
A SEMANTICS-BASED APPROACH TO OPTIMIZING

UNSTRUCTURED MESH ABSTRACTIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Brian Stephen White

May 2008



c© 2008 Brian Stephen White

ALL RIGHTS RESERVED



A SEMANTICS-BASED APPROACH TO OPTIMIZING UNSTRUCTURED

MESH ABSTRACTIONS

Brian Stephen White, Ph.D.

Cornell University 2008

Computational scientists are frequently confronted with a choice: implement

algorithms using high-level abstractions, such as matrices and mesh entities, for

greater programming productivity or code them using low-level language con-

structs for greater execution efficiency. We have observed that the cost of im-

plementing a representative unstructured mesh code with high-level abstractions

is poor computational intensity—the ratio of floating point operations to mem-

ory accesses. Related scientific applications frequently produce little “science per

cycle” because their abstractions both introduce additional overhead and hinder

compiler analysis and subsequent optimization. Our work exploits the seman-

tics of abstractions, as employed in unstructured mesh codes, to overcome these

limitations and to guide a series of manual, domain-specific optimizations that

significantly improve computational intensity.

We propose a framework for the automation of such high-level optimizations

within the ROSE source-to-source compiler infrastructure. The specification of

optimizations is left to domain experts and library writers who best understand

the semantics of their applications and libraries and who are thus best poised

to describe their optimization. Our source-to-source approach translates different

constructs (e.g., C code written in a procedural style or C++ code written in an

object-oriented style) to a procedural form in order to simplify the specification

of optimizations. This is accomplished through raising operators, which are spec-



ified by a domain expert and are used to project a concrete application from an

implementation space to an abstraction space, where optimizations are applied.

The transformed code in the abstraction space is then reified as a concrete im-

plementation via lowering operators, which are automatically inferred by inverting

the raising operators. Applying optimizations within the abstraction space, rather

than the implementation space, leads to greater optimization portability.

We use this framework to automate two high-level optimizations. The first

uses an inspector/executor approach to avoid costly and redundant traversals of

a static mesh by memoizing the relatively few references required to perform the

mathematical computations. During the executor phase, the stored entities are

accessed directly without resort to the indirection inherent in the original traversal.

The second optimization lowers an object-oriented mesh framework, which uses

C++ objects to access the mesh and iterate over mesh entities, to a low-level

implementation, which uses integer-based access and iteration.
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Chapter 1

Introduction

1.1 Problem: Abstractions Improve Programmer Produc-

tivity but Degrade Program Efficiency

Abstractions obfuscate; they should instead illuminate.

The use of high-level abstractions, such as matrices and differential operators,

is a key to achieving high-productivity scientific computing [44]. Abstractions are

frequently implemented in domain-specific libraries as user-defined types and the

procedures acting on them. Such abstractions are a closer match to the concepts

and notations employed in scientific domains than low-level implementations that

expose raw details, such as matrix element storage and mesh spacing. Ignoring

such details allows domain experts to more concisely setup and solve problems.

For example, Dinesh et al. [21] found a 30% reduction in code size and, with it,

a significant and quantifiable improvement in programmer productivity and code

maintainability when side-effect free algebraic notion was used to solve partial

differential equations rather than an object-oriented style inconsistent with math-

ematical notion. Choosing from a library of well-constructed abstractions improves

code reuse, and with it software maintainability, and allows domain experts to focus

their efforts on science rather than on computer science. The attendant improved

productivity can have a significant impact on funding since scientific applications

at government laboratories, such as Lawrence Livermore National Laboratory, are

evaluated primarily on the richness of their feature sets.
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Abstractions mitigate the growing complexity of scientific applications and

computer architectures. Scientific frameworks tend to be highly configurable: mesh

solvers can be parameterized according to equation (e.g., Navier-Stokes or Euler);

assumptions (e.g., the ideal gas law or van der Waals equation of state); and

fluid (e.g., water or a monatomic gas). The implementations swell as a result:

Spheral++ [64], a meshless code for studying hydrodynamics in astrophysics sim-

ulations, has 400 files and 900K lines of code; SAMRAI [38], a framework provid-

ing adaptive mesh refinement, has 9500 files and 100K lines of code; Trellis [8],

a package for the solution of partial differential equations has 900 files and 300K

lines of code. Implementing such large software projects in low-level C or For-

tran without encapsulating functionality in abstractions would have an adverse

effect on code readability and debugging. Similarly, abstractions can mask archi-

tectural complexity to provide performance portability across systems [44]. For

example, ATLAS [88] is a library of empirically-optimized linear algebra routines.

ATLAS installation determines how best to set optimization parameters, such as

loop blocking factors, resulting in a library that is tuned to an architecture without

requiring it to be hardcoded to that architecture’s characteristics.

These benefits have made abstractions and the higher-level languages in which

they are most often implemented viable competitors to the mainstay of scientific

computing, Fortran 77. For example, Spheral++ employs C++ classes to imple-

ment tensor and vector abstractions and has even embraced the convenience of

python to quickly instantiate simulations that ultimately invoke computational

modules implemented in C++.

Despite these benefits their inferior performance remains the major impediment

to the wide-scale adoption of abstractions [7]. Anecdotes in the literature mention

2



university groups favoring the convenience of Matlab’s abstractions during initial

development, but ultimately having to manually recode their implementations in

C or Fortran to get acceptable performance on large-scale problems [45, 74]. Ab-

stractions coded in C++, which does not suffer from Matlab’s frequent run-time

type checking, show similarly degraded performance. For example, Yi and Quin-

lan describe an automatic procedure for effectively lowering container abstractions

to Fortran-style arrays to expose optimization opportunities and improve perfor-

mance [91].

Abstractions perform poorly because they obfuscate compiler analysis. From

a programmer’s perspective, type or procedure abstractions defined in a library

extend the language. This view is particularly apt in C++ where, through op-

erator overloading, abstractions are utilized as effortlessly as built-in types and

operators. Nevertheless, without support from the compiler, abstractions can not

be considered language extensions. Thus, whereas a compiler recognizes that a

conditional using the built-in equality operator, ==, is side-effect free, it will have

to prove this same fact through analysis for a user-defined operator==, despite its

likely semantic equivalence. If the implementation of operator== is not accessible

to the compiler at the site of its invocation, the compiler will be forced to treat

the procedure as a black box and to conservatively assume it has side effects.

Figure 1.1 provides a simple, yet representative, example in which a compiler’s

inability to reason about abstractions prevents optimization. The example is a

simplified calculation from molecular dynamics applications and consists of two

loops: the first updates the velocity of each particle in a list according to Newton’s

Law, while the second updates the particles’ positions based on the new velocities.

The loops should be fused to exploit the reuse of each particle by the second loop.

3



void updateParticles(list<particle *> &particles, double dt)

{

list<particle *>::iterator it;

// Iterate over particles, updating each of their velocities

// in the presence of a force experienced at that particle.

for(it = particles.begin(); it != particles.end(); ++it) {

(*it)->velocity -= (*it)->force * dt / (*it)->mass;

}

// Iterate over particles, updating each of their positions.

for(it = particles.begin(); it != particles.end(); ++it) {

(*it)->position += (*it)->velocity * dt;

}

}

Figure 1.1: Molecular dynamics code for updating particle velocity and position.

Unfortunately, because the compiler can not infer the uniqueness of the particles

within the list, it must assume that each loop carries a flow dependence, i.e.,

that each statement within each loop body reads a variable written in a previous

iteration. There is a true flow dependence from the first loop to the second due

to the accesses to the velocity field. Taken together these potential dependences

prevent the compiler from fusing the loops to realize the temporal reuse.

1.2 Solution: Improve Execution Efficiency through Ab-

straction Semantics

Far from being a hindrance to compiler optimization, abstractions should instead

enable traditional optimizations and illuminate novel, domain-specific optimization

opportunities. For example, knowledge of the uniqueness of list elements in the

above velocity update code ensures that there are no loop-carried dependences and

4



that the loops are candidates for traditional fusion techniques. Similarly, Ding

and Kennedy describe a novel, locality-grouping transformation for optimizing

the particle-particle interactions in molecular dynamics applications that leverages

domain knowledge for correctness and profitability [22]. Forces are calculated

between pairs of particles by iterating over an interaction list. By reasoning that

the loop performing the force calculations does not carry dependences, they assert

that reordering the iteration space is permissible. By recognizing that a particle is

included in multiple interaction pairs, not all of which are contiguous in the original

list, they contend that reordering to introduce temporal locality is profitable. Such

an optimization is necessarily domain specific. However, the particle interaction

list is a motif prevalent in molecular dynamics applications; therefore, an ideal

transformation should be neither application- nor implementation-specific.

Abstractions are defined to a large extent by their semantics, which are in-

dependent of any particular implementation. It is these semantics that guide

application programmers to select and utilize a particular abstraction. Compilers

should adopt a similar perspective: by targeting abstractions according to their

semantics, rather than their implementations, compiler transformations can be

broadly applied across a domain. Optimizations that are instead encumbered by

low-level implementation details, such as whether an operator is defined as a For-

tran procedure or a C++ method, are more difficult to write and maintain and

are less likely to be widely accepted. It is impractical for each scientific code team

to invest effort re-implementing transformations specific to their implementation

that have developed elsewhere for a different application in the same domain. Un-

fortunately, it is these code teams, the library developers, that are best attuned to

the semantics of the abstractions they define and use, and so are the best equipped

to implement or at least to design these transformations. Writing portable opti-
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mizations applicable domain-wide would allow their development to be amortized

across code teams, which should then show an increased willingness to participate

in a communal optimization effort.

To summarize, abstractions present a number of obstacles to automated trans-

formation:

Abstractions are best characterized by their semantics and not by

their implementations. These semantics are difficult to infer from

source-code inspection. Since abstractions are frequently pointer rich, anal-

yses are challenged to navigate potential aliases in order to infer program proper-

ties. Often semantics are not codified explicitly within an application or library.

Therefore, considerable analysis effort may be expended to determine incidental

effects, such as side effects due to reference counting, without capturing high-level

properties.

There is no means to communicate abstraction semantics to a com-

piler. Given the difficulty of automatically inferring semantics, the library writer

should be able to explicitly specific semantics. Traditional compilers support a

limited set of low-level keywords, pragmas, and flags, including the const and

restrict keywords, but lack a more general framework that accommodates a high-

level domain perspective. Such a framework would make abstractions amenable to

the wealth of existing compiler transformations.

A general-purpose compiler can not anticipate the optimization needs

and opportunities of domain-specific abstractions. An ability to specify

semantics is sufficient to enable traditional optimizations, but to fully exploit the

performance potential of high-level abstractions an extensible compiler framework

6



should allow library writers to convey domain-specific transformations.

1.3 Specific Approach: Target Abstractions Rather Imple-

mentations with Expert-Driven Optimizations

To overcome these difficulties we propose to reason about and optimize abstrac-

tions in a space in which they are viewed as abstract concepts, defined by their

semantics, independent of their implementations. This view is expressed schemat-

ically in Figure 1.2. The technique is based on a common target—an abstract

syntax—for high-level optimizations of diverse implementations. This approach is

related to the use of intermediate representations (IRs) in traditional compilers.

Compiler frontends represent code from a diverse set of source languages in the IR,

which is then analyzed and optimized before being emitted in native form. Since

analyses and optimizations target the IR, they need not be re-implemented for

each source language. Similarly, our source-to-source approach translates different

constructs (e.g., C code written in an imperative style or C++ code written in

an object-oriented style) to a procedural or imperative form in order to simplify

the specification of optimizations. This is accomplished through raising operators,

which project a concrete application from an implementation space to an abstrac-

tion space. In the example depicted in the figure, the source code providing the

concrete implementation of gradient and divergence operators is projected into an

abstraction space.

Because reasoning within the implementation space is limited by the precision

and scope of compiler analyses, analyses and transformations act instead within

the abstraction space, guided by semantics. Analysis of the source code would have

7



to determine, for example, that none of the statements induce side effects except

through the obvious assignments. Within the abstraction space, the semantics

of the gradient and divergence operators dictate that they are pure functions,

dependent only on the mesh and an input field. This domain knowledge allows

the fusing of the two operators into a single gradient-divergence operator that

simultaneously iterates over the mesh, acting on and returning separate fields.

Consistent with the ROSE philosophy, the specification of such optimizations is

left to domain experts and library writers who best understand the semantics of

their applications and libraries and who are thus best poised to describe their

optimization. The transformed code in the abstraction space is finally reified as

a concrete implementation via lowering operators. In the example, the two loops

are fused to implement the gradient-divergence operator.

Projecting an implementation to a standardized abstract interface has several

benefits. The domain-specific optimization, which targets the abstract interface,

will be applicable and portable across implementations of abstractions and the

frontend languages supported by ROSE (currently C, C++, and Fortran 2003).

Also, the burden of implementing the optimization is lessened since the domain

expert can target a single, simple procedural abstract interface, without needing

to differentiate between C functions and C++ methods and without concern for

the vagaries of C++. Finally, attributing semantics to abstractions, rather than

to implementations, relieves developers of the tedium of specifying semantics for

each implementation. Thus, abstraction semantics specifications may be reused

across implementations and applications; the developer need only provide a new

mapping between a concrete implementation and the abstraction interface it fulfills.

There is a long history of using such isomorphisms to transform a problem from a

concrete space to an abstract space within which it may be more readily analyzed
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ZoneIterator zi;

for (zi = mesh.ZoneBegin(); zi != mesh.ZoneEnd(); ++zi) {
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ZoneIterator zi;

for (zi = mesh.ZoneBegin(); zi != mesh.ZoneEnd(); ++zi) {

FaceIterator fi;

for (fi = zi->faceBegin(); fi != zi->faceEnd(); ++fi) {

SideIterator si;

for (si = fi->sideBegin(); si != fi->sideEnd(); ++si) {

Vector ds;

ds = gradFieldIn[*si->zone()] * si->ZFEAreaNormal();

grad[*si->node1()] += ds;

grad[*si->node2()] -= ds;

}

}

}

ZoneIterator zi;

for (zi = mesh.ZoneBegin(); zi != mesh.ZoneEnd(); ++zi) {

FaceIterator fi;

for (fi = zi->faceBegin(); fi != zi->faceEnd(); ++fi) {

SideIterator si;

for (si = fi->sideBegin(); si != fi->sideEnd(); ++si) {

Vector ds;

ds = gradFieldIn[*si->zone()] * si->ZFEAreaNormal();

grad[*si->node1()] += ds;

grad[*si->node2()] -= ds;

div[*zi] -= divFieldIn[*fi].dot(si->getFPPAreaNormal());

}

}

}

Figure 1.2: Semantics-based approach to abstraction optimization.

and transformed; for example, register allocation can be couched in terms of graph

coloring [12] and iteration space transformations can be expressed with polyhedral

algebra [48].

The abstract syntax is described by an interface specified by an expert on

a per-domain basis. In a mesh context, e.g., it contains procedures to retrieve

mesh entities and to access data stored in the mesh. The expert also provides

the lowering operators, which map each procedure in the interface to its concrete

implementation within the application. The framework automatically inverts low-

ering operators to define raising operators. Each abstraction interface effectively

defines a set of semantics and operations that must be realized by any of its imple-

mentations. Since the specifications are written in C/C++, the domain expert is

freed from having to learn yet another annotation or “little” language. However,

the system does not require that an implementation mimic the style or form of the

abstraction. In particular, a concrete procedure may be implemented as a C++
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method, a C function, or a built-in expression, though the abstract procedure is

always a function. Second, the number and order of formal parameters of the ab-

stract and concrete procedures need not coincide: a novel data-flow analysis infers

implicit arguments based on annotations from the domain expert.

1.4 Contributions

The primary contribution of this thesis is a framework for optimizing abstractions

that targets their semantics rather than their implementations. This differs from

previous approaches that target implementations (by annotating them with se-

mantics) or that expect the application to be written in standardized, high-level

interface. We instead project an implementation into an abstract form, whose

semantics are understood by the domain expert. To evaluate the framework, we

apply it to the unstructured mesh domain, though the approach is in no way

specific to this area.

This thesis makes the following specific contributions:

1. We quantify overhead in a representative unstructured mesh li-

brary. Unstructured meshes play a critical role in the solution of partial

differential equations over complex geometries within the Department of En-

ergy. Chapter 2 provides additional detail on the application and organiza-

tion of unstructured mesh frameworks and describes the KOLAH library for

benchmarking C++ numerical methods on arbitrary polygonal and polyhe-

dral meshes as a specific instance of such a framework. We quantify the

overhead in KOLAH attributable to memory accesses; given our experience

with unstructured grid technology, we believe that KOLAH is not exceptional
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in its high ratio of mesh overhead to computation, but is an exemplar of

object-oriented mesh-based libraries.

2. We identify barriers to compiler optimization. The pointer-rich ab-

stractions used in meshes present barriers to compiler analysis. In Chapter 3,

we discuss how semantic knowledge overcomes these barriers and would en-

able automation of optimizations targeting mesh overheads. We subsequently

consider a series of optimizations and apply them manually.

3. We identify traditional compiler optimizations important to mesh-

based codes. We show that two well-known optimizations—lazy evaluation

and data packing—are significant in reducing memory and instruction over-

head to expose the floating-point computation. Though data packing has

been applied in an unstructured mesh domain [22], we believe that KOLAH

better represents production applications than those previously considered.

4. We introduce novel optimizations targeting unstructured meshes.

Our observed mesh overheads motivate a series of novel optimizations that

improve computational intensity and overall performance:

• Iteration-space narrowing: We propose extracting side-effect free func-

tion calls from a loop if they are executed repeatedly with the same

inputs. Memoizing the results in a new iteration space then avoids this

repetitive execution.

• Mesh precomputation: Physical quantities, such as volumes, change ev-

ery time step, but mesh connectivity information, such as the list of

mesh edges, does not. Computing these static quantities once during

an inspector phase and storing them for subsequent access during ex-

ecutor phases relieves the code from recomputing them at each time

step.
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• Lowering: We translate a computationally inefficient, object-oriented

mesh framework, which uses C++ objects to access the mesh and iterate

over mesh entities, to a low-level, imperative implementation, which

uses integer-based access and iteration.

Though we apply these optimizations to the testhydro1 benchmark written

using the KOLAH library, they should be generally applicable to any unstruc-

tured mesh application in which abstractions implement iteration over the

mesh and access to data stored in fields through the use of pointer and

method indirection that the compiler is unable to optimize away. Insofar as

any computation over a volume or surface requires iterating over the mesh to

access data stored within it, these optimizations target the two fundamental

mesh facilities that should be prevalent in any mesh solver. Further, mesh

precomputation is not limited to the specific gradient and divergence opera-

tions targeted here, but is applicable to any nested loop over mesh elements

with similar loop exit conditions, including the curl and averaging operators

defined in libraries more sophisticated than KOLAH.

5. We propose a framework for optimizing abstractions based on the

projection between implementation and abstraction spaces. The

framework, introduced in Chapter 4, includes a novel data-flow analysis for

coping with potential interface inconsistencies between the two spaces. The

framework is evaluated by using it to automate the mesh precomputation

and lowering optimizations. The relation between this framework and re-

lated projects is discussed in Chapter 5, as are related unstructured mesh

optimizations.
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Chapter 2

An Unstructured Mesh Framework

This chapter provides background on meshes and introduces KOLAH, the repre-

sentative mesh library studied in this thesis. Using a KOLAH code fragment, it

continues by enumerating specific barriers to optimization, which will be overcome

in Chapter 3 through the use of domain-specific semantics.

2.1 Mesh Background

Meshes are a popular means of discretizing a continuous domain and are employed

to do so across a broad range of disciplines, from texture mapping to computa-

tional fluid dynamics. This work examines meshes within the context of scientific

computing where they are the basis for solving partial differential equations that

model the dynamics of physical systems. Continuous (partial) derivatives can be

approximated as finite differences, which are sampled at discrete points described

by mesh elements. The following discussion of meshes follows Kirk [47].

The most fundamental concept within a mesh is a node, or a physical location

in space to which higher-dimensional mesh elements are connected. Nodes are

generally associated with a unique identifier. Standard elements include zones,

faces, edges, and nodes, in decreasing dimensionality from three to zero. Elements

may contain sub-elements: for example, an edge contains two nodes and a face is

outlined by some number of edges. Given an element, a mesh interface provides a

means of extracting its neighbors.
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We differentiate between structured and unstructured meshes, though the tax-

onomy is not so simple and includes overset and “Dragon” grids [47]. Structured

meshes correspond to a regular decomposition of a two- or three-dimensional space.

This regularity implies that an element’s neighbors can be implicitly inferred from

its identifier. For example, a simple affine relation on an identifier can efficiently

identify an element’s neighbors according to a four-point stencil in two dimen-

sions or an six-point stencil in three dimensions. No simple map exists between

an element and its neighbors in an unstructured mesh. Instead, an element must

explicitly maintain its connectivity information, generally in the form of a list.

The explicit managing of connectivity in unstructured meshes leads to con-

siderable source code complexity and run-time overhead. For example, by one

estimate, a 125,000 node mesh with 117,649 hexahedral elements requires 3MB of

storage for the nodes but an additional 3.76MB of storage for the connectivity [47].

More significantly, the irregular geometry and neighbor relations of unstructured

meshes induce irregular, non-strided memory accesses. Loops implementing sten-

cil computations in structured meshes have affine loop bounds and array accesses;

the loops may be readily parallelized and memory accesses within them may be

statically predicted and prefetched. Unstructured mesh codes do not enjoy this

simple loop structure; cache hit rates suffer as a result.

Despite their additional complexity, unstructured meshes are advantageous for

many applications. They are easier to generate than structured meshes because

they place fewer constraints on the mesh. They also allow for a richer variety

of mesh element types. Unstructured meshes simplify refinement, the process of

improving the quality of a mesh by replacing a (section of a) mesh with a finer

mesh with more elements. Local refinement is complicated in structured meshes
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because large swathes of the mesh must be replaced to conform to the imposed

structure. Finally, unstructured meshes can dramatically reduce the number of

elements because the mesh resolution may vary over the course of the mesh ac-

cording to the demands of the physical system. For example, Shewchuk considers

a fluid flow problem in which smaller elements are required within the volume ex-

periencing turbulence than in that part of the system that does not [78]. Within

a structured mesh, the mesh resolution would be dictated by the requirements of

the finest scale, which leads to more mesh elements, more spatial overhead, and

more computation time.

2.2 KOLAH

KOLAH is one of a number of libraries [8, 60] providing mesh element abstractions

and the management of their connectivity. In addition, KOLAH scalar and vector

field abstractions sample continuous physical quantities at discrete locations cor-

responding to mesh elements. These capabilities facilitate benchmarking of C++

numerical methods on arbitrary polygonal and polyhedral meshes. KOLAH’s design

was motivated by the classes and patterns used in production codes at Lawrence

Livermore National Laboratory. It relies upon a generic mesh interface and pro-

vides reference mesh implementations along with a variety of mesh utility functions.

testhydro1 is a benchmark using these facilities to solve the Euler equations using

the Lagrangian method and an ideal gas law equation of state.

Numerical algorithms are written to KOLAH’s generic mesh interface, enabling

underlying mesh implementations to be evaluated without rewriting the algorithm

for each mesh instance. KOLAH interprets a variety of input mesh specifications,
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Figure 2.1: Mesh elements: corner (left) and side (right) within a zone.

for(ZoneIterator zi = mesh.zoneBegin();

zi != mesh.zoneEnd(); ++zi)

{

double tmp = P[*zi] * div[*zi] * zi->volume()

- zoneHeating[*zi];

e[*zi] = e[*zi] - dt * tmp / mass[*zi];

}

Figure 2.2: Zone iteration and mesh element-based field accesses using KOLAH’s
interface.

representing each as a class. After reading the input mesh, a compatibility layer

converts and copies data from the underlying mesh implementation to a common

mesh form.

The generic polyhedral mesh interface provides geometric mesh elements in-

cluding zones, sides, faces, corners, edges, and nodes. All but sides and corners

follow the standard terminology. Figure 2.1 shows a zone as it would appear in a

rectilinear mesh, along with a representative corner and side. In general, a zone

is a three-dimensional subvolume used to partition the volume discretized by the

mesh; it needn’t be a cube. Faces are two-dimensional elements that cover a zone’s

surface. A zone volume is itself subdivided into three-dimensional corners. A cor-

ner corresponds to each zone node and also has as vertices the zone center, the

face centers of all faces containing the node, and the edge centers of all edges con-

taining the node. A zone volume may also be subdivided into three-dimensional

sides, whose vertices are two orthogonal face centers and the two nodes shared by

those faces.
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The mesh interface maintains connectivity information, allowing accesses via

STL-like iterators, as shown by the code in Figure 2.2 that iterates over zones.

