking settings, including the ranking

of Web documents. In particular, rather than a long description of an information

need, the input to a Web search system is usually a short query. Yet, translating

the TREC approach, the most common way that relevance judgments for training

a Web search system are obtained is by providing human experts with (query,

document) pairs. The experts then provide graded relevance judgments. The

job of an expert is to understand each query he or she is presented with, and

consider the possible relevance of the presented document to the information

need that likely motivated a user to enter that query. The expert then needs

to specify to what extent the document satisfies this inferred information need.
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Clearly, this task is difficult and slow, requiring many experts to produce a

meaningful amount of training data. For the judgments to be consistent across

different experts and a wide variety of queries and documents, the experts must

be trained and provided with extensive documentation as well as a detailed

relevance scale.

This approach is often used by researchers at large search engine companies.

For example Burges et al. (2005) from Microsoft, as well as Jones et al. (2006)

from Yahoo!, assume expert labeled data is available. However, there are at

least three difficulties present when learning for Web search that are absent in

the controlled TREC setting. First, as obtaining judgments is time consuming,

judgments can only be obtained for a minute fraction of typical queries and a

handful of the billions of documents on the Internet. This brings up the the

question of how the documents and queries to judge should be selected, so as to

have the largest eventual effect on future users’ search satisfaction. Moreover, as

Web users’ needs and the documents available change constantly, how should

expert judgments be updated to stay representative of real search tasks?

Second, as the judged queries are usually drawn from those issued by actual

users, how is an expert judge to know the intent of the users who entered the

queries? This is particularly difficult because, in contrast to TREC, most Web

queries are too short to unambiguously identify the users’ information needs.

Typical Web queries are only two or three words long (Silverstein et al., 1998;

Spink et al., 2001; Zhang & Moffat, 2006). Additionally, many queries have

multiple valid meanings, with the “correct” one dependent on the user who

issued the query. Canonical examples of ambiguous queries include jaguar

(which can refer to (i) a car, (ii) an animal, or (iii) an operating system), Michael
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Jordan (which can refer to (i) a basketball player, (ii) sports clothing that bears

his brand or (iii) a professor at the University of California, Berkeley) and flash

(which can refer to (i) a photography product, (ii) a popular file format or (iii) a

superhero). There is no easy way for a judge to work out the relative importance

of each meaning across the population of all users. Even seemingly unambiguous

queries can mean different things to different people. For instance, the clearly

machine learning query support vector machine might be issued by researchers

searching for downloadable software, for a tutorial about the algorithm or for

theoretical performance bounds. These different needs are likely to be satisfied

by different documents.

Third, different human judges may have different opinions concerning the

relevance of a particular document to a particular query, even when the user

intent is clear. For instance, one judge may not trust anything printed by a left-

leaning newspaper, while another may consider blogs as much less authoritative.

For these disagreements not to cause difficulties requires substantial training of

judges, and long and detailed definitions of the judgment scale. In particular, it is

difficult to trade off between obtaining judgments with sufficient granularity to

be useful in practice, and obtaining reproducible judgments. Agreement between

different judges providing relevance scores for the same (query, document) pair,

usually termed inter-judge agreement, is often less than ideal. Although specific

numbers depend on the granularity of judgments, some statistics from real search

engine judges were recently provided by Carterette et al. (2008).

While there has been substantial effort in improving expert-labeled collec-

tions (for example, Reid (2000) presented a partial overview), the four key con-

tributions in this thesis will address an alternative method to circumvent these
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difficulties: obtain relevance judgments directly from users, without involving

expert human judges.

1.3 Relevance Judgments from Users

Since obtaining relevance judgments from human experts is fraught with diffi-

culties, the alternative is to obtain relevance judgments directly from users. We

now look at how to get relevance information from users.

1.3.1 Explicit Feedback

One obvious approach to obtaining training data from users is to solicit data by

posing users explicit questions: Ask them whether or not specific documents

are relevant. While an explicit feedback approach is commonly used when

learning to recommend movies, for instance by Crammer and Singer (2001),

Herbrich et al. (2000) and Rajaram et al. (2003), Web users are generally not

willing to provide such explicit feedback. In particular, as judging documents

is onerous, users cannot be expected to provide relevance judgments for each

result presented or even each result clicked on in a Web ranking setting. In

fact, search engines that attempted to add relevance judgment buttons to search

results have not been successful. Moreover, given the option to provide such

relevant judgments, malicious users would have much more incentive to provide

judgments (promoting Web pages that should not be ranked highly) than regular

Web users.
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1.3.2 Implicit Absolute Feedback

Instead of explicitly asking users for relevance feedback, we could alternatively

track normal user interactions with a interactive information ranking system.

Consider that, when using an online interface, users usually perform actions

as a result of the rankings they are presented with. These actions can be used

to implicitly infer relevance judgments. In a movie task, this might be done by

observing which movies users search for and then watch or perhaps buy. In the

Web search setting, this can be done by extracting implicit relevance feedback

from search engine log files, or by recording actions users perform in their Web

browsers.

We define implicit feedback as follows:

Definition 1.1. Implicit feedback is information that can be obtained by analyzing

the normal interactions of a user with an online system. These interactions include any

input the user provides, the information that is shown to the user in response, and all the

user’s online actions in response to being presented with this information.

For example, in a Web search setting, implicit feedback may include the user

query, any results clicked on, the timing of the clicks, further input provided by

the user to the search system, the choice to no longer use the search system, or

even bookmarking or printing a website. Most importantly, implicit feedback

reflects the judgments of all the users of the search engine rather than a select

group of paid judges. In addition, due to the scale at which search engines

operate, this usually provides as much data as can be practically exploited, and

does so at almost no cost.
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Implicit feedback that simply records clicks on Web search results (also com-

monly called clickthrough data) is most easily observed by Web retrieval systems.

Search engines typically collect clickthrough data by incorporating a redirect into

all links on the results page presented to users1. While a number of researchers,

including Kelly and Teevan (2003), Fox et al. (2005) and White et al. (2005), have

considered data describing from other behavioral cues, such as bookmarking

or scrolling behavior, we focus on clickthrough data. In particular, it effectively

captures user intent while being most easily collected.

Definition 1.2. Clickthrough data is implicit feedback obtained by recording the

queries users run on a search engine as well as the results they click on.

The interpretation of clickthrough data as relevance judgments that would

most closely mirror relevance judgments collected from experts is in terms of

absolute statements about the relevance of particular documents to particular

queries. Indeed, early work in learning to rank took such an approach, for

instance by Wong et al. (1988) and Bartell et al. (1994). Many researchers followed

in this interpretation of absolute relevance judgments implicitly collected from

clickthrough data, including Boyan et al. (1996); Cohen et al. (1999); Kemp and

Ramamohanarao (2002); Cui et al. (2002); Tan et al. (2004); Dou et al. (2007).

Such work usually assumes that documents clicked on in search results are

highly likely to be relevant. For example, Kemp and Ramamohanarao (2002)

assume results clicked on are relevant to the query and append the query to these

documents to make them more likely to be ranked highly in the future. Similarly,

Dou et al. (2007) propose reordering search results based on the frequency with

which returned results are clicked on.
1Alternative methods also exist, for instance using JavaScript event actions or a browser

extension or add-on that some users install.
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Yet, as we will see in Chapter 2, a user clicking on a result does not always

indicate that the result is relevant. For example, Boyan et al. (1996) constructed

three different ranking functions with very different performance, yet saw that

the average rank at which users click did not differ meaningfully between the

better and worse rankings. Given that the worse ranking functions ranked

relevant results lower, we would have expected the rank of the first click to be

lower for the poorer ranking functions. One approach to correct for biases in

clicking behavior would be to model user clicking behavior and compensate

for clicks on non-relevant documents using methods proposed by Dupret et al.

(2007) or Carterette and Jones (2007). However, we will see that there is a simpler

process by which reliable relevance judgments can be collected: interpreting

clicks as relative relevance judgments.

1.3.3 Implicit Preference Feedback

Cohen et al. (1999) suggested an alternative interpretation of clickthrough data,

that instead of inferring absolute judgments from implicit feedback, we can

interpret a click as a relative preference. Specifically, they suggested that clicked

on documents are likely better than higher ranked documents that were not

clicked on. Joachims (2002) formalized and evaluated this idea and found it to

work well, learning an improved search engine ranking function specifically for

a small number of German machine learning researchers using their clicking

behavior.

In fact, Joachims et al. (2005; 2007) demonstrated in a laboratory study that

clickthrough data is strongly biased by the position at which results are presented.
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They showed that if a search result is moved higher in a presented result set, this

immediately increases the expected number of clicks it will receive, even if the

result is not relevant to the query. Moreover, if the top ten documents retrieved

by a search engine are presented in reverse order, non-relevant documents are

clicked more often. This is at odds with an absolute interpretation of implicit

feedback, as presentation effects will strongly influence the relevance judgments

obtained. On the other hand, their study confirmed that judgments can be validly

interpreted as relative statements of the form that one document is more relevant

than another based on clicking behavior. We will discuss these studies in depth

in Chapter 2.

1.3.4 Preferences from Query Chains

While implicit feedback interpreted as preferences gives rise to reliable relevance

judgments that reflect user needs, previous work using this interpretation is still

limited in the relevance feedback received. It is commonly known that search

engine users predominantly click only on top ranked results. Granka et al. (2004)

partially explained this effect through an eye tracking study, observing that

most users do not even look at documents below the top few. Now, consider

a user who enters a query for which the search engine performs particularly

poorly, not retrieving any relevant documents in the top few positions. It is very

unlikely that the user will scroll down to a truly relevant document and click

on it. Rather, almost all users will either not click, or click on a highly ranked

yet irrelevant document. Thus, any learning algorithm would have difficulty

learning an improved ranking function, given that the training data is unlikely

to provide any preferences identifying relevant documents.
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However, many search users will reformulate poorly performing queries. The

first of the four key contributions of this thesis is to study how to generate

relevance judgments from implicit feedback collected over sequences of multiple

queries reflecting the same information need. Such sequences are termed query

chains.

Definition 1.3. A query chain is a sequence of queries issued by a user over a short

period of time with a constant information need in mind.

We will show in Chapter 4 that collecting relevance judgments by considering

query chains leads to significant improvements in search engine performance.

Moreover, the reliability of the relevance judgments obtained from query chains

is on par with the reliability of explicit judgments from expert judges.

Outside of a Web search setting, Furnas (1985) first proposed the use of

learning from reformulations. In particular, he considered the task of learning

new command names on a command line system by recording which commands

users tried then reformulated. He interpreted two commands being seen in

sequence to mean that the intended result of the first command is the same as

the intended result of the second command. Similarly, Cucerzan and Brill (2004)

looked at using reformulations to learn spelling corrections for Web queries.

However previous work has not considered learning general functions using

information inferred from reformulations, instead focussing on learning specific

corrections that can be made.
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1.4 Clicks, Bias, Diversity and Noise

As this thesis considers using records of user behavior to infer relevance judg-

ments, we are limited by the noise and bias that is always present in real world

data. The signal in clickthrough data is inherently masked in at least four ways,

which must all be considered when relying on data from search engine log files.

We now introduce these effects, and will periodically return to them throughout

this thesis.

Definition 1.4. Presentation bias is manifested when users preferentially click on

higher ranked results, irrespective of relevance.

Presentation bias is usually seen when particular search results move up or

down an otherwise fixed ranking, and in consequence receive a vastly different

number of clicks. As described in the previous section, one effect of presentation

bias is that absolute relevance judgments tend to be difficult to collect from click-

through data. While inferring relative relevance judgments from clickthrough

data avoids this difficulty, there is also bias in the preferences that can possibly

be collected, as described in Section 1.5 below.

Definition 1.5. Evaluation bias is the bias exhibited by users to preferentially look at

and evaluate highly ranked documents. The effect is that clickthrough data obtained from

search engine logs predominantly describes the relevance of documents already ranked

highly by a search engine.

There is an important albeit subtle distinction between evaluation bias and

presentation bias. To see this, consider that it could well be that some users

consider only highly ranked results but also only click on documents that are
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relevant, thus exhibiting evaluation bias while not exhibiting presentation bias.

Evaluation bias is partly combatted by the concept of query chains, as they allow

relevance judgments to be collected about documents at low rank for the original

query but ranked highly by reformulations. However, we will also present a

further method for combatting evaluation bias in Chapter 6.

Definition 1.6. User diversity is the property that different users have different con-

cepts of relevance given the same query.

The presence of user diversity was, for instance, shown by Teevan et al. (2005a;

2007). It adds noise to relevance judgments collected from users. In particular,

due to user diversity contradicting preferences may be collected for only the

reason that the same query (such as jaguar) indicates that one user is looking

for information on one topic (such as big cats) while another user is looking for

different information (such as computer operating systems).

Finally, Click noise is present whenever logs of online user behavior are used.

Definition 1.7. Click noise is noise in clickthrough data caused by users accidentally

clicking on search results, or clicking without thinking.

The effect of click noise is to obscure the signal in clickthrough data with

random noise. Methods for collecting relevance judgments from clickthrough

data need to be robust to the presence of this noise.
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1.5 Presentation Bias and Learning Convergence

As seen earlier, presentation bias can be combatted by interpreting user clicks

as relative relevance judgments rather than absolute judgments. However, this

causes a further difficulty: the only relative statements that can be obtained using

the methods proposed by Cohen et al. (1999) and Joachims (2002) are of the form

that a lower ranked document is preferred to a higher ranked document. The

same applies to preference judgments collected from query chains, as described

in Chapter 4. This means that the relevance judgments collected in any dataset

always oppose the order in which results are presented to users. In particular,

if an original ranking were reversed, all the preferences based on that ranking

would be satisfied. The effect (further described in Chapter 5) is that any ranking

function trained using such implicit feedback will never converge to a fixed

ranking.

The second key contribution of this thesis, presented in Chapter 5, is to

describe an algorithm for randomly modifying the results shown to users to

compensate for presentation bias. In particular, the algorithm presented is

proved, under reasonable assumptions, to allow a learned ranking function to

eventually converge to the optimal ranking function.

Previous convergence results of algorithms for learning to rank apply only if

training data is assumed to come from distributions that do not suffer from such

bias effects. For instance, Cohen et al. (1999) and Freund et al. (2003) assumed

preferences are drawn according to a model that does not allow for preferences

one way (i.e. opposing the original presentation order order) to be much more

likely than preferences the other way. Most other theoretical convergence results

16



for learning to rank address learning from absolute relevance judgments (for

example, Herbrich et al. (2000); Crammer and Singer (2001); Chu and Keerthi

(2005)).

1.6 Combatting Evaluation Bias

Although we have now seen that user behavior provides implicit relevance

judgments, even after considering query chains, evaluation bias still limits which

results are assessed by users. In particular, previous work in learning to rank

using clickthrough data has only considered clickthrough data that is collected

anyway. Specifically, it assumes that when collecting clickthrough data, users

are simply presented with the documents as ranked by the current ranking

function. As such, these documents are shown without regard for what data may

be collected or how this data may impact the rankings presented in the future.

However, Granka et al. (2004) showed that users very rarely even look at results

beyond the top few. Hence the data obtained by restricting the rankings shown

to those generated by a pre-existing ranking function is strongly biased toward

results already ranked highly. This means that highly relevant documents that

are not initially ranked highly, due to the ranking function being suboptimal,

may very rarely be observed and evaluated. This can lead to the learned ranking

converging to an optimal ranking only very slowly.

To avoid evaluation bias, the third key contribution of this thesis is to propose

a method to select the rankings presented to users. We show that this method

obtains more useful training data, while also presenting high quality rankings.

As an illustration, a naı̈ve possibility for obtaining more useful training data and
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guarantee eventual convergence to an optimal ranking would be to intentionally

present unevaluated results in the top few positions of rankings, aiming to collect

more feedback about them. However, such an ad-hoc approach is unlikely to

be useful in the long run due to the sheer number of documents in a typical

collection (for instance, the Web consists of at least tens of billions of documents),

and will likely strongly hurt user satisfaction. In Chapter 6, we will introduce a

principled approach to modify the rankings presented to users such that ranking

quality improves quickly while limiting any temporary reduction in quality as

new documents are explored. In particular, this approach consists of maintaining

a probability distribution over document relevance. This contrasts it with other

probabilistic approaches for ranking that estimate document relevance while not

explicitly modeling uncertainty (for example, (Chu & Ghahramani, 2005c)).

Given uncertainty information, it is possible to compute the probability of

any particular ranking being optimal, and also compute what the loss from

presenting a different, suboptimal, ranking would be. By integrating over all

possible rankings, we will show how to compute the expected loss of any given

ranking. The algorithm will then select rankings to show such that this expected

loss is minimized, given the implicit feedback we expect to collect from users.

In particular, minimizing such a user-centric loss contrasts with previous ap-

proaches extending probabilistic models to actively select pairs of documents

to evaluate. While Chu and Ghahramani (2005a) previously chose to ask for

labels over pairs of documents where the entropy of the predicted outcome

of a comparison would decrease most, the approach we present minimizes a

user-centric loss measure. By minimizing the future expected loss as a function

of the training data that is likely to be collected, we will show that the quality of
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the ranking presented can improve much more rapidly than naı̈vely presenting

documents in terms of decreasing estimated relevance.

1.7 Addressing User Diversity

Until now, this introduction has presented training data collection for Web search

in terms of the relevance of individual documents, either as absolute or relative

(pairwise) judgments. This implicitly assumes that each document has some real

valued relevance to a particular query. As such, with a complete set of relevance

scores, should it be possible to collect them for all documents, it would be

sufficient to rank the documents by these scores. More formally, given judgments

assessing the relevance of documents to a query, the standard approach is to

learn the parameters of a scoring function. Given a new query, this function can

be called upon to compute the score for each document independently, and rank

documents by decreasing score.

The theoretical model that justifies ranking documents in this way is the

probabilistic ranking principle (Robertson, 1977). It suggests that documents

should be ranked independently by their probability of relevance to the query.

However, the optimality of this process relies on the assumption that there are no

statistical dependencies between the probabilities of relevance among documents

– an assumption that is clearly violated in practice. For example, if one document

about jaguar cars is not relevant to a user who issues the query jaguar, other car

pages are also now less likely to be relevant. As users are often satisfied with

finding a small number of, or even just one, relevant document, the usefulness

and relevance of a document does depend on other documents ranked higher.
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In fact most search engines today attempt to eliminate redundant results and

produce diverse rankings that include documents that are potentially relevant to

the query for different reasons.

Most previous work in obtaining diverse rankings suggests to diversify the

top ranked documents given a non-diverse ranking. Perhaps the most common

technique is Maximal Marginal Relevance (MMR), proposed by Carbonell and

Goldstein (1998). Given a similarity (relevance) measure between a document

and a query, as well as a similarity measure between two documents, MMR

iteratively selects the most relevant documents that are also least similar to any

other documents already selected. As such, MMR requires the relevance of a

document to a query and the similarity of two documents to be known. It is

usual to obtain these using standard algorithms for learning to rank, which will

be discussed in Chapter 3. The goal of MMR is to rerank an already learned

ranking to improve diversity.

In contrast, the fourth key contribution of this thesis is to present an algorithm

that learns rankings that directly maximize a proxy for the fraction of users who

find at least one relevant search result. This algorithm produces a diverse ranking

of results in a principled and provably optimal manner. Specifically, the Ranked

Bandits Algorithm that we present in Chapter 7 obtains the best achievable

polynomial time approximation to maximizing the fraction of users who click on

at least one search result. In addition, the algorithm does not assume a relevance

or document similarity measure is known or provided a priori, instead learning

directly what ranking of documents is best to present.

It is also worth noting that implicit feedback is particularly useful when learn-

ing to produce diverse rankings in a principled manner. Learning to produce

20



optimally diverse rankings using expert judgments would require a document

collection with document relevance obtained for all possible meanings of a query.

While the TREC interactive track2 provides some documents labeled in this way

for a small number of queries, such document collections are even more difficult

to create than standard expert labeled collections. Moreover, the judgments

would need to establish the relative importance of the different meanings of each

query to optimally satisfy the user population.

1.8 Bibliographic Notes

The research presented in this thesis was performed and subsequently pub-

lished jointly with Professor Thorsten Joachims and partly jointly with Professor

Robert Kleinberg at Cornell University. While Chapters 1, 2 and 3 present back-

ground material, the key contributions of this thesis have been published as

follows. Chapter 4, which presents and evaluates the concept of query chains

was published in (Radlinski & Joachims, 2005b). Chapter 5, which presents an

algorithm to combat presentation bias, was published in (Radlinski & Joachims,

2006). Chapter 6, which describes an approach to avoid evaluation bias, was

published in (Radlinski & Joachims, 2007). Finally, Chapter 7, which addresses

user diversity, was published in (Radlinski, Kleinberg and Joachims, 2008b).

During my degree, I have also contributed other research not presented as a

chapter in this thesis. In particular, I have published research on personalized

Web search (Radlinski & Dumais, 2006), identifying related documents using im-

plicit feedback (Pohl, Radlinski and Joachims, 2007), machine learning algorithms

2http://trec.nist.gov/data/t11 interactive/t11i.html

21



for optimizing ranking performance metrics (Yue, Finley, Radlinski and Joachims,

2007), ranking online advertisements (Radlinski, Broder, Ciccolo, Gabrilovich,

Josifovski and Riedel, 2008a), studying the tolerance of learning from implicit

feedback to random and malicious noise (Radlinski & Joachims, 2005a; Radlinski,

2007) and studying how high school students prepare for high stakes exams

(Loken, Radlinski, Crespi, Cushing and Millet, 2004; Loken, Radlinski, Crespi

and Millet, 2005). I also contributed to (Joachims, Granka, Pan, Hembrooke,

Radlinski and Gay, 2007). Finally, a less technical overview describing a number

of the key ideas in this thesis was published in (Joachims & Radlinski, 2007).

22



CHAPTER 2

UNDERSTANDING AND INTERPRETING USERS’ DECISIONS

This chapter presents an overview of previous research that considers users’

decision making processes, and how user actions can be interpreted. In particular,

we will see how users’ decisions are affected by the way users are presented with

choices to make. We start by considering the decisions people make in the offline

world, from a marketing and economics perspective, as well as when applied to

document relevance judgments. Following this, the majority of this chapter will

consider user behavior in a Web search setting, asking a number of questions

that will determine how implicit feedback can be interpreted.

2.1 Offline Decision Making

The process by which people make decisions offline has been studied extensively,

particularly motivated by marketing applications. For instance, Eliashberg (1980)

presented approaches for estimating consumer utility functions and Currim and

Sarin (1984) studied job preferences using a related utility formulation. Numer-

ous related behavioral models have been proposed, including bounded ratio-

nality (Herbert, 1957), aspiration adaptation theory (Selten, 1998) and prospect

theory (Tversky & Kahneman, 1981).
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2.1.1 What influences user decisions?

Of more direct relevance to this thesis, a number of recent studies have explored

factors that impact the reliability of preference choices made by people. Mantell

and Kardes (1999) describe how the order in which choices are presented affects

the preferences shown. In particular, they found that when comparisons are

made between products based on specific attributes, order effects play a larger

role than when comparisons are made in terms of overall (attitude-based) eval-

uations. Moreover, when comparing pairs of products, Moore (1999) showed

that if a superficially attractive option is presented first, consumers are willing

to pay more for both options than when the superficially less attractive option

is presented first. In addition, Coupey et al. (1998) and Zhang and Markman

(2001) studied the effect of familiarity and motivation on preference decisions

respectively. They found that the preferences people make are influenced by

these factors, suggesting that consumer decision making is indeed a complex

process.

In our context of interactive information ranking systems, these studies

should be taken as indicative of the complexity of the behavior we will ob-

serve from online users. It is unlikely that simple behavioral models will suffice

to explain why people express the preferences they express. Rather the studies

motivate careful analysis of online user behavior to identify complicating factors,

to allow us to find ways to avoid them when collecting implicit feedback. For

instance, these studies suggest that the order users are presented with online

search results will affect their judgments of the relevance of the results.
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2.1.2 Are decisions absolute or relative?

In the context of document relevance judgments, a particularly important ques-

tion to ask in the offline world regards which sort of judgments people are able

to make most reliably. In particular, when human experts are trained to make

judgments about the relevance of documents to queries, what sort of judgments

can we expect? Recently, Carterette et al. (2008) studied how relevance judg-

ment quality is affected by the specific question asked of expert human judges.

The standard approach to obtain relevance judgments from expert judges is for

judges to provide a relevance score for each (query, document) pair on a two

to six point scale. These relevance scores can then be used to construct a set of

relative statements. Carterette et al.compared the relative judgments obtained in

this way to those obtained by asking the experts for relative judgments directly.

They found that relevance judges tend to agree more with each other when asked

to directly provide relative judgments about pairs of documents. Moreover, it

took the judges substantially less time to make a relative judgment than it took

them to make an absolute judgment on a five point scale. This shows us that

people (at least those trained to make relevance judgments) appear to have an

easier time providing reliable and consistent relative judgments than absolute

judgments.

2.2 Online Decision Making

We can now turn to the question of what decisions regular Web users make when

searching for information online, and how we can identify the extent to which

document relevance affects the decisions.
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2.2.1 What can we observe of online user behavior?

Given the online medium, the first question we must ask is how much of user

behavior can we practically observe? In principle, it is possible to record all

user interactions with a Web browser. In particular, Kelly and Teevan (2003) pro-

vided a detailed survey of the many user actions that can be observed including

browsing, bookmarking, printing, and so forth. Somewhat more recently, White

et al. (2005), Fox et al. (2005) and Kellar and Watters (2006) also studied what can

be observed of user behavior if users are asked to use specially instrumented

Web browsers. Each study addressed a different prediction problem in terms

of user satisfaction or user task. However, key to this thesis, to obtain such a

complete picture of what users are doing online requires the users to use Web

browsers with specific add-ons that record all these interactions. Understandably,

a relatively small fraction of real users install such tools, both due to the inconve-

nience of additional software installation and due to privacy concerns. Hence,

the number of users for whom complete data could be collected is limited.

A simpler alternative is to record the entire stream of network traffic issued by

users. For instance Kammenhuber et al. (2006) installed a monitor at the Internet

gateway of a major German university, using the data collected to build a model

of user behavior. However, this approach requires the cooperation of Internet

service providers, with similar privacy concerns and logistical difficulties as

when users are asked to install browser add-ons.

However, as we are concerned particularly with interactive information

ranking systems, a sufficiently complete picture of user behavior can be obtained

by recording the user interactions with just the system of interest. For instance, in
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a Web search setting, user queries can be recorded by the search engine directly.

If the search results link to addresses on a search engine server, that then redirect

users to the actual result pages, we can also observe which search results users

click on when they click.

Although we will study in detail what information is provided by logs of

queries and clicks, as an example that clicks encode substantial information,

consider a recent result obtained by Pohl et al. (2007). In their work, Pohl et al.

found that documents in an academic search engine that are co-clicked on by

search engine users tend to be co-cited in the future. This suggests that potentially

useful information is present in clickthrough logs.

2.2.2 Which search results do users consider?

Before we can interpret user behavior in Web search, we must first establish

which results users actually look at and hence can possibly be making judgments

about. We do so by drawing on the results of groundbreaking eye tracking studies

reported by Granka, Joachims and collaborators (2004; 2005; 2007). In particular,

the authors study user behavior on the Google search engine3, considering

both what users look at, and what users click on. While other researchers had

previously used eye tracking studies to observe how users behave when using a

Web browser (for instance, Brumby and Howes (2004)), they did not specifically

focus on behavior on the results page of a Web search engine.

In each phase of a two-phase study, Granka et al. recruited undergraduate

student volunteers to search for the answers to specific questions, while having

3http://www.google.com/
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an eye tracker record where on the screen they looked during the process. The

subjects were asked to start from the Google search page and find the answers

to ten questions. Five of the questions asked were navigational (for example,

“find the homepage of Emeril, the chef who has a television cooking program”) while the

other five were informational (for example, “what is the name of the researcher who

discovered the first modern antibiotic?”) (Broder, 2002). The questions asked varied

in difficulty and topic content. There were no restrictions on what queries the

users may choose, how they may continue after entering the first query, or which

links to follow. Users were told that the goal of the study was to observe how

people search the Web, but were not told of the specific interest in their behavior

on the results page of Google. All clicks, the results returned by Google, and

the pages connected to the results were recorded by an HTTP proxy. A detailed

presentation of the experimental setup is provided by Joachims et al. (2007).

The light bars in Figure 2.1 (Figure 1 from Joachims et al. (2007)) show the

percentage of result pages for which users looked at each of the top 10 search

result abstracts (the short text that describes each search result) for a query. The

dark bars show the fraction of the time that a user’s first click was at a particular

rank. The striking result is that while most users looked at least at the top two

result abstracts, the fraction of searches after which users even look at lower

ranked results decays very rapidly with result rank.

These eye tracking results are consistent with other studies that have also

seen that users tend to pay much more attention to top ranked documents in a

Web search engine. For instance, Agichtein et al. (2006) presented a summary

distribution of the relative click frequency on Web search results for a large

commercial search engine as a function of rank for 120,000 searches for 3,500
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Figure 2.1: Percentage of time an abstract was viewed/clicked on depending on
the rank of the result (from Joachims et al. (2007)).

distinct queries. They show that the relative number of clicks rapidly drops

with the rank – compared with the top ranked result, Agichtein et al.observed

approximately 60% as many clicks on the second result, 50% as many clicks on

the third, and 30% as many clicks on the fourth.

2.2.3 Which results do users consider before clicking?

Given that the interactions of users with the Web search engine that we record

are clicks on search results, we next ask which results have been observed before

users click.

Granka et al.found that users in their study considered search results in order

from top to bottom. Figure 2.2 (Figure 3 from Joachims et al. (2007)) shows the

number of abstracts viewed above and below any result that was clicked on. We

see that the lower the rank of the clicked document, the more previous abstracts
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the user is likely to have looked at first. While users do not tend to look at all

earlier abstracts, this figure suggests that users do generally scan the results in

order from top to bottom. We also see that users usually look at one abstract

below any they click on. Further analysis by Joachims et al. (2007) showed

that this is usually the abstract immediately below the one clicked on. We can

conclude that users typically look at most of the results from the first to the one

below the last one clicked on.
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Figure 2.2: Mean number of abstracts viewed above and below a clicked link
depending on its rank (from Joachims et al. (2007)).

2.2.4 How can we infer judgments from clicks?

Now that we can infer which results users looked at before clicking, we can ask

the question: What affects a user’s decision to click? To study these influences,

Joachims et al. evaluated how users’ behavior is affected by the quality of the

results shown. In the second phase of the eye tracking study, some users were

presented with the original Google results, while some were presented with the
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top two Google results swapped, and others were presented with the top ten

results in reverse order. None of the users in the study suspected such a change

was being made. Figure 2.3 (Figure 4 from Joachims et al. (2007)) shows how

these changes affected which results users looked at, and which ones they clicked

on. It shows that that reducing the relevance by modifying the order of results

impacted how users behaved, both increasing the fraction of users who looked

at lower ranked results, and increasing the number of clicks at low rank.

This may lead us hypothesize that users simply click on relevant results, as is

assumed by much previous work (for example, by Boyan et al. (1996); Kemp and

Ramamohanarao (2002); Fox et al. (2005)). We will now see that users’ decisions

to click are more complex. Following the eye tracking study, Joachims et al. asked

human evaluators to assess the relative relevance of all the results seen by each

study participant. The evaluators were asked to rank all the short text abstracts

presented to participants on the Google search results page in terms of relevance

to the questions asked of the participants (evaluators were allowed to judge two

abstracts as equally relevant). For the documents returned in the second part of

the study, the evaluators were also asked to rank the documents linked to by the

search results.

If users simply click on relevant documents, unaffected by the presentation

order, we would expect that the frequency with which users click on the top

two results only depends on the relevance of these results. However, Joachims

et al. found a significant change in clicking behavior when the top results were

presented in reverse order. They show that two effects are in play: first, a trust

bias as users appear to trust that documents presented high by the search engine

are most relevant, and second a quality-of-context bias where users are more likely
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Figure 2.3: Fraction of results looked at, and clicked on, by users presented with
standard Google results (top), top two results reversed (middle) and all top ten
results reversed (bottom) (from Joachims et al. (2007)).
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to click on less relevant documents if they are embedded in a poorer quality

ranking.

Due to these effects, interpreting clicks as judgments about the relevance

of the clicked documents appears difficult. However, Cohen et al. (1999) and

Joachims (2002) previously suggested an alternative interpretation of user clicks:

as relative relevance judgments. Joachims et al. found evidence supporting such

an interpretation of clickthrough data in the eye tracking study. We now discuss

this approach.

2.2.5 Implicit Feedback as Relative Relevance Judgments

Intuitively, selection of Web search results may be much like the selections people

make when purchasing products, where they must select among the available

options. Perhaps users choose to click on a search result not because it is relevant,

but because it is more likely to be relevant than any other option they are aware

of. This idea is known as revealed preferences in economics (Samuelson, 1948;

Varian, 1992). We now consider how clicking behavior encodes such preferences.

Cohen et al. (1999) and Joachims (2002) proposed an interpretation to click-

through data in terms of relative relevance judgments. They hypothesized that

when a user clicks on a document, the user is indicating that he or she considers

the selected document more relevant than other documents he or she has already

considered but not clicked on. Including this strategy, Joachims et al. (2005) dis-

cuss five strategies for obtaining relative relevance feedback from users clicking

behavior along similar lines. These strategies are summarized in Table 2.1
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Table 2.1: Summary of the feedback strategies discussed by Joachims et al. (2005).
Strategy Description
CLICK > SKIP ABOVE A clicked-on document is likely more relevant

to the query than one presented higher but not
clicked on.

LAST CLICK > SKIP ABOVE The last clicked-on document is likely more
relevant than any documents presented higher
but not clicked on.

CLICK > EARLIER CLICK A clicked-on document is likely more relevant
than any documents presented higher that
were clicked on.

CLICK > SKIP PREVIOUS A clicked-on document is likely more relevant
than the preceding document, if that document
was not clicked on.

CLICK > NO-CLICK NEXT A clicked-on document is likely more relevant
than the next document, if that document was
not clicked on.

To illustrate these strategies and the relative relevance judgments they would

generate, consider for example a user who submitted query q and was presented

with the ranked results (d1, d2, d3, d4), then clicked on d2 and d4. Note that in

this case, since the user clicked on the fourth result, the results from the eye

tracking study suggest that the user probably also considered results d1 and d3

despite deciding not to click on them. CLICK > SKIP ABOVE would generate

three preferences:

d2 �q d1; d4 �q d1; d4 �q d3

where di �q dj should be taken to mean not that di is relevant to q, but rather

that di is more likely to be relevant than dj , with respect to the query q. LAST

CLICK > SKIP ABOVE would generate just the preferences:

d4 �q d1; d4 �q d3,
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making the assumption that perhaps d2 is not actually more relevant to the

user, as he or she chose to come back to the search results after observing that

document. CLICK > EARLIER CLICK would generate the preference

d4 �q d2,

again taking the view that perhaps the last clicked document is most likely to

satisfy the user’s needs. CLICK > SKIP PREVIOUS would generate the preferences

d2 �q d1; d4 �q d3,

being more conservative in generating long-distance preferences since the result

most reliably evaluated before a click is the one directly preceding it. Finally,

CLICK > NO-CLICK NEXT would generate the preference

d2 �q d3,

since users usually consider the next result before clicking.

2.2.6 Are these judgments valid?

While the feedback strategies described above are intuitively appealing, a quan-

titative evaluation is necessary to establish their degree of validity. We now

present a summary of an evaluation of the above strategies reported by Joachims

et al. (2005).

Joachims et al. evaluated the accuracy of each of these feedback strategies by

asking human judges to rate the relevance of every result returned to the volun-

teers during the eye tracking study. The judges could know the ground truth
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Table 2.2: Accuracy of the implicit relevance judgments obtained when using
each of the strategies presented by Joachims et al. (2005) in Table 2.1. The Phase II
numbers include the average performance of the strategies across data collected
in all three experimental conditions described earlier: normal, swapped and
reversed.

Abstracts Pages
Strategy Phase I Phase II Phase II
Inter-Judge Agreement 89.5 82.5 86.4
CLICK > SKIP ABOVE 80.8 ± 3.6 83.1 ± 4.4 78.2 ± 5.6
LAST CLICK > SKIP ABOVE 83.1 ± 3.8 83.8 ± 4.6 80.9 ± 5.1
CLICK > EARLIER CLICK 67.2 ± 12.3 46.9 ± 13.9 64.3 ± 15.4
CLICK > SKIP PREVIOUS 82.3 ± 7.3 81.6 ± 9.5 80.7 ± 9.6
CLICK > NO CLICK NEXT 84.1 ± 4.9 70.4 ± 8.0 67.4 ± 8.2

relevance scores as they were given the questions provided to the study partici-

pants. The judges were asked to produce a partial ordering of all abstracts shown,

as well as the Web pages the results point to, for each query issued. By presenting

some of the sets of documents to two different judges, Joachims et al. measured

inter-judge agreement, seeing agreement rates between 82.5 and 89.5% in the

human relevance judgments. This means that when two human judges judged

that one document in a pair was more relevant, they agreed on which document

was more relevant this fraction of the time. The remaining 10.5 to 17.5% of

the time, the judges disagreed as to which document was more relevant. This

measure is important as it provides an upper bound the accuracy that could be

expected from any relevance judgments obtained implicitly or explicitly from

users.

Using these judgments, the authors assessed the preferences generated by the

strategies in Table 2.1, obtaining the results shown in Table 2.2.

The results show that all the strategies that generate preferences of the form

that a clicked document is likely more relevant than a higher ranked non-clicked
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document are very reliable. In particular, the accuracy of these strategies is very

close to the inter-judge agreement, which is an upper bound on the accuracy that

could ever be expected. Additionally, it is apparent that despite users clicking

after only having seen a short abstract extracted from each ranked document,

the clicks reflect the true relevance of the documents. All together, CLICK >

SKIP ABOVE provides the largest number of relevance judgments, and these

judgments are equally reliable to those obtained from the more conservative

strategies.

2.3 Summary

In this chapter, we have considered previous work that studied how people,

and in particular Web search users, actually make decisions. Following this, we

presented a number of strategies for how online search behavior can be used as

implicit relevance feedback. In particular, Web search users typically read results

from top to bottom. Observing user clicks and making inferences that a clicked

on document is more relevant than higher ranked skipped documents has been

shown to be valid.
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CHAPTER 3

LEARNING TO RANK

Thus far, we have seen how previous research obtained relevance judgments for

training personalized information ranking, and particularly Web search, systems.

Now, we turn to the question of using these relevance judgments to learn a

ranking function. We start by presenting an overview of standard performance

metrics used for evaluating the performance of ranking algorithms. Following

this, we will summarize some of the major algorithms for learning to rank,

grouping them based on the type of training data that they require. The last part

of this chapter will provide a more detailed description of two key algorithms

that will be used later in this thesis.

3.1 Performance Metrics

Suppose we provide some query q to a Web search engine, and obtain a ranked

list of results Dq. How do we evaluate the quality of Dq? Many different metrics

have been proposed for evaluating the quality of rankings. We now provide an

overview of those most commonly used. An in-depth discussion of these metrics

is presented by Manning et al. (2008).

3.1.1 Precision and Recall

We start with two of the simplest ranking performance measures, precision and

recall.
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Suppose that we consider each document di in some document collection C as

either relevant, or not relevant, to a query q (in other words, relevance is binary).

Let relq(di) ∈ {0, 1} denote this relevance. Further, let Dq = (d1, ..., dn) denote the

ranking returned for this query by the search engine being evaluated.

Two basic questions that can be asked about Dq are: What fraction of the doc-

uments in Dq are relevant? What fraction of all the available relevant documents

in C were found in Dq? These two measures are called precision and recall. We

can write them as:

Precision(Dq) =
|{d ∈ Dq | relq(d) = 1}|

|Dq|
(3.1)

Recall(Dq) =
|{d ∈ Dq | relq(d) = 1}
|{d ∈ C | relq(d) = 1}|

(3.2)

Precision and recall measure two fundamentally different things. Precision

measures whether documents returned are indeed relevant, while recall measures

how many relevant documents were missed. Both may be appealing in different

cases. For instance, if we need just one document to answer the query (for

instance, to find the definition of some term), we would prefer high precision

so that we don’t need to read through many irrelevant documents. On the

other hand, if we want to make sure we find all relevant documents (for instance,

preparing for a legal trial), having high recall may be more important. To compare

systems that trade off precision and recall differently, a combination score that is

commonly used is the F-1 score:

F1(Dq) =
2× Precision(Dq)×Recall(Dq)
Precision(Dq) +Recall(Dq)

(3.3)
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3.1.2 Ranking Based Metrics

While precision and recall are intuitive, they ignore the order in which documents

are returned. Ignoring this order ignores important information about rankings,

because as we have seen in the previous chapter, users of search engines tend

to read through returned items in a consistent order. Indeed, if a search engine

returns 100,000 results for some query, it is of no use to a user if all the relevant

documents are at the end of that list.

One approach, initially proposed by Cooper (1968), takes the view that a

good ranking should minimize the amount of “wasted effort” users must exert

before finding a sufficient number of relevant documents. As a special case, we

can consider the number of documents a user must look at before finding the

first relevant document. This performance measure is called the mean reciprocal

rank (MRR) and is usually taken as the inverse of the rank of the first relevant

document in Dq.

Another common way to evaluate how well results are ordered is using a

variant of precision, precision at k (P@k). This metric measures the precision if we

only consider the first k results inDq. It is otherwise identical to regular precision.

In effect, this caps the effort a user would put in (that is, we assume that the user

would only consider at most k results) and P@k tells us what fraction of those

documents would be relevant. Common values for k are between 1 and 10.

But how do we choose the right value of k for evaluating systems? In par-

ticular, different queries may have different numbers of relevant documents. If

k is larger than the number of relevant documents for some query, the highest

possible precision at k may be much smaller than 1. One option is to find the k
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where the precision and recall are equal, and report this precision. It is commonly

called the precision-recall break-even point.

However, recall is usually less interesting in a Web search setting than preci-

sion. Average precision is a measure that solves the difficulty with P@k while also

placing substantially more weight on the top ranked documents. It measures

the average of the precision at the rank of every relevant document (sometimes

truncating Dq first, and considering all documents below some cutoff rank as

“not found”):

AP (Dq) =
1

|{d ∈ C | relq(d) = 1}|

|Dq |∑
i=1

relq(di)× Precision@i(Dq). (3.4)

One important property of averaging over all the relevant documents is

that average precision is much more sensitive to the relevance of the first few

documents than those further down. To evaluate the performance of a ranking

system, typically a large number of queries is selected and the mean of the

average precision scores across all queries is measured. This measure is called

the mean average precision (MAP) and is one of the most common metrics for

measuring the performance of ranking functions.

Various extensions or replacements for MAP have also been proposed, in

particular addressing the limitation that documents relevance is binary. For

instance, Järvelin and Kekäläinen (2000) introduced discounted cumulative gain

(DCG). It is often used when documents have non-binary relevance scores. The

DCG of a ranking is defined as

DCG(Dq) =
k∑
i=1

2rel(di) − 1

log(i+ 1)
, (3.5)
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considering just the first k documents in Dq. While DCG does not average over

just the most relevant documents, the log factor in the denominator means that

the relevance of highly ranked documents is given much more weight than that

of lower ranked documents. A common variant of DCG also introduced by

Järvelin and Kekäläinen (2000) is normalized DCG (NDCG). It simply normalizes

the DCG to always output a value between 0 and 1. A related performance metric

used with binary relevance judgments when not all documents have been judged

is bpref, and was introduced by Buckley and Voorhees (2004). An extension to

graded relevance judgments called rpref was described by De Beer and Moens

(2006).

3.1.3 Performance with Relative Judgments

Unfortunately, to evaluate the precision, recall, or related measures of ranking

quality presented above, we need absolute relevance judgments of the documents.

As seen in Chapter 2, these can be much more difficult to obtain than relative

relevance judgments. What sort of performance measures can be used only given

relative relevance judgments?

One straight-forward performance measure that only needs relative relevance

judgments is the fraction of misordered pairs of documents in a ranking:

MisorderedPairs(Dq) =
2

|Dq|(|Dq| − 1)

|Dq |∑
i=2

∣∣∣{d ∈ (d1, . . . , di−1) | d ≺q di}
∣∣∣ (3.6)

Strongly related ranking performance measures include Kendall’s Tau

(Kendall & Gibbons, 1990; Fagin et al., 2003), Guttman’s Point Alienation (Bartell
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& Cottrell, 1995), the Spearman Footrule (Diaconis & Graham, 1977) and ROC

Area (Provost & Fawcett, 1997; Joachims, 2005).

Yet these measures also have a difficulty: They assume that for all pairs of

documents, we know if the documents are misordered. If pairwise relevance

judgments are collected from users, it is likely that this information will not be

available for many pairs of documents. Although bpref (Buckley & Voorhees,

2004) can be used if we assume many relevant documents have been assessed

in pairwise comparisons, there are no standard performance metrics that can

compute an absolute performance score in the general case.

3.1.4 Comparing Two Rankings

In addition to the difficulty in obtaining labeled data, results presented by Hersh

et al. (2000), Turpin and Hersh (2001), Allan et al. (2005) and Turpin and Scholer

(2006), among others, have shown that many of the measures described above

do not always correlate strongly with user satisfaction. For example, Turpin

and Scholer constructed rankings with widely differing mean average precisions

and measured the time it took users to find information in controlled tests.

They saw that the correlation between MAP and the speed with which users

find information is weak. This suggests the following question: How can the

performance of a ranking function be evaluated in a way that is practical and

reflects user needs?

One option is to build a model of user behavior then estimate user satisfaction

based on how users perform relative to the model, as proposed for instance by

Dupret et al. (2007). However, the model they proposed requires a number of

43



assumptions about user behavior that are difficult to test, and also requires the

estimation of many parameters.

In contrast, Joachims (2003) proposed a simple method to determine which

of two ranking functions is better. Unlike the metrics described above, this does

not provide an absolute performance score of either ranking, but rather provides

a relative preference for one of the input ranking functions. Specifically, given

two ranking functions, he suggested an interleaving of the results generated be

presented to users. This interleaving is constructed such that irrespective of how

many results a user may consider, he or she will have observed an equal number

of documents from each ranking in expectation.

Figure 3.1 shows two example rankings, r and r′, from two different re-

trieval functions as well as a valid combination, combined(r, r′). Let seen(n, r)

and seen(n, r′) be the number of results the user has seen from rankings r

and r′ respectively after looking at the top n results from the combined rank-

ing. seen(n, r) and seen(n, r′) are defined as the smallest number of results

that we have to combine from r and r′ to produce the top n results of the

combined ranking. The combined ranking is generated such that for any n,

seen(n, r) ≥ seen(n, r′) ≥ seen(n, r) − 1. In the above example, if the user

looks at the top three results in the combined ranking, this is satisfied because

seen(3, r) = 2 and seen(3, r′) = 2. If the user looks at the top five results,

seen(5, r) = 4 and seen(5, r′) = 3. To compensate for a bias toward the results

of r (seen(n, r) is sometimes one bigger than seen(n, r′)), r and r′ are randomly

switched half the time. This means that in expectation seen(n, r) = seen(n, r′).

Once this combined ranking is presented to users, we can evaluate which

of the two rankings is preferred. We first determine which results the user
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Figure 3.1: Two example rankings with four results each, and the combined
outputs we would generate by starting with the top ranked document from
ranking r.

looked at by taking the lowest ranked clicked-on document as where the user

stopped scanning the results (a conservative estimate). If the two rankings are

equally good, we would expect the user to click on just as many results from

each ranking, given that he or she has seen an equal number from each (in

expectation). Let clicks(r) be the number of documents clicked on that are in

the top seen(n, r) results of r, and similarly for clicks(r′). For example, say the

user clicked on d1 and d5 in the combined ranking shown in Figure 3.1. This

method would infer the user looked at the top 3 results. From before, we have

seen(3, r) = seen(3, r′) = 2. Therefore, clicks(r) = 1 (d1) and clicks(r′) = 1 (d5).

This credit assignment algorithm is presented more formally by Joachims (2003).

If in expectation clicks(r) > clicks(r′), this approach concludes that the user

prefers the ranking r over r′. By summing over many rankings shown to many

users, this interleaving method counts how often clicks(r) > clicks(r′), and how

often clicks(r) < clicks(r′), to obtain a relative comparison. A binomial sign test

can then be used to assess the significance of any preference found.
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3.2 Algorithms for Learning to Rank

We have now seen how the performance of a learned ranking function can be

assessed in different situations. Yet how are these ranking functions obtained?

We now provide a brief summary of some of the more influential algorithms for

learning to rank. We categorize them by the specific form of training data that

they assume as input.

3.2.1 Ranking as a Classification Problem

The simplest formulation of learning to rank is as a binary classification problem.

For training examples x1, . . . , xn, the algorithm is provided with binary scores

y1, . . . , yn where yi ∈ {0, 1}. Given this data, the goal is to learn the parameters of

a function that scores examples with a real number. New examples can then be

ranked by decreasing score. In the case of Web search, xi is a (document, query)

pair, yi is the relevance of the document to the query. The predicted score can be

interpreted as the estimated level of relevance of documents to the query.

Many approaches generally fitting into this framework have been proposed.

For instance, Fuhr (1989) proposed to learn the ranking function parameters by

fixing the functional form and explicitly minimizing the squared error in the

relevance predictions obtained. Boyan et al. (1996) used simulated annealing to

learn the function parameters: Starting with an initial set of parameter values, the

weights are repeatedly randomly perturbed, with parameter values resulting in

improved performance kept. Learning to maximize the mean average precision

of the rankings produced, Metzler and Croft (2005) use hill climbing to select
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optimal parameter values while Joachims (2005) and Yue et al. (2007) perform

global optimization of an upper bound on the error rate to optimize ROC Area

and MAP respectively. While these last formulations treat learning to rank as pre-

dicting an entire ranking rather than the relevance of individual documents, they

derive the correct rankings from relevance judgments on individual documents.

A second way to implement classification based ranking takes advantage

of the relevance assignments being binary. Specifically, a ranking function can

essentially memorize which documents are relevant to which queries. For ex-

ample, Kemp and Ramamohanarao (2002) maintain modified Web documents

by adding the text of relevant queries to the documents. Similarly, Scholer and

Williams (2002) maintain a list of related queries for each document, while Xue

et al. (2004) learn from clicking behavior which documents are related to each

other and hence relevant to similar queries.

Finally, a third classification approach to a problem related to general ranking

was recently proposed by Agichtein and Zheng (2006). They address the task of

identifying when a query has a clearly best single document. For such queries,

Agichtein and Zheng propose to learn to identify these “best bet” documents

from training data. They postulate that this task is simpler than general ranking,

but can have a substantial impact on ranking quality. Given a new query, if their

classifier finds a “best bet” document, that document is ranked first. The lower

ranked documents are obtained using a different ranking function.
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3.2.2 Ranking as Ordinal Regression

Ordinal regression extends the binary classification setting by allowing the labels

of examples to be integers in some range yi ∈ {1, 2, . . . , k}. In a Web search

setting, this corresponds to being provided with (query, document) pairs where

each pair is labeled with one of a small number of scores to indicate the relevance

of the document to the query.

Herbrich et al. (2000) proposed to address this setting using a modified

classification support vector machine (see Cristianini and Shawe-Taylor (2000)).

The modified support vector machine learned to score (document, query) pairs,

but also learned which range of scores corresponds to which relevance levels.

The technique was then further improved by Shashua and Levin (2002), Rajaram

et al. (2003) and Chu and Keerthi (2005).

An alternative class of algorithms for the ordinal regression task is inspired

by the perceptron (see Mitchell (1997)). A perceptron maintains the parameters

of a scoring function, and iteratively considers training examples. Whenever an

example that is misclassified is seen, the model is updated. Crammer and Singer

(2001) proposed the PRank algorithm, which learns a model that consists of a

linear scoring function and a number of thresholds. These thresholds allow each

ranking score to correspond to a specific rank. As with a perceptron, the PRank

algorithm iteratively considers the training examples, updating the model and

thresholds when misclassified examples are seen. The PRank algorithm has also

been improved and generalized by Harrington (2003) and Basilico and Hofmann

(2004).
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3.2.3 Ranking as Regression

For some ranking tasks, real-valued labels for the items being ranked are avail-

able. In this case, yi ∈ <. For instance, Caruana et al. (1995) considered the

problem of ranking people by their risk of developing pneumonia when receiv-

ing medical treatment. By considering groups of people as training data, each

group has a real-valued empirically observed rate of developing pneumonia.

Caruana et al. are then able to apply a neural network to the regression problem,

allowing future patients to be scored and thus ranked by their risk.

More recently, Sun and Giles (2007) suggest to order Web document by the

frequency with which the documents were previously clicked on when displayed

by a search engine. This also provides real-valued training labels that can be

used to learn to rank the documents.

Finally, by using a probabilistic model to smooth ordinal human relevance

judgments, Taylor et al. (2008) show how to use regression techniques to maxi-

mize the NDCG of a ranking function by gradient descent.

3.2.4 Learning to Rank with Pairwise Data

Given the difficulty in obtaining reliable absolute relevance labels, many re-

searchers have also studied algorithms that learn from training data of the form

of pairs of examples (x1, x2) indicating that x1 should be ranked above x2.

In one of the earlier pairwise algorithms, Wong et al. (1988) proposes to use a

perceptron-like algorithm to learn rankings that satisfy a given set of pairwise
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constraints. In a more general setting, Cohen et al. (1999) proposed an improved

iterative algorithm that learns a combination of ranking functions such that the

rankings generated minimize any performance metric provided over rankings.

Freund et al. (2003) proposes to learn a sequence of ranking functions that, when

averaged, minimize the number of violated preferences.

One common general machine learning approach used for classification and

regression tasks is gradient descent over an error metric. However, given pair-

wise training data, natural ranking metrics such as the number of misordered

pairs or MAP are not smooth. Many gradient descent algorithms have been

proposed that learn by finding a smoother surrogate measure, or using iterative

parameter updates to obtain a similar effect. For instance, assuming training data

of the form of triplets (x1, x2, P (x1 � x2)), where the third term indicates the

probability that x1 is actually preferred over x2, Burges et al. (2005) proposed the

RankNet algorithm. This algorithm performs gradient descent over a cost func-

tion that encodes the error in estimating this probability given for the particular

pair of items being ranked. Other gradient descent or weight update algorithms

were developed by Bartell et al. (1994); Bartell and Cottrell (1995); Dekel et al.

(2003); Rudin et al. (2005); Burges et al. (2006).