Mesh element abstractions provide similar iterator access to neighboring elements.

For example, given a node, one can iterate over all zones containing it using meta-

data contained in the node object. This fairly complete connectivity information

provides great flexibility in writing numerical algorithms. The figure also shows

the mesh element-based field access paradigm popular in KOLAH: it dereferences a

ZoneIterator to obtain a zone element and uses that element to index a field,

such as the pressure field P.

With their heavy use of indirect addressing and pointer chasing, already evident

in the simple loop of Figure 2.2, unstructured grid codes are highly sensitive to

memory performance [32]. Abstraction-oriented implementations exacerbate poor

memory performance through the additional indirection induced by mesh element-

based indexing of fields, such as momentum and pressure: where an imperative

approach uses a for loop with an integer induction variable to access an array,

these codes dereference mesh element iterators and then use the element to index

into field abstractions.

2.3 Barriers to Optimization

Because user-defined abstractions, such as STL-based iterators and mesh elements,

are not part of the base language, compilers do not recognize them and so are not

aware of their high-level properties. Instead compilers rely on a myopic approach

that cobbles together alias and side-effect information on those parts of the ab-

straction that are defined in the base language. In some cases this task is futile
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because source code is not distributed with libraries implementing the abstractions.

When source code is available, a potentially costly global analysis may be needed

to examine both the use of the abstractions and their implementation. Finally,

without any a priori understanding of abstractions, compiler analysis is often too

conservative to apply transformations to them.

The simple loop shown in Figure 2.2 highlights both the need for optimization

in mesh-based applications and the inherent difficulties a compiler faces in perform-

ing those optimizations. This section shows that traditional compiler analyses are

inadequate to determine the correctness of applying common subexpression elimi-

nation and iteration-space reordering to this loop. We discuss simple semantics of

mesh abstractions in general, rather than of KOLAH in particular, that would enable

these optimizations.

Though the repeated dereferences of the ZoneIterator in the loop seem good

candidates for common subexpression elimination, the KCC compiler does not per-

form the optimization because it can not determine that operator[] is side-effect

free. getID, one of the methods invoked during the object-based field reference, is

neither declared inline nor implemented in the header file; as such, it is bypassed

by KCC’s aggressive inlining. Unable to inline operator[] completely, the compiler

cannot analyze its implementation at the callsite and must conservatively assume

it generates side effects that potentially modify the common subexpression *zi.

A number of remedies would enable common subexpression elimination. Mov-

ing the implementation of getID to its header file would allow inlining and would

overcome the immediate barrier to applying the optimization. Annotating getID’s

prototype with a declaration that it is side-effect free would have the same effect.

However, these approaches are intimately tied to the implementation of field ad-
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dressing in KOLAH. Other mesh libraries are likely to offer the same, side-effect free

style of access, but are unlikely to employ getID in doing so; the tedious, iterative

round of discovering and annotating any functions that cannot be inlined will need

to be done anew for each application.

Our solution recognizes fields as an abstraction common across mesh libraries.

Doing so allows us to imbue them with semantics that carry over from one imple-

mentation to another: mesh element-based indexing, the overloaded indexing of a

field with a mesh element, is a pure operation—side-effect free and dependent only

on its mesh element argument. This expressive statement would enable common

subexpression elimination since the compiler could be confident nothing within

the loop modifies the ZoneIterator.1 The approach taken in Chapter 4 differs

somewhat in that abstractions are not explicitly annotated with their semantics.

Rather, for the purposes of our prototype, the semantics of an abstraction are de-

scribed in its documentation. The expert then guarantees that an implementation

conforms to an abstraction’s semantics before mapping an implementation as one

of its concrete instances. These semantics could be codified in annotations that

are parsed by a compiler framework.

Nested loops in testhydro1 access zones in a non-strided manner. Packing

the zones can mitigate the effects of such accesses by rearranging their memory

layout. Unfortunately, reordering data to benefit nested loops leads to computa-

tional reordering of the loop in Figure 2.2. In order to reorder this loop safely,

a compiler must disambiguate the loop’s pointers to guarantee that there are no

loop-carried dependences. If (as is likely) alias analysis is unable to determine

the uniqueness of each element in the iteration space, the compiler would have to

1Type-based alias analysis could guarantee that the write to the field does not modify the
ZoneIterator.
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assume the iterator is non-trivial and can repeatedly access a zone to create a flow

dependence on e. Such a dependence would prevent loop reordering. Fortunately,

the simple assertion that mesh iterators do not revisit elements ensures there is no

such dependence, since each loop instance accesses a unique zone. These semantics

would complement side-effect analysis, allowing it to determine that the loop could

be reordered. Such semantic assertions on an iterator are useful in general, beyond

the specific example of mesh iteration, and may be used to facilitate reordering

and parallelism [49] in cases where alias and side-effect analyses are insufficient to

infer their safe application.
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Chapter 3

Mesh Optimizations

This chapter quantifies the memory overheads of testhydro1, which are likely to

plague other mesh applications and libraries employing high-level abstractions.

The platforms on which testhydro1 is executed are described in Section 3.1,

with the resulting performance characteristics reported in Section 3.2. The few

mesh semantics of Section 3.3 may be leveraged to ameliorate testhydro1’s poor

computational intensity through the series of manual optimizations discussed in

Section 3.4. These semantics ensure the correctness of traditional optimizations,

such as lazy evaluation. Further, they suggest domain-specific optimizations, such

as iteration-space narrowing, mesh precomputation, lowering, and the previously

investigated data packing [22].

3.1 Methodology

We apply optimizations to the computational core of the KOLAH-based hydrody-

namics benchmark testhydro1. Results are reported as averages over five runs of

ten time steps. Standard deviations were within one percent of the averages and

are not shown. Due to the duration of production runs, we do not account for

application, mesh, or optimization configuration time, which would be amortized

over many time steps. The input data set, ellipsoid, is the largest provided with

KOLAH, with 70K zones, 383K faces, 530K corners, 1.5M sides, 195K edges, and

66K nodes.
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testhydro1 was executed on the IBM POWER5 platform described in Ta-

ble 3.1 and the Intel Xeon platform described in Table 3.2. In addition, the

POWER5 and Xeon have similar hardware-based prefetch engines that detect se-

quential (or strided, in the Xeon) accesses and prefetch data following successive

misses. Each processor supports multiple, simultaneously-active prefetch streams.

Performance metrics on the POWER5 were collected using the IBM HPM hard-

ware performance monitor Tool Kit [39], while wall clock execution times are re-

ported on the Xeon. Table 3.3 lists the compilers used on the two platforms. On the

POWER5, testhydro1 was compiled with the KCC front-end optimizing compiler

and passed the +K3 optimization flag to instruct it to perform branch simplification,

loop unrolling, small object optimization, and function inlining. KCC produces in-

termediate C code that is compiled by IBM’s xlc back-end compiler. We pass xlc

-O3, as well as strict to ensure the safety of applied optimizations, arch=pwr5

to enable POWER5-specific optimizations, and ignerrno to allow the compiler

to emit the sqrt instruction. gcc is used on the POWER5 and Xeon architec-

tures and is passed the -O3 optimization flag in both instances. In what follows,

we refer to the various combinations of platform and compiler as KCC/POWER5,

gcc/POWER5, and gcc/Xeon.

3.2 Mesh Overheads

The results for the unoptimized, baseline version of testhydro1 are shown in

Tables 3.4, 3.7, and 3.9 for KCC/POWER5, gcc/POWER5, and gcc/Xeon, re-

spectively. Metrics describing instruction mixes indicate the number of dynamic

instructions executed, rather than the number of static instructions in the program

text. Since the POWER5 and Xeon are out-of-order, speculative processors, the
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Table 3.1: IBM POWER5 hardware specification.

Processor 1.9 GHz POWER5 p5 575

Integer Units 2
Floating-point Units 2

Peak IPC 5

Peak Gflops (Per Core) 7.6
Registers 32

Data TLB 128 entries

Data TLB Associativity 128-way
L1 Data Cache Size 32 KB

L1 Instr Cache Size 64 KB

L1 Data Cache Latency 2 cycles
L1 Data Cache Line Size 128 B

L1 Data Cache Associativity 4-way
L2 Size 1.9 MB (per processor pair)

L2 Latency 10 cycles

L2 Line Size 128 B
L2 Associativity 10-way

L3 Size 36 MB (per processor pair)

L3 Latency 90 cycles
L3 Line Size 256 B

L3 Associativity 12-way

Memory 32 GB
Memory Latency 220 cycles

Table 3.2: Intel Xeon hardware specification.

Processor 3.46 GHz Pentium D Xeon

Integer Units (Multiple Function) 2

Floating-point Units (Multiple Function) 1
Peak µop/cycle 3

Peak Floating-point IPC 1

Peak Gflops 3.46
Integer Registers 128

Floating-point Registers 128

Data TLB 64 entries
Data TLB Associativity 64-way

L1 Data Cache Size 16 KB
L1 Instr Cache Size 12K µop

L1 Data Cache Integer Latency 4 cycles

L1 Data Cache Floating-point Latency 12 cycles
L1 Data Cache Line Size 64 B

L1 Data Cache Associativity 8-way

L2 Size 2 MB
L2 Integer Latency 20 cycles

L2 Floating-point Latency 20 cycles

L2 Line Size 64 B
L2 Associativity 8-way

Memory 4 GB
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Table 3.3: Compiler specifications.

Compiler Platform Version Options

KCC/xlc POWER5 4.0 (KCC); 9.0.0.1 (xlc) +K3 -O3 -qignerrno -qstrict -qarch=pwr5
gcc POWER5 3.3.2 -O3
gcc Xeon 4.1.2 -O3

number of dynamic instructions will likely be greater than that which would have

resulted from execution on a non-speculative processor. For example, “L1 cache

accesses” represents the total number of dynamic loads and stores issued, including

those executed down a speculated path that was later squashed.

Tables 3.4 and 3.7 indicate the relative paucity of floating point instructions.

On KCC/POWER5, 13.9 loads or stores and 3.8 branches are executed per floating

point operation (FLOP). Under gcc/POWER5, there are 8.2 loads or stores and

2.3 branches per FLOP, respectively. As scientific computations are carried out in

floating point arithmetic, the large relative contribution of memory accesses to the

instruction mix strongly suggest that testhydro1 expends considerable execution

time accessing operands and little execution time computing with them.

As execution is a function of the input mesh, we examine the performance

profile of testhydro1 when run on the 10x10x3 mesh. The simulation also uses

suitable initial and boundary conditions and executes for 4000 iterations, but is

otherwise identical to the ellipsoid run. The 10x10x3 mesh is a rectangular

decomposition and, with only 620 zones, 2120 faces, 3680 corners, 2120 sides,

1243 edges, and 484 nodes, is significantly smaller than ellipsoid. Nevertheless,

the table shows that it induces similar overheads—with ratios of 13.5 loads or

stores and 3.7 branches per floating point operation under KCC/POWER5. In

general, the overhead is tied intimately to the unstructured representation of the

mesh within KOLAH, however regular the mesh decomposition itself may be. It will

also be influenced by the degree of connectivity of the mesh elements, a factor
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most influenced by the dimensionality of the problem. Therefore, we expect the

(fractional) overheads to be largely mesh independent.

This significant overhead may seem surprising given the efficiency of STL and

similar libraries that are the foundations of KOLAH. Though the implementation of

underlying abstractions is highly tuned, optimizing across library invocations re-

quires contextual information unavailable during library development. Even after

inlining abstractions to view this context, compiler analysis is often too conserva-

tive to certify the safety of many relevant optimizations, such as loop fusion [73].

Our remedy is not to pursue more sophisticated pointer alias analysis, but to ex-

ploit higher-level, expressive semantic information. High-level knowledge of an

iterator, for example, can transform it from an unintelligible collection of pointers

to a well-defined abstraction with specific semantics that complement traditional,

fine-grained analysis [91].

Comparison of Tables 3.4 and 3.7 reveals that KCC is better able to optimize

testhydro1 than gcc on the POWER5. For example, when compiled with gcc,

testhydro1 performs 1.6× more L1 cache accesses and 1.5× more L2 cache ac-

cesses, executes 1.6× more branches, 2.6× more FLOPS, and 1.4× more instruc-

tions, and runs 1.4× longer.
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Table 3.4: Performance metrics for 10 iterations of testhydro1 on POWER5 compiled with KCC. Values may be reported
in millions (M) or billions (B) of instances.

Metric Baseline
Lazy

evaluation

Iteration-
space

narrowing

Mesh
precom-
putation

Lowering
Data

packing

Iteration-
space

partition-
ing

Multiple-
constraint
reordering

L1 cache accesses (B) 129.23 116.62 32.92 22.41 21.12 21.12 18.37 20.88
L2 cache accesses (B) 3.99 3.77 1.82 1.26 1.32 1.17 1.26 1.38
L2 traffic (GBytes) 453.82 428.82 206.68 143.16 149.73 132.88 142.84 156.81
Memory bandwidth (GBytes/s) 22.96 24.66 45.57 52.24 53.30 47.92 61.64 50.50
DTLB misses (M) 28.08 27.99 25.79 23.96 23.10 22.91 24.82 23.75

Branches (M) 35055.17 31543.76 8971.01 6353.66 5869.15 5875.31 5016.33 5759.07
Unconditional branches (M) 14029.10 12654.39 3708.27 2341.07 2086.00 2082.15 1688.48 2039.55
Mispredicted branch direction (M) 400.87 366.99 261.41 217.03 213.23 214.53 125.98 204.98
Mispredicted branch target (M) 951.98 840.92 66.17 64.67 58.24 59.15 48.01 57.90

Flops (B) 9.33 8.82 6.98 6.98 6.99 7.00 6.45 6.94
Computational intensity 0.07 0.08 0.21 0.31 0.33 0.33 0.35 0.33

Instr completed (B) 249.97 225.82 66.46 45.80 43.21 43.22 38.35 42.96
Wall clock time (sec) 154.89 143.82 70.70 55.38 53.48 48.93 65.30 50.77

26



Table 3.5: Performance metrics for 4000 iterations of testhydro1 using 10x10x3

mesh on POWER5 compiled with KCC.

Metric Baseline

L1 cache accesses (B) 117.96
L2 cache accesses (B) 4.43
L2 traffic (GBytes) 503.78
Memory bandwidth (MBytes/s) 0.04
DTLB misses (M) 6.32

Branches (M) 31974.95
Unconditional branches (M) 12876.88
Mispredicted branch direction (M) 430.06
Mispredicted branch target (M) 843.29

Flops (B) 8.71
Computational intensity 0.07

Instr completed (B) 225.75
Wall clock time (sec) 111.12
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Table 3.6: Fractional improvement over baseline of performance metrics for 10 iterations of testhydro1 on POWER5
compiled with KCC.

Metric
Lazy

evaluation

Iteration-
space

narrowing

Mesh
precom-
putation

Lowering
Data

packing

Iteration-
space

partition-
ing

Multiple-
constraint
reordering

L1 cache accesses 1.11 3.92 5.77 6.12 6.12 7.03 6.19
L2 cache accesses 1.06 2.20 3.17 3.03 3.41 3.18 2.89
L2 traffic 1.06 2.20 3.17 3.03 3.42 3.18 2.89
Memory bandwidth 1.07 1.98 2.28 2.32 2.09 2.69 2.20
DTLB misses 1.00 1.09 1.17 1.22 1.23 1.13 1.18

Branches 1.11 3.91 5.52 5.97 5.97 6.99 6.09
Unconditional branches 1.11 3.78 5.99 6.73 6.74 8.31 6.88
Mispredicted branch direction 1.09 1.53 1.85 1.88 1.87 3.18 1.96
Mispredicted branch target 1.13 14.39 14.72 16.34 16.09 19.83 16.44

Flops 1.06 1.34 1.34 1.33 1.33 1.45 1.34
Computational intensity 1.06 2.94 4.33 4.60 4.61 4.88 4.61

Instr completed 1.11 3.76 5.46 5.79 5.78 6.52 5.82
Wall clock time 1.08 2.19 2.80 2.90 3.17 2.37 3.05
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Table 3.7: Performance metrics for 10 iterations of testhydro1 on POWER5 compiled with gcc.

Metric Baseline
Lazy

evaluation

Iteration-
space

narrowing

Mesh
precom-
putation

Lowering
Data

packing

Iteration-
space

partition-
ing

Multiple-
constraint
reordering

L1 cache accesses (B) 201.61 185.36 64.13 39.58 35.71 34.89 29.85 34.86
L2 cache accesses (B) 6.16 3.83 1.62 1.47 1.67 1.50 1.49 1.45
L2 traffic (GBytes) 700.42 435.42 184.33 167.35 189.38 170.02 168.78 164.28
Memory bandwidth (GBytes/s) 14.11 15.15 31.46 36.96 37.65 36.09 49.04 36.19
DTLB misses (M) 25.22 25.04 23.47 21.47 20.99 20.81 22.84 20.88

Branches (M) 56922.02 52112.92 17916.76 11002.17 9042.65 8920.95 7725.46 8836.67
Unconditional branches (M) 25275.41 23041.30 7297.77 4233.33 3428.59 3382.88 2883.89 3362.20
Mispredicted branch direction (M) 454.06 441.06 297.08 229.00 253.57 253.69 232.97 231.17
Mispredicted branch target (M) 931.92 821.79 168.47 149.42 116.73 118.06 88.77 123.65

Flops (B) 24.54 23.26 13.93 12.16 11.81 11.76 10.41 11.78
Computational intensity 0.12 0.12 0.22 0.31 0.33 0.34 0.35 0.34

Instr completed (B) 354.64 322.42 118.07 73.13 63.92 63.92 54.74 63.51
Wall clock time (sec) 219.56 204.69 97.40 71.75 68.14 63.23 78.98 65.48
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Table 3.8: Fractional improvement over baseline of performance metrics for 10 iterations of testhydro1 on POWER5
compiled with gcc.

Metric
Lazy

evaluation

Iteration-
space

narrowing

Mesh
precom-
putation

Lowering
Data

packing

Iteration-
space

partition-
ing

Multiple-
constraint
reordering

L1 cache accesses 1.09 3.14 5.09 5.65 5.78 6.75 5.78
L2 cache accesses 1.61 3.80 4.19 3.70 4.12 4.15 4.26
L2 traffic 1.61 3.80 4.19 3.70 4.12 4.15 4.26
Memory bandwidth 1.07 2.23 2.62 2.67 2.56 3.47 2.56
DTLB misses 1.01 1.07 1.17 1.20 1.21 1.10 1.21

Branches 1.09 3.18 5.17 6.29 6.38 7.37 6.44
Unconditional branches 1.10 3.46 5.97 7.37 7.47 8.76 7.52
Mispredicted branch direction 1.03 1.53 1.98 1.79 1.79 1.95 1.96
Mispredicted branch target 1.13 5.53 6.24 7.98 7.89 10.50 7.54

Flops 1.05 1.76 2.02 2.08 2.09 2.36 2.08
Computational intensity 1.02 1.78 2.52 2.71 2.76 2.86 2.77

Instr completed 1.10 3.00 4.85 5.55 5.55 6.48 5.58
Wall clock time 1.07 2.25 3.06 3.22 3.47 2.78 3.35
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Table 3.9: Elapsed time for 10 iterations of testhydro1 on Xeon compiled with gcc.

Metric Baseline
Lazy

evaluation

Iteration-
space

narrowing

Mesh
precom-
putation

Lowering
Data

packing

Iteration-
space

partition-
ing

Multiple-
constraint
reordering

Wall clock time (sec) 116.65 107.69 55.59 45.07 43.38 39.71 42.99 40.21

Table 3.10: Fractional improvement over baseline of elapsed time for 10 iterations of testhydro1 on Xeon compiled with
gcc.

Metric
Lazy

evaluation

Iteration-
space

narrowing

Mesh
precom-
putation

Lowering
Data

packing

Iteration-
space

partition-
ing

Multiple-
constraint
reordering

Wall clock time 1.08 2.10 2.59 2.69 2.94 2.71 2.90
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3.3 Mesh Semantics

We leverage the following semantics of KOLAH, which we anticipate will hold for

unstructured meshes in general, to manually introduce safe optimizations that

ameliorate mesh-induced overhead:

• Mesh element-based field indexing is a pure function—side-effect free and

dependent only on its explicit actual arguments;

• Elements enumerated by a mesh iterator are unique;

• The mesh (structure) is updated infrequently.

3.4 Mesh Optimizations

This section highlights well-known optimizations from the literature—lazy evalua-

tion and data packing—as well as novel, domain-specific optimizations that signif-

icantly improve the performance of testhydro1 and that we believe are relevant

to mesh applications in general. Code elimination optimizations reduce dynamic

instruction counts by ensuring that calculations are not performed unnecessarily

(i.e., if they are never used) or redundantly. These include, lazy evaluation, mem-

oization of calculations dependent on mesh elements, and precomputation of mesh

connectivity metadata. The lowering optimization transforms high-level mesh ab-

stractions to more efficient, but less readable, low-level code. Finally, we consider

three types of domain-specific data and computation reordering transformations.

The effects of the optimizations are shown in Tables 3.6, 3.8, and 3.10, which

normalize the results of Tables 3.4, 3.7, and 3.9 to the unoptimized baseline

32



Baseline

Lazy
Evaluation

Iteration-space
Narrowing

Mesh Precomputation

Lowering

Data Packing
Iteration-space
Partitioning

Multiple-constraint
Reordering

Automated
Mesh Precomputation

Automated
Lowering

Figure 3.1: Application order of optimizations. An optimization named in a parent
node is applied before that named in the child node. Optimizations in sibling nodes
are independently applied following the optimization named by the parent node.

for KCC/POWER5, gcc/POWER5, and gcc/Xeon, respectively. Tables 3.6, 3.8,

and 3.10 show fractional improvement over the baseline, with one indicating no

change and a number larger than one indicating an improvement. The optimiza-

tions are manually applied in the order described by the tree in Figure 3.1. An opti-

mization named at a tree node is applied before its children. Optimizations named

in sibling nodes are alternate optimizations that are applied independently to the

parent. For example, data packing, iteration-space partitioning, and multiple-

constraint reordering, are three different packing strategies that are applied follow-

ing the lowering optimization. Two of the optimizations—mesh precomputation

and lowering—are automated, as discussed in Chapter 4.

3.4.1 Code Elimination

KOLAH’s design stresses flexibility over performance: its interface facilitates nu-
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merical programming by providing convenient access to mesh entities, but also

encourages unnecessary and redundant computation. The following optimizations

transform application structure in a way that reduces such superfluous computa-

tion: code motion of statements to the single branch of a conditional in which

they are active avoids their unnecessary execution when the other branch is taken;

narrowing an iteration space to a unique set of mesh elements avoids redundant

computation of a pure function dependent on those elements; and precomputing

static mesh connectivity information avoids having to re-evaluate it during each

mesh traversal.

Lazy Evaluation

Lazy evaluation is a traditional technique to reduce the number of instructions

between a definition and use. When this involves code motion to a single branch

of the condition, it effectively removes a definition that would not be used within

the alternate branch. This section applies lazy evaluation to the “Caramana loop”

of Figure 3.2, which calculates an artificial viscosity and is one of several domi-

nant loops in the testhydro1 time step. Though lazy evaluation is well-known

and implemented within standard compilers, applying it to this loop is prevented

by conservative analysis, which must assume that the mesh element-based field

indexing executed within the loop induces side effects. Nevertheless, mesh seman-

tics ensure that this is a pure operation: domain-specific knowledge thus enables

a traditional optimization.

The ellipsis on line 35 of the Caramana loop abstracts 23 statements, including

memory accesses, a conditional, method invocations, and long-latency square root

instructions. Though these are dependents of the doPhysics function invoked
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for (SideIterator sideIt = mesh->sideBegin();

2 sideIt != mesh->sideEnd(); ++sideIt) {

// extract the edge from the side

4 EdgeIterator edgeIt = sideIt->edge();

6 // extract the nodes from this edge

NodeIterator node1It = edgeIt->node1();

8 NodeIterator node2It = edgeIt->node2();

10 // calculate change in position & sign

const Vector &S = sideIt->ZFEAreaNormal();

12 Vector deltaX = node1It->position()

- node2It->position();

14 int sign = (S.dot(deltaX) < 0) ? -1 : 1;

16 // calculate change in velocity

Vector deltaV = velocity[*node1It]

18 - velocity[*node2It];

20 rho1 = volumeWeightedAvg(zoneMass,node1It);

rho2 = volumeWeightedAvg(zoneMass,node2It);

22
ZoneIterator zoneIt = sideIt->zone();

24 soundSpeed = sqrt( inGamma * pressure[*zoneIt] /

max(rho1, rho2) );

26
map<int,<pair<int,int> >::iterator mapIt =

28 edgeMap.find(edgeIt->getID());

30 int leftEdgeIndex = (*mapIt).second.first;

if( leftEdgeIndex > -1 ) {

32 // ...

}

34
// ... mem ops, method calls, sqrts, etc.

36
int signDotProd = sign * S.dot(deltaV);

38 if (signDotProd < 0.0) {

edgeForcing = doPhysics(deltaV, ...);

40 } else {

edgeForcing.Zero();

42 }

44 nodeForcing[*node1It] += edgeForcing;

nodeForcing[*node2It] -= edgeForcing;

46 }

Figure 3.2: Iteration over sides.
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within the true branch of the conditional on line 38, they do not contribute to

its false branch. In fact, none of the statements following line 17 are used out-

side of the true branch. Therefore, in order to avoid unnecessary computation,

these statements should be evaluated lazily—i.e., moved to the true branch of the

conditional.

Performing lazy evaluation requires compiler analysis to determine that all

moved statements are side-effect free. KCC inlines volumeWeightedAvg, so that the

only obstacles are the overloaded indexing operator of line 24 and the invocation

of STL’s find on line 27, which can not be completely inlined to determine its

side-effect behavior.1 The semantics of mesh element-based field indexing and an

additional annotation on find could instruct the compiler that both are side-effect

free and that it may safely perform the optimization.

Of the 1,500,000 total iterations of the loop, lazy evaluation results in fewer

dynamic instruction executions in the 183,000 iterations in which the conditional

evaluates to false. As shown in Tables 3.6 and 3.8, the optimization leads to a

reduction in dynamics instructions on the POWER5 of 9-10%. Computational

intensity is largely unaffected, since lazy evaluation removes floating point instruc-

tions, as well as memory accesses and branches. Tables 3.6, 3.8, and 3.10 show

that the effect on overall performance is a fractional improvement of 1.07-1.08 on

all platforms.

1This optimization could change program behavior if sqrt generates an exception or if the
memory access causes a segmentation fault. Nevertheless, because the optimization doesn’t
introduce any potential exceptions, it is safe.
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Iteration-space Narrowing

The connectivity between KOLAH’s mesh objects provides latitude in object traver-

sal and algorithm design. Computation acting on all mesh entities of a given type,

such as the code in Figure 2.2, is best implemented as a simple iteration over those

elements. Other computation, including the program fragment of Figure 3.2, is

a complex function of multiple iteration spaces—those ranging over zones, side,

edges, and nodes. In such cases, the choice of iteration space or spaces is not ob-

vious since one mesh entity domain can be reached from any other through their

interconnections. This flexibility allows a programmer to implement all operations

involving a logical computation within a single loop, rather than distributing them

over multiple iteration spaces.

While such flexibility facilitates scientific programming, the resulting imple-

mentation is potentially inefficient. The lack of a bijection between mesh en-

tity domains means that iteration spaces that uniquely visit sides, for example,

may revisit any mesh entity they access from a side. This many-to-one and

onto (surjective) mapping is a property of the mesh [69] and is exhibited by the

code in Figure 3.2, which revisits nodes, since the same node may be associated

with different sides. The original loop structure makes 3,000,000 invocations of

volumeWeightedAvg, though only 66,351 of those invocations access unique nodes.

Thus the vast majority of these calls incur the unnecessary loop and memory ac-

cesses of volumeWeightedAvg.

Iteration-space narrowing eliminates redundancy by extracting a pure function

that is re-evaluated with the same arguments and executing it within an iteration

space that uniquely visits those arguments. In the above example, iteration-space

narrowing instantiates a loop that iterates over nodes, invokes volumeWeightedAvg
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on each, and memoizes the results for subsequent access in the original loop. Memo-

izing results of volumeWeightedAvg within the original loop is less efficient, because

it requires a conditional to check whether the result has already been calculated.

Such branches degrade performance directly by introducing pipeline stalls and in-

directly by complicating compiler- or hardware-directed prefetching.

Iteration-space narrowing is the most powerful optimization considered. By

eliminating the many repeated invocations on volumeWeightedAvg, it provides a

2.7-3.5× reduction in executed instructions and memory accesses over the previous

lazy evaluation optimization. The result is a doubling in performance.

The legality of the transformation follows directly from the mesh semantics

used to facilitate lazy evaluation and to determine that loops are side-effect free.

The profitability of the transformation could be gauged by inferring the presence

of redundant execution based on a knowledge of mesh semantics. Recognizing

that elements are being revisited requires characterizing the domain of a loop nest

succinctly. Ahmed et al. [1] describe a statement iteration space, based on the loops

surrounding a statement, that characterizes the dynamic instances of a statement

as a set of points in an iteration space induced by affine functions of the loop indices.

Since iterators introduce non-affine expressions into loops, this approach is not

applicable. Strout et al. [82] avoid this problem by describing dependences using

Presburger arithmetic with uninterpreted functions and resolving the dependences

at run time. This inspector/executor-inspired approach [17] could also be used to

determine whether a loop revisits entities by simply traversing the iteration space

and keeping a record of any accessed element.

We propose a symbolic approach that codifies the relations between mesh en-

tities, e.g., that an edge is associated with two nodes. This allows a compiler to
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determine statically whether iteration-space narrowing is likely to be profitable.

For example, given the previous assertion, a compiler could infer that a function

on nodes invoked within a loop over edges would be repeatedly executed with the

same arguments. If the compiler determines that the function is sufficiently com-

plex and that its computation is side-effect free and independent of the surrounding

loop, the compiler could hoist it from the loop and re-instantiate it within a loop

that directly iterates over its unique arguments.

Mesh Precomputation

testhydro1 frequently iterates over mesh elements simply to access connected

elements. For example, the code for the gradient operator grad shown in Figure 3.3

iterates over zones in order to iterate over the zones’ faces and then iterates over

the faces’ sides to finally access members of the sides. That is, only attributes of

the sides contribute to the calculation accumulated in the grad field. Since the

zones and faces are traversed solely to reach the sides, only their mesh connectivity

metadata is examined and accesses to them represent pure overhead.2 Fortunately,

such overhead is avoidable.

Mesh structure is often static throughout an application’s execution. Adap-

tive mesh-based schemes reconstitute a mesh automatically when accuracy falls

to unacceptable levels, but also hold the mesh static across a large number of

iterations. This static property allows an inspector phase [17] to evaluate and

store mesh connectivity metadata prior to performing computation over the mesh,

during application initialization or immediately after remeshing in an adaptive

2As accesses to an entity’s (mesh connectivity) metadata may not be temporally related to
accesses to its data (e.g., area normal, volume, etc.), it may be profitable to split the structure [15]
into two separate structures—one holding the metadata and the other holding the data.
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scheme. Subsequent execution by an executor then accesses the precomputed,

stored values to avoid the iteration or pointer chasing needed to recompute static

properties, including the mesh interconnectivity accessed by the gradient operator

and the relationship of an edge to a side accessed by line 4 of Figure 3.2. Line 11

accesses the area normal, a dynamic property, of the side; such a result can not be

precomputed since it potentially changes each iteration.

Figure 3.3 shows our intuitive approach to mesh precomputation. The inspector

gradInspector mimics the original loop structure of grad to precompute and store

for subsequent retrieval only those target mesh entities needed for the calculation,

rather than those mesh entities that are merely traversed to reach the calculation’s

operands. In the case of grad, this requires storing in an STL vector the zone and

nodes associated with a side, but does not require storing the face. The original

three, perfectly nested loops are transformed into the single loop of the executor

gradExectuor, which accesses the stored objects linearly from the vectors to avoid

the loop and indirection overheads inherent in mesh traversal.

Mesh precomputation significantly reduces the number of static (and dynamic)

instructions to achieve an overall 19-26% performance improvement across plat-

forms. Since the optimization does not modify or remove any floating point calcu-

lations, but rather the means of accessing operands, no changes should be reported

in floating point operations. This is indeed the case under the KCC/POWER5 plat-

form. Surprisingly, however, the number of floating operations is reduced on the

gcc/POWER5 platform. This likely occurs because gcc uses floating point op-

erations in unexpected contexts, e.g., using floating point registers to copy data

between memory locations. Nevertheless, under both compilers, 70-80% of the

instructions removed are loads, stores, or branches.
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void grad(Field& field, Mesh& mesh, Field& grad) {

for (ZoneIterator zi = mesh.zoneBegin();

zi != mesh.zoneEnd(); ++zi) {

for (FaceIterator fi = zi->faceBegin();

fi != zi->faceEnd(); ++fi) {

for (SideIterator si = fi->sideBegin();

si != fi->sideEnd(); ++si) {

Vector ds = field[*si->zone()] * si->ZFEAreaNormal();

grad[*si->node1()] += ds;

grad[*si->node2()] -= ds;

}

}

}

}

void gradInspector(Field& field, Mesh& mesh) {

for (ZoneIterator zi = mesh.zoneBegin();

zi != mesh.zoneEnd(); ++zi) {

for (FaceIterator fi = zi->faceBegin();

fi != zi->faceEnd(); ++fi) {

for (SideIterator si = fi->sideBegin();

si != fi->sideEnd(); ++si) {

zoneIts.push_back(si->zone()->getID());

sideIts.push_back(si);

Vector ds = field[*si->zone()] * si->ZFEAreaNormal();

node1Its.push_back(si->node1()->getID());

grad[*si->node1()] += ds;

node2Its.push_back(si->node2()->getID());

grad[*si->node2()] -= ds;

}

}

}

}

void gradExecutor(Field& field, Field& grad) {

for (int i = 0; i < zoneIts.size(); ++i) {

SideIterator si = sideIts[i];

Vector ds = field[zoneIts[i]] * si->ZFEAreaNormal();

grad[node1Its[i]] += ds;

grad[node2Its[i]] -= ds;

}

}

Figure 3.3: Gradient operators. Original gradient operator (top). Inspector code
to precompute mesh connectivity of gradient operator (middle). Executor code to
access precomputed mesh connectivity to implement gradient operator (bottom).
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3.4.2 Lowering

testhydro1 frequently dereferences iterators to access physical fields, as illustrated

by the code fragments in Figures 2.2 and 3.2. The succinctness of mesh field ac-

cesses aids programmer productivity by hiding the complexity of the underlying

implementation: mesh element-based indexing extracts an integer MeshID from

the object through a series of method invocations that culminates in a call to

getID. This integer ultimately indexes into a STL vector representing the field.

Dereferencing an iterator to extract the mesh element involves three method in-

vocations, evaluating a conditional, three member field accesses, and at least two

pointer dereferences. Indexing with that element additionally leads to five method

invocations, two pointer dereferences, and one array access.

Such code complexity frequently results from the fine-grained parameterization

employed by STL and KOLAH to provide programming convenience. Inlining is cru-

cial for ensuring that this convenience does not degrade performance: it removes

function calls and exposes compilation opportunities that would have required in-

terprocedural analysis. For example, KCC is able to simplify the for loop header

of Figure 2.2 by replacing the ZoneIterator with an integer induction variable.

However, inlining requires access to the complete definition of the callee when the

call site is compiled. This condition is met (e.g., in STL) by providing definitions

in header files. Unfortunately, relying on this approach is fragile as programmers

can make subtle performance bugs by providing a definition instead in a separate

module. Such is the case with KOLAH’s getID method, as discussed in Section 2.3.

The compiler’s subsequent inability to infer that getID is side-effect free prevents

further simplification of the loop (e.g., hoisting of array base calculations past invo-

cations of getID and out of the loop). Whole-program analysis, such as link-time
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optimization, spans modules to overcome this problem, but may be infeasible for

some applications due to its compile-time expense. These analyses are performed

indiscriminately and globally: compilation effort may be expended without bene-

fit. In other situations, source code may not be available for inlining if the callee

definition is encapsulated in a library. Both of these challenges are addressed by

an abstraction-based approach, which describes mesh element-based indexing as a

pure function, independent of its definition and the location of that definition.

Either the semantics of mesh element-based indexing or the inlining of getID

and the compiler’s subsequent ability to infer that it is side-effect free allow the

multiple invocations of getID to be eliminated by common subexpression elimi-

nation. Nevertheless, further optimization opportunities remain. Assuming the

loop header has been simplified through inlining to use integer induction (as ac-

complished by KCC), the loop has an integer induction variable and an integer

identifier returned by getID. However, the compiler would recognize no semantic

relation between the two. Rather, the integer induction variable would be used to

index the mesh in order to obtain a pointer to a zone. This zone pointer would

then be dereferenced to access its identifier, which would finally be used to index

the field. This effective translation between the integer induction variable and the

integer identifier thus involves two loads. The translation may be removed by it-

erating over the space defined by the identifiers rather than the space spanned by

the induction variable. Changing the iteration order in this manner would seem to

violate flow dependences on e, as discussed in Section 2.3. Fortunately, the seman-

tics of mesh iterators guarantee that they do not revisit elements. Therefore, each

loop instance accesses a unique element and there are no loop-carried dependences.

Consideration of the semantics of mesh element-based indexing and mesh iter-
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int numZones = mesh.numberOfZones();

for(int zi = 0; zi < numZones; ++zi)

{

Zone *zone = mesh.getZones()[zi];

double tmp = P[zi] * div[zi] * zone->volume()

- zoneHeating[zi];

e[zi] = e[zi] - dt * tmp / mass[zi];

}

Figure 3.4: Integer-based iteration and field accesses following lowering.

ators thus leads to a domain-specific optimization more powerful, though less gen-

eral, than common subexpression elimination. Lowering replaces the C++ objects

used to access the mesh and iterate over its entities with more efficient integer-

based access and iteration, as shown in Figure 3.4. This example is complicated

by the loop’s use of the zone not only to access a field, but also to determine

the zone’s volume. This latter direct use of the zone requires indexing the mesh

with the induction variable to obtain a pointer and thus surrenders one of the two

loads removed beyond the simplifications from common subexpression elimination.

Nevertheless, roughly half of testhydro1’s loops access the mesh element solely

for field indexing purposes. Further, lowering does not require that the compiler

be able to infer side-effect properties of the lowered constructs. Hence, it is a

domain-specific optimization that both overcomes potential limitations of conser-

vative compiler analysis and provides a small additional performance benefit over

traditional optimizations, such as inlining and common subexpression elimination.

Lowering required two simple modifications to KOLAH’s interface: the addition

of integer-based field indexing (i.e., an overloaded operator[] accepting an integer

argument) and of the getZones() method to expose the mesh’s private zone array

member variable. Our work assumes that the library writer, as the domain expert,

is best suited to write domain-specific optimizations on that library. As such, we

do not consider it a burden for that expert to recognize that the library should
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export additional methods to be targeted by those optimizations. This approach is

reminiscent of the dual APIs proposed by Mateev et al. [51]—a high-level interface

is used by a programmer to concisely express an algorithm and a low-level interface

is targeted by the compiler for greater efficiency. Insofar as KOLAH is a high-level

interface translated to a low-level, integer-based interface, lowering may be viewed

as an application of the authors’ proposal, originally intended for sparse matrix

computations, to the mesh domain.

Applied manually, this transformation sacrifices the expressive power of a mesh-

independent construct for the efficiency of one that is intimately aware of mesh

internals. Automating this optimization within a semantics-aware compiler, as

done in Section 4, improves performance without imposing on the programmer.

The performance improvements, though statistically significant, are a modest 3-

5% over that achieved by mesh precomputation. This figure is somewhat mis-

leading since features of lowering were incorporated in mesh precomputation. In

particular, gradInspector in Figure 3.3 stores identifiers rather than pointers to

mesh elements, so that gradExectuor uses these identifiers to perform the same

integer-based field indexing achieved by lowering. At least 1.5M instances of the

loop body are executed per invocation of the (nested) gradient and divergence

operators targeted by mesh precomputation. Given the number of invocations of

these operators, the number of field accesses is of the same order of magnitude

as those loops targeted by lowering—singly-nested loops, similar to Figure 2.2,

with at most 70K iterations and the single Caramana loop with 1.5M iterations.

Hence, much of the benefit of lowering has already been provided by the mesh

precomputation optimization.
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3.4.3 Data and Computation Reordering

Data packing strategies that reorder the layout of data elements have been suc-

cessful in improving locality and reducing bandwidth consumption [37]. We show

in this section that KOLAH benefits from this traditional [22] use of data packing. In

addition, we propose using packing to manipulate iteration spaces, making them

amenable to code restructuring. We introduce a loop partitioning scheme that

reorders computation and creates several partially evaluated versions of a loop to

facilitate data reuse through blocking. We show that the memory layout induced

by loop partitioning degrades performance and propose a compromise packing

strategy that allows partitioning without blocking. In contrast to our earlier re-

sults obtained using KCC on a POWER3 [89], this strategy is inferior to traditional

data packing.

Each of the following data packing strategies target sides, since these are ac-

cessed in the innermost loop of the performance-critical gradient and divergence

operators. As sides are visited in memory order by the Caramana loop of Fig-

ure 3.2, changing their data layout has the side effect of changing the loop’s itera-

tion order. As a consequence of the non-commutativity of floating point operations,

these optimizations may thus produce results that are not byte equivalent to those

of the unoptimized code. For this reason, these optimizations may be considered

unsafe in some contexts.

Data Packing

The triply-nested loop structure that implements the gradient and divergence op-

erators leads to non-strided memory accesses over faces and sides. The implemen-
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tation of grad in Figure 3.3 shows that the iteration space on sides traversed in

the inner loop is defined by a face, whose iteration space is in turn defined by an

enclosing loop over zones. Each of these loops accesses a subvolume of the mesh.

Since these accesses do not match memory order, they result in a non-strided access

pattern.

Consecutive packing [22] reduces the impact of this non-sequential behavior by

linearizing mesh entities in memory according to their access order within the loop,

to the extent allowed by repeated accesses. Thus mesh entities accessed consecu-

tively in time are more likely to be stored consecutively in memory. This effectively

increases spatial locality for small objects. Unfortunately, a cache line is not large

enough to accommodate multiple mesh entities; consecutive accesses do not enjoy

spatial reuse of a cache line. Although testhydro1 does not benefit from fine-

grained spatial reuse, consecutive packing produces a sequence of addresses more

amenable to stream prefetching than those resulting from coarse-grained packing

strategies, such as bucket tiling [58]. Data packing transforms the address stream

such that it has many short sequences of strided addresses that can be identified

and exploited by the hardware-based prefetchers. By doing so, it increases the

number of L1 prefetches by 18-20% over lowering (data not shown) and reduces

the number of L2 cache accesses by 10-11%. The result is a 7-9% performance

improvement over lowering and an overall 2.9-3.5× performance improvement over

the baseline, making it the best performing of the testhydro1 variants across all

platforms. As expected, data packing does not affect the number of instructions

completed since it does not reorder or remove any computation. Similarly, the

dynamic instruction mix of the KCC-derived executable is nearly unchanged. The

application compiled with gcc does show small, but statistically significant, reduc-

tions in dynamic loads, stores, branches, and floating point operations following
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data packing. While the static instruction mix should be identical between the

lowering and data packing testhydro1 variants, speculation within the processor

can behave differently given the reordered data accesses induced by data packing.

This, in turn, can result in a different dynamic instruction mix.

Iteration-space Partitioning

Execution within mesh algorithms is often conditionalized on geometric properties.

For example, the loop in Figure 3.2 performs additional computation if the condi-

tional on line 31 evaluates to true, indicating that the edge has a “left” neighbor.

The complete loop has a symmetric test for the “right” neighbor. Such condi-

tionals reduce basic block size, making it more challenging for the processor to

effectively schedule instructions. This degrades performance since accommodating

the frequent memory accesses and long-latency floating-point instructions common

to unstructured mesh codes requires a balanced instruction mix [31].

Though these properties are not known until run time, after the mesh has been

constructed, many of them remain invariant after initialization. This invariance

allows the conditionals to be removed, just as static mesh connectivity allows the

elimination of unnecessary recomputation. A variant of the Caramana loop is

created for each of the four possible outcomes of the two branches: both taken,

neither taken, left branch taken, or right branch taken. In all cases, the conditionals

are removed and their bodies are inlined or removed as appropriate. For example,

in the specialized loop corresponding to the existence of the right neighbor only,

the two conditionals are removed and replaced with the inlined body corresponding

to the right neighbor.

A one-time traversal of the iteration space evaluates the conditionals and as-
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Table 3.11: Packing data to reorder Caramana loop degrades memory perfor-
mance on POWER5 compiled with KCC. Performance metrics for 10 iterations of
testhydro1.

Metric Lowering

Iteration-
space

partition-
ing

(packing
without

loop
restruc-
turing)

L1 cache accesses (B) 21.12 20.56
L2 cache accesses (B) 1.32 1.30
L2 misses (B) 0.24 0.35
L2 traffic (GBytes) 149.73 147.76
Memory bandwidth (GBytes/s) 53.30 59.23
DTLB misses (M) 23.10 24.99

Branches (M) 5869.15 5602.05
Unconditional branches (M) 2086.00 1985.42
Mispredicted branch direction (M) 213.23 124.22
Mispredicted branch target (M) 58.24 50.88

Flops (B) 6.99 6.84
Computational intensity 0.33 0.33

Instr completed (B) 43.21 43.22
Wall clock time (sec) 53.48 67.59

signs an edge to one of four partitions. These partitions of the original iteration

space then form the sub-iteration spaces for the specialized loops. Packing re-

orders the original iteration space so that elements in each successive partition

are arranged before elements in any unpacked partition. The lengths of the four

partitions then divide the reordered iteration space across the four loops.

The loop corresponding to edges with neither a left nor a right neighbor admits

further partial evaluation, and in fact can be removed entirely. Through constant

folding and aggressive inlining after both conditionals and their bodies have been

removed, a compiler should be able to determine that line 37 sets signDotProd to
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Table 3.12: Packing data to reorder Caramana loop degrades memory performance
on POWER5 compiled gcc. Performance metrics for 10 iterations of testhydro1.

Metric Lowering

Iteration-
space

partition-
ing

(packing
without

loop
restruc-
turing)

L1 cache accesses (B) 35.71 34.38
L2 cache accesses (B) 1.67 1.40
L2 misses (B) 0.22 0.35
L2 traffic (GBytes) 189.38 158.82
Memory bandwidth (GBytes/s) 37.65 46.53
DTLB misses (M) 20.99 23.04

Branches (M) 9042.65 8619.47
Unconditional branches (M) 3428.59 3294.70
Mispredicted branch direction (M) 253.57 178.31
Mispredicted branch target (M) 116.73 115.89

Flops (B) 11.81 11.61
Computational intensity 0.33 0.34

Instr completed (B) 63.92 63.92
Wall clock time (sec) 68.14 83.99

zero, so that the conditional on line 38 fails and line 41 sets edgeForcing to the

zero vector. Since adding a zero vector to nodeForcing has no effect3, the entire

loop is side-effect free and may be eliminated. Eliminating this loop reduced the

number of executed loop instances by approximately 30K out of 1.5M.

This transformation to statically evaluate and remove conditionals is a specific

instance of iteration-space partitioning and loop specialization. Mellor-Crummey

et al. [53] also recognized that data packing reorders computation when the data

is stored in an array that is accessed without indirection both prior to and af-

3Menon et al. [55] discuss a compiler framework that incorporates a semantic understanding
of vectors and matrices. In this case, such knowledge is not required because the code is inlined
as scalars, which the compiler is able to analyze.
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ter packing. By using a space-filling curve to reorder computation, they attained

significant cache miss reductions. Our approach differs since it reorders computa-

tion according to some property of the induction variable to facilitate subsequent

optimizations. This subsequent specialization and restructuring of loop bodies

contrasts with computation reordering optimizations that only reorder iteration

spaces or introduce additional loop nests. Optimizations that introduce temporal

locality illustrate these differences.