An alternative approach that smoothes the performance metric is to define a

convex upper bound to the error present in a ranking. Joachims (2002) proposed

a method that finds the globally optimal ranking function that minimizes such

an upper bound on the number of misordered pairs. This algorithm, called

the Ranking SVM, extended the approach used by Herbrich et al. (2000) for

the ordinal regression formulation of learning to rank. Joachims showed that

the Ranking SVM formulation reduces to a very similar quadratic optimization
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problem to that arrived at by Herbrich et al. We will return to this algorithm in

more detail later in this chapter.

Finally, learning from pairwise data has also been addressed as learning the

parameters of a model so as to maximize the probability of having observed the

preferences seen as training data. One of the most widely known approximate

methods for this interpretation is the Glicko ranking algorithm (Glickman, 1999).

This probabilistic approach is often used to rank chess players. It assumes player

abilities are normally distributed but change with time, and provides a method

to estimate the ability and uncertainty in the ability for each player based on

the outcomes of (two player) chess games. The algorithm is built on top of the

Bradley-Terry model (Bradley & Terry, 1952; Bradley, 1976), which estimates the

probability of a pairwise outcome given the abilities of two players. Various

extensions to the Bradley-Terry model that allow for ties and order effects have

been developed by Dittrich et al. (1998); Huang et al. (2004); Davidson and Beaver

(1977); Lancaster and Quade (1983). A related algorithm with very similar goals

to that presented by Glickman is TrueSkill, developed by Herbrich and Graepel

(2006). A second approach to building probabilistic models, using Gaussian

Processes, was also presented by Chu and Ghahramani (2005b; 2005c).

3.2.5 Learning from Entire Rankings

A number of researchers have considered learning to rank given training data

that encodes preferences over more than two items. Specifically, generalizing

upon pairwise preferences, in this setting training data is provided as k-tuples
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(x1, . . . , xk), which define either a total order or a partial order over the items in

the tuple.

In the simplest non-learning case, Fagin et al. (2003) considered the problem

of finding the best “average” ranking given a two or more complete rankings.

In a learning setting, Lebanon and Lafferty (2002) and Lebanon (2007) studied

the problem of estimating the probability of total orders given tuples defining

partial rankings. Similarly, Kazawa et al. (2005) presented an extension to SVMs

for learning given ranked sets of items.

3.3 Two Particular Learning to Rank Algorithms

Of the vast number of algorithms for learning to rank that have been studied, we

will use two again later in this thesis. We will therefore now describe those two al-

gorithms in some more detail. First, we briefly describe Ranking SVMs (Joachims,

2002), which generalize ordinal regression SVMs developed by Herbrich et al.

(2000). For further details about SVMs in general, we refer readers to Cristianini

and Shawe-Taylor (2000). Second, we will briefly present the Glicko algorithm

developed by Glickman (1999) for learning to rank chess players. However, in

our presentation of the Glicko algorithm, we translate to the terminology of

documents and relevance more suitable for learning to rank Web documents.
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3.3.1 Ranking SVMs

Given a interactive information ranking system, there exists some joint proba-

bility distribution over queries and correct rankings of documents, P (q, r). We

would like to observe queries and correct rankings to learn this distribution, and

be able to predict the correct ranking given a query q. However, correct rankings

can also be described by the relative order of pairs of the ranked documents. The

correct relative ordering of any two documents di and dj for a particular query q

can be written as

di �q dj (3.7)

Such a constraint indicates that given query q, document di should be ranked

above document dj . Now, suppose that the relevance of any document di to

query q can be described by a linear function,

rel(di, q) = w · Φ(di, q), (3.8)

where Φ(di, q) maps documents and queries to a feature vector. Intuitively, this

feature vector can be thought of as measuring the quality of the match between

a document di and the query q along any number of dimensions. Elements of

this vector may, for example, include features measuring whether the query

words occur in di or the rank of di in the results returned for q by some other

search engine. w is a real valued weight vector that assigns weights to each of

the features in Φ. The output of this relevance function is thus a real number,

where a higher score indicates a document di is estimated to be more relevant to

the query q. The task of learning a ranking function becomes one of learning an

optimal w.
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We start by rewriting Equation 3.7 as

w · Φ(di, q) > w · Φ(dj, q). (3.9)

In accordance with a standard large-margin approach, we would like this pref-

erence (or constraint) to be satisfied by at least a fixed margin. However, given

a large number of pairwise constraints as training data, it may be the case that

no w exists that satisfies all the constraints. Hence we also add a non-negative

slack variable ξij that can be non-zero to satisfy the constraint, as is done with

standard classification SVMs. This yields a preference constraint over w.

w · Φ(di, q) ≥ w · Φ(dj, q) + 1− ξij (3.10)

Given a large number of such constraints for many different pairs of documents

and queries, it is NP hard to find the vector w that minimizes the number of

constraints that are not satisfied when ξij = 0. However, we can minimize an

upper bound on the number of violated constraints,
∑
ξij . Simultaneously regu-

larizing to avoid overfitting leads to the following convex quadratic optimization

problem:

minw,ξij
1
2
w · w + C

∑
ij ξij

subject to

∀(q, i, j) : w · Φ(di, q) ≥ w · Φ(dj, q) + 1− ξij

∀i, j : ξij ≥ 0

(3.11)

This optimization problem is known as a ranking support vector machine.

Solving it produces a weight vector w that can then be used to score any (docu-

ment, query) pair. Given a query, sorting all documents by this score produces a

ranking.

54



3.3.2 Tournament Participant Ranking

Consider again the setting that we obtain relative judgments about documents

of the form of preferences similar to

di �q dj, (3.12)

which indicate that di is more relevant than dj to query q. In general, the prefer-

ences we collect may be noisy: some may be correct while others will be incorrect.

A standard approach to modeling noise in pairwise comparisons is to assume

that the probability of observing a particular preference is determined by the

Bradley-Terry model (Bradley & Terry, 1952):

P (di �q dj) =
rel(di, q)

rel(di, q) + rel(dj, q)
, (3.13)

where rel(di, q) is a measure of the relevance of di to query q. The Bradley-Terry

model can be reparameterized setting rel(di, q) = 10µ
q
i /σ where σ is a known,

global and fixed parameter. Further, suppose that each document di has some

true relevance µqi to the query q. We write the set of document relevance values

for all documents in a collection C as

M = (µq1, . . . , µ
q
|C|). (3.14)

Assuming the pairwise judgments are independent, we can define the proba-

bility of observing some set D of relative relevance statements as

P (D|M = (µ1, . . . , µ|C|)) =
∏

di�qdj∈D

P (di �q dj|µi, µj) (3.15)

=
∏

di�qdj∈D

1

1 + 10−(µi−µj)/σ
(3.16)
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j )) (3.17)

σ2
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(
1

σ2
i

+
1

δ2

)−1

(3.18)

where

q =
log 10

400

g(σ2) =
1√

1 + 3q2σ2/π2

E(s|νi, νj, σ2
j ) =

1

1 + 10−g(σ
2
j )(νi−νj)/400

δ2 =
1

q2g(σ2
j )

2
× 1

E(s|νi, νj, σ2
j )(1− E(s|νi, νj, σ2

j ))

Figure 3.2: The Glicko update equations, which describe how the estimated
relevance νi and estimated variance σ2

i for document di should be updated
following a comparison to document dj .

Given this likelihood model, and assuming a Gaussian prior over the values

µqi , Glickman showed that the values µqi can be estimated iteratively from a set

of preferences provided as training data. Given an initial estimate of document

relevance (player ability in the context of chess) νi and error in the estimate σi, this

algorithm provides a set of approximate online update equations for maintaining

the estimated relevance and error as pairwise preferences are collected. The

update to the estimates for di following a single comparison to dj (where si is 1 if

di wins and 0 otherwise) is presented in Figure 3.2.
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3.4 Summary

This chapter has described typical performance measures used to evaluate rank-

ing systems, and described five classes of learning algorithms commonly used to

learn them. In particular, we have seen that there are many different measures

used for evaluating ranking performance. However, for most it is unclear how

well they relate to ranking performance from a user perspective. This suggests

an open question in what measures should in fact be optimized. Further, we also

discussed how relevance data in different forms can be used to learn to rank. We

saw that there are many algorithms that are amenable to learning from pairwise

preference judgments as can be collected from implicit feedback. Finally, two

algorithms were presented in some more detail, namely the Ranking SVM and

Glicko chess rating system.

57



CHAPTER 4

LEARNING FROM IMPLICIT FEEDBACK ENCODED IN QUERY CHAINS

In this chapter, we consider further the question of obtaining relevance judgments

from users of a search system. We will show how to extend previous approaches

for learning from clickthrough data to obtain substantially more useful training

data. In addition to evaluating the validity of the data collected in this new way,

we will show that it can then be used to learn an improved ranking function in a

real search engine. The work presented in this chapter was originally published

in (Radlinski & Joachims, 2005b).

4.1 Introduction

As we have seen in earlier chapters, there has been substantial work in learning

to rank documents. This is largely motivated by the difficulty in manually

constructing well performing ranking functions. For this learning task, training

data can be collected in at least two ways. The first approach, most commonly

used in the past, has relied on asking expert judges to rate the relevance of

documents to queries. However, as we have seen earlier in this thesis, such data

is expensive and slow to collect, with numerous difficulties to overcome. The

alternative of recording user interactions and inferring relevance judgments from

this implicit feedback has received less attention.

In particular, previous research in learning to rank from clickthrough data

has considered each query independently. However, studies of user behavior in

Web search engines (for instance by Lau and Horvitz (1999) and by Silverstein
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et al. (1998)) have observed that users often run more than just one query when

they visit a search engine. Rather, users tend to perform a sequence of queries for

any given question. This likely indicates that the results shown for the first query

often do not satisfy the users’ information needs. Sessions typically consist of 2

to 3 queries (as observed by Beeferman and Berger (2000); Cucerzan and Brill

(2004); Jones and Fain (2003); Lau and Horvitz (1999)). Query chains were also

observed in the eye tracking study performed by Granka et al., where mean query

chain length was 2.2 queries (although the particular questions asked and the

laboratory environment would be expected to have an influence on this value).

This suggests that when working with implicit feedback, we should consider

user behavior over entire sessions rather than just a single query.

We will show that ignoring query chains when learning from clickthrough

data ignores valuable information that is hidden in the sequence of queries

and clicks in a search session. For instance, if we repeatedly observe the query

“special collections” followed by another for “rare books” on a library search

system, we may deduce that Web pages relevant to “rare books” may also

be relevant to “special collections”. Moreover, when queries are considered

independently, we can only infer implicit feedback on a few results at the top

of the result set for each query because users very rarely look further down the

list. The advantage of using query chains is that we can also deduce relevance

judgments on the many more documents seen during an entire search session.

This chapter will describe how to interpret user behavior as preference judg-

ments that provide relative relevance information about documents within indi-

vidual query result sets, and between documents returned by different queries

within the same query chain. The method used to generate the preference judg-
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ments is validated using a controlled user study. We will then show how an

adapted ranking SVM can be used to learn a ranking function from the preference

judgments, evaluating on a real-world Web search system, the Cornell University

library4 Web search.

An important innovation in this chapter is that we also learn a more general

ranking function than previous work, by learning an association between query

words and specific documents. Such a general approach has been used previously

to learn to generate abstracts by Scholer and Williams (2002), but not to learn

ranking functions. Prior approaches for learning to rank cannot learn to associate

“new” documents with a given query because they usually only combine or

re-order results obtained from one or more static ranking functions. In particular,

given a query q, they cannot learn to retrieve any document not originally

returned for q. Coming closest to solving this limitation previously, the method

presented by Kemp and Ramamohanarao (2002) could be extended with query

chains. However, they assume implicit absolute feedback, making their approach

more likely to be susceptible to bias and noise, as seen in Chapter 2 and will be

reviewed again later in this chapter.

4.2 Related Work

We now summarize the most closely related work to that presented in this

chapter. When learning to rank, the method by which training data is collected

offers an important way to distinguish between different approaches. This data

usually consists of a set of statements as to the relevance of a document, or set

4http://library.cornell.edu/
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of documents, to a given query. Such relevance judgments are either collected

explicitly by asking experts (or users), or implicitly by observing user behavior

and drawing conclusions. Moreover, the statements can be absolute or relative.

Absolute feedback involves statements that a particular document is, or is not,

relevant to a query. Relative feedback involves statements that a particular

document is more relevant to a query than some other document.

Most previous work in learning to rank has assumed absolute relevance judg-

ments. On the one hand, a number of methods in ordinal regression use explicit

feedback to learn to rank, such as work by Herbrich et al. (2000), Crammer and

Singer (2001) and Rajaram et al. (2003). However, explicit feedback is expensive

to collect, making typical labeled data sets small and difficult to work with. A

number of researchers have collected absolute relevance judgments implicitly

from clickthrough logs, such as Boyan et al. (1996); Cohen et al. (1999); Kemp

and Ramamohanarao (2002); Tan et al. (2004). They postulate that documents

clicked on in search results are highly likely to be relevant. For example, Kemp

and Ramamohanarao (2002) present a learning search engine using document

transformation. They assume results clicked on are relevant to the query and

append the query to these documents. However, implicit clickthrough data has

been shown to be biased as it is relative to the retrieval function quality and

ordering (Joachims, 2002; Joachims et al., 2005). This makes its interpretation as

absolute feedback of questionable accuracy.

Cohen et al. (1999) and Joachims (2002) proposed transforming training exam-

ples collected from usage logs into relative pairwise preferences. Both approaches

consider learning a ranking function from these preference judgments, along

similar lines as this work. However, in contrast to our method, their learned
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function is limited to a combination of rankings given by a fixed set of manually

constructed rankers. This approach of learning a combination of functions is also

used by most other work in this area (for example, by Bartell and Cottrell (1995);

Bartell et al. (1994); Boyan et al. (1996); Oztekin et al. (2002)).

Additionally, while previous work has attempted to predict or suggest query

reformulations (for example, Lau and Horvitz (1999); Jones and Fain (2003);

Beeferman and Berger (2000); Furnas (1985); Wang and Zhai (2007)), reformu-

lations have never been used to learn better retrieval functions. Of particular

relevance to this work, Cucerzan and Brill (2004) used aggregate query frequency

statistics to learn to correct spelling mistakes in queries. Looking specifically

at reformulations, the approach presented here also automatically learns to as-

sociate misspelled queries with appropriate documents, although does so in a

more general framework.

4.3 Analysis of User Behavior

Before we can infer implicit preference judgments from log files, we need to

understand how users assess search results. While this question was studied in

depth in Chapter 2, we now recapitulate the key observations.

Granka et al. (2004) performed an eye tracking study to observe how users

assess the results returned by a search engine, and select the links they click on.

Thirty-six undergraduate student volunteers were instructed to search for the

answers to ten queries that involved finding a specific Web page or particular

information. The subjects were asked to start from the Google search page and
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Figure 4.1: Percentage of time an abstract was viewed/clicked on depending on
the rank of the result (from Joachims et al. (2007)).

find the answers. There were no restrictions on what queries they may choose,

how and when to reformulate queries, or which links to follow. Users were told

that the goal of the study was to observe how people search the Web, but were

not told of the specific interest in their behavior on the results page of Google.

All clicks, the results returned by Google, and the pages connected to the results

were recorded by an HTTP proxy. Movement of the eyes was recorded using a

commercial eye tracker.

Figure 4.1 shows the fraction of the time users looked at, and clicked on,

each of the top 10 search results for a query. It tells us that users usually look

at least at the top two result abstracts. Interestingly, note that despite the top

two documents receiving almost equal attention, users were much more likely

to click on the first result. Further analysis of which abstracts were observed

prior to clicking showed that users usually scan the results in order from top to

bottom, while also usually looking at the next abstract below any they click on.
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We conclude that users typically look at most of the results from the first to the

one below the last one clicked on.

4.4 Implicit Feedback Strategies

We now detail our approach for generating relative preference feedback from

clickthrough logs. Following this, we will present an evaluation of this approach

using results from the eye tracking study described in Chapter 2.

Consider the queries shown in Figure 4.2. The first shows the results pre-

sented to a user running the query “NDLF” on the Cornell University library

search engine. The user is searching for the National Digital Library Foundation

website, but has retrieved only meeting notes that reference people working for

the NDLF. The desired page is not in these results, most probably because it does

not contain the word “NDLF”. The second query is a search performed in Google

by a participant in the eye tracking study in attempting to find the name of the

house that Ezra Cornell built for himself. We get many results, but in fact none of

the top 10 contain any relevant information. In both cases, single-query implicit

feedback will not be informative because no relevant documents were retrieved.

In the former case, the results simply do not contain any documents relevant to

the query. In the latter, if there is a relevant document, the user is unlikely to look

far enough in the results to see it.

On the other hand, after both of these queries, we observed that the user

continued running other queries. Often, such later queries were more successful.

If a user found a relevant document with a later query, it is reasonable to assume
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Query 1: NDLF
1. http://.../staffweb/SMG/SMG970319.html
2. http://.../staffweb/SMG/SMG970226.html
3. http://.../staffweb/SMG/SMG960417.html
4. http://.../staffweb/SMG/SMG960403.html
5. http://.../staffweb/SMG/SMG960828.html

Query 2: “Ezra Cornell” residence
1. Dear Uncle Ezra – Questions for Tuesday, May. . .
2. Dear Uncle Ezra – Questions for Thursday,. . .
3. Ezra Cornell had close Albion ties
4. October 1904 – Albion 100 Years Age
5. Cornell competes with Off-Housing market

...

Figure 4.2: Two example queries and result sets.

that the user would have preferred to have seen the relevant document over the

results actually returned for the earlier queries. Recognizing the information

necessary to make these deductions is present in search engine log files, we

next describe specific strategies for generating such preference feedback from

query chains. We defer a discussion of how to group queries into query chains to

Section 4.5.

We generated preferences using six strategies. These strategies are illustrated

in Figure 4.3. The first two strategies show preferences that can be inferred

without query chains, and are very similar to two strategies described in Chapter

2. The first one, CLICK >q SKIP ABOVE, was proposed by Cohen et al. (1999)

and Joachims (2002). This strategy proposes that given a clicked-on document

(marked x in the figure), any higher ranked document that was not clicked on

is likely less relevant. The preference is indicated by an arrow labeled with the

query, to show that the preference is with respect to that query. We expect this

to be valid because users view results in order, and a user is unlikely to click
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CLICK >q SKIP ABOVE
CLICK
FIRST

>q
NO-CLICK

SECOND

CLICK >q′ SKIP ABOVE
CLICK
FIRST

>q′
NO-CLICK

SECOND

CLICK >q′
SKIP EARLIER

QUERY
CLICK >q′

TOP TWO
EARLIER QUERY

Figure 4.3: Feedback strategies. We either consider a single query, q, or a query
q that has been preceded by a query q′. Given a query, a dot represents a result
document and an x indicates the result was clicked on. We generate a constraint
for each arrow shown, with respect to the query marked.

on a document he or she considers less relevant than another document she

observed but did not click on. Note that these preferences are not stating that the

clicked-on document is relevant, rather that it is more likely to be relevant than

the ones not clicked on above. The second strategy, CLICK FIRST >q NO-CLICK

SECOND makes use of the fact that users typically view both of the top two

results before clicking. It states that if the first document is clicked on, but the

second is not, the first is likely more relevant than the second. It seems reasonable

to assume that having considered two options, the user is likely to click on the

more relevant one.
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The next two strategies are identical to the first two except that they generate

feedback with respect to previous queries. The intuition behind this is that since

the two queries belong to the same query chain, the user is looking for the same

information with both. Had the user been presented with the new results for

the earlier query, he or she would have preferred the clicked-on document over

those skipped above.

The last two strategies make the most use of query chains. The strategy

CLICK >q′ SKIP EARLIER QUERY states that a clicked-on document is preferred

over any result for an earlier query q′ (within the same query chain) that we can

be reasonably confident the user looked at, but which was not clicked on. These

documents include all the documents down to one below the lowest ranked

clicked document for q′, since the eye tracking study revealed that users usually

look one document past the last one clicked on. Note that this judgment is

made with respect to the earlier query,5 q′. Also, note that these preferences are

particularly unlike any generated without considering query chains. They tend

to indicate that a very low ranked result for the original query (as the result

clicked on in the later query was presumably not returned at high rank for q′,

but must have been ranked somewhere since ranking functions can compute

scores for all documents) is preferred over those results that were ranked highly

for q′. In the event that no documents were clicked on in the earlier query, we

use the earlier observation that users usually look at the top two results. This

is exploited in the feedback strategy CLICK >q′ TOP TWO EARLIER QUERY by

generating preferences for the top two results. In the unusual case where there

5It is unnecessary to state the same thing with respect to the later query q because presumably
the preference is already satisfied, or the user would have seen the same result earlier.
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q1 q2

d1 d4 x
d2 x d5

d3 d6

d2 >q1 d1 d4 >q2 d5 d4 >q1 d5

d4 >q1 d1 d4 >q1 d3

Figure 4.4: Sample query chain and the feedback that would be generated using
all six feedback strategies. Two queries were run, and each returned three
documents. One document in each query was clicked on. di >q dj means that di
is preferred over dj with respect to the query q.

are not enough results to the earlier query to use these strategies, we select a

random document as if it had been at the end of the results.

Ultimately, given some query chain, we make use of all six strategies to

generate the preference feedback. Figure 4.4 gives a sample query chain and the

feedback that would be generated in this case.

4.5 Detecting Query Chains

To use query chains, we need a method to identify them. A number of researchers,

including Beeferman and Berger (2000); Furnas (1985); Jones and Fain (2003) have

previously successfully learned to predict query reformulations. Their success

on this task suggests that the problem of detecting query chains, which we have

to address, is feasible. We now turn to this question.

As a basis for evaluating potential approaches, we created a dataset using

search logs from the Cornell University library Web search engine. We manually

labeled query chains in the logs for a period of 5 weeks. The search logs recorded

the query, date, IP address, results returned, number of clicks on the results and
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a session id uniquely assigned to each user. We extracted the list of queries,

grouped them by IP address and sorted them chronologically. Queries from an

IP address with no other queries within 24 hours were automatically marked

as not belonging to a query chain. This resulted in a dataset of 1,285 queries.

Two judges then individually grouped the queries into query chains manually,

using search engines to resolve uncertainties (for instance, one query for a person

was followed by one for the department where the person is a faculty member).

Finally, the judges combined their identified query chains, resolving the small

number of disagreements between themselves through further investigation.

For each pair of queries from the same IP address within half an hour, we

generated a training example by constructing a feature vector. The training

example was labeled using the query chains identified manually. If the two

queries belonged to the same query chain the example was labeled as positive.

Otherwise it was labeled as negative. This led to 3,418 training examples of

which 3,096 were labeled as positive. The feature vector generated given two

queries q1 and q2 consisted of the 16 features shown in Table 4.1.

Using this data, we trained a number of SVM classifiers with various pa-

rameters. The classifiers learned tended to label almost all examples as positive.

Among our best performing models was an SVM with an RBF kernel with

C = 100 and γ = 1 (Joachims, 1999). Evaluating using five-fold cross validation,

it gave an average accuracy of 94.3% and precision of 96.5%. This compares to

a accuracy and precision of 91.6% for a simple non-learning strategy where we

assume all pairs of queries from the same IP address within half an hour of each
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Table 4.1: Features used to learn to classify query chains. q1 and q2 are two
queries at times t1 and t2, with t1 < t2. r1 and r2 are the respective result sets,
with r1top and r2top being the top 10 results.

CosineDistance(q1, q2)
CosineDistance(doc ids of r1top, doc ids of r2top)
CosineDistance(abstracts of r1top, abstracts of r2top)
TrigramMatch(q1, q2)
ShareOneWord(q1, q2)
ShareTwoWords(q1, q2)
SharePhraseOfTwoWords(q1, q2)
NumberOfDifferentWords(q1, q2)
t2− t1 ≤ {5, 10, 30, 100} seconds
t2− t1 > 100 seconds
NormalizedNumberOfClicks(r1)
NormalizedMin(|r1|, |r2|)
NormalizedMax(|r1|, |r2|)

other are in the same query chain6. As this difference is relatively small, and

computing some of the feature values described above for every pair of queries is

relatively expensive (in particular those that depend on the abstracts retrieved),

we decided to rely on our simple half-hour heuristic. We judged that a precision

of over 90% is sufficient for our present purposes. However, it is worth keeping

in mind that such a heuristic may not necessarily perform as well in a general

Web search setting as in a library search setting.

We also considered extending the half-hour window on our training data

in order to increase recall, but decided that we were recognizing a sufficient

number of query chains without doing so. In particular, given the large quantity

of clickthrough data that can be easily collected, when obtaining relevance

judgments it is more important that identified query chains are correct, rather

6Note that this heuristic is not necessarily transitive. Suppose we observe three queries
separated by 20 minutes. While each sequential pair of queries will be considered as belonging
to the same query chain, the two end queries will not be considered in the same query chain.
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than that all query chains are found (in other words, precision is more important

than recall).

However, to gain some insight into the properties of query chains we trained

a linear SVM using the same data and computed the total weight on each feature.

The features with largest positive weight were CosineDistance(q1, q2), which mea-

sures the textual similarity between q1 and q2, and CosineDistance(doc ids of r1top,

doc ids of r2top), which measures the overlap between the documents in the top

10 results. This indicates that if two queries are similar, or if they retrieve many of

the same documents, then they are more likely to be in the same query chain. The

feature with largest negative weight measures the minimum number of results

returned by either query normalized between 0 and 1, NormalizedMin(|r1|, |r2|).

This indicates that if one of the queries returns few results, the queries are more

likely to be in a query chain. Our interpretation is that if a query returns no

results, the user is more likely to run a second query.

4.6 Accuracy of the Feedback Strategies

We now assess the accuracy of the feedback strategies proposed in Section 4.4.

To determine the accuracy of each individual strategy, we collected additional

data following the eye-tracking study described in Chapter 2. For 16 subjects, we

evaluated whether the preferences derived from the feedback strategies across

multiple queries agree with explicit relevance judgments made by independent

judges.
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Table 4.2: Accuracy of the strategies for generating pairwise preferences from
clicks. The base of comparison are the explicit page judgments. Note that the
first two cases cover two preference strategies each.

Strategy Accuracy
CLICK >q SKIP ABOVE 78.2 ± 5.6
CLICK FIRST >q NO-CLICK SECOND 63.4 ± 16.5
CLICK >q SKIP EARLIER QUERY 68.0 ± 8.4
CLICK >q TOP TWO EARLIER QUERY 84.5 ± 6.1
Inter-Judge Agreement 86.4

Specifically, we grouped the results observed by each user by query chain

and collected explicit relevance judgments from five judges. The judges were

asked to weakly order all results encountered during each query chain according

to their relevance to the question asked of the user. To avoid biasing the judges,

the order in which results were presented to the judges was randomized and

the judges were not given the abstracts Google used when presenting the results.

Some of the query chains were assessed by two judges for inter-judge agreement

verification. Whenever two judges expressed a strict preference between two

pages, they agreed in the direction of preference in 86.4% of the cases.

Table 4.2 summarizes the extent to which the preferences generated agree with

the explicit judgments. The table shows the percentage of preferences generated

from clicks using the above strategies that agree with the strict preferences

provided by the relevance judges. The first two lines in the table show the

accuracy of the strategies that do not exploit query chains. The CLICK >q SKIP

ABOVE strategy is 78.2% accurate, which is substantially and significantly better

than a random baseline of 50%. Furthermore, it is reasonably close in accuracy

to the average agreement of 86.4% between the explicit judgments from different

judges. This serves as an upper bound for the accuracy one could ideally expect

even from explicit user feedback. The second within-query strategy, CLICK FIRST
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>q NO-CLICK SECOND, appears less accurate. However, since it produces fewer

preferences (specifically, only on queries where the user clicked exclusively on

the first link), the confidence intervals are large. Independent of the accuracy,

the preferences from this strategy are probably less informative, since they only

confirm the current ranking and never suggest a reordering.