Gropp et al. [32] reorder a loop over edges in the unstructured mesh code

FUN3D to introduce locality across loop body statements operating on nodes. By

sorting the edges according to the identifier of the node at either end, they move

loop body instances accessing the same node temporally close to one another so

that they reuse data in cache. In their study of irregular scientific applications,

Mellor-Crummey et al. [53] extend blocking used in dense-matrix calculations to

interaction lists in molecular dynamics applications. They do so by first assigning

a block number to each particle based on its memory location and then accessing

particles by iterating over blocks.

The loop over sides in Figure 3.2 also exhibits temporal reuse; edges are re-

visited since they are not unique to a given side. By sorting the sides based on

their edge’s identifier those sharing an edge are placed contiguously in the iteration

space to provide for temporal reuse of the edge. This reuse may be used to tile

the loop by lifting all statements that are dependent solely on an edge before any

statements dependent on the side induction variable. Because edges are reused

across consecutive loop instances, we introduce an inner loop over all sides sharing

an edge. This register tiling over edges ensures an edge and computation on that

edge are reused across sides sharing it.
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Despite reductions of 13-16% in dynamic loads, 15% in branches, and 11-14% in

instructions over lowering, iteration-space partitioning performs worse than lower-

ing and data packing (except on gcc/Xeon, where it slightly outperforms lowering).

Tables 3.11 and 3.12 compare the performance of lowering and an optimization that

uses the same data packing strategy as iteration-space partitioning, but which does

not perform any loop restructuring. Therefore, unlike under iteration-space par-

titioning, the number of completed instructions is unchanged from lowering. As

seen under data packing, there are small differences in the number of dynamic

loads, stores, branches, and floating point operations. The tables show that the

iteration-space partitioning data packing strategy impairs memory performance

by causing a 31-36% increase in L2 cache misses and an 8-10% increase in data

TLB misses. The poor memory performance may result from the packing order

interfering with hardware prefetching: there are 39-40% reductions in both the

number of L1 and L2 prefetches (data now shown). Unfortunately, the significant

reduction in dynamic instructions does not account for the poor data layout and,

as a result, performance suffers under iteration-space partitioning.

Multiple-constraint Reordering

Applications studied in previous work [22] have a single dominant loop that pro-

vides an obvious packing order; the above two sections demonstrate that this is not

the case in testhydro1, where packing orders inspired by different loops induce

different performance. The presence of multiple packing order preferences implies

that orders that balance data packing’s reduction in L2 accesses with iteration-

space partitioning’s reduction in dynamic instructions may be able to improve over-

all performance. Unfortunately, the compromise packing order that successfully

outperformed the two previous packing strategies on an older POWER3 platform
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using KCC [89] failed to do so on the more modern platforms considered here.

This compromise order visits sides in gradient-induced order but divides them

into the same four partitions described above. Though partition membership is

unchanged, the ordering within each partition is conducive to prefetching. As

above, the loops are specialized, with the side-effect free loop eliminated. Register

tiling is not applicable since this order does not contiguously place those side

sharing an edge. Enforcing this additional constraint on the ordering would allow

little freedom to accommodate the gradient operator.

Multiple-constraint reordering recovers most of the performance lost by

iteration-space partitioning. It significantly reduces L2 misses (data not shown)

and DTLB misses, though the L2 misses are not completely reduced to their num-

ber under data packing. As a result, and in contrast to our previous results using

KCC on a POWER3 platform, the performance of this optimization falls short of

that of data packing. Nevertheless, the results indicate the importance of appre-

ciating (e.g., through modeling) the effect of competing packing order strategies.

These considerations are important for applications that have loops of different

structure or iteration spaces, which motivate different packing orders. Not sur-

prisingly, the optimal strategy is a function of the architectural costs of memory

accesses and misses: the optimal packing strategy on the POWER3 [89] is subop-

timal on the POWER5.
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Chapter 4

Semantics-based Abstraction

Optimization

This chapter introduces a compiler framework for optimizing abstractions that

targets their semantics rather than their implementations. The approach is sum-

marized in Figure 4.1 and elaborated upon below. The projection framework is

built within the ROSE infrastructure, which is reviewed in Section 4.1. Section 4.2

describes how a domain expert defines an abstraction specification in terms of ab-

stract data types, the interfaces of procedures acting on them, and the semantics

of those procedures. In addition, the expert provides one or more implementations

of the abstraction interface, as well as optimizations using the ROSE infrastruc-

ture that target the abstractions. Our framework optimizes applications that use

abstractions written in terms of one of the specified implementations. From these

specifications, it defines lowering and raising operators, described in Sections 4.3

and 4.4, respectively. Using the raising operator, the framework automatically

projects the original implementation into an abstraction space via the approach

discussed in Section 4.5. Once in abstraction space, the application is transformed

by the specified, domain-specific optimizations. The benefits of optimizing within

the abstraction space, as opposed to one of implementation spaces, are summarized

in Section 4.6. Finally, the framework projects the optimized, abstract code into a

target implementation, which may differ from the original implementation, using

the lowering operators and the mechanisms of Section 4.7. Several testhydro1

loops are more complicated than the loop of Figure 4.2 because they pass vari-

ables as actual arguments to both abstractions and non-abstractions. Handling

such non-abstraction uses, while retaining the ability to project the invocations
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Figure 4.1: Automated abstraction recognition and optimization.

of abstraction implementations to abstraction space, requires special handling as

discussed in Section 4.8. The resulting framework is applied within Section 4.9 to

implement the mesh precomputation and lowering optimizations considered in the

previous chapter.

The simple loop of Figure 4.2 iterates over zones to calculate the average of

two pressure fields. This chapter describes the framework in terms of its action

in lowering the original, KOLAH-based implementation of this loop to the target,

integer-based implementation by way of the intermediary, abstract representation.

The transformation of this loop from an implementation space to the abstraction

space and back is summarized in Figure 4.2.
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ZoneIterator zi;

for(zi = mesh.zoneBegin(); zi != mesh.zoneEnd(); ++zi) {

PAvg[*zi] = 0.5 * ( P[*zi] + PNew[*zi] );

}

⇓

for(ZoneIter zi = beginZone(mesh);

neqZoneIterator(zi, endZone(mesh));

nextZoneIterator(zi)) {

accessZoneScalarField(PAvg, getZoneFieldIndex(zi)) = 0.5 *

( accessZoneScalarField(P, getZoneFieldIndex(zi)) +

accessZoneScalarField(PStar, getZoneFieldIndex(zi)) );

}

⇓

for(int zi = 0; zi < mesh.getNumberOfZones(); ++zi) {

PAvg[zi] = 0.5 * ( P[zi] + PNew[zi] );

}

Figure 4.2: Projection of a field-averaging loop from its original, KOLAH-based
implementation to abstraction space and back to an alternate, integer-based, target
implementation.

            Vector ds;

            grad[*si−>node2()] −= ds;

      }

{
   PolyhedralMesh::ZoneIterator zi;

         PolyhedralMesh::SideIterator si;

            grad[*si−>node1()] += ds;

#include "Field/Field.h"
#include "Mesh/Vector.h"
#include "Mesh/Mesh.h"

#include "Mesh/Zone.h"
#include "Mesh/Face.h"
#include "Mesh/Side.h"

         }

   } 
}

      for(fi = zi−>begin(); fi != zi−>end(); ++fi) {

         for(si = fi−>begin(); si != fi−>end(); ++si) {

               PolyhedralMesh &mesh,

gradDiv(Field<ZoneType, double> &gradFld,
               Field<FaceType, Vector> &divFld,

            ds =gradFld[*si−>zone()] * si−>aNorm();

            div[*zi] −=divFld[*fi].dot(si−>aNorm());

      PolyhedralMesh::FaceIterator fi;
   for(zi = mesh.begin(); zi != mesh.end(); ++zi) {

               Field< NodeType, Vector > &grad,
               Field< ZoneType, double > &div)

{

            Vector ds;
         for(si = fi−>begin(); si != fi−>end(); ++si) {

            grad[*si−>node2()] −= ds;

   }
} 

      }
         }

      for(fi = zi−>begin(); fi != zi−>end(); ++fi) {

#include "Mesh/Vector.h"
#include "Mesh/Mesh.h"

#include "Mesh/Zone.h"
#include "Mesh/Face.h"
#include "Mesh/Side.h"

                PolyhedralMesh &mesh,

   PolyhedralMesh::ZoneIterator zi;

      PolyhedralMesh::FaceIterator fi;

void grad(Field< ZoneType, double > &field,

                Field< NodeType, Vector > &grad)

   for(zi = mesh.begin(); zi != mesh.end(); ++zi) {

         PolyhedralMesh::SideIterator si;

              PolyhedralMesh &mesh,

{
   PolyhedralMesh::ZoneIterator zi;

      PolyhedralMesh::FaceIterator fi;

}
   }

void div(Field< FaceType, Vector > &field,

              Field< ZoneType, double > &div)

   for(zi = mesh.begin(); zi != mesh.end(); ++zi) {

      for(fi = zi−>begin(); fi != zi−>end(); ++fi) {

         for(si = fi−>begin(); si != fi−>end(); ++si) {
            div[*zi] −= field[*di].dot(si−>aNorm());

#include "Field/Field.h"

         PolyhedralMesh::SideIterator si;

            grad[*si−>node1()] += ds;

      }
         }

            ds = field[*si−>zone()] * si−>aNorm();

Parse Translate Generate

Figure 4.3: Program optimization using ROSE.

4.1 ROSE Overview

ROSE [66, 75] is a compiler framework, being developed at Lawrence Livermore

National Laboratory, for the optimization of user-defined abstractions deployed

within scientific codes. It aims to overcome the gap in semantic understanding

between the domain experts using scientific abstractions and the compilers opti-

mizing them. This gap is closed by having library developers and domain experts

define transformations over the use of abstractions they have written. As such,
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ROSE provides mechanisms to enable the creation of domain-specific optimizers.

Through a set of program query and traversal mechanisms, the ROSE project

lowers the barrier to specifying compiler transformations such that the technology

is accessible to domain experts who are likely not compiler experts. This the-

sis furthers this goal by facilitating the recognition and semantic specification of

abstractions in general, and mesh abstractions in particular.

Figure 4.3 shows the path that source code takes through a compiler generated

using the ROSE infrastructure. Execution within a ROSE-derived compiler may be

coarsely divided into three phases—source code is parsed into an abstract syntax

tree (AST) in the frontend; domain expert-defined analyses and transformations

act on AST in the midend; finally, the potentially modified AST is translated back

to source code and compiled to object code in the backend.

4.1.1 Frontend

ROSE’s frontend leverages and extends existing compiler infrastructure, including

the EDG C++ frontend [24] and a modification of the SageII intermediate rep-

resentation (IR) [9], dubbed SageIII. SageIII is a high-level object-oriented AST

developed within the ROSE project to extend SageII [9] for greater portability and

a more complete implementation of the C++ language. Source code presented to

ROSE is first passed to the EDG frontend, a popular and comprehensive C++

parser, which generates a proprietary AST. This proprietary interface is not ac-

cessible to user-defined transformations, and so is next translated to the public

SageIII interface.

The translation from the EDG AST to the Sage AST is provided by ROSETTA,
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Figure 4.4: Simplified Sage class hierarchy.

a tool for defining grammars and recognizers for those grammars [68]. A gram-

mar is specified by production rules involving terminals, non-terminals, and the

SageIII source code to implement them. The terminals and non-terminals are cod-

ified within a meta-program that, when executed, produces a recognizer for that

grammar. The output of this recognizer is an AST, whose nodes, including state-

ments, expressions, types, and symbols, implement the SageIII interface. Example

terminals include SgDotExp, for representing object-oriented method dispatch and

field access on an object, and SgAddOp, for representing an addition expression on

built-in types. A non-terminal, such as SgBinaryOp, which represents a binary ex-

pression, is defined on the left-hand side of a production rule with the non-terminals

and terminals comprising it, including in this case SgDotExp and SgAddOp, on the

right-hand side. Because each terminal only appears on the right-hand side of a

single production, the production rules induce an inheritance tree on the elements,

as diagrammed in Figure 4.4.

Every node in the AST is directly or indirectly derived from SgNode. Any

node inheriting from SgLocatedNode retains line and column information from

the original source code. SgExpression, derived from SgLocatedNode, represents

an expression and is specialized by, amongst others, SgUnaryOp, SgBinaryOp, and

SgFunctionCallExp, which define unary, binary, and function call expressions,
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Figure 4.5: AST for body of field-averaging loop.

respectively. In turn, SgUnaryOp and SgBinaryOp are further specialized.

The AST of Figure 4.5 represents the body of the KOLAH-based implementa-

tion of the loop in Figure 4.2, which iterates over mesh elements to calculate the

average of fields P and PNew. The top-level node in Figure 4.5, SgForStatement,

corresponds to the for statement. The Sage nodes for the loop test and incre-

ment have been repressed, leaving only the SgBasicBlock representing the basic

block of the loop body. Notice that, despite their syntactic similarity, PAvg, P,

and PNew are user-defined field abstractions rather than arrays. Therefore, the

apparent array expressions are actually invocations of the operator[] method

on a field receiver, i.e., syntactic sugar for PAvg.operator[](*zi), captured by

the common motif rooted by SgFunctionCallExp. PAvg is the variable held at the

SgVarRefExp on the left-hand side of the SgDotExp, while the right-hand side is the

SgMemberFunctionRefExp for operator[]. The argument passed to operator[]

itself results from a function call expression stored in the SgExprListExp for the
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actual arguments at the callsite.

4.1.2 Midend

The ROSE infrastructure implements a number of analyses and optimizations on

the AST. However, ROSE is not itself an optimizing compiler, but enables domain

experts to use the general facilities it provides to craft domain-specific optimiza-

tions. These optimizations act within the midend.

ROSE provides several traditional compiler analyses, including the construc-

tion of control flow graphs and dominance trees. A wealth of additional analyses,

including the side-effect and alias analyses required by our framework, are provided

by OpenAnalysis [83]. OpenAnalysis decouples analysis from a language’s interme-

diate representation (IR) through analysis-specific interfaces. These interfaces pro-

vide an analysis with program information in a representation-independent man-

ner. Porting an analysis between languages thus consists of providing an interface

to the language’s IR rather than rewriting the entire algorithm. Building on a

previous implementation that handled the imperative subset of C++, we worked

with Michelle Strout and her research group to implement the alias IR interface

for the object-oriented features of SageIII. This entailed, for example, represent-

ing references and (virtual) method invocations using OpenAnalysis’s imperative

analysis interfaces.

ROSE transformations are specified as semantic actions associated with a node

or nodes within the AST [73]. For example, an implementation of common subex-

pression elimination might examine each SgExpression node to ascertain whether

its subtree re-evaluates a previously computed expression. Transformations tra-
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verse the AST to add, replace, or delete subtrees within it. The two ASTs in

Figure 4.3 depict a program before and after loop fusion, in which the first AST

has two large subtrees corresponding to the two loops, while the second AST has

only a single large subtree for the one loop remaining after fusion.

ROSE simplifies the process of writing transformations through flexible traver-

sal, query, and rewrite mechanisms. Pre-defined top-down, bottom-up, and top-

down/bottom-up traversals require only that the transformation specify the visitor

routine at a Sage node. A top-down traversal visits the AST in a top-down man-

ner and passes inherited attributes computed at parent Sage nodes to current child

node being processed. Inherited attributes are useful for passing context informa-

tion down the AST [73]. Similarly, bottom-up traversals execute in the reverse

direction and create synthesized attributes at the current parent node being pro-

cessed from the previously processed child nodes. The final traversal mechanism

merges the first two approaches. Attributes are frequently utilized to evaluate

constraints or preconditions that trigger a transformation. To implement common

subexpression elimination, a bottom-up traversal might concatenate nodes, pass-

ing them up as a synthesized attribute to a SgExpression where they would be

available in some linearized form.

Query mechanisms are effectively more specialized traversals with simpler in-

terfaces. They allow a transformation to interrogate an AST for a list of nodes

having a specific type or name, for example. A generalized interface takes a solver

routine that is automatically executed on each node and that returns a boolean

indicating whether the node should be collected and returned.

ROSE offers string- and node-based AST transformation mechanisms. A re-

placement or insertion code fragment may be specified by a source string, in which
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case it is presented to the frontend and translated to an AST fragment which is

then grafted into the AST [75]. The translated fragment is verified to be correctly

typed before insertion into the AST. The node-based rewrite mechanism is more

direct, allowing a transformation to directly specify an AST subtree that will be

inserted or deleted at some node within the original AST.

4.1.3 Backend

The backend unparses the AST to generate source code and optionally passes

the source code to a more traditional compiler, such as KCC or gcc. Using a

ROSE translator to compile an application is as easy as replacing the compiler

named in the makefile with the name of the ROSE translator. By leveraging

traditional compilers, a ROSE source-to-source translator is spared the additional

complexity of low-level register allocation and object code generation. Further,

ROSE translators can focus on high-level semantics-based optimizations, leaving

well-known, general-purpose optimizations such as dead-code elimination to the

traditional compiler.

4.2 Abstraction Specification

The inability of compilers to recognize high-level abstractions hinders analysis

and prevents optimization because compilers must make conservative assumptions

about their implementations. Annotations permit domain experts to supplement

traditional analyses by communicating their understanding of application seman-

tics [69, 33, 45, 91]. These annotations frequently are couched in terms of low-level
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effects such as variable use, modification, and aliasing relationships that are readily

incorporated into traditional compiler analyses. They may also express higher-level

concepts, such as banded, diagonal, or symmetric matrix shape information, which

suggest domain-specific optimizations.

Whether communicating general-purpose analysis information or domain-

specific properties, previous annotation languages are implementation-centric in

that annotations are ascribed to concrete function, method, and type implemen-

tations. This approach is not scalable as it requires that annotations be re-

peatedly specified for each implementation. Domain-specific concepts will be re-

implemented by different applications or libraries. For example, there are a variety

of public implementations of mesh and field abstractions [8, 60, 89]. Despite the

shared semantics of these implementations, each would have to be separately and

redundantly annotated.

We instead propose an abstraction-centric approach, which allows abstraction

specifications to be reused across library implementations. A domain expert com-

municates a set of abstractions to the projection framework through an abstraction

specification. A fragment of the specification describing mesh iterator and field

abstractions is shown in Figure 4.6. It opens with declarations of abstract data

types, or abstraction types, and continues with the interface describing operations

on those types. The example interface declares mesh, iterator, and field types.

Operations on these types include those to retrieve a zone iterator referencing the

“first” zone within a mesh, to advance an iterator to refer to the next zone, and

to access a scalar field using a zone index.

The specification provides an imperative, rather than an object-oriented, inter-

face. Though abstraction types are introduced through the C++ class keyword,
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these classes serve only to define new type names and do not define methods on

those types. Therefore, the entire specification could have been written in C had

the inessential class keyword not be used as syntactic sugar for typedef struct.

The choice of an imperative specification may seem counterintuitive since an ab-

straction is properly viewed as a type or set of types and the procedures acting

on them. Nevertheless, given this decision, implementations of an abstraction,

be they built-in C/C++ expressions, function calls, or method invocations, will

be projected to invocations of abstraction functions in abstraction space. Thus,

optimizations targeting abstractions and acting within abstraction space need not

differentiate between functions and the numerous variants of methods (e.g., static

or virtual) or consider the type of the receiver (i.e., pointer or reference/object),

and then account for the implications these differences have on their representa-

tion within the object-oriented SageIII AST. Instead, optimizations may effectively

target a C AST rather than a more cumbersome C++ AST.

Though implementations realize an abstraction, it is actually the latter that

follows from the former. For example, Musser and Stepanov [61] generalize effi-

cient implementations in order to arrive at the more abstract STL interface. It

is this requirement that an abstraction interface accommodate each of its imple-

mentation that explains the seemingly redundant inclusion of iterators for zones

(i.e., ZoneIter) and nodes (i.e., NodeIter) in the specification. Certainly, within

a representation in which fields are indexed by integers, iterators over zones and

nodes are implemented as integers and there is no need for a distinction between

the two. However, a KOLAH-based implementation has separate template instan-

tiations (that is, unique types) for zone and node iterators. Hence, while the

use of distinct abstraction iterators is redundant for the integer-based implemen-

tation, the use of a single iterator abstraction type would be insufficient for the
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KOLAH-based implementation. Further, the set of abstraction types may be richer

than required for any one particular implementation. For example, the abstraction

specification includes iterator types (i.e., ZoneIter and NodeIter) as well as types

to index a field (i.e., ZoneFieldIndex and NodeFieldIndex). Under a integer-

based approach each of these is implemented as an integer, however KOLAH uses a

ZoneIterator to iterate over PolyhedralZones, which then index fields.

Following the approach used in STL [61], abstraction semantics are captured

in naming conventions and documentation. For example, the beginZone and

nextZoneIterator procedure abstractions are annotated to indicate they access

and return static mesh connectivity metadata and are thus candidates for mesh

precomputation. Similarly, since accesses to a field follow “array-like” semantics,

the corresponding operations are annotated as side-effect free, thus facilitating the

lowering optimization.

The specifications of semantics within documentation is fragile in that the op-

timizations that exploit them do not check abstraction properties, but rather make

assumptions based on the documentation. If the documentation was updated to

reflect different semantics, the optimization would make unsafe assumption unless

it too were updated. Fortunately, this is a shortcoming of the implementation,

rather than the design, of our approach. These semantics could easily be codified

within the body of the procedure abstraction specifications by adding annotation

keywords, such as NO SIDE EFFECTS or MODIFIES(var). Doing so within STL

would be require extending the C++ language to account for the new keywords

and would therefore not be feasible. Fortunately, since our approach uses source-

to-source translation, we can use an elegant strategy to effectively add keywords

to the annotation language. The parser for the specification consists of the ROSE
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frontend C/C++ parser and our own specification parser that traverses the result-

ing AST. If the specification were written in a new language or required modify-

ing an existing language, a new grammar and language parser would need to be

written—i.e., SageIII and its parser would have to be modified. Instead, we define

the specification language as being C/C++ with a few extensions that are imple-

mented as reserved function calls. For example, rather than being a true reserved

keyword in the specification language, NO SIDE EFFECTS would be a function de-

fined in an annotation header file. Extending the specification language therefore

requires the much simpler task of modifying the specification parser to understand

a new function invocation and its semantics. In this case, it would understand

that the abstraction specification invoking NO SIDE EFFECTS does not modify any

global state. Using C/C++ as the specification language also relieves the domain

expert from having to learn another language in order to specify abstraction se-

mantics. While this change would be straightforward, the current implementation

relies on documented semantics since nothing would be gained within our proto-

type through the use of explicit semantic specification. In fact, this strategy of

effectively adding keywords to the specification language is used for an alternate

purpose in Section 4.8.

A more serious concern is our reliance on the correctness of the seman-

tics, however they are provided. However, in so doing, we follow previous ap-

proaches [69, 33, 45, 91], that require domain experts to manually provide anno-

tations, which are accepted as valid semantic assertions. Some earlier work views

annotations as a means of supplying the compiler with transformations that it

could not otherwise discover or prove to be legal [46]. In principle, some degree

of automatic annotation generation and verification should be possible. Such au-

tomation could exploit the mechanisms discussed here but is beyond the scope of
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our current work. We believe that the ex nihilo generation of annotations poses

greater difficulties than verification: whereas the latter is focused on proving a

specific statement about a program, the former is a blind exploration of program

properties. Automated annotation generation is likely to get mired in implemen-

tation internals, such as book keeping and the temporary relaxation of invariants

within procedures, which obscure those semantics that are accessible to the pro-

grammer [91]. Overcoming these low-level implementation obstacles will require

sophisticated, and hence inefficient, analyses that will generate a considerable num-

ber of irrelevant annotations. In some cases no traditional analysis suffices. For

example, Kulkarni et al. [49] noted that the internal representation of a set could

be dependent on the order in which items are added to it. Therefore worklist-based

iterations that add elements to the set will appear to be non-commutative—the

loop can not be reordered. Nevertheless, they found that the operations do com-

mute at the semantic level, a fact that no automated annotation generation would

be able to infer.

4.3 Lowering Operator Specification

The domain expert provides one or more concrete implementation domains that re-

alize the entire set of procedures supported by an abstraction. Figures 4.7 and 4.8

provide KOLAH- and integer-based implementation domains, respectively, corre-

sponding to the subset of mesh abstractions listed in Figure 4.6. An implemen-

tation is implicitly mapped to its abstraction by sharing the same function name.

Each procedure implementation is effectively a lowering operator, or transducer,

from the abstraction sharing its name to its body, which provides a realization of

that abstraction. In principle, mapping mechanisms other than this named-based
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class Mesh { };

class ScalarType { };

class VectorType { };

class ZoneIter { };

class ZoneFieldIndex { };

class ZoneScalarField { };

class ZoneVectorField { };

class NodeIter { };

class NodeFieldIndex { };

class NodeScalarField { };

class NodeVectorField { };

// Procedure abstractions on iterators.

// Retrieve the first zone of a mesh.

// Semantics: No side effects.

// Static mesh connectivity operator.

ZoneIter beginZone(Mesh &mesh) { }

// Increment a zone iterator.

// Semantics: Static mesh connectivity operator.

ZoneIter nextZoneIterator(ZoneIter &it) { }

// Procedure abstractions on fields.

// Access a scalar field with a zone index.

// Semantics: No side effects.

ScalarType accessZoneScalarField(ZoneScalarField &field,

ZoneFieldIndex &indx) { }

// Access a vector field with a node index.

// Semantics: No side effects.

VectorType accessNodeVectorField(NodeVectorField &field,

NodeFieldIndex &indx) { }

Figure 4.6: Subset of the specification of mesh abstraction types and procedures
pertinent to lowering.
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scheme could be employed, including one using an explicit implements keyword or

pragma. The simplicity of the current approach should facilitate its use. Mateev

et al. [51] use the more obvious and elegant approach of employing (pure virtual)

base classes to represent abstractions and subclasses to represent implementations.

Unfortunately, that approach is not applicable to legacy code, such as the scien-

tific codes targeted by this work. That is, having KOLAH’s ZoneIterator provide

a concrete implementation of the abstract ZoneIter would require modifying the

definition and inheritance relations of the ZoneIterator class. Further, the ap-

proach is not amenable to basic types: though an integer provides the functionality

of a ZoneIter for the integer-based implementation, it is not possible to make it

a subclass of ZoneIter.

A traversal over the AST defined by an implementation domain ensures that

each procedure abstraction has a corresponding implementation and establishes

a map from the procedure abstraction and domain name to the corresponding

procedure implementation. It also establishes a map between abstraction and

implementation types by comparing the types of procedure abstractions and im-

plementations. For example, by comparing the type signatures of the beginZone

abstraction with its integer-based implementation, the traversal establishes a map

between the Mesh abstraction type and the PolyhedralMesh implementation type

and between the ZoneIter abstraction type and the int implementation type.

Similarly, examination of accessZoneScalarField results in a map between the

ZoneFieldIndex abstraction type and the int implementation type. Thus, the

map from abstraction to implementation types is surjective (or onto). Individ-

ual abstraction types can map to alternate implementation types in a different

implementation domain. For example, under the KOLAH-based implementation,

the Mesh abstraction type continues to be mapped to the PolyhedralMesh im-
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// Pull in KOLAH typedefs so that we can refer to them.

#include ‘‘KOLAHTypedefs.h’’

// Implementation of iterator abstractions.

ZoneIterator beginZone(PolyhedralMesh &mesh)

{

return mesh.zoneBegin();

}

ZoneIterator nextZoneIterator(ZoneIterator &it)

{

return ++it;

}

// Implementation of field abstractions.

Scalar accessZoneScalarField(ZoneScalarType &field,

PolyhedralZone &indx)

{

return field[indx];

}

Vector accessNodeVectorField(NodeVectorType &field,

PolyhedralNode &indx)

{

return field[indx];

}

Figure 4.7: KOLAH-based implementation of mesh abstractions.

plementation type, while the ZoneFieldIndex abstraction type is mapped to the

PolyhedralZone implementation type.

4.4 Raising Operator Inference

The abstraction implementations provide a direct means of projecting from ab-

straction space to implementation space: the appropriate implementation is effec-

tively inlined for the abstraction invocation. The reverse projection from imple-
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// We still need KOLAH type declarations.

// Not all abstraction types are implemented

// as ints or vectors.

#include ‘‘KOLAHTypedefs.h’’

#include <vector>

// Implementation of iterator abstractions.

int beginZone(PolyhedralMesh &mesh)

{

return 0;

}

int nextZoneIterator(int &it)

{

return ++it;

}

// Implementation of field abstractions.

Scalar accessZoneScalarField(ZoneScalarType &field,

int &indx)

{

return field[indx];

}

Vector accessNodeVectorField(NodeVectorType &field,

int &indx)

{

return field[indx];

}

Figure 4.8: Integer-based implementation of mesh abstractions.

mentation space to abstraction space may be inferred by inverting the lowering

operator, in principle, to define a raising operator. For example, if an invocation

of the function getFirstZone sufficed to implement the beginZone abstraction,

then the lowering operator of Figure 4.9 could be inverted to define the raising op-

erator getFirstZoneRaisingOperator, whose name indicates the implementation

getFirstZone it raises. Raising would then proceed by comparing the name and

type signature of a function invoked from the original implementation against the
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// Lowering operator from abstraction beginZone to

// implementation getFirstZone.

int beginZone(PolyhedralMesh &mesh)

{

return getFirstZone(mesh);

}

// Raising operator from implementation getFirstZone

// to abstraction beginZone.

int getFirstZoneRaisingOperator(Mesh &mesh)

{

return beginZone(mesh);

}

Figure 4.9: Function-based lowering and inverted raising operators.

names and type signatures of defined raising operators. Notice that the raising op-

erator is defined in terms of abstraction types, e.g., its formal mesh parameter has

the abstraction type Mesh rather than the implementation type PolyhedralMesh.

While we are free to mandate that abstraction procedures be defined as func-

tions, their implementations may be defined as methods (as in the KOLAH-based

implementation domain) or as built-in language expressions (as in the integer-based

implementation domain). Further, the above approach assumes that an implemen-

tation is restricted to a single function invocation. This technique is generalized

so that the name of the raising operator is irrelevant. Instead, the AST of the

body of the lowering operator is mapped to its associated abstraction: the AST

is mapped to a raising operator that invokes the abstraction, but whose name is

effectively meaningless, as shown in Figure 4.10. The next section describes how

this AST is bound to a potential invocation of an abstraction implementation in

order to project it to an invocation of that abstraction.
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// Lowering operator from abstraction beginZone to

// implementation getFirstZone.

int beginZone(PolyhedralMesh &mesh)

{

return getFirstZone(mesh);

}

// Raising operator from implementation getFirstZone

// to abstraction beginZone.

int beginZoneRaisingOperator(Mesh &mesh)

{

return beginZone(mesh);

}

Figure 4.10: Lowering and inverted raising operators.

4.5 Projection to Abstraction Space

The AST of the lowering operator’s body serves as a means of recognizing in-

vocations of abstraction implementations. A traversal over the application AST

examines each function or method invocation. It attempts to bind the AST of each

invocation expression with the AST of the lowering operator’s body1. A success-

ful comparison requires that the two subtrees match structurally, with the formal

parameters of the lowering operator serving as wildcards that match with any

subexpression from the invocation expression, so long as their types unify. Suc-

cessful bindings are recorded, but do not immediately result in a transformation

of the AST.

Projection must also convert the implementation types of variables to abstrac-

tion types. Not all variables are candidates for projection. Formal parameter types

are never converted to abstraction types. If the target and original implementa-

tion types corresponding to the formal parameter’s abstraction type differed, then

1Binding actually occurs between the AST of an invocation expression and the AST of the
expression returned by the lowering operator.
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projection to the target implementation would change the formal parameter type.

The legality of this transformation would require examination of all callsites invok-

ing the formal parameter’s procedure to ensure that the type of the corresponding

actual argument could be converted at the caller. For simplicity, we avoid such

interprocedural analysis by disallowing the conversion of formal parameter types.

Similarly, a variable’s type is only converted to an abstraction type if all of

the variables uses are within an abstraction context—i.e., uses and definitions

of the variable are restricted to its being passed as an actual argument to an

abstraction invocation, its being initialized to an abstraction, or its being declared

without an initializer. In any other case, the variable would be required to have

its original type, which might change as a result of projection. If the variable’s

original and target implementation types differ, but a conversion between the two

types exists, then the variable type may still be promoted to an abstraction type.

Whenever the variable’s original type is required, it may be converted from the

target implementation. This accommodation of non-abstraction variable uses is

discussed further in Section 4.8.

An invocation of an abstraction implementation is only projected to an invo-

cation of the abstraction if it may be further projected back down to the target

implementation2. We call such projections valid. An invocation projection is valid

if each of its actuals has a type that may be projected to abstraction space or has

a type that is invariant between the original and target implementations. If an

invocation is determined to be invalid, then it will not be projected, and all of its

actual arguments are effectively used in a non-abstraction context. Any of these

actual arguments that are variables can no longer be considered for projection.

This, in turn, may cause other invocation projections to be invalid, which causes

2When the original and target implementations are the same, this condition always holds.
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the algorithm to iterate. Since there are a finite number of candidate invocation

projections and each may be changed only from valid to invalid, the algorithm

terminates.

4.6 Optimization in Abstraction Space

Once an application implementation has been projected to abstraction space,

domain-specific optimizations may be applied. Whereas optimizations acting in

implementation space would target specific implementations, those acting in ab-

straction space target the semantics of those implementations. Therefore, ab-

straction space provides a more expressive view in which opaque function and

method invocations have been replaced by invocations to abstract procedures with

well-defined semantics. For example, the abstract representation of the loop in

Figure 4.2 consists of abstraction invocations, which have been annotated as side-

effect free. Such annotations would allow common subexpression elimination of

the repeated *zi expression, which was not possible in the original implemen-

tation space because of a conservative assumption that operator[] induces side

effects. Instead, the related, but more powerful, lowering optimization translates

the original loop to a integer-based target implementation.

Optimizations acting on abstractions should be portable across implementa-

tions within a domain, in the same manner in which low-level compiler opti-

mizations such as common subexpression elimination are applicable across base

languages (such as C or Fortran) because they target a common intermediate rep-

resentation. For example, if an implementation specification for one of several

other mesh libraries [8, 60] were provided, then the optimizations applied to KOLAH
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in Section 4.9 should also be applicable to algorithms written using these libraries.

Previous projects [34, 45] have used sophisticated code pattern replacement

mechanisms to specify program transformations. Pattern matching and replace-

ment are well suited for small, local source code modifications, such as callsite

specialization, but are less accommodating of higher-level transformations, such

as loop fusion, which require contextual information and consideration of complex

preconditions [45]. To support a more general flavor of optimization, we allow

library writers to specify arbitrary transformations on the program using either

string replacement or direct insertion, deletion, and modification of AST subtrees.

The ROSE project has taken great pains to facilitate writing transformations so

that doing so does not require extensive compiler expertise. In this work we fur-

ther ameliorate the task of writing transformations by representing abstractions as

function invocations within abstraction space, regardless of whether their imple-

mentations use functions, methods, or built-in expressions. Thus, domain-specific

optimizations do not need to anticipate which of these approaches is used to rep-

resent abstractions, which would bind them to a specific implementation of those

abstractions, or to handle all possible implementation styles, which would be a

burden to the expert providing the optimization.

Section 4.9.1 describes how mesh precomputation acts within the abstraction

space. However, projection itself may be of value even if no domain-specific opti-

mization is explicitly applied. For example, as discussed further in Section 4.9.2,

lowering may be implemented simply be specifying a target implementation that

differs from the original implementation.
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4.7 Projection to Implementation Space

The validity of lowering procedure and type abstractions from abstraction space

to the target implementation space is guaranteed before projection to abstraction

space. Therefore lowering is a simple matter of traversing the AST of the opti-

mized, abstract application to determine which functions invoke abstractions and

which declarations introduce abstraction types. In the former case, the appropriate

lowering operator is selected, i.e., that with the same name as the invoked abstrac-

tion and with a signature that unifies with the invoked abstraction after types

have been mapped from abstraction space to the target implementation space.

The body of this lowering operator is inlined for the invocation of the abstraction.

A type is projected from abstraction to target implementation space by changing

the abstraction type mentioned in a variable declaration to the implementation

type to which it is mapped.

4.8 Accommodating Non-abstraction Invocations

To avoid costly whole-program analysis, the projection framework does not permit

the types of formal variables to be raised to abstraction space. For example, the

original implementation type PolyhedralNode of the first formal parameter of the

moveNode method invoked in Figure 4.11 is not projected to its corresponding ab-

straction type NodeFieldIndex. If it was, subsequent lowering to an integer-based

target implementation would translate the NodeFieldIndex abstraction type to

the int target type. Therefore, it would be necessary to modify the implementa-

tion of moveNode to accept an int, rather than a PolyhedralNode, argument.
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The restriction against projecting formal types could in turn prevent the raising

of any variables accessed in the corresponding actual argument. In this case,

the NodeIterator ni would not be projected to the NodeIter abstraction type.

This, in turn, would prevent projection of any invocation involving ni and would

ultimately prevent projection, and consequently optimization, of the loop.

A correct, but less conservative, approach is to seek a conversion from the target

implementation type to the original implementation type. If such a conversion is

available, the variable used in the expression passed as the actual argument may be

translated back to original implementation, as shown in Figure 4.12. Figure 4.13

lists the abstraction specification and implementation of the conversion operator

that would be provided by the domain expert to effect this translation. The con-

version abstraction getNodeIterator is labeled as a conversion operator via the

CONVERSION OPERATOR annotation. The EXCLUDED OPERATOR annotation indicates

that the projection framework should not attempt to project implementations of

getNodeIterator to the abstraction space during raising, but should only use it

for purposes of type conversion.

The operator converts its first int actual argument to a NodeIterator, but

additionally requires a second PolyhedralMesh argument. Therefore, in order to

convert the int ni back to a NodeIterator, the projection framework needs to

determine this second actual argument. From the correspondence between ni and

mesh in the loop header of the original implementation, it is clear that mesh should

be passed as this second argument.

Automating this inference of actual arguments requires associating mesh with

ni so that it may be accessed at the *ni callsite and passed to the conversion

operator. This problem is solved by allowing attributes to be defined on variables.
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Attributes tag variables, but exist only within the analysis of the loop and are not

defined syntactically within the application. Procedure abstractions may use the

intuitive annotation language of Figure 4.14 to assign a variable to an attribute,

to transfer one attribute to another, and to assign an attribute’s value to a vari-

able. The attributes are then propagated by a data-flow solver defined within the

OpenAnalysis framework.

The data-flow annotations necessary for associating mesh with ni are speci-

fied in the procedure abstractions for the conversion operator getNodeIterator of

Figure 4.13 and in the procedure abstractions nextNodeIterator and beginNode

of Figure 4.15. The annotation of beginNode assigns the actual argument mesh

passed to the abstraction invocation as the “mesh” attribute of the return value.

The data-flow analysis then insures that the attributes of the return value are

propagated to the left-hand side during assignment or initialization. Therefore,

after being raised to the abstraction space, data-flow analysis of the loop initial-

ization NodeIterator ni = mesh.nodeBegin() associates mesh with the “mesh”

attribute of ni. Such an attribute may be propagated by an annotation such as

that specified for nextNodeIterator, which assigns the “mesh” attribute of its

formal parameter it to the “mesh” attribute of its return value. Finally, the at-

tribute may be queried where it is needed, at the abstraction conversion procedure

getNodeIterator. Its annotation specifies that the mesh formal parameter should

be assigned the “mesh” attribute of its first it formal parameter. This effectively

provides a default value for a parameter.
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for(NodeIterator ni = mesh.nodeBegin();

ni != mesh.nodeEnd(); ++ni)

{

theTransformation.moveNode(*ni, .5 * dt * uAvg[*ni]);

}

Figure 4.11: Node used both in an abstraction context (as an actual parameter to
uAvg) and in a non-abstraction context (as an actual parameter to moveNode).

for(int ni = 0; ni != mesh.getNumberOfNodes(); ++ni)

{

NodeIterator convertedVar(mesh.nodeBegin() + ni);

theTransformation.moveNode(*convertedVar, .5 * dt * uAvg[ni]);

}

Figure 4.12: A variable used in an expression passed as an actual parameter is
converted from the target implementation type back to original implementation
type.

// Abstraction specification of conversion operator from

// int type to NodeIterator type.

NodeIterator getNodeIterator(int &it, PolyhedralMesh &mesh)

{

VAR(mesh) = PROPERTY(VAR(it), "mesh");

PROPERTY(RET(), "mesh") = PROPERTY(VAR(it), "mesh");

CONVERSION_OPERATOR();

EXCLUDED_OPERATOR();

}

// Implementation of conversion operator.

NodeIterator getNodeIterator(int it, PolyhedralMesh &mesh)

{

return ( mesh.nodeBegin() + it );

}

Figure 4.13: Conversion operator from int type to NodeIterator type.
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VAR → C/C++ variable name
| “ret”

ATTRIBUTE → string
PROPERTY → VAR “.” ATTRIBUTE
ATTR ASSIGN → PROPERTY “=” VAR
PROPAGATION → PROPERTY “=” PROPERTY
VAR DEFN → VAR “=” PROPERTY
ANNOTATION → ATTR ASSIGN

| PROPAGATION
| VAR DEFN

Figure 4.14: Data-flow annotation language for propagating attributes.

NodeIter nextNodeIterator(NodeIter &it)

{

PROPERTY(RET(), "mesh") = PROPERTY(VAR(it), "mesh");

}

NodeIter beginNode(Mesh &mesh)

{

PROPERTY(RET(), "mesh") = VAR(mesh);

}

Figure 4.15: Specification of data-flow problem with abstraction specification.

4.9 Automated Mesh Optimizations

To illustrate the versatility of the projection framework, we use it to automate

two optimizations that were manually applied in Chapter 3. Mesh precompu-

tation consists of an optimization phase that replaces the original gradient and

divergence operators with the two-phased inspector/executor versions described in

Section 3.4.1. Lowering, discussed in Section 3.4.2, leverages projection without

requiring any explicit transformation in the optimization phase.
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Table 4.1: Automated mesh precomputation and lowering attain performance similar to manual optimizations on POWER5
compiled with KCC. Performance metrics for 10 iterations of testhydro1.

Metric
Iteration-

space
narrowing

Mesh
precom-
putation

Automated
mesh

precom-
putation

Lowering Automated
lowering

L1 cache accesses (B) 32.92 22.41 22.76 21.12 21.45
L2 cache accesses (B) 1.82 1.26 1.21 1.32 1.31
L2 traffic (GBytes) 206.68 143.16 137.70 149.73 149.19
Memory bandwidth (GBytes/s) 45.57 52.24 49.72 53.30 51.60
DTLB misses (M) 25.79 23.96 23.39 23.10 22.87

Branches (M) 8971.01 6353.66 6416.16 5869.15 5866.99
Unconditional branches (M) 3708.27 2341.07 2409.20 2086.00 2139.79
Mispredicted branch direction (M) 261.41 217.03 212.46 213.23 212.14
Mispredicted branch target (M) 66.17 64.67 68.03 58.24 56.80

Flops (B) 6.98 6.98 6.98 6.99 6.97
Computational intensity 0.21 0.31 0.31 0.33 0.33

Instr completed (B) 66.46 45.80 46.58 43.21 43.89
Wall clock time (sec) 70.70 55.38 55.07 53.48 53.51
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Table 4.2: Automated mesh precomputation and lowering attain performance similar to manual optimizations on POWER5
compiled with gcc. Performance metrics for 10 iterations of testhydro1.

Metric
Iteration-

space
narrowing

Mesh
precom-
putation

Automated
mesh

precom-
putation

Lowering Automated
lowering

L1 cache accesses (B) 64.13 39.58 40.17 35.71 37.02
L2 cache accesses (B) 1.62 1.47 1.42 1.67 1.56
L2 traffic (GBytes) 184.33 167.35 161.09 189.38 177.36
Memory bandwidth (GBytes/s) 31.46 36.96 35.92 37.65 38.58
DTLB misses (M) 23.47 21.47 21.30 20.99 20.89

Branches (M) 17916.76 11002.17 11115.50 9042.65 9188.57
Unconditional branches (M) 7297.77 4233.33 4303.46 3428.59 3582.71
Mispredicted branch direction (M) 297.08 229.00 262.29 253.57 252.33
Mispredicted branch target (M) 168.47 149.42 155.00 116.73 121.24

Flops (B) 13.93 12.16 12.18 11.81 11.96
Computational intensity 0.22 0.31 0.30 0.33 0.32

Instr completed (B) 118.07 73.13 74.11 63.92 65.50
Wall clock time (sec) 97.40 71.75 72.27 68.14 68.92
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Table 4.3: Automated mesh precomputation and lowering attain performance sim-
ilar to manual optimizations on Xeon compiled with gcc. Performance metrics for
10 iterations of testhydro1.

Metric
Iteration-

space
narrowing

Mesh
precom-
putation

Automated
mesh

precom-
putation

Lowering Automated
lowering

Wall clock time (sec) 55.59 45.07 44.48 43.38 41.55

4.9.1 Automated Mesh Precomputation

Mesh precomputation first determines candidate loop nests for optimization. Pre-

computation is only of benefit for nested loops, as the overhead of mesh traversal

in non-nested loops is better handled by lowering. To target the gradient and di-

vergence operators, we require that target nests have three or more nested loops.

Each of these must iterate over the mesh—i.e., it must have a single mesh itera-

tor that is advanced by one of the iterator-modifying abstraction procedures (e.g.,

nextNodeIterator, addZoneMeshIndexOffset).

Loops iterating over the mesh will not be emitted in the executor, therefore

the values of any expressions that access mesh iterators within the loop, other

than those controlling iteration and annotated as static mesh connectivity op-

erators (e.g., beginZone, endZone, nextZoneIterator), should be precomputed

within the inspector so that they are available within the executor. For the di-

vergence operator of Figure 4.16, such expressions include the three dereferences

of a zone iterator *zi used to index the div field, the dereference of a side itera-

tor in si->getFPPAreaNormal, and the node iterator dereferences *si->node1()

and *si->node2() that index field. Precomputation within the inspector is

performed by evaluating the expression (e.g., *zi) and storing it in an STL vec-

tor (e.g., zone1Its.push back(*zi)). As discussed in Section 3.4.2, rather than

84



void divInspector(Field& field, Mesh& mesh) {

int tripCnt = 0;

for (int zoneID = 0; zoneID < mesh.getNumberOfZones(); ++zoneID) {

ZoneIterator zi = mesh.zoneBegin() + zoneID;

for (FaceIterator fi = zi->faceBegin();

fi != zi->faceEnd(); ++fi) {

for (SideIterator si = fi->sideBegin();

si != fi->sideEnd(); ++si) {

sideIts.push_back(si->getID());

Vector area = si->getFPPAreaNormal();

// The values stored in zone1Its and zone2Its

// are the same as those stored in zone3Its.

// However, zone3Its is updated once per zone,

// whereas the other two arrays are updated

// much more often (once per side) with the

// same value.

zone1Its.push_back(zi->getID());

node1Its.push_back(si->node1()->getID());

div[*zi] -= 0.5*field[*si->node1()].dot(area);

zone2Its.push_back(zi->getID());

node2Its.push_back(si->node2()->getID());

div[*zi] -= 0.5*field[*si->node2()].dot(area);

++tripCnt;

}

}

tripCounts.push_back(tripCnt);

zone3Its.push_back(zi->getID());

div[*zi] /= zi->getVolume();

}

}

Figure 4.16: A naive implementation of the divergence inspector stores identical
values of zi->getID() in three separate arrays, including within an inner loop
within which the value does not change.

storing mesh elements, the inspector stores integer mesh element identifiers (e.g.,

zone1Its.push back(zi->getID())). This effectively implements lowering since

these integer identifiers, rather than the associated mesh elements, will be used to

index fields in the executor.