Lines 3 and 4 in Table 4.2 show the accuracy of the two strategies that exploit

query chains. Both CLICK >q′ SKIP EARLIER QUERY and CLICK >q′ TOP TWO

EARLIER QUERY are significantly more accurate than random. In particular, the

accuracy of CLICK >q′ TOP TWO EARLIER QUERY is very close to the average

agreement between judges.

A possible explanation for the difference in accuracy between the two query

chain strategies is that they apply to different types of query chains. While

CLICK >q′ SKIP EARLIER QUERY is applied when the previous query received

a click, the strategy CLICK >q′ TOP TWO EARLIER QUERY is applied precisely

in the opposite case. To investigate the effect of this difference, we also evalu-

ated a variant of CLICK >q′ TOP TWO EARLIER QUERY. This variant generates

preferences analogous to CLICK >q′ TOP TWO EARLIER QUERY, but in chains

where the previous query did receive a click (but excluding the clicked results).

The accuracy of this strategy is 67.7%± 9.4, indicating that the absence of a click

followed by another query with a click is particularly strong evidence regarding

the relevance of the results of the earlier query.

Overall, we conclude that the preferences generated from the clickthrough

logs are reasonably accurate and that they convey information regarding the

user’s preferences.

73



4.7 Learning Ranking Functions

Given log files recording user behavior on a Web search engine, we have shown

that log records can be transformed into preference judgments in Section 4.4,

after segmenting the queries into query chains as described in Section 4.5. Next,

we present an algorithm to learn from these preferences, which we then evaluate

using a real-world search engine.

As described in Chapter 3, we assume as input preference judgments over

documents di and dj for a given query q to be of the following form:

di �q dj (4.1)

Such a preference judgment indicates that di is preferred over dj given q. As our

retrieval model, we chose a linear retrieval function:

rel(di, q) = w · Φ(di, q) (4.2)

where Φ(di, q) (which we define shortly) is a function that maps documents and

queries to a feature vector. This feature vector describes the extent to which

the query q matches document di according to any number of dimensions. w

is a weight vector that describes the importance of each of the features in Φ,

thus giving us a real valued retrieval function where a higher score indicates a

document di is estimated to be more relevant to the query q. The task of learning

a ranking function becomes one of learning an optimal w.
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4.7.1 Ranking SVMs

We used a modified Ranking SVM (Joachims, 2002), which was described in

some more detail in Chapter 3, to learn w in Equation 4.2. Summarizing this

algorithm, we start by rewriting Equation 4.1 as

w · Φ(di, q) > w · Φ(dj, q) (4.3)

We then add a margin, and non-negative slack variables to allow some of the

preference constraints to be violated, as is done with classification SVMs. This

yields a preference constraint over w.

w · Φ(di, q) ≥ w · Φ(dj, q) + 1− ξij (4.4)

As noted in Chapter 3, we cannot efficiently find a w that minimizes the number

of violated constraints. However, we can minimize an upper bound on the

number of violated constraints,
∑
ξij . Simultaneously maximizing the margin

leads to the convex quadratic optimization problem seen earlier:

minw,ξij
1
2
w · w + C

∑
ij ξij

subject to

∀(q, i, j) : w · Φ(di, q) ≥ w · Φ(dj, q) + 1− ξij

∀i, j : ξij ≥ 0

(4.5)

We will later add more constraints to the optimization problem taking advantage

of prior knowledge in the learning to rank setting.
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4.7.2 Retrieval Function Model

We now specify the feature mapping Φ(di, q) needed to compute the feature

vector given to the Ranking SVM. This definition is key in determining what

class of ranking functions that we can learn.

We define two types of features: rank features φfrank(d, q) and term/document

features φterms(d, q). Rank features serve to exploit existing retrieval functions

relf0 , while term/document features allow us to learn more fine-grained relation-

ships between particular query terms and specific documents.

First we need a few definitions. Let T := {t1, . . . , tN} be all the terms (words)

in our dictionary. A query q is a set of terms q := {t′1, . . . , t′n} where t′i ∈ T .

Let C := {d1, . . . , dM} be the set of all documents in our collection. We assume

the original search engine has a number of available retrieval functions F that

provide relevance scores relf0 (d, q) for f ∈ F . We define rf0 (q) as the ordered

set of results as ranked by relf0 for query q. In the experiments in this chapter,

F consists of a single ranking function as provided by Nutch7 for the sake of

simplicity.

Now,

Φ(d, q) =



φf1rank(d, q)

...

φfFrank(d, q)

φterms(d, q)


(4.6)

7An open source search engine implementation available at http://www.nutch.org/
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φfrank(d, q) =



1(Rank(d in rf0 (q)) ≤ 1)

1(Rank(d in rf0 (q)) ≤ 2)

1(Rank(d in rf0 (q)) ≤ 3)

...

1(Rank(d in rf0 (q)) ≤ 10)

1(Rank(d in rf0 (q)) ≤ 15)

1(Rank(d in rf0 (q)) ≤ 20)

...

1(Rank(d in rf0 (q)) ≤ 100)



(4.7)

φterms(d, q) =


1(d = d1 ∧ t1 ∈ q)

...

1(d = dM ∧ tN ∈ q)

 (4.8)

where 1 is the indicator function.

Before looking at the term features φterms(d, q), we explore the rank features

φfirank(d, q). For each retrieval function relfi0 we have 28 rank features (for ranks

1, 2, 3, 4, .., 10, 15, 20, 25, .., 100). Each of these is set to 1 if the rank of the

document d in rfi0 is at or above the specified rank.

The rank features allow us to learn weights for the individual ranks of the

original search functions. This allows the learned ranking function to combine

different retrieval functions with different weights, as is done in prior work de-

scribed earlier. We do not consider the specific scores assigned by relf0 in order to

account for potentially different magnitudes of the scores from different retrieval

functions. This also ensures that our method could generalize to settings where

we do not have access to the scores assigned to documents but only the document
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ranks. Additionally, by decomposing over the ranks, we can learn scores that

are non-linear in the rank. As an example, if some document d is at rank 4 given

query q and using retrieval function f1 then φf1rank(d, q) = [0, 0, 0, 1, . . . , 1]T .

If a document is not ranked in the top 100 by the retrieval function f1, then all

the features of φf1rank are 0. This means that documents not ranked in the top 100

results by a retrieval function relfi0 are indistinguishable using the φfirank features

(although we could increase the maximum rank considered arbitrarily). We chose

this cutoff as it is extremely rare for users to look beyond the top 100 results. As

in this study we only consider one ranking function, the rank features simply

tell us how much weight to place on the documents ranked highest by Nutch.

We also have NM term/document features. For convenience, let φi,jterm(d, q)

correspond to the feature with di and tj in φterms(d, q). There is one feature

for every (term, document) pair in T × C. The term/document features allow

the ranking function to learn associations between specific query words and

documents by assigning a non-zero value to the appropriate weight. This is

usually an extremely large number of features, although most never appear

in our training data and can thus be ignored. Furthermore, the feature vector

φterms(d, q) is very sparse: For any particular document d ∈ C, given a query

with |q| terms, only |q| of the φi,jterm(d, q) features are set to 1. Specifically, only the

terms for one i value (where d = di) and with tj ∈ q are non-zero. The sparsity

makes this problem well suited for solving using support vector machines. A

positive value of the weight wi,jterm, associated with the feature φi,jterm, indicates

that di is more likely to be relevant to queries containing the term tj , while a

negative value means the opposite.
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4.8 Adding Prior Knowledge

We also have additional prior knowledge that should be incorporated into this

learning problem. Absent any other information, documents with a higher rank

in the original ranking should be ranked higher in the learned ranking system.

This is intuitive because on average we would expect the document relevance to

be a decreasing function of the original rank of the documents, unless the original

ranking function is particularly poor. We define such additional constraints in

this section.

It is also of practical importance to add these constraints. In our training data

almost all of the relevance judgments generated state that a lower ranked docu-

ment is preferred to a higher ranked document. Without additional constraints,

a trivial and undesirable solution to the optimization problem in Equation 4.5

would be one that reverses the original ranking by assigning a negative value

to each of the weights corresponding to rank features in Φ. To see this, consider

again Figure 4.3. The CLICK >q(q′) SKIP ABOVE preferences would be satisfied

if the rankings were reversed. These preferences are much more common than

CLICK FIRST >q(q′) NO-CLICK SECOND preferences. In the last two preferences

classes, the preferred document is also presumably somewhere much lower in

the results for q′ (if it is not in the results, we can think of it as being at the bottom

of the results), and hence the preferences would also be satisfied if the entire

ranking were reversed.
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We add additional hard constraints to the optimization problem specified in

Equation 4.5. These constraints require that weights for each of the rank features

must be greater than a constant positive value wmin:

∀i ∈ [1, 28|F |]. wirank ≥ wmin (4.9)

Intuitively, wmin limits how quickly the original ranking is changed by train-

ing data. To see this, briefly consider a setting where we have a single ranking

function f and a query q = t′ that returns at least 100 results. Let di be the

document ranked at position i in rf0 (q). In this case,

φfrank(d100, q) = [0, . . . , 0, 0, 1]T

φfrank(d95, q) = [0, . . . , 0, 1, 1]T

...

φfrank(d1, q) = [1, . . . , 1, 1, 1]T

Calling the part of w that corresponds to rank features wrank, from Equation

4.9 we then get

wrank · φfrank(d100, q) ≥ wmin

wrank · φfrank(d95, q) ≥ 2wmin

...

wrank · φfrank(d1, q) ≥ 28wmin

Now say we have a document d that is preferred over d1 but is not in the

original results. d would be ranked highest if rel(d, q) > rel(d1, q). We know
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from Section 4.7.2 that only φt
′,d
term(d, q) is non-zero in φterms(d, q). Expanding and

simplifying, this would imply:

wterms · φterms(d, q) ≥ 28wmin + wterms · φterms(d1, q) (4.10)

wd,qterm ≥ 28wmin + wd1,qterms (4.11)

where wα,βterm corresponds to φα,βterm(d, q).

The larger wmin, the larger in magnitude wd,qterm − wd1,qterm must be for this to

happen. A ranking SVM minimizes over 1
2
w · w + C

∑
ξij (Equation 4.5), so

the terms will only become large if there is sufficient training data to support a

reordering.

4.9 Evaluation

To collect training data, we implemented a real-world, publicly accessible search

engine called Osmot. The search engine implements a full-text search of Web

pages maintained or indexed by the Cornell University library. This collection

includes over 13,500 Web pages. We used the Nutch search engine8 as a starting

point, with the Osmot search engine effectively being a wrapper around Nutch

that implements logging, log analysis, learning, reranking and evaluation func-

tionality. In the experiments in this paper, we chose Nutch’s built-in retrieval

function as the baseline to compare against and build upon. The Nutch retrieval

function is based on the cosine distance and incorporates several modifications to

make it more suitable for Web search including special cases for phrase matches

and HTML fields. Osmot is available for download by the research community9.
8http://www.nutch.org/
9http://www.cs.cornell.edu/˜filip/osmot/
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The name is derived from the word osmosis, as learning from implicit feedback is

almost as good as learning from users by osmosis.

We collected training data from the Cornell University library search engine

using the ranking function built into Nutch between June and December 2004.

During this time, we recorded user queries and clicks, observing 9,949 queries

and 7,429 clicks. While we were collecting this data, the users saw results as

ranked by the built-in Nutch retrieval function, which we denote as rel0. This

gave 120,134 preferences constraints by applying all six strategies introduced ear-

lier. We call these preferences PQC . Of these, 45,610 preferences were generated

without using the query chain strategies. We call this subset of the preferences

PNC .

After adding the constraints as described in Section 4.8, we trained a ranking

SVM for each of the two sets of preferences with a linear kernel and a default

value of C using SVM light (Joachims, 1999). We set wmin = 1. Using the prefer-

ences PQC we learned a retrieval function relQC and using the preferences PNC

we learned relNC . The former model has 41,354 support vectors, while the latter

has 18,034.

The ranking model learned using query chains, relQC , instantiated 18,748

features. The number of features instantiated can be expected to grow almost

linearly in the size of the document collection, and sub-linearly in the amount

of training data collected (depending on overall user search behavior). How-

ever, this did not pose a problem for the SVM solver because all the preference

judgments were sparse.
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4.9.1 Interleaved Evaluation

To evaluate our results, we need an unbiased method for comparing two ranked

retrieval functions. For this purpose we use the interleaved ranking method

of Joachims (2003), presented on page 43 in Chapter 3. We now describe this

technique again at a high level.

Interleaving assesses the relative retrieval quality of two ranking functions.

Given two ranking functions, we presented users with a combination of the

results from both. We know that users scan results from top to bottom, so we

intertwine the results such that there is no presentation bias favoring either

ranking function. This evaluation method is built into the Osmot search engine.

ranking r
d1

d2

d3

d4

ranking r′

d2

d5

d1

d6

⇒

combined(r, r′)

d1

d2

d5

d3

d4

f6

Figure 4.5: Two example rankings with four results each, and the combined
outputs we would generate by starting with the top ranked document from
ranking r.

Figure 4.5 shows two example rankings, r and r′, from two different retrieval

functions as well as a combination of them, combined(r, r′). The combination is

designed such that no matter how many results from the combined ranking the

user considers, in expectation the user sees the same number of results from both
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r and r′. For instance, in the above example rankings, if the user looks at the top

three results in the combined ranking, this user has seen 2 results from r and 2

results from r′. If the user looks at the top five results, he or she has seen 4 and 3

from r and r′ respectively. To compensate for a bias toward the results of r, we

randomly switch r and r′ half the time.

Once we have presented the user with a combined ranking, we can evaluate

which of the two rankings is preferred based on the user’s clicking behavior.

Specifically, we can count how many results from the top of each ranking the

user clicked on. For example, in Figure 4.5, suppose the user clicked on d1 and

d5. The top three results shown combine the top two positions of rankings r and

r′. In this case, we see that the user clicked on one result from the top two of r′

and one result from the top two of r. This tells us that the user does not prefer

either ranking.

If over a large number of users and queries we see that on average one of the

rankings receives more clicks, we can conclude that ranking function is better.

4.9.2 Results and Discussion

We evaluated the ranking functions learned using the preferences inferred from

the clickthrough data collected on the Cornell University library search engine

from 10 December, 2004 through 18 February, 2005 using interleaved evaluation.

When a user connected to the search engine, we randomly selected an exper-

imental condition for that user. The user either saw a ranking combining rel0

and relQC or a ranking combining relQC and relNC . For consistency, we kept

the same combination for the duration of each user’s session (otherwise, if the
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Table 4.3: Results on Cornell University library search engine. rel0 is the orig-
inal retrieval function, relQC is that trained using query chains, and relNC is
that trained without using query chains. The differences in performance are
statistically significant with 99% confidence.

Evaluation User Prefers

Mode Chains Other Indifferent

relQC vs. rel0 392 (32%) 239 (20%) 579 (47%)

relQC vs. relNC 211 (17%) 160 (13%) 855 (70%)

user immediately re-ran the same query, he or she may confusingly get different

results).

During the evaluation, we collected about 1200 queries in each evaluation

mode. The results for both evaluation modes are shown in Table 4.3. These

results show a number of interesting properties. First, 53% of the time relQC , the

ranking function trained using query chains, performs differently to the original

ranking function, rel0. 30% of the time the two trained ranking functions perform

differently. In particular, the first of these values indicates that our method often

makes a difference in search engine performance. Given that the original ranking

function is reasonable, it would be surprising if these values were much higher.

As long as our method does not cause relevant documents that are ranked highly

by rel0 to be lowered in rank, we would see identical performance in cases when

rel0 performs well.

Second, from Table 4.3 we see that relQC outperforms rel0 more often than we

would expect at random if the two ranking functions were equally good. Using

a binomial sign test, and the null hypothesis that the two ranking functions are

equally effective, we are able to reject the null hypothesis with 99% confidence.
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This establishes that our learned ranking function is an improvement over the

original one. Of course, given the new ranking function, we can collect new

training data and then re-run the whole learning process. We expect this to

further improve ranking performance.

Finally, the model trained using query chains outperforms the model trained

without using query chains with 99% confidence, using the same test. This

demonstrates that by exploiting the information about query chains present in

log files, we are able to see a measurable additional improvement in search engine

performance over what we would see without using this extra information.

One may wonder if it makes sense to learn associations between specific

query words and documents. Given our initial 9,949 training queries, Table 4.4

shows the top ten words that appeared most frequently in queries. We see that

queries tend to be repetitive. Ignoring the three stopwords in the top ten words

and collecting the remaining rows in the table, we found that one or more of the

remaining seven words appeared in 12% of all queries. At least one of the top

100 words (removing stopwords) appeared in 38% of all queries. Moreover, for

many popular queries, there appear to be only a few documents that are truly

relevant to the query. Hence it is not surprising that by learning individual query

word/document associations, we can see significant improvements in ranking

results.

To understand where the improvements are coming from, it is useful to look

at the term/document features with largest positive and negative weights. The

top and bottom five features are given in Table 4.5. First we consider the top

five features, which for the most part describe very sensible associations. The

feature for “lexus” is associated with the main homepage of the Lexis-Nexis
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Table 4.4: The most common words to appear in queries in the training data, and
the fraction of queries in which they occur.

Word Fraction of queries
of 3.56 %
library 2.75 %
bibliography 2.60 %
and 2.55 %
annotated 2.42 %
reserve 2.32 %
citation 1.99 %
web 1.48 %
the 1.41 %
course 1.33 %

library resource. This is clearly a spelling correction, with a search for “lexus”

originally returning no results. The same search now places the correct document

at the top of the results. The feature for “ebook” returns the main ebooks Web

page. A search for ebook previously returned seven results, none of which were

particularly useful. The top one, titled “Answers to Frequent Job Searching

Research Questions”, happened to mention access to ebooks from off campus.

The feature for “reuleaux” is associated with an FAQ page about the Cornell

University library digital collections. The Web page provides a clear link to

a site that describes models designed by Professor Reuleaux. This contrasts

with the original top result being a broken link, and the second result being

a newsletter with only passing reference to the model collection. The feature

for “and” is of little practical interest (we did not remove stopwords). Finally,

the fifth word “oed” is an acronym for the “Oxford English Dictionary”. The

associated document clearly links to it, in contrast with the original top result

which was an information bulletin showing a set of screen shots how to get to

the OED among other things.
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Table 4.5: Five most positive and most negative feature weights in the ranking
function learned using query chains on the Cornell University Library search
engine

Word Document Weight
lexus Lexis-Nexis Academic Universe 22.8
ebook CUL eContent Collection 22.5

reuleaux CUL Digital Collections 21.8
and Printable News and Notes 07/03 19.6
oed Dictionaries and Encyclopedias 19.5
ndlf Management meeting notes 03/97 -21.0
ndlf Management meeting notes 02/97 -20.6
ndlf Management meeting notes 04/96 -19.5
ndlf Management meeting notes 04/96 -18.6

instruction Library Research Workshops -18.3

The five features with the most negative weights in Table 4.5 are equally

interesting. Four of them relate to meeting notes mentioning the National Digital

Library Foundation. Using the original ranking function, this search generated

just 6 results with only such meeting notes. With the learned system, a search

for “ndlf” now returns similar results to a search for “National Digital Library

Foundation”. These results appear slightly more useful from the short abstracts

that are presented. However, we discovered that in fact the search engine had

not indexed the main NDLF Web page. We see here that the search system

has recognized users running chains of queries looking for the NDLF website,

although none have been successful in finding it. Despite this, some of the worst

results for this query have indeed been pushed down the results list. The fifth

feature is harder to interpret, but from log files it appears that users looking

for the Department of Learning and Instruction saw this result and repeatedly

skipped over it. This document used to appear as the top result given the query

“instruction”.
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4.10 Summary

This chapter has shown how to use information in query reformulations to obtain

more useful implicit relevance judgments from clickthrough logs. A number of

strategies for collecting such judgments were presented and shown to be valid by

comparing to relevance judgments obtained by explicitly collecting judgments

from experts. Further, the judgments collected from clickthrough data were used

to learn an improved ranking function for a real document collection used by

regular users. The results demonstrated the additional usefulness of using query

chains over previous techniques for obtaining implicit relevance judgments.
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CHAPTER 5

AVOIDING BIAS IN IMPLICIT FEEDBACK

In the previous chapter, we showed how to obtain useful implicit relevance

judgments from clickthrough data. We saw that, in particular, query chains

provide valuable judgments that identify relevant documents to queries that

initially present only poor matches to users. We also saw how these relevance

judgments can be used to learn an improved ranking function using Ranking

SVMs. However, as described in Section 4.8, the relevance judgments used

as training data mostly oppose the original ranking order. They were thus

were supplemented with background knowledge to avoid a degenerate solution,

which simply learns to reverse the original rankings. In this chapter we will take

a principled approach to study these bias effects, and show how they can be

eliminated when learning to rank from implicit feedback. The research presented

in this chapter was originally published in (Radlinski & Joachims, 2006)

5.1 Introduction

Learning to rank from implicit feedback allows the judgments of real users to

be reflected in learned ranking functions. This contrasts with most previous

work, which uses relevance judgments collected from human experts. We have

seen in previous chapters how the clicking behavior of users can be translated

into judgments about the relative relevance of individual documents. However,

let us consider again the strategies proposed for generating relative relevance

judgments in the previous chapter. They are shown once more in Figure 5.1.
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CLICK >q SKIP ABOVE
CLICK
FIRST

>q
NO-CLICK

SECOND

CLICK >q′ SKIP ABOVE
CLICK
FIRST

>q′
NO-CLICK

SECOND

CLICK >q′
SKIP EARLIER

QUERY
CLICK >q′

TOP TWO
EARLIER QUERY

Figure 5.1: Feedback strategies from Chapter 4. We either consider a single
query, q, or a query q that has been preceded by a query q′. Given a query, a dot
represents a result document and an x indicates the result was clicked on. A
preference is generated for all arrows shown.

Four of these strategies, CLICK >q SKIP ABOVE, CLICK >q′ SKIP ABOVE,

CLICK >q′ SKIP EARLIER QUERY and CLICK >q′ TOP TWO EARLIER QUERY

generate preferences that oppose the original ranking order. In other words,

these strategies state that a lower ranked document is preferred over a higher

ranked document. While the other two strategies do not share this property, it

is relatively rare that users click only on the top ranked document and do not

reformulate or click on any other documents. This means that the vast majority

of preferences generated by these strategies oppose the original order. The same
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observation can be made about the strategies studied by Joachims et al. (2005)

and presented in Table 2.1 on page 34.

Importantly, whatever function was used to rank the documents, most prefer-

ences would be satisfied if the rankings presented were simply reversed. This

reversal pressure is present because bias in user behavior does not allow us

to validly obtain many relative relevance judgments that support the original

ranking order. In this chapter, we will see that through experiment design it is

possible to modify the presentation of search results to collect cleaner training

data. In particular, we describe an algorithm called FairPairs that has a small

effect on the quality of the results presented while provably providing training

data that, under two reasonable assumptions, does not suffer from presentation

bias. We will also verify the validity of the assumptions empirically using a real

world search engine.

Additionally, we will see that learning data collected using the FairPairs

algorithm guarantees that a learning algorithm that minimizes the number of

misordered pairs will converge to an ideal ranking if one exists. Finally, using

FairPairs it is also possible to measure the confidence that a particular pair of

results is ranked in the correct order.

From a theoretical standpoint, many researchers have previously considered

the question of stability and convergence when learning to rank, as the amount

of training data grows (including Freund et al. (1998); Herbrich et al. (2000);

Cohen et al. (1999); Crammer and Singer (2001); Chu and Keerthi (2005)). Most

of this research has been for problems in ordinal regression, which considers the

problem of learning to map results to a partial order and does not apply directly

to more general ranking problems. Also, previous work does not consider how
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user behavior biases the training data that can be collected. Instead, it assumes

simple models of noise in training data.

Finally, we view FairPairs as experiment design (see, for example, Hinkel-

mann and Kempthorne (1994)). In traditional experiment design, the researcher

asks the question of what to measure to ensure conclusive and unbiased results.

In a Web-based search engine, we view the presentation of results to users as

part of an interactive process that can also be designed to provide unbiased data

for machine learning purposes. For this reason, we consider the data collection

phase as part of the learning process.

5.2 Presentation Bias

We now describe the concept of presentation bias, which was first introduced

on page 14 in Chapter 1. In normal Web search, users pay significantly more

attention to results ranked highly than to those ranked lower. For example, the

Osmot search engine described in the previous chapter was used to provide

search functionality over the arXiv e-print archive, a large collection of academic

articles10. We observed that users click on the fifth ranked result for only about

5% of queries, and click on lower ranked results even less often. However, if

we take the fiftieth result and place it first or second in the ranking, users click

on it more than 5% of the time. Does this indicate that we have a poor ranking

function where the fiftieth result tends to be more relevant than the fifth? No.

Rather, it demonstrates the concept of presentation bias in clickthrough data,

even for search engines where users tend to be academic researchers.

10Available at http://search.arxiv.org/
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Table 5.1: Results from a user study using the Google search engine presented by
Joachims et al. (2005). In the “normal” condition, straight Google results were
presented, while the top two results were swapped in the “swapped” condition.
The counts show how often each result was clicked on when the Google’s top
result was more or less relevant than the second result.

“Normal” “Swapped”

Relative relevance d1 d2 d1 d2

rel(d1) > rel(d2) 20/36 2/36 16/28 2/28

rel(d1) < rel(d2) 7/20 4/20 12/36 9/36

Similarly, Joachims et al. (2005) performed a controlled user study, described

in Chapter 2, where volunteer subjects were asked to search for specific informa-

tion using Google. The results viewed by the subjects were afterward assessed

by expert judges for relevance. Table 5.1 shows a small selection of the results,

where the subjects saw one of two experimental conditions. In the “normal”

condition, the results were presented as ranked by Google. When the result

presented at the top (d1) was judged by a human expert to be more relevant

than the result presented next (d2), users clicked on the top result 20 out of 36

times and on the second result just twice, as could be expected. However, in the

“swapped” condition the top two results from Google were reversed before being

presented to users. Even when the second-ranked result (which was returned by

Google as the top result) was more relevant, users still clicked predominantly

on the result presented at the top. This again shows that presentation strongly

influences user behavior.

Definition 5.1. Presentation bias is manifested when users preferentially click on

higher ranked results, irrespective of relevance.
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Presentation bias may occur for a number of reasons, such as users trusting

the search engine to always present the most relevant result first. The question

we now address is how to tease out information about the relevance of the search

results from clickthrough logs despite such effects.

5.3 Bias-Free Feedback

In this section, we review the notion of relative relevance preferences and then

present the FairPairs algorithm. Training data for learning to rank can be repre-

sented either as absolute or as relative relevance statements. The former involve

data of the form relevance(documenti | query) = ri where ri is an absolute mea-

sure of relevance. This approach requires an absolute relevance scale in the train-

ing data, for example specifying ri ∈ [0, 1]. It is often particularly difficult to ob-

tain well calibrated partial relevance judgments. For example, in ranking movies

from 1 to 5 stars, different people may interpret a rating of 3 starts differently.

Instead we consider relative statements, with training data in the form of prefer-

ences such as relevance(documenti | query) > relevance(documentj | query). The

aim is to obtain judgments where the probability some documenti is judged more

relevant than some documentj is independent of the ranks at which they are

presented.

We now present FairPairs by example, then provide the formal algorithm.

The key idea is to randomize part of the presentation to eliminate the effect of

presentation bias while making only minimal changes to the ranking. Consider

some query that returns the documents (d1, d2, d3, d4, d5, d6, . . .). We perturb the

result set so that we can elicit relevance judgments unaffected by presentation
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Algorithm 5.1 FairPairs
1: Let R = (d1, d2, . . . , dn) be the results for some query.

2: Randomly choose k ∈ {0, 1}with uniform probability.

3: if k = 0 then

4: for i ∈ {1, 3, 5, . . .} do

5: Swap di and di+1 in R with 50% probability.

6: end for

7: else

8: for i ∈ {2, 4, 6, . . .} do

9: Swap di and di+1 in R with 50% probability.

10: end for

11: end if

12: Present R to the user, recording clicks on results.

13: Every time the lower result in a pair that was considered for flipping is

clicked, record this as a preference for that result over the one above it.

bias. We first randomly pick k ∈ {0, 1}. If k = 0, we consider the result set as

pairs ((d1, d2), (d3, d4), (d5, d6), . . .). Each pair of results is now independently

flipped with 50% probability. For example, the final ranking might end up as

(d1, d2, d4, d3, d5, d6, . . .) with only d3 and d4 flipped. Alternatively, we could end

up flipping all the pairs: each time FairPairs is executed, a different reordering

may occur. Similarly, if k = 1, we do the same thing except consider the result set

as pairs (d1, (d2, d3), (d4, d5), . . .). Then we take the result set generated in this

way and present it to the user. In expectation half the results will be presented at

their original position, and all results will be presented within one rank of their

original position. The FairPairs algorithm is formally presented in Algorithm 5.1.
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To interpret the clickthrough results of FairPairs, consider the results for

some query q that returns (d1, d2, . . . , dn). Let dj C di denote that dj is presented

just above di (that is, the user sees dj first if they read from the top) and that

k is such that di and dj are in the same pair (for example, when k = 0, d3 and

d4 are in the same pair, but d2 and d3 are not). Let nij count of how often this

occurs. Also, let cij denote the number of times a user clicks on di when dj C di

(that is, when di is the bottom result in a pair). By perturbing the results with

FairPairs, we have designed the experiment such that we can interpret cij as the

number of votes for relevance(di) > relevance(dj), and cji as the number of votes

for relevance(dj) > relevance(di). The votes are counted only if the results are

presented in equivalent ways, providing an unbiased set of preferences because

both sets of votes are affected by presentation bias in the same way. We formalize

this property and prove its correctness in the next section. Note that if a user

clicks multiple times on some set of results, they are making multiple votes.

Although in this chapter we focus on preferences generated from user clicks

on the bottom result of a pair, in fact most of the properties discussed also appear

to hold for preferences generated from clicks on the top result of a pair. The

reason we chose to focus on clicks on bottom results is that, as described in

Chapter 2, users typically read search engine results top to bottom and are less

likely to look at the result immediately below one they click on than they are to

look at one immediately above it.
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5.4 Theoretical Analysis

In this section we will show that, given any presentation bias that satisfies

two simple assumptions, FairPairs is guaranteed to give preference data that is

unaffected by presentation bias.

We start by presenting our assumptions. Let ri(q) be the relevance of docu-

ment di to a query q (we will usually omit q for brevity). The probability of a

particular document being clicked by a user depends on its position in the search

results, its relevance to the query, as well as potentially on every other document

presented to the user. Assume the user selects dbot from the list (d↑, dtop, dbot, d↓),

where d↑ are the documents preceding (ranked above) dtop and d↓ are those after

(ranked below) dbot. In particular, dtop is the document just before dbot. Let

P (dbot|d↑, (dtop, dbot),d↓) (5.1)

be the probability that dbot is clicked by the user given the list of choices.

Assumption 5.1 (Document Identity). The probability of a user clicking depends only

on the relevance of the documents presented, not their particular identity. Formally, we

can write this as

P (dbot|d↑, (dtop, dbot),d↓) = P (dbot|r↑, (rtop, rbot), r↓) (5.2)

This assumption essentially states that the user is looking for any sufficiently

relevant document. It also requires that users do not choose to skip over docu-

ments they recognize and know to be relevant. We come back to this later.

We now define two scores. First, the item relevance score measures how

much more likely users are to click on more relevant results.

98



Definition 5.2 (Item Relevance Score). If we take a ranking of documents and replace

some document d1 with a less relevant one d2 while leaving all others unchanged, the

difference between the probability of d1 being selected and that of d2 being selected is the

item relevance score. Formally, if d1 and d2 have relevance r1 and r2 with r1 > r2, and

d1, d2 /∈ d↑
⋃

d↓, then

δrel12 =P (d1|r↑, (rtop, r1), r↓)−P (d2|r↑, (rtop, r2), r↓) (5.3)

Analogously, consider the effect of replacing the document before the one

that the user selects.

Definition 5.3 (Ignored Relevance Score). If we take a ranking of documents and

replace some document with a more relevant one while leaving all others unchanged,

the difference between the probability of the user selecting the next document (after the

one replaced) and the same probability without the change is the ignored relevance score.

Formally, if d1 and d2 have relevance r1 and r2 where r1 > r2, and d1, d2 /∈ d↑
⋃

d↓,

then

δign12 = P (dbot|r↑, (r1, rbot), r↓)− P (dbot|r↑, (r2, rbot), r↓) (5.4)

This score measures how replacing the previous document changes the prob-

ability of a user clicking on a result. If δign12 is negative, it means that replacing

the previous document with a more relevant one reduces the probability of users

clicking on the document under consideration. While we may expect this to be

the case, it is possible that δign12 is positive: if a user sees a very irrelevant docu-

ment, they may be more likely to give up and not even consider the next result

presented. On the other hand, if a user sees a somewhat relevant document, they

may be more inclined to consider further results. We will measure this later.
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Our second assumption relates to the relative magnitude of these two scores.

Note that it would be trivially satisfied if the first is positive and the second

negative.

Assumption 5.2 (Relevance Score Assumption). For all d↑,d↓, d1, d2 with d1, d2 /∈

d↑
⋃

d↓, the item relevance score is larger than the ignored relevance score.

δrelij > δignij (5.5)

We will evaluate the validity of our assumptions in the experimental results

section. Also, note that they are satisfied by many common item selection models

(for example, users selecting results where they judge their probability of success

above some threshold, as described by Miller and Remington (2004)).

We will now prove that the data collected using FairPairs is unaffected by

presentation bias. Theorem 5.1 tells us that if the documents before and after a

pair being considered vary independently of how the pair is ordered, observing

that the expectation of the users’ probability of selecting di when dj C di is higher

than the expectation of the users’ probability of selecting dj when di C dj is both

necessary and sufficient to deduce that ri > rj .

Theorem 5.1. Let di and dj be two documents with relevance ri and rj . If assumptions

5.1 and 5.2 are satisfied and P (r↑, r↓|di C dj) = P (r↑, r↓|dj C di) then ri > rj ⇔ Pij >

Pji, where Pij = Er↑,r↓ [P (di|r↑, (rj, ri), r↓)].

Proof. We start by rewriting the expectations of the probabilities and simplifying:

Pij =
∑
r↑,r↓

P (di|r↑, (rj, ri), r↓)P (r↑, r↓|di C dj) (5.6)

Pji =
∑
r↑,r↓

P (dj|r↑, (ri, rj), r↓)P (r↑, r↓|di C dj) (5.7)
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Pij − Pji =
∑
r↑,r↓

[P (di|rij)− P (dj|rji)]P (r↑, r↓|di C dj) (5.8)

where rij = (r↑, (rj, ri), r↓). Say Pij − Pji is positive. The sum can be positive if

and only if the first term is positive for at least one r↑and r↓.

Applying Assumption 5.2, we see ri > rj implies that

P (di|r↑, (rj, ri), r↓) = P (dj|r↑, (rj, rj), r↓) + δrelij (5.9)

> P (dj|r↑, (rj, rj), r↓) + δignij (5.10)

= P (dj|r↑, (ri, rj), r↓) (5.11)

Moreover, if rj > ri we get the reverse conclusion. By the law of the excluded

middle we see that this is in fact an equivalence.

This equivalence means that if the first term in the summation is positive,

then ri > rj . Hence P (di|r↑, (rj, ri), r↓) > P (dj|r↑, (ri, rj), r↓) for all r↑ and r↓ so

the first term must always be positive. The same applies if the difference is

negative. Hence the difference in expectations on the number of clicks always

has the same sign as the difference in document relevance.

The theorem also tells us that we can collect relevance judgments about many

pairs in the result set at the same time, by independently randomly reordering

pairs, as is the case with FairPairs.

5.5 Practical Considerations

We now discuss how the data collected using FairPairs is affected by variations

between search engines and in user behavior. This gives rise to practical issues
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that should be kept in mind. The first effect to note is that prior to deciding

whether to click, users only observe the abstracts presented by the search engine.

A less relevant document presented with a misleadingly appealing abstract may

generate more clicks that one that is more relevant but has a less appealing

abstract. While addressed by Assumption 5.2, in practice this requires the search

engine to generate snippets in an unbiased way, where the quality of a snippet

does not vary differently for different documents depending on the types of

queries entered by users. An alternative that may avoid this assumption could

consider user dwell time on results in addition to clicks. Different search engines

may also have users who are more or less prepared to click on results ranked

highly irrespective of the abstract. However this is not a concern as both docu-

ments within a pair are always ranked highly equally often and hence benefit

from this trust equally. Other presentation effects, such as a bias against users

clicking on documents that are not visible unless the user scrolls also do not

introduce bias into the training data, as confirmed by the results presented later

in this chapter.

Another issue to consider is that of user familiarity with results: documents

that are known to be relevant by the user but not clicked on may collect fewer

votes than would be expected. However, it has been established that users often

revisit Web pages, suggesting that this is not a concern (McKenzie & Cockburn,

2001). Nevertheless, on specific collections for specific user groups this may be

a limitation. Similarly, if the relevance of documents evolves over time, data

collected may become out of date, although this is true for any data collection

method. Finally, one well known user behavior that FairPairs does not exploit is

that of query reformulation, explored in the previous chapter. FairPairs does not
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allow preferences to be generated in a fair way between documents returned by

sequential queries, although extending it in this way is an interesting challenge.

5.6 Learning Convergence

In this section, we consider the convergence properties of a learning algorithm

that minimizes the error rate trained on data collected with FairPairs. For sim-

plicity, assume that no two documents have the same relevance to a query.

Theorem 5.2. Let nij be the number of times the user saw dj C di and cij be the number

of times a user clicked on di in this situation. Let ε = 1
2

mini,j |Pij − Pji|.

Assume we have collected enough data using FairPairs such that ∀di, dj ,

|1 − nji/nij| < ε and |pij − Pij| < 1
2
ε, where pij = cij/nij . Moreover, assume

there exists a ranking function f ∗ that ranks the documents perfectly in terms of de-

creasing relevance. Then, a learning algorithm that minimizes error rate will return f ∗.

Proof. Assume for the purpose of a contradiction that the learning algorithm

learns a ranking function f 6= f ∗ that has a lower error rate on the training data.

Since the rankings differ, there must be at least one pair of documents (di, dj)

where the rankings disagree. Assign di to be such that ri > rj , which is equivalent

to di being returned higher than dj by the ranking function f ∗.

The number of violated constraints involving di and dj for the ranking func-

tion f ∗ is
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err∗ij = nijpij1[rank∗(di) > rank∗(dj)]

+ njipji1[rank∗(dj) > rank∗(di)] (5.12)

= njipji, (5.13)

where 1 is the indicator function and rank∗(di) is the rank at which di is returned

by f ∗. The number of violated constraints involving di and dj for the ranking

function f is:
errfij = nijpij1[rankf (di) > rankf (dj)]

+ njipji1[rankf (dj) > rankf (di)] (5.14)

= nijpij, (5.15)

since we know that rankf disagrees with rank∗ on the order of di and dj . By

assumption, we know that

(1 + ε)nij > nji > (1− ε)nij (5.16)

Next, by Theorem 5.1, Pij > Pji since ri > rj . The definition of ε implies

Pij − Pji ≥ 2ε. Since we know that |pij − Pij| < 1
2
ε and similarly for pji, we get

pij − pji > ε.

Pulling this all together,

errfij − err∗ij = nijpij − njipji (5.17)

> nijpij − nij(1 + ε)pji (5.18)

= nij[(pij − pji)− εpji] (5.19)

> nij[ε− εpji] ≥ 0 (5.20)

Since the difference in the number of violated constraints is zero for pairs

where f and f ∗ agree, and positive for all others, the error rate of the learned

function f must be higher than that of f ∗, meaning we have a contradiction.
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Note that the data collected using the techniques proposed by Joachims

(2002), described in Chapter 2, and the extensions to query chains described in

Chapter 4, does not have this property of eventual convergence because it tends

to learn to reverse any presented ranking. In fact, notice that if for any presented

ranking preferences collected always oppose the ranking order, any algorithm

that minimizes the number of violated preferences is guaranteed to eventually

reverse the ranking given enough training data.

To ensure eventual convergence, we now need to ensure that sufficient data is

collected about every pair of documents so that ∀di, dj , |1−nji/nij| < ε and |pij−

Pij| < 1
2
ε. The first condition is eventually satisfied since each flip is performed

with 50% probability. The second becomes satisfied after a pair is observed

sufficiently often, because the probability of observing a click approaches its

expectation by the law of large numbers. One strategy to obtain sufficient data

would be for the search engine to occasionally insert random documents into the

result set, and to assume users have a non-zero probability of viewing results

at any rank. While this strategy would work, there are probably much more

efficient exploration strategies, providing an interesting area for future research.

Additionally, although the theorem is stated in terms of observing the relative

relevance of all pairs of documents, if we assume relevance is transitive then the

number of observations necessary may be substantially reduced.

5.7 Experimental Results

We now evaluate the validity of the assumptions presented and measure the click

probabilities of data collected with FairPairs. For these experiments we used
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Osmot, the search engine described in the previous chapter, on the arXiv e-print

collection. This collection consists of about 350,000 academic articles. Osmot was

modified to perform FairPairs on the search results before presenting them to

real users who were unaware of the experiment. We measured the probability of

users clicking on both the top and bottom results of each pair. We recorded user

clicks for about three months, and counted how often each pair of ranks was

presented and how often each result was clicked on. During our experiments, we

observed 44,399 queries coming from 13,304 distinct IP addresses. We recorded

48,976 clicks on results, often with many clicks for the same query.

Because we did not have expert relevance judgments, and collecting them was

impractical, we hypothesized that on average the fiftieth ranked result returned

by the search system is less relevant to the query than the top few results. To

check if we could confirm this, after FairPairs was performed on the results of

a query, Osmot randomly swapped result fifty and one of the top eight results

whenever there were more than fifty results for a query. This modified result set

was then displayed to users.

5.7.1 Item Relevance Score

The left side of Figure 5.2 shows how often users clicked on the bottom result

of a pair. Four types of pairs were observed. Pairs of the form 1-2, 2-3 involve

two adjacent results from the original ranking function in their original order

(1-2 indicates it was the original first and second results, in the original order).

Pairs of the form 2-1, 3-2 involve two originally adjacent results in reverse order.

Due to the fiftieth result being randomly inserted, we also have pairs of the form
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Figure 5.2: Click probability measurements of the Item Relevance Score.

1-# (indicating the first result followed by the 50th result) and #-1 (indicating

the same pair reversed). We summed up the counts for all pairs in these four

groups, either for the top two pairs presented (for example, for 1-2 and 2-3) or

for the top five pairs (for example, for 1-2 through 5-6) counting over all queries

where a user clicked on at least one result. In the figure, we see that if the lower

result in a pair is result 50 (postulated to be less relevant than those in the top

six), the probability of the user clicking on that lower result is smaller than if the

lower result was from the original top six. The error bars indicate 95% binomial

confidence intervals, showing the differences to be statistically significant. This

shows that the Item Relevance Score is positive and gives an idea of its average

magnitude at different ranks for this dataset. In addition, the right side of Figure

5.2 shows that keeping the lower result fixed, a similar score could be defined

for the change in click probability on the top result as it is more or less relevant.
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Figure 5.3: Click probability measurements of the Ignored Relevance Score.

5.7.2 Ignored Relevance Score

The ignored relevance score measures the change in click probability as the result

before the one clicked on varies. We see in the left side of Figure 5.3 that if the

result before the one selected is more relevant, the next document is slightly

more likely to be clicked on. We attribute this to result 50 tending to be much

less relevant, making users more likely to stop considering results once they

encounter it. This means that in our experiments, δignij tends to be positive.

However, the magnitude of the decrease in click probability is much smaller than

that seen in Figure 5.2, thus the Relevance Score Assumption holds. Additionally,

we observe that this score quickly decreases for lower results, unlike the item

relevance score. Also, this is consistent with the right hand side of Figure 5.2

– there we saw the probability of the user clicking on the top result, whereas

here we are evaluating the probability of the user clicking on the bottom result.

Together, these figures show that placing a less relevant document as the top

result in a pair makes both results in the pair less likely to be clicked on.
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Figure 5.4: Evaluation of the relative relevance of search results returned by the
arXiv search engine.

5.7.3 FairPairs Preference Test

Next, to confirm the correctness of data generated with FairPairs directly, con-

sider the difference between the bottom click probabilities when two results are

swapped. The left side of Figure 5.4 shows that reversing a top-five result and

the 50th result within a pair behaves as the theory tells us it should. We see that

when the fiftieth result is at the bottom of a pair, it is significantly less likely to be

clicked on than when an original top-five result is at the bottom of the pair. On

the right side of the figure, we see the click probability on the bottom result for

pairs of the form 1-2 and for pairs of the form 2-1. In fact, summing the counts

for the top 2 pairs (1-2 and 2-3), the difference in click probability is statistically

significant. This shows that on average the top three results returned by the

search engine are ranked in the correct order.

We also evaluated our approach in a situation where we have the true relative

relevance of documents as assessed by human judges. Using the results of the eye

tracking study by Joachims et al. (2005) and described in Chapter 2, we computed

109



0%
5%

10%
15%
20%
25%
30%
35%

Pr
ob

ab
ilit

y 
of

 u
se

r c
lic

kin
g

Pair with bottom result clicked
1-2*     2-3*     3-4       4-5*      5-6*     6-7*     7-8       8-9      9-10

rel(Top)>rel(Bot)
rel(Top)<rel(Bot)

Figure 5.5: Probability of user clicking only on the bottom result of a pair as a
function of the pair. The two curves are for when the document immediately
above the document clicked was judged strictly more relevant or strictly less rele-
vant by expert human judges. * indicates the difference is statistically significant
with 95% confidence using a Fisher Exact test.

0%
5%

10%
15%
20%
25%
30%

Pr
ob

ab
ilit

y 
of

 u
se

r c
lic

kin
g

Results in the pair considered with FairPairs

on
 b

ot
to

m
 re

su
lt

1,#        2,#        3,#        4,#        5,#        6,#        7,#        8,#

Pairs 1-#, 2-#, ...
Pairs #-1, #-2, ...
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the probability of a participant in the user study clicking on the bottom result of

a pair of results when the top result was judged strictly more relevant or strictly

less relevant by expert human judges. Figure 5.5 shows that although FairPairs

was not performed on the results in the study, the data supports the FairPairs

premise that the probability of a user clicking on a document di at rank i is higher

if rel(di−1) < rel(di) than if rel(di−1) > rel(di).

Figure 5.6 shows the equivalent curve for the arXiv search engine, in effect

providing a more detailed view of Figure 5.4. We again considered all queries

that generated at least one click and exploited symmetries in our experiment

design to obtain the maximal amount of data for this figure. It shows that if

the fiftieth ranked document is displayed in a pair with a top-eight document,

the FairPairs data collected is in agreement with our hypothesis that the fiftieth

ranked document is less relevant than any from the top eight. In particular, the

first five differences in click probabilities are statistically significant. For lower

ranks the curves appear to proceed in a similar manner. This includes result

pairs below the sixth, which are usually are not visible without users scrolling.

5.8 Summary

In this chapter we introduced FairPairs, a method to modify the presentation

of search engine results with the purpose of collecting more reliable relevance

feedback from normal user behavior. We showed that under reasonable assump-

tions the data gathered is provably unaffected by presentation bias. We also

showed that given sufficient clickthrough data, training data generated with

FairPairs will allow a learning algorithm to converge to the ideal ranking. We
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performed real world experiments that evaluated the assumptions and conclu-

sions in practice. Given bias-free training data generated in this way, it is possible

to use existing methods for learning to rank without additional modifications to

compensate for presentation bias being necessary.
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CHAPTER 6

ACTIVE METHODS FOR OPTIMIZING DATA COLLECTION

The analysis in this thesis has, thus far, assumed that clickthrough data is col-

lected passively, or at best with minimal intervention as in the previous chapter.

In effect, we simply infer relevance judgments from recorded interactions that

take place anyway. We now describe techniques to guide users, in order to

combat evaluation bias and provide more useful training data for a learning

search engine. This research was originally published in (Radlinski & Joachims,

2007).

6.1 Introduction

When learning to rank, we have seen that two alternatives for obtaining training

data are expert relevance judgments or relevance judgments collected implicitly

by observing user behavior. Assuming that we wish to avoid the difficulties

associated with collecting judgments from experts, as described in Chapter 1,

consider once more the properties of user behavior described in Chapter 2.

We saw that users usually execute a query, and then perhaps consider the

first two or three results presented by the search engine (Granka et al., 2004). The

feedback (clicks) on these results can be recorded and used to infer relevance

judgments. These judgments can then be used to train a learning algorithm such

as a Ranking Support Vector Machine, as described in Chapter 4. In particular,

the eye tracking study showed that users very rarely even look at results beyond

the first few. Similarly, other researchers have previously noticed that users click
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predominantly on search results at high ranks (for example, see Agichtein et al.

(2006)).

Hence clickthrough data is strongly biased toward documents already ranked

highly. Highly relevant results that are not initially ranked highly for any query

may never be observed and evaluated. This means that if the ranking function

used by a search engine initially performs poorly for some class of queries,

training examples that identify truly relevant results for these queries may never

be observed. This would make it difficult for a learned ranking to ever converge

to an optimal ranking.

To avoid this evaluation bias in which documents are evaluated, this chapter

presents a new formulation for learning to rank, where the ranking presented to

users is optimized to obtain useful data rather than strictly in terms of estimated

document relevance. The goal this formulation addresses is to minimize the total

loss from presenting poor rankings over all time.

There are many approaches by which more useful training data could po-

tentially be collected. For example, one possibility would be to intentionally

present unevaluated documents in the top few positions of search engine results,

aiming to collect more feedback on them. However, such an ad-hoc approach

is unlikely to be useful in the long run, and would hurt user satisfaction sub-

stantially in the short run by often presenting suboptimal results. We instead

introduce principled modifications that can be made to the rankings presented.

These changes, which do not substantially reduce the quality of the ranking

shown to users, produce much more informative training data and quickly lead

to higher quality rankings being shown to users. In contrast with previous

work by Chu and Ghahramani (2005a), we do not simply ask which relevance
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judgments should be obtained to reduce uncertainty in establishing which is

the correct ranking. Rather, we consider how to obtain training data that will

quickly improve the quality of rankings using metrics suitable for measuring

search engine performance.

We will now formalize the learning problem as an optimization task, present

a suitable Bayesian probabilistic model and discuss inference and learning. Fol-

lowing this, we present strategies to modify the rankings shown to users so that

performance of learned rankings improves rapidly over time. An evaluation of

this approach is then presented, using both synthetic data and TREC-10 Web

data. In particular, we see the improvements using our exploration strategies are

much faster than with passive or random data collection.

6.2 Formalizing the Learning Problem

Assume we have a document corpus C = {d1, . . . , d|C|} and some fixed user query

q. For this query, we want to estimate the relevance µ∗i ∈ < of each document di.

From earlier chapters, we know that users can provide us with noisy judgments

of the form µ∗i > µ∗j . We assume that some ranking function can provide initial

estimates of µ∗i . The goal is accurately estimate µ∗i with as little training data as

possible.

The estimation task involves a three step iterative process: First, given rele-

vance estimates, we must select a ranking to display to users. Second, given the

ranking displayed, users provide relevance feedback. Third, using the relevance

feedback, we update the relevance estimates and repeat the process for the next
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user. Our focus in this chapter will be mostly on the first step, namely selecting

rankings of documents to show users so that the collected judgments allow the

relevance estimates to be improved quickly, while at the same time maximizing

the quality of the rankings.

6.2.1 Probabilistic Model

Let M∗ = (µ∗1, . . . , µ
∗
|C|) ∈ M be the true relevance values of the documents in

C. Modeling the problem of finding M∗ given training data D in a Bayesian

framework, we want to maintain our knowledge about M∗ in the distribution

P (M |D) =
P (D|M)P (M)

P (D)
(6.1)

We assume that P (M |D) is multivariate normal with zero covariance:

P (M |D) = N (ν1, . . . , ν|C|;σ
2
1, . . . , σ

2
|C|) (6.2)

Graphically, we can draw P (M |D) as a set of Gaussians centered at νi (our current

estimate of document relevance) with variance σ2
i (our current uncertainty). This

is illustrated in Figure 6.1.

ν2ν3ν5ν4ν1

σ2

σ3

relevance

-

-

Figure 6.1: Example of how we can maintain estimates of the relevance of
documents to a fixed query.
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This model is motivated by ability estimates maintained for chess players

given the outcomes of chess games, as described by Glickman (1999). In the

most closely related previous work, Chu and Ghahramani (2005a) address a

similar problem using Gaussian Processes . However, instead maintaining the

distribution P (M |D), they directly estimate M∗ given D. This is also true of

other related prior work, for instance by Dekel et al. (2003); Fuhr (1989); Lin

et al. (2006). The key difference in our approach is that we are not simply finding

the optimizing ranking. Rather, maintaining P (M |D) is key as it allows us to

optimize for collected training data.

6.2.2 Inference

We measure the difference between relevance assignments using a loss function

L : M×M → <. To find good relevance estimates, we want to find an M =

(µ1, . . . , µ|C|) ∈M such that L(M,M∗) is small. Noting that M∗ is unknown, we

want to find the ranking that minimizes the expected loss given what we know

about M∗, namely P (M |D):

argmin
M

EM∗∼P (M |D) [L(M,M∗)] (6.3)

where M∗ is drawn from the probability distribution P (M |D).

Suppose the loss function L can be decomposed over pairs of documents in C.

We can then decompose the expected loss into a form easier to work with:

EP (M∗|D) [L(M,M∗)] = EP (M∗|D)

 |C|∑
i=1

|C|∑
j=i+1

Lpair(M,M∗, i, j)

 (6.4)

=

|C|∑
i=1

|C|∑
j=i+1

EP (M∗|D)

[
Lpair(M,M∗, i, j)

]
(6.5)
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where P (M∗|D) is shorthand for M∗ ∼ P (M |D).

We will now show that the mode of P (M |D), namely M̂ = (ν1, . . . , ν|C|), is of-

ten the solution to Equation 6.3. Consider solving Equation 6.3 for a loss function

that counts the number of misordered pairs of documents. The assignment with

minimum expected loss is the mode of P (M |D).

Lemma 6.1. Let P (M |D) = N (ν1, . . . , ν|C|;σ1, . . . , σ|C|) be a distribution over models.

Assume L(M,M∗) counts the number of differently ordered pairs of documents, when

they are sorted by µi and µ∗i respectively. A solution of

argmin
M

EM∗∼P (M |D) [L(M,M∗)]

is M̂ = (ν1, . . . , ν|C|).