Figure 4.16 shows a naive implementation of the divergence inspector. It pre-
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void divInspector(Field& field, Mesh& mesh) {

int tripCnt = 0;

for (int zoneID = 0; zoneID < mesh.getNumberOfZones(); ++zoneID) {

ZoneIterator zi = mesh.zoneBegin() + zoneID;

for (FaceIterator fi = zi->faceBegin();

fi != zi->faceEnd(); ++fi) {

for (SideIterator si = fi->sideBegin();

si != fi->sideEnd(); ++si) {

sideIts.push_back(si->getID());

Vector area = si->getFPPAreaNormal();

// Values of zi->getID() are not stored here,

// but rather in the outer loop.

node1Its.push_back(si->node1()->getID());

div[*zi] -= 0.5*field[*si->node1()].dot(area);

node2Its.push_back(si->node2()->getID());

div[*zi] -= 0.5*field[*si->node2()].dot(area);

++tripCnt;

}

}

tripCounts.push_back(tripCnt);

zoneIts.push_back(zi->getID());

div[*zi] /= zi->getVolume();

}

}

Figure 4.17: An efficient implementation of the divergence inspector stores identical
values of zi->getID() only once.

computes and separately stores the three *zi expressions, though they dereference

the same zone iterator zi and hence evaluate to the same result. Further, the inner

loop over sides is executed for 1.5M iterations, each of which stores *zi twice. The

outer loop uniquely visits the 70K zones and is the properly place to store the

expression. The naive implementation hence uses memory needlessly. Figure 4.17

shows an efficient implementation of the divergence inspector that only stores the

zone iterator dereference once in the outermost loop.

The naive implementation is inefficient because it stores unique expression in-

stances, whereas the optimized version gains efficiency by storing unique values.

That is, though the three invocations of *zi are unique expressions (i.e., occur
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within different statements), they do not yield unique values. Our approach is

therefore to precompute expressions with unique values, which we describe with

value names. Notice that it is insufficient and potentially incorrect to consider

syntactically-identical expressions as computing the same value: if zi were mod-

ified in between invocations of *zi, then the syntactically-identical expressions

would produce different values.

Value names are based on static single assignment (SSA) names [16], though

the analysis does not instantiate and does not require Φ−functions. Briefly, SSA

analysis updates a variable’s name whenever it is modified. This (conservatively)

ensures that whenever a variable takes on a new value it is assigned a unique SSA

name, though variable expressions with the same value may be assigned different

names. The value naming analysis effectively associates variable SSA names with

locations in the control flow graph. Though it does not instantiate Φ−functions,

it does update a variable’s SSA name wherever a Φ−function would be required,

e.g., following the join of an if statement’s true and false branches and preceeding

a loop body. Value names are assigned in a straightforward manner from SSA

names. A formal parameter or a variable without an initializer takes its SSA name

as its value name. A variable declared with an initializer is given the value name of

its initializer, while an assigned variable is given the value name of the right-hand

side assigned to it. Finally, the value name of a function invocation is the name of

that function prepended to the value names of its actual arguments.

The inspector is generated by a top-down traversal of the loop nest, in which

a loop’s non-loop statements are visited before any nested loops. Whenever the

traversal encounters a candidate expression whose value name has not been pre-

viously precomputed, it emits a statement to compute and store the expression’s
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value. Because of the order of the traversal, a candidate expression computed and

used within several nested loops is stored within the outermost loop. This ensures,

for example, that zi->getID() is stored in the outermost loop over zones rather

than the innermost loop over sides.

The inspector is also responsible for calculating the trip counts for each nested

loop to be emitted as a function of its enclosing loop. A loop will only be emitted

in the executor if it performs some computation beyond simple iteration. For

example, one loop will be emitted for the outer loop since it divides the divergence

field by a zone volume. The iteration space for this loop can be determined from

the size of the zoneIts vector holding the precomputed values, as shown by the

divergence executor in Figure 4.18. The second emitted loop corresponds to the

innermost loop in the original operator that accumulates results in the divergence

field. The number of iterations of this inner loop per iteration of the outer loop can

not be determined from any of the vectors storing precomputed values. Instead, the

inspector stores the (cumulative) trip count of an emitted inner loop at iteration

i of the enclosing outer loop in tripCounts[i]. Therefore, the loop bounds of

the inner loop during the ith iteration of the outer loop are [tripCounts[i-1] ,

tripCounts[i]).

The executor of Figure 4.18 was generated by replacing each access to a

value that was precomputed with an access to the vector holding that precom-

puted value. For example, the mesh element-based field access of the original

loop field[*si->node1()] was replaced by the (lowered) integer-based access

field[node1Indx], where node1Indx is an element of the node1Its vector hold-

ing values precomputed for this expression.

Like the simple inspector implementation, this executor is naive and inefficient:
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void divExecutor(Field& field, Mesh& mesh) {

int tripCntrIndx = 0;

int si = 0;

for (int zi = 0; zi < zoneIts.size(); ++zi) {

for (; si < tripCounts[tripCntrIndx]; ++si) {

int sideIndx = sideIts[si];

Side *side = &(mesh.getSides()[sideIndx]);

Vector area = side->getFPPAreaNormal();

// Accesses to zoneIts within this inner loop are

// redundant with the one in the outer loop to

// initialize zoneIndx3 and occur much more

// frequently (once per side, as opposed to once

// per zone).

int zoneIndx1 = zoneIts[zi];

int node1Indx = node1Its[si];

div[zoneIndx1] -= 0.5*field[node1Indx].dot(area);

int zoneIndx2 = zoneIts[zi];

int node2Indx = node2Its[si];

div[zoneIndx2] -= 0.5*field[node2Indx].dot(area);

}

int zoneIndx3 = zoneIts[zi];

div[zoneIndx3] /= (mesh.getZones()[zoneIndx3]).getVolume();

}

}

Figure 4.18: A naive implementation of the divergence executor redundantly ac-
cesses an array element of zoneIts, including within an inner loop.

though the inspector has properly precomputed the zone identifier once for its

three uses, the executor accesses the same vector element three times, once for

each use. This introduces two additional loads per iteration of the innermost loop.

Figure 4.19 shows the efficient loop nest actually emitted by the optimization: it

performs common subexpression elimination on the value names corresponding to

the accesses to the vector holding precomputed values. Analysis determines the

node in the control flow graph that dominates those nodes accessing the same

value name. Since the values of these expressions are the same at each of these
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void divExecutor(Field& field, Mesh& mesh) {

int tripCntrIndx = 0;

int si = 0;

for (int zi = 0; zi < zoneIts.size(); ++zi) {

// Access zoneIts once and reuse below.

int zoneIndx = zoneIts[zi];

for (; si < tripCounts[tripCntrIndx]; ++si) {

int sideIndx = sideIts[si];

Side *side = &(mesh.getSides()[sideIndx]);

Vector area = side->getFPPAreaNormal();

// No accesses to zoneIts within the inner loop.

int node1Indx = node1Its[si];

div[zoneIndx] -= 0.5*field[node1Indx].dot(area);

int node2Indx = node2Its[si];

div[zoneIndx] -= 0.5*field[node2Indx].dot(area);

}

div[zoneIndx] /= (mesh.getZones()[zoneIndx]).getVolume();

}

}

Figure 4.19: An efficient implementation of the divergence executor accesses each
array element of zoneIts once by holding its value in a temporary and reusing
within the inner loop.

nodes, their value must also be the same at the dominating node. Therefore, the

expression is assigned to a temporary at this node, which is then used to replace

the original expressions. In this case, the access zoneIts[zi] occurs immediately

before the inner loop and the temporary zoneIndx to which it is assigned is used

within and following that inner loop.

Figures 4.1, 4.2, and 4.3 compare the automated application of mesh precom-

putation to testhydro1 following its optimization with iteration-space narrow-

ing against its manual application to the same baseline, for the KCC/POWER5,

gcc/POWER5, and gcc/Xeon platforms, respectively. In all three instances, the

performance of the automatically optimized application is within 1% of that of the
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manually optimized application.

4.9.2 Automated Lowering

Automating the lowering optimization of Section 3.4.2 within the projection frame-

work simply requires specifying a integer-based target implementation. Doing so

translates the KOLAH-based mesh iteration and element field indexing to a more

efficient implementation without the need for the domain expert to specify any

explicit AST transformation. Figures 4.1, 4.2, and 4.3 show that automating low-

ering within the projection framework retains the benefits of the manual lowering

optimization.
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Chapter 5

Related Work

This thesis has examined issues relevant to the unstructured mesh domain, specif-

ically, and to the optimization of abstractions, generally. Our characterization of

testhydro1’s performance and study of optimizations that improve it complement

existing performance studies of unstructured mesh applications. We have described

the high-level data types common to these benchmarks and applications, includ-

ing fields and iterators, as abstractions that are defined by their semantics, which

transcend any particular implementation. Viewed within the abstraction space,

an application may be considered a generic program to be specialized by any of

a number of associated implementations. Generic programs are defined in terms

of concepts, related to our notion of abstractions, which are modeled by specific

implementations. As in our own work, concrete implementations are generalized

to define a concept and are then mapped to that concept.

The mechanics of projecting between implementation and abstraction spaces

are related to those techniques employed in code transformation systems. When

projection is performed without optimization, as in the lowering optimization, the

framework implements a sophisticated rewrite mechanism.

Our approach shares much with other work that targets specific domains by

abstracting its constructs into a higher-level intermediate representation for subse-

quent optimization. However, like Broadway, Telescoping Languages, and previous

work leveraging ROSE, ours is a general approach that is neither tailored nor lim-

ited to one particular domain.
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5.1 Performance Studies of Scientific Codes

Several reports indicate the significant performance impact of indirect memory

accesses on unstructured grid applications. Anderson et al. [3] concentrate on

minimizing memory references in the Fortran 77 unstructured mesh code FUN3D

for solving compressible and incompressible Euler and Navier-Stokes equations.

In their performance evaluation of scientific codes, Vetter and Yoo [85] study the

unstructured mesh code UMT. In contrast to our findings, they report a high

computational intensity. This likely results from the mixed C and Fortran imple-

mentation of UMT, which is more stream-lined than KOLAH’s more general, object-

oriented implementation: the function dominating UMT’s runtime was translated

from Fortran to C and accesses data stored in raw arrays, rather than field ab-

stractions. The authors do find that UMT suffers poor cache performance and

significant stalls due to loads. The regularity metric, defined by Mohan et al. [59]

as the number of memory accesses that occur within a strided stream divided by

the total number of accesses, lends insight to this poor cache performance: UMT

has a relatively low regularity of 0.44, a result consistent with its heavy use of

indirection. Jin and Mellor-Crummey [41] optimize stencil computation in SMG98

by targeting hypre, a library that provides abstractions of Cartesian grids, grid

hierarchies, and iterators for use in creating multigrid applications.

Bagge and Haveraaen [5] applied CodeBoost to a mesh application written us-

ing the Sophus library. They described a mesh interface similar to that used in

KOLAH, which provides float operator[](const Mesh &, const MeshPoint &)

for sampling a mesh at a given MeshPoint, MeshPoint setlex(const MeshShape

&, const int &) that returns the MeshPoint, int getlex(const MeshPoint

&) that returns a numeric index associated with a mesh element, and int
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getsize(const MeshShape &) that returns the number of mesh elements of a

given shape or type. As we found in KOLAH, the authors’ SeisMod solver makes

frequent use of the idiom that traverses over the mesh to perform arithmetic op-

erations on each of the mesh elements, as shown in 2.2. They considered a related

lowering optimization that replaces the use of getlex and MeshPoint-based mesh

accesses with more efficient integer-based mesh accesses to achieve a 4.8 − 5.7×

speedup.

5.2 Generic Programming

Abstractions are fundamental to generic programming, as they are to our own

work. Generic algorithms are written in terms of the properties (syntactic or se-

mantic) of types, rather than in terms of concrete types. Therefore, a generic

algorithm is applicable to any set of types that has the specified syntactic or

semantic behavior. Their use can lead to significant productivity gains. For exam-

ple, linear algebra routines need to account for various type precisions and matrix

shapes, sparsities, and row/column orientations. Accommodating the entire space

of possibilities manually requires code duplication and leads to poor software main-

tainability. Instead, it is possible to hide these implementation concerns and to

write linear algebra routines that access matrices and vectors only through itera-

tors, as done in the Matrix Template Library (MTL) [79]. The resulting procedures

are parameterized by a matrix type, which must be instantiated with a concrete

type having particular precision, shape, sparsity, and orientation characteristics.

Thus, instead of having separate routines for each matrix shape, such as BLAS

xGEMV, xSYMV, and xTRMV for general, symmetric, and triangular matrix-vector

multiplication, a single MTL routine suffices for the multitude of matrix types.
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5.2.1 Abstractions as Concepts

Stepanov and Austern [4] described a concept as a set of requirements on a type

that formalize it being an abstraction. A type is said to model a concept if it

fulfills its requirements. Their work lead to the development of the C++ Standard

Template Library (STL) [81], which defines generic algorithms by extracting the

type- and implementation-dependence of routines and replacing them with type

parameters that are constrained by concepts.

Thus, a generic algorithm is created from an efficient, concrete procedure by ab-

stracting away inessential implementation details. For example, Gregor et al. [28]

lift unnecessary requirements on concrete types to arrive at an algorithm at a higher

level of abstraction. Musser and Stepanov [61] identify container access operations

within an efficient, concrete implementation. These operations are generalized

to determine the minimum behavior they must exhibit for proper use within the

algorithm. After a generic algorithm has been defined, several variants may be

separately implemented using different internal representations that offer, for ex-

ample, better expected performance within certain contexts. These tradeoffs are

then thoroughly described within documentation that allows programmers to judi-

ciously choose the appropriate implementation given their requirements. The goal

of such a process is the most general realization of an algorithm that may later be

specialized based on context to provide an efficient implementation. Musser and

Stepanov [61] consider generic programs written using the C++ template mecha-

nism and instantiated with specific types before use.

In our approach, library writers or domain experts similarly abstract away un-

necessary detail from implementations to arrive at an abstraction interface and

then define the abstractions in terms of the implementations via projection oper-
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ators. A major difference between work on generics and our own is that in the

former case algorithms are expected to be written to this abstraction interface

whereas in the latter low-level implementations are projected into an abstraction

space. Thus, while work on generics has lead to the development of new libraries,

such as the MTL, which improve programming productivity, the approach is not

amenable to legacy scientific codes. Our approach makes no such imposition on

the implementation of the algorithm. In some sense, the projection of a concrete

implementation to an abstraction space automatically defines a generic algorithm.

Though Musser and Stepanov recognized the need to specify requirements on

the type parameters, C++ provides no such mechanism for constraining type pa-

rameters (of templates). Therefore, the requirements of a particular type (e.g.,

that it provide random access iterator semantics including operator+=(int n)

to advance n items in the sequence) are reflected in the STL documentation and

naming convention (e.g., RandomAccessIterator), but are not enforced by any

language mechanism: concepts are implicit in C++. The requirements of itera-

tors [61] are similar to, but differ somewhat from, those defined above for mesh

iterators. In particular, the authors require a dereference operation on iterators,

operator*(), that returns the contents of the current container location refer-

enced by the iterator. In this interface, the container is implicit and must thus

be associated with the iterator (e.g., via a pointer member variable). We have

instead defined a semantically similar getZonePtr operator that explicitly takes

as arguments both the iterator and the container (or, more properly, the mesh

from which the container of zones may be extracted). This interface specification

is more general as it allows basic types, particularly int, to be treated as iterators.

Such basic types can not implicitly refer to a container, so that both the index and

the container must be passed to the abstract access routine. Instantiating such an
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abstract access routine for an STL-like implementation thus requires inferring the

container associated with an iterator. This motivated our use of data-flow-based

attribute propagation.

The inability to codify requirements on type parameters in C++ leads to a two-

phased approach to compilation and type-checking of templates. The first phase is

triggered upon discovering a template definition and checks expressions involving

non-dependent types (i.e., those independent of the template type parameters).

The second phase occurs when templates are instantiated. At this point, the type

parameters are bound to a particular type and the dependent expressions may

be checked. Unfortunately, this deferred compilation produces obscure errors [28]

referencing the implementation of the instantiated template, though the problem

instead occurs because a type used during template instantiation does not fulfill

its implicit requirements.

When the template type parameter requirements are made explicit via con-

cepts, checking of definitions and uses may proceed separately. In this scenario,

a concept (i.e., type requirement) effectively “stands in” for the dependent type

at the template definition. Thus, since only types fulfilling the requirements will

be passed as template parameters, checking of the definition may proceed inde-

pendently of its invocation and prior to its instantiation. Compilation errors are

expressed as failures of a type to meet a particular constraint and thus, unlike the

obscure messages reported when definitions are fully checked only upon instantia-

tion, provide a programmer with a clear indication of the bug.
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5.2.2 Mapping Concepts to Models

Just as abstractions are projected to implementations, concepts are mapped to

models to achieve good performance without sacrificing programmer productivity.

This mapping is implicitly established by requiring that abstractions and their

implementations share a name. The following reviews alternate approaches used

within the generic programming community.

CLU [50] was one of the first languages to offer an explicit distinction between

abstractions, which defined a behavior in terms of a set of operations, and the

program or modules that implemented them. An abstraction such as sorted bag

is described via the cluster keyword as containing the procedures create, insert,

size, and increasing as follows:

sorted_bag = cluster [t: type] is create, insert, size, increasing

where t has equal, lt: proctype (t,t) returns (bool);

rep = record [contents : tree[t], total : int];

create = proc () ...

...

end create;

...

end sorted_bag;

An abstraction is associated with an abstract type and an internal representation

type. Only the former may be accessed and manipulated outside of the cluster

defining the abstraction. The representation provides the implementation of the

abstract type. A sorted bag is implemented via a tree, holding the contents of the

sorted bag, and an integer total holding the number of items in the sorted bag.

98



Like sorted bag, tree is parameterized by a type t. In the case of sorted bag,

this type is constrained by a where clause to provide a total ordering via less than

and equal operations. As in most approaches, CLU programmers have no means

of specifying the semantics of the less than and equal operations beyond their type

signatures.

An abstract type is represented by its interface specification, which contains

the constraints on type parameters and the name and interface of each operation.

As this interface specification contains all of the information required to type check

uses of an abstraction, a module’s use of an abstract type may be type-checked

independently of any implementations of it.

A non-template approach to generic programming in object-oriented languages,

such as C++, C#, Java, and Eiffel, constrains types through subtyping: in C++

terminology, a concept is represented as a (pure) virtual class and models of that

concept are defined as subtypes derived from the virtual base class. Unfortunately,

as mentioned in Section 4.3, this approach does not support retroactive modeling,

wherein an existing model is mapped, without modification to that model’s defi-

nition, to a concept. Retroactive modeling is necessary to support legacy codes.

Garcia et al. [25] discuss the generics capabilities of six languages: Standard

ML, C++, Haskell, Eiffel, Java, and Generic C#. Figure 2 from Ref [25] com-

pares the syntax of concepts as implemented in each of the six languages. The

authors note that Haskell [65] effectively separates the definition of procedures

(or methods), the definition of a concept (via type classes [87]), and the map-

ping of procedure definitions to a concept’s requirements (via instances), such that

retroactive modeling is supported. A type class is not itself a type (i.e., it can not

be instantiated). Rather, it lists the operations required of a concept. A model of
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that concept is established by an instance of the type class, which maps existing

procedural definitions to their respective concept requirement. For example, the

following states a is an instance of the type class Num if it provides methods (+)

and negate, with the specified function types:

class Num a where

(+) :: a -> a -> a

negate :: a -> a

The type Int may be declared an instance of type class Num by mapping its methods

to those required by Num:

instance Num Int where

x + y = addInit x y

negate x = negateInt x

ML [57] defines a model through use of a signature, which constrains the type

names, values, and nested structures appearing within it. Structures are named

modules that package related functions, types, values, and nested structures. A

structure definition provides a concrete implementation for each required type (e.g.,

type vertex t = int) and function (e.g., fun vertices (Data(n,g)) = n) to

support retroactive modeling. Nevertheless, while there is a map between type and

function components of a signature and a structure, there is no explicit mapping

between the signature itself and a structure that implements it. Instead, structural

matching provides an implicit mapping. However, it is possible to statically deter-

mine whether a structure satisfies the requirements of a signature. For example, a

structure may be assigned to another structure that is constrained by a signature

to verify that it meets the required constraints. Generic ML algorithms are writ-

ten as functors, whose parameters are constrained by signatures. Instantiating a
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functor yields a structure specialized for the parameters, so that a functor behaves

like a constrained template.

Eiffel [56] similarly allows constraints on formal type parameters and thus sup-

ports generics through type parameterization of classes. Formal parameters are

specified in brackets following the class name, with constraints on a parameter

following an arrow.

Eiffel represents concepts using deferred classes, which are similar to abstract

classes in C++. Under this approach, a class, such as SAVINGS, models a concept

described by a deferred class, such as ACCOUNT, by inheriting from it to effect (i.e.,

define) the implementation of deferred routines.

deferred class ACCOUNT

feature

withdraw(amount: REAL) is deferred end

end

class SAVINGS inherit ACCOUNT

creation make

feature

withdraw(amount: REAL) is

do

if bal > amount then bal := bal - amount end

end

end

Java [27, 11] represents a concept, such as Comparable, with a type-

parameterized interface that lists the concept’s methods:

101



interface Comparable<T> {

boolean better(T x);

}

As in ML and Eiffel, type parameters may be constrained: a type parameter in Java

extends an interface to inherit its methods. For example, the formal parameters

of pick extend the Comparable<T> interface, and so provide the better method:

class pick {

static <T extends Comparable<T> >

T pick(T a, T b) {

if (a.better(b)) return a; else return b;

}

}

Type parameters that are so constrained are said to be bounded. A type models a

concept (i.e., interface) via the implements keyword:

interface Iterator<A> {

public A next();

public boolean hasNext();

}

class LinkedListIterator<A> implements Iterator<A> {

public A next() { ... }

public boolean hasNext() { ... }

}

The generics extensions [43] to C# closely follow the Java syntax: a concept,

such as ISet<T>, is represented by an interface, which is modeled by a class, such
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as ArraySet<T>, that inherits from it. An interface defines the methods supported

by a concept and, like classes and methods, may be parameterized by type:

interface ISet<T> {

bool Contains(T x);

void Add(T x);

void Remove(T x);

}

class ArraySet<T> : ISet<T> {

public bool Contains(T x) { ... }

public void Add(T x) { ... }

public void Remove(T x) { ... }

}

A type may be constrained by a where clause, which indicates that the type models

an interface.

Siek and Lumsdaine [80] developed the F G language, which extends SystemF

with concepts, models, and where clauses for constraining parameter types with

respect to model requirements. For example, the Semigroup concept names the

operations that a Semigroup is required to support:

concept Semigroup<t> {

binary_op : fn(t,t) -> t;

}

A type t, such as an int, models Semigroup by satisfying the interface require-

ments, as specified via a mapping from the operators named in the concept to

concrete implementations:
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model Semigroup<int> {

binary_op = iadd;

}

where iadd is a pre-defined operation. Once defined, a concept such as Semigroup

may be used to constrain a type parameter t of a generic algorithm. For ex-

ample, the clause t where Semigroup<t> ensures that t supports the binary op

operation.

The authors’ experience with F G lead them to propose similar syntactic ex-

tensions for C++, called ConceptC++ [40, 28]. As in F G, a concept provides the

signatures of any required operations that use the concept’s type parameters. For

example, an EqualityComparable concept requires that equality and inequality

operators be defined over a type:

template<typename T>

concept EqualityComparable {

bool operator==(const T& x, const T& y);

bool operator!=(const T& x, const T& y);

};

ConceptC++ supports refinement of a concept, through which it is specialized.

For example, an InputIterator extends the requirements of EqualityComparable

by demanding it support dereference (i.e., operator*) and advancement (i.e.,

operator++) operations.

template<typename Iter>

concept InputIterator : EqualityComparable<Iter> {

typename value_type;

where CopyConstructible<value_type>;
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value_type operator*(const Iter&);

Iter& operator++();

};

In addition, InputIterator requires that the associated type value type be copy

constructible, as indicated by the where clause.

A model links an abstract concept and a concrete implementation by providing

bindings for the associated types and operations required by the concept. For

example, a pointer can implement the InputIterator model:

model InputIterator<char*> {

typedef char value_type;

char operator*(char* const& p) { return *p; }

};

The model satisfies all of the requirements of the concept, in the case of operator*

through explicit binding and in the cases of operator++, operator==, and

operator!= through implicit binding. The compiler guarantees that the model

meets all requirements of the concept. Most recently [28], the authors have re-

placed the model keyword with concept map, though the two provide the same

functionality.