Proof. Assume M opt=(µopt1, . . . , µ
opt
|C| ) is the minimizing relevance assignment, and

has lower loss than M̂. There must exist two documents di and dj that are ranked

adjacently when documents are ordered by M optyet are ordered differently by

M̂, i.e. µopti > µoptj and νi < νj . Let M flip be the ranking obtained by reversing di

and dj . Let these rankings have expected loss Eflip and Eopt.

As the documents are adjacent, the loss of M opt and M flip only differs in the

contribution of the pair (di, dj). Plugging in the loss function we get

Eflip − Eopt = P (µ∗i > µ∗j)− P (µ∗j > µ∗i ) (6.6)

= Φ

 νi − νj√
σ2
i + σ2

j

− Φ

 νj − νi√
σ2
i + σ2

j

 < 0 (6.7)

where Φ is the cumulative distribution function of the standard normal distribu-

tion, since νi < νj . Hence we have a contradiction as M opt is not the minimizing

ranking.
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We see a similar result for the loss function that penalizes any error in the

difference of document relevances, Lpair(M,M∗, i, j) = ((µi − µj)− (µ∗i − µ∗j))2.

Lemma 6.2. Let P (M |D) = N (ν1, . . . , ν|C|;σ1, . . . , σ|C|) be a distribution over models.

Assume Lpair(M,M∗, i, j) = ((µi − µj)− (µ∗i − µ∗j))2. A solution of

argmin
M

EM∗∼P (M |D) [L(M,M∗)]

is M̂ = (ν1, . . . , ν|C|).

Proof. Let M opt be the minimizing model. Let δoptij = µopti − µ
opt
j be the difference

in relevance estimates of di and dj according to M opt, and δ̂ij and δ∗ij be defined

equivalently for M̂ and M∗ respectively. Let σij = (σ2
i + σ2

j )
1/2. The contribution

to the expected loss for the pair of documents (di, dj) is

EP (M∗|D)[Lpair(M,M∗, i, j)]

=
1

σij
√

2π

∫ ∞
−∞

exp

(
−

(δ∗ij − δ̂ij)2

2σ̂2
ij

)
(δ∗ij − δ

opt
ij )2dδ∗ij (6.8)

= σ2
ij + (δ̂ij − δoptij )2 (6.9)

which is minimized if δoptij = δ̂ij . Hence M opt = M̂ minimizes all terms in the sum

in Equation 6.5 simultaneously and thus minimizes the expected loss.

We see that the mode of the distribution P (M |D) minimizes the expected loss

for two reasonable loss functions. As it can also be obtained very efficiently given

P (M |D), for the remainder of this chapter we will assume that the mode is, or is

close to, the minimizer of the expected loss. We will refer to the ranking obtained

by sorting documents by their relevance according to the mode of P (M |D) as

the mode ranking.
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6.2.3 Loss Function

Given our understanding of real user behavior from Chapter 2, we see that the

loss functions discussed above are too simple. Specifically, two properties to

expect of an appropriate loss function are (1) The loss for ranking a less relevant

document above a more relevant document should be larger if the documents are

presented higher in the ranking (where users are more likely to observe them);

(2) The loss should be larger if the difference in relevance is larger. As there is

no commonly used pairwise decomposable loss function with these properties,

we propose a quadratic hinge-loss function with cost of misordering decaying

exponentially with rank:

Lpair(M,M∗, i, j) = e−rij
(
(µi−µj)− (µ∗i−µ∗j)

)2
1misordered (6.10)

With rij we denote the minimum rank of di or dj when all documents are ordered

by M (which are the relevance assignments used to present results to users)

divided by 10, and 1 is the indicator function. A pair of documents is considered

misordered if the relative ranking according to M does not agree with that

according to M∗. Making use of the pairwise form of the loss function and

plugging in the mode ranking M̂ , the inner term of Equation 6.5 can now be

written as

EP (M∗|D)[Lpair(M̂,M∗, i, j)]

=

∫
P (µ∗i |νi, σi)

∫
P (µ∗j |νj, σj) Lpair(M̂,M∗, i, j) dµ∗i dµ

∗
j

=
1√

2πσij

∫ ∞
−∞

exp

(
−

(δ∗ij − δ̂ij)2

2σ2
ij

)
Lpair(δ∗ij, δ̂ij, rij) dδ∗ij (6.11)

where δ∗ij = µ∗i − µ∗j , δ̂ij = νi − νj and σ2
ij = σ2

i + σ2
j , noting that the difference

of two normally distributed variables is also normally distributed. Plugging in
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the loss, and choosing to sum over the pairs such that δ̂ij is always negative,

Equation 6.11 becomes:

EP (M∗|D)[Lpair(M̂,M∗, i, j)]

=
e−rij√
2πσij

∫ ∞
0

(
δ∗ij − δ̂ij

)2

exp

(
−

(δ∗ij − δ̂ij)2

2σ2
ij

)
dδ∗ij

= e−rij

[
σ2
ij

2

(
1+erf

(
δ̂ij√
2σij

))
− δ̂ijσij√

2π
exp

(
−δ̂2

ij

2σ2
ij

)]
(6.12)

where erf() is the error function. Substituting this into Equation 6.5 gives an easy

to compute closed form expression for the expected loss.

6.2.4 Estimating the Model Parameters

We now need a method to maintain P (M |D) as we collect relevance judgments.

First we note that, as shown in Chapter 2, clickthrough data is best interpreted

as relative relevance judgments. However, clicking behavior also tends to be

noisy. Therefore, we model the probability of obtaining individual pairwise

comparisons using the Bradley-Terry model (Bradley & Terry, 1952), which as

described on page 55 in Chapter 3 is a standard approach for modeling noise in

pairwise comparisons. This model assumes that the probability of document di

being preferred to document dj can be written as:

P (di �q dj) =
rel(di, q)

rel(di, q) + rel(dj, q)
, (6.13)

If we also assume that the document relevances to a query are distributed

according to a Gaussian prior, we can use the Glicko chess rating system (Glick-

man, 1999) to estimate the relevance of each document and the uncertainty in the
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νi ← νi +
q

1
σ2
i

+ 1
δ2

g(σ2
j )(si − E(s|νi, νj, σ2

j )) (6.14)

σ2
i ←

(
1

σ2
i

+
1

δ2

)−1

(6.15)

where

q =
log 10

400

g(σ2) =
1√

1 + 3q2σ2/π2

E(s|νi, νj, σ2
j ) =

1

1 + 10−g(σ
2
j )(νi−νj)/400

δ2 =
1

q2g(σ2
j )

2
× 1

E(s|νi, νj, σ2
j )(1− E(s|νi, νj, σ2

j ))

Figure 6.2: The Glicko update equations, which describe how the estimated
relevance νi and estimated variance σ2

i for document di should be updated
following a comparison to document dj . si is 1 if di was judged more relevant
than dj , and 0 otherwise.

relevance. In particular, this algorithm provides a set of closed form approximate

update equations to update our beliefs about document relevance following

pairwise comparisons. This approach is particularly appealing as it provides

simple to compute online updates as data is collected. The update equations are

shown in Figure 6.2. While it would also be interesting to compare alternative

ways of maintaining P (M |D) (for example, TrueSkill, developed by Herbrich and

Graepel (2006)), or using a batch algorithm (for example, Hunter (2004) discusses

a number of alternatives), the simplicity and online aspects of the Glicko system

are appealing. In particular, in real world settings where large amounts of data

are collected for large document collections with a large number of queries, a

global optimization is likely to be slow and thus infeasible.
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6.3 Exploration Strategies

We turn to the question of optimizing the data collection process to most quickly

minimize the loss. As we have seen, users are much more likely to provide

feedback on highly ranked documents. By selecting which documents to present

at high rank, we influence the pairs of documents for which we obtain relevance

judgments. Here, we consider modifications that change two documents in a

ranking, limiting ourselves to the top two most of the time. We will see that

despite the simplicity of this approach, substantial improvements in performance

can be obtained at small cost in presented ranking quality.

We will consider the following five strategies for determining which ranking

to present users, the first two being baselines for comparing against.

Strategy 6.1. Passive Collection (TOP2) Present the mode ranking, sorting docu-

ments by M̂ = (ν1, . . . , ν|C|).

The strategy TOP2 assumes no changes are made to the mode ranking, ignor-

ing evaluation bias in data collection. This is the approach used in most previous

work in learning to rank, and would be effective if users provided feedback about

results throughout the ranking. In some settings this may be the case, for example

in search engines for academic articles where many users thoroughly consider

all retrieved results. However in general Web search settings, as discussed above,

users focus their attention on the highest ranked results.

Strategy 6.2. Random Exploration (RANDOM) Select a random pair of documents

and present them first and second. Then rank the remaining documents according to M̂ .
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This strategy is a naı̈ve modification of the mode ranking. Two documents

are picked uniformly at random and inserted at the top of the ranking presented

to users. Given the uniform distribution, this perturbation is likely to often

pick documents that have a low prior expectation of being relevant, thus likely

presents users with poorer results. However, it benefits from the potential for

feedback on all documents regardless of rank, even in the presence of significant

evaluation bias. A similar method was proposed by Pandey et al. (2005) in

the context of identifying new Web pages that would soon become popular,

suggesting to randomly insert new documents into Web search results.

Strategy 6.3. Largest Expected Loss Pair (LELPAIR) Select the pair of documents

di and dj that have the largest pairwise expected loss contribution, and present these first

and second. Rank the remaining documents according to M̂ . Formally, this means we

select the pair di and dj that satisfies:

argmax
di,dj∈C, i 6=j

EP (M∗|D)

[
Lpair(M̂,M∗, i, j)

]
(6.16)

LELPAIR selects the pair of documents with the largest pairwise contribution

to the expected loss out of all pairs of documents. By presenting these documents

at a high rank, the feedback given on them will reduce the uncertainty in the

relative relevance of these documents. This will, in the long run, drive the ex-

pected loss contribution of the pair of documents down. Given the Glicko update

rules, the pairwise contribution of all other pairs of documents will not increase.

Hence this method will eventually drive the total expected loss down. Addi-

tionally, due to the exponential decay in the loss contribution from misordered

pairs as the rank increases, LELPAIR tends to select pairs of documents where

at least one has a high estimated relevance. Lower ranked documents are also

eventually selected, but only after high rank documents have been evaluated
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and their expected loss contribution is reduced. If we ignore the effect of rank

in the loss function, this approach is similar to previous work in active learning

where users are asked to label items where the predicted label is most uncertain

(see, for example, Brinker (2004); Saar-Tsechansky and Provost (2004)). In our

setting, document pairs with high pairwise contribution tend to be those with

large estimated errors in relevance (σi and σj values).

Strategy 6.4. One Step Lookahead (OSL) For each pair of documents, compute the

expected pairwise loss, and the expected pairwise loss after a comparison based on the

Bradley-Terry model (using M̂ to estimate the probability of possible outcomes) and

Glicko updates. Select the pair of documents with the largest expected reduction in

the pairwise loss and present these first and second. Rank the remaining documents

according to M̂ . Formally, if M̂ ′
ij is the mode of P (M |D) after updating it given the

outcome of a comparison of di and dj , we select the pair di and dj that satisfies:

argmax
di,dj∈C, i 6=j

(
EP (M∗|D)

[
Lpair(M̂,M∗, i, j)

]
− EM̂ ′ij

[
EP (M∗|D)

[
Lpair(M̂ ′

ij,M
∗, i, j)

]])
(6.17)

Intuitively, this strategy performs approximate gradient descent on the loss

function. OSL finds the pair of documents whose contribution to the expected

loss is likely to decrease most following a pairwise comparison. The expected

contribution of the pair after a comparison is a weighted sum of the expected

loss contribution for the two possible outcomes (either di wins the comparison

or dj wins). In this computation, we ignore the effect of possible rank changes

for efficiency reasons. This method is also related to an approach proposed by

Chajewska et al. (2000) in the context of utility estimation, where they found

that the true utility of many different outcomes can be quickly discovered by

maximizing the reduction in expected loss given new data.
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Strategy 6.5. Largest Expected Loss Documents (LELDOC) For each document

di, compute the total contribution of all pairs of documents including di to the expected

loss of the ranking. Present the two documents with highest total contributions first and

second, and rank the remainder according to M̂ . Formally, this method selects the pair

di and dj that satisfies:

argmax
di,dj∈C, i 6=j

(∑
a6=i

EP (M∗|D)

[
Lpair(M̂,M∗, i, a)

]
+
∑
a6=j

EP (M∗|D)

[
Lpair(M̂,M∗, j, a)

])
(6.18)

This strategy addresses a potential limitation of LELPAIR and OSL: They

only consider individual pairwise document contributions to the expected loss,

despite the contributions of pairs not being independent. LELDOC addresses

this by computing the total contribution of each document, summing over all

pairs including that document. For example, if some document d is ranked

third, it’s total contribution is that from d and the top ranked document, plus

the contribution from d and the second document, plus that from d and the

fourth document and so forth. LELDOC selects the two documents with highest

total contributions and presents them first and second. By comparing these two

documents and reducing the uncertainty in their relevances, we are likely to

reduce the contributions to the risk of all pairs including the documents.

An alternative selection algorithm proposed in previous work (for example

by Glickman and Jensen (2005); Chu and Ghahramani (2005a)) is to compare

pairs of items such that the probability distribution over models changes most in

terms of KL-divergence or entropy. We do not pursue this alternative as it does

not take into account the loss function being optimized.
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Finally, we note that exploration strategies for rankings are related to the

opponent assignment problem in sports tournaments. However, there are two

key differences. First, a tournament has a different concept of loss. A criterion

often optimized is the probability of the true best player winning the final game

(for example, see Glickman (2008); Ryvkin (2005)). Second, pairwise comparisons

in a tournament have no cost. In fact, in most sports a common constraint is that

all teams or players must compete for at least n rounds. This means that each

“item” must be compared with some other item every round. The optimization

problem is to select which pairs are compared such that the loss is minimized

after all these comparisons, rather than as quickly as possible.

6.4 Evaluation Methodology

We now have five strategies for eliciting useful training data from users of a

search system, as well as a method to estimate the relevance of the documents

using our probabilistic model. In this section, we describe how these strategies

can be evaluated. In particular, we will compare how effective each strategy is at

improving the quality of the rankings shown to users.

We evaluate as follows. Given an initial ranking of one thousand documents

as returned by a search engine in response to a query, we derive a prior P (M).

This prior initializes P (M |D). For a particular exploration strategy, we next select

a ranking to present to users. We compute the loss of the presented ranking, and

of the mode ranking derived from M̂ . Next, we simulate user behavior on the

presented ranking, using a simple behavioral model, and collect training data
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that is used to update the model parameters. We repeat this process 3,000 times

for each initial ranking. This experimental setup is formalized in Algorithm 6.1.

In particular, step 5 in the algorithm randomly swaps the top two documents.

As seen in Chapter 2, Web search users are biased toward clicking on the top

ranked document irrespective of document relevance. As shown in Chapter 5,

this flipping approach is sufficient to avoid presentation bias.

The behavioral model we use to simulate clickthrough data is detailed in

Algorithm 6.2. By using a simulation, it is possible to evaluate the exploration

strategies in detail without needing large numbers of test subjects, and to avoid

effects that may be unique to specific users (for example, to academic users).

Our model simplifies real behavior by assuming that users only click on top two

results, and do so with probability specified by the Bradley-Terry model. This

model is also motivated by the fast decay observed in the number of clicks as rank

increases in real search systems. Clearly, in a real setting some additional data

would be collected from lower ranks, making the results we report conservative

in this respect. However, the amount of data collected about results at lower

ranks would be significantly smaller.

We repeated each experiment with either 30 or 100 initial rankings, each

giving a different initial set of relevance estimates. We report the mean loss across

all runs (normalized such that the initial loss is 1), or the mean average precision

(MAP). In some results we present a single final performance, specifically the

loss or MAP after 3,000 pairwise comparisons and model updates. Note that as

our rankings are of 1,000 documents, 3,000 comparisons is on average just six

noisy pairwise comparisons involving each document.
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Algorithm 6.1 Evaluation Setup
1: Input: Estimated relevances {νi} for di ∈ C . . . . Provided by a search function

2: Input: σ0 . . . . . . . . . . . . . . . Uncertainty in estimated provided by search function.

3: σi ← σ0 for di ∈ C

4: for iteration 1 through 3,000 do . . . . . . . . . . . . . . . . . . .For 3,000 feedback rounds

5: Pick two documents di, dj to rank 1st and 2nd

6: Randomly swap di and dj

7: Show the selected ranking to user

8: Record training data given user feedback

9: Update νi, νj , σi, σj per Equations 6.14 and 6.15

10: end for

Algorithm 6.2 User Behavioral Model
1: Input: Ranking of documents (d1, . . . , d|C|), true relevances (µ∗1, . . . , µ

∗
|C|)

2: if UniformRandom(0, 1) < 1

1+10−(µ∗1−µ
∗
2)/400 then

3: Winner is d1: s1 ← 1; s2 ← 0

4: else

5: Winner is d2: s1 ← 0; s2 ← 1

6: end if

6.5 Results

We start by evaluating the exploration strategies on synthetic data, where we

evaluate their effectiveness if the assumed prior distribution over document

relevance matches the true generating model. This will be followed by an

evaluation using more realistic TREC-10 data.
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6.5.1 Synthetic Data

We randomly generated a corpus of 1000 documents with expected relevances

µ∗i drawn from N (1500, 1472). We chose this scale as it is comparable to typical

chess scores. We then drew ten independent initial models, drawing νi from

N (µ∗i , 1472) and initializing σi = 147 ≡ σ0. We repeated this process three times,

giving 30 initial rankings over three different random corpora.

For each initial ranking, we ran each strategy for 3,000 iterations. Figure

6.3 shows the loss of the mode ranking at each iteration. Along the horizontal

axis is the number of pairwise comparisons. After each pairwise comparison,

P (M |D) is updated and a new pair to compare is selected. The vertical axis is

the average loss of the mode ranking relative to the initial average loss. The error

bars indicate one standard error in the mean scaled loss.

I. Which exploration strategy learns fastest?

The first question to answer is which strategy learns fastest. The passive TOP2 ap-

proach does not lead to a meaningful overall reduction in the loss. This is because

our user model assumes that users only provide feedback on the top two doc-

uments. After a few comparisons, the top few documents have their relative

position correctly established and no new documents are ever compared again.

Our other baseline algorithm, RANDOM, sees the loss decrease slowly.

We see that the other exploration strategies all perform substantially better

than the baselines. Both LELPAIR and OSL quickly reduce the total loss by

selecting pairs of documents with high contributions to the expected loss, and
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Figure 6.3: Change in loss as a function of the number of pairwise comparisons
for each exploration strategy on synthetic data.

high expected reductions in it. We see this improvement continues for a large

number of comparisons. In contrast, LELDOC appears to asymptote more quickly.

This is because the documents selected continue to be those at high ranks even

after many comparisons. In effect, LELDOC is too biased toward highly ranked

documents. Comparing with LELPAIR and OSL, we see that while lower ranked

documents may have lower total contributions to the expected loss, they often

have higher individual pairwise contributions.

II. How robust is the approach to prior assumptions?

The second natural question to ask is how robust the results are to the weight

given to the initial ranking, as in the case of real data the correct weight is likely

to be unknown. This weight is encoded by the initial values of σi, which are
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Figure 6.4: Effect of the weight given to the prior on the final loss, evaluated on
synthetic data (true noise is σ0 = 147).

set to σ0. We now explore the effect of changing that value. This experiment is

possible because we know the level of noise used when generating synthetic

data.

Figure 6.4 shows the effect of selecting an assumed noise level that differs

from the true noise level. With our default setting, and that used to generate

our synthetic datasets, the probability of a document in the top 10 according to

the prior not being in the top 100 according to true relevance is about 8%. We

can see that selecting a suboptimal σ0 does not drastically reduce performance

after a fixed number of pairwise comparisons. Apart from LELDOC, the best

performance is achieved when the actual noise is correctly known. Interestingly,

LELDOC performs best when the error in the prior is underestimated. In that
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situation, we found that LELDOC selects documents further down the ranking

for comparison, leading to better final performance.

6.5.2 TREC Data

In addition to the synthetic data, we also evaluated the exploration strategies

using the TREC-10 Web track queries (topics 501 through 550) in the WT10g

document corpus. This subset of the corpus includes 50 topics and topic de-

scriptions, run as queries on documents that are part of the corpus. As part of

the 10th Text REtrieval Conference (TREC-10) (Hawking & Craswell, 2001), 18

teams submitted a ranking of documents for each topic. Then, for each topic,

documents ranked highly by the teams were manually judged to be either highly

relevant (relevance score of 2), relevant (score of 1) or non-relevant (score of 0).

All other documents in the corpus were assumed non-relevant (score of 0). The

discretized nature of these relevance judgments is unrealistic, as few documents

are likely to have precisely the same relevance in the real world. To compensate

and make the learning problem more realistic, we added uniform random noise

in the range [−0.5, 0.5] to the true relevance judgments, preserving the relative

order of highly relevant, relevant and non-relevant documents.

For each of the 50 TREC-10 topics, we randomly selected two submissions

and used the submitted scores to initialize our model. We then repeated the

evaluation described for synthetic data. Each submission includes a ranking

of typically 1000 documents, with a score given to each document. The scores

are unnormalized, and hence could be interpreted as a prior in any number of

ways. As each ranking typically contains both highly relevant documents and
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Figure 6.5: Change in loss as a function of the number of pairwise comparisons
for each selection algorithm on TREC-10 data.

non-relevant documents, we chose to normalize the scores to a linear interval

[1500 + σ0, 1500 − σ0] with σ0 = 147. The resulting scores were used to set the

initial νi values. The initial estimated error σi were set to σ0. This means that a

document with a score near the maximum score was estimated to have about a

30% percent chance of in fact being in the lower half of the ranking.

I. Which exploration strategy learns fastest?

Figure 6.5 shows the performance of the exploration strategies. We see that

the loss improves rapidly with LELPAIR, OSL and LELDOC. We also see that

TOP2 performs as it did on the synthetic data. One the other hand, RANDOM per-

forms differently: the loss of the mode ranking initially increases, then improves

slightly but remains high. We believe that this is due to the mismatch between
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the prior and model. When two documents are compared, if the outcome is

not the expected one then the update to the relevance estimates can be large.

Sometimes, the lower ranked document moves to a much higher rank, and the

loss does not quickly recover due to few comparisons per document. Interest-

ingly, performance of RANDOM also depends on the loss of the initial ranking.

When the initial loss is high, after 3,000 pairwise comparisons the loss tends to

be reduced. The opposite is true when we start with a very good ranking.

II. How do the strategies perform with respect to MAP?

The loss function presented earlier is not one commonly used to evaluate rank-

ings. A measure much more widely used by the research community is the mean

average precision (MAP), described on page 40 in Chapter 3. To compute the

MAP, we consider each document with true relevance µ∗i above some threshold

as relevant, and others as irrelevant. The average precision of a ranking is the

average of the precision measured at each relevant document11. The MAP score

is the mean of the average precisions across all 100 experiments. We used a

threshold of 0.5 scaled in the same way the scores were scaled.

Figure 6.6 shows how the MAP of the ranking changes as more pairwise

comparisons are performed. MAP visibly behaves very similarly to our loss func-

tion. We see that LELPAIR and OSL result in the largest MAP improvement, and

appear likely to continue to improve further with more comparisons. As before,

LELDOC performance plateaus quickly and TOP2 sees almost no improvement.

11For simplicity, we only consider the 1000 ranked documents when computing the MAP score.
While the corpus may contain relevant documents that never made it into the top 1000, these do
not contribute to the MAP score we compute.
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Figure 6.6: Change in MAP score as a function of the number of pairwise com-
parisons for each selection algorithm on TREC-10 data.

RANDOM performs poorly, with an initial drop in MAP although after 2,000

pairwise comparisons the MAP is above baseline.

III. How does noise influence learning speed?

So far, our simulation has assumed a particular amount of noise in user clicks.

Given two documents that differ in true relevance by one TREC relevance level,

our parameter settings specify that the user will click on the more relevant one

70% of the time. While this level of noise is realistic (Joachims et al., 2007), it is

of interest to observe what would happen to the difficulty of the learning task

if the noise level were different. We modified our user model to change the

level of noise, and changed the Glicko update equations equivalently. Figure 6.7

shows the final MAP score after 3,000 pairwise comparisons as the level of noise
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Figure 6.7: Effect of different noise levels in pairwise preferences on final MAP
score, evaluated on TREC-10 data.

changes. It shows us that, irrespective of the noise level, the best exploration

strategies remain LELPAIR and OSL. On the left of the figure we see that if

there is a lot of noise in the preferences, all the algorithms perform more poorly.

This is to be expected, given that the amount of information contained in 3,000

pairwise preferences decreases as the amount of noise in user clicks increases.

On the other end of the scale, we see that even if users select the more relevant

document almost 100% of the time, the final MAP score does not reach very high

values. This appears to be a side-effect of the normal approximation implicit in

the Glicko updates.
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IV. How robust is this method to noise assumptions?

The above results assume the noise level is known in advance. Figure 6.8 shows

the effect of a mismatch between the assumed noise level (used to scale the

initial scores, and in the Glicko updates) and the true level of noise in pairwise

preferences (in the user model). Along the horizontal axis we have the proba-

bility a user correctly selects the more relevant document in a pair, if the true

relevances of the pair differ by one TREC relevance level. The figure shows how

the MAP of the mode ranking after 3,000 pairwise comparisons is affected by

different estimates of the noise in pairwise clicks. Each line corresponds to a

different assumed noise level. The figure shows that if the amount of noise is

underestimated, performance is poorer although not drastically so (unless the

noise is underestimated substantially). On the other hand, we see that if the

pairwise preferences are less noisy than assumed, the final performance does not

suffer.

Of particular interest, these results tell us that the best strategy is to assume

the level of noise conservatively to see the best performance improvements.

Finally, it is worth noting that in the case of extremely noisy clicks it may be

beneficial to aggregate user clicks. Specifically, we could collect a number of

pairwise judgments for each pair of documents, and then count these as a single

virtual pairwise judgment for the document with the most preference votes. This

would reduce the effective level of noise in pairwise judgments at the expense of

performing fewer updates given the same number of comparisons.
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Figure 6.8: Effect of incorrect assumptions about the noise level in relevance
judgments on final MAP score, evaluated on TREC-10 data using OSL.

Table 6.1: Mean Average Precision after 3000 iterations of optimizing different
loss variants using OSL.

Loss Function MAP Score

e−rij
(
(µ∗i − µ∗j)− (νi − νj)

)2
1misordered 0.481± 0.017(

(µ∗i − µ∗j)− (νi − νj)
)2

1misordered 0.281± 0.017

e−rij
(
(µ∗i − µ∗j)− (νi − νj)

)2
0.287± 0.012

e−rij 1misordered 0.337± 0.020
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V. Which loss functions are a good proxy for MAP?

So far, our experimental results show that minimizing the expected loss also

improves the MAP. We now demonstrate that the loss function defined in Equa-

tion 6.10 leads to particularly good MAP performance. Table 6.1 shows the

MAP performance after 3,000 pairwise comparisons if we optimize OSL to dif-

ferent variants of the loss function presented, modifying it to remove particular

properties of the loss function.

We see that using a loss function without exponential decay, without a dis-

tance penalty or without a hinge leads to substantial and significant reductions

in the final MAP scores. In particular, optimizing a loss function that simply

depends on document ranks, rather than on the actual relevance estimates (the

fourth line of the table) leads to poorer MAP performance. This shows that de-

spite MAP only being sensitive to document order, minimizing error in relevance

estimates leads to better MAP performance.