Dos Reis and Stroustrup [23] described an alternate means of specifying con-

cepts. They argue that explicitly enumerating the procedure signatures for a con-

cept is tedious and non-scalable. As an example of the potential growth in the

number of syntactically-distinct signatures required to specify a single semantic

operation, they consider an addition operator for a type X. Such an operator may

take one argument or two, each of which may be defined as an object, a reference,
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or a const reference. The operator and its return value may or may not be de-

clared const as well. Therefore, rather than specify a set of abstract signatures,

they propose specifying the required operations implicitly by using them in expres-

sions on the abstract type. For example, the InputIterator would be expressed

as:

concept InputIterator<typename Iter, typename T> {

Var<Iter> p; // a variable of type Iter.

Var<const T> v; // a variable of type const T.

Iter q = p; // an Iter is copy constructible.

bool eq = (q == p); // must support equality operator,

// which returns a boolean.

bool neq = (q != p); // must support inequality operator,

// which returns a boolean.

v = *p; // must support dereference,

// which returns a T.

q = ++p; // must support pre-increment,

// which returns an iterator.

};

These use patterns are reminiscent of those provided in the STL documentation

to describe type requirements. For example, bool neq = (q != p) indicates that

an InputIterator must provide an inequality operator that returns a boolean.

The use patterns may be less restrictive. For example, q != p; would express the
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requirement for an inequality operator, but would not impose any restriction on

its return type.

Our goal is two-fold: to establish the requirements for an abstraction (i.e.,

concept) and to map those requirements to the implementation procedures that

model them. Inferring this map from use patterns is insufficient for our purposes

because it requires that the abstraction operator have the same name as the im-

plementation operator. For cases in which this does not hold or in which the

implementation type does not define methods (e.g., because it is a basic type),

Dos Reis and Stroustrup introduce the assert keyword, which indicates that a

concrete type models a concept by explicitly establishing a map. Since one of our

target optimization is the lowering of an abstraction (an iterator) to a basic type

(an int), we will require the explicit mapping, which then makes the specification

of the use patterns redundant.

In summary, approaches that use subtyping to model a concept, including

Java, C#, and Eiffel, do not separate the definition of the model from the language

mechanism that establishes its relation to the concept. Therefore, they do not meet

the two requirements posed by our environment: they do not allow a non-class-

based type (i.e., base types such as int) to model a concept, nor do they support

retroactive modeling, which is necessary to indicate that a type implemented within

legacy code models a concept. These features are supported by Haskell, F G, and

ConceptC++, wherein concepts are not types and models are mapped to them via

a language mechanism independent of the model implementation.
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5.3 Code Transformation Systems

Examples from testhydro1 have demonstrated the frequent tension between the

expressive power of high-level abstractions and the performance of the resulting

code. Gregor et al. [30] discovered a similar trend across several object-oriented

numerical libraries, finding that expressing mathematical formulae, such as linear

equations, via user-defined types and operators often leads to computationally ex-

pensive stores to temporary variables. For example, a naive implementation of the

vector equation z = a * x + y requires three loops: one for the vector scaling, one

for the vector addition, and a final loop to copy the vector to the target. Each of the

first two operations results in a temporary that must be allocated and destroyed.

A more efficient implementation is provided by the semantically-equivalent AXPY

routine that calculates and assigns the right-hand side of the equation using a

single loop and without the use of any temporaries. Fortunately, the translation

from high-level algebraic expressions to equivalent fused operations, such as AXPY,

is often mechanical and may be accomplished by rewrite systems. Such systems

perform a syntactic match between a subexpression s and the left-hand side l of

a conditional rewrite rule l → r (if c), and, in so doing, establish a substitution

σ that binds s to l. If the condition c (over, for example, type constraints or

alias or side-effect relations) holds, s is replaced by r, after substitution of the free

variables in r through use of σ.

Gregor et al. [30] described the Simplicissimus system, for performing user-

defined conditional rewriting. The authors stressed that the validity of the condi-

tional is not automatically deduced. Rather, a domain expert specifies properties

of variables, expressions, and procedure invocations that arise in the context of

a domain library and against which the rewrite condition may be automatically
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checked. Expressions on either side of a rewrite rule are specified in Simplicissimus

through expression templates. A compiler’s internal representation (IR) is trans-

lated to expression templates, allowing syntactic matching to be effected through

partial template specialization. Rewrite rules are then simply listed as partial

specializations: once an expression is represented as an expression template, the

template processor automatically selects a rewrite rule that best matches the ex-

pression [76]. The target right-hand side expression template is then translated

back to the compiler’s internal representation to complete the transformation. For

example, to perform the AXPY substitution, a domain expert begins by specify-

ing a default or primary (class) template AXPYMatch that matches any expression

through its type parameter and that defines a static member variable valid as

false. The domain expert then defines partial specializations of AXPYMatch that

match the scaled addition, when represented as an expression template. This spe-

cialization defines valid as true, so long as the expert-defined conditional holds,

and also defines an expression template that yields the right-hand side of the

rewrite rule, bound to the appropriate variable names through partial template in-

stantiation. During optimization, an expression represented in the compiler’s IR is

translated to an expression template, which is then used to instantiate AXPYMatch.

The valid member of the resulting, fully-instantiated template class then de-

scribes whether the expression matches the left-hand side of the rule. If so, the

bound right-hand side of the rewrite rule is provided by the class as an expression

template, which is subsequently translated back to the compiler’s IR.

Properties, such as side-effect and alias relations, are associated with type pa-

rameters via C++ traits. Traits imbue type parameters with other types, values,

and functions through the partial specialization of templates. Properties of the in-

stantiating actual types may then be checked to ensure that the rewrite rule is valid.
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In the case of AXPY, the validity of the rewrite rule is dependent on the type param-

eters representing x and y in z = a * x + y not having side effects, since rewriting

the expression with the AXPY function call may lead to evaluation of x and y in an

alternate order. This condition may be ensured by checking the has side effects

property of the x and y type parameters. A primary, non-specialized template pro-

vides default values for properties, such as has side effects. Another interesting

property of a binary operation is whether it can overflow. A primary template

matches any binary expression (after conversion to an expression template) and

provides conservative, default properties for a binary operation:

template <typename BinaryOp>

class BinaryOpTraits<BinaryOp> {

public:

typedef __true_type has_side_effects;

typedef __true_type can_overflow;

};

A specialization, such as for an array subscript operation, can then override these

default properties. In this case, an array subscript operation does not have side

effects and can not result in an overflow:

class BinaryOpTraits<Subscript> {

public:

typedef __false_type has_side_effects;

typedef __false_type can_overflow;

};

As in our approach, Simplicissimus assumes that library designers (i.e., domain
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experts) are in a unique position to specify optimizations. In particular, they

specify the expressions that should be rewritten and the conditions required to

do so, as well as the strategy that controls the application of rewrite rules, such

as first-fit or best-fit [76]. Thus, domain experts extend the semantic knowledge

available to the compiler in performing optimizations [77]. It is the use of high-level

abstractions that make possible the application of this semantic knowledge during

optimization. Were a programmer to use a lower-level coding style or to apply

compiler techniques such as type lowering or inlining, the connection between the

original source code and the semantic knowledge imparted by the domain expert

would be obscured.

Simplicissimus facilitates optimizations of numerical libraries through the use

of concepts. For example, if the type T, the operation *, and the value 1 form a

monoid (i.e., an algebraic structure with an associative binary operation and an

identity element), then x * 1 may be simplified to x. Here the constraints on the

type of x, the operation *, and the element 1 form the condition under which the

transformation may be performed. Schupp et al. [76] further described distributive

transformations on rings as well as rewrite rules for avoiding unnecessary object

copying and temporary allocation.

Dinesh et al. [21] found that Sophus, a C++ library providing abstractions

used in the solution of partial differential equations, induced overheads similar

to those encountered by Gregor et al. The side-effect free, algebraic coding style

encouraged by Sophus is consistent with mathematical notion and improves pro-

grammer productivity and code maintainability, but requires significant spatial

overhead to hold temporary and intermediate data. Through use of the Code-

Boost conditional rewrite system, the authors translated the high-level algebraic
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style to self-mutating code that achieved 30% better performance. Bagge et al. [6]

showed that the Sophus practice of encapsulating the explicit use of loops leads to

additional temporaries, as was found in the Simplicissimus work.

CodeBoost consists of a frontend parser, a semantic analyzer, a library of trans-

formations, and a backend that emits transformed source code. A program is

parsed via OpenC++ [14] into ATerm format and subsequently into an AST. Each

transformation is implemented as a separate module that reads, transforms, and

writes the AST. The transformations are applied serially before the final AST is

read by the backend and used to emit the transformed program text.

CodeBoost transformations are specified either as Stratego modules [86] or as

user-defined rules [5]. Stratego is a transformation language for performing rewrite

steps on an AST, which is textually represented with terms, such as applications

C(t1, ..., tn) of a constructor C to terms ti, lists [t1, ..., tn], strings, and integers. For

example, Plus(Var(‘‘a’’), Int(‘‘10’’)) represents a subtree for the binary

expression a + 10. Terms may be annotated with program analysis facts that are

stored and subsequently queried by a pattern match. A conditional rewrite rule

then expresses a transformation on terms. A term pattern is a variable, a nullary

constructor C, or the application C(p1, ..., pn) of an n-ary constructor C to term

patterns pi. As it may be cumbersome to specify rewrite rules that manipulate an

AST, Stratego allows rule specification using the concrete syntax of the language

of the transformed program. For example,

EvalPlus : |[i + j]| -> |[k]| where <add>(i,j) => k

specifies that i + j should be replaced by k if the expression bound to i and j

sum to k.
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Rewrite rules are applied exhaustively until none are valid during normaliza-

tion. Since exhaustive application may not be desirable and may lead to non-

termination, Stratego allows for explicit and programmable rewrite strategies, or

algorithms that transform one term into another or fail to do so. Stratego pro-

vides means of composing strategies, such as sequential composition, deterministic

choice, non-deterministic choice, negation, and recursion. The specification of a

rule is decoupled from the specification of the strategy used to apply it.

Stratego’s scoped dynamic rewrite rules overcome the limitation of purely

context-free rewrite rules. Dynamic rules may be generated at run time and make

use of context information. For example, Olmos and Visser [63] described how to

use dynamic rewrite rules to perform data-flow transformations, such as constant

propagation. An assignment of the form x = c, for a constant c, defines the rewrite

rule x -> c and undefines any previous rewrite rules for which x is the left-hand

side. Kalleberg and Visser [42] adapted this mechanism to propagate annotations

or totems and apply it to propagate matrix dimensions, which may be specified by

programmer assertions or may be inferred from variable initialization.

CodeBoost’s user-defined rules [5] are specified in stylized C++, thus sharing

the benefit of our projection approach of not requiring the domain expert to learn

a new transformation language. They are often used to replace a combination of

domain-specific functions with a simplified, specialized optimization. For example,

int x, y;

simplify: x + y = x, is_zero(y)

defines a rule named simplify that is applicable to integer variables. When a rule

is applied, the structure of an AST expression is compared to the AST structure
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of the match pattern, as in our approach. The local variables mentioned in the

pattern, x and y, serve as meta-variables that match any expression of the specified

type. If the pattern x + y matches, then the conditional is zero(y), which is

separated from the pattern by a comma, is checked. If the conditional passes, the

matched expression is replaced by the replacement pattern. Thus, the rule replaces

any expression of the form x + 0 by x.

Conditionals check (potentially) domain-specific properties of variables and

functions. For example, is zero(y) checks whether y holds the value zero. Imple-

menting such conditionals statically requires that language constructs be tagged

with domain-specific information and that these tags or totems be propagated

throughout the program. The CB TAG directive associates tags with variable names.

These are included in the program text, and subsequently available for query by

a transformation. A data-flow analysis propagates totems across assignment oper-

ators and drops totems when their associated variable is modified. Our attribute

propagation mechanism is similar: though it is currently used to infer implicit ac-

tual arguments, it can propagate general attributes, such as the shape of a matrix.

A significant difference is that the data-flow problem required by our attribute

propagation mechanism is defined within the abstraction specification rather than

the original program text.

The TAMPR rewrite system [10] has been used to translate numerical algo-

rithms implemented with a functional programming language into a more efficient,

imperative style. The functional language specification achieves much of the in-

tent of our use of abstractions: both provide a more human-readable form than

the lower-level, more efficient representation and aid in analysis. The high-level

semantics of abstractions may be used in lieu of alias and side-effect analysis,
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while the functional language specification is side-effect free. As in our approach,

the TAMPR system leverages a mapping between the high-level representation and

the low-level implementation. The primary difference is that TAMPR is applied to

programs written using a high-level representation, while our approach optimizes

programs written in a low-level language by first translating it to an abstraction

space.

It is possible to define rewrite rules, such as employed in the above systems,

using raising and lowering projections. In fact, the lowering of mesh iterators

was completely specified in terms of projection: the mesh iteration of the original

KOLAH-based implementation was rewritten to an alternate integer-based imple-

mentation with an abstraction mediating the two. However, this is an indirect

means of performing rewrites. Projection is not intended to directly introduce

optimizations (as it does when used for rewriting), but instead provides a com-

mon representation for optimizations that target semantics rather than syntax.

Each implementation of domain semantics within a domain-specific library may

be considered an extension that defines a new language. Projection then reduces

different implementations of these semantically-equivalent extensions to a canoni-

cal form, which may be targeted by a single per-domain optimization without the

need to tailor an optimization separately to each implementation. Therefore, the

projection effectively provides a “domain-specific intermediate language” analo-

gous to the intermediate languages of traditional compilers, such as SUIF [90], to

which frontends translate syntactically distinct languages, such as C and Fortran.

Since the optimization phase targets the intermediate format, optimizations are

leveraged across languages.

There is a further philosophical difference between projection and rewrite sys-
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tems. Projection is intended to translate collections of invocations on abstraction

implementations. The invocations often cooperate to realize some higher-level be-

havior. For example, mesh iteration and field access are each used in the loops

considered above. Projecting one or the other to abstraction space individually

does not make sense since they interact with one another through common actual

arguments, which must share the same target implementation. Therefore, the pro-

jection framework ensures that either all or none of such interacting invocations

are raised. Rewrite systems, on the other hand, target and replace compound

expressions, such as z = a * x + y, independently of other expressions.

A metaobject protocol (MOP) provides an alternate means of introducing

transformations: rather than specifying a rewrite rule, a library rewriter associates

some semantic action (such as analysis or transformation) with particular types of

AST nodes. Metaobjects are responsible for translating some portion of the AST

into source code. By allowing metaobjects to be specialized or subtyped, a MOP

allows a library writer to interpose the default compilation process to introduce

domain-specific behavior.

OpenC++ [14] and OpenJava [84] are source-to-source translation systems

based on a metaobject protocol. As the two systems are similar with respect

to their design, we focus on OpenC++, which translates OpenC++, an extended

version of C++, to C++. The OpenC++ source code is parsed and a metaobject

is created for each class and method definition. During the compilation process,

OpenC++ traverses the parse tree of the program and invokes metaobjects to emit

code for class definitions, member accesses, virtual function invocations, and ob-

ject creations. By default, a metaobject simply emits ordinary C++ definitions,

accesses, invocations, and creations. However, metaobjects may be specialized to
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override this default behavior. For example, to add persistent storage to objects,

PersistentClass may be defined as a subclass of the metaobject Class, which

provides default translation. The extended C++ syntax then allows a C++ class

to be annotated as a PersistentClass, such that aspects of its compilation will

be dispatched to the PersistentClass metaobject rather than the Class metaob-

ject. The PersistentClass metaobject is then responsible for wrapping persistent

object creations to perform bookkeeping and for ensuring that an object has been

loaded from stable storage before being accessed.

Polyglot [62] provides a more general approach to base language extension than

a metaobject protocol by allowing interposition at arbitrary AST nodes. After the

extended Java base language program is parsed into an AST, a pass scheduler

selects passes to run over it. Each compilation pass potentially rewrites the AST,

which is input to the next pass. The passes may extend the AST by defining new

types of nodes that add syntax to the base language. Each pass is implemented

by an AST rewriter object that invokes a method associated with that rewriter

object at each node.

5.4 Domain-targeted Approaches

With its high-level matrix-oriented syntax, Matlab is an expressive and powerful

language for quickly developing algorithm prototypes. Unfortunately, the signifi-

cant overhead of Matlab with respect to Fortran, for example, is a barrier to its

wide-spread use in large-scale production codes. These overheads are attributable

to run-time type checking, dynamic matrix resizing, and frequent array bounds

checks [54]. Several projects have targeted Matlab’s inefficiencies through transla-
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tion to C or Fortran [18, 19] or by direct optimization of Matlab scripts [54].

Menon and Pingali [54] noted that type and bounds checks are often redundant

because they occur within loops. By vectorizing loops, they were able to eliminate

the per-iteration checks. They also found that the algebraic properties of matrices

can be exploited for greater efficiency. For example, computing the matrix-vector

multiplication AT ∗ q requires the spatial overhead of a temporary matrix and the

execution overhead of matrix element copies for the transpose, while the equivalent

(qT ∗ A)T expression requires neither.

FALCON [18, 19] is a Matlab to Fortran 90 translator. In order to translate

an untyped Matlab script to Fortran, FALCON must perform type and shape

inference accounting for intrinsic type (complex, real, integer, or logical), shape

(scalar, vector, or matrix), and the size of each dimension. If the type of a variable

can not be inferred at some point within the script, FALCON emits code to perform

run-time type determination. FALCON type inference utilizes domain semantics,

including high-level summary information about built-in functions, such as the

knowledge that lu returns triangular matrices. It also can derive the types and

shapes of procedure return values based on the known types and shapes of its

input parameters. Having determined the types of actual arguments, FALCON

selects specialized procedures that implement an operator more efficiently than a

general-purpose procedure that can not make assumptions about its inputs.

De Rose et al. [18] also noted the potential use of algebraic properties, such

as associativity, distributivity, and commutativity (when and where they hold), in

optimizing matrix operations. For example, judicious choice of ordering of ma-

trix multiplication can reduce the asymptotic complexity. The authors proposed

interactive restructuring in which a user guides transformations by selecting ex-
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pressions or statements within the application as potential targets for optimization.

The FALCON system queries a database of transformation or rewrite rules, such

as those exploiting algebraic properties, and applies any matching the user-selected

code fragment.

MaJIC presents a Matlab-like interactive frontend for performing just-in-time

compilation and optimization and speculative ahead-of-time compilation [2]. Like

FALCON, it infers intrinsic type, shape, and range information for callsite spe-

cialization. When the frontend encounters a function call, it creates a summary

of the function name and inferred argument types and queries a code repository,

or database, for the most appropriately specialized procedure implementation. If

no valid procedures are stored within the repository, MaJIC uses its just-in-time

compilation facility to compile the procedure.

The repository actively snoops source code directories upon update to spec-

ulatively compile procedures. To avoid an exponential explosion in procedure

specializations, MaJIC performs type speculation to determine the procedure spe-

cializations that are likely to be invoked. Type determination need not by exact

since it drives speculative code generation rather than procedure invocation. Dur-

ing speculation, type hints derived from the procedure body are propagated back

to its input parameters. These hints are based on Matlab common practices, such

as the expected, though not required, use of integers as operands to the colon

operand used to specify an interval or range.

Each of these approaches to Matlab optimization or translation use some high-

level semantic information; for example, algebraic properties suggest transforma-

tions and the known semantics of built-in operators dictate type and shape infor-

mation. However, these domain-targeted schemes are intimately tied to Matlab
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and the semantics of linear algebra, which tend to be hard-coded directly within

the compiler. Such lack of extensibility prevents application of these approaches to

new libraries or toolkits that do not make frequent use of the linear algebra subset

of Matlab.

Our use of projection between concrete implementation and abstraction spaces

is similar to the approach Menon and Pingali used to optimize numerical codes [55].

The authors converted Matlab or Fortran loops into an Abstract Matrix Form, or

AMF. Axioms on AMF express the semantics of matrix, vector, and element-wise

operations. By establishing that certain AMF expressions are provably equivalent,

the authors allowed for the translation of low-level loop-based scalar code into

vector code. After reasoning about transformations in the abstract space, AMF is

translated back to Matlab or Fortran.

A high-level intermediate form has also been applied by Mateev et al. [51] in

the optimization of sparse matrix codes. The authors proposed using two APIs,

a high-level interface for expressing generic algorithms and a low-level interface

for exposing implementation details necessary to obtain high performance. An

algorithm written to the high-level API addresses the matrix using random access.

This algorithm is then transformed to an intermediate form in which loops are

modeled using a relation algebra, which is subsequently optimized as a set of

relational queries. The optimized intermediate form is then output as invocations

on the low-level interface, which provides efficient, sequential access to matrix

elements.

The above compiler-directed approaches target legacy codes by translating

their concrete syntax into an abstract form with known semantics. Alternately,

language-level extensions or library routines may be defined to express particular
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semantics. For example, Kulkarni et al. [49] introduced a set iterator that asserts

that iterations may be executed in any order and used it to implement Delaunay

mesh refinement. The authors found that loop parallelization requires considering

the commutativity of operations on the set accessed across iterations. The internal

state of the shared set may differ for different execution orders, though involved op-

erations still may commute in the semantic sense. Therefore, the authors described

the set’s operations in terms of their semantic effect, rather than their implemen-

tation. Doing so allowed them to optimistically execute loop instances in parallel.

The commutativity of set operations is verified at runtime, with commutativity

conflicts triggering a rollback.

5.5 Broadway

Broadway [33, 35, 34] takes a philosophy similar to our own, viewing a library

as a domain-specific language whose procedures often must be treated as black

boxes since they are unknown to the compiler. A sophisticated annotation lan-

guage [33] and abstract interpretation mechanism supplement the compiler’s lim-

ited understanding of an application. Broadway offers a richer set of analyses

and a more expressive data-flow problem description for propagating abstraction

properties than currently available in ROSE. However, what the authors perceive

as a strength, a transformation scheme utilizing macro-based code substitutions,

we view as a limitation. While writing transformations within open or extensible

compiler frameworks, such as our own, may be more cumbersome for simple op-

timizations readily expressed in terms of pattern matching and substitution, we

believe that global transformations and analyses require the more flexible approach

afforded by direct AST inspection and traversal.
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Broadway is a source-to-source translator for C written in C++ [34]. The back-

bone of Broadway is its annotation language [33]. Low-level analysis information

such as variable definitions and uses may be specified via modify and access.

Higher-level, domain-specific information is specified with the property keyword,

which may introduce a lattice of enumerations or a set [35]. analyze annotations

are used to define a data-flow problem describing abstract interpretation over prop-

erties. Analysis annotations are implications: if the left-hand conditional holds,

the right-hand side is evaluated to potentially modify some property, for exam-

ple, by adding or removing a member from a set. By leveraging analyze clauses,

procedures act as data-flow transfer functions modifying the abstract properties.

Broadway solves the data-flow equations to propagate properties throughout the

program, which may then be evaluated within conditionals to trigger optimizations

as annotated by replace-with or inline. Conditions may test for a particular

enumeration value, whether an element is a member of a set, if numerical relation

such as equality holds over quantities derived through constant propagation, or

whether an aliasing or equality exists between variable bindings.

Transformations act on callsites and may either replace a callsite with a user-

specified C code fragment or may indicate that the library procedure should be

inlined if the source code is available [35, 34]. Earlier work on Broadway allowed

simple pattern matching based transformations [36] and a mild variant of the

current scheme using the specialize keyword to either replace or remove code

fragments [33]. The C-Breeze front-end parses the fragment to ensure that it is

valid C code before introducing it into the program.

Optimization within Broadway relies on a domain expert to specify abstract

properties, how library routines affect them, and the code transformations predi-
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cated on them [34]. Broadway first performs pointer analysis informed by on entry

annotations describing the pointer structure of procedure parameters and on exit

annotations indicating changes to parameters or the structure of the return value

resulting from the procedure’s execution. It next solves the data-flow problem in-

stantiated by analyze to propagate abstract properties throughout the program.

The precision of Broadway’s client-driven analysis is tuned to the requirements of

a client based on perceived loss of information and is flow- and context-sensitive.