6.5.3 Controlling for Presentation Loss

The figures in the previous two sections show the loss and MAP of the mode

ranking as pairwise preference data is collected. However, as described in

Algorithm 6.1, when collecting data, the ranking of documents that is presented

to users is not the mode ranking. Rather, users see rankings with a pair of

results inserted at the top. This means that usually the presented ranking has

a higher loss and a lower MAP score than the mode ranking. The difference

between the MAP of the presented and mode rankings is shown in Figure 6.9.
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Figure 6.9: MAP scores of the mode rankings and the presented rankings, as a
function of number of pairwise comparisons for OSL and RANDOM.

The top two lines are for OSL. The top line shows the MAP of the mode ranking.

The second line shows the MAP of the ranking shown to users. We see that

while the presented ranking is worse than the mode ranking, it is also almost

immediately above the initial MAP, and improves quickly as data is collected.

The separation between the two rankings increases because as the relevance of

higher ranked documents is established, initially lower ranked documents are

shown at the top more often. We see a similar effect comparing the presented

and mode rankings of the RANDOM strategy in the lower two lines, although

the presented ranking does not have a higher MAP than the initial ranking for

all 3,000 pairwise comparisons. We also note that the MAP of the presented

ranking using OSL is substantially better than that of the mode ranking when

the RANDOM exploration strategy is used.
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An interesting final experiment is to consider the tradeoff between the quality

of the presented ranking and the quality of the mode ranking. One possibility to

reduce the impact of data collection would be to present selected pairs at lower

ranks instead of at the top two positions. With real users, this would lead to

a reduction in the amount of data collected, but may improve the MAP of the

presented ranking by reducing the performance gap. Figure 6.10 shows how the

MAP score of the presented ranking after 3,000 pairwise comparisons would

change if the selected pair was presented at a lower rank. The reduction in the

amount of data collected as a function of rank is shown along the horizontal axis.

For example, if for some user population moving the selected pair down by one

rank reduces the number of pairwise preferences collected by 60%, the correct

point for an evaluation would be 0.4 on the horizontal axis. This would mean

that by presenting a pair at rank 2 and 3 rather than 1 and 2, we would only

receive 40% as many clicks. Presenting selected pairs at ranks 3 and 4 would

receive 16% as many clicks. At 0.4, we see that due to the reduction in the amount

of data collected, the MAP of the presented ranking (after 3,000 rankings being

shown to users) would be lower if the selected pairs were at ranks 3 and 4 rather

than at ranks 1 and 2.

Taking Figure 6.10 and overlaying the MAP of the mode rankings for all three

ranks, we get Figure 6.11. It shows that the separation between the mode ranking

and the presented ranking decreases as the rank of the selected pair is decreased,

as we may expect. However, note that as less data is collected, the MAP of the

mode ranking after 3,000 pairwise comparisons also decreases. This is especially

the case if much less data is collected when pairs are presented at lower ranks.
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Figure 6.10: MAP scores of the presented ranking after 3,000 pairwise compar-
isons after presenting selected pairs at different ranks.
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6.6 Summary

This chapter has presented a new formulation of the learning to rank problem,

where the goal is to minimize the total loss from presenting poor ranking func-

tions over all time. We have formalized this problem, which we call the ranked

relevance elicitation problem. The results presented demonstrate that by using

active exploration, the quality of rankings shown to users can be improved faster

than by collecting pairwise training data passively or naı̈vely. We presented a

number of strategies to minimize the expected loss and showed that two in par-

ticular perform well. Our experiments showed a significant level of robustness to

noise in the clickthrough data and to prior assumptions. We also demonstrated

how presentation loss and the quality of learned ranking can be traded off.
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CHAPTER 7

OPTIMIZING RANKINGS WITH DEPENDENT DOCUMENT

RELEVANCES

An overarching assumption throughout the work presented so far in this thesis

is that, given a document and a query, there exists a single number that captures

the relevance of that document to the query. In particular, this relevance score is

assumed to be fixed irrespective of which other documents may or may not be

presented to users, and how relevant they may be. This assumption is also usually

made whenever relevance judgments are collected from human experts. In this

chapter we will argue that in many situations this assumption does not hold. We

will then address the question of what should be optimized if not the correct

fixed relevance estimates. This chapter introduces two theoretically appealing

algorithms that optimize performance under a different relevance model, and

shows that they lead to diverse rankings of documents being presented to users.

The research presented in this chapter was originally published in (Radlinski

et al., 2008b).

7.1 Introduction

Most previous work on learning to rank has assumed the availability of training

data that either consists of relevance judgments for individual (query, document)

pairs, or relevance judgments about the relative relevance of two documents to

the same query. As described in previous chapters, these judgments are typically

then used to optimize a ranking function offline, to a standard information

retrieval metric. The learned function is then deployed in a live search engine.
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This chapter proposes a new learning to rank problem formulation that

differs in three fundamental ways. First, like the remainder of this thesis, the

goal is to learn from and optimize to usage data rather than manually labeled

relevance judgments. Although some researchers have transformed usage data

into relevance judgments, as shown in Chapters 2 and 4, the goal here is to go

one step further by also directly optimizing a usage-based error metric.

Second, we propose an online learning approach for learning from usage

data. As training data is being collected, it immediately impacts the rankings

shown. The learning problem this allows us to address is regret minimization:

minimize the total number of poor rankings displayed over all time. In particular,

in an online learning setting there is a natural tradeoff between exploration

and exploitation – it may be valuable in the long run to present some rankings

with unknown documents, to allow training data about these documents to be

collected. In contrast, in the short run exploitation is typically optimal. With only

few exceptions (such as the work presented in the previous chapter), previous

work does not consider such an online approach. The work here differs in that

we minimize regret rather than just future loss.

Third and most importantly, with few exceptions (such as Chen and Karger

(2006)), previous algorithms for learning to rank have considered the relevance

of each document independently of other documents. This is reflected in the per-

formance measures typically optimized, such as Precision, Recall, Mean Average

Precision (MAP) (Manning et al., 2008) and Normalized Discounted Cumulative

Gain (NDCG) (Järvelin & Kekäläinen, 2000), as described in Chapter 3. Intuitively

it stands to reason that presenting many slight variations of the same highly

relevant document in Web search results may lead to high MAP and NDCG
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scores, yet may be suboptimal for users. Moreover, Web queries often have

different meanings for different users (a canonical example is the query jaguar)

suggesting that a ranking with diverse documents may often be preferable.

This chapter will show how clickthrough data can be used to learn rankings

maximizing the probability that any new user will find at least one relevant

document high in the ranking.

7.2 Related Work

As we have seen throughout this thesis, the standard approach for learning to

rank uses training data to learn parameters θ for a scoring function f(q, di, θ).

Given a new query q, this function computes f(q, di, θ) for each document di

independently and ranks documents by decreasing score (as done by, for example,

Herbrich et al. (2000); Joachims (2002); Burges et al. (2005); Chu and Ghahramani

(2005b), as well as in Chapter 4 of this thesis). This also applies to recent algo-

rithms that learn θ to maximize nonlinear performance measures such as MAP

(Metzler & Croft, 2005; Yue et al., 2007) and NDCG (Burges et al., 2006; Taylor

et al., 2008).

As noted in Chapter 1, such an approach is justified by the probabilistic

ranking principle (Robertson, 1977). In suggesting that documents be ranked

by their probability of relevance to the query. This principle assumes that there

are no statistical dependencies between the probabilities of relevance among

documents. This assumption is violated in practice. For instance, if one document

about jaguar cars is not relevant to a user who issues the query jaguar, other car
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pages become less likely to be relevant. Also, users are often satisfied with finding

a small number of, or even just one, relevant document. Hence the usefulness

and relevance of a document does depend on other documents ranked higher.

As a result, most search engines today attempt to eliminate redundant results

and produce diverse rankings that include documents that are potentially relevant

to the query for different reasons. However, learning optimally diverse rankings

using expert judgments would require document relevance to be measured

for different possible meanings of a query. While the TREC interactive track12

provides some documents labeled in this way for a small number of queries,

such document collections are even more difficult to create than standard expert

labeled collections.

Several non-learning algorithms for obtaining a diverse ranking of docu-

ments from a non-diverse ranking have been proposed. One common one is

Maximal Marginal Relevance (MMR), introduced by Carbonell and Goldstein

(1998). Given a similarity (relevance) measure between documents and queries

sim1(d, q) and a similarity measure between pairs of documents sim2(di, dj),

MMR iteratively selects documents by repeatedly finding

di = argmax
d∈C

(
λsim1(d, q)− (1− λ) max

dj∈S
sim2(d, dj)

)
(7.1)

where C is the collection of documents, S is the set of documents already se-

lected and λ is a tuning parameter. In this way MMR selects the most relevant

documents that are also different from any documents already selected.

Critically, MMR requires that the relevance function sim1(d, q), and the simi-

larity function sim2(di, dj) be already known. It is usual to obtain sim1 and sim2

12http://trec.nist.gov/data/t11 interactive/t11i.html
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using algorithms such as those discussed earlier in this thesis. The goal of MMR

is simply to rerank an already learned ranking (that of ranking documents by

decreasing sim1 score) to improve diversity.

Other researchers have explored alternative algorithms, although with similar

assumptions. For instance Zhu et al. (2007) proposed using a random walk over a

graph constructed from the document collection, encoding document similarity

in the structure of the graph and using relevance information to specify the

starting points of this random walk. As with MMR, the similarity between

documents, and the document relevance, must be obtained prior to running

this algorithm. Zhai et al. (2003) and Zhang et al. (2005) also proposed other

algorithms for this same problem, but assumed specific document similarity

measures that are not learned. Thus those similarity measures do not necessarily

correctly encode users’ concept of document similarity or redundancy.

Using a different line of reasoning, Chen and Karger (2006) presented an

alternative approach. They proposed to directly estimate the probability that

relevant documents are present in a result set. Specifically, they suggest that

when given a query q, the first document d1 be selected to have maximal prob-

ability of relevance to the query: d1 = argmaxd P (d is relevant | q). The second

document can then be selected to maximize the probability of relevance given

that d1 was not relevant: d2 = argmaxd P (d is relevant | q, d1 is not relevant). In

a similar way, documents can be selected one at a time to maximize the prob-

ability that a relevant document is found. However, like MMR and the other

related approaches, we still need a model of relevance that can be provided as

input, and that can quickly compute the probability of relevance conditioned on
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other documents not being relevant. In contrast, we now present algorithms that

directly learn a diverse ranking of documents using users’ clicking behavior.

7.3 Problem Formalization

We address the problem of learning an optimally diverse ranking of documents

C = {d1, . . . , dn} for one fixed query. Suppose we have a population of users,

where each user ui considers some subset of documents Ai ⊂ C as relevant to the

query, and the remainder of the documents as non-relevant. Intuitively, users

with different interpretations for the query would have different relevant sets,

while users with similar interpretations would have similar relevant sets. An

illustration of users and documents they find relevant for one query is shown in

Figure 7.1. In this example, users 1 and 2 find similar documents relevant while

user 1 and user 3 disagree on the meaning of the query.

At time t, we interact with user ut with relevant set At. We present an ordered

set of k documents, Bt = (b1(t), . . . , bk(t)). The user considers the results in

order, and clicks on up to one document. The probability of user ut clicking

on document di (conditional on the user not clicking on a document presented

earlier in the ranking) is assumed to be pti ∈ [0, 1]. We refer to the vector of

probabilities (pti)i∈C as the type of user ut. In the simplest case, we could take

pti = 1 if di ∈ At and 0 otherwise, in which case the user clicks on the first

relevant document or does not click if no documents in Bt are relevant. However,

in reality clicks tend to be noisy although more relevant documents are more

likely to be clicked on. In our analysis, we will take pti ∈ [0, 1].
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√ √ √ √
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√ √ √ √
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√ √
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√ √ √ √
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√ √ √

Figure 7.1: Example of users and relevant documents for some query. We see
that some users have very similar interests (e.g. user 1 and user 2) while others
have different interests (e.g. user 1 and user 3). Each row represents Ai for that
user.

We get payoff 1 if the user clicks, 0 if not. The goal is to maximize the total

payoff, summing over all time. This payoff represents the number of users who

clicked on any result, which can be interpreted as the user finding at least one

potentially relevant document (so long as pti is higher when di∈At than when

di /∈At).

The event that a user does not click is called abandonment since the user

abandoned the search results.

Definition 7.1. The abandonment rate measures the fraction of queries for which

search engine users do not click on any of the search results returned.
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Abandonment is an important measure of user satisfaction because it in-

dicates that the user was likely presented with search results of no potential

interest13.

7.4 Learning Algorithms

We now present two algorithms that seek to directly minimize the abandonment

rate. At a high level, both algorithms learn a marginal utility for each document

at each rank, displaying documents to maximize the probability that a new user

of the search system would find at least one relevant document within the top k

positions. The algorithms differ in their assumptions.

7.4.1 Ranked Explore and Commit

The first algorithm we present is a simple greedy strategy that assumes that

user interests and documents do not change over time. As we will see, after

T time steps this algorithm achieves a payoff of at least (1 − 1/e − ε)OPT −

O(k3n/ε2 ln(k/δ)) with probability at least 1 − δ. OPT denotes the maximal

payoff that could be obtained if the click probabilities pti were known ahead

of time for all users and documents, and (1 − 1/e)OPT is the best obtainable

polynomial time approximation, as will be explained in Section 7.5.1.

As described in Algorithm 7.1, Ranked Explore and Commit (REC) iteratively

selects documents for each rank. At each rank position i, every document

13Although abandonment may also be the result of users finding answers directly on the search
results page, our model does not consider this possibility.
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Algorithm 7.1 Ranked Explore and Commit
1: input: Documents (d1, .., dn), parameters ε, δ, k.
2: x← d2k2/ε2 log(2k/δ)e
3: (b1, . . . , bk)← k arbitrary documents.
4: for i=1 . . . k do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . At every rank
5: ∀j. pj ← 0
6: for counter=1 . . . x do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loop x times
7: for j=1 . . . n do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . over every document dj
8: bi ← dj
9: display {b1, . . . , bk} to user; record clicks

10: if user clicked on bi then pj ← pj + 1
11: end for
12: end for
13: j∗ ← argmaxj pj . . . . . . . . . . . . . . . . . . . . . Commit to best document at this rank
14: bi ← dj∗
15: end for

dj is presented a fixed number x times, and the number of clicks it receives

during these presentations is recorded. After nx presentations, the algorithm

permanently assigns the document that received the most clicks to the current

rank, and moves on to the next rank.

7.4.2 Ranked Bandits Algorithm

Ranked Explore and Commit is purely greedy, meaning that after each docu-

ment is selected, this decision is never revisited. In particular, this means that

if user interests or documents change, REC can perform arbitrarily poorly. In

contrast, the Ranked Bandits Algorithm (RBA) achieves a combined payoff of

(1 − 1/e)OPT − O(k
√
Tn lnn) after T time steps even if documents and user

interests change over time.
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Algorithm 7.2 Ranked Bandits Algorithm
1: initialize MAB1(n), . . . ,MABk(n) . . . . . . . . . . . . . . Initialize multi-armed bandits
2: for t = 1 . . . T do
3: for i = 1 . . . k do . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sequentially select documents
4: b̂i(t)← select-arm (MABi)

5: if b̂i(t)∈{b1(t), .., bi−1(t)} then . . . . . . . . . . . . . . . . . . . . . . . . . . .Replace repeats
6: bi(t)← arbitrary unselected document
7: else
8: bi(t)← b̂i(t)
9: end if

10: end for
11: display Bt = {b1(t), . . . , bk(t)} to user; record clicks
12: for i = 1 . . . k do . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determine feedback for MABi
13: if user clicked bi(t) and b̂i(t) = bi(t) then
14: fit = 1
15: else
16: fit = 0
17: end if
18: update (MABi, arm = b̂i(t), reward = fit)
19: end for
20: end for

This algorithm leverages standard theoretical results for multi-armed bandits.

Multi-armed bandits (MAB) are modeled on casino slot machines (sometimes

called one-armed bandits). The goal of standard MAB algorithms is to select

the optimal sequence of slot machines to play to maximize the expected total

reward collected. For further details, refer to Auer et al. (2002a) and Kleinberg

(2005). The ranked bandits algorithm runs an MAB instance MABi for each rank

i. Each of the k copies of the multi-armed bandit algorithm maintains a value

(or index) for every document. When selecting the ranking to display to users,

the algorithm MAB1 is responsible for choosing which document is shown at

rank 1. Next, the algorithm MAB2 determines which document is shown at rank

2, unless the same document was selected at the highest rank. In that case, the
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second document is picked arbitrarily. This process is repeated to select all top k

documents.

Next, after a user considers up to the top k documents in order, and clicks

on one or none, we need the MAB instances to update their indices. If the user

clicks on a document actually selected by an MAB instance, the reward for the

arm corresponding to that document for the multi-armed bandit at that rank is 1.

The reward for the arms corresponding to all other selected documents is 0. In

particular, note that the RBA treats the bandits corresponding to each rank inde-

pendently. Precise pseudo-code for the algorithm is presented in Algorithm 7.2.

A generalization of this algorithm, in an abstract setting without the application

to information retrieval, was discovered independently by Streeter and Golovin

(2007).

The actual MAB algorithm used for each MABi instance is not critical, and

in fact any algorithm for the non-stochastic multi-armed bandit problem will

suffice. Our theoretical analysis only requires that:

• The algorithm has a set S of n strategies.

• In each period t a payoff function ft : S → [0, 1] is defined. This function is

not revealed to the algorithm, and may depend on the algorithm’s choices

before time t.

• In each period t the algorithm chooses a (possibly random) element yt ∈ S

based on the feedback revealed in prior periods.

• The feedback revealed in period t is ft(yt).
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• The expected payoffs of the chosen strategies satisfy:
T∑
t=1

E[ft(yt)] ≥ max
y∈S

T∑
t=1

E[ft(y)] − R(T ) (7.2)

where R(T ) is an explicit function in o(T ) which depends on the particular

multi-armed bandit algorithm chosen, and the expectation is over any

randomness in the algorithm. We will use the Exp3 algorithm in our

analysis, where R(T ) = O
(√

Tn lnn
)

(Auer et al., 2002b).

We will also later see that although these conditions are needed to bound

worst-case performance, better practical performance may be obtained at the

expense of worst-case performance if they are relaxed.

7.5 Theoretical Analysis

We now present a theoretical analysis of the algorithms presented in Section 7.4.

First however, we discuss the offline version of this optimization problem.

7.5.1 The Offline Optimization Problem

The problem of choosing the optimum set of k documents for a given user

population is NP-hard, even if all the information about the user population

(i.e. the set of relevant documents for each user) is given offline and we restrict

ourselves to pti ∈ {0, 1}. This is because selecting the optimal set of documents is

equivalent to the maximum coverage problem: Given a positive integer k and

a collection of subsets S1, S2, . . . , Sn of an m-element set, find k of the subsets

whose union has the largest possible cardinality.
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The standard greedy algorithm for the maximum coverage problem, trans-

lated to our setting, iteratively chooses the document that is relevant to the most

users for whom a relevant document has not yet been selected. This algorithm is

a (1−1/e)-approximation algorithm for this maximization problem (Nemhauser

et al., 1978). The (1 − 1/e) factor is optimal and no better worst-case approxi-

mation ratio is achievable in polynomial time unless NP ⊆ DTIME
(
nlog logn

)
(Khuller et al., 1997).

7.5.2 Analysis of Ranked Bandits Algorithm

We start by analyzing the Ranked Bandits Algorithm. This algorithm works by

simulating the offline greedy algorithm, using a separate instance of the multi-

armed bandit algorithm for each step of the greedy algorithm. Except for the

sublinear regret term, the combined payoff is as high as possible without violat-

ing the hardness-of-approximation result stated in the preceding paragraph.

To analyze the RBA, we first restrict ourselves to users who click on any given

document with probability either 0 or 1. We refer to this restricted type of user as

a deterministic user; we will relax the requirement later. Additionally, this analysis

applies to a worst case (and hence fixed) sequence of users.

Further, it is useful to introduce some notation. For a set A and a sequence

B = (b1, b2, . . . , bk), let

Gi(A,B) =

 1 if A intersects {b1, . . . , bi}

0 otherwise
(7.3)

gi(A,B) = Gi(A,B)−Gi−1(A,B) (7.4)
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Recalling that At is the set of documents relevant to user ut, we see that

Gk(At, B) is the payoff of presenting B to the user ut. Let

B∗ = argmax
B

T∑
t=1

Gk(At, B), (7.5)

OPT =
T∑
t=1

Gk(At, B
∗). (7.6)

Recall that (b̂1(t), . . . , b̂k(t)) is the sequence of documents chosen by the algo-

rithms MAB1, . . . ,MABk at time t, and that (b1(t), . . . , bk(t)) is the sequence of

documents presented to the user. We define the feedback function fit for algo-

rithm MABi at time t, as follows:

fit(b) =

 1 if Gi−1(At, Bt) = 0 and b ∈ At

0 otherwise
. (7.7)

Note that the value of fit defined in the pseudocode for the Ranked Bandits

Algorithms is equal to fit(b̂i(t)).

Lemma 7.1. For all i,

E

[
T∑
t=1

gi(At, Bt)

]
≥ 1

k
E

[
T∑
t=1

(Gk(At, B
∗)−Gi−1(At, Bt))

]
−R(T ) (7.8)

=
1

k
OPT − 1

k
E

[
T∑
t=1

Gi−1(At, Bt)

]
−R(T ). (7.9)

Proof. First, note that

gi(At, Bt) ≥ fit(b̂i(t)). (7.10)

This is trivially true when fit(b̂i(t)) = 0. When fit(b̂i(t)) = 1, Gi−1(At, Bt) = 0 and

b̂i(t) ∈ At. This implies that bi(t) = b̂i(t) and that gi(At, Bt) = 1.
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Now using the regret bound for MABi we obtain

T∑
t=1

E[fit(b̂i(t))] ≥ max
b

T∑
t=1

E[fit(b)]−R(T )

≥ 1

k
E

[∑
b∈B∗

T∑
t=1

fit(b)

]
−R(T ). (7.11)

To complete the proof of the lemma, we will prove that

∑
b∈B∗

fit(b) ≥ Gk(At, B
∗)−Gi−1(At, Bt). (7.12)

The lemma follows immediately by combining (7.10)-(7.12). Observe that

the left side of (7.12) is a non-negative integer, while the right side takes one of

the values {−1, 0, 1}. Thus, to prove (7.12) it suffices to show that the left side is

greater than or equal to 1 whenever the right side is equal to 1. The right side

equals 1 only when Gi−1(At, Bt) = 0 and At intersects B∗. In this case it is clear

that there exists at least one b ∈ B∗ such that fit(b) = 1, hence the left side is

greater than or equal to 1.

Theorem 7.1. The algorithm’s combined payoff after T rounds satisfies:

E

[
T∑
t=1

Gk(At, Bt)

]
≥
(

1− 1

e

)
OPT − kR(T ). (7.13)

Proof. We will prove, by induction on i, that

OPT − E

[
T∑
t=1

Gi(At, Bt)

]
≤
(

1− 1

k

)i
OPT + iR(T ). (7.14)

The theorem follows by taking i = k and using the inequality
(
1− 1

k

)k
< 1

e
.

In the base case i = 0, inequality (7.14) is trivial. For the induction step, let

Zi = OPT − E

[
T∑
t=1

Gi(At, Bt)

]
. (7.15)
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We have

Zi = Zi−1 − E

[
T∑
t=1

gi(At, Bt)

]
, (7.16)

and Lemma 7.1 says that

E

[
T∑
t=1

gi(At, Bt)

]
≥ 1

k
Zi−1 −R(T ). (7.17)

Combining (7.16) with (7.17), we obtain

Zi ≤
(

1− 1

k

)
Zi−1 +R(T ). (7.18)

Combining this with the induction hypothesis proves (7.14).

The general case, in which user ui’s type vector (pij)j∈C is an arbitrary element

of [0, 1]C , can be reduced via a simple transformation to the case of deterministic

users analyzed above. We replace user ui with a random deterministic user ûi

whose type vector p̂i ∈ {0, 1}C is sampled using the following rule: the random

variable p̂ij has distribution

p̂ij =

 1 with probability pij

0 with probability 1− pij,
(7.19)

and these random variables are mutually independent. Note that the clicking

behavior of user ui when presented with a ranking B is identical to the clicking

behavior observed when a random user type ûi is sampled from the above dis-

tribution, and the ranking B is presented to ûi. Thus, if we apply the specified

transformation to users u1, u2, . . . , uT , obtaining a random sequence û1, û2, . . . , ûT

of deterministic users, this transformation changes neither the algorithm’s ex-

pected payoff nor that of the optimum ranking B∗. Thus, Theorem 7.1 for general

users can be deduced by applying the same theorem to the random sequence
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û1, . . . , ûT and taking the expectation of the left and right sides of (7.13) over the

random choices involved in sampling û1, . . . , ûT .

Note also that B∗ is defined as the optimal subset of k documents, and OPT

is the payoff of presenting B∗, without specifying the order in which documents

are presented. However, the Ranked Bandits Algorithm learns an order for the

documents in addition to identifying a set of documents. In particular, given

k′ < k, RBA(k′) would receive exactly the same feedback as the first k′ instances

of MABi receive when running RBA(k). Hence any k′ sized prefix of the learned

ranking also has the same performance bound with respect the appropriate

smaller set B′∗.

Finally, it is worth noting that this analysis cannot be trivially extended to non-

binary payoffs. For instance, one common application with non-binary payoffs is

Web search advertising (Edelman et al., 2007). When ranking Web advertisements,

the payoff is usually different for each advertisement since advertisement slots

are usually auctioned off to advertisers. Each advertiser then pays per click on

their advertisement, but the price paid for advertisements in different positions

is different. If payoffs are not binary, the greedy algorithm on which RBA is

based can obtain a payoff that is a factor of k − ε below optimal, for any ε > 0.

7.5.3 Analysis of Ranked Explore and Commit

The analysis of the Ranked Explore and Commit (REC) algorithm is analogous to

that of the Ranked Bandits algorithm, except that the equivalents of Lemma 7.1

and Theorem 7.1 are only true with high probability after t0 = nxk time steps of

exploration have occurred.
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Let B denote the ranking selected by REC.

Lemma 7.2. Let x = 2k2/ε2 ln(2k/δ). Assume At is drawn i.i.d. from a fixed distribu-

tion of user types. For any i, with probability 1− δ/k,

E

[
T∑
t=t0

gi(At, B)

]
≥ 1

k
E

[
T∑
t=t0

(Gk(At, B
∗)−Gi−1(At, B))

]
− ε

k
T. (7.20)

Proof Outline. First note that in this setting, B∗ and OPT are defined in expec-

tation over the At drawn. For any document, by Hoeffding’s inequality, with

probability 1− δ/2k the true payoff of that document explored at rank i is within

ε/2k of the observed mean payoff. Hence the document selected at rank i is

within ε/k of the payoff of the best document available at rank i. Now, the same

proof as for Lemma 7.1 applies, although with a different regret R(T ).

Theorem 7.2. With probability (1− δ), the algorithm’s combined payoff after T rounds

satisfies:

E

[
T∑
t=1

Gk(At, B)

]
≥
(

1− 1

e

)
OPT − εT − nkx (7.21)

Proof Outline. Applying Lemma 7.2 for all i ∈ {1, .., k}, with probability

(1− kδ/k) = (1− δ) the conclusion of the Lemma holds for all i.

Next, an analogous proof as for Theorem 7.1 applies, except replacing R(T )

with ε
k
T and noting that the regret during the nkx exploration steps is at most 1

for every time step.

It is interesting to note that, in contrast to the Ranked Bandits Algorithm,

this algorithm can be adapted to the case where clicked documents provide

real valued payoffs. The only modification necessary is that documents should

always be presented by decreasing payoff value.
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7.6 Evaluation

In this section, we evaluate the Ranked Bandits algorithm and Ranked Explore

and Commit algorithm, as well as two variants of RBA, with simulations using a

user and document model.

We chose a model that produces a user population and document distribution

designed to be realistic yet allow us to evaluate the performance of the presented

algorithms under different levels of noise in user clicking behavior. Our model

first assigns each of 20 users to topics of interest using a Chinese Restaurant

Process (Aldous, 1985) with parameter θ = 3. This leads to a mean of 6.5 unique

topics, with topic popularity decaying according to a power law. Taking a

collection of 50 documents, we then randomly assign as many documents to each

topic as there were users assigned to the topic, leading to topics with more users

having more documents. We set each document assigned to a topic as relevant

to all users assigned to that topic, and all other documents as non relevant. The

probabilities of a user clicking on relevant and non-relevant documents are set to

constants pR and pNR respectively.

We tested by drawing one user uniformly from the user population at each

time step, and presented this user with the ranking selected by each algorithm,

using k = 5. We report the average number of time steps when the user clicked on

a result, and the average number of time steps when at least one of the presented

documents was relevant to the user. All numbers we report are averages over

1,000 algorithm runs.
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Figure 7.2: Clickthrough rate of the learned ranking as a function of the number
of times the ranking was presented to users.

7.6.1 Performance Without Click Noise

We start by evaluating how well the REC and RBA algorithms maximize the

clickthrough rate in the simplest case when pR = 1 and pNR = 0. We also

compare their performance to the clickthrough rate that the same users would

generate if presented with documents selected by a static system that orders

documents by decreasing true probability of relevance to the users assuming

document relevances are independent. Figure 7.2 shows that both REC and

RBA perform well above the static baseline and well above the performance

guarantee provided by the theoretical results. This is not surprising, as the

(1 − 1/e)OPT bound is a worst-case bound. In fact, we see that REC with

x = 1000 nearly matches the performance of the best possible ranking after

finishing its initial exploration phase. We also see that the exploration parameter

of REC plays a significant role in the performance, with lower exploration leading
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to faster convergence but slightly lower final performance. Note that despite REC

performing best here, the ranking learned by REC is fixed after the exploration

steps have been performed. If user interests and documents change over time,

the performance of REC could fall arbitrarily. In contrast, RBA is guaranteed to

remain near or above the (1− 1/e)OPT bound.

7.6.2 Effect of Click Noise

In Figure 7.2, the clickthrough rate and fraction of users who found a relevant

document in the top k positions is identical (since users click if and only if they

are presented with a relevant document). In contrast, Figure 7.3 shows how

the fraction of users who find a relevant document decays as the probability of

a user clicking becomes noisier. The figure presents the performance lines for

REC and RBA across a range of click probabilities, from (pR = 1, pNR = 0) to

(pR = 0.7, pNR = 0.3). We see that both algorithms decay gracefully: as the clicks

become noisier, the fraction of users presented with a relevant documents decays

slowly.

7.6.3 Practical Considerations

Despite the theoretical results shown earlier, it would be surprising if an algo-

rithm designed for the worst case had best average case performance. Figure 7.4

shows the clickthrough rate (which the algorithms optimize), and fraction of

users who find relevant documents (which is of more interest to information

retrieval practitioners), for variants building on the insights of the ranked bandits
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ranking.

idea. Specifically, two variants of RBA that have the best performance we could

obtain in our simulation are shown. The first variant uses a modified EXP3 arm

selection algorithm. In particular, we found that instead of updating weights

using the standard EXP3 scheme, wj(t+ 1) = wj(t) exp(γx̂j/K), updating using a

larger step size ηγx̂j/K with η = 7 resulted in faster performance improvement.

The second variant uses a modified UCB1-based multi-armed bandit algorithm

(Auer et al., 2002a). In this case, we found that by modifying the confidence

bound used in UCB1 improved performance. In particular, instead of computing

the confidence interval
√

2 lnn/nj , we used 1/
√
nj .

We found that using a UCB1-based multi-armed bandit algorithm in place

of EXP3 improves the performance of RBA substantially when user interests

are static. Note however, that UCB1 does not satisfy the constraints presented

in Section 7.4.2 because it assumes rewards are identically distributed over
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time, an assumption violated in our setting when changes in the documents

presented above rank i alter the reward distribution at rank i. Moreover, our

modified confidence interval no longer guarantees optimality of UCB1 even

in the standard Multi-Armed Bandit setting. Nevertheless, we see that this

modification substantially improves the performance of RBA. We expect such

an algorithm to perform best when few documents are prone to radical shifts in

popularity.

7.7 Summary

This chapter has presented a new formulation of the learning to rank problem

that explicitly takes into account the relevance of different documents being

interdependent. We presented, analyzed and evaluated two algorithms and two

variants for this learning setting. We have shown that the learning problem can

be solved in a theoretically sound manner, and have provided evidence from

simulations that our algorithms are likely to perform reasonably in practice.
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CHAPTER 8

CONCLUSIONS AND OPEN QUESTIONS

This thesis has studied the question of how to improve interactive informa-

tion ranking systems by observing the natural behavior of users in response

to information with which they are presented. We now summarize the four

key contributions presented here, and describe three important directions that

remain open for further study.

8.1 Thesis Conclusions

Many of the key tools made available through the Internet rely on presenting

ranked lists of information to users. These rankings help users find the in-

formation they need, be it about books, movies, websites, people, or any of a

tremendous array of items about which information is available online. Through-

out this thesis, we have considered the question of how the natural interactions

of users with such ranking systems provide information that can be used to

improve them automatically using machine learning techniques. The records of

these actions, termed implicit feedback, are particularly valuable as they provide a

real time view of the needs users actually have, and also tell us when needs are

not being satisfied.

After setting the stage for the thesis in the Introduction, we first presented an

overview of user behavior both offline and online in Chapter 2. In particular, this

chapter described how users act in a Web setting, and thus which effects we need

to take care to consider when interpreting user behavior as implicit feedback.
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Following this, we presented an overview of some of the many approaches for

learning to rank, and for measuring the performance of these algorithms in the

third chapter. The four key contributions of this thesis were presented next:

I. Many Web search engine users pose a sequence of queries during a single

visit, in what we call query chains. We showed that these query reformulations

provide valuable information about user needs. In particular, reformulations

can describe when needs are being unmet by a current system. We showed

how to take reformulations and clicks recorded on a Web search engine, and

transform them into relative relevance judgments that can then be used to learn

an improved ranking function. This improvement was demonstrated on a real

search system implemented for the Cornell University library.

II. We described a specific difficulty with the relevance judgments obtained from

clickthrough data, namely the problem of presentation bias. We showed that

by using an algorithm called FairPairs, presentation bias can be avoided. This

algorithm collects pairwise relevance judgments that provably do not suffer from

presentation bias, under reasonable assumptions. The presentation bias effect,

and FairPairs algorithm, were both demonstrated on a real search system that

provided search functionality on the arXiv e-print archive.

III. We discussed the difficulty of evaluation bias: users pay substantially more

attention to top ranked results than lower ranked results. When collecting

training data for improving the performance of interactive information ranking

systems, this bias means that much less information is obtained about results

that are not initially presented at high ranks. We presented a new approach to

ranking, considering the training data that will be obtained when presenting

results to users rather than simply ordering results by presumed relevance. A
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number of principled search strategies for choosing which rankings to display

were evaluated. This evaluation, using a simulation of user behavior, showed

that two of the strategies proposed lead to much faster learning by ranking

systems.

IV. We presented a new formulation of learning to rank that optimizes a user based

performance measure, specifically abandonment. This formulation also encodes

interdependencies between the relevance of individual results. In particular, if

two of the ranked items are essentially redundant, the benefit from presenting

both is often only marginally higher than the benefit from presenting just one.

Moreover, the algorithms presented for this problem also address user diversity.

In a Web search setting, user diversity this is manifested by different users

interpreting the same query differently. One of the algorithms presented obtains

the best possible polynomial time approximation factor to minimizing user

abandonment using a worst-case bound.

Taken together, these results have shown that implicit feedback is a valuable

source of data for improving interactive information ranking systems. While

biases exist in user behavior, we have shown that careful design of data collection

and data interpretation techniques can avoid, or compensate for, these difficulties.

We presented a number of new learning algorithms that use implicit feedback.

Our evaluations showed that the algorithms are effective in practice, as well as

having desirable theoretical properties.
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8.2 Open Questions and Future Directions

Many important questions relating to learning to rank from implicit feedback,

however, remain unanswered. In this section, We briefly consider three of them,

and describe preliminary results for the first two.

8.2.1 Personalization

Given the large quantities of implicit feedback that can be collected, can this data

be used to further personalize the current generation of interactive information

ranking systems? For instance, personalizing Web search is one important

direction for more research. It asks – if different users understand the same

query differently, why should they all be presented with the same results? A

number of researchers have studied various aspects of this question, for example,

Sugiyama et al. (2004); Teevan et al. (2005b); Zhang et al. (2002); Ziegler et al.

(2005). Similarly, a number of personalizing commercial Web search engines are

available.

One increasingly common approach to personalization is to provide a user

profile to search engines, which can then use this profile to bias search results

toward the user’s interests14. However, this requires the search engine to perform

personalization at additional computational expense, and requires that the users

trust the search engine with the personal information encoded in their profiles.

We now present preliminary work, published with more details in (Radlinski

& Dumais, 2006), that instead describes a client-side approach for diversifying

14For example, the Google search engine allows users to log in, after which a profile of their
searches and clicks is built implicitly.
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Web search results. At a high level, client-side personalization proposes that

in response to a query, the user’s browser is provided with a number of search

results (for instance, 100). The search results can then be ranked by the client to

place more promising results for the user at higher ranks.

The primary difficulty with client-side ranking of search results is that the

client can only rank the limited number of top results that are made available to

it. While this may allow effective personalization when Web pages of particular

interest to the user are present in the set, it cannot be effective if all available

results are similar and of less interest to the user.

Anagnostopoulos et al. (2005) proposed a method to sample search results to

obtain a heterogeneous sample of the search results for a query. An alternative

that we study is to use query chains to understand the variety of user intents for

a query, and improve the effectiveness of client-side ranking. The main insight

in our approach is that by observing how large numbers of users reformulate

their queries, we can see which kinds of results tend to be missing from the

top of search results, from the users’ perspective. For example, when studying

logs from a large Web search engine, we observed that the query “windows” is

often followed by specializations such as “windows xp” or “house windows”.

This suggests that if we want to personalize results for a user who issued the

query “windows”, we may also want to consider results from both of these

reformulations. Analyzing query chains can thus allow interesting diversity to

be added to query results.
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I. Diversifying using Query Chains

Suppose that we want to personalize search by reranking 100 results client-side.

Given a query q, we propose to generate a set of k related queries Q(q). We then

take 100
k+1

results from each query in Q(q), and from q. This gives C, a corpus of

100 results to rerank. In our evaluation, we will use k ∈ {0, 2, 4, 9, 19}. When

k=0, the top 100 results from the original query are considered for reranking, and

when k=19, the top 5 results from q and from 19 reformulations are considered.

To obtain query reformulations, we analyzed a large sample of the query logs

from a popular Web search engine over about 6 weeks. For each query qi we

measured ni, the number of times the query was observed, and pi, the empirical

probability that qi was followed by any other query from the same IP address

within a thirty minute time window. For a pair of queries (qi, qj), let nij be the

number of times qi was followed by qj . pij =
nij
ni

is the empirical probability of qi

being followed by qj . p∗ij is the related symmetric measure, p∗ij =
√
pijpji.

We developed three methods for generating Q(q). The Most Frequent (MF)

method sets Q(qi) to the queries qj with highest nij . These are the queries

that most often follow qi. The Maximum Result Variety (MRV) method greedily

selects queries that are both frequent reformulations (using pij) and different from

other queries that have already been selected (using p∗jk). We used a weighted

combination of these two factors, argmaxqj(λpij − (1 − λ) maxqk∈R(qi) p
∗
jk), with

λ = 0.5. MRV is motivated by the MMR approach of Carbonell and Goldstein

(1998) that is described on page 148 of this thesis. It aims to select a set of queries

that are related to qi yet different from each other. Finally, the Most Satisfied

(MS) method sets Q(qi) as the set of queries qj with minimum pj that also satisfy
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pij > 0.001 and nij ≥ 2. This method finds queries that tend not to be further

reformulated yet occur with some minimum frequency.

II. Diversity Evaluation

Let match(di, u) measure how well document di matches the interests of the

user u. We can measure match(di, u) using the relevance-feedback approach

developed by Teevan et al. (2005b). They proposed weighting words using

relevance information obtained from a local representation of users’ interests:

wt = log
(rt + 0.5)(N − nt + 0.5)

(nt + 0.5)(R− rt + 0.5)
, (8.1)

where N is the number of documents in the corpus of documents being ranked,

R is the number for which we have relevance feedback, and nt and rt are the

number of documents in N and R that contain t. N and nt were computed from

a sample of 1.5 billion Web pages. R and rt were computed for each user using a

full text index of the files, emails and Web pages on their computer hard drives

to represent their interests (Teevan et al., 2005b). We computed wt for pairs of

adjacent words (bigrams), using them to compute the match function:

match(di, u) =
∑

ti,tj∈di

wti,tj (8.2)

The maximum match in C, diversity(C) = maxdi∈Cmatch(di, u), reflects the

extent to which at least one result is very similar to a user’s interests. We used

the average value of diversity(C) across all users as a measure of diversity for

each method.
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III. Preliminary Results

We evaluated this approach for 33 volunteers. Figure 8.1 shows the bigram match

results for the diversification methods and five values of k.

The evaluation was performed on two types of queries. The lower three

curves show the results for a set of 30 fixed queries chosen from the search

engine log. The queries varied in frequency, topic, and typical reformulation

patterns. The upper two curves show the results for the most recent queries

in each user’s browser history, averaging 76 queries per user. The MS method

did not generate enough reformulations for some of the user-specific queries

so we omit it. Computing the F-statistic, we see that the main effect of query

type (fixed, user) is reliable (F (1, 32) = 4.82, p = 0.022). This means that the

match score for queries of interest to the user is higher than the match score

for the fixed set of general queries. The main effect of diversification method is

marginally reliable (F (1, 32) = 3.30, p = 0.079), with MRV leading to somewhat

higher diversity scores. The main effect of k is reliable (F (4,128)=3.82, p=0.006),

showing that diversity scores increase as the number of reformulations consid-

ered increases. Interestingly, for the MF method the first few reformulations

reduce the result diversity. This suggests that the most frequent reformulations

are not very different in topic from the original query. Even with this small initial

dip, the linear correlation between k and diversity score is strong and significant

(r = 0.90, p = 0.037).

In all, these results suggest that query reformulations can be used to im-

prove personalized Web search in ways other than through pairwise relevance

judgments about pairs of documents.
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Figure 8.1: Evaluation of MF, MRV and MS diversity methods on a fixed query
set (Fixed), as well as on queries taken from users’ Web browser cache (User).

8.2.2 Malicious Noise

A second important direction for future study involves malicious noise in click-

through data. Once implicit feedback becomes widely used for improving

ranking systems on the Internet, commercial incentives will increase malicious

behavior. The uncertainty is in the extent to which this malicious behavior will

affect the usefulness of implicit feedback.

One possible approach to mitigate the effect of such malicious behavior,

which in the context of clickthrough data we term click-spam, is to partition users

into groups. Implicit feedback generated by each group can then be used only to

affect rankings seen by that group. This can reduce the economic incentives of

click-spam, as we will now show in one specific setting by describing part of a

preliminary study published in longer form in (Radlinski, 2007).
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I. Modeling Search Preferences

For many Web search queries, we can model the ranking problem as having a

large number of competitors Ci providing commercial services (such as selling

sporting goods, books or pharmaceuticals). Search engine users enter a query,

and in response are presented with an ordered list of competitors. For such

commercial searches, as for all searches, the user is much more likely to visit

highly ranked websites than those ranked lower. Hence, ensuring that the

ranking is based on some reasonable measure (for example reliability, price or

geographic proximity to the user) is important.

To make it possible to study such a system theoretically, consider a setting

where we have a single query and some set of m competitors C1 through Cm.

Further, suppose our algorithm for learning to rank converts clickthrough data

into simple votes for each competitor Ci. A sensible approach for ranking the

competitors would then be to rank them by decreasing votes. To eliminate the

obvious difficulties if one user were able to provide more votes than other users,

we assume each user of the search engine can provide one vote. For example, the

IP address or a cookie could be used as a proxy for user identity. In this setting, a

spammer can produce click-spam by taking other users’ votes. In practice, this

would involve fraudulent clicks caused by compromised systems or by paid

users. We will call all users or systems creating malicious click data spam hosts. In

particular, it could be in the interest of the lower ranked competitor to produce

click-spam if the cost of obtaining enough spam hosts to be ranked higher is less

than the financial benefit of being ranked higher.
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II. Ranking Utility

Let the fraction of users whose preferences are satisfied by the ranking they

are presented with be called the user utility. This is the measure that we are

interested in optimizing. However, there is also a utility of the ranking from the

perspective of the competitors Ci, as each possible ranking has a specific value to

each competitor being ranked. We call this utility the competitor utility. We now

formalize these utilities.

Assume that there are n users who are interested in buying the products

that C1 through Cm compete to sell. Let pCi be the percentage of users who

prefer competitor Ci. Say we divide the population of users into k partitions, P1

through Pk with k << n and with each partition large enough that we do not

need to consider small sample effects. The percentage of users in partition Pi is

pi, with p
Cj
i being the percentage of all users who are in partition i and prefer

Cj . For example if there are two competitors, and partition P1 includes 10% of

the users where three quarters of them prefer C1 then p1 = 0.1, pC1
1 = 0.075 and

pC2
1 = 0.025.

We define the user utility of a partitioning as the fraction of users whose

preferred competitor is ranked first if the learned ranking takes a majority vote

in each partition. Without any click-spam present, this is

utilu(P ) =
k∑
i=1

max
j
p
Cj
i (8.3)

When there is click-spam, a spammer may flip which competitor is ranked

highest in any or all of the partitions. We define a spammer by η, the fraction

of all hosts that the spammer turns into spam hosts. We assume spammers can
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obtain any number of spam hosts, but restrict ourselves to spammers that do not

know which partition a particular host is in before it is compromised. This means

that the additional number of votes that an η-spammer trying to promote Cs can

gain is proportional to η(1− pCs), since the remaining compromised hosts will

already be voting for Cs. Within a particular partition Pi, an η-spammer could

change the number of votes for Cs from pCsi to pCsi,η = pCsi + η
(
pi − pCsi

)
, gaining

η of the votes in Pi not already cast for Cs. Substituting this modification for

click-spam into the user utility, we can write the user utility given an η-spammer

promoting Cs as

utilu(P ) =
∑
i


pCsi if pCsi,η > max

j 6=s
(1− η)p

Cj
i

max
j 6=s

p
Cj
i otherwise

(8.4)

A primary consideration for most commercial websites is how many vis-

itors their website attracts. Motivated by the approximately Zipfian form of

the number of clicks on search results as a function of rank (for example, see

Agichtein et al. (2006)), we define the utility of a ranking from Ci’s perspective

as a simple approximation of the number of clicks that Ci might receive: the

reciprocal rank of Ci averaged across all users. We define our pricing units such

that the difference in utility between a competitor between being ranked first

and second is one unit. Without any spam present, the competitor utility of a

partitioning P to competitor Cs is

utilc(P,Cs) = 2n
k∑
i=1

pi

(
1 +

∣∣∣{j : p
Cj
i > pCsi

}∣∣∣)−1

(8.5)

when there are n users in the population (the last term is the reciprocal rank of

Cs in Pi). If Cs hires an η-spammer, the utility becomes

2n
k∑
i=1

pi

(
1 +

∣∣∣{j : (1− η)p
Cj
i > pCsi + η(pi − pCsi )

}∣∣∣)−1

− cost(η−spammer).

(8.6)
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To continue the analysis, we must next assume a cost per spam host. Intu-

itively, compromising different hosts on the Internet has different costs. Some

fraction of hosts can be compromised cheaply (for example, old systems with

out-of-date software) while others (for example, well maintained hosts behind

a firewall) would be expensive to compromise. This suggests that the cost of

obtaining spam-hosts should be superlinear in the number of hosts required. We

model the cost of compromising a fraction η of all n hosts (equating each user to

one host) with a simple quadratic function:

cost(η) = aη2n, (8.7)

where a is a constant. To estimate a conservative value of a, suppose that 20% of

hosts on the Internet can become spam hosts for an average cost of 1 per machine,

i.e. the utility of being ranked at the top rather than second in a ranking for one

user. In this case, a = 25.

III. The Economics of Click-Spam

We can now ask the following questions: Given a partitioning P , when will it be

profitable for a competitor to hire a spammer? What will be the impact on user

utility? For the equations to be manageable, in this section we limit ourselves to

the two competitor case, calling the first competitor A and the second B.

Say we are given a partitioning P . Let the partitions Pi be ordered such

that ∀i ∈ {1, . . . , k − 1}, pAi /pi ≤ pAi+1/pi+1. In words, the first partition has the

largest fractional vote for B, followed by the second partition and so forth. This

means that as η increases, an η-spammer would take over partitions in order, and

guarantees that there is some t such that i ≤ t⇔ pBi > pAi .
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Given this ordering of partitions, it will be in B’s interest to hire a spammer if

and only if the utility of taking over the j next partitions after Pt minus the cost

of taking over the jth partition is positive. The fraction ηj of machines that must

be compromised to flip the outcome in partition Pj is simply half the margin by

which A wins divided by the fraction of spam-hosts that were voting for A when

taken over:

ηj =
1

2

(
pAj /pj − pBj /pj

) 1

pAj /pj
= 1− pj

2pAj
. (8.8)

Thus B will hire a spammer if and only if

∃j s.t.

(
t+j∑
i=t+1

pi

)
− a

(
1− pt+j

2pAt+j

)2

> 0. (8.9)

The first term is the value to the spammer of taking over partitions t + 1

through t+ j (note that A initially has more votes in each of them). The second

term is the cost of taking over the t + jth partition. Since this partition has the

largest imbalance, when it is taken over by the spammer, the spammer has also

taken over all partitions with lower index.

IV. Practical Partitioning

The above condition tells us if spam is in the economic interest of competitor

B in the case of two competitors and any number of partitions. We now turn

to the question of whether partitioning would be useful in practice, restricting

ourselves to one simple setting.

Assume that we can find a feature f(ui) for each user ui that is weakly

indicative of the preferences of the user. Say that users who prefer competitor

A have f(ui) normally distributed with f(ui) ∼ N (µA, σ
2
A), and similarly users
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Figure 8.2: User utility as a function of threshold when µB = 1 and σB = 2.
µA = 0, σA = 1 and a = 25.

who prefer competitor B have f(ui) ∼ N (µB, σ
2
B). Then at any x = f(u), the

probability that a user prefers A is

pA(x) =
pAN (x;µA, σ

2
A)

pAN (x;µA, σ2
A) + pBN (x;µB, σ2

B)
, (8.10)

where N (x;µ, σ2) = 1
σ
√

2π
exp (−(x− µ)2/2σ2). Say we restrict ourselves to parti-

tionings that pick a threshold t and assign all users with f(ui) ≤ t to partition P1

and all others to partition P2. We would like to find an optimal threshold t that

maximizes user utility even when there is click spam. In this preliminary work,

we study the problem empirically. In the following, we take pA = 0.6, pB = 0.4

and pick a scale such that µA = 0 and σA = 1. We also restrict ourselves to the

case where any click-spam favors competitor B.

Figure 8.2 shows the form of the user utility as the threshold t changes when

the larger population (A) has f(u) values with smaller variance than the smaller

population (B). First consider the dotted line. This is the user utility as function

of threshold t when click-spam is not present. Note that without partitioning,
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the user utility would be 0.6, since 60% of the population belong to the majority

class (A). By partitioning, we can increase the user utility. Since σB > σA, B has

a heavier tail than A. Hence there exists a threshold b above which more users

prefer B than A. This point is marked on the figure. If t > b, the ranking shown

to users in partition P2 ranks competitor B above A. The form of the plot comes

about since as t gets large, the absolute number of users in P2 becomes small so

the gain in user utility becomes small. On the other hand, if t is near b, there are

still many users who prefer A in P2 and this reduces the overall user utility. We

see a similar effect at t < a.

The solid line in Figure 8.2 shows the effect of click-spam, when there is a

spammer who is hired by B. Note that in the unpartitioned case, the cost of spam

is such that it is inB’s interest to hire the spammer, thus reducing the overall user

utility to 0.4 (since 40% of the user population actually prefers B). We see that

with the partitioning, the choice of threshold t has a dramatic impact on the user

utility when click-spam is present. At the extremes, when the threshold is either

very small or very large, we essentially have one small partition dominated by

users who prefer B and one large partition dominated by users who prefer A.

When the large partition is large enough, despite the fraction of users who prefer

A being somewhat increased, click-spam is still economical. In the third regime,

when a ≤ t ≤ b, the partitioning creates two partitions where A dominates in

both but by different margins. For some thresholds it is only in B’s interest to

dominate just one of the partitions, resulting in a user utility between 0.4 and 0.6,

while at others B dominates both.

To summarize, these first results suggest that partitioning by thresholding

on a weak feature may make learning from implicit feedback less prone to
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click-spam. This suggests further research along this line of reasoning may be

worthwhile. Separately, the sensitivity of practical learning algorithms using

practical interpretations of implicit feedback need to be addressed. While we

have also published a first study of the sensitivity of Ranking SVMs to syn-

thetically generated click noise when learning from inferred pairwise relevance

judgments in (Radlinski & Joachims, 2005a), we did not consider the possibility

of malicious noise. In all, malicious noise is likely to become a future component

of implicit feedback, and its effects as well as countermeasures against it need to

be studied.

8.2.3 Scalability and Generalizability

A third important question to address is how to permit algorithms such as those

discussed in this thesis to generalize and be practical at larger scales. In particular,

two problems need to be addressed.

First, the amount of implicit feedback collected by a commercial scale search

engine is typically too large to be practically usable by standard machine learning

algorithms. For instance, the preferences generated from observing user behavior

on the Cornell University library search engine over a few months would likely

be collected by a large commercial search engine in seconds. Data collected

even over one day would probably be too massive to provide to a Ranking SVM.

This raises the question whether alternative algorithms should be used, whether

the data should be subsampled, whether specific ranking functions should be

learned for different segments of the user population, or whether some other

approach is necessary.
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Second, a number of the theoretically appealing algorithms presented earlier

in this thesis estimate model parameters that scale as the number of documents

times the number of distinct queries. In particular, the strategies for collecting

more useful training data (presented in Chapter 6) and algorithms for learning

diverse rankings (presented in Chapter 7) both have this property. On large scales,

this means that the models would be less practical. The common approach to

avoid learning too many parameters when simply learning to predict document

relevance, is to encode document relevance as a function of a relatively small

number of features. The parameters of this relevance function can then be learned,

instead of learning a relevance score per document. One possible approach to

improve the scalability of the aforementioned algorithms would be to also learn

a second function parameterized with features that encode the uncertainty in

current relevance estimates, or the redundancy between documents. This would

allow us to use implicit feedback to learn the parameters of this function instead

of learning parameters for each (query, document) pair.
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