Following analysis, Broadway applies a series of enabling transformations such as

procedure integration, procedure cloning, loop peeling, and node splitting before

specializing callsites according to annotations and finally performing traditional

optimizations.

5.6 Telescoping Languages

Similar to our own work, the telescoping languages project [44] focuses on the

optimization of libraries and their usage within scientific domains. More specif-

ically, the work understands that high-level scripting languages, such as Matlab

or Mathematica, increase programmer productivity by providing language con-

structs consistent with notations familiar to scientists. Unfortunately, prototypes

built in high-level scripting languages often need to be recoded in languages such

as C, C++, or Fortran to meet the performance requirements of large-scale pro-

duction systems. Such tedious, manual translation negates the initial expediency

gained from using a high-level language. The telescoping languages project seeks

to obviate this recoding step by making the performance of scripting languages

commensurate to that of more conventional programming languages.
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Performance of scripting languages is degraded because the script interpreter or

compiler has no semantic understanding of the invoked libraries. Reasoning that

the domain libraries will be re-compiled relatively infrequently, work on telescoping

languages [44, 45] invests considerable analysis time and complexity to optimize

the libraries. Because this increased library compilation time does not burden

script compilation, the user sees improved performance without undue compilation

overhead.

The initial library analysis and preparation phase effectively acts as a language

generation phase by creating a recognizer and optimizer for a telescoping language.

During this phase a domain library is extensively analyzed by the Palomar trans-

lator generator. The domain library may itself be written in a scripting language,

in which case it is parsed by a domain script translator and translated into a

“base language”, such as C or Fortran. Palomar employs powerful interprocedu-

ral analyses, informed by annotations supplied by domain experts, that would be

prohibitively expensive if applied at script compilation time.

The library-aware optimizer produced by the library analysis and preparation

phase treats library entry points as language primitives. Thus it is effectively

a recognizer for a new “telescoping language” that is the union of the original

base language and library entry points. During the script compilation phase, a

domain script is translated into the base language by a domain script translator

and presented to the library-aware optimizer, which ultimately produces optimized

source code in the base language. This process may be repeated recursively, with a

mature script being passed as input to the library analysis and preparation phase;

thus the scheme can “telescope” hierarchies of libraries into a single optimizer.

As in Broadway, the most frequent transformation performed by the library-

124



aware optimizer is callsite specialization informed by calling context. Procedures

are most often specialized according to high-level type and shape information. For

example, the shape of a matrix, such as tridiagonal, sparse, symmetric, or diagonal,

may allow a more efficient implementation of an operator or algorithm: while a

typical eigensolver has O(n3) complexity [26], one acting on a tridiagonal matrix

has O(n2) complexity [20]. The library analysis and preparation phase produces

procedures specializations and stores them in a database for use during the script

compilation phase.

Because Matlab and S scripts are untyped, performing type-based specializa-

tion first requires assigning types to each variable at each statement. The domain

script translator employs a sophisticated type analysis that generates a set of valid

type configurations [52], each of which potentially admit a unique specialization.

During type inference, the library analysis phase creates type jump functions and

return type jump functions. The former assign types to local variables within a

procedure based on the types of its formal parameters, while the latter assign the

return type of a procedure again as a function of the types of its input arguments.

Use of these functions allow for the efficient propagation of type information with-

out a need to recompute it; thus the majority of the burden of type analysis is

borne by the library analysis phase, whereas the compilation phase simply consults

a table.

A data-flow analysis propagates inferred properties or semantics supplied by

a domain expert. These properties include the types and values of parameters

and are used to specialize routines. Reverse program analysis reasons back from

potential targets of optimization within a procedure to restrict types at the entry

point of a specialized version of the procedure. Having guaranteed the type pre-
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conditions required by the optimization, the specialized procedure can implement

it. The resulting specialized procedures are stored in a database from which they

can be selected and inlined into scripts during script compilation.

As in our work, research in telescoping languages recognizes that the domain

expert writing the library is best suited to provide semantic annotations about

that library. Envisioned annotations include algebraic identities and inverse oper-

ations indicating, for example, that a push onto a stack followed immediately by

a pop is a no-op and that both operations may be omitted. Annotations may also

assist type analysis by limiting an inferred set of possible types to a more restricted

set that occurs in practice. Annotations specify substitutions, as in Broadway, of

one code segment for another predicated on a specific calling context. Early im-

plementations of telescoping languages [13] used XML to specify code to replace

any code sequence matching a query pattern. This substitution is triggered within

the specified context assuming that no dependences are violated. In addition, a

query pattern may contain variable, constant, and statement wild cards. Both

the substitute and the match sequences are comprised of simple statements, loops,

and two-way and multi-way branches. In addition, the annotation may specify the

profitability, in either a qualitative or quantitative sense, of applying a transfor-

mation.

5.7 ROSE-related Abstraction Optimization

From its inception, automatic generation of domain-specific grammars has been

a goal of the ROSE project [66, 68, 72, 73]. In early work, ROSETTA, currently

used to specify the C++ grammar, automatically generated grammars used to rec-
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SgLocatedNode

SgNode

... ...

SgBinaryOp SgFunctionCallExp SgUnaryOp

SgAddOp SgDotExp SgPntrArrRefExp SgCastExp SgPointerDerefExp

SgExpression

... ...

XExpression

XFunctionCallExpXBinaryOp

XAddOp XDotExp XPntrArrRefExp

XUnaryOp

XCastExp XPointerDerefExp

Figure 5.1: ROSETTA abstraction inheritance.

ognize abstraction defined within libraries [68]. Library header files were parsed

to discover library class definitions and functions. The resulting abstraction gram-

mar contained a shadow set of grammar variants; for example, for a library X

ROSETTA would generate an XNode for every SgNode [66]. This simplified the

recognition of abstractions within the AST because each was clearly labeled as

belonging to a library or to the base language; a function call represented by a

SgFunctionCallExp invokes a function defined within the base language, while a

XFunctionCallExp invokes a function or method defined within the X library. A

subset of the shadow variants that would be generated by ROSETTA are shown

in Figure 5.1.

A recognizer generated by ROSETTA propagates abstraction references up

to their enclosing expression or statement. For all SgExpressions, such

as SgFunctionCallExp and SgBinaryOp, ROSETTA defines a corresponding

XExpression. An AST node is labeled with an XExpression rather than a

SgExpression only if the types of all references within the expression are abstrac-

tion types. Similarly, an XStatement is so labeled only when all of its expressions

are XExpressions. For example, the node representing the statement A = B +
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foo(); is marked as library specific if the types of A and B are a user-defined

abstraction and operator=, operator+, and foo are procedures acting on these

or some other user-defined type [73]. In this regard, this approach is similar to

the raising projection: an abstraction implementation is raised to abstraction space

only if all of its actual arguments can be similarly raised or if their type is invariant

across implementation spaces.

The higher-level abstraction grammar is defined relative to the base-language

grammar according to a set of constraints, which are expressed as C++ code

strings [66]. For example, Quinlan and Philip [68] describe a higher-level grammar

for array abstractions, in which an abstraction array type within the grammar is

defined as a class type in the base-language grammar with the additional constraint

that the class type is named “doubleArray.” The authors also add terminals cor-

responding to each public member function of the array class, thereby introducing

these methods to the language definition.

A subset of the array abstraction grammar is defined programmatically in

Figure 5.2 [67]. The new doubleArrayType type is included in the abstraction

grammar by adding a corresponding terminal to the base-language grammar. Ab-

straction grammars may also remove terminals from the base grammar. This

abstraction grammar definition can be automatically generating by parsing the

doubleArray class definition.

Line 4 constructs a representation of the C++ grammar, which may be parsed

by the recognizer built in line 8. The X Grammar for array abstractions is specified

as a child grammar of the base-language grammar by line 13, which indicates that

the AST nodes of X Grammar should be prefixed with X. The grammar adds a

single terminal to the base-language grammar in line 23. The terminal is a copy of
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// Build the C++ grammar.

2
// For base-language grammar use prefix "Sg"

4 Grammar sageGrammar("Cxx_Grammar","Sg","ROSE_BaseGrammar");

6 // Build the header files and source files representing the

// grammar’s implementation.

8 sageGrammar.buildCode();

10 // For the higher-level grammar use any prefix but "Sg" to

// avoid namespace collision. Specify the parent grammar if

12 // it exists (this defines the hierarchy of grammars).

Grammar X_Grammar("X_Grammar","X_","ROSE_BaseGrammar",&sageGrammar);

14
// Build a new terminal as a copy of an existing terminal,

16 // giving it a new name. The copy is then a child of the

// copied terminal: parsing the parent triggers the parsing of the

18 // children (constraints are tested and a child is built if a

// constraint test passes, else the parent is built). In the tree

20 // hierarchy the new terminal is DERIVED from the parent (thus the

// doubleArrayType is derived from the ClassType).

22 Terminal &doubleArrayType =

X_Grammar.getTerminal("ClassType").copy("doubleArrayType");

24
// Build a constraint and add it to the new terminal.

26 char* constraintString = "isSgClassDeclaration() &&

isSgClassDeclaration()->getName() == \"doubleArray\"";

28 doubleArrayType.addConstraint("declaration",constraintString);

30 // Add Terminal to Grammar (to the X_Type branch)

// ("OR" the new terminal with the existing terminals)

32 // X_Grammar.getNonTerminal("X_Type") |= doubleArrayType;

34 // Adding a terminal to the grammar will automatically place the

// terminal in the correct location within the tree hierarchy.

36 X_Grammar.addNewTerminal(doubleArrayType);

38 // Build the header files and source files representing the

// grammar’s implementation.

40 X_Grammar.buildCode();

Figure 5.2: ROSETTA-based definition of abstraction grammar.
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SgClassType, which is used to represent types introduced as C++ classes, and is

given the name doubleArrayType. Line 28 adds a constraint to the new terminal,

defining it as a SgClassDeclaration whose name is doubleArray. The grammar

specification is completed by adding the terminal to the AST type hierarchy. This

may be done explicitly as in line 32, which adds the new terminal to the right-hand

side of the X Type non-terminal, thus making it a subtype of X Type. Alternately,

the new terminal may be automatically situated in the type hierarchy as in line 36.

Finally, line 40 builds the recognizer for the newly defined abstraction grammar.

A hierarchy of grammars results from defining an abstraction grammar relative

to another grammar through the addition or removal of terminals. Parsing of

a parent node recursively checks any constraints that were added to a copy of

that node to define a child node in a sub-grammar. If a child node’s constraints

pass, a child node is built in place of the parent node. Because a child node is

derived from a parent node, an optimization may act on any level of the AST

hierarchy. Therefore, modifications at one conceptual level of the AST hierarchy

are automatically visible at all levels.

The primary drawback of the ROSETTA-based approach is its scalability: for

each new abstraction, it introduces not only a complete new set of variants, but also

the hundred or so lines of code required to recognize each variant. Another draw-

back is the relationship it imposes on Sage variants and abstraction variants. The

ROSETTA approach creates XExpression as a subtype of SgExpression. There-

fore, any optimization or analysis targeting a SgExpression applies equally well

to a XExpression. Unfortunately, this is not true of the subtypes of XExpression:

since XBinaryOp is not a subtype of SgBinaryOp, a transformation targeting bi-

nary operators would have to be implemented redundantly for Sage and abstraction
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nodes, even when the semantics for binary operators over abstractions are consis-

tent with those in the base language. XBinaryOp could conceivably multiply inherit

from XExpression and SgBinaryOp, though this would sacrifice the simplicity of

an inheritance tree for an inheritance graph.

During the course of this work, we considered defining a shared pseudo-base

class of both SgExpression and XExpression, SgExpressionAbstraction, to be

used whenever one would like to ambiguously refer to a base-language or abstract

expression. In point of fact, SgExpressionAbstraction subsumed SgExpression

and XExpression, as defined in the ROSETTA approach, and had no explicit

language-level inheritance relation with SgExpression.

These approaches extend the base language to include abstraction-level con-

structs. This is beneficial since it allows expressions on abstractions, e.g., the

matrix-vector equation A * x + b, to be treated like semantically-similar expres-

sions in the base language, e.g., the integer equation a * x + b. This would facil-

itate, for example, the transformation of matrix-vector equations using traditional

optimizations intended for scalars, including partial redundancy elimination and

algebraic simplification. Therefore, these approaches should be of value to math-

ematical abstractions, which can be readily mapped to language-level expressions

such as addition and multiplication.

Operations on abstractions outside the linear algebra domain, e.g., mesh itera-

tion, do not correspond well to language-level constructs. While KOLAH-based mesh

iteration was lowered to an integer-based implementation using only language-level

expressions, those low-level constructs do not reflect the semantics of iteration

in the same manner in which a base language’s addition operator generalizes to

matrices. Therefore, representing operations on arbitrary abstractions within an
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extended grammar seems to be of little value. For example, mapping mesh ab-

stractions and the operations on them to new AST nodes would not aid mesh

precomputation in determining those expressions that access mesh connectivity

metadata. We believe that expressing abstraction semantics that do not corre-

spond to the semantics of base language constructs is better achieved through

the projection approach. This framework presents abstractions to analyses and

optimizations in a canonical, function-based form without attempting to force an

artificial correspondence to base language constructs.

Work within ROSE leveraging domain semantics to guide transformations has

proceeded independently of the above work on ROSETTA-based abstraction recog-

nition [70, 71, 69, 91]. This work relies on semantics as specified by a domain expert

or library writer through an increasingly sophisticated and maturing annotation

interface, which has been informed by our earlier work [89].

Quinlan et al. [70] introduced OpenMP pragmas into serial code to parallelize

loops over user-defined containers. To ensure the correctness of this transformation,

the authors needed to guarantee that no dependences exist between loop iterations.

For their examples, this guarantee is provided by a developer-specified assertion

that containers obey “Fortran array semantics”, i.e., their elements are unique.

Traditional dependence-based approaches would be insufficient to navigate user-

defined abstractions to derive this container property.

Yi and Quinlan [91] and Quinlan et al. [71] presented an extended loop trans-

formation framework that applies interchange, fusion, and blocking to user-defined

containers. They extended a traditional dependence analysis with an array abstrac-

tion interface, through which they communicate container semantics including the

uniqueness of container elements. By widening the interface to dependence anal-
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class floatArray :
inheritable is-array { dim = 6;

len(i) = this.getLength(i);
elem(i$x:0:dim-1) = this(i$x);
reshape(i$x:0:dim-1) = this.resize(i$x); };

operator floatArray::operator()(int index) :
inline { this.elem(index) };
restrict-value { this = { dim = 1; }; };

Figure 5.3: Container annotation language.

ysis, they bring the community’s significant investment in loop optimization for

Fortran to bear on user-defined containers.

Their approach is consistent with Figure 1.2 because it maps a concrete imple-

mentation to an abstract intermediate form, which is analyzed without recourse

to the implementation. For example, the annotation for the floatArray class

in Figure 5.3 [91] declares that it has array semantics, which are pre-defined by

the annotation language to include the dim attribute and the len, elem, and

reshape methods. The class annotation maps the abstract method elem to the

concrete method implementation operator(). This relation, along with all others

supplied in the class annotation, are inherited by any subclasses of floatArray

because of the inheritable keyword. A reciprocating annotation for operator()

establishes its semantic equivalence to the abstract elem via the inline keyword.

restrict-value assigns a value to a property, previously specified via has-value,

based on the procedure context. For example, since a floatArray is accessed via

a single dimension by operator()(int index), it must have dimensionality one.

Our approach to abstraction optimization, particularly establishing and ex-

ploiting the projection between spaces, was inspired by the work of Yi and Quin-

lan [91]. However, their annotation language was defined specifically to describe
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class Node : has_value { id = this.id(); }

2 class Edge : has_value {

n1 = this.node1(); n2 = this.node2();

4 };

class Mesh : has_value {

6 nsize = this.node_size(); esize = this.edge_size();

nodes(i:0:nsize) = this.get_node(i);

8 edges(i:0:esize) = this.get_edge(i);

};

10 restrict_value { nodes(i).id != nodes(j).id; }

never_alias (edges(i).n1) = edges(i).n2;

12 never_alias (edges(i)) = edges(j) : j != i;

never_alias (nodes(i)) = nodes(j) : j != i;

14 must_alias(nodes(j)) = edges(i).n1 or edges(i).n2;

restrict_value { esize >= nsize * k1 : esize <= nsize * k2 }

Figure 5.4: Mesh annotation language.

container semantics and mandates its interface, whereas our approach allows a

domain expert to define the interfaces of any number of abstractions. Further, the

authors translate an AST (i.e., the original implementation) to an intermediate

form in order to optimize it, whereas our approach allows for distinct original and

target implementations. The first step in their optimization process replaces low-

level implementations with abstract procedures through semantic inlining. This

results, for example, in arrays for which all dimensions are explicitly specified

as opposed to C pointers whose single “dimension” would hide array semantics

and prevent optimization. An adapted constant propagation algorithm, similar

to our data-flow-based attribute propagation, computes properties, introduced by

has-value and refined by restrict-value, to inform loop transformations. The

final step generates low-level code by translating the abstract procedures back to

concrete implementations.

Later work [69] generalized this container annotation language to accommodate

unstructured mesh semantics, motivated in part by our earlier findings [89]. These

semantics indicate that a node has an identifier, an edge is comprised of two
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nodes, and a mesh has fixed numbers of nodes and edges as well as means of

accessing them, as shown in Figure 5.4. This specification assumes that the mesh

provides random access to mesh elements, which facilitates making assertions over

a collection. For example, line 12 states that no two edges in a collection are the

same. The annotation implicitly uses universal quantification and formalizes the

high-level concept of a set, that is, a collection with unique elements, through a

low-level analysis statement about aliases. The latter use of compiler terminology

will allow semantics to be readily incorporated into existing analysis frameworks.

Our current work embeds semantics within abstraction documentation, as done

in STL, rather than explicitly codifying them with an annotation language. Just

as STL programmers must respect the semantics of the routines they use, opti-

mizations must respect the semantics of abstractions. In future work, we antic-

ipate explicitly annotating semantics and, as described above, could easily use

existing facilities to tag abstraction procedures with simple side-effect and alias

annotations. However, the present work focuses primarily on the importance of

several traditional and novel optimizations, the semantics that enable them, and

a framework for their automation, rather than on the representation of semantics.

Originally, we envisioned that semantics, such as those of Figure 5.4, might lead a

compiler framework to infer that lowering was possible. Instead, by providing two

alternate implementations of mesh iteration, the domain expert obviates the need

for many of these annotations.
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Chapter 6

Conclusion

High-level abstractions, such as matrices and fields, improve programmer produc-

tivity because they more closely resemble the mathematical notation familiar to

scientists than low-level constructs that expose implementation details. While the

implementations of individual operations acting on these abstractions are generally

very efficient, achieving good performance across such operations is challenging.

Whereas the compiler can infer behavior of low-level constructs through side effect

and alias analyses, because it does not recognize abstraction invocations, it must

often conservatively treat them as black boxes. This can hinder optimization and

lead to poor performance. For example, we have found that a representative mesh

benchmark executes more than eight loads or stores and more than two branches

per floating point operation.

Following the lead of pioneering work on the optimization of high-level abstrac-

tions by Guyer and Lin [33, 35, 34] and the research groups of Kennedy [44, 45],

Pingali [1, 48, 51, 54, 55], and Quinlan [91, 71], we propose a framework for

representation-independent optimization that targets an abstraction’s semantics,

rather than its implementation. These approaches treat the constructs within the

input program as abstractions to be optimized or recognize specific constructs (e.g.,

matrix accesses) and translate them to a higher-level intermediate representation

(IR) (e.g., database queries) that is subsequently optimized. Our approach differs

in that the abstraction space, which defines the IR, is not fixed by the optimization

framework, but is specified by a domain expert who also provides optimizations

acting within that abstraction space. Thus, while we instantiate several unstruc-

tured mesh optimizations within this framework, it is effectively an open compiler
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infrastructure that exposes for optimization a view of the program expressed in

a developer-defined IR. As such, it may be applied to other domains leveraging

abstractions.

6.1 Contributions

This thesis has made specification contributions to the optimization of unstruc-

tured mesh codes by quantifying overhead in a benchmark implemented within

the KOLAH framework and by discussing mesh semantics that we expect generalize

beyond KOLAH. We anticipate that this characterization will help developers and

compiler groups to better understand and optimize mesh applications. We have

used these findings to motivate several domain-specific optimizations, including

mesh precomputation and lowering. Though the testhydro1 benchmark imple-

mented within KOLAH served as our specific testbed, we believe our findings and

domain-specific optimizations generalize beyond each. For example, though mesh

precomputation targeted gradient and divergence operators, it is amenable to op-

erators likely to be employed in other dynamical simulations. These include curl

and averaging operators, which are implemented in the production library from

which KOLAH was derived and which share the loop nesting structures and loop

exit conditions of the gradient and divergence operators. Though other dynamical

solvers may incorporate theories much different from the Lagrangrian formalism

used by testhydro1 in solving the Euler equations, we expect them to employ

similar programming motifs. In particular, solving a system of equations over a

volume or surface necessarily entails iterating over the mesh. Simple loops that ac-

cess fields will therefore benefit from lowering, while nested loops will additionally

benefit from mesh precomputation.
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This thesis has made a general contribution to semantics-based optimization

of abstractions by proposing a framework that projects abstractions from an im-

plementation space, where optimization is limited by the bounds of traditional

compiler analysis, to an abstraction space, where optimization and analysis are

informed by semantics. As the projection, or mapping, between the two spaces

is defined by a domain expert, the system is not restricted to the unstructured

mesh domain considered here. We described a data-flow analysis for assigning,

propagating, and querying variable attributes and applied it to the inference of

actual parameters. Because of this analysis, implementations of an abstraction

need not conform to a single interface. Rather, parameter inference can be used

to bridge the interface differences between an implementation within which a pa-

rameter is implicit (e.g., the container implicitly associated with an STL iterator)

and a second within which it is required (e.g., the vector associated with an integer

index).

6.2 Future Work

The current approach follows the STL convection of providing abstraction seman-

tics within their specification documentation and expects that optimizations writ-

ten by domain experts respect them. These semantics could be more explicitly

encoded within the specification via annotations, such as those used to indicate

that a procedure abstraction is a conversion operator. Once semantics are made

explicit, it may be possible to verify their correctness—i.e., to ensure that the

implementation of an abstraction adheres to its declared semantics. Doing so is

more practical at the analysis level, rather than at the algorithmic level. However,

verifying properties such as alias and side-effect relations may be infeasible given
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the state of compiler analysis technology. The ability to exploit domain expertise

to overcome this limitation of traditional analysis should therefore be considered

a strength, rather than a shortcoming, of this approach. As such, related trans-

formation systems typically rely on the validity of communicated domain exper-

tise [76, 6].

Nevertheless, it is possible to check that abstractions defined in libraries are

used in accordance with their specifications. STLlint [29] uses symbolic execution

to check uses of STL (e.g., to verify that an invalidated iterator is not accessed

and to ensure a binary search is not applied to an unordered sequence). Violation

of abstraction semantics are not language-level errors, since the program is syn-

tactically correct. Therefore, STLlint analyzes source code and replaces any types

and functions that have specifications with an executable form of the specification.

These executable (and analyzable) abstractions are then analyzed to ensure proper

use. For example, an executable specification for a heap sort routine might tag

the sequence as being sorted. A binary search routine would then assert that its

sequence argument has a sorted tag, which might subsequently be removed (e.g.,

by a routine that appends an element onto the sequence). STLlint uses fixed-

point iteration and symbolic differencing in performing loop analysis. The authors

do not attempt to prove the correctness of the specifications passed to STLlint.

Though we perform no such abstraction use checking (and lack the sophisticated

loop analysis to do so), the projection mechanism could be used as a necessary

first step in replacing implementations with their executable specifications.

The projection framework can be applied to alternate implementations of mesh

abstractions and to alternate domains. Porting the framework to an alternate im-

plementation requires mapping it to the mesh abstractions used in this thesis
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through appropriate lowering operators. Doing so will allow mesh precomputation

and lowering to target the new implementations. Applying the projection frame-

work to new domains involves defining an abstraction interface and elucidating

the semantics that span implementations. The availability of an open compiler

framework that targets the commonalities of abstraction implementations will al-

low coordination of these and other optimization efforts across research groups.
